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Abstract. We prove that the SU.2/ Witten–Reshetikhin–Turaev invariant of any 3-manifold
with any colored link inside at any root of unity is an algebraic integer. As a byproduct, we
get a new proof of the integrality of the SO.3/ Witten–Reshetikhin–Turaev invariant for any
3-manifold with any colored link inside at any root of unity of odd order.
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1. Introduction

In the late 1980s, Witten [34], using path integral (which is not mathematically rigor-
ous), constructed an invariant �G

M .�/ 2 C of a closed oriented 3-manifold M , a simple
Lie group G, and a root of unity �. Reshetikhin and Turaev [30] gave a rigorous con-
struction of �G

M .�/ for the case G D SU.2/. The construction was later generalized to
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the case when G is a simple, compact, connected, and simply-connected Lie group,
with some restriction on the order of the root � of unity. Moreover, the invariant was
extended to pairs .M; L/, where L � M is a framed oriented link whose components
are colored by finite-dimensional G-modules. We will call �G

M;L.�/ the quantum or
Witten–Reshetikhin–Turaev invariant of M with a colored link L inside.

For more than twenty years, the problem of integrality of the Witten–Reshetikhin–
Turaev invariants has been intensively studied. The interest to this problem was drawn
by the theory of perturbative 3-manifold invariants generalizing those of Casson and
Walker [29], by the construction of Integral Topological Quantum Field Theories
(see [6] and [9]) and their topological applications and more recently, by attempts to
categorify the Witten–Reshetikhin–Turaev invariants [15].

In the case G D SU.2/, there is a projective version �
SO.3/
M .�/, introduced by

Kirby and Melvin [16] and defined at roots of unity of odd orders. This projective
version, when defined, determines the SU.2/ version.

In this paper we completely solve the integrality problem for both SO.3/ and
SU.2/ versions of the Witten–Reshetikhin–Turaev invariant for all 3-manifolds with
arbitrary colored links inside. Before stating our results, let us give a brief introduction
into the history of this subject.

In 1995 Murakami [26] established the integrality of the Witten–Reshetikhin–
Turaev SO.3/-invariant for rational homology 3-spheres at roots of unity of prime or-
ders. This result was extended to all 3-manifolds by Masbaum and Roberts [23]. Mas-
baum and Wenzl [24], and independently Takata andYokota [31], proved the integral-
ity of the projective Witten–Reshetikhin–Turaev SU.n/-invariant for all 3-manifolds,
always under the assumption that the orders of the roots of unity are prime. Finally
Le [19] established the integrality of the projective Witten–Reshetikhin–Turaev in-
variant associated with any compact simple Lie group, again at roots of unity of prime
orders.

The case for the roots of unity of non-prime orders is more complicated. The first
integrality result for all roots of unity was obtained by Habiro [12] in the case of SU.2/

and integral homology 3-spheres. Habiro’s proof relies on the existence of the unified
invariant for integral homology 3-spheres as an element of Habiro’s ring, a certain
cyclotomic completion of the polynomial ring ZŒq�. This unified invariant is a kind
of generating function for the set of Witten–Reshetikhin–Turaev SU.2/ invariants at
all roots of unity. The integrality in this approach follows directly from the general
properties of Habiro’s ring.

Habiro and Le [13] subsequently defined the unified Witten–Reshetikhin–Turaev
invariant for all simple Lie groups and integral homology 3-spheres, thus proving that
the Witten–Reshetikhin–Turaev invariant of any integral homology 3-sphere associ-
ated to any simple Lie group and any root of unity is always an algebraic integer.
However, the case of manifolds other than homology spheres was unknown, even
with G D SU.2/.
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In this paper we give a complete solution for the integrality problem for all
3-manifolds with arbitrary link inside at all roots of unity for the case of the group
SU.2/. Our invariants are normalized as in [16] and we show that integrality in that
case implies integrality for all other normalizations used in the literature.

Theorem 1. The Witten–Reshetikhin–Turaev SU.2/-invariant of any 3-manifold M

with any colored link inside at any root of unity is an algebraic integer.

Theorem 2. The Witten–Reshetikhin–Turaev SO.3/-invariant of any 3-manifold M

with any colored link inside at any root of unity of odd order is an algebraic integer.

Theorem 2 is a generalization of a result in [4] to manifolds which contain a link
inside. However, we give here a new independent proof along the same lines as in
the SU.2/ case. Theorem 1 is the main result of the paper. The key new ideas used
in the proofs are the following.

One of the main tools is a significant generalization of some divisibility result
(Theorem 3.2) which was originally obtained in [20] using a number-theoretical
identity of Andrews [1], whose special cases are the classical Rogers–Ramanujan
identities.

Further, to include the case of even colored links in 3-manifolds, we had to intro-
duce a new basis for the Grothendieck ring of the quantum sl.2/, which is orthogonal
to the odd part of the center with respect to the Rosso form. This led to an important
new result (Theorem 2.1) generalizing that of Habiro, which states that the colored
Jones polynomial can be presented as a sum of integral “blocks”. This result is proved
in the Appendix, and it is of independent interest in the quantum link invariant theory.

For manifolds obtained by surgery along links with diagonal linking matrix we
show that the contribution of each integral block to the Witten–Reshetikhin–Turaev
invariant is integral by using our main tool (Theorem 3.2). The general case can be
reduced to the diagonal one by using some classification results for linking pairings.
However, it is more demanding in the SU.2/ case than in the SO.3/ one, since the
linking pairings on abelian groups of even order are more complicated [14].

As a byproduct, we generalize the relationship between SU.2/ and SO.3/ invari-
ants at odd roots of unity to the case when a 3-manifold contains an arbitrary colored
link inside. For the empty link and links colored by the fundamental representation,
this relationship was established in [16] and [23], respectively.

At the moment of this writing, our proof cannot be generalized to higher-ranked
Lie groups because we do not have an analog of Theorem 2.1 (splitting into integral
blocks) in those cases. The paper is as self-contained as possible. The only two
results used without proofs here are [20], Theorem 7, and [3], Theorem 2.

We organize this paper as follows. In Section 2 we fix notations, recall the defini-
tion of theWitten–Reshetikhin–Turaev invariant and state a generalization of Habiro’s
result. The main strategy of our proofs is explained in Section 2.6. In Section 3 we
prove some divisibility results for generic values of the quantum parameter. Formulas
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related to roots of unity are proved in Section 4. Section 5 deals with the symme-
try principle and the splitting of the SU.2/ invariant at odd roots of unity into the
product of the SO.3/ and Deloup’s invariants. Section 6 discusses how to construct
3-manifolds that can be obtained by surgery along links with diagonal linking matri-
ces. The last two sections are devoted to the proofs of Theorem 2 and Theorem 1,
respectively.

2. The colored Jones polynomial and the Witten–Reshetikhin–Turaev invariant

2.1. Notations. Let q1=4 be a formal parameter. Set

fng defD qn=2 � q�n=2; fngŠ defD
nY

iD1

fig; Œn�
defD fng

f1g ;

�
n

k

�
defD fngŠ

fkgŠfn � kgŠ ;

and

.zI q/m D
m�1Y
iD0

.1 � qiz/;

�
m

n

�
defD .qm�nC1I q/n

.qI q/n

D q.m�n/n=2

�
m

n

�
:

Throughout this paper, let � be a primitive root of unity of order r and �1=4 be a
complex number such that .�1=4/4 D �. There are four possible choices for �1=4, and
we will make some restrictions later.

When working in the SO.3/ case, we will always assume that r � 3 is odd. In
the SU.2/ case, r � 2 will be an arbitrary positive integer.

