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Filtrations on instanton homology
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Abstract. In earlier work of the authors, the Khovanov complex of a knot or link appeared
as the first page in a spectral sequence abutting to the instanton homology. The quantum and
(co)homological gradings on Khovanov homology do not survive as gradings, but we show
that they survive as filtrations.
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1. Introduction

The Khovanov cohomology Kh.K/ of an oriented knot or link is defined in [3] as the
cohomology of a cochain complex .C D C.D/; dKh/ associated to a plane diagram
D for K:

Kh.K/ D H
�
C; dKh

�
:

The free abelian group C carries both a cohomological grading h and a quantum
grading q. The differential dKh increases h by 1 and preserves q, so that the Khovanov
cohomology is bigraded. We write F i;j C for the decreasing filtration defined by the
bigrading, so F i;j C is generated by elements whose cohomological grading is not
less than i and whose quantum grading is not less than j . In general, given abelian
groups with a decreasing filtration indexed by Z ˚ Z, we will say that a group
homomorphism � has order � .s; t / if �.F i;j / � F iCs;j Ct . So dKh has order
� .1; 0/.

In [5], a new invariant I ].K/ was defined using singular instantons, and it was
shown that I ].K/is related to Kh.K�/ through a spectral sequence. The notation K�

here denotes the mirror image of K. Building on the results of [5], we establish the
following theorem in this paper.

Theorem 1.1. Given an oriented link K in R3, and a diagram D� for K�, one
can construct a differential d] on the Khovanov complex C D C.D�/ such that the
homology of .C; d]/ is I ].K/. The differential d] is equal to dKh D dKh.D�/ to
leading order in the q-filtration: that is both differentials have order � .1; 0/, and
the difference d] � dKh has order � .1; 2/.

The differential d] depends (a priori) on more than just a choice of diagram
for K. It depends also on choices of perturbations and metrics, required to make
moduli spaces of instantons transverse. The fact that, with appropriate choices, the
complex which computes I ] can be made to coincide with C as an abelian group is
easily seen from the authors’ earlier paper [5]. The new content in the above theorem
is that d] � dKh has order � 2 with respect to the quantum filtration. (The quantum
degree is of constant parity on the complex C, so order � 2 is inevitable once the
leading-order parts agree.)

As a consequence of the above theorem, the filtrations by i and j lead to two
spectral sequences abutting to I ].K/, whose E2 and E1 terms respectively are both
isomorphic to Kh.K�/. Indeed, there is such a spectral sequence for every positive
linear combination of i and j . The next theorem addresses the topological invariance
of these spectral sequences. We write C for the category whose objects are finitely-
generated differential abelian groups filtered by Z ˚ Z with differentials of order
� .1; 0/, and whose morphisms are differential group homomorphisms of order .0; 0/

up to chain-homotopies of order � .�1; 0/.
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Theorem 1.2. In the category C, the isomorphism class of .C; d]/ depends only on
the oriented link K.

From the above theorem, it follows that the various pages of the resulting spectral
sequences are invariants of K, as the next corollary states. (A similar result for a
related spectral sequence [8] involving the Heegaard Floer homology of the branched
double cover was established by Baldwin [1].)

Corollary 1.3. For the homological and quantum filtrations by i and j , the isomor-
phism type of the all the pages .Er ; dr/, for r � 2 or r � 1 respectively, are invariants
of K. More generally, for the filtration by ai C bj with a; b � 1, the same is true
when r � a C 1.

Proof of the corollary. See for example [6], Chapter IX, Proposition 3.5, though the
notation there uses increasing filtrations rather than the decreasing filtrations of this
paper.

Corollary 1.4. The homological and quantum filtrations i and j give rise to filtrations
of the instanton homology I ].K/, as do the combinations ai C bj . These filtrations
are invariants of K.

Our results leave open a functoriality question for the pages .Er ; dr / of the spectral
sequences. For example, Theorem 1.2 does not imply that there is a functor to C from
the category whose objects are oriented links and whose morphisms are isotopies.
We do expect that a result of this sort is true however. The issue is similar to the ones
that arise in proving that Khovanov cohomology is functorial [2].

We do know that the homology groups I ].K/ are functorial for cobordisms [5].
Thus, if K1 and K0 are oriented links and S � Œa; b� � R3 is a cobordism from K1

to K0 (which we allow to be non-orientable), then there is a map

I ].S/ W I ].K1/ �! I ].K0/

which is well-defined up to an overall sign. The following proposition describes how
the filtrations behave under such a map.

Proposition 1.5. The map I ].S/ W I ].K1/ ! I ].K0/ resulting from a cobordism S

is represented at the chain level by a map C1 ! C0 of order

� .1
2
.S � S/; �.S/ C 3

2
.S � S//:

Here the term S � S is the self-intersection number of the surface S defined with
respect to a push-off which, at the two ends, has total linking number 0 with K1 and
K0 respectively.
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Note that the self-intersection number which appears in the proposition is zero if
S is an oriented cobordism, and is always even. These results for the filtrations of I ]

should be compared to the corresponding statements for Khovanov homology, where
it is known that an orientable cobordism S gives rise to a map that preserves the
homological grading and maps elements of quantum degree j to elements of degree
j C �.S/.

Remark. There is also a reduced version of the instanton homology, denoted by
I \.K/ in [5], which is related to the reduced Khovanov homology Khr.K�/. The-
orem 1.1 and Proposition 1.5 can be formulated for these reduced versions with no
essential change to the wording.

The remainder of this paper is organized as follows. In Sections 2 through 8, we
focus on the q-filtration. Section 2 introduces a quantum filtration on the instanton
homology of an unlink. Section 3 reviews the “cube of resolutions” in the context
of instanton homology, from [5], and this is used in the following section to extend
the q-filtration to the case of a general link. Rather than working with traditional
diagrams (plane projections) of links, we introduce the slightly more flexible notion
of a pseudo-diagram (Definition 4.1). With one additional hypothesis on the pseudo-
diagram, we prove that the differential on the cube complex preserves the q-filtration
(Proposition 4.6). Sections 5 through 6 examine how the q-filtration behaves when
a pseudo-diagram is altered by an isotopy or by adding or dropping crossings, and
we can then treat Reidemeister moves by regarding a single Reidemeister move as
a sequence of isotopies and add-drops of crossings. The h-filtration is somewhat
simpler to deal with than the q-filtration, but follows the same outline: it is discussed
in Section 9. The proofs of the main results are then given in Section 10. The final
section contains some simple examples, to illustrate the use of pseudo-diagrams, as
well as a more complicated example: the .4; 5/-torus knot.

2. Unlinks

Let K � R3 be an oriented link that is isotopic to the standard p-component unlink
Up . According to [5], Proposition 8.11, we have an isomorphism

I ].K/
��! V ˝p (1)

that depends only on the given orientation and a choice of ordering of the components
of K. Here

V D hvC; v�i
is a free abelian group on two generators. This isomorphism arises in [5] as a conse-
quence of an excision property which is used to establish a Künneth product formula
for I ] of a split link K1 q K2.
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On the other hand, there is a more direct way to compute I ].K/ for an unlink K,
working from the definition of instanton homology. We recall the definition in outline.
From K, we form a new link K] � S3, the union of K and a standard Hopf link
near infinity, and we equip S3 with an orbifold metric with cone-angle � along K].
We let ! denote an arc joining the two components of the Hopf link, and we form
the configuration space C!.S3; K]/ consisting of singular SO.3/ connections on the
complement of K], with w2 equal to the dual of ! and with holonomy asymptotically
conjugate to the element

i D
�

i 0

0 �i

�

on small circles linking K]. We form B!.S3; K]/ as the quotient of C!.S3; K]/ by
the determinant-1 gauge group. In B!.S3; K]/ we consider the critical points of the
perturbed Chern–Simons functional CS C f , where f is a holonomy perturbation
chosen to achieve a Morse–Smale transversality condition for the formal gradient
flow. For the unperturbed Chern–Simons functional, the set of critical points is
the space of flat connections in B!.S3; K]/, and these can be identified with the
representation variety

R.K; i/

consisting of homomorphisms � W �1.R3nK/ ! SU.2/ with �.m/ � i, for all merid-
ians m of K.

In the case of an unlink, the fundamental group of R3nK is free on p gener-
ators: we can specify generators by giving explicit choices of meridians, oriented
consistently with the given orientation of K. After making these choices, we have an
identification

R.K; i/ D .S2/p;

(where the 2-sphere is the conjugacy class of i in SU.2/). This representation variety
sits in B!.S3; K]/ as a Morse–Bott critical set for CS. A product of 2-spheres carries
an obvious Morse function with critical points only in even index. By choosing f

above so that its restriction to R.K; i/ is equal to such a Morse function, we can
arrange that the critical points of CS C f consist of exactly 2p points, all in the same
index mod 2. The differential in the instanton homology is then zero, and I ].K/ is the
free abelian group generated by these critical points. Thus we obtain an isomorphism,

I ].K/
ˇ�! H�.S2/˝p (2)

as the composite
I ].K/ D H�.R.K; i//

D H�..S2/p/

D H�.S2/˝p:

We now have two different ways to identify I ].K/ with the tensor product of
p copies of a free abelian group of rank 2, through the isomorphisms � and ˇ of
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equations (1) and (2) respectively. Combining the first isomorphism with inverse of
the second, we have a map

� D � B ˇ�1 W H�.S2/˝p �! V ˝p: (3)

Using the Z=4 grading on instanton homology (for example) it is easy to see that, in
the case p D 1, this map is the isomorphism

H�.S2/ �! V

that sends the 2-dimensional generator to vC and the 0-dimensional generator to v�
(given appropriate conventions about orientations, to fix the signs). For larger p, it
does not follow that this map is simply the p’th tensor power of the isomorphism
from the p D 1 case. (The map potentially involves instantons on the cobordisms
that are used in the proof of the excision property.) Indeed, � will in general depend
on the choice of metric and perturbation.

