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An untwisted cube of resolutions for knot Floer homology

Ciprian Manolescu 1

Abstract. Ozsváth and Szabó gave a combinatorial description of knot Floer homology based
on a cube of resolutions, which uses maps with twisted coefficients. We study the t D 1

specialization of their construction. The associated spectral sequence converges to knot Floer
homology, and we conjecture that its E1 page is isomorphic to the HOMFLY-PT chain complex
of Khovanov and Rozansky. At the level of each E1 summand, this conjecture can be stated
in terms of an isomorphism between certain Tor groups. As evidence for the conjecture, we
prove that such an isomorphism exists in degree zero.
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1. Introduction

Knot homology theories are among the most effective tools for studying knots in S3.
Roughly, knot homologies are of two types. The first have their origins in representa-
tion theory and quantum topology. Examples include Khovanov’s categorification of
the Jones polynomial, and Khovanov and Rozansky’s categorification of the quantum
sl.n/ polynomial and the HOMFLY-PT polynomial; see [6], [8], and [9]. The sec-
ond type of knot homologies are those with origins in gauge theory and symplectic

1The author was partially supported by NSF grants DMS-0852439 and DMS-1104406.
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geometry. The most studied among these is the knot Floer homology of Ozsváth and
Szabó [17] and Rasmussen [20].

Knot Floer homology admits several purely combinatorial descriptions, some com-
ing with appropriate combinatorial proofs of invariance; see [13], [14], [21], [16],
[4], and [1]. The description given by Ozsváth and Szabó in [16] is the one closest
in spirit to the usual definitions of the representation-theoretic knot homologies. It is
based on establishing an exact triangle for knot Floer homology that involves singular
links, and uses twisted coefficients. Given a braid diagram for a knot, an iteration of
this triangle produces a spectral sequence, which is shown to collapse at the E2 page.
This page is then described combinatorially. There are in fact two variants of the
spectral sequence, corresponding to the two variants of knot Floer homology denoted
bHFK (whose graded Euler characteristic is the Alexander polynomial �K.T /) and

HFK� (whose graded Euler characteristic is �K.T /=.1 � T /) .
As mentioned in [16], if the maps in the spectral sequences were untwisted, the

results would look very similar to the HOMFLY-PT homology of Khovanov and
Rozansky from [9]. The purpose of this paper is to give evidence for a precise
conjecture connecting the untwisted spectral sequences and HOMFLY-PT homology.

To fix notation, let K be an oriented knot in S3 with a decorated braid projection
K , as in [16]. Specifically, K consists of a braid diagram drawn vertically, with
the strands oriented upwards, and closed up by taking the top strands around to the
right of the braid, so that the resulting planar diagram represents the knot K. Further,
in [16] one of the leftmost edges in the braid is distinguished; for convenience, we
will always take this to be the top leftmost one, which is one of the strands closed
up when taking the braid closure (and thus is also the rightmost edge in the planar
diagram). See Figure 1 for an example. Let c.K/ be the set of crossings in K , and
let n be the number of crossings. We denote by E D fe0; : : : ; e2ng the set of edges
in the diagram, where the distinguished edge is viewed as subdivided in two. We
choose the ordering of the edges so that e0 is the second segment on the distinguished
edge, according to the orientation of K .

If p is a crossing in K , we define the smoothing of K at p to be its oriented
resolution at p (which is a link diagram with one fewer crossing), with two valence
two vertices added, one on each side of where the crossing was. We also define
the singularization of K at p to be the diagram obtained from K by replacing the
crossing at p with a double point (resulting in a diagram for a singular link). A
complete resolution S of K is a diagram obtained from K by assigning smoothings
or singularizations to all crossings. Thus, there are 2n possible complete resolutions;
each of them is a planar graph with vertices of valence either two or four. The point
where the distinguished edge is subdivided (the gray dot in Figure 1) is not a vertex,
but rather a place where the edge is cut open into two segments.

Let R be the polynomial algebra ZŒU0; : : : ; U2n�. Each variable Ui corresponds
to an edge ei 2 E. Given a complete resolution S of K , we will define an R-module
B.S/ as follows.
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Figure 1. A decorated braid projection for the figure-eight knot. The gray dot marks the
subdivision of the distinguished edge.

First, let c.S/ � c.K/ be the subset of crossings of K that were singularized
in S (that is, the set of four-valent vertices in the graph of associated to S ). At any
p 2 c.S/, if we denote by a and b the two outgoing edges, and by c and d the two
incoming edges (as in Figure 2), we define the element

L.p/ D Ua C Ub � Uc � Ud 2 R: (1)

We denote by LS � R the ideal generated by all the elements L.p/ for p 2 c.S/.
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Figure 2. The top picture represents the singularization of a crossing, and the bottom picture
the smoothing. The smoothing and the singularization are also called the 0- and 1-resolutions
of the crossing; which is which depends on whether the original crossing is positive or negative,
as shown in the figure.



188 Ciprian Manolescu

Next, let W be a collection of vertices in the graph of S . (Here, the two loose
ends that result from cutting the distinguished edge are not considered vertices.) We
denote by in.W / and out.W / be the sets of incoming and outgoing edges of W . We
set

In.W / D in.W / n out.W /; Out.W / D out.W / n in.W /;

and define NS � R to be the ideal generated by the elements

N.W / D
Y

e2Out.W /

Ue �
Y

e2In.W /

Ue;

over all possible collections W .
Let also VS be the free R-module spanned by the connected components of S that

do not contain the edge e0. Let ƒ�VS be the exterior algebra of VS . We define

B.S/ WD Tor�.R=LS ; R=NS / ˝R ƒ�VS ; (2)

where the Tor groups are taken over R.
Next, we organize all the complete resolutions of K into a hypercube, as in [8],

[9], and [16]. If p 2 c.K/ is a positive crossing, we define the 0-resolution of K at
p to be its singularization at p, and its 1-resolution to be the smoothing at p. If p

is a negative crossing, we let the 0-resolution be the smoothing and its 1-resolution
the singularization. (See Figure 2.) With these conventions, for any assignment
I W c.K/ ! f0; 1g, we obtain a complete resolution SI .K/.

Consider the direct sum

C.K/ D
M

I W c.K/!f0;1g
B.SI .K//:

Let F D Z=2Z. In [16], Ozsváth and Szabó built a spectral sequence using
modules over the base ring R ˝Z F Œt�1; t ��, where F Œt�1; t �� is the field of half-
infinite Laurent power series. Specializing to t D 1, their result reads as follows.

Theorem 1.1 (Ozsváth and Szabó [16]). Let K � S3 be an oriented knot, and K a
decorated braid projection of K, as above.

(a) There is a spectral sequence whose E1 page is isomorphic to

C.K/ ˝Z F

and which converges to the knot Floer homology HFK�.K/ with coefficients in F .

(b) There is a spectral sequence whose E1 page is isomorphic to

C.K/=.U0 D 0/ ˝Z F

and which converges to the knot Floer homology bHFK.K/ with coefficients in F .

Theorem 1.1 is expected to hold also with coefficients in Z rather than F , but at
the moment the orientations for link Floer complexes are not fully worked out in the
literature.
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An important difference between the spectral sequences in Theorem 1.1 (with
untwisted coefficients) and the original ones in [16] (with twisted coefficients) is
that the latter collapse at the E2 stage for grading reasons. Because of this property,
Ozsváth and Szabó were able to use their spectral sequences to give their combinatorial
descriptions of the knot Floer homology groups HFK� and bHFK. In the untwisted
setting, the E2 terms do not typically live in a single grading, so we do not expect the
sequences to collapse. On the other hand, we do expect an interesting relationship
with the HOMFLY-PT homology of Khovanov and Rozansky, as follows.

Let us discuss some aspects of the construction of the HOMFLY-PT homology
from [9]. In the original reference Khovanov and Rozansky worked with coefficients
in Q, but the HOMFLY-PT homology can also be constructed with Z coefficients, as
shown by Krasner [10]. We choose a decorated braid projection K for a knot K, as
before. Given a complete resolution S of K , one associates to S a Koszul complex
BKR.S/. The HOMFLY-PT chain complex is then defined as

CKR.K/ D
M

I W c.K/!f0;1g
H�.BKR.SI .K///; (3)

with a differential given by summing up certain zip and unzip maps. We denote its
homology by HKR.K/. This is the middle HOMFLY-PT homology of the knot K.
If we take the homology of CKR.K/=.U0 D 0/ instead, we obtain another variant
of HOMFLY-PT homology, called reduced, which we denote by xHKR.K/. (The
terminology middle and reduced was introduced by Rasmussen [19].)

We can alternately describe the summands in (3) as follows. For a connected
complete resolution S , let QS � R be the ideal generated by the quadratic elements

Q.p/ D UaUb � UcUd ;

for all four-valent vertices p 2 c.S/, together with the linear elements

Q.p/ D Ue � Uf ;

for all two-valent vertices p of S , where e and f denote the edges meeting at p. For
a disconnected complete resolution S , on each connected component that does not
contain the distinguished edge in K we pick a two-valent vertex, coming from the
right hand side of a resolved crossing. We call these two-valent vertices special, and
define an ideal QS � R the same way as in the connected case, except that when
p is special we do not include the linear element Q.p/ in the generator set. (This is
equivalent to cutting edges open at the special points, just as we did at the gray dot
in Figure 1.)

This way, we have an ideal QS for any complete resolution S . Observe that QS

is contained in the ideal NS defined previously. We will prove the following result.
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Theorem 1.2. For any complete resolution S of a decorated braid diagram K , the
homology H�.BKR.S// is isomorphic to

BKR.S/ WD Tor�.R=LS ; R=QS / ˝R ƒ�VS : (4)

The expression (4) is similar to that for B.S/ from (2). In fact, we propose the
following conjecture.

Conjecture 1.3. Let K � S3 be an oriented knot, with a decorated braid projec-
tion K .

(a) For every complete resolution S of K , the R-modules B.S/ and BKR.S/ are
isomorphic.

(b) Further, after tensoring with F , the isomorphisms in (a) commute with the
differentials on the complexes C.K/ ˝Z F and CKR.K/ ˝Z F , where on C.K/ ˝Z

F we use the d1 differentials from the spectral sequences in Theorem 1.1. As a
consequence, the E2 page of the spectral sequence from Theorem 1.1 (a) is isomorphic
to the middle HOMFLY-PT homology HKR.K/˝Z F , and the E2 page of the spectral
sequence from Theorem 1.1 (b) is isomorphic to the reduced HOMFLY-PT homology
xHKR.K/ ˝Z F .