For f 2 QŒq˙1=4�, we define the following evaluation map

ev�.f /
defD f jq1=4D�1=4:

It should be noted that although we write ev�.f /, this quantity depends on the choice
of a 4-th root �1=4 of �.

If f is a function on non-negative integers n1; : : : ; nk with values in QŒq˙1=4�,
we define

X
n1;:::;nk

�;SO.3/
f

defD 1

4k

4r�1X
nj D0
nj odd

ev�.f / and
X

n1;:::;nk

�;SU.2/
f

defD 1

4k

4r�1X
nj D0

ev�.f /:

All 3-manifolds in this paper are supposed to be closed and oriented. Every link
in a 3-manifold is framed, oriented and has ordered components.

2.2. The colored Jones polynomial. Suppose L is a framed oriented link in S3 with
m ordered components. For an m-tuple of non-negative integers n D .n1; : : : ; nm/,
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one has the colored Jones polynomial JL.n/ 2 ZŒq˙ 1
4 �, see e.g. [32] and [25].

The number ni is usually called the color of the i -th component, and stands for the
ni -dimensional irreducible sl2-representation in the theory of quantum link invariants.
We use the normalization so that JU .n/ D Œn� where U is the unknot with 0 framing.
It is well known that if zL is obtained from L by increasing the framing on the i -th
component by 1 then

JzL.n/ D q
n2

i
�1

4 JL.n/: (1)

Although there are fractional powers q˙1=4, there exists an integer a D a.L; n/

such that JL.n/ 2 qa=4 ZŒq˙1�. For a precise formula of a see [18]. This formula
implies that if all the colors nj ’s are odd, then JL.n/ 2 ZŒq˙1�.

2.3. Habiro’s expansion and its generalization. Assume that L t L0 is a framed
link in S3 with disjoint sublinks L and L0. Suppose L has m ordered components
and L0 has l ordered components. Fix an l-tuple of positive integers s D .s1; : : : ; sl /,
and let’s consider JLtL0.n; s/ as a function on m-tuples n D .n1; : : : ; nm/. Since s

is fixed, we will remove it from the notation for simplicity. The function JLtL0.n/

can be rearranged into another function cLtL0.k/ generalizing an important result of
Habiro [12], Theorem 8.2.

To state the result we need to introduce a few notations. Let Q̀
ij be the linking

number between the i -th component of L and the j -th component of L0. For any
i D 1; : : : ; m, we define

"i 2 f0; 1g by "i
defD

lX
j D1

Q̀
ij .sj � 1/ .mod 2/: (2)

Theorem 2.1. Assume that L t L0 � S3 is as described above. Suppose that L has
linking matrix equal to 0. Then for every m-tuple k D .k1; : : : ; km/ of non-negative
integers with k D max.k1; : : : ; km/ there exists

cLtL0.k/ 2 .qkC1I q/kC1

1 � q
ZŒq˙1=4� (3)

such that for every m-tuple n D .n1; : : : ; nm/ of non-negative integers,

JLtL0.n/ D
X
ki �0

cLtL0.k/

mY
iD1

�
ni C ki

2ki C 1

�
fkigŠ �

"i
ni

�
"i

ki C1

(4)

where �n D qn=2 C q�n=2.

For the case when all "i D 0, or, in particular, when all si ’s are odd, the statement
is equivalent to [2], Theorem 3. A proof of Theorem 2.1 is given in the Appendix.
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Note that for a fixed n the right hand side of (4) is a finite sum because
�

nCk
2kC1

� D 0

if n � k.
This is the presentation of the colored Jones polynomial as a sum of integral blocks

mentioned in Introduction. The existence of cLtL0.k/ 2 Q.q1=4/ that satisfies (4) is
easy to prove. The real content of Theorem 2.1 is the integrality (3).

2.4. The Witten–Reshetikhin–Turaev invariant. We review here the definition of
the Witten–Reshetikhin–Turaev SU.2/ invariant of a 3-manifold M with a colored
link L0 inside [30] and its SO.3/ version [16].

We use the convention that the pair .M; L0/ is obtained from .S3; L0/ by surgery
along L. Here L0 is an s-colored framed link. For G D SU.2/ or G D SO.3/ set

F G
LtL0.�/

defD
X

n1;:::;nm

�;G°
JLtL0.n/

mY
iD1

Œni �
±
: (5)

For simplicity, we assume here that all entries of s are odd if G D SO.3/. In general
for G D SO.3/, we have to multiply (5) by a power of �, depending on the linking
matrix of L0 and the parity of colors. This is done in Section 5.2. Since the additional
factor is a unit, it does not affect integrality.

We want to emphasize that although it is not explicit from the notation, equation (5)
depends on a choice of a 4-th root �1=4 of �.

It is known that F G
LtL0.�/ is invariant under the handle slide move and if normal-

ized appropriately, is an invariant of the pair .M; L0/.
Let U ˙ be the unknot with ˙1 framing. It is easy to see that F G

U �.�/ is the
complex conjugate of F G

U C.�/. Let

DG defD jF G
U C.�/j D

q
F G

U C.�/ F G
U �.�/ :

This number is called the rank of a TQFT in [32]. We normalize by dividing (5)
by certain powers of F G

U ˙
.�/ ¤ 0. Hence, we want to know when F G

U ˙
.�/ ¤ 0.

The following is probably known. For completeness we include a proof in Section 4.3.

Lemma 2.2. One has F G

U ˙
.�/ D 0 if and only if

G D SU.2/ and ord.�1=4/ D 2ord.�/ D 2r: (?)

In [16], [30], and [21] it is assumed that ord.�1=4/ D 4 ord.�/. However, there
are other cases when F G

U ˙
.�/ ¤ 0. Here we consider all of them.

In the entire paper we will assume that condition (?) is not satisfied, so that
F G

U ˙
.�/ ¤ 0.

Then the Witten–Reshetikhin–Turaev invariant of the pair .M; L0/ is defined by

�G
M;L0.�/ D F G

LtL0.�/

.F G
U C.�//ˇC.F G

U �.�//ˇ� .DG/ˇ
; (6)
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where ˇC; ˇ� and ˇ are respectively the number of positive, negative, and 0 eigen-
values of the linking matrix of L.

The invariant �G
M;L0.�/ is multiplicative with respect to connected sum. If �M is

M with the reverse orientation, then �G�M .�/ is the complex conjugate of �G
M .�/, and

�G
S3.�/ D 1.

Remark 2.3. We will prove later that DG 2 ZŒ�1=4; e8�, where e8 D exp.�
p�1=4/.

Note that ZŒ�1=4; e8� D ZŒexp.2�
p�1=t/�, where t D 8r if r is odd and t D 4r if

r is even. In the last case, e8 2 ZŒ�1=4�.
Hence a priori, �G

M;L0.�/ 2 Q.�1=4; e8/. Since the ring of integers of Q.�1=4; e8/

is ZŒ�1=4; e8�, our invariant is algebraically integral if it belongs to ZŒ�1=4; e8�.
Further, if G D SO.3/, M is a rational homology 3-sphere, and all the si ’s are

odd, then �
SO.3/
M;L0 .�/ 2 Q.�/ by definition. So, in that case integrality means that

�
SO.3/
M;L0 .�/ 2 ZŒ�� for any root of unity � of odd order.

Relations with other invariants. If we put �1=4 defD exp.�
p�1=2r/, then our in-

variant �
SU.2/
M .�/ and �

SO.3/
M .�/ are respectively �r.M/ and � 0

r .M/ in [16]. In that
case, our DSU.2/ equals b�1 in the notation of [16].