What we can say about � is this. Make V a graded abelian group by putting vC
and v� in degrees 1 and �1 respectively, and give V ˝p the tensor-product grading.
Similarly, grade H�.S2/ so that the 2-dimensional generator is in degree 1 and the
0-dimensional generator is in degree �1 and grade H�.S2/˝p accordingly. We refer
to these gradings on both sides as the Q-grading. In the case of H�.S2/˝p , this
grading is the ordinary homological grading on the manifold R.K; i/, shifted down
by p. The isomorphism � in (3) preserves the Q-grading modulo 4 (essentially
because the instanton homology is Z=4 graded). Furthermore, we can write it as

� D �0 C �1 C � � � (4)

where �0 preserves the Q-grading and �i increases the Q-grading by 4i . The term �0

can be computed by looking only at flat connections on the excision cobordism, and
it is not hard to see that �0 is indeed the p’th tensor power of the standard map. The
terms �i for i positive arise from instantons with non-zero energy.

Our conclusion is that the map � respects the decreasing filtration defined by the
Q-gradings on the two sides, and that the induced map on the associated graded
objects of these two filtrations is standard.

Remark. In the authors’ earlier paper [5], the group V D hvC; v�i appears with a
mod-4 grading in which vC and v� have degrees 0 and �2 mod 4 respectively. The
mod 4 grading in [5] is not the same as the grading that we are considering here.

Now let S be a cobordism (not necessarily orientable) from an unlink K1 to
another unlink K0. The cobordism S (when equipped with an I -orientation, to fix
the overall sign) induces a map

I ].S/ W I ].K1/ �! I ].K0/;
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or equivalently
I ].S/ W V ˝b0.K1/ �! V ˝b0.K0/:

The Q-grading on V ˝b0.K1/ and V ˝b0.K0/ defines a decreasing filtration on each of
them. We wish to see what the effect of I ].S/ is on this Q-filtration.

Lemma 2.1. For a cobordism S as above, the induced map I ].S/ has order greater
than or equal to

�.S/ C S � S � 4
jS � S

8

k
(5)

with respect to the filtration defined by Q.

Proof. Choose small perturbations f1 and f0 for the Chern–Simons functional on the
two ends to achieve the Morse–Smale condition; choose them so that all the critical
points have even index, as in the discussion above. Let ˇ1 and ˇ0 be critical points
for K

]
1 and K

]
0 and let M.S I ˇ1; ˇ0/ be the corresponding moduli space. The map

I ] is defined by counting points in zero-dimensional moduli spaces of this sort; but
we consider first the dimension formula in general. For each ŒA� 2 M.S I ˇ1; ˇ0/ we
can find a nearby configuration ŒA0� which is asymptotic to points ˇ0

1 and ˇ0
0 in the

critical set of the unperturbed functional. Let us write 	 D 	.A/ for the topological
action of the solution A, by which we mean the integral

1

8�2

Z
tr.FA0 ^ FA0/:

This quantity is a homotopy invariant of A, independent of the choice of nearby
path A0. We write M.S I ˇ1; ˇ0/ as a union of parts M�.S I ˇ1; ˇ0/ of different
actions 	.

We claim that the dimension of M�.S I ˇ1; ˇ0/ is given by the formula

dim M�.S I ˇ1; ˇ0/ D 8	 C �.S/ C 1

2
.S � S/ C Q.ˇ1/ � Q.ˇ0/: (6)

To verify this, note first that if we change ˇ1 to a different ˇ0
1 while keeping 	 and ˇ0

unchanged, then the change in dim M is equal to the change in the Morse index of
the critical points in the representation variety, which is Q.ˇ1/ � Q.ˇ0

1/. A similar
remark applies to ˇ0, with an opposite sign. So it is enough to check the formula
for one particular choice of ˇ1 and ˇ0. So we take ˇ1 to be the critical point of
top Morse index, corresponding to the generator vC ˝ � � � ˝ vC, and ˇ0 to be the
critical point of lowest Morse index, corresponding to the generator v� ˝ � � � ˝ v�.
So Q.ˇ1/ D b0.K1/ and Q.ˇ0/ D �b0.K0/. In this particular case, the dimension
of M�.S I ˇ1; ˇ0/ is equal to the dimension of

M�. xS I u0; u0/
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where xS is the closed surface obtained from S by adding disks to all boundary
components, regarded as a cobordism from the empty link U0 to itself, and u0 is the
unique critical point in B!.S3; U

]
0 / (the generator of I ].U0/ D Z). The dimension

in this case can be read off from the dimension formula for the case of a closed
manifold (see [5], Lemma 2.11) which gives

dim M�. xS I u0; u0/ D 8	 C �. xS/ C 1

2
. xS � xS/: (7)

Taking account of the added disks, we can write this as

8	 C �.S/ C 1

2
.S � S/ C b0.K1/ C b0.K0/; (8)

which coincides with the formula (6) in this case. This verifies the formula (6) for
the general case.

To continue with the proof of the lemma, we make two observations about the
action 	.A/:

(1) 	.A/ D 1
16

.S � S/ modulo 1
2
Z and

(2) 	.A/ is non-negative, as long as the perturbations are small.

The first of these can be read off from the formula in Proposition 2.7 of [5], applied
to the closed surface xS in R4, using the fact that p1.P�/ is divisible by 4 when P� is
an SU.2/ bundle. The second of these observations follows from the non-negativity
of the action for solutions of the unperturbed equations. Together, these observations
tell us that

8	 � 1

2
.S � S/ � 4

jS � S

8

k
:

The matrix entries of I ].S/ arise from moduli spaces of dimension zero; and for
such moduli spaces we have

Q.ˇ0/ � Q.ˇ1/ D 8	 C �.S/ C 1

2
.S � S/

� �.S/ C S � S � 4
jS � S

8

k

because of the above inequality for 	. This last quantity is the expression (5) in the
lemma.

The lemma above is rather artificial (the maps involved are often zero in any
case), but the method of proof adapts with essentially no change to yield a more
applicable version. We take K1, K0, and S as above, and we consider a smooth, finite-
dimensional family of metrics and perturbations on the cobordism, parametrized a
by manifold G. We then have parametrized moduli spaces M.S; ˇ1; ˇ0/G over the
space G. Counting isolated points in these parametrized moduli spaces gives rise to
maps

mG.S/ W V ˝b0.K1/ �! V ˝b0.K0/:
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Just as in the case above where G is a point, we obtain an inequality for Q-grading:

Lemma 2.2. The map mG.S/ has order greater than or equal to

�.S/ C S � S � 4
jS � S

8

k
C dim G

with respect to the decreasing filtration defined by Q.

Proof. The proof is unchanged, except that the formula for the dimension of the
moduli space has an extra term dim G.

Corollary 2.3. If S � S < 8, then mG.S/ has order greater than or equal to

�.S/ C S � S C dim G:

3. The cube

Let K be a link in R3. Figure 1 shows three copies of the standard closed ball B3,
each containing a pair of arcs: L0, L1 and L2 respectively. By a crossing of K we
will mean an embedding of pairs

c W .B3; L2/ ,�! .R3; K/

which is orientation-preserving on B3 and satisfies c.L2/ D c.B3/ \ K.

L2 L1 L0

Figure 1. A closed 3-ball, containing a pair of arcs in three different ways.

The figure also shows a standard orientation for the pair of arcs L2 � B3. If the
link K is also given an orientation, then we will say that c is a positive crossing if
c W L2 ! K is either orientation-preserving or orientation-reversing on both compo-
nents of L2. Otherwise, if c is orientation-reversing on exactly one component of
L2, we say that c is a negative crossing.

Let N be a finite set of disjoint crossings for K. For each v 2 ZN , let Kv � R3 be
the link obtained from K by replacing c.L2/ � K by either c.L0/, c.L1/ or c.L2/,
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according to the value of v.c/ mod 3, for each crossing c 2 N . Thus Kv D K in the
case that v W N ! Z is the constant 2.

Following the prescription of [5], we choose generic metrics and holonomy per-
turbations for each link K

]
v � S3 so as achieve the Morse–Smale condition. In order

to fix signs for the maps arising later from cobordisms, we also need to choose for
each v a basepoint in B!.S3; K

]
v/. We refer to the choice of metric, perturbation and

basepoint as the auxiliary data for Kv. We then have a complex

.Cv; dv/

that computes the instanton homology I ].Kv/.
For each v � u we have a standard cobordism Svu from Kv to Ku, as in [5],

Sections 6.1 and 7.2. This cobordism comes with a family of metrics G0
vu defined

in [5], Section 7.2. The dimension of G0
vu is jv � uj1 (the sum of the coefficients

of v � u) and it is acted on by a 1-dimensional group of translations. The quotient
family MG0

vu D G0
vu=R has dimension jv � uj1 � 1 if v ¤ u. The norm jv � uj1 is

also equal to ��.Svu/.

Definition 3.1. We say that a cobordism Svu (or sometimes, a pair .v; u/) with
v; u 2 ZN is of type n for n � 0 if v � u and

maxfv.c/ � u.c/ j c 2 N g D n:

In particular, .v; u/ has type 0 if and only if v D u.