Let us put this conjecture into context. A relationship between the HOMFLY-PT
and knot Floer homology was first proposed by Dunfield, Gukov, and Rasmussen
in [2], where they suggested the existence of a differential d0 on xHKR.K/, such that
the homology with respect to d0 gives bHFK.K/. In light of Rasmussen’s work in [19],
it became more natural to expect a spectral sequence from xHKR.K/ to bHFK.K/. Con-
jecture 1.4 (b), together with Theorem 1.1, would provide such a spectral sequence,
at least with F coefficients. Its existence would show that the total rank of the (re-
duced) HOMFLY-PT homology is at least as big as that of knot Floer homology. In
turn, this would give a new proof of the fact that HOMFLY-PT homology detects
the unknot. Currently, this last fact is known due to the work of Kronheimer and
Mrowka ([11] and [12]), combined with that of Rasmussen (Theorem 2 in [19]).
Moreover, the existence of the spectral sequence (with the expected behavior with
respect to gradings) would go beyond unknot detection: for example, it would show
that HOMFLY-PT homology detects the two trefoils and the figure-eight knot, by
using the corresponding result in knot Floer homology [3].

The current paper reduces the Dunfield–Gukov–Rasmussen conjecture to a state-
ment in terms of Tor groups, Conjecture 1.3, of which part (a) has a purely algebraic
flavor involving only ideals associated to graphs in the plane. This makes part (a)
amenable to techniques from commutative algebra. Further, it is natural to expect that
any solution to part (a) would produce isomorphisms that behave well with respect
to the differentials, hence proving part (b).
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Thus, let us focus on part (a) of Conjecture 1.3. Given how B.S/ and BKR.S/ are
described in (2) and (4), this part boils down to an isomorphism between Tor groups.
A natural strategy of attacking Conjecture 1.3 (a) would be to cut the braid into simpler
pieces and use an inductive argument. Although we have not succeeded in imple-
menting this strategy, it is hopeful that the following extension of Conjecture 1.3 (a)
seems to hold.

Define a partial braid graph S to be a part of a complete resolution S 0 of a decorated
braid projection. Precisely, let W 0 be the set of crossings of S 0, and view S 0 as a
union of neighborhoods Up of each p 2 W 0, such that Up consists of two segments
intersecting at p. Then, at each p, do one of the following operations:

– keep Up as it is;

– delete one of the two segments in Up , and either keep p as a vertex, or erase it;

- delete both of the segments in Up , together with p.

The result, S , is what we call a partial braid graph. It consists of a set of vertices
W � W 0, together with a set of edges. In S , an edge ei may have only one endpoint
at a vertex in W ; if so, we say that ei is an exterior edge, and do not consider its other
endpoint to be a true vertex of S . In particular, the original distinguished edge is split
into two exterior edges. With these conventions, we can define ideals LS ; NS ; and
QS just as before. For simplicity in defining QS , let us assume that S is connected.
We also assume that S contains at least one (hence at least two) exterior edges. (Note
that Conjecture 1.3 (a) for general complete resolutions S would follow from the case
of connected S with the distinguished edge cut open. Thus, it is natural to make a
similar assumption on partial braid graphs.)

Conjecture 1.4. If S is a connected partial braid graph with at least one exterior
edge, then for any i � 0 we have an isomorphism of R-modules

Tori .R=LS ; R=NS / Š Tori .R=LS ; R=QS /:

An example of a partial braid graph is shown in Figure 3, where

LS D .Ua C Ub � Uc � Ud ; Ue C Ud � Uf � Ug/;

QS D .UaUb � UcUd ; UeUd � Uf Ug ; Ug � Ub/;

NS D QS C .UaUe � UcUf /:

Evidence for Conjecture 1.4 comes from computer experimentation, and from
proofs in some particular cases. For example, we have the following result.

Theorem 1.5. Conjecture 1.4 is true for i D 0. In fact, for any connected partial
braid graph S , we have LS C NS D LS C QS as ideals in R.
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Figure 3. A partial braid graph with four exterior edges and three vertices.

Interestingly, the isomorphism appearing in Conjecture 1.4 cannot be simply in-
duced by the natural quotient map R=QS ! R=NS (although this is the case for
i D 0). See Section 5.2 for a discussion.

This paper is organized as follows. In Section 2 we review the proof of Theo-
rem 1.1, focusing on the few aspects that are different in the untwisted setting. In
Section 3 we prove Theorem 1.2, about the HOMFLY-PT complex. In Section 4 we
present and compare three gradings on the complexes C.K/ and CKR.K/. Finally,
in Section 5 we discuss Conjecture 1.4 and prove Theorem 1.5.

Acknowledgements. The author wishes to thank Brian Conrad, Mark Green, Tye
Lidman, Peter Ozsváth, Jacob Rasumssen, and Zoltán Szabó for several helpful con-
versations during the course of this work. Clearly, this paper is very much influenced
by the work of Ozsváth and Szabó [16], where the original twisted cube of resolutions
is constructed, and its specialization to t D 1 is suggested.

2. The untwisted spectral sequence

For completeness, in this section we sketch the construction of the spectral sequences
in Theorem 1.1, following [16]. The original reference used a coefficient ring of
Laurent power series in a variable t . Here we specialize to t D 1, and this requires
us to address a few (minor) additional points. Precisely, some care needs to be taken
to make sure that the sums involved in the construction remain finite when setting
t D 1; this is an admissibility issue, and is settled in Lemma 2.1 below. Another
small discussion is needed for disconnected resolutions – see Lemma 2.2 below.
These lemmas are the new content in this section. Apart from that, the constructions
are due to Ozsváth and Szabó, and our exposition follows [16] closely (except for a
few differences in notation and terminology).
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Let F D Z=2Z. Let K be a decorated braid projection with n crossings. We
denote our base ring by

R D R ˝Z F Š F ŒU0; : : : ; U2n�:

By a slight abuse of notation, the ideals LS and NS from the Introduction are denoted
the same way here, even though they are implicitly tensored with F . This is the only
section of the paper where we have to work with F coefficients; we will return to Z
coefficients starting in Section 3.

Unless otherwise noted, all the tensor products in this section are taken over R.

2.1. Floer complexes from planar diagrams. Given I W c.K/ ! f0; 1; 1g, we
can define a partial resolution S D SI .K/ of the decorated braid projection K as
follows. At each p 2 c.K/, we take the 0-resolution if I.p/ D 0; the 1-resolution
if I.p/ D 1, and we leave the crossing as it is if I.p/ D 1. We denote by � the
number of crossings p such that S has a singularization (a four-valent vertex) at p.

There is a unified way of constructing Heegaard diagrams (and Floer chain com-
plexes) for all the partial resolutions S: Following Section 4 in [16], near each crossing
p 2 c.K/ we draw a local picture as in Figure 4. If I.p/ D 1 and p is a positive
crossing of K , we place two X markings at the spots A0 and AC in the figure. If
I.p/ D 1 and p is a negative crossing, we place two X markings at A0 and A�. If
I.p/ 2 f0; 1g and S is smoothed at p, we place X markings at the two spots indi-
cated by B . If I.p/ 2 f0; 1g and S is singularized at p, we delete ˛1 and ˇ1 from the
diagram (that is, we only draw the circles ˛2 and ˇ2), and place two X markings in
the middle bigon that is the intersection of the two disks with boundaries ˛2 and ˇ2.
In all cases, we also place an O marking on each edge of the diagram; in the figure,
the circles marked a; b; c; d correspond to the O markings on the four edges meeting
at p. Finally, we add a point at infinity to the plane to obtain S2 D R2 [ f1g, and
we place an additional X marking at infinity. We draw the curves in the diagram so
that the point where we cut the distinguished edge (the gray dot in Figure 1) can be
joined to infinity by a path that does not intersect any of the alpha or beta curves.

In the end, for each I we obtain a collection of 2n�� alpha curves and 2n�� beta
curves on the sphere, together with 2nC1 X-markings and 2nC1 O-markings. This
is a balanced Heegaard diagram for the singular link S � S3, in the sense of [15].

Let T˛ (resp. Tˇ ) be the tori in the symmetric product Sym2n�� .S2/ gotten by
taking the product of all alpha (resp. beta) curves. For x; y 2 T˛ \ Tˇ , we denote
by �2.x; y/ the space of relative homology classes of Whitney disks from x to y with
boundaries on T˛; Tˇ : For � 2 �2.x; y/, we let �.�/ 2 Z be its Maslov index, and
we let cM .�/ be the moduli space of pseudo-holomorphic disks (flow lines) in the
class �, modulo reparametrization by R. We choose orderings of the markings as
X0; : : : ; X2n and O0; : : : ; O2n. We let Xi .�/ resp. Oi .�/ be the local multiplicity of
(the domain of) � at Xi resp. Oi . Further, at each singular point (four-valent vertex)
on S we have two X-markings in the same bigon; we denote the local multiplicity of
� in that bigon by XXj .�/, for some j D 1; : : : ; � .
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Figure 4. The planar diagrams at a crossing.

One can assign to any intersection point x 2 T˛ \Tˇ an Alexander grading A.x/ 2
Z and a Maslov grading M.x/ 2 Z. (In fact, when S has multiple components,
there are several Alexander gradings, but here we just consider their sum.) We refer
to [16], Section 2.3, for the exact definitions of A and M , but let us mention that up
to a shift, the gradings are determined by the following properties: for any x; y, and
� 2 �2.x; y/,

A.x/ � A.y/ D
2nX

iD0

.Xi .�/ � Oi .�//;

and

M.x/ � M.y/ D �.�/ � 2

2nX
iD0

Oi .�/ C 2

�X
j D1

XXj .�/:

The Floer chain complex CFL�.S/ D CF �.T˛; Tˇ / is defined as follows. As a
module over R D F ŒU0; : : : ; U2n�, it is freely generated by the intersection points
x 2 T˛ \ Tˇ : As such, it comes with a bigrading .A; M/ induced by the one on
generators, where a variable Ui is set to be in bigrading .�1; �2/. The differential
on CFL�.S/ is given by

@x D
X

y2T˛\Tˇ

X
f�2�2.x;y/ W �.�/D1IXi .�/D0;8ig

# bM.�/ �
2nY

iD0

U
Oi .�/
i � y: (5)



An untwisted cubed of resolutions 195

In order for the differential to be well-defined, we need to make sure that the sum
in (5) is finite. This is guaranteed to be the case if the Heegaard diagram we use is
admissible in the following sense. (Compare [18], [15], and [16].) A periodic domain
is a two-chain on the Heegaard surface whose boundary is a Z-linear combination
of alpha and beta curves, and whose multiplicity at each marking Xi or Oi is zero.
The diagram is said to be admissible if every non-trivial periodic domain has both
positive and negative multiplicities somewhere on the diagram.

Lemma 2.1. The planar Heegaard diagram for a partial resolution S , as constructed
above (using n copies of Figure 4) is admissible.

Proof. The argument is different from the one in Lemma 3.3 in [16], where the use of
extra markings (to define twisted coefficients) made admissibility more transparent.