Again, if �1=4 D exp.�
p�1=2r/, the original Reshetikhin–Turaev invariant [30]

differs from �r .M/ by a multiplication with a certain root of unity, so this does not
affect integrality.

The set of invariants considered in [23] coincides with ours assuming r is an odd
prime. More precisely, the invariants I2r .M/ and Ir .M/, defined in [23] as functions
of a variable A, coincide with ours �

SU.2/
M .�/ and �

SO.3/
M .�/ after setting A D ��1=4

and A D ��.rC1/2=4, respectively. At these roots of unity, the SO.3/ invariants
determine those for SU.2/.

Lickorish chose a different normalization and worked with �
SU.2/
M .�/.DSU.2//ˇ

in [21]. Clearly, integrality of this invariant will follow from the integrality of
�G

M;L0.�/.

2.5. Diagonal case. Of particular importance is the case when the linking matrix
of L is a diagonal matrix diag.b1; : : : ; bm/, bi 2 Z for any i . Let L0 be the framed
link obtained from L by switching all the framings to 0. Recall from (2) that for
1 � i � m, "i

defD Pl
kD1

Q̀
ik.sk � 1/ .mod 2/. Using (1) and (4), we can rewrite

F G
LtL0.�/ as follows:

F G
LtL0.�/ D

X
ki �0

ev�.cL0tL0.k/=f1gm/

mY
iD1

H G.ki ; bi ; "i/ (7)

where

H G.k; b; "/
defD

X
n

�;G
qb n2�1

4

�
n C k

2k C 1

�
�"

n

�"
kC1

fkgŠfng: (8)
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By (5) and (8) we also have

F G

U ˙.�/ D H G.0; ˙1; 0/

ev�.f1g/ : (9)

From (7) and (9) we get the following result.

Proposition 2.4. Suppose the linking matrix of L is diag.b1; : : : ; bm/, a diagonal
matrix with exactly t non-zero elements b1; : : : ; bt . Assume the entries of s are odd
when G D SO.3/. Then

�G
M;L0.�/ D

b r�2
2

cX
ki D0

ev�.cL0tL0.k//

tY
iD1

H G.ki ; bi ; "i/

H G.0; sn.bi /; 0/

mY
iDtC1

H G.ki ; 0; "i/

ev�.f1g/DG
; (10)

where sn.bi / is the sign of bi .

Note that in the above sum the index ki is from 0 to b r�2
2

c. This is because
.�kC1I �/kC1 D 0 when k > .r�2/=2, so ev�.cL0tL0.k// D 0 when k D maxfkig >

.r � 2/=2 according to Proposition 2.1.
To allow an arbitrary coloring s of L0 for G D SO.3/, we have to multiply the

right hand side of (10) by a unit, defined in Section 5.2.
We say that M is diagonal of prime type, when M can be obtained by surgery

along a link with diagonal linking matrix whose entries are (up to a sign) 0, 1 or prime
powers.

2.6. Strategy for the proof of Theorems 1 and 2. We first prove the integrality
of �G

M;L0.�/ for the case when M is diagonal of prime type. By (10), in this case it
suffices to show that

H G.k; b; "/

H G.0; sn.b/; 0/
and

H G.k; 0; "/

.1 � �/DG

are algebraic integers when 0 � k � b r�2
2

c. This is proved in Proposition 7.1 for
G D SO.3/ and in Proposition 8.1 for G D SU.2/, under assumptions r is odd and
even, respectively.

The general case can be reduced to the diagonal one of prime type by applying
some standard results on diagonalization, presented in Section 6. Roughly speaking,
M #M becomes diagonal of prime type after adding a diagonalizing manifold N ,
which is a connected sum of some simple lens spaces. In the SO.3/ case, this
already solves the problem, since the Witten–Reshetikhin–Turaev invariant of N

is invertible. In the SU.2/ case, the Witten–Reshetikhin–Turaev invariants of N

might be 0. We show that there is an odd colored link L � N such that �
SU.2/
N;L is

integral and non-zero. However, another difficulty arises since �
SU.2/
N;L is not invertible.
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To overcome this difficulty we will look at the connected sum of many copies of M #M

with .N; L/, which we will show to be diagonal of prime type. Further, we make
substantial use of the fact that in any Dedekind domain, every ideal has a unique
prime factorization.

The case G D SU.2/ and r odd is solved in Section 5. There we generalize the
splitting formula of Kirby and Melvin [16] by showing that the SU.2/ invariant of
any 3-manifold with a colored link inside at a root of unity of odd order is a product
of the SO.3/ invariant and another integer invariant, previously defined by Deloup.

3. Basic divisibility: the case of generic q

In this section we establish a divisibility result for generic q which will help us to
prove that each factor of (10) is integral.

3.1. The ideal Ik. Let Ik be the ideal of ZŒz˙1; q˙1� generated by .qazI q/k for
all a 2 Z. This ideal plays an important role in the theory of quantum invariants,
see [12], [20], and [13].

We will use the following characterization of Ik , which is Proposition 4.3 of [20].

Proposition 3.1. The ideal Ik is the set of all f 2 ZŒz˙1; q˙1� such that f .qb; q/

is divisible by .qI q/k for every b 2 Z.

We will often use the following q-binomial formula

.qazI q/k D
kX

j D0

.�1/j

�
k

j

�
q.j

2/Caj zj : (11)

3.2. Divisibility for generic q. For a positive integer k let

Xk
defD .qI q/k

.qI q/bk=2c
D

kY
j Dbk=2cC1

.1 � qj /: (12)

In this paper, a quadratic Z-polynomial Q.n/ is a polynomial of degree � 2 with
integer coefficients,

Q.n/ D a2n2 C a1n C a0; a0; a1; a2 2 Z:

For a quadratic Z-polynomial Q let

LQ W ZŒz˙1; q˙1� �! ZŒq˙1�

be the ZŒq˙1�-linear map defined by

LQ.zj / D qQ.j /:
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Note that this map is not an algebra homomorphism if a2 or a0 ¤ 0.
Let � be the ZŒq˙1�-algebra automorphism of ZŒz˙1; q˙1� defined by �.z/ D

z�1. An important observation is that if a1 D 0, then LQ� D LQ.

Theorem 3.2. Suppose Q is a quadratic Z-polynomial and f .z; q/ 2 Ik . Then
LQ.f / is divisible by Xk , i.e.

LQ.f / 2 Xk ZŒq˙1�:

Remark 3.3. This theorem will be used substantially. It is a generalization of [20],
Theorem 7, which was proved with the help of Andrews’ identity. The case Q.n/ D
n2 of Theorem 3.2 appeared in [13] for the construction of the unified Witten–
Reshetikhin–Turaev invariant.

Proof. By the definition of Ik , it is enough to consider the case f D zm.qazI q/k.
Suppose

Q.n/ D a2n2 C a1n C a0 :

Let Q0.n/ D a2n2. Rewriting f as a sum with help of (11), one can show

LQ.q�a1mzm.qa�a1zI q/k/ D qa0LQ0
.zm.qazI q/k/:

Hence, the substitution of q�a1z for z transforms LQ into LQ0
. Without loss of

generality, we can further assume Q D Q0.
The rest of the proof is by induction on k.
The case k D 1 is trivial. Suppose that the statement holds true for k � 1.
Since

zm.qaC1zI q/k � zm.qazI q/k D qa.1 � qk/zmC1.qaC1zI q/k�1 ;

we see that, by the induction hypothesis, LQ0
.zm.qaC1zI q/k/ is divisible by Xk if

and only if LQ0
.zm.qazI q/k/ is. Therefore we only need to show the statement for

a single value of a. We will take a D �bk=2c. The cases of odd and even k will be
considered separately.