In the case that Svu has type 1, 2, or 3, the authors defined in [5] a larger family
of metrics, MGvu containing MG0

vu. In the case of type 1, the space MGvu coincided with
MG0

vu; for type 2 and jN j D 1, the inclusion of MG0
vu in MGvu was the inclusion of a

half-line in R, and for type 3 it was the inclusion of a “quadrant” in an open pentagon.
In all cases, the dimensions of MGvu and MG0

vu are equal.
If we choose an I -orientation for each cobordism Svu and an orientation for the

family of metrics MG0
vu (or equivalently the family MGvu, when defined), then we have

oriented, parametrized moduli spaces of instantons,

Mvu.ˇ; ˛/ �! MGvu

for each pair of critical points ˇ 2 Cv and ˛ 2 Cu, whenever the pair .v; u/ has type
3 or less. Consistency conditions are imposed on the chosen orientations: see for
example [5], Lemmas 6.1 and 6.2. In addition to the auxiliary data for each, secondary
perturbations on the cobordisms must be chosen, to ensure that the moduli spaces
are regular. By counting points in zero-dimensional parametrized moduli spaces, we
obtain maps between the corresponding groups Cv and Cu. Following the notation
of [5] we write these maps as

Mmvu W Cv �! Cu:
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The orientation conventions which are specified in [5] lead to extra signs in the various
gluing formulae, so it is convenient to introduce the following variant: we define

fvu W Cv �! Cu

by the formula
fvu D .�1/s.v;u/ Mmvu

where

s.v; u/ D 1

2
jv � uj1.jv � uj1 � 1/ C

X
c2N

v.c/: (9)

(In [5] the notation fvu was reserved for the case of type 0 or 1, and the notation jvu

or kvu was used for type 2 or 3. For efficiency however, we here adopt fvu for all
these cases.) It is also convenient to define Mmvv D dv for the case that v D u – i.e.
the case of type 0 – so that

fvv D .�1/
P

v.c/dv :

Some chain-homotopy formulae involving these maps are proved in [5]. For .v; u/

a pair of type 0, 1, or 2, the formulae all take the same basic form, given in the following
proposition.

Proposition 3.2. For .v; u/ of type n � 2, we have
X

w
v�w�u

fwufvw D 0:

(There is a also a formula in [5] for the case of type 3, but this involves additional
terms; see (22) in Section 6.) In the case of type 0, so that v D u, the formula in the
proposition says d 2

v D 0, expressing the fact that dv is a differential.
We write

C.N / D
M

v W N !f0;1g
Cv:

This is a sum of the complexes indexed by the vertices of a cube of dimension jN j.
We write F D F.N / for the map

F W C.N / �! C.N /

given by
F D

M
v;u W N !f0;1g

v�u

fvu:

Note that the summands fvu in this definition all have type 0 or 1. Proposition 3.2
tells us that F2 D 0, so we have a complex.
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We have had to choose auxiliary data for each Kv, secondary perturbations for the
moduli spaces associated to the cobordisms Svu, as well as consistent I -orientations
for the cobordisms and orientations for the families of metrics MG0

vu. We refer to this
collection of choices as auxiliary data for .K; N /.

The following is proved in [5].

Theorem 3.3. For any two collections of crossings, N and N 0, and any correspond-
ing choices of auxiliary data, the complexes .C.N /; F.N // and .C.N 0/; F.N 0// are
quasi-isomorphic.

Of course, it is sufficient to deal with the case that N 0 is obtained from N by for-
getting just one crossing; and this is how the proof is given in [5] (see Proposition 6.11
of that paper). We will later refine this theorem, replacing “quasi-isomorphic” with
“chain-homotopy equivalent.” As a special case we can take N 0 to be empty, and we
obtain the following result.

Corollary 3.4 ([5], Theorem 6.8). For any collection N of crossings of K, the ho-
mology of the complex .C.N /; F.N // is isomorphic to I ].K/.

4. The q-filtration on cubes

We continue to consider K � R3 with a collection N of crossings, and the complex
.C.N /; F.N // defined in the previous subsection. We will suppose that the collection
N has the following property.

Definition 4.1. We will say that a link K with a collection N of crossings is a pseudo-
diagram if, for all v W N ! f0; 1g, the link Kv � R3 is an unlink. In this case, we
refer to the unlinks Kv as the resolutions of K.

As in Section 2, whenever Kv is an unlink, we can choose the auxiliary data so
that the corresponding differential dv is zero, in which case Cv can be identified with
the homology of the representation variety, R.Kv; i/ D .S2/p.v/ by the isomorphism
ˇ of (2). When this is done, we say that we have chosen good auxiliary data for
.K; N /.

The terminology in Definition 4.1 is chosen because the condition holds when N

is the set of crossings that arises from a plane diagram of K, but the case of a plane
diagram is special in other ways: for example, the cobordisms Svu, for v; u W N !
f0; 1g, are always orientable if N arises from a diagram, whereas Definition 4.1
certainly allows some Svu to be non-orientable. In particular, the self-intersection
numbers Svu � Svu may be non-zero. For v � u we define


.v; u/ D Svu � Svu:
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In the case that w � v � u, we have 
.w; v/ C 
.v; u/ D 
.w; u/, so we can
consistently define 
.v; u/ even when we do not have v � u by insisting on the
additivity property. Thus, for example, 
.v; u/ D �
.u; v/. We can extend this
notation beyond the cube f0; 1gN to all elements v 2 ZN with the property that Kv

is an unlink. Thus, if v, u both have this property we may consistently define


.v; u/ D Svw � Svw � Suw � Suw

where w is any chosen third point with v � w and u � w.

Lemma 4.2. Suppose v 2 ZN is such that Kv is an unlink, and suppose that v � u

is divisible by 3, so that Ku Š Kv is also an unlink. Then


.v; u/ D 2

3

X
c

.v.c/ � u.c//:

Proof. It is enough to consider only the case that v and u differ at only a single crossing
c�, with v.c�/ � u.c�/ D 3. In this case, the cobordism Svu is a composite of three
cobordisms, Svv0 , Sv0v00 , and Sv00u, with v0.c�/ D v.c/ � 1 and v00.c�/ D v.c/ � 2.
As explained in [5], the cobordism Svv00 (the composite of the first two) can be
described as a connected sum of the opposite of Sv00u with standard pair .S4; RP2/,
where the RP2 has self-intersection 2 in S4. So Svu is obtained from the composite
of Sv00u with its opposite, by summing with this RP2. So Svu � Svu D 2. Thus

.v; u/ D .2=3/.v.c�/ � u.c�// in this case.

Suppose now that .K; N / is a pseudo-diagram, and let us choose good auxiliary
data. As in Section 2 we obtain an isomorphism

ˇ W I ].Kv/ �! V ˝b0.Kv/

via the identifications
I ].Kv/ D Cv

Š H2.S2/˝b0.Kv/

D V ˝b0.Kv/

(10)

because the differential dv is zero. As before, we give V ˝b0.Kv/ a grading Q, by
declaring that the generators vC and v� in V have Q-grading 1 and �1.

We define the q-grading on Cv by shifting the Q-grading by some correction
terms. Choose first an orientation for K. At each crossing c 2 N , one of the
resolutions 0 or 1 is preferred as the oriented resolution. We write o W N ! f0; 1g
for the function that assigns to each crossing its oriented resolution. Thus Ko can be
oriented in such a way that its orientation agrees with the original orientation of K

outside the crossing-balls. For v W N ! f0; 1g we then set

q D Q �
� X

c2N

v.c/
�

C 3

2

.v; o/ � nC C 2n� (11)
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on Cv, where nC and n� are the number of positive and negative crossings respec-
tively, so that

nC C n� D jN j:
With the exception of the self-intersection term 
.v; o/ (which is zero in the case
arising from a plane diagram), these correction terms are essentially the same as
those presented by Khovanov in [3]. The q-gradings on all the vertices of the cube
gives us a grading q on C.N /. Note that the correction terms in the formula above
do not depend on a choice of orientation for K if K is a knot rather than a link.

We can also define q on Cv when v more generally is in ZN rather than f0; 1gN

subject to the constraint that Kv is an unlink: we use the same formula. Then we
have what follows.

Lemma 4.3. Suppose v is such that Kv is an unlink, and let u be such that v � u is
divisible by 3 in ZN , so that Kv D Ku. Identify Cv with Cu as abelian groups, via
the isomorphisms ˇ; see (10). Then the q-gradings on Cv and Cu coincide.

Proof. In the definition of q, the terms Q, nC and n� are unchanged on replacing v

by u. The remaining terms are � P
v.c/ and .3=2/

P

.v; o/, and the changes in

these terms cancel, as an immediate consequence of Lemma 4.2.

We also note the folloming result.

Lemma 4.4. The parity of q on C.N / is constant, and is equal to the number of
components of K mod 2.

Proof. At each v 2 f0; 1gN , the parity of Q on Cv is equal to the number of com-
ponents of Kv . (This follows immediately from the definition.) So it is clear that
the parity of q is constant on each Cv . We must check that its parity is independent
of v. For this we consider two adjacent vertices v, v0 in the cube f0; 1gN . The termP

v.c/ which appears in the definition of q then changes by 1 between v and v0.
The change in the term .3=2/
.v; o/ is equal to .1=2/
.v; v0/ mod 2, which is zero if
the cobordism Svv0 is orientable and is equal to 1 if it is non-orientable, because the
self-intersection number of an RP2 in R4 is equal to 2 mod 4. In the orientable case,
the number of components of Kv and Kv0 differ by 1, so the parity of Q changes
by 1. In the non-orientable case, the parity of Q is unchanged. Altogether, exactly
two of the first three terms in the definition of q change parity. So the parity of q is
indeed constant.

Now let Ko denote the oriented resolution of our original knot K. To obtain the
oriented resolution, we must set o.c/ D 0 at every positive crossing and o.c/ D 1 at
every negative crossing. So when v D o, we have

X
v2N

v.c/ D n�:
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At this vertex of the cube, we therefore have

q D b0.Ko/ � n� � nC
D b0.Ko/ � jN j

mod 2. The cobordism from K to Ko is orientable, and is obtained by attaching
jN j 1-handles. As above, each 1-handle addition changes the number of components
by 1. So b0.Ko/ � jN j D b0.K/ mod 2. This concludes the proof of the lemma.

Although we can define the q-grading on C.N / whenever .K; N / is a pseudo-
diagram, it is not the case (a priori, at least) that the differential F.N / W C.N / !
C.N / respects the decreasing filtration defined by q. For this, we need an additional
condition.

Definition 4.5. We say that .K; N / has small self-intersection numbers if Svu �Svu �
6 for all v � u in f0; 1gN .

Proposition 4.6. If .K; N / is a pseudo-diagram with small self-intersection num-
bers, then the differential F.N / W C.N / ! C.N / has order � 0 with respect to the
decreasing filtration defined by q.