Let p 2 c.K/ be a crossing. We denote by �C.b/ and ��.c/ the disks (ovals) with
boundaries ˛1 resp. ˇ1 in Figure 4, containing the small circles marked b resp. c.
We also denote by �C.a/ the annulus bounded by ˛1 and ˛2 in Figure 4, containing
a. Similarly ��.d/ is the annulus bounded by ˇ1 and ˇ2 and containing d .

Let S0; S1; : : : ; S` be the connected components of S , where S0 contains the
distinguished edge e0. For each i D 1; : : : ; `, we have a periodic domain

�i D
X
e�Si

.�C.e/ � ��.e//:

The set f�i W i D 1; : : : ; `g forms a basis for the space of periodic domains. On each
edge e 2 Si , the multiplicity of �i at the corresponding O marking is zero; however,
near that marking there exist points qC

e resp. q�
e where the multiplicities of �i are

C1 resp. �1, and the multiplicities of all other �j .j ¤ i/ are zero. (An example is
shown in Figure 5.) It follows that any non-trivial linear combination of the �i ’s has
some positive and some negative multiplicities.

The homology of the chain complex CFL�.S/ splits as

HFL�.S/ D
M

s;d2Z

HFL�
d .S; s/;

where s corresponds to the Alexander grading and d to the Maslov grading. Another
variant of the Floer complex, bCFL.S/ is gotten by choosing edges eji

, one on each
connected component Si (i D 0; : : : ; `), and setting the corresponding variables Uji

to zero in (5). The resulting homology is denoted bHFL.S/ D L
s;d

bHFLd .S; s/:

The Euler characteristics of HFL�.S/ and bHFL.S/ are related to the symmetrized
Alexander polynomial of the singular link S . In particular, when S D K is the original
knot, HFL�.K/ and bHFL.K/ coincide with the knot Floer homologies HFK�.K/

and bHFK.K/, respectively, for which we haveX
d;s

.�1/d T s � dim.HFK�
d .K; s// D .1 � T /�1 � �K.T /
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X
X

X

qC
c

q�
c

a

c

b

Figure 5. This is a planar Heegaard diagram for an unlink S , obtained as follows: start with a
planar projection of the unknot having a single crossing, smooth that crossing, and apply the
procedure in Section 2.1. In the diagram, we show the periodic domain �1 D �C.c/ � ��.c/

by indicating multiplicity C1 by darker shading, and multiplicity �1 by lighter shading.

and X
d;s

.�1/d T s � dim. bHFKd .K; s// D �K.T /;

where �K.T / is the Alexander–Conway polynomial of K.
It is sometimes helpful to consider the algebraic grading Malg W T˛ \ Tˇ ! Z on

the complex CFL�.S/, defined as Malg D M � 2A. The algebraic grading (which
was denoted N in [16]) behaves like the Maslov grading in that it is decreased by one
by the differential; however, it has the advantage that it is preserved by multiplication
by any Ui .

2.2. Insertions and connected components. Let S be a partial resolution of a
decorated braid projection, as in the previous subsection. Suppose we introduce a few
extra two-valent vertices along the edges of the projection, which we call insertions.
Let us write S 0 for S with the insertions. We then have the following variant of the
planar Heegaard diagram from Subsection 2.1. Near each insertion, we introduce a
new O marking, a new X marking, a new ˛ curve, and a new ˇ curve, as in Figure 6.

Consider the polynomial ring R0, with one U variable for each O marking in the
new picture. We can define a Floer chain complex CFL�.S 0/ over the ring R0, by
the same recipe as in Subsection 2.1. If r is the number of insertions, the complex is
constructed from tori in the symmetric product Sym2n��Cr .S2/: Lemma 2.1 easily
extends to this situation.
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X

a

a

a
a

b

b

Figure 6. An insertion along an edge changes the planar Heegaard diagram as shown here.

It is worth noting that, if we view the original CFL�.S/ as a complex over R0 by
letting each new U variable act the same way as the old variable from the edge where
the insertion was done, then CFL�.S/ and CFL�.S 0/ are quasi-isomorphic over R0;
see Proposition 2.3 in [13].

Another useful observation is that if we consider a crossing p in K that is smoothed
in S , we can view the two resulting two-valent vertices as insertions. If we do so, the
resulting Floer complex is quasi-isomorphic to the original one, in which we used the
local picture in Figure 4 near p (with X markings at B). Indeed, if we handleslide
˛2 over ˛1 and ˇ2 over ˇ1 in that picture, and then do a small isotopy to separate ˛1

from ˇ1, we obtain exactly the Heegaard diagram for S where the two-valent vertices
are viewed as insertions.

Our particular motivation for considering insertions is that, if we have a partial
resolution S of a decorated braid projection as in Subsection 2.1, then each of its
connected components can be viewed as a partial resolution of a smaller braid, with
insertions. Indeed, let S0; : : : ; S` be the connected components of S , such that S0 has
the distinguished edge. (Here, we mean the connected components of the diagram S

viewed as a planar projection, rather than components of the underlying singular links.
For example, the unresolved projection of a non-split link has a single component.)
Any time we have a crossing in K that ends up smoothed in S , such that the two
edges in the smoothing belong to different components Si , then there are two resulting
two-valent vertices, which we view as insertions. Further, for each component Si

with i > 0, we pick one of the insertions on Si and declare it to be a gray dot as in
Figure 1 (that is, we cut the edge open at that point). With these conventions, each Si

is a partial resolution of a smaller decorated braid projection, with some insertions.
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Thus, we can construct a Floer chain complex CFL�.Si /, over a polynomial ring Ri .

R Š R0 ˝F � � � ˝F R`:

The Floer chain complexes for the connected components are related to the original
Floer complex for S as follows.

Lemma 2.2. Let S be a partial resolution of a decorated braid projection, with
connected components S0; : : : ; S`. Then, we have a quasi-isomorphism ofR-modules

CFL�.S/ � CFL�.S0/ ˝F � � � ˝F CFL�.S`/ ˝F H�.T `/:

Here, the right hand side is viewed as an R-module by combining the Ri -module
structures on the first ` C 1 factors, and the F -vector space structure on the torus
homology factor.

Proof. Consider the case ` D 1, when the claim is that

CFL�.S0 q S1/ � CFL�.S0/ ˝F CFL�.S1/ ˝F H�.S1/; (6)

First, note that this claim is true when S1 D U is the unknot, obtained as the braid
closure of a single strand, with a gray dot and no other insertions. (An example is that
in Figure 5, where S0 is also an unknot.) Indeed, in that case the Heegaard diagram
for S0 q U can be transformed by Heegaard moves so that it is obtained from the
diagram for S0 by adding an ˛ and a ˇ curve, isotopic to each other and intersecting
at two points, and bounding disks that contain two new basepoints (one of type O and
one of type X). An adaptation of the arguments in the proof of Lemma 6.1 in [18],
shows that

CFL�.S0 q U/ � CFL�.S0/ŒUnew� ˝F H�.S1/; (7)

where Unew is the new U variable corresponding to the O basepoint on U.
Moving to the proof of (6) for arbitrary S1, note that the disjoint union S0 q S1

can be viewed as a connected sum of S0 q U and S1, via a path connecting S1

to the unknot U. In Theorem 11.1 in [18] Ozsváth and Szabó proved a connected
sum formula for link Floer complexes (for ordinary, smooth links). Their arguments
extend to singular links, giving

CFL�.S0 q S1/ � .CFL�.S0 q U/ ˝F CFL�.S1//=.Unew D Uold/;

where Uold is any variable corresponding to a basepoint on the component of S1

joined to U. Combining this with (7), the proof is completed for ` D 1. The case of
general ` follows by induction.

2.3. The exact triangle. The key ingredient in the construction of the spectral se-
quence from Theorem 1.1 (a) is to establish exact triangles between the Floer com-
plexes associated to various partial resolutions.
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Precisely, consider three partial resolutions S; Z; X that differ at a single crossing
p 2 c.K/, where p is unchanged from K in S (that is, the corresponding assignment
I for S takes p to 1), Z is the smoothing of S at p, and X is the singularization.
The knot Floer homologies of S; Z; X are related by an exact triangle.

Theorem 2.3 (Ozsváth and Szabó, Corollary 4.2 in [16]). With S; Z; X be as above,
let a; b; c; d be the edges meeting at p as in Figure 2, and L.p/ the two-step complex

L.p/ D
�
R

UaCUb�Uc�Ud�����������! R
�
: (8)

Then, if the crossing p is positive in S , we have a long exact sequence:

: : : �! HFL�.S/ �! H�.CFL�.X/ ˝ L.p// �! HFL�.Z/ �! : : : (9)

If p is a negative crossing in S , we have a long exact sequence:

: : : �! HFL�.S/ �! HFL�.Z/ �! H�.CFL�.X/ ˝ L.p// �! : : : (10)

Sketch of proof. Suppose p is negative, so that the planar diagram for S uses the
basepoints A0 and A� in Figure 4. There is a subcomplex X.p/ � CFL�.S/ gener-
ated by those configurations that contain the point x in the figure. We denote by Y.p/

the associated quotient complex. Observe that X.p/ is (canonically) isomorphic to
CFL�.X/, via the map that deletes x from a generator.

There is a doubly-filtered complex

X.p/

ˆA�

��

id ��

ˆA�B

����
���

���
���

���
���

X.p/

UaCUb�Uc�Ud

��
Y.p/

ˆB

�� X.p/;

(11)

where ˆB is the part of the differential on CFL�.S/ that counts holomorphic disks
(flow lines) through exactly one of the two points marked B in Figure 4 (that is, the
domain of a disk should have multiplicity one at a B point, and zero at the other B);
ˆA� counts flow lines through exactly one of A0 and A�; and ˆA�B counts flow
lines having total multiplicity one at A0 and A�, and also total multiplicity one at
the two B’s. The term Ua C Ub � Uc � Ud makes an appearance as the count of
boundary degenerations in Figure 4 through exactly one of A0 and A�, and exactly
one of the two B’s. Using the notation from the proof of Lemma 2.1, the domains of
these boundary degenerations are �C.a/; �C.b/; ��.c/ and ��.d/.

The total complex in (11) is quasi-isomorphic to its bottom row, which is CFL�.S/.
(The quasi-isomorphism is given by the canonical projection.) If we consider the
horizontal filtration on (11), we find a subcomplex (the right column) given by
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CFL�.X/ ˝ L.p/, and a quotient complex (the left column) which is CFL�.Z/.
These three complexes form a short exact sequence, whose associated long exact
sequence in homology is exactly (10).

The case when the crossing p is positive is similar, but now the diagram for S

uses A0 and AC. By X0.p/ � CFL�.S/ we mean the subcomplex generated by
configurations that contain the point x0 in Figure 4. Let Y0.p/ be the corresponding
quotient complex, and observe that X0.p/ is still canonically isomorphic to CFL�.X/.