Suppose k D 2l C 1. Then a D �l and LQ0
.zm.q�lzI q/2lC1/ is divisible by

Xk D .qlC1I q/lC1 by Lemma 3.4 (b) below.
Now suppose k D 2l . Then a D �l and we need to show that for every integer

m, Xk divides LQ0
.B.m; l// where

B.m; l/
defD zm.q�lzI q/2l :

Since
B.m; l/ � qlB.m C 1; l/ D zm.q�lzI q/2lC1

and Xk D .qlC1I q/l divides LQ0
.zm.q�lzI q/2lC1/ by Lemma 3.4 (b) below, it

is enough to show that Xk divides LQ0
.B.m; l// for only a single value of m. We

choose m D �l , and we will show that Xk D .qlC1I q/l divides LQ0
.B.�l; l//.
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Using that � is the algebra automorphism of ZŒz˙1; q˙1� sending z to z�1, we
get

.id C�/B.�l; l/ D z�l .q�lzI q/2l C zl .q�lz�1I q/2l

D z�l .q�lzI q/2l C z�lq�l.q1�lzI q/2l

D z�l .q1�lzI q/2l�1.1 � q�lz C q�l.1 � qlz//

D z�l .q1�lzI q/2l�1.1 � z/.1 C q�l/

D �q�l.1 C ql/ yl�1;

where

yl
defD z�l .1 � z�1/.q�lzI q/2lC1 D .�1/lq� l.lC1/

2

lY
j D0

.z � qj /.z�1 � qj /:

From LQ0
� D LQ0

it follows that

2LQ0
.B.�l; l// D LQ0

..id C�/B.�l; l// D �q�l .1 C ql /LQ0
.yl�1/;

which is divisible by 2.1 C ql/.ql I q/l D 2.qlC1I q/l thanks to Lemma 3.4 (a). This
completes the induction, whence the proof.

Lemma 3.4. With the same notations as above we have

(a) if f 2 ZŒz˙1; q˙1� is invariant under � , then 2.qlC1I q/lC1 divides LQ0
.fyl/;

(b) for any f 2 ZŒz˙1; q˙1�, LQ0

�
.q�lzI q/2lC1 f

	
is divisible by .qlC1I q/lC1.

Proof. (a) First we prove the case f D 1. We will show that this case follows
from [20], Theorem 7, which was proved by using the Andrews identity. In fact we
have

yl D z�l .1 � z�1/.q�lzI q/2lC1

D z�l .q�lzI q/2lC1 � z�l�1.q�lzI q/2lC1:
(13)

It is easy to see that the two terms of the right hand side of (13) are related by

�.z�l .q�lzI q/2lC1/ D �z�l�1.q�lzI q/2lC1 : (14)

Hence

LQ0
.yl / D 2LQ0

.z�l .q�lzI q/2lC1/

D 2

2lC1X
j D0

.�1/j

�
2l C 1

j

�
qa2.j �l/2

;
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which, according to [20], Theorem 7, is divisible by

2
f2l C 1gŠ

flgŠ D 2.�1/lC1q�.lC1/.3lC2/=4.qlC1I q/lC1

in ZŒq˙1=2�. Since LQ0
.yl / and 2.qlC1I q/lC1 are both in ZŒq˙1�, (a) is true when

f D 1.
Consider the general case. Since �.f / D f , f is a polynomial in .z C z�1/. It

is enough to prove (a) for f D .z C z�1/m. Since

.z C z�1/yl D ylC1 C .qlC1 C q�l�1/yl ;

.z C z�1/myl is a ZŒq˙1�-linear combination of yl ; ylC1; : : : ; ylCm. Since we have
that .qlCi I q/lCi is divisible by .qlC1I q/lC1 for every positive integer i , the case
f D .z C z�1/m follows from the case f D 1.

(b) For non-negative integer m, using

�.zm.q�lzI q/2lC1/ D �z�m�2l�1.q�lzI q/2lC1;

we get

2LQ0
.zm.q�lzI q/2lC1/ D LQ0

..id C�/zm.q�lzI q/2lC1/

D LQ0



yl

mClX
j D�m�l

zj
�
;

which is divisible by 2.qlC1I q/lC1 according to (a). Similar argument works for
negative m.

The following corollary is sometimes more convenient than Theorem 3.2.

Corollary 3.5. For every positive integer k and every quadratic Z-polynomial Q,
Xk divides

kX
j D0

.�1/j

�
k

j

�
qQ.j /C.j

2/:

Proof. From (11) we have

LQ

�
.zI q/k

	 D
kX

j D0

.�1/j

�
k

j

�
qQ.j /C.j

2/:

By Theorem 3.2, the left hand side is divisible by Xk , and so is the right hand side.
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3.3. Polynomials with q-integer values. We also need a generalization of the fol-
lowing classical result in the theory of polynomials with integer values. Suppose that
f .z1; : : : ; zn/ 2 QŒz1; : : : ; zn� takes integer values whenever z1; : : : ; zn are integers.
Then f is a Z-linear combination of

Qn
iD1

�
zi

ki

	
, ki 2 Z�0.

Let us formulate a q-analog of this fact.

Proposition 3.6. If f .z1; : : : ; zn/ 2 Q.q/Œz1; : : : ; zn� satisfies f .qm1 ; : : : ; qmn/ 2
ZŒq˙1� for every m1; : : : ; mn 2 Z, then f is a ZŒq˙1�-linear combination of

nY
iD1

.zi I q/ki

.qI q/ki

; ki 2 Z�0:

Proof. The elements zk
defD Qn

iD1.zi I q/ki
=.qI q/ki

, with k D .k1; : : : ; kn/ 2 Zn�0,
form a Q.q/-basis of Q.q/Œx1; : : : ; xn�. Hence there are ck 2 Q.q/ such that f DP

k2Zn
�0

ck zk. Only a finite number of ck’s are non-zero. We will show that ck 2
ZŒq˙1� by induction on jkj defD k1 C � � � C kn.

Suppose k D 0. Let z1 D z2 D � � � D zn D 1, then zk D 0 unless k D 0. Hence
c0 D f .1; 1; : : : ; 1/ 2 ZŒq˙1�.

Suppose ck 2 ZŒq˙1� for jkj < l . The zk’s with jkj < l will be called terms of
lower orders. Consider a k D .k1; : : : ; kn/ with jkj D l . Note that when zi D q�ki ,
z.a1;:::;an/ D 0 if for some i one has ai > ki , and zk D ˙1. Hence

f .q�k1 ; : : : ; q�kn/ D ˙ck C terms of lower orders:

By induction, the terms of lower orders are in ZŒq˙1�. Since the left hand side is in
ZŒq˙1�, we conclude that ck 2 ZŒq˙1�.

Corollary 3.7. For any integer a, the element .qaz1z2I q/k is a ZŒq˙1�-linear com-
bination of terms

.qI q/k

.qI q/k1
.qI q/k2

.z1I q/k1
.z2I q/k2

with k1; k2 � k.

Proof. The evaluation of

.qaz1z2I q/k

.qI q/k

2 Q.q/Œz1; z2�

at zi D qmi belongs to ZŒq˙1� for any mi . Applying Proposition 3.6 we get the
result. Note that k1 and k2 should be less than or equal to k by degree reason.
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4. Basic results: the case of roots of unity

In this section we prove a basic divisibility result for the case when q is a root of
unity � of order r . In Section 4.4 the integrality of H G.k; b; "/=H G.0; ˙1; 0/ will
be reduced to that of a simpler quotient.