Proof. The map F D F.N / is the sum of the maps fvu, each of which is obtained
by counting instantons on a cobordism Svu over a family of metrics of dimension
��.Svu/ � 1. Because the self-intersection number of Svu is at most 6, we can
apply Corollary 2.3 to the map fvu. That corollary tells us that, with respect to the
decreasing filtration defined by Q on Cv and Cu, the map fvu has order � Svu�Svu�1.
If we instead consider the decreasing filtration F j defined by q instead of Q, then
we obtain

ordq fvu � �1

2
.Svu � Svu/ C

X
c

.v.c/ � u.c// � 1: (12)

Now we need the following lemma.

Lemma 4.7. If .K; N / is a pseudo-diagram, we have

.Svu � Svu/ � 2
X

c

.v.c/ � u.c//;

for all pairs v � u in f0; 1gN .

Proof. This can immediately be reduced to the case that v and u differ at only one
crossing c. In that case, Svu is the union of some cylinders (corresponding to compo-
nents of Kv that do not pass through the crossing) and a single non-trivial piece that
is either a pair of pants or a twice-punctured RP2. The links Kv and Ku are trivial by
hypothesis, and the self-intersection number Svu �Svu is equal to that self-intersection
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of the closed surface obtained from the cobordism by adding disks. Thus the self-
intersection number is equal to that of either a surface that is either a union of spheres
only, or a union of spheres with a single RP2. In the former case, the self-intersection
is zero. In the latter case, the self-intersection of an RP2 in R4 is equal to either 2 or
�2; see [7]. In all cases, the self-intersection number is no larger than 2.

To continue with the proof of the Proposition, it follows from the lemma now that
the right-hand side of (12) is � �1, and so fvu.F j / � F j �1 for all j . However,
since the q-grading takes values of only one parity, it is in fact the case that fvu.F j / �
F j for all j .

5. Isotopy and ordering

Given a link K with a set of crossings N and choices of auxiliary data, we have
constructed in the previous section a q-filtered complex C.K; N / with its differential
F.K; N /. We now begin the task of investigating to what extent this filtered complex is
dependent on the choices made. For reference, let us introduce the categoryCq whose
objects are filtered, finitely-generated abelian groups with a differential of order � 0,
and whose morphisms are chain maps of order � 0 modulo chain-homotopies of
order � 0. (As elsewhere in this paper we continue to refer to a differential group as
a “chain complex” even when there is no Z-grading. All our differential groups will
be at least Z=4-graded.) Our complex C.K; N / is an element of Cq.

We consider what happens when we keep the crossings the same but change K by
an isotopy and change the choice of auxiliary data. That is, we fix a set of crossings
N for K, and we suppose that K 0 is isotopic to K by an isotopy that is constant inside
the union

B.N / D
[
c2N

c.B3/:

Thus the trace of this isotopy is a cobordism T from K to K 0 that is topologically a
cylinder in R�R3 and is metrically a cylinder inside R�B.N /. We choose auxiliary
data for both .K; N / and .K 0; N /, giving rise to chain complexes

C.K; N / and C.K 0; N /

constructed from the cubes of resolutions.
From the cobordism T we obtain cobordisms Tvv from Kv to K 0

v for all v W N !
f0; 1g. For v � u, we also obtain a cobordism Tvu from Kv to K 0

u equipped with a
family of metrics Hvu of dimension

P
.v.c/ � u.c//: these cobordisms and metrics

are all the same outside B.N /, while inside B.N / they coincide with the metrics Gvu

with which the cobordisms Svu were earlier equipped. By counting instantons over
the cobordisms Tvu equipped with these metrics and generic secondary perturbations,
we obtain a chain map of the cube complexes,

T W C.K; N / �! C.K 0; N /:
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By the usual sorts of arguments, two different choices of metrics and secondary
perturbations on the interior of the cobordism give rise to chain maps T that differ
by chain homotopy, and it follows that C.K; N / and C.K 0; N / are chain-homotopy
equivalent.

Now we introduce q-gradings. For this we suppose that .K; N / is a pseudo-
diagram with small self-intersection numbers, as in Definition 4.5. Of course, .K 0; N /

then shares these properties. For .K; N / and .K 0; N / we ensure that our chosen
auxiliary data is good. The complexes C.K; N / and C.K 0; N / both then have q-
filtrations preserved by the differential (Proposition 4.6). Arguing as in the proof of
Proposition 4.6, we see that the chain map T is filtration-preserving, as are the chain-
homotopies between different chain maps T and zT arising from different choices
of metrics and secondary perturbations on the cobordisms. (The dimensions of the
families of metrics on Tvu are larger by 1 than those on Svu, but this only helps us.
The proofs are otherwise the same.) Thus we get the following result.

Proposition 5.1. Let .K; N / be a pseudo-diagram with small self-intersection num-
bers, and suppose we have an isotopy from K to K 0 relative to B.N /. Let C.K; N /,
C.K 0; N / be the q-filtered complexes obtained from .K; N / and .K 0; N / via choices
of good auxiliary data. Then the isotopy gives rise to a well-defined isomorphism
C.K; N / ! C.K 0; N / in the category Cq .

Remark. As usual in Floer theory, a special case of the above proposition is the
case that K D K 0 and the isotopy is trivial, in which case the objects C.K; N / and
C.K 0; N / differ only in that the auxiliary data may be chosen differently.

We now have a diagram of maps on homology groups:

H.C.K; N //
T� ��

��

H.C.K 0; N //

��
I ].K/

I ].T / �� I ].K 0/:

(13)

The maps I ].T / is the isomorphism induced by a cylindrical cobordism in the usual
way, and T� is induced by the chain map T. The vertical maps are the isomorphisms
of Corollary 3.4. It is a straightforward application of the usual ideas, to show that this
diagram commutes. To do this, we remember that the isomorphisms of Corollary 3.4
are obtained as a composite of maps, forgetting the crossings of N one by one.
Thus one should only check the commutativity of a diagram such as this one, where
N 0 D N n fc�g:

H.C.K; N //
T.N /� ��

��

H.C.K 0; N //

��
H.C.K; N 0// T.N 0/��� H.C.K 0; N 0//:
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A chain homotopy between the composite chain-maps at the level of these cubes is
constructed by counting instantons on cobordisms Tvu with v and u in the appropriate
cubes, to obtain a map

C.K; N / �! C.K 0; N 0/:

There is an additional point concerning the commutativity of the square (13).
Corollary 3.4 provides the isomorphisms which are the vertical arrows in the diagram,
but the construction of these isomorphisms depends on a choice of ordering for the
set of crossings N , because the map is defined by “removing one crossing at a time”.
Despite this apparent dependence, the isomorphism H�.C.N // ! I ].K/ is actually
independent of the ordering, up to overall sign. To verify this, it is of course enough
to consider the effect of changing the order of just two crossings which are adjacent in
the original ordering of N . The chain-homotopy formula that we need in this situation
is another application of Proposition 3.2. To see this, consider for example the case
that c1 and c2 are the first two crossings in a given ordering of N . The construction
of the isomorphism in Corollary 3.4 begins with the composite of two chain-maps

C.K; N /
p�! C.K; N nfc1g/ q�! C.K; N nfc1; c2g/:

If we switch the order, we have a different composite, going via a different middle
stage:

C.K; N /
r�! C.K; N nfc2g/ s�! C.K; N nfc1; c2g/:

The induced maps in homology are the same up to sign, because qp is chain-
homotopic to �sr . The chain homotopy is the map C.K; N / �! C.K; N nfc1; c2g/
obtained as the sum of appropriate terms fvu.

Via the isomorphism of Corollary 3.4, the group I ].K/ obtains from C.K; N /

a decreasing q-filtration. We can interpret the above results as telling us that this
filtration is independent of some of the choices involved:

Proposition 5.2. Let K be a link in R3, and let N be a collection of crossings such
that .K; N / is a pseudo-diagram with small self-intersection numbers. Then, via
the isomorphism with H.C.K; N //, the instanton homology group I ].K/ obtains
a quantum filtration that does not depend on an ordering of N . Furthermore, this
filtration of I ].K/ is natural for isotopies of K rel B.N /.

6. Dropping a crossing

We continue to suppose that .K; N / is a pseudo-diagram with small self-intersection
numbers. The isomorphism class in Cq of the filtered complex obtained from the
cube of resolutions is independent of the choice of good auxiliary data by the previous
proposition, but we must address the question of whether it depends on N .
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We begin investigating this question by considering the situation in which N 0 � N

is obtained by dropping a single crossing. We suppose that good auxiliary data is
chosen for both .K; N / and .K; N 0/ so that we have complexes C.N / and C.N 0/.
For the moment, we do not consider the q-filtrations on these. Let us recall from [5]
the proof that the homologies of the two cubes C.N / and C.N 0/ are isomorphic (the
basic case of Theorem 3.3). Let c� 2 N be the distinguished crossing that does not
belong to N 0. Write

C.N / D C1 ˚ C0

where
Ci D

M
v.c�/Di

v.c0/2f0;1g if c0¤c�

Cv: (14)

The differential F.N / on C.N / then takes the form

F.N / D
�

F11 0

F10 F00

	
: (15)

We extend the notation Ci as just defined to all i in Z. Whenever i > j and
ji � j j D n � 3, we have a map

Fij W Ci ! Cj

given as the sum of maps fvu, where each pair .v; u/ has type n. Similarly, we have
Fi i W Ci ! Ci , which is a sum of maps indexed by pairs of type 0 and 1.