We have a doubly-filtered complex

X0.p/

UaCUb�Uc �Ud

��

ˆB ��

ˆ
ACB

����
���

���
���

���
���

Y0.p/

ˆ
AC

��
X0.p/

id
�� X0.p/;

(12)

where ˆB ; ˆAC and ˆACB are the analogues of ˆB ; ˆA� and ˆA�B from the negative
case, but using the region marked AC instead of A�. The total complex (12) is quasi-
isomorphic to its top row, which is CFL�.S/. The right column forms a subcomplex
CFL�.Z/, and the left column a quotient complex CFL�.X/˝L.p/: The associated
long exact sequence in homology is (9).

For future reference, when S is a complete resolution of K , we let

LS WD
O

p2c.S/

L.p/; (13)

with L.p/ as in (8).

2.4. The spectral sequence. As mentioned in the proof of Theorem 2.3, from any
crossing p we can produce a filtration on a complex quasi-isomorphic to CFL�.S/,
given by the horizontal direction in a diagram of the form (11) or (12). When S D K

is the original knot projection, by combining these constructions at all crossings, we
can in fact build a big complex .Ctot; Dtot/, which is canonically quasi-isomorphic to
CFL�.K/, via contracting various identity maps that are part of Dtot. Further, Ctot

contains several two-step filtrations: for each crossing p 2 c.K/, we consider the
horizontal filtration from either (11) or (12). We let F denote the sum of all these
filtrations.

The filtration F on Ctot produces a spectral sequence f.Ek; dk/gk�0 that converges
to HFL�.K/, the homology of H�.Ctot; Dtot/. The complex .E0; d0/ (which is still
Ctot as an R-module, but with d0 only made of the terms that preserve F ) splits as a
direct sum of complexes

E0 D
M

I W c.K/!f0;1g
CI ;
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with each CI being quasi-isomorphic to

CFL�.SI .K// ˝ LSI .K/:

This spectral sequence is exactly the one mentioned in Theorem 1.1 (a). The
E1 term is described differently in the Introduction, but the two descriptions are
equivalent.

Proposition 2.4 (cf. Theorem 3.1 in [16]). For any complete resolution S of K , we
have an isomorphism

H�.CFL�.S/ ˝ LS / Š Tor�.R=LS ;R=NS/ ˝ ƒ�VS : (14)

Proof. Recall that LS � R is the ideal generated by the elements L.p/ of the form
Ua C Ub � Uc � Ud for p 2 c.S/. These elements form a regular sequence in the
ring R; compare Lemmata 2.4 and 3.11 in [19]. Hence, the complex LS from (13) is
a Koszul resolution of R=LS . Since ƒ�VS is free, it follows that the right hand side
of (14) is the homology of the complex .R=NS / ˝ ƒ�VS ˝ LS : Thus, it suffices to
show that the complexes CFL�.S/ and R=NS ˝ ƒ�VS are quasi-isomorphic. This
claim can be further reduced to the case when the complete resolution S is connected,
using Lemma 2.2.

When S is connected, we are left to show that CFL�.S/ is quasi-isomorphic to
R=NS : This is the content of Theorem 3.1 in [16]. Roughly, the proof (due to Ozsváth
and Szabó, and partly based on their joint work with Stipsicz in [15]) goes as follows.
They consider a different Heegaard diagram (of higher genus) for the singular knot
S , such that the generators of the Floer complex can be related to Kauffman states
for the diagram of S ; compare Section 4 in [15]. Using this diagram they find that
HFL�.S/ is supported in a unique algebraic grading Malg. They also consider a third
diagram for S , which is obtained from the planar diagram from Subsection 2.1 by
handlesliding ˛2 over ˛1 and ˇ2 over ˇ1 in Figure 4, at all crossings p 2 c.K/ where
S is smoothed. In this third diagram, the Floer complex has a unique generator x in the
lowest algebraic grading. By studying the generators in the second lowest algebraic
grading, and the coefficients with which x appears in their differential, they conclude
that the homology in the lowest algebraic grading is isomorphic to R=NS .

Theorem 1.1 (a) follows directly from Proposition 2.4 and the discussion preceding
it. The proof of Theorem 1.1 (b) is similar, but using Floer complexes where we set
the variable U0 to zero.

Remark 2.5. The statement ofTheorem 1.1 only refers to the E1 pages as modules. In
the original cube of resolutions with twisted coefficients from [16], the differential d1

was also identified explicitly, in terms of zip and unzip maps. We expect that one can
identify d1 (and thus the E2 pages) explicitly in the untwisted setting, too. However,
this would require a careful analysis of the generators of HFL�.S/ for disconnected
resolutions S . (The setting with twisted coefficients was simpler because the Floer
homology groups of disconnected resolutions were trivial.)
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3. HOMFLY-PT homology

In this section and the following ones, we will go back to working with coefficients
in Z rather than F : We consider the base ring R D ZŒU0; : : : ; U2n�, as in the Intro-
duction, and all tensor products will be taken over R unless otherwise noted.

Our main goal in this section is to prove Theorem 1.2, about the HOMFLY-PT
complex.

We will work with the definition of HOMFLY-PT homology given by Rasmussen
in [19] (using integral coefficients, as in Krasner’s work [10]). It was shown Sec-
tion 3.4 in [19] that this definition is equivalent to the original one from [9], due to
Khovanov and Rozansky.

Start with a decorated braid projection K for a knot K, as before. We have an ideal
LK � R, generated by all linear elements L.p/ as in (1), for p 2 c.K/. Define the
edge ring

R0 WD R=LK :1

To each complete resolution S of K we associate a complex BKR.S/, defined as
a tensor product of n two-step complexes:

BKR.S/ WD
O

p2c.K/

QS .p/:

Here, if the edges meeting at p are labeled as in Figure 2, we take

QS .p/ D

8̂<
:̂

R0 Ua�Uc�����! R0 if S has a smoothing at p;

R0 .Ua�Uc /.Ua�Ud /������������! R0 if S has a singularization at p:

(15)

The HOMFLY-PT chain complex is defined as

CKR.K/ D
M

I W c.K/!f0;1g
H�.BKR.SI .K///;

with a differential DKR given by suitable zip and unzip maps, which can be described
explicitly; see [9] or [19] for details.

The homology of CKR.K/ is HKR.K/, the middle HOMFLY-PT homology. If we
set the variable U0 to zero in the complex and then take homology, we get xHKR, the
reduced version of HOMFLY-PT homology. It was shown in [9], [19], and [10] that
these homologies are invariants of the knot K.

1Our notation is the opposite of the one in [19], where the original polynomial ring was denoted R0,
and the edge ring was denoted R.
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Remark 3.1. Strictly speaking, this definition differs slightly from the ones in [19]
and [10]. In [19] and [10] one did not have a distinguished edge subdivided in two,
but rather each edge in the braid projection had its own U variable. In our picture, if
U0 and U1 are the variables corresponding to the two segments on the distinguished
edge, observe that U0 � U1 is an element of LK , being equal to the sum of all linear
elements L.p/ for p 2 c.K/. Thus, in the edge ring R0 the variables U0 and U1

are identified; since our definition only involves complexes of R0-modules, the end
result is the same as if we had only one variable U0 D U1.

Before moving to the proof of Theorem 1.2, we need a lemma. Recall that in
the Introduction we defined a partial braid graph to be part of a decorated braid
projection. To every connected partial braid graph S we associated an ideal QS ,
generated by elements Q.p/, one for each (interior) vertex in S that is not special.
Here, Q.p/ D UaUb � UcUd if p is four-valent (with outgoing edges a and b, and
incoming edges c and d ), and Q.p/ D Ue � Uf if p is two-valent (with outgoing
edge e and incoming edge f ). We denote by v.S/ the set of interior (two-valent or
four-valent) vertices of S .

Lemma 3.2. Let S be a connected partial braid graph, with at least two exterior
edges. Then the elements Q.p/ for p 2 v.S/ form a regular sequence in the ring R.

Proof. We can make R into a graded ring by giving each variable Ui grading one.
A sequence of homogeneous elements in R is regular if and only if any permutation
of the sequence is regular. Since we only consider homogeneous elements, we will
not need to specify their ordering.

We will use induction on the cardinality of v.S/ to prove a stronger statement than
the one in the Lemma, namely that

(*) the elements Q.p/ for p 2 v.S/, together with the elements Ua for all incoming
exterior edges a of S , form a regular sequence r.S/ in R.

The base case is when S has a single vertex p. There are three possibilities,
according to whether: p is two-valent; p is four-valent and S has four distinct edges
meeting at p; or p is four-valent and S has three distinct edges, one of which forming
a loop from p to itself. Checking (*) in each of these examples is straightforward.

For the inductive step, pick a vertex p 2 v.S/ such that at least one of the edges
coming out of p is an exterior edge of S . Consider the partial braid graph S 0 obtained
from S by deleting p and the exterior edges starting or ending at p. By the inductive
hypothesis, claim (*) is true for S 0. Indeed, although S 0 may be disconnected, any of
its connected components has at least one (hence at least two) exterior edges. Since
the variables on different connected components are different, the sequence r.S 0/
(composed of r.T / for all connected components T ) is regular.

We now distinguish several cases.
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(i) p is a two-valent vertex in S with outgoing edge e and incoming edge f . Then
the sequence r.S/ is obtained from the regular sequence r.S 0/ by adding Ue � Uf .
Since the variable Ue did not appear in r.S 0/, the new sequence r.S/ must be regular.

(ii) p is a four-valent vertex in S with both outgoing edges a and b being exterior.
Let c and d be the incoming edges at p. Note that if S is connected and has more
than one crossing, it cannot be that both c and d are exterior edges. Therefore, we
have two subcases.

� Neither of the incoming edges is exterior in S . Then r.S/ is obtained from r.S 0/
by adding UaUb � UcUd . Since Ua and Ub do not appear in r.S 0/, we get that
r.S/ is regular.

� One of the incoming edges (say, c) is exterior in S . Then r.S/ is obtained from
r.S 0/ by adding Uc and UaUb � UcUd . Since Ua; Ub and Uc do not appear in
r.S 0/, again we get that r.S/ is regular.

(iii) p is a four-valent vertex in S with only one outgoing edge being exterior. Say
that a is the exterior outgoing edge, b the other outgoing edge at p, and c and d the
incoming edges. Let I be the ideal of R generated by all elements of r.S 0/ except
Ub . We have three subcases.

� Neither of the incoming edges is exterior in S . Then r.S/ is obtained from r.S 0/
by deleting Ub and adding UaUb �UcUd . We know that Ub is not a zero-divisor
in R=I: The same must be true for UaUb � UcUd , because the variable Ua does
not appear in r.S 0/. Therefore, r.S/ is regular.