We use the notation
Nk defD r � 1 � k;

and
�

m

n

�
�

defD ev�

�
m

n

�
; O�

defD .�I �/b r�1
2

c; xk
defD

kY
j Dbk=2cC1

.1 � �j / D ev�.Xk/;

where Xk is defined in (12).

4.1. Divisibility. The main divisibility result at roots of unity is formulated below.

Proposition 4.1. For every quadratic Z-polynomial Q and f .z; q/ 2 Ik with 0 �
k < r we have

r�1X
nD0

�Q.n/ f .�n; �/ 2 xkO� � ZŒ�� :

We need the following lemma for the proof of Proposition 4.1.

Lemma 4.2. For any integers a, k, with 0 � k < r , and any quadratic Z-polynomial
Q, the element

y D
r�1X
nD0

�Q.n/

�
n C a

k

�
�

is divisible by x Nk .

Proof. Using 1 � �m D ��m.1 � �r�m/ we have
�

n C k

n

�
�

D .�kC1I �/n

.�I �/n

D .�1/n�knCn.nC1/=2 .�r�k�nI �/n

.�I �/n

D .�1/n�nkCnC.n
2/

� Nk
n

�
�

:

(15)

Set n0 D n C a � k. One has

y D
r�1X
nD0

�Q.n/

�
n0 C k

k

�
�

D
r�1X
n0D0

.�1/n0
�Q0.n0/C.n0

2 /
� Nk

n0
�

�

(16)
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by (15), where Q0.n0/ D Q.n0 � a C k/ C n0k C n0. In the right hand side of (16),

the index n0 actually runs from 0 to Nk � 1, since
� Nk

n0

	
�

D 0 if n0 � Nk. The right hand
side of (16) is divisible by x Nk by Corollary 3.5.

Proof of Proposition 4.1. The set fzd .zqaI q/k W d; a 2 Zg spans Ik over ZŒq˙1�.
So we can assume that f D zd .zqaI q/k. Then

Pr�1
nD0 �Q.n/ f .�n; �/

xkO�

D .�I �/bk=2c
O�

r�1X
nD0

�Q.n/Cdn

�
n C a � 1

k

�
�

2 .�I �/bk=2c
O�

x NkZŒ�� (by Lemma 4.2),

which is in ZŒ�� by Lemma 4.3 (f) below.

4.2. The ring of algebraic integers. It is known that ZŒ�� is a Dedekind domain
with field of fractions QŒ��.

Lemma 4.3. a) If .a; r/ D .b; r/ then .1 � �a/ � .1 � �b/ in ZŒ��.

b) One has .�I �/r�1 D r .

c) Suppose y 2 QŒ�� and ys 2 ZŒ�� for some positive integer s. Then y 2 ZŒ��.

d) Suppose y; z 2 QŒ�� with z ¤ 0. If as
defD ysz 2 ZŒ�� for infinitely many

positive s, then y 2 ZŒ��.

e) One has

O2
� �

8<
:

r if r is odd,

r=2 if r is even:

f) For every integer 0 � k < r , O� divides .�I �/bk=2c x Nk .

Proof. a) Let c D .a; r/ D .b; r/. Since 1��c divides 1��a, and also 1��a divides
1 � �c D 1 � �aa�

where aa� � c .mod r/, we have 1 � �a � 1 � �c . Similarly
1 � �b � 1 � �c .

Part b) is obtained by substituting X D 1 into the following identity:

1 C X C � � � C Xr�1 D 1 � Xr

1 � X
D

r�1Y
iD1

.X � � i /:

Part c) follows from the fact that every Dedekind domain is integrally closed.
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d) Let y D y1=y2 and z D z1=z2 with y1; y2; z1; z2 2 ZŒ�� and zi ¤ 0. Then
for infinitely many s > 0, z1ys

1 D asz2ys
2, and hence

.z1/.y1/s D .as/.z2/.y2/s; (17)

where .x/ denotes the principal ideal in ZŒ�� generated by x. In any Dedekind
domain, every ideal decomposes uniquely into a product of prime ideals,

.x/ D
Y

i

p
ei

i ;

and this decomposition respects the multiplication. From the uniqueness of prime
ideal decomposition and (17), we see easily that y2 j y1, or y D y1=y2 2 ZŒ��.

e) First suppose r is odd. Then O� D .�I �/ r�1
2

. Since .1 � �k/ � .1 � �r�k/ by
part (a), we have

O2
� � .�I �/r�1 D r:

Now suppose r is even. Then O� D .�I �/ r�2
2

. Using .1 � �k/ � .1 � �r�k/, we
have

O2
� � .�I �/r�1=.1 � �r=2/ D r=2

since �r=2 D �1.

f) First suppose r is odd. Note that for odd r , .1 � �j / � .1 � �2j / by part (a).
One has

x Nk D xr�k�1 D

r�k�1Y
j D1

.1 � �j /

b r�k�1
2 cY

j D1

.1 � �j /

�

r�k�1Y
j D1

.1 � �j /

b r�k�1
2

cY
j D1

.1 � �2j /

� .1 � �/.1 � �3/ � � � .1 � �r�2�2b k
2

c/;

(18)

where in the last passage we used .1��j / � .1��2j /. Using .1��j / � .1��2j / �
.1 � �r�2j /, we have

.�I �/b k
2

c D
b k

2
cY

j D1

.1 � �j / �
b k

2
cY

j D1

.1 � �r�2j /: (19)
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Multiplying (18) and (19), we get

.�I �/b k
2

c x Nk �
.r�1/=2Y

j D1

.1 � �2j �1/ � O� ; (20)

where the second � follows from the fact that 1 � �r�a � 1 � �a for any integer a.
Now suppose r is even.

O�

.�I �/b k
2

c
D .1 � �r=2�1/.1 � �r=2�2/ � � � .1 � �b k

2
cC1/

D .1 C �/.1 C �2/ � � � .1 C �
r
2

�1�b k
2

c/:
(21)

On the other hand there exists f 2 ZŒ�� such that

x Nk D xr�k�1 D

r�k�1Y
j D1

.1 � �j /

b r�k�1
2

cY
j D1

.1 � �j /

D f

b r�k�1
2

cY
j D1

.1 � �2j /

b r�k�1
2

cY
j D1

.1 � �j /

D f .1 C �/.1 C �2/ � � � .1 C �b r�k�1
2

c/:

Note that b r�k�1
2

c D r
2

� 1 � bk
2
c for even r . Compare (21) and (22), we see that

O� divides .�I �/b k
2

c x Nk .

4.3. Quadratic Gauss sums. For arbitrary integers b and d , the quadratic Gauss
sum is defined as

G.b; d; �/
defD

ord.�/�1X
nD0

�bn2Cdn :

The following is well-known.

Proposition 4.4. a) Let r D ord.�/ and c D gcd.b; r/. Then

G.b; d; �/ D
8<
:

c G.b=c; d=c; �c/ if c j d ;

0 otherwise.
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b) Suppose b and r are co-prime. Then

G.b; 0; �/2 �

8̂̂
<̂
ˆ̂̂:

r if r is odd;

0 if r � 2 .mod 4/;

2r if r � 0 .mod 4/.