The 3-step periodicity means that the complexes C2 and C�1 are obtained from the
same .jN j � 1/-dimensional cube of resolutions of K. But the complexes .C2; F2;2/

and .C�1; F�1;�1/ may differ because of the different choices of auxiliary data. (We
are free to arrange that the choices of metrics, perturbations and base-points so as to
respect the periodicity, but not the choices involved in orienting the moduli spaces.)
Nevertheless, because the links Kv that are involved are the same, there are canonical
cylindrical cobordisms which give rise to a chain-homotopy equivalences

T2;�1 W .C2; F2;2/ �! .C�1; F�1;�1/: (16)

as in the previous section. Indeed, both of these chain complexes are canonically
chain-homotopy equivalent to .C.N 0/; ˙F.N 0//. Thus, the summand Cv0 � C.N 0/
corresponding to v0 W N 0 ! f0; 1g is identified with the summand Cv � C2, where
v W N ! Z is obtained by extending v0 to N with v.c�/ D 2, and the cylindrical
cobordisms give a chain-homotopy equivalence

.C.N 0/; F.N 0// �! .C2; F2;2/:

To show that C.N / and C.N 0/ are homotopy-equivalent, we therefore need to
provide an equivalence

‰ W C1 ˚ C0 �! C�1: (17)
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This is done in [5], where it is shown that such a chain-homotopy equivalence is
provided by the map

‰ D 

F1;�1 F0;�1

�
: (18)

We recall the proof from [5] that this map is invertible. We consider the maps

ˆ2 W C2 �! C1 ˚ C0:

ˆ�1 W C�1 �! C�2 ˚ C�3

(19)

given by

ˆ2 D
�

F21

F20

	
(20)

with ˆ�1 defined similarly, shifting the indices down by 3. We will show that both
composites ‰ B ˆ2 and ˆ�1 B ‰ are chain-homotopy equivalences, from which it
will follow that ‰ is a chain-homotopy equivalence.

The composite chain-map ‰ B ˆ2 is the map

.F1;�1F21 C F0;�1F20/ W C2 �! C�1: (21)

A version of Proposition 3.2 for type 3 cobordisms (essentially equation (43) of [5])
gives an identity

F2;�1F2;2 C F1;�1F2;1 C F0;�1F2;0 C F�1;�1F2;�1 D T2;�1 C N2;�1 (22)

for a certain map N2;�1. Here T2;�1 is again the chain map C2 ! C�1 arising from
the cylindrical cobordisms.1 We can interpret the above equation as saying that the
map (21) is chain-homotopic to T2;�1 C N2;�1, and that the chain homotopy is the
map F2;�1. Since T2;�1 is an equivalence, it then remains to show that N2;�1 is
chain-homotopic to zero. In [5] this null-homotopy is exhibited as a map

H2;�1 W C2 �! C�1 (23)

whose matrix entries hvu are defined by counting instantons over a Svu for a family
of metrics of dimension X

c¤c�

.v.c/ � u.c//:

For the other composite ˆ�1 B‰ the story is similar. We may write the composite
as

ˆ�1 B ‰ D
�

F�1;�2F1;�1 F�1;�2F0;�1

F�1;�3F1;�1 F�1;�3F0;�1

	
:

1In [5], the authors wrote this as ˙Id, assuming that the perturbations and orientations were chosen so
that C2 and C�1 were the same complex. In fact, it may not be possible to choose the signs consistently so
that this is the case: the best one can do is arrange that T2;�1 is diagonal in a standard basis with diagonal
entries ˙1. This point does not affect the arguments of [5].
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We modify this by the chain-homotopy

L D
�

F1;�2 F0;�2

F1;�3 F0;�3

	
(24)

and see that ˆ�1 B ‰ is chain-homotopic to a map of the form

�
T1;�2 C N1;�2 0

Y T0;�3 C N0;�3

	
W C1 ˚ C0 �! C�2 ˚ C�3:

Here N1;�2 and N0;�3 are similar to N2;�1 above, and Y is an unidentified term
involving cobordisms of type 4. If we apply a second chain-homotopy of the form

�
H1;�2 0

0 H0;�3

	
W C1 ˚ C0 �! C�2 ˚ C�3 (25)

where H1;�2 and H0;�3 are defined in the same way as H2;�1 above, then we find
that ˆ�1 B ‰ is chain-homotopic to

�
T1;�2 0

X T0;�3

	
W C1 ˚ C0 �! C�2 ˚ C�3:

This lower-triangular map is a chain-homotopy equivalence because the diagonal
entries Ti;i�3 are.

We now introduce the quantum filtrations. For this, we suppose that both .K; N /

and .K; N 0/ are pseudo-diagrams with small self-intersection numbers; see Defini-
tion 4.5. We wish to see whether these chain maps and chain homotopies respect the
quantum filtrations. For this, we need to strengthen our hypotheses once more.

Definition 6.1. Let N be a set of crossings and let N 0 be a subset obtained by
forgetting one crossing. We say that the pair .N; N 0/ is admissible if the following
holds. First, we require that both .K; N / and .K; N 0/ are pseudo-diagrams. In
addition, we require that whenever .v; u/ is a pair of points in ZN of type at most 3

with v.N 0/; u.N 0/ � f0; 1g, we have Svu � 6.

When .N; N 0/ is admissible in this sense, then both .K; N / and .K; N 0/ have small
self-intersection numbers. The definition is set up so that it applies to all the pairs
.v; u/ corresponding to the maps fvu which are involved in the chain-maps ‰ and ˆi

defined above, for these chain maps have matrix entries Fij with i �j D 0; 1 or 2, so
they ultimately rest on cobordisms Svu with .v; u/ of type at most 2. Furthermore,
the chain-homotopies such as (23), (24) and (25) involve only cobordisms Svu of
type at most 3, so the condition in the definition covers them also. The q-grading,
defined using the crossing-set N , is defined on all Cv for which Kv is an unlink. In
particular, q is defined on each Ci .
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Proposition 6.2. If .N; N 0/ is admissible in the sense of Definition 6.1, then the chain
map

‰ W C1 ˚ C0 �! C�1

has order � 0 with respect to the quantum filtration and is an isomorphism in the
category Cq.

Proof. We note first that the maps T2;�1 W C2 ! C�1 etc. given by the cylindrical
cobordisms are isomorphisms in Cq . This is a corollary of Proposition 5.1 and the
3-periodicity of the q-grading described in Lemma 4.3. The question of whether ‰,
ˆ2 and ˆ�1 preserve the filtrations is just the question of whether the maps Fij that
appear as components of the maps (18) and (20) respect the filtration defined by q.
The proof is exactly the same as the proof of Proposition 4.6. Similarly, the chain
homotopies (23), (24) and (25) preserve the filtration. So in the category Cq , we have

‰ B ˆ2 ' T2;�1

ˆ�1 B ‰ '
�

T1;�2 0

X T0;�3

	

and the maps on the right are isomorphisms in Cq.

Just as the quantum grading q is defined on C.N /, so we define a quantum grading
q0 on C.N 0/. The complexes C.N 0/ and C2 are chain-homotopy equivalent, as noted
above, but the gradings q0 and q may apparently differ, because the correction terms
involved in the definition depend on the original choice of a set of crossings. In fact,
however, the gradings do coincide.

Lemma 6.3. With the quantum gradings q and q0 corresponding to the crossing-sets
N and N 0 respectively, the complexes C2, C�1 and C.N 0/ are isomorphic in the
category Cq. The isomorphisms are the maps T given by the cylindrical cobordisms.

Proof. We have already noted the isomorphism between C2 and C�1 in the proof of
the previous proposition. For C.N 0/, by an application of Proposition 5.1, we may
reduce to the case that the auxiliary data for .K; N 0/ is chosen so that C.N 0/ and C2

coincide as complexes and the map T is the identity map. We must then compare the
definitions of the quantum gradings. Choose any v0 W N 0 ! f0; 1g and let v denote
the function v.c/ D v0.c/ for c 2 N 0 and v.c�/ D 2. Let � denote the sign of c�.
For a generator in C2 Š C.N 0/ the two Q-gradings agree so the difference of the
q-grading is

q � q0 D �v.c�/ C 3

2
.
.v; o/ � 
.v0; o0// � .nC � n0C/ C 2.n� � n0�/

D �2 C 3

2
.
.v; o/ � 
.v0; o0// C 3

2
.1 � �/ � 1
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(cf. equation (11)). If c� is a positive crossing then the oriented resolution of K has
o.c�/ D 0 while if c� is a negative crossing then the oriented resolution has o.c�/ D 1.
Thus for a positive crossing we have 
.v; o/ � 
.v0; o0/ D 2 and 1 � � D 0 while for
a negative crossing we have 
.v; o/ � 
.v0; o0/ D 0 and 1 � � D 2. In either case
above difference is zero.

Putting together this lemma and the previous proposition, we have the following
result.

Proposition 6.4. If .N; N 0/ is admissible in the sense of Definition 6.1, then C.N /

and C.N 0/ are isomorphic in Cq .

7. Dropping two crossings

Consider again a collection of crossings N for K � R3, and let N 0 and N 00 be
obtained from N by dropping first one and then a second crossing:

N D N 00 [ fc1; c2g;
N 0 D N 00 [ fc2g:

Lemma 7.1. Suppose that all the links Kv corresponding to vertices of C.N /, C.N 0/,
and C.N 00/ are unlinks. Suppose also that for all pairs .v; u/ in f0; 1gN the corre-
sponding cobordism Svu is orientable. Then the pairs .N; N 0/ and .N 0; N 00/ are both
admissible in the sense of Definition 6.1.

Remark. The orientability hypothesis in the lemma is equivalent to asking that the
cobordism from f1gN to f0gN is orientable, since all the others are contained in this
one.

Proof of the lemma. Let o 2 f0; 1gN be the oriented resolution (or indeed any chosen
point in this cube). Consider 
.o; v/ as a function of v. It is well-defined on all v with
v.N 00/ � f0; 1g, because the corresponding links Kv are unlinks. For v 2 f0; 1gN

we have 
.o; v/ D 0, because Sov is orientable.
If v0 2 ZN has v0.N 0/ � f0; 1g while v0.c1/ D �1, then 
.o; v0/ D 0 or 2.

To see this, consider because the unique v 2 f0; 1gN with vjN 0 D v0
N 0 v.c1/ D 0.