� Exactly one of the incoming edges (say, c) is exterior in S . Then r.S/ is obtained
from r.S 0/ by deleting Ub , and adding Uc and UaUb � UcUd . Again, we know
that Ub is not a zero-divisor in R=I . Since Uc and Ua do not appear in r.S 0/,
we get that Ub is not a zero-divisor in R=.I C .Uc//, and from here that the new
sequence r.S/ is regular.

� Both c and d are exterior edges. Then r.S/ is obtained from r.S 0/ by deleting
Ub , and adding Uc ; Ud ; and UaUb � UcUd . Since Ub is not a zero-divisor in
R=I , and Uc ; Ud ; Ua do not appear in r.S 0/, it follows that r.S/ is regular.

This completes the inductive proof of (*).

Proof of Theorem 1.2. If x1; : : : ; xn are (not necessarily distinct) elements of R, we
will denote by Kfx1; : : : ; xng the Koszul complex associated to x1; : : : ; xn, that is,

Kfx1; : : : ; xng D
nO

iD1

.R
xi�! R/:
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Moreover, adjusting the notation in (8) and (13) to the coefficient ring R rather
than R D R ˝Z F , we set

L.p/ D KfL.p/g; p 2 c.K/;

and
LS D

O
p2c.S/

L.p/ D KfL.p/ W p 2 c.S/g:

Recall from the proof of Proposition 2.4 that the elements L.p/; p 2 c.S/ (which
generate the ideal LS � R) form a regular sequence. Thus, LS is a free resolution
of the quotient module R=LS : In particular, LK is a free resolution of the edge ring
R0, viewed as an R-module.

Let p 2 c.K/. If S has a smoothing at p (that is, p 2 c.K/ n c.S/), then p

produces two vertices in the graph of S , which we denote by pl (the one on the left)
and pr (the one on the right). Equation (15) then reads QS .p/ D R0 ˝ KfQ.pl/g:
If S has a singularization at p, since Ua C Ub � Uc � Ud D 0 in R0 D R=LK ,
we get �.Ua � Uc/.Ua � Ud / D UaUb � UcUd ; so Equation (15) can be read as
QS .p/ D R0 ˝ KfQ.p/g: Thus,

BKR.S/ Š R0 ˝ K.fQ.p/ W p 2 c.S/g [ fQ.pl/; p 2 c.K/ n c.S/g/:
Note that the ideal LK differs from LS in that the generator set of LK also contains

the elements L.p/, where p is a crossing of K smoothed in S . Since these elements
form a regular sequence, R0 D R=LK is quasi-isomorphic (over R) to

R=LS ˝ KfL.p/ W p 2 c.K/ n c.S/g:
From here we get a quasi-isomorphism

BKR.S/ � R=LS ˝ K.fQ.p/ W p 2 c.S/g [ fL.p/; Q.pl/; p 2 c.K/ n c.S/g/:
(16)

Since L.p/ D Q.pl/ C Q.pr/ for p 2 c.K/ n c.S/, it follows that (up to
quasi-isomorphism) we can replace L.p/ with Q.pr/ in (16). Recall that v.S/ D
c.S/ [ fpl ; pr W p 2 c.K/ n c.S/g is the set of (interior) vertices in the graph of S .
Therefore, we can write

BKR.S/ � R=LS ˝ KfQ.p/ W p 2 v.S/g: (17)

Let us denote by e0; e1; : : : ; ek the edges in K that are drawn around the braid
to take its closure, ordered from right to left (on the right side of the diagram), as
in Figure 1. Each connected component of the complete resolution S contains a
certain number of consecutive edges among e0; : : : ; ek . If S has m C 1 connected
components, we denote them by S0; : : : ; Sm, so that Sj contains eij ; : : : ; eij C1�1; for
0 D i0 < i1 < � � � < ij C1 D k C 1:
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For each j D 1; : : : ; m; let pj 2 v.S/ be a two-valent vertex on Sj coming from
the right hand side of a smoothed crossing in K whose left hand side ended up in
Sj �1. (In the terminology from the Introduction, pj is the special vertex on Sj .) Let
S 0

j denote the partial braid graph obtained from Sj by deleting the vertex pj , so that
the two edges meeting at pj become exterior edges. (In the particular case when Sj

has a single edge from pj to itself, we let S 0
j D ;:) We have v.Sj / D v.S 0

j / [ fpj g:
Set also S 0

0 D S0. Thus, each S 0
i is a connected partial braid graph with at least two

exterior edges.
For j D 1; : : : ; m; since Sj has no exterior edges, the sum of the linear elements

L.p/ for p 2 c.Sj / and Q.p/ for two-valent vertices p 2 v.Sj / is exactly zero. We
get that the sum of Q.p/ for two-valent vertices p 2 v.Sj / is zero in R=LS : By taking
linear combinations of the generators in a Koszul complex, we can transform (17)
into

BKR.S/ � R=LS ˝ ƒ�VS ˝ KfQ.p/ W p 2 v.S/; p ¤ pj for any j > 0g: (18)

Indeed, after tensoring with R=LS , each component Sj (j > 0) produces a term
Kf0g; and together these terms give ƒ�VS .

Note that

fQ.p/ W p 2 v.S/; p ¤ pj for any j g D
m[

j D0

fQ.p/ W p 2 v.S 0
j /g;

and, by definition, this set generates the ideal QS � R.
By Lemma 3.2, the elements Q.p/ for p 2 v.S 0

j / (with j fixed) form a regu-
lar sequence. Since the variables along the edges of S 0

j are different for different
j , it follows that all the elements Q.p/ that produce the Koszul complex in (18)
form a regular sequence in R. Hence, that Koszul complex is a free resolution
of the module R=QS . Tensoring this resolution with R=LS and then taking ho-
mology we obtain Tor�.R=LS ; R=QS /. From (18) we see that H�.BKR.S// Š
Tor�.R=LS ; R=QS/ ˝ ƒ�VS , as desired.

4. Gradings

The HOMFLY-PT chain complex and its homology are triply graded – see [9] and [19].
Conjecture 1.3 relates the HOMFLY-PT complex CKR .K/ to the complex C.K/ from
the Introduction, which gives the E1 page of the spectral sequence in Theorem 1.1.
Thus, we expect C.K/ to have three gradings as well. In this section we construct
these three gradings on C.K/, which we denote by egrq; egrh; and egrv. We will then
state a graded refinement of Conjecture 1.3.
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We first define gradings grq and grh on the ring R by setting grq.Ui / D 2 and
grh.Ui / D 0 for each variable Ui . (In particular, grq is twice the grading on R

considered in Lemma 3.2.) Let S be a complete resolution of K and p 2 c.S/. We
extend grq and grh to gradings on the mapping cone

L.p/ D
�
R

UaCUb�Uc�Ud�����������! R
�

by shifting the gradings of the first R term upwards by 2 in grq , and downwards
by 1 in grh. (This way, the map defining L.p/ preserves grq and increases grh by
one.) Next, we equip R=NS with the bigrading descended from R. We also assign
bigrading .grq; grh/ D .2; �1/ to each generator of VS , and this induces a bigrading
on the wedge product ƒ�VS .

Define the complex

B.S/ WD LS ˝ .R=NS / ˝ ƒ�VS ;

whose homology is B.S/ D Tor�.R=LS ; R=NS / ˝ ƒ�VS ; compare the proof of
Proposition 2.4.

By construction, we have a bigrading .grq ; grh/ on B.S/ and on its homology.
Note that on the homology B.S/ D Tor�.R=LS ; R=NS / ˝ ƒ�VS , we can get grh

alternatively as minus the sum of the natural gradings on Tor� and ƒ�.
From here we get a bigrading on the group C.K/ D L

I B.SI .K// by normal-
izing grq and grh as follows. Let k be the braid index of K , and NC; N� be the
number of positive resp. negative crossings in K . For I W c.K/ ! f0; 1g; we let
kIk D P

p2c.K/ I.p/. On a term B.S/ � C.K/ with S D SI .K/, we set

egrq D grq � #c.S/ � kIk C N� C k;

egrh D grh C.NC � N� C k � 1/=2:

We also define a third grading on C.K/ that (up to a constant) measures the depth
in the hypercube of resolutions:

egrv D kIk � .NC C N� C k � 1/=2:

It is instructive to relate our gradings to the usual ones for knot Floer homology,
from [17], [15], and [16]; see also Subsection 2.1. On the complex B.S/ and its
homology B.S/ we define Alexander and Maslov gradings by

A D .� grq C #c.S/ � k C 1/=2; M D 2A � grh :

We equip the complex C.K/ with a Maslov grading M coming from the one on
each B.S/, and to a normalized Alexander grading given by

A0 D A C .kIk � N�/=2 D .�egrq C 1/=2:



208 Ciprian Manolescu

Observe that the Maslov grading on C.K/ can also be written as

M D �egrq � egrh � egrv C 1:

These definitions coincide with the ones used by Ozsváth and Szabó in [16]. Note
that � grh corresponds to the algebraic grading N D 2A � M from Section 2.3 [16].
Indeed, we can see that N is the same as our � grh as follows. By the arguments
in the proof of Theorem 3.1 in [16], we have that N D � grh for the bottom degree
generator of B.S/; the general identification is then obtained by keeping track of the
gradings in the proof of Proposition 2.4.

Recall from Subsection 2.4 that the spectral sequence from Theorem 1.1 is induced
by a filtration F on a complex Ctot: As a group, Ctot D C.K/ splits asM

I W c.K/!f0;1g
CI ;

with each CI in filtration degree �kIk. It is proved in [16], Section 4.1, that the total
differential on Ctot preserves A0 and decreases M by one. Moreover, by construction,
the differential d` on the E` page of the spectral sequence must increase egrv by `. In
all, it follows that the d` changes the triple grading .egrq; egrh; egrv/ by .0; 1 � `; `/: In
particular, the differential d1 on C.K/ preserves egrq and egrh and increases egrv by
one.

Therefore, the group C.K/ splits as

C.K/ D
M

i;j;k2Z

C i;j;k.K/;

where we let x 2 C i;j;k.K/ if x is homogeneous with respect to the three gradings,
and .i; j; k/ D .egrq.x/; 2egrh.x/; 2egrv.x//: We let H i;j;k.K/ be the homology of
C.K/ in the given triple grading, with respect to the differential d1.