Furthermore G.b; b; �/2 D 2r if r � 2 .mod 4/.

c) Suppose d is odd and r � 0 .mod 4/. Then G.b; d; �/ D 0.
d) Suppose r1 and r2 are co-prime and r D r1r2. Then

G.b; d; �/ D G.br1; d; �r1/ G.br2; d; �r2/: (22)

Proof. Part (a) is clear from the definition when c j d . Now suppose that c − d . We
have

G.b; d; �/ D
r=c�1X
tD0

c�1X
sD0

�b.sr=cCt/2Cd.sr=cCt/

D
r=c�1X
tD0

�bt2Cdt

c�1X
sD0

�sdr=c D 0;

where the last equality follows from the fact that �dr=c ¤ 1 and its order divides c.

b) After a Galois transformation of the form � ! �a, with a co-prime to r , one
can assume that b D 1 and � D exp.2�i=r/. The result now follows e.g. from [5],
Chapter 2.

c) One has

b


n C r

2

�2 C d


n C r

2

�
D bn2 C bnr C br

r

4
C dn C d

r

2

� bn2 C dn C r

2
.mod r/:

Hence

G.b; d; �/ D
r�1X
nD0

�bn2Cdn

D
r�1X
nD0

�b.nCr=2/2Cd.nCr=2/

D �r=2

r�1X
nD0

�bn2Cdn

D �G.b; d; �/:
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It follows that G.b; d; �/ D 0.

d) The proof follows easily from the fact that the map Z=r1 	Z=r2 ! Z=.r1r2/,
defined by .n1; n2/ ! r2n1 C r1n2, is an isomorphism.

Proof of Lemma 2.2. Now we are in position to see that F G
U C.�/ D 0 if and only if

G D SU.2/ and �1=4 has order 2r .
By completing the squares we have

.1 � �/F G
U C � 2

1 � �

X
n

�;G
q

n2�1
4 .1 � qn/

� 2

1 � �


X
n

�;G
q

n2�1
4 � ��1

X
n

�;G
q

.nC2/2�1
4

�

�

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

G.4�; 0; �/ if G D SO.3/;

1
2
G.1; 0; �1=4/ if G D SU.2/ and ord.�1=4/ D 4r ;

G.1; 0; �1=4/ if G D SU.2/ and ord.�1=4/ D 2r ;

2G.1; 0; �1=4/ if G D SU.2/ and ord.�1=4/ D r .

Note that for G D SO.3/, the sum is over odd n’s, so n2 � 1 is always divisible
by 4. Hence, for any choice of �1=4, we have �.n2�1/=4 D �4�.n2�1/ with 4�4 D 1

.mod r/.
If r is even, then ord.�1=4/ is always 4r . Now Proposition 4.4 (b) implies the

claim.

4.4. Simplification of H G .k; b; "/

Lemma 4.5. a) For integers k; b, and " 2 f0; 1g, there is f".z; q/ 2 I2kC1C" such
that

H G.k; b; "/ � 2

x2kC1C"

X
n

�;G
q

b.n2�1/
4

� 3"n
2 f".q

n; q/:

More precisely, one can choose f" D z�k.q�kzI q/2kC1C".

b) One has
p

2;
p

r 2 ZŒ�1=4; e8� and

H G.0; ˙1; 0/ �

8̂
ˆ̂<
ˆ̂̂:

p
r if G D SO.3/;

p
2r if G D SU.2/ and ord.�1=4/ D 4r;

2
p

r if G D SU.2/ and ord.�1=4/ D r .

c) One has DG 2 ZŒ�1=4; e8� and .1 � �/DG � H G.0; ˙1; 0/.

d) Suppose b and r are even. Then H SU.2/.k; b; 1/ D 0.
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Proof. a) We will use the following simple observation: We have

X
n

�;G
q

b.n2�1/
4 g.qn=2; q/ D

X
n

�;G
q

b.n2�1/
4 g.q�n=2; q/ (23)

for every g.z; q/ 2 QŒz˙1=2; q˙1=4�. To prove it, one only needs to consider
g.z; q/ D za=2; a 2 Z. Then

X
n

�;G
q

b.n2�1/
4 g.qn=2; q/ D

X
n

�;G
q

b.n2�1/
4

C an
2

D
X

n!�n

�;G
q

b.n2�1/
4

� an
2

D
X

n

�;G
q

b.n2�1/
4 g.q�n=2; q/:

One can check that fng Qk
j D�kfnC j g D .q�kn�n �q�kn/.qn�kI q/2kC1. Then

we get

ev�


f2k C 1gŠ
fkgŠ

�
H G.k; b; 0/ D

X
n

�;G
q

b.n2�1/
4 fng

kY
j D�k

fn C j g

D �2
X

n

�;G
q

b.n2�1/
4 q�nk.qn�kI q/2kC1;

where the last equality follows from (14), (23) and the fact that

q�kn�n.qn�kI q/2kC1 D �q�kn.qn�kI q/2kC1jn!�n:

Analogously, we have

ev�


f2k C 1gŠ
fkgŠ �kC1

�
H G.k; b; 1/

D
X

n

�;G
q

b.n2�1/
4 fng�n

kY
j D�k

fn C j g

D �2
X

n

�;G
q

b.n2�1/
4 q�n.kC3=2/.qn�kI q/2kC2:

This proves a).
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b) Let us first show that
p

r;
p

2 2 ZŒ�1=4; e8�. Observe that
p

2 2 ZŒe8�.
Further,

.r�1/=2Y
j D1

j1 � �j j D
8<
:

p
r if r is odd;p
r=2 if r is even.

Since j1 � �j j D ˙p�1 .�j=2 � ��j=2/, we have
p

r 2 ZŒ�1=4; e4�.
Part (b) follows now from (9), Proposition 4.4 (b) and the proof of Lemma 2.2.

c) Since DG
defD jF G

U C j, from the proof of Lemma 2.2, we get

j1 � �jDG D

8̂
ˆ̂<
ˆ̂̂:

p
r if G D SO.3/;

p
2r if G D SU.2/ and ord.�1=4/ D 4r ;

2
p

r if G D SU.2/ and ord.�1=4/ D r .

Clearly,
p

r is divisible by j1 � �j, so DG 2 ZŒ�1=4; e8�. The second statement
follows from (b).

d) By part (a), it is enough to show that

X
n

�;G
q

b.n2�1/
4

� 3n
2 f .qn; q/ D 0

for any f 2 ZŒz˙1; q˙1�. We can assume f D za; a 2 Z. Assume b D 2b0. Then

4
X

n

�;SU.2/
q

b.n2�1/
4

� 3n
2 qna D 2��b0=2

2r�1X
nD0

.�1=2/b0n2�3nC2na

D 2��b0=2 G.b0; 2a � 3; �1=2/;

which is 0 by Proposition 4.4 (c), since ord.�1=2/ is always 2r if r is even.

4.5. Lens spaces. Suppose L t L0 is the Hopf link with framing b ¤ 0 on L and
framing 0 on L0. Besides, the color of L0 is a fixed number a. By surgery on L from
.S3; L0/ we get the pair .L.b; 1/; L0/, where L.b; 1/ is the lens space. It is known
that JLtL0.n/ D qb.n2�1/=4 Œna�. Hence we have

�G
L.b;1/;L0.�/ D

X
n

�;G
qb.n2�1/=4Œna�Œn�

X
n

�;G
qsn.b/.n2�1/=4Œn�2

: (24)

Note that the invariant of L.b; �1/ D L.�b; 1/ is just the complex conjugate
of (24).
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Lemma 4.6. a) If b and r are co-prime, then �
SO.3/

L.b;1/
is invertible in ZŒ��.

b) Suppose r is even. For b D 2k , there is a knot K in the lens space M D
L.2k ; �1/ colored by an odd number such that

�
SU.2/
M;K .�/ 6D 0:

Proof. a) The SO.3/ invariant of L.b; 1/ can be easily computed. By completing the
square we have

�
SO.3/

L.b;1/
.�/ D �.sn.b/�b/=4 .1 � ��b�

/

.1 � ��1/

G.b; 0; �/

G.1; 0; �/
;

which is a unit in ZŒ�1=4� by Proposition 4.4 (b). Here b�b � 1 .mod r/.

b) Let L t L0 be the Hopf link with framing �b D �2k on L and framing
0 on L0. Suppose L0 is colored by a D 2s C 1. Surgery on L gives us a pair
.M; K/ D .L.2k; �1/; K/.