By additivity, we have 
.o; v0/ D 
.v; v0/. On the other hand, 
.v; v0/ D 0 or 2,
according as the cobordism Svv0 from the unlink Kv to the unlink Kv0 is orientable
or not.

Similarly, if v00 2 ZN has v00.N 00/ � f0; 1g while v00.c1/ D v00.c2/ D �1, then

.o; v00/ is either 0, 2 or 4, as we see by comparing 
.o; v00/ to 
.o; v0/ where v0 is
an adjacent element with v0.c2/ D 0.

With these observations in place, we can verify that .N; N 0/ and .N 0; N 00/ are
both admissible. For example, to show that .N 0; N 00/ is admissible, consider v0 � u0
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in ZN 0

of type at most 3. We may regard v0 and u0 as elements of ZN by extending
them with v0.c1/ D u0.c1/ D �1. Consider (as an illustrative case) the situation
in which v0.c2/ D 2 and u0.c2/ D �1. Let Qv0 be the element with Qv0jN 0 D v0jN 0

and Qv0.c2/ D �1. By Lemma 4.2, we have 
.v0; Qv0/ D 2, while the observations
in the previous paragraph give 
. Qv0; v0/ � 4. So 
.v0; u0/ � 6, as required for
admissibility.

Corollary 7.2. Let N be the set of all crossings for a link K arising from a given
plane diagram D.K/. Let N 0 and N 00 be obtained by dropping first a crossing c1

and then a pair of crossings fc1; c2g. Suppose that c1 and c2 are adjacent crossings
along a parametrization of some component of K, and are either both over-crossings
or under-crossings along this component. Then the pairs .N; N 0/ and .N 0; N 00/ are
admissible.

Proof. If we take the 0- or 1-resolution at every crossing in D.K/, we obtain in every
case an unlink, and the cobordisms between them are orientable. If we resolve all
crossings except c1, then we obtain a diagram of a link with only one crossing, so
this is again an unlink. If we resolve all crossings except c1 and c2 then we obtain
a 2-crossing diagram. This additional hypothesis in the statement of the Corollary
ensures that this 2-crossing diagram is not alternating. This guarantees that the
diagram is still an unlink. Thus all the conditions of the previous lemma are satisfied.

Corollary 7.3. As in the previous corollary, let N be the set of all crossings arising
from a plane diagram D.K/, let fc1; c2g be a pair of these crossings that are adjacent
and are either both over-crossings or both under-crossings. Again let N 0 D N n fc1g
and N 00 D N n fc1; c1g. Then there are quantum-filtration-preserving chain maps

C.N /
‰�! C.N 0/ ‰0

�! C.N 00/

and

C.N 00/ ˆ0

�! C.N 0/ ˆ�! C.N /;

such that ˆ is the inverse of ‰ and ˆ0 is the inverse of ‰0 in the category Cq. In
particular, C.N /, C.N 0/ and C.N 00/ are isomorphic in Cq.

8. Reidemeister moves

We now specialize to the crossing-sets that arise from a plane diagram of our knot
or link K. We regard a diagram as being an image of a generic projection of K into
R2, with a labeling of each crossing as “under” or “over”. As we have mentioned,
the set of crossings N coming from a diagram D of K fulfills the conditions of
Definition 4.1; that is, .K; N / is a pseudo-diagram. Furthermore, .K; N / has small
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self-intersection numbers in the sense of Definition 4.5. Indeed, all the cobordisms
Svu are orientable, and therefore have Svu �Svu D 0. After a choice of good auxiliary
data, we therefore arrive at a filtered complex C.K; N /, an object of our category Cq.

It follows from Proposition 5.1 that the isomorphism class of C.K; N / in Cq

depends at most on the isotopy class of the diagram D: isotopic diagrams, with
different choices of auxiliary data, will yield isomorphic objects. Our task is to show
that the isomorphism class of C.K; N / is independent of the diagram altogether, and
depend only on the link type of K. For this, we need to consider Reidemeister moves.

So let D1 and D2 be two plane diagrams for the same link type, differing by a
single Reidemeister move. That is, we suppose that D1 and D2 coincide outside
a standard disk in the plane, and that inside the disk they have the standard form
corresponding to a Reidemeister move of type I, II or III. Let K1 and K2 be the
(isotopic) oriented links in R3 whose projections are D1 and D2, and let N1 and N2

be their crossing-sets. Associated to these links and crossing-sets, after choices of
good auxiliary data, we have cubes C.K1; N1/ and C.K2; N2/, two objects of Cq.

Proposition 8.1. When the diagrams differ by a Reidemeister move as above, the
filtered cubes C.K1; N1/ and C.K2; N2/ are isomorphic in the category Cq .

Proof. This is a straightforward consequence of Corollary 7.3. Thus, for example,
in the case that D1 and D2 differ by a Reidemeister move of type III as shown in
Figure 2, then we pass from .K1; N1/ to .K2; N2/ in three steps, as follows.

(1) First, drop the two over-crossings c1 and c2 from the crossing set N1 to obtain
a smaller set of crossings N 00.

(2) Second, apply an isotopy to K1 relative to B.N 00/.

(3) Third, introduce two new crossings to N 00 to obtain the crossing-set N2.

Corollary 7.3 applies to the first and third steps, while Proposition 5.1 applies to the
middle step. The other types of Reidemeister moves are treated the same way.

Corollary 8.2. Let K1 and K2 be isotopic oriented links in R3 and let N1 and N2 be
crossing-sets arising from diagrams D1 and D2 for these links. After choices of good
auxiliary data, let C.Ki ; Ni/ be the corresponding cubes (i D 1; 2). Then, with the
filtrations defined by q, these cubes define isomorphic objects in the category Cq.

9. The h-filtration on cubes

We now turn to the cohomological filtration h. Although there are a few important
differences, we can for the most adapt the sequence of arguments that we have used
for the q filtration. This will lead us (for example) to a version of Corollary 8.2 for h.
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c1 c2

c0

1
c0

2

Figure 2. Dropping two crossings, isotoping a strand, and adding two crossings, to achieve
Reidemeister III..

To begin, we suppose that .K; N / is a pseudo-diagram (Definition 4.1). On the
cube C.N /, we define the h-grading by declaring that the summand Cv has grading

hjCv
D �

� X
c2N

v.c/
�

C 1

2

.v; o/ C n�: (26)

Here, as in equation (11) where we defined the q grading, the term n� denotes the
number of negative crossings and o denotes the oriented resolution. As with q, we
can extend the definition of h beyond the cube f0; 1gN to all v 2 ZN for which Kv

is an unlink, because 
.v; o/ can be defined for all such v.
Unlike q, the grading h does not have period 3 in each coordinate; see Lemma 4.3.

Instead we have the following computation.

Lemma 9.1. Suppose v is such that Kv is an unlink, and suppose v � u is divisible
by 3 in ZN so that we have an isomorphism ˇ W Cv ! Cu as abelian groups. Then
the h-gradings on Cv and Cu are related by

hjCv
� hjCu

D �2

3

X
c2N

.v.c/ � u.c//

Proof. This is immediate from Lemma 4.2 and the formula for h.

The q-grading has constant parity on C, but the h-grading does not. The next
lemma shows that .C; F/ can be regarded as a Z=2-graded complex with grading
given by h.
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Lemma 9.2. The differential F on C has odd degree with respect to the Z=2 grading
defined by h mod 2.

Proof. For v � u in f0; 1gN , the corresponding component fvu of F is obtained by
counting instantons in 0-dimensional moduli spaces Mvu.ˇ; ˛/ parametrized by a
family of metrics MGvu of dimension

dim MGvu D ��.Svu/ � 1

D
X

c

.v.c/ � u.c// � 1:

The links Kv and Ku are unlinks and the perturbations are chosen so that the critical
points all have the same index mod 2. So the fiber dimension of Mvu.ˇ; ˛/ ! MGvu is
independent of ˇ and ˛ mod 2, and is given by (7). Taking account of the dimension
of the MGvu, we can therefore write

dim Mvu.ˇ; ˛/ D 8	 C �. xSvu/ C 1

2
. xSvu � xSvu/ C dim MGvu

D 8	 C �. xSvu/ C 1

2
. xSvu � xSvu/ � �.Svu/ � 1

mod 2. For any closed surface xS in R4, we have �. xS/ D .1=2/. xS � xS/ mod 2. We
also have 	 D 1

16
.S � S/ modulo 1

2
Z. So the above formula can be written

dim Mvu.ˇ; ˛/ D 1

2
.Svu � Svu/ � �.Svu/ � 1

mod 2. So the component fvu can be non-zero only when 1
2
.Svu � Svu/ C �.Svu/ is

odd. On the other hand, 1
2
.Svu � Svu/ C �.Svu/ is precisely the difference in h mod

2, between Cv and Cu.

As well as having odd degree, the differential F preserves the decreasing filtration
defined by h.

Proposition 9.3. If .K; N / is a pseudo-diagram, then the differential F W C ! C has
order � 1 with respect to the decreasing filtration defined by h.

Proof. This follows from Lemma 4.7, as did the corresponding statement for the
q-filtration, Proposition 4.6. Indeed, for any v � u in the cube f0; 1gN , the corre-
sponding map fvu W Cv ! Cu of F satisfies

ordh fvu � hjCu
� hjCv

D
� X

c2N

.v.c/ � u.c//
�

� 1

2

.v; u/:
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So we obtain ordh fvu � 0 directly from Lemma 4.7. To actually obtain ordh fvu �
1, which is the desired result, we appeal to the fact that F has odd degree with respect
to the mod-2 grading, as we have seen in the previous lemma.

Remark. In contrast to the corresponding result for the q-filtration (Proposition 4.6),
the proposition above does not require the hypothesis that .K; N / has small self-
intersection numbers.