We also obtain induced gradings on the complex C.K/=.U0 D 0/ and its ho-
mology. We denote a triply graded piece of the homology of C.K/=.U0 D 0/ by
xH i;j;k.K/; but here .i; j; k/ D .egrq.x/ � 1; 2egrh.x/; 2egrv.x//:

We have chosen our notation to be parallel to that in [19], where Rasmussen
defined three gradings q; grh and grv (where q corresponds to our grq) on the complex
CKR.K/, in a very similar way. (See [19] for more details.) He then normalized the
gradings to get splittings of the middle and reduced HOMFLY-PT homologies

HKR.K/ D
M

i;j;k2Z

H
i;j;k
KR .K/ and xHKR.K/ D

M
i;j;k2Z

xH i;j;k
KR .K/:

The (bigraded) Euler characteristics of these homologies areX
i;j;k

.�1/.k�j /=2aj qi rk.H
i;j;k
KR .K// D PK.a; q/=.q�1 � q/



An untwisted cubed of resolutions 209

and X
i;j;k

.�1/.k�j /=2aj qi rk. xH i;j;k
KR .K// D PK.a; q/;

where PK.a; q/ is the HOMFLY-PT polynomial of K, normalized to be 1 on the
unknot and to satisfy the skein relation:

aP .a; q/ � a�1P .a; q/ D .q � q�1/P .a; q/:

Remark 4.1. The specialization

�K.T / D PK.1; T 1=2/

gives the Alexander–Conway polynomial of K, mentioned in Subsection 2.1.

We are now able to state the following strengthened version of Conjecture 1.3.

Conjecture 4.2. Let K � S3 be an oriented knot, with a decorated braid projection
K . For any i; j; k 2 Z; we have isomorphisms

H i;j;k.K/ Š H
i;j;k
KR .K/ and xH i;j;k.K/ Š xH i;j;k

KR .K/:

Remark 4.3. For the readers more familiar with other sources, it is worth recalling
how Rasmussen’s conventions compare with others. In the original reference [9],
Khovanov and Rozansky had three gradings as well. As mentioned in Proposition 3.13
in [19], an element with grading .i; j; k/ in Rasmussen’s notation corresponds to one
with grading .j=2; i �j=2; k=2/ in the notation of [9]. Also, in [2], Dunfield, Gukov,
and Rasmussen worked with a polynomial in three variables a; q; t . A homology
generator in grading .i; j; k/ in the notation of [19] corresponds to a monomial
aj qi t .j �k/=2 in the notation of [2].

We saw that the complex C.K/ admits a triple grading

.i; j; k/ D .egrq; 2egrh; 2egrv/:

We also saw that the differential d` on the E` page of the spectral sequence from The-
orem 1.1 changes this triple grading by .0; 2 � 2`; 2`/: In particular, when ` D 2 the
grading change is by .0; �2; 4/; which translates into .�2; 0; �3/ in the conventions
of [2]; see Remark 4.3. This exactly corresponds to the projected behavior of the
“d0 differential” in [2]. Thus, if Conjectures 1.3 and 4.2 were true and the spectral
sequence happened to collapse at the E2 stage, Theorem 1.1 would imply that knot
Floer homology can be obtained from HOMFLY-PT homology by introducing a dif-
ferential with the grading properties predicted by Dunfield, Gukov, and Rasmussen
in [2].
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5. Partial braid graphs and Tor groups

This section contains a discussion of Conjecture 1.4, about partial braid graphs. In
the Introduction, partial braid graphs were defined as subsets of decorated braid
projections, where the distinguished edge of the braid projection is viewed as split
open into two edges. Alternately, we can give a more intrinsic definition (equivalent
to the previous one), as follows.

An open partial braid graph � consists of a finite collection of smooth arcs
	1; : : : ; 	n W Œ0; 1� ! D D Œ0; 1� � Œ0; 1�, and a finite collection of vertices W D
fp1; : : : ; pmg, with the following properties.

� For each i; the second coordinate 	
.2/
i of the arc 	i D .	

.1/
i ; 	

.2/
i / satisfies

.	
.2/
i /0.t / > 0 for all t 2 Œ0; 1�.

� Each pj 2 W lies in the interior of one (or two) arcs 	i .

� Any two arcs intersect transversely, and only in their interior; every intersection
point of two arcs is one of the vertices in W .

� The intersection of any three arcs is empty.

� The number k of arcs with the initial point on Œ0; 1� � f0g is the same as the
number of arcs with the final point on Œ0; 1� � f1g.

An open partial braid graph can be thought of as a particular kind of oriented graph
with only univalent, two-valent and four-valent vertices. The univalent vertices (not
part of W ) are the ends of the arcs 	i . An example of an open partial braid graph is
shown in Figure 7.

A partial braid graph S D y� is defined to be the braid closure of an open partial
braid graph � . This braid closure is obtained by joining the univalent vertices on
Œ0; 1� � f0g with the univalent vertices on Œ0; 1� � f1g using k strands on the right, as
in Figure 7. We then erase the univalent vertices that were joined by strands. Thus,
y� has 2k fewer univalent vertices than �: The univalent vertices of y� are called loose
ends, and the four-valent vertices are called crossings. The two-valent vertices do
not play an essential role, and we will mostly focus on partial braid graphs without
two-valent vertices; see Subsection 5.3 below for the relevant discussion. Also, for
convenience, we will only discuss connected partial braid graphs.

Moreover, we impose another assumption on partial braid graphs.

Assumption 5.1. S D y� must contain at least one (hence at least two) loose ends.

This condition is necessary for Conjecture 1.4 to have a chance of being true; see
Subsection 5.6 below for an explanation. From now on, we will always assume that
the partial braid graphs are connected and satisfy Assumption 5.1.
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B1 B2

D

Figure 7. A partial braid graph and its closure. Here n D 5 and k D 2. The closure y� has six
loose ends, four crossings, and no two-valent vertices.

Let S D y� be a partial braid graph, with W being the set of its (two-valent and
four-valent) vertices. We let c.S/ � W be the subset of four-valent vertices. We also
let E be the set of edges of S . Each edge e 2 E has an induced orientation, and an
initial and a final point; these can be either loose ends, or vertices in W .

For each edge e 2 E; we introduce a variable Ue: We consider the ring

R D ZŒfUe W e 2 Eg�:

Starting from here, we can define the ideals L D LS ; N D NS and Q D QS

from the Introduction, intrinsically in terms of S . The ideal L is generated by linear
elements L.p/ 2 R, one for each four-valent vertex p 2 c.S/: The ideal Q is
generated by elements Q.p/; p 2 W; which are quadratic for four-valent vertices, and
linear for two-valent vertices. The ideal N is generated by homogeneous elements
N.W 0/, one for each subset W 0 � W: Conjecture 1.4 claims the existence of R-
module isomorphisms

Tori .R=L; R=N / Š Tori .R=L; R=Q/; (19)

for all i � 0.

The rest of this section is devoted to various remarks about Conjecture 1.4.
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5.1. Gradings. Recall that in Section 4 we equipped the complex C.K/ with three
gradings grq ; grh and grv , similar to the well-known ones on the HOMFLY-PT com-
plex. It is natural to expect that there is a graded version of Conjecture 1.4 consistent
with the statement of Conjecture 4.2, so that the gradings can be identified at the
level of all partial braid graphs. Indeed, the grading i in (19) corresponds to grh.
On the other hand, the grading grv has to do with the relative position in the cube of
resolutions, so it is not visible when we talk about partial braid graphs intrinsically.

There is still the grading grq. For partial braid graphs, we can define grq on
Tori .R=L; R=N / by the same rules as in Section 4: each variable Ui is set in
grading level 2, inducing a grading on R and R=N ; then we compute the Tor group
as the homology of the complex R=N ˝ L, where in

L WD
O

p2c.S/

�
R

L.p/���! R
�
;

we shift the grading of the first R term in each parenthesis upward by 2 (so that the
differential of the Koszul complex L preserves the grading grq).

Let us define grq on Tori .R=L; R=Q/ in the same way. However, this does not
exactly correspond to the q-grading on the HOMFLY-PT complex, as defined in [9]
or [19], because there the differential dC at each vertex increases grq by 2 (instead
of preserving it). Thus, we must be careful when relating the gradings grq on the two
sides of (19). We arrive at the following graded version of Conjecture 1.4, which is
the one consistent with Conjecture 4.2, and with our computations.

Conjecture 5.2. Let S be a connected partial braid graph (satisfying Assump-
tion 5.1). Then there exist isomorphisms (19), such that the elements in grq-grading
level j on the left hand side correspond to elements in grq-grading level j C 2i on
the right hand side.

5.2. Failure of the obvious maps. Note that Q � N; since every Q.p/ equals
either N.fpg/ (in case there is no loop in E from p to itself), or N.fpg/Ue; if there is
such a loop e: Hence, there is a natural quotient map R=Q ! R=N which induces
natural maps

fi W Tori .R=L; R=Q/ �! Tori .R=L; R=N /: (20)

However, in general the maps fi are not the desired isomorphisms from (19).
Indeed, this would not be consistent with the proposed grading identification from
Conjecture 5.2. More concretely, as an example, consider the partial braid graph
from Figure 8. Then

R D ZŒU1; U2; U3�;

L D N D .U1 � U2/;

Q D .U1U3 � U2U3/:
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U3

D

U1

U2

Figure 8. A partial braid graph with one crossing. We write the corresponding U variable on
each edge.

Both Tor1.R=L; R=Q/ and Tor1.R=L; R=N / are isomorphic to R=.U1 � U2/; as
can be seen by tensoring the Koszul resolution

L.p/ D
�
R

U1�U2�����! R
�

with R=Q resp. R=N , and then taking homology. However, under the natural
isomorphisms of the Tor groups with R=.U1 � U2/; the map f1 corresponds to
multiplication by ˙U3, which is not an isomorphism.

5.3. Two-valent vertices. Let S be a partial braid graph, and S 0 be the graph ob-
tained from S by inserting a new two-valent vertex p on an edge a. (Compare
Subsection 2.2. Going from S 0 to S is the operation of mark removal, discussed in
Lemma 3 in [9] and in Section 2.2 in [19].) In S 0, we keep the notation a for the
outgoing edge from p, and we let b the incoming edge at p, as in Figure 6.

The base ring R0 for S 0 contains the variables Ua and Ub . It is related to the base
ring R for S by the relation

R0 D R=.Ua � Ub/:

We denote by L0; N 0; Q0 the ideals in R0 analogous to L; N; Q in R.

Lemma 5.3. Le S 0 be obtained from S by inserting a two-valent vertex as above.

(a) We have isomorphisms of R0-modules

TorR
i .R=L; R=N / Š TorR0

i .R0=L0; R0=N 0/

and

TorR
i .R=L; R=Q/ Š TorR0

i .R0=L0; R0=Q0/:

Here, the superscripts R and R0 indicate the base ring for the Tor groups, and an
R-module is viewed as an R0-module with Ua and Ub acting the same way.
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(b) The statement L C Q D L C N is equivalent to the statement

L0 C Q0 D L0 C N 0:

Proof. (a) Note that Ua � Ub 2 Q0 � N 0, and that under the projection R0 ! R;

the ideals L0; N 0; Q0 project to the corresponding ideals L; N; Q. We think of each
Tor group as the homology of a complex obtained from a free resolution of R=L (or
R0=L0), by tensoring with a second module. The claimed isomorphisms on homology
follow from corresponding isomorphisms at the level of these complexes.