An easy calculation shows

�
SU.2/
M;K .�/ � G.�b; 4s C 4; �1=4/ � G.�b; 4s; �1=4/

.1 � �/ G.�1; 0; �1=4/
: (25)

For b D 2, then M D RP 3. Choose s D 0, or a D 1. Then �
SU.2/
M;K .�/ D

�
SU.2/
M .�/ ¤ 0.

For b D 4 again choose s D 0. Then one and only one term in the numerator
of (25) is zero, by Proposition 4.4.

Suppose b D 2k > 4. Then c
defD .b; 4r/ > 4. By Proposition 4.4 one can choose

s such that G.�b; 4s; �1=4/ ¤ 0. Then c j 4s, and c does not divide 4s C 4. Hence
G.�b; 4s C 4; �1=4/ D 0. We conclude that �

SU.2/
M;K .�/ ¤ 0.

5. Symmetry Principle and splitting of the SU.2/ invariant

The symmetry principle of the colored Jones polynomial and the splitting of the SU.2/

Witten–Reshetikhin–Turaev invariant were discovered by Kirby and Melvin in [16].
In [18] and [20], Le generalized these to all higher ranked Lie groups. Here we extend
the symmetry principle and splitting to the case of pairs of a 3-manifold and a colored
link inside. We show that the symmetry principle for a link in an arbitrary 3-manifold
holds only for SO.3/ invariant, but does not hold for the SU.2/ invariant.
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5.1. Symmetry Principle for links in S 3. Suppose � is a root of unity of order r .
Then the colored Jones polynomial at � is periodic with period 2r , i.e.

ev�.JL.n1; : : : ; ni C 2r; : : : ; nm// D ev�.JL.n1; : : : ; ni ; : : : ; nm//; (26)

and under the reflection r � n ! r C n it behaves as follows:

ev�.JL.n1; : : : ; r C ni ; : : : ; nm// D � ev�.JL.n1; : : : ; r � ni ; : : : ; nm//I (27)

see [18]. This means that one can restrict the colors to the interval Œ0; r�.
The symmetry principle tells us how JL behaves under the transformation n !

r � n. More precisely, let Z=2Z D f0; 1g act on Z=rZ by 0 
 n D n, 1 
 n D r � n.
For a D .a1; : : : ; am/ 2 f0; 1gm and n D .n1; : : : ; nm/ 2 .Z=rZ/m, let a 
 n D
.a1 
 n1; : : : ; am 
 nm/. In addition, we set On defD n � 1 for any integer n 2 Z.

Proposition 5.1. Suppose .`ij / is the linking matrix of L. With the notations as above
one has

ev�.JL.a 
 n// D .��r=2/
P

i ai � t ev�.JL.n//;

where

t D r.r � 2/

4

X
i;j

`ij ai aj C r

2

X
i;j

`ij ai Onj ; (28)

and .`ij / is the linking matrix of L.

Proof. This is the sl2 case of [18], Theorem 2.6. The factor .��r=2/
P

i ˛i comes from
the difference between our JL and QL in [18], where QL is equal to JL times the
quantum dimensions of the colors on L.

Remark 5.2. If ord.�1=2/ D 2r , then ��r=2 D 1, and this case was considered
in [16]. Proposition 5.1 handles also the case when ord.�1=2/ ¤ 2r , i.e. when
ord.�1=2/ D r .

A simple but useful observation is that if all entries of n are odd, then the second
term in (28) is an integer multiple of r , hence can be removed.

5.2. Witten–Reshetikhin–Turaev SO.3/ invariant for an arbitrary colored link
in M . In the literature, the Witten–Reshetikhin–Turaev SO.3/ invariant of the pair
.M; L0/ was defined in the case when all colors of L0 are odd or all equal to 2;
compare [23]. Here we extend this definition to arbitrary colors. Since the colors of
L0 will play an important role in this section, we will make the dependence on them
explicit in the notation.

Note that SO.3/ invariants of M with even colored links inside are not coming
from Topological Quantum Field Theories. The main reason is that fusion preserves
odd colors. However, fusion of an odd and an even color produces an even color.
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This violates the invariance of (6) under sliding in the case when some of the si ’s
are even. We will show that this defect can easily be taken into account by a simple
factor depending on the linking matrix and parity of the colors only.

Throughout the remaining of this section let r D ord.�/ be odd and let s D
.s1; : : : ; sl/ be the color on L0. Let .`ij / and .pij / be the linking matrices of L and
L0 respectively. The linking number between the i -th component of L and the j -th
component of L0 will be denoted by Q̀

ij .
Let

F
SO.3/

LtL0 .�I s/
defD ��.L0;s/

X
n1;:::;nm

�;SO.3/
Œn� JLtL0.n; s/; (29)

where Œn�
defD Qm

iD1Œni � and

�.L0I s/
defD �r.r � 2/

4

lX
i;j D1

pij Osi Osj :

Observe that, when all si are odd, (29) coincides with (5).

Lemma 5.3. F
SO.3/

LtL0 .�I s/ is invariant under the handle slide of a component of L or
L0 over a component of L.

Proof. The invariance under sliding of one component of L over another component
of L follows by standard arguments; see e.g. [21].

Let L t L00 be the link obtained from L t L0 by sliding a component of L0 over
a component of L. It is enough to show that

F
SO.3/

LtL0 .�I s/ D F
SO.3/

LtL00.�I s/:

Using the fact that Os 
 Os 
s D s for any s with Os � s �1 .mod 2/ and Proposition 5.1,
we have

��.L0;s/ JLtL0.n; s/ D .��r=2/
P

i Osi JLtL0.n; Os 
 s/: (30)

Here we used the fact Os 
 s is always odd, and hence all summands of
P

pij Osi
1Osj 
 sj

are even.
By the invariance of F

SO.3/
LtL0 .�; s/ in the standard case when all colors are odd, we

get

X
n1;:::;nm

�;SO.3/
Œn�JLtL0.n; Os 
 s/ D

X
n1;:::;nm

�;SO.3/
Œn�JLtL00.n; Os 
 s/: (31)

Further using Proposition 5.1 again, we obtain

JLtL00.n; Os 
 s/ D .��r=2/
P

i Osi ��.L00;s/JLtL00.n; s/: (32)

Inserting (30) and (32) into (31) we get the result.
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Lemma 5.3 suggests that one can define �
SO.3/
M;L0 .�I s/ for arbitrary s by substituting

F
SO.3/

LtL0 .�/ given by (29) into (6). When all colors of L0 are odd, the only additional
factor ��.L0;s/ is 1 and we get back our old invariant.

Corollary 5.4. �
SO.3/
M;L0 .�I s/ is an invariant of the pair .M; L0/.