Let us now introduce the categoryCh , whose objects are filtered, finitely-generated
abelian groups with a differential of order � 1, and whose morphisms are chain maps
of order � 0 modulo chain-homotopies of order � �1. When equipped with the
filtration defined by h, the complex C D C.N /, with its differential F, defines an
object in the category Ch, by the proposition above, though this object is dependent
on the set of crossings N , and the choice of good auxiliary data. As in the case of the
q-filtration, we now wish to show that different choices lead to isomorphic objects in
this category; and as before, the essential step is to compare C.N / to C.N 0/, where
N 0 is obtained from N by “forgetting” a crossing.

So we suppose again that N 0 D N n c�, and that both .K; N / and .K; N 0/ are
pseudo-diagrams. (We do not need to assume that these pseudo-diagrams have small
self-intersection numbers.) The cubes C.N / and C.N 0/ have gradings which we call
h and h0 respectively. On the other hand, we can identify C.N 0/ as before with C2,
where Ci for i 2 Z is defined by (14) using the crossing-set N . In this way, we can
regard the grading h as being defined also on C.N 0/. The following two lemmas are
the counterpart of Lemma 6.3 for the h-grading.

Lemma 9.4. With the cohomological gradings h and h0 corresponding to the crossing-
sets N and N 0, the filtered complexes C2 and C.N 0/Œ1� are isomorphic inCh. Here the
notation CŒn� denotes the filtered complex obtained from C by shifting the filtration
down by n so that the map CŒn� ! C has order � n.

Proof. The lemma can again be reduced to the case that C.N 0/ and C2 are the same
complex. So we need to prove that h0 D h C 1. As in the proof of Lemma 6.3, we
write � for the sign of the crossing c�, and we have

h � h0 D �v.c�/ C 1

2
.
.v; o/ � 
.v0; o0// C n� � n0�

D �2 C 1

2
.
.v; o/ � 
.v0; o0// C 1

2
.1 � �/:

Once again, we have o.c�/ D 0 or 1 according as � is 1 or �1 respectively. Thus
for a positive crossing we have 
.v; o/ � 
.v0; o0/ D 2 and 1 � � D 0, while for a
negative crossing we have 
.v; o/ � 
.v0; o0/ D 0 and 1 � � D 2. In either case the
difference is �1.
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Since the grading h is not 3-periodic, we get a different result when we compare
C.N 0/ with C�1 instead of C2.

Lemma 9.5. With the cohomological gradings h and h0 corresponding to the crossing-
sets N and N 0, the filtered complexes C�1 and C.N 0/Œ�1� are isomorphic in Ch.

Proof. This follows from the previous lemma and Lemma 9.1.

We can now state our main result about the effect of dropping a crossing, for the
h-filtration.

Proposition 9.6. Suppose that N 0 D N nfc�g and that both .K; N / and .K; N 0/ are
pseudo-diagrams. Then the complexes C.N / and C.N 0/, equipped with the filtrations
defined by h and h0, are isomorphic in the category Ch.

Proof. We consider again the maps (17) and (19):

‰ W C1 ˚ C0 �! C�1;

ˆ2 W C2 �! C1 ˚ C0:

With respect to the grading h on Ci , i 2 Z, the maps ‰ and ˆ2 have order � 0,
just as in the proof of Proposition 9.3; and once again, because these maps have odd
degree with respect to h mod 2, it actually follows that ‰ and ˆ2 have order � 1. Via
the isomorphisms in the previous two lemmas, the maps ‰ and ˆ2 therefore become
maps

‰0 W C1 ˚ C0 �! C.N 0/;

ˆ0
2 W C.N 0/ �! C1 ˚ C0:

of order � 0. They therefore define morphisms in Ch.
If we look at the composite ‰Bˆ2 W C2 ! C�1, we see from the formula (21) and

the arguments below it that this chain map is chain-homotopic to the isomorphism
T2;�1 given by the cylindrical cobordisms. The chain-homotopies are the maps

F2;�1 W C2 �! C�1

and
H2;�1 W C2 �! C�1:

Once again, with respect to the filtrations defined by h, these maps have order � 0,
and therefore order � 1 because of the mod 2 grading. Using the isomorphisms of
the previous two lemmas again, we obtain chain-homotopies

F0
2;�1 W C.N 0/ �! C.N 0/

and
H0

2;�1 W C.N 0/ �! C.N 0/:
of order � �1. So ‰0 Bˆ0

2 is the identity morphism in the category Ch. The argument
for ˆ0�1 B ‰0 is very similar.
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With the above result about forgetting a single crossing, we can now continue just
as in the case of the q-filtration, to prove invariance under Reidemeister moves. So
we arrive at the following statement, exactly analogous to Corollary 8.2 above.

Corollary 9.7. Let K1 and K2 be isotopic oriented links in R3 and let N1 and N2

be crossing-sets arising from diagrams D1 and D2 for these links. After choices of
good auxiliary data, let C.Ki ; Ni / be the corresponding cubes (i D 1; 2). Then, with
the decreasing filtrations defined by h, these cubes define isomorphic objects in the
category Ch.

10. Proof of the main theorems

The proofs of Theorem 1.1, Theorem 1.2 and Proposition 1.5 are now just a matter
of pulling together the above material with the results of [5], as we now explain.

Given a diagram D for an oriented link K, we obtain from it a set of crossings N .
The pair .K; N / is a pseudo-diagram, and after a choice of perturbations we obtain a
complex C D C.K; N / which carries a filtration by Z � Z arising from the gradings
h and q. We have seen that the differential F on C has order � .1; 0/, meaning that it
has order � 1 with respect to h and � 0 with respect to q (Propositions 9.3 and 4.6
respectively).

The h and q gradings decompose C as

C D
M
i;j

Ci;j

(where j corresponds to the q grading). Let us write F0 for the sum of those terms
of F which preserve q: so for each j we have

F0 W
M

i

Ci;j !
M

i

Ci;j :

Lemma 10.1. The map F0 shifts the h grading by exactly 1, so that

F0.Ci;j / � CiC1;j

for all i; j .

Proof. We refer to the equations (12) and (26) . Because our collection of crossings
comes from a diagram, all self-intersection numbers are zero, and the formula can
therefore be rewritten

ordq fvu � hjCu
� hjCv

� 1: (27)

So for a non-zero map fvu that contributes to F0, we have

0 � hjCu
� hjCv

� 1;
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which implies that the difference in the h-gradings is exactly 1, because we always
have the reverse inequality.

As the leading term of F with respect to the q-filtration, F0 has square zero. So
.C; F0/ is a bigraded complex whose differential has bidegree .1; 0/.

Proposition 10.2. With its bigrading supplied by h and q, the bigraded complex
.C; F0/ is isomorphic to Khovanov’s complex .C.D�/; dKh/ associated to the diagram
D� for K� (obtained from the diagram D for K by changing all over-crossings to
under-crossings and vice versa).

Proof. Recall that the complex C D C.N / has summands Cv indexed by v 2 f0; 1gN ,
and that Cv is the chain complex that computes I ] for the unlink Kv. We have chosen
perturbations so that the differential on Cv is zero. So if Kv has p.v/ components,
then (as in Section 2) we have

Cv D I ].Kv/

D H�.S2/˝p.v/

by the isomorphism (2). The isomorphism depends on a choice of meridians, as
well as a choice of a standard Morse function on the product of S2’s and a choice of
perturbations for the instanton equations. Via the identification

s W H�.S2/ �! V

of H�.S2/ with the rank-2 group V D hvC; v�i, this becomes an isomorphism

s˝p B ˇ W Cv �! V ˝p.v/

Allowing for the change in orientation convention, this gives an isomorphism of
groups

ˇ W C �! C.D�/ (28)

We also see that the formulae for the h-grading and q-grading on C, given by (26)
and (11) respectively, coincide with Khovanov’s cohomological and quantum grading
as defined in [3]. (The terms 
.v; o/ in those formulae are absent in the case that the
cube arises from a diagram, because all the self-intersection numbers are zero.)

On the other hand, it is shown in [5] that the spectral sequence associated to the
filtered complex .C; F/, with its filtration by h, has E1 page isomorphic to Khovanov’s
complex: that is, there is an isomorphism

.E1; d1/
Š�! .C.D�/; dKh/

as groups with differential. With our choice of perturbations, the elements in a given
h-grading all have the same degree mod 2, so the d0 differential is absent and we have
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E1 D C. Furthermore, the d1 differential is precisely the part of F that increases
h-grading by exactly 1. Let us call this Fe. So we have

� W .C; Fe/
Š�! .C.D�/; dKh/: (29)

The isomorphism � W C ! C.D�/ in (29) is not the same isomorphism as the map
ˇ in (28). Rather, on each component Cv , it is defined by the map � from (1). As
explained in Section 2, the isomorphism � and ˇ may differ. Both ˇ and � respect
the homological grading h, but only ˇ respects the q-grading. The two isomorphisms
differ by terms that strictly increase q, for on each Cv we have

� � s˝p B ˇ D .�1 C � � � / B ˇ

where �1 etc. are as in (4). In particular then, the map � gives rise to a map on the
associated graded objects with respect to the q filtration, which we write as

gr.�/ W gr.C; Fe/ �! .C.D�/; dKh/: (30)

On the left, we can identify the bigraded complex gr.C; Fe/ with .C; F0/, where F0 is
obtained from Fe by keeping only those summands that preserve q. This differential
F0 coincides with F0 by Lemma 10.1. So the map (30) can be interpreted as a map

gr.�/ W .C; F0/ �! .C.D�/; dKh/

which respects the bigrading. The map C ! C.D�/ which appears here is the
associated graded map arising from � , and is therefore equal to ˇ. Thus ˇ in (28)
intertwines the differential F0 with dKh.

Theorem 1.1 is a rewording of the above proposition: we identify C with C.D�/

by the isomorphism (28) and write the differential F as d].