(b) L0 C Q0 D L0 C N 0 implies the other statement using the projection R0 ! R:

For the converse, suppose L C Q D L C N . Since Ua � Ub 2 L0 C Q0, we see
that L0 C Q0 is generated by the same elements as L C Q, together with Ua � Ub .
Similarly, L0CN 0 is generated by the same elements as LCN , together with Ua �Ub.
Therefore, L0 C Q0 D L0 C N 0:

In light of Lemma 5.3 (a), Conjecture 1.4 can be reduced to the case where there
are no two-valent vertices.

5.4. Vanishing results. A case in which Conjecture 1.4 is easy to prove is when the
open partial braid graph � does not intersect the top and bottom edges of the rectangle
D; that is, taking its braid closure is a vacuous operation, and y� D �:

Proposition 5.4. Suppose y� D �:

(a) The ideals N and Q coincide, so Tori .R=L; R=N / D Tori .R=L; R=Q/ for
all i .

(b) In fact, Tori .R=L; R=Q/ D 0 for i > 0:

Proof. (a) In this situation all the generators N.W 0/ 2 N are in the ideal Q; compare
Lemma 3.12 in [16]. This can be proved by induction on the number of elements in
W 0. For the inductive step, notice that if we let p be the topmost vertex in W 0, then
N.W 0/ is in the ideal .Q.p// C N.W 0 n fpg/.

(b) This follows from the fact that the generators L.p/; Q.p/ of L and Q form a
regular sequence in R; see Lemma 1 in [7] for the proof.

A related result is the following lemma.

Lemma 5.5. Let � be any open partial braid graph, with a connected braid closure y�
obtained by closing up k strands. Then

Tori .R=L; R=Q/ D 0 for i > k:
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Proof. By Lemma 5.3 (a), we can assume without loss of generality that each of
the strands used to take the braid closure has a two-valent vertex just before the top
edge Œ0; 1� � f1g in D. Let aj (resp. bj ) the outgoing (resp. incoming) edge at these
two-valent vertices, for j D 1; : : : ; k.

The proof of Theorem 1.2 from Section 3 extends to (connected) partial braid
graphs, implying that Tor�.R=L; R=Q/ is the homology of the Koszul complex

K.fL.p/ W p 2 c.y�/g [ fQ.p/ W p 2 W g/; (21)

in the notation of Section 3. Among the generators Q.p/ we find Uaj
� Ubj

; j D
1; : : : ; k. If we eliminate these, the rest of the Q.p/’s are the generators of the
quadratic ideal Q0 for the open partial braid � 0, obtained from � by removing the k

two-valent vertices at the top. Also, the generators L.p/ for the linear ideal L are
the same as those for the similar ideal L0 for � 0. By Lemma 1 in [7], the generators
of Q0 and L0 form a regular sequence. Therefore, the Koszul complex (21) is quasi-
isomorphic to

K.fUaj
� Ubj

W j D 1; : : : ; kg/ ˝ R=.Q0 C L0/:

This complex is only supported in degrees up to k, hence so is its homology.

5.5. Proof of Theorem 1.5. Let S be any partial braid graph. We want to show that
the ideals LCQ; LCN � R are the same, so that when i D 0 the map f0 from (20)
is the desired isomorphism in Conjecture 1.4. The fact that L C Q D L C N will
follow readily from Proposition 5.6 below. Indeed, given a subset W 0 � W , let S 0 be
the partial braid graph consisting of all the vertices in W 0, together with all the edges
in out.W 0/ [ in.W 0/. Applying Proposition 5.6 to S 0 (or, if S 0 is disconnected, to its
connected components), we get that N.W 0/ 2 L C Q. This shows that N � L C Q;

which directly implies L C Q D L C N .

Proposition 5.6. The element

N.W / D
Y

e2Out.W /

Ue �
Y

e2In.W /

Ue 2 R

lies in the ideal L C Q:

Before embarking on the proof, we present a few useful results from the theory of
symmetric functions.

Given variables y1; : : : ; ym; the corresponding elementary symmetric polynomials
are

�k.y1; : : : ; ym/ D
X

1�i1<���<ik�m

yi1yi2 : : : yik :

We also consider the complete homogeneous symmetric polynomials

Hk.y1; : : : ; ym/ D
X

1�i1�����ik�m

yi1yi2 : : : yik :
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We set formally

�0.y1; : : : ; ym/ D H0.y1; : : : ; ym/ D 1

and
�k.y1; : : : ; ym/ D Hk.y1; : : : ; ym/ D 0; for k negative.

Observe that
�k.y1; : : : ; ym/ D 0 for k > m:

Lemma 5.7. For any n � 1; we haveX
kClDn

.�1/l�k.y1; : : : ; ym/Hl.y1; : : : ; ym/ D 0:

Proof. For some indices 1 	 i1 < � � � < is 	 m and exponents r1; : : : ; rs > 0 such
that

P
rj D n, the monomial y

r1

i1
: : : y

rs

is
appears in the term

�k.y1; : : : ; ym/Hl.y1; : : : ; ym/

exactly
�

s
k

�
times. In the alternating sum of these terms which appears in the statement

of the lemma, the coefficient of this monomial is therefore

sX
kD0

.�1/n�k

�
s

k

�
D 0:

Lemma 5.8. For variables y1; : : : ; ynI z1; : : : ; zm; we haveX
kClDn

.�1/l�k.y1; : : : ; yn; z1; : : : ; zm/Hl.z1; : : : ; zm/ D �n.y1; : : : ; yn/: (22)

Proof. Note that

�k.y1; : : : ; yn; z1; : : : ; zm/ D
X

iCj Dk

�i .y1; : : : ; yn/�j .z1; : : : ; zm/:

Thus, after reordering terms, the left hand side of (22) can be written as

nX
iD0

�
�i .y1; : : : ; yn/ �

X
j ClDn�i

.�1/l�j .z1; : : : ; zm/Hl.z1; : : : ; zm/
�
:

By Lemma 5.7, the interior sum is zero unless n � i D 0; so we are only left with
the term �n.y1; : : : ; yn/:
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B1 B2

U1

U3

U4

U8

U7

U9

U2

U5

`4

`3

`2

`1

`0

U6

Figure 9. The square D is partitioned into strips and has the dashed curves added. On each
edge we mark a corresponding variable.

Proof of Proposition 5.6. For simplicity, we assume that S D y� has no two-valent
vertices. By Lemma 5.3 (b), this results in no loss of generality.

The partial braid graph S consists of � together with some strands used to take
the braid closure. Let us denote the variables corresponding to those strands by
B1; : : : ; Bk (that is, each Bi is the same as Ue for the respective strand e). See
Figure 7 for an example.

We split the square D D Œ0; 1� � Œ0; 1� into horizontal strips by parallel lines, such
that each crossing in W lies in exactly one strip. We denote the parallel lines, including
the bottom and the top of the square, by `0; : : : ; `m; in this order from bottom to top,
such that the crossing pi 2 W D fp1; : : : ; pmg lies in the strip between `i�1 and `i :

We extend each edge e 2 In.W / by a dashed curve going vertically down to the
bottom of the square D, and each e 2 Out.W / by a dashed curve going vertically
up to the top of the square. The intersections between dashed curves, or between a
dashed curve and some part of the braid, are irrelevant.

After these constructions, the example in Figure 7 gets transformed into Figure 9.
Now each horizontal line `i intersects a total of n C k curves (either regular edges

or their dashed continuations), where n is the the cardinality of In.W /, which is the
same as the cardinality of Out.W /. We denote by Fi the multiset of edges intersecting
`i ; making no distinction between an edge and its dashed continuation. A multiset
is the generalization of a set, where elements can have higher multiplicities. In our
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setting, the strands labeled by B’s may have higher multiplicities in Fi . If so, we
want to count each edge with its corresponding multiplicities; for example, when we
write

P
e2Fi

, we count e as many times as it appears in Fi :

The strip between `i�1 and `i contains the crossing pi I we denote the two edges
going out of pi by ai and bi , and the two going in by ci and di : If we eliminate ai

and bi from Fi (only once though, in case they appear multiple times) we obtain a
multiset Gi , which is the same as the one obtain from Fi�1 by eliminating ci and di

(again, only once).
The claim of the proposition will follow from the fidentityY

e2Out.W /

Ue �
Y

e2In.W /

Ue

D
mX

iD1

L.pi /
� X

j �0

.�1/j �n�1�j .fUe W e 2 Gig/Hj .B1; : : : ; Bk/
�

C
mX

iD1

Q.pi /
� X

j �0

.�1/j �n�2�j .fUe W e 2 Gig/Hj .B1; : : : ; Bk/
�
:

For concreteness, let us write down (23) in the example pictured in Figure 9.

U4U5U6 � U1U2U3

D .U5 C U7 � U2 � B1/..U1B2 C U3B2 C U1U3/

� .B1 C B2/.U1 C U3 C B2/

C .B2
1 C B1B2 C B2

2 //

C .U4 � U8 � U1 � B2/..U3U5 C U3U7 C U5U7/

� .B1 C B2/.U3 C U5 C U7/

C .B2
1 C B1B2 C B2

2 //

C .U6 C U9 � U8 � U7/..U3U4 C U3U5 C U4U5/

� .B1 C B2/.U3 C U4 C U5/

C .B2
1 C B1B2 C B2

2 //

C .B1 C B2 � U3 � U9/..U4U5 C U4U6 C U5U6/

� .B1 C B2/.U4 C U5 C U6/

C .B2
1 C B1B2 C B2

2 //

C .U5U7 � U2B1/..U1 C U3 C B2/ � .B1 C B2//

C .U4U8 � U1B2/..U3 C U5 C U7/ � .B1 C B2//

C .U6U9 � U8U7/..U3 C U4 C U5/ � .B1 C B2//

C .B1B2 � U3U9/..U4 C U5 C U6/ � .B1 C B2//:
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In order to prove (23) in general, we start by observing that

�n�j .fUe W e 2 Fi g/ D �n�j .fUe W e 2 Gi g/
C .Uai

C Ubi
/�n�j �1.fUe W e 2 Gi g/

C Uai
Ubi

�n�j �2.fUe W e 2 Gig/
and

�n�j .fUe W e 2 Fi�1g/ D �n�j .fUe W e 2 Gi g/
C .Uci

C Udi
/�n�j �1.fUe W e 2 Gig/

C Uci
Udi

�n�j �2.fUe W e 2 Gig/:
Subtracting the second relation from the first, we get

L.pi /�n�1�j .fUe W e 2 Gig/ C Q.pi /�n�j �2.fUe W e 2 Gig/
D �n�j .fUe W e 2 Fi g/ � �n�j .fUe W e 2 Fi�1g/:

Thus, after changing the order of summation, the right hand side of (23) can be
re-written as

X
j �0

.�1/j

mX
iD1

.�n�j .fUe W e 2 Fig/ � �n�j .fUe W e 2 Fi�1g// � Hj .B1; : : : ; Bk/

D
X
j �0

.�1/j .�n�j .fUe W e 2 Fmg/ � �n�j .fUe W e 2 F0g// � Hj .B1; : : : ; Bk/:

(23)

Note that F0 is the union of In.W / with the set of strands fB1; : : : ; Bkg: Applying
Lemma 5.8, we obtain the identityX

j �0

.�1/j �n�j .fUe W e 2 F0g/ � Hj .B1; : : : ; Bk/ D �n.fUe W e 2 In.W /g/:

Similarly, Fm is the union of Out.W / with the set of strands fB1; : : : ; Bkg; henceX
j �0

.�1/j �n�j .fUe W e 2 Fmg/ � Hj .B1; : : : ; Bk/ D �n.fUe W e 2 Out.W /g/:

Putting these together, we get that the expression in (23) equals

�n.fUe W e 2 Out.W /g/ � �n.fUe W e 2 In.W /g/ D
Y

e2Out.W /

Ue �
Y

e2In.W /

Ue;

as desired.
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5.6. Total braid graphs. Assumption 5.1 in the definition of partial braid graph S

required that S has some loose ends. Let us define a total braid graph S to be the
braid closure S D y� of an open braid graph � , with the property that S has no loose
ends.

Interestingly, the proof of Theorem 1.5 did not use Assumption 5.1. However, this
assumption is needed for the equality of the higher Tor groups in Conjecture 1.4. To
see this, consider the total braid graph S from Figure 10. We have

R D ZŒU1; U2; U3; U4�;

L D .U2 � U4/;

N D .U2 � U4/;

Q D .U1.U2 � U4/; U3.U2 � U4//:

U3

U2

U4

U1

Figure 10. A total braid graph.

Let R0 D R=.U2 � U4/: Then

Tor1.R=L; R=N / Š R0;

whereas

Tor1.R=L; R=Q/ Š R0hx; yi=.U1x � U3y/:

These R-modules are not isomorphic, so Conjecture 1.4 fails for S .
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5.7. Computer experimentation. Conjecture 1.4 (and its graded refinement, Con-
jecture 5.2) can be checked for many partial braid graphs using the computer pro-
gram Macaulay2; see [5]. The program gives presentations of the R-modules
Tori .R=L; R=N / and Tori .R=L; R=Q/. For small graphs, it is visible that the
modules are isomorphic. However, in general there is no simple way of checking
whether two presentations give isomorphic modules. For larger graphs, we settled
for verifying Conjecture 5.2 at the level of Hilbert series.

Precisely, for a homogeneous module M , let us denote by rd .M/ the rank of the
degree d -graded piece of M . Macaulay2 automatically grades polynomial rings by
letting each variable have grading 1. (On R, this corresponds to half of the grading
grq from Subsection 5.1.) Given a partial braid graph S and i � 0, we consider the
Hilbert series

ni .S/ D
X
d�0

T d � rd .Tori .R=L; R=N //

and
qi.S/ D

X
d�0

T d � rd .Tori .R=L; R=Q//:

We know from Theorem 1.5 that q0 D n0. Conjecture 5.2 would imply that

qi .S/ D T i � ni .S/; for all i � 0: (24)

In practice, the relation (24) is much easier to check than the existence of module
isomorphisms. In view of Lemma 5.5, it makes sense to only look at the values i 	 k,
where k is the number of strands used to close up the partial braid S . (We know that
qi D 0 for i > k, and expect this to also be true for ni .) For example, for the partial
braid graph from Figure 7, we find that

q0 D n0 D .1 C 3T C 2T 2 � 2T 3/=.1 � T /4;

q1 D T � n1 D T 4.3 C T /=.1 � T /4;

q2 D T 2 � n2 D 0:

We focused most of our computer experiments on complete resolutions of deco-
rated braid projections, where all crossings are singularized; that is, we took a braid b

on k C 1 strands, singularized all its crossings, and closed up k of the strands (all but
the leftmost one) to get S . We verified that (24) holds (for i 	 k) for all connected
S of this form, with k 	 3 and at most 7 crossings.



222 Ciprian Manolescu

References

[1] J. A. Baldwin and A. S. Levine, A combinatorial spanning tree model for knot Floer
homology. Adv. Math. 231 (2012), 1886–1939. MR 2964628 Zbl 1262.57013

[2] N. M. Dunfield, S. Gukov, and J. Rasmussen, The superpolynomial for knot homologies.
Experiment. Math. 15 (2006), 129–159. MR 2253002 Zbl 1118.57012

[3] P. Ghiggini, Knot Floer homology detects genus-one fibred knots. Amer. J. Math. 130
(2008), 1151–1169. MR 2450204 Zbl 1149.57019

[4] A. Gilmore, Invariance and the knot Floer cube of resolutions. Preprint 2010.
arXiv:1007.2609

[5] D. R. Grayson and M. E. Stillman, Macaulay2. A software system for research in alge-
braic geometry. Available at http://www.math.uiuc.edu/Macaulay2

[6] M. Khovanov, A categorification of the Jones polynomial. Duke Math. J. 101 (2000),
359–426. MR 1740682 Zbl 0960.57005

[7] M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bi-
modules. Internat. J. Math. 18 (2007), 869–885. MR 2339573 Zbl 1124.57003

[8] M. Khovanov and L. Rozansky, Matrix factorizations and link homology. Fund. Math.
199 (2008), 1–91. MR 2391017 Zbl 1145.57009

[9] M. Khovanov and L. Rozansky, Matrix factorizations and link homology II. Geom.
Topol. 12 (2008), 1387–1425. MR 2421131 Zbl 1146.57018

[10] D. Krasner, Integral HOMFLY-PT and sl.n/-link homology. Int. J. Math. Math. Sci. 2010
(2010), Art. Id. 896879, 25p. MR 2726290 Zbl 1230.57013

[11] P. B. Kronheimer and T. S. Mrowka, Knots, sutures, and excision. J. Differential Geom.
84 (2010), 301–364. MR 2652464 Zbl 1208.57008

[12] P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector. Publ.
Math. Inst. Hautes Études Sci. 113 (2011), 97–208. MR 2805599 Zbl 1241.57017

[13] C. Manolescu, P. S. Ozsváth, and S. Sarkar, A combinatorial description of knot Floer
homology. Ann. of Math. (2) 169 (2009), 633–660. MR 2480614 Zbl 1179.57022

[14] C. Manolescu, P. S. Ozsváth, Z. Szabó, and D. P. Thurston, On combinatorial link Floer
homology. Geom. Topol. 11 (2007), 2339–2412. MR 2372850 Zbl 1155.57030

[15] P. Ozsváth, A. Stipsicz, and Z. Szabó, Floer homology and singular knots. J. Topol. 2
(2009), 380–404. MR 2529302 Zbl 1190.57020

[16] P. Ozsváth and Z. Szabó, A cube of resolutions for knot Floer homology. J. Topol. 2
(2009), 865–910. MR 2574747 Zbl 1203.57012

[17] P. S. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants. Adv. Math. 186
(2004), 58–116. MR 2065507 Zbl 1062.57019

[18] P. S. Ozsváth and Z. Szabó, Holomorphic disks, link invariants and the multi-
variable Alexander polynomial. Algebr. Geom. Topol. 8 (2008), 615–692. MR 2443092
Zbl 1144.57011

[19] J. Rasmussen, Some differentials on Khovanov–Rozansky homology. Preprint 2010.
arXiv:math/0607544

http://www.ams.org/mathscinet-getitem?mr=2964628
http://zbmath.org/?q=an:1262.57013
http://www.ams.org/mathscinet-getitem?mr=2253002
http://zbmath.org/?q=an:1118.57012
http://www.ams.org/mathscinet-getitem?mr=2450204
http://zbmath.org/?q=an:1149.57019
http://arxiv.org/abs/1007.2609
http://www.math.uiuc.edu/Macaulay2
http://www.ams.org/mathscinet-getitem?mr=1740682
http://zbmath.org/?q=an:0960.57005
http://www.ams.org/mathscinet-getitem?mr=2339573
http://zbmath.org/?q=an:1124.57003
http://www.ams.org/mathscinet-getitem?mr=2391017
http://zbmath.org/?q=an:1145.57009
http://www.ams.org/mathscinet-getitem?mr=2421131
http://zbmath.org/?q=an:1146.57018
http://www.ams.org/mathscinet-getitem?mr=2726290
http://zbmath.org/?q=an:1230.57013
http://www.ams.org/mathscinet-getitem?mr=2652464
http://zbmath.org/?q=an:1208.57008
http://www.ams.org/mathscinet-getitem?mr=2805599
http://zbmath.org/?q=an:1241.57017
http://www.ams.org/mathscinet-getitem?mr=2480614
http://zbmath.org/?q=an:1179.57022
http://www.ams.org/mathscinet-getitem?mr=2372850
http://zbmath.org/?q=an:1155.57030
http://www.ams.org/mathscinet-getitem?mr=2529302
http://zbmath.org/?q=an:1190.57020
http://www.ams.org/mathscinet-getitem?mr=2574747
http://zbmath.org/?q=an:1203.57012
http://www.ams.org/mathscinet-getitem?mr=2065507
http://zbmath.org/?q=an:1062.57019
http://www.ams.org/mathscinet-getitem?mr=2443092
http://zbmath.org/?q=an:1144.57011
http://arxiv.org/abs/math/0607544


An untwisted cubed of resolutions 223

[20] J. Rasmussen, Floer homology and knot complements. Ph.D. thesis. Harvard University,
Cambridge, MA, 2003. MR 2704683 arXiv:math.GT/0306378

[21] S. Sarkar and J. Wang, An algorithm for computing some Heegaard Floer homologies.
Ann. of Math. (2) 171 (2010), 1213–1236. MR 2630063 Zbl 1228.57017

Received January 21, 2012

Ciprian Manolescu, Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles,
CA 90095, USA

E-mail: cm@math.ucla.edu

http://www.ams.org/mathscinet-getitem?mr=2704683
http://arxiv.org/abs/math.GT/0306378
http://www.ams.org/mathscinet-getitem?mr=2630063
http://zbmath.org/?q=an:1228.57017
mailto:cm@math.ucla.edu

	Introduction
	The untwisted spectral sequence
	HOMFLY-PT homology
	Gradings
	Partial braid graphs and Tor groups
	References