Proof of Theorem 1.2. The theorem asserts that .C; F/ is independent of the choices
made, up to isomorphism in the category C. The choices here are again a diagram
for K with its associated collection of crossings, and a choice of good auxiliary data.
Given two sets of choices and two corresponding objects .C1; F1/ and .C2; F2/ in
the category C, we have seen already that these objects are isomorphic in both the
category Ch and Cq (Corollaries 9.7 and 8.2 respectively). An examination of the
proofs shows that these objects are isomorphic also in C. Indeed, the proofs were
obtained by exhibiting chain maps

ˆ W .C1; F1/ �! .C2; F2/;

‰ W .C2; F2/ �! .C1; F1/

and chain-homotopy formulae

ˆ B ‰ � 1 D F B … C … B F;

‰ B ˆ � 1 D F B …0 C …0 B F:
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The point here is that the same chain-maps and chain-homotopies are used in the
proofs of both Corollary 9.7 and Corollary 8.2. Thus from the proof of Corollary 9.7
we learn that with respect to the h-filtration, the chain-maps have order � 0 and
the chain-homotopies have order � �1; while from the proof of Corollary 8.2 we
learn that, with respect to the q-filtration, the chain-maps have order � 0 and the
chain-homotopies have order � 0. It follows that ˆ and ‰ are mutually-inverse
isomorphisms in the category C, where the maps are chain-maps of order � .0; 0/ up
to chain-homotopies of order � .�1; 0/. This proves Theorem 1.2.

Proof of Proposition 1.5. Because the maps I ].S/ can be computed as composite
maps when the cobordism S is a composite, it is sufficient to treat the cases that S

corresponds to the addition of a single handle, of index 0, 1, or 2. The cases 0 and 2

correspond to the addition or removal of a single extra unlinked component, and are
straightforward. So we consider the case of index 1.

In the index-1 case, we can form a link K2 with plane diagram having a crossing-
set N in such a way that K1 and K0 are obtained from .K2; N / by resolving a
distinguished crossing c� 2 N in two different ways. The links K2, K1 and K0 are
to be oriented independently and arbitrarily. The set N 0 D N n fc�g is then the set
of crossings for diagrams of both K1 and K0. By a straightforward generalization
of the commutativity of the square (13), we know that the map I ].S/ arises from a
chain map

F10 W C1 �! C0:

We can regard this map as one term in the differential F.K2; N / on the cube C.K2; N /

D C1˚C0 corresponding to .K2; N /; see (15). With respect to the h- and q-filtrations
which arise from .K2; N /, we know that F10 has order � .1; 0/. Let us denote the
corresponding h- and q-gradings on the abelian group C1 ˚ C0 by h2 and q2. On C1

and C0 we also have gradings h1; q1 and h0; q0 respectively, arising from .K1; N 0/
and .K0; N 0/.

We examine the quantum gradings. With respect to q2, the order of F10 is � 0.
On a summand Cv � C1, we have

q2 � q1 D �v.c�/ � .n2C � n1C/ C 2.n2� � n1�/

D �1 � .n2C � n1C/ C 2.n2� � n1�/;

where n2C denotes the number of crossings in N that are positive for the chosen
orientation of K2 and so on. Similarly, on a summand Cu � C0 we have

q2 � q0 D �u.c�/ � .n2C � n1C/ C 2.n2� � n1�/

D �.n2C � n1C/ C 2.n2� � n1�/:

So with respect to the filtrations defined by q1 and q0, the order of F10 is greater than
or equal to the difference of the above two expressions, which is

�1 C .n1C � n0C/ � 2.n1� � n0�/:
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Since �.S/ D �1, the proposition’s assertion about the quantum gradings will be
proved if we show that

3

2
.S � S/ D .n1C � n0C/ � 2.n1� � n0�/:

Since the number of crossings is the same for K1 and K0, this is equivalent to

S � S D w1 � w0;

where wi D niC � ni� is the writhe of the diagram .Ki ; N 0/. At this point we should
recall that S �S is defined with respect to framings of the boundaries K1 and K0 which
have linking numbers zero with K1 and K0. With respect to the blackboard framings
of K1 and K0, the self-intersection number of S is zero. The writhe measures the
difference between the blackboard framing and the framing with linking-number zero.
So the result follows. The calculation for the h-filtration is similar.

11. Examples

Simple examples of pseudo-diagrams. To illustrate how one can work with pseudo-
diagrams, we consider the two oriented pseudo-diagrams in Figure 3. The first rep-
resents a 2-component unlink; the second is a Hopf link. Each has one crossing, and
Figure 3 shows the two different resolutions (v D 1; 0) in each case.

v2 v1 v0

Figure 3. Pseudo-diagrams (left column) for an unlink and a Hopf link, each with one crossing.
The resolution with the arrows is the oriented one in each case.
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These examples show how the self-intersection number comes into play when
there are non-orientable cobordisms involved. In the first diagram we have nC D 0,
n� D 1. (The total number of crossings is 1 in the pseudo-diagram.) The 1-resolution
is the oriented resolution. The surface S10 has S10 � S10 D 2, and hence 
.1; 1/ D 0

while 
.0; 1/ D �2. Thus we see from the definition of the h and q gradings on
the cube C that the resolution with v D 1 contributes two generators to the cube in
bi-gradings .0; 2/ and .0; 0/. From v D 0 there are also two contributions, now in
bi-gradings .0; �2/ and .0; 0/. Since the h-gradings are all even, there can be no
differential. The resulting rank-4 group with its h- and q-gradings agrees with the
Khovanov homology of the unlink.

The Hopf link diagram still has nC D 0, n� D 1 but now S10 � S10 D �2, and
the 1-resolution is still the oriented resolution. From v D 1 there are two generators
in bi-gradings .�1; �3/ and .�1; �1/. From v D 0 there are also two generators,
now with bi-gradings .1; 1/ and .1; 3/. This reproduces the Khovanov homology of
the Hopf link (with the given orientations.)

An example of a non-trivial differential, the .4; 5/-torus knot. We will deal
with the reduced case I \.K/ and work with rational coefficients. For the torus knot
T .4; 5/, the reduced Khovanov homology is known and has rank 9. Below is a plot
indicating with bullet-points where the non-zero groups are. These are plotted in the
plane with coordinates i and j � i , where i is the h-grading and j is the q-grading.

11

13

15

0 2 4 6 8

Starting from any diagram, the reduced Khovanov homology is a page of both
the h- and q-spectral sequences converging to I \.K/, and we can ask where the
differentials (if any) may be for K D T .4; 5/. The grading j � i �1 on the Khovanov
homology reduces to the canonical mod 4 grading on I \; see [5], Section 8.1. From
the figure, we read off the Betti numbers for the mod 4 grading on the Khovanov
homology as

3; 1; 2; 3 (31)

in gradings 0, 1, 2 and 3 mod 4 respectively. The differentials in the spectral sequence
all have degree �1 mod 4 with respect to this grading. In these coordinates the higher
differentials in the spectral sequence are also constrained by

�j � �i � �1;

where �i and �j denote the change in the h and q-gradings, as follows from (12).
(The S � S term is absent in (12) because we are dealing with a diagram rather than
a pseudo-diagram.)
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The generators of the instanton complex that computes I \.K/ are obtained from
the representation variety

R\.K; i/
defD R.K\; i/=SO.3/;

which can also be regarded as the fiber of the map R.K; i/ ! S2 given by the
holonomy around a chosen meridian. In the case of T .4; 5/, one can show that this
representation variety is a union of an isolated non-degenerate point (corresponding
to the reducible representation) and four Morse–Bott circles (corresponding to irre-
ducibles). Thus after a small perturbation, we see that the instanton complex that
computes I \.K/ has 9 generators. Since 9 is also the rank of the Khovanov homol-
ogy, it seems at first possible that the homology groups are isomorphic. But a closer
examination shows that the four Morse–Bott circles contribute the same rank to each
of the gradings mod 4 in the instanton complex. (To compute the relative Morse index
of the 4 circles, one can study the representation varieties R\.T .4; 5/; ˛/, defined
analogously to R\.T .4; 5/; i/ but with holonomy around the meridian of the knot
given by

exp 2�i

��˛ 0

0 ˛

�

for ˛ 2 Œ0; 1=4�. As ˛ increases, circles of critical points are emitted from or absorbed
into the unique reducible. The Morse indices can be read off from the sequence of
these events.) So if the instanton homology had rank 9, then the Betti numbers (31)
for the Khovanov homology would differ from each other by at most 1 (corresponding
to the contribution of the isolated point in the representation variety). Since this is
not the case, if follows that the instanton homology has rank at most 7.

On the other hand, according to [5], Proposition 1.4, for a knot K there is an
isomorphism between I \.K/ and the sutured instanton knot Floer homology group
KHI.K/, respecting the mod 4 grading; and from [4], Corollary 1.2, we know that the
total rank of KHI.K/ is not less than the sum of the absolute values of the coefficients
of the Alexander polynomial, which for T .4; 5/ is

T 6 � T 5 C T 2 � 1 C T �2 � T �5 C T �6:

This gives a lower bound of 7 for the rank of I \.K/. We deduce that in fact the rank
is exactly 7. So the spectral sequence has a single non-zero differential which must
have rank 1.

The results of [4] give a little more information. The coefficients of the Alexander
polynomial arise as Euler characteristics of the generalized eigenspaces of an operator
� on KHI.K/ which has degree 2 with respect to the mod 4 grading. It follows that
the Betti numbers in mod-4 gradings l and l C 2 are equal, except for an offset term
arising from the eigenvalue 0. The dimension of the generalized 0-eigenspace is 1,
because it corresponds to the coefficient of T 0. Inspecting (31) again, we see that the
only possibility is that the Betti numbers of the mod 4 grading on I \.K/ are

2; 1; 2; 2:
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The 0-eigenspace contributes 1 to the last of these. The differential in the spectral
sequence goes from 0 to 3 in the mod 4 grading. In terms of the diagram above, this
means that the differential must go from the row j � i D 13 to the row j � i D 16.
The authors do not know in which pages of the two spectral sequences the differential
appears. It is also not yet apparent what the ranks of the associated graded groups
are, for the h- and q-filtrations on I \.K/.
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