Remark 5.5. For a colored link L in the 3-sphere, our invariant equals to

�
SO.3/

S3;L
.�I s/ D ��r.r�2/=4

P
i;j lij Osi Osj ev�.JL.s// :

Hence if some colors of L are even, this invariant might differ from the colored Jones
polynomial by some factor depending on the linking matrix .lij / of L.

5.3. Symmetry Principle for the Witten–Reshetikhin–Turaev SO.3/ invariant.
We use the same notations as in the previous section.

Proposition 5.6. For a 2 f0; 1gl and s 2 .Z=rZ/l one has

�
SO.3/
M;L0 .�I a 
 s/ D .��r=2/

P
i ai �

SO.3/
M;L0 .�I s/:

Proof. By Proposition 5.1 we have

X
n1;:::;nm

�;SO.3/
Œn�JLtL0.n; a 
 s/ D .��r=2/

P
i ai �u

X
n1;:::;nm

�;SO.3/
Œn�JLtL0.n; s/;

where u D r.r�2/
4

P
i;j pij aiaj C r

2

P
i;j pij ai Osj . Here we use the fact that n is odd

in the above sum. On the other hand

w
defD �.L0I s/ � �.L0I a 
 s/

D r.r � 2/

4

X
i;j

pij . 1ai 
 si2aj 
 sj � Osi Osj /:

Then

u � w � r.r � 2/

4

X
i

pi i .Os2
i � 1ai 
 si

2 C 2ai Osi C a2
i /

C r

2

X
i<j

pij .Osi Osj � 1ai 
 si2aj 
 sj C ai Osj C aj Osi C ai aj /

� 0 mod r;

which can be verified directly.
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Remark 5.7. Proposition 5.6 is not true for the Witten–Reshetikhin–Turaev SU.2/

invariant. For example, consider the Hopf link with framing 2 on the first com-
ponent and framing 0 on the second. Surgery on the first component produces a
pair .RP 3; K/. If ord.�/ D 3 and ord.�1=4/ D 12 then �

SU.2/
M;K .1I �/ D 0 and

�
SU.2/
M;K .1 
 1 D 2I �/ ¤ 0.

5.4. Splitting. In [16] it was proved that when both the SO.3/ and SU.2/ Witten–
Reshetikhin–Turaev invariants can be defined, i.e. when r is odd, then one has the
splitting

�
SU.2/
M .�/ D �

Z=2
M .�/ �

SO.3/
M .�/;

where �
Z=2
M .�/ is a simple invariant depending only on the linking pairing of M . Here

we generalize this result for invariants of pairs L0 � M . We will follow the approach
in [19], where the splitting is generalized to all higher ranked simple Lie algebras.

Let s1; : : : ; sl be the colors on L0 and set

F
Z=2

LtL0.�I s/ D �
r.r�2/

4

P
pij Osi Osj

X
˛1;:::;˛m2f0;1g

�
r.r�2/

4

P
`ij ˛i j̨ C r

2

P
"i ˛i ; (33)

where .`ij / and .pij / are the linking matrices of L and L0 respectively, and "i is
defined by (2).

For example

F
Z=2

U ˙
.�/ D 1 C �˙ r.r�2/

4 : (34)

We will assume that r D ord.�/ is odd and �1=4 is chosen so that ord.�1=4/ ¤ 2r ,
i.e. ord.�1=4/ is either r or 4r . This choice guarantees that F

Z=2

U ˙
.�/ ¤ 0. Define

�
Z=2
M;L0.�I s/ D F

Z=2
LtL0.�I s/

.F
Z=2

U C .�//ˇC.F
Z=2
U � .�//ˇ�jF Z=2

U C .�/jˇ
: (35)

Then �
Z=2
M;L0.�I s/ is an invariant of the pair .M; L0/.

Remark 5.8. This type of invariants were studied in [27] and [7] for 3-manifolds
without links inside, and in [8] for 3-manifolds with links inside. When the abelian
group is Z=2Z, set the parameters ci in [8] to be equal to si � 1 mod 2, and define
the quadratic form q on Z=2Z as follows: q.0/ D 0, q.1/ D .r � 2/=4, then the
invariant introduced in [8] is equal to �

Z=2
M;L0.�I s/ after setting �r=4 D p�1.

Proposition 5.9. Suppose r D ord.�/ is odd, and ord.�1=4/ is either r or 4r .

(a) One has the splitting

�
SU.2/
M;L0 .�I s/ D �

Z=2
M;L0.�I s/ �

SO.3/
M;L0 .�I s/:
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(b) If ord.�1=4/ D r , then �
Z=2
M;L0.�I s/ D 1 and

�
SU.2/
M;L0 .�I s/ D �

SO.3/
M;L0 .�I s/:

(c) One has the integrality

�
Z=2
M;L0.�I s/ 2 ZŒ�1=4; e8�:

Proof. (a) Recall that Q̀
ij is the linking number between the i -th component of L and

the j -th component of L0. Also note that for all a 2 .Z=2Z/m, a 
 .a 
 n/ D n. By
Proposition 5.1 we have

ev�.Œn�JLtL0.n; s// D � t ev�.Œa 
 n�JLtL0.a 
 n; s//;

where t D r.r�2/
4

P
`ij ai aj C r

2

P Q̀
ij ai Osj . Note that the factor .��r=2/

P
ai is

missing because of the quantum integers. Therefore by (5), (29), and (35) we have

F
SU.2/

LtL0 .�I s/ D �
r.r�2/

4

P
pij Osi Osj

X
ai 2f0;1g

�
r.r�2/

4

P
`ij ai aj C r

2

P Q̀
ij ai Osj F

SO.3/
LtL0 .�I s/

D F
Z=2

LtL0.�I s/ F
SO.3/

LtL0 .�I s/ ;

which implies (a).

(b) If ord.�1=4/ D r , then by (33), F
Z=2

LtL0.�I s/ D 2m. In particular, we have

F
Z=2

U ˙
.�I s/ D 2. It follows that �

Z=2
M;L0.�I s/ D 1.

(c) The case ord.�1=4/ D r was covered by (b). Assume that ord.�1=4/ D 4r .
Then from (34) it follows that F

Z=2

U ˙
.�/ � p

2. Hence the denominator of (35) is

� .
p

2/m.
According to [16], p. 522, we may assume `ij � 0 mod 2 if i ¤ j . Since

`ij ˛i j̨ appears twice in the exponent in (33) if i ¤ j , we can write

F
Z=2

LtL0.�I s/ �
mY

iD1


 X
˛i 2f0;1g

�
1
4

r.r�2/`ii ˛2
i

C r
2

"i ˛i

�

D
mY

iD1

.1 C �
1
4

r.r�2/`ii C r
2

"i /:

Since �
1
4

r.r�2/
P

`ii C r
2

P
"i is a 4-th root of unity, each factor in the above product

is either 2, 0, or � p
2, and hence is divisible by

p
2. This means F

Z=2
LtL0.�I s/, the

numerator of (35), is divisible by .
p

2/m, and the statement follows.
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6. Diagonalization of 3-manifolds

We recall and refine some well-known facts about diagonalization of 3-manifolds.
The first diagonalization result was obtained in [28] and was further developed in [20],
[4], and [2].

A 3-manifold is said to be diagonal of prime type if it can be obtained by surgery
along a framed link L � S3 with diagonal linking matrix diag.b1; : : : ; bm/ such that
bi D ˙p

ei

i , where each pi is a prime, 1, or 0. Denote by L.b; a/ the lens space
obtained from S3 by surgery on the unknot with framing b=a. Also M #M 0 is the
connected sum of M and M 0 and M #s is the connected sum of s copies of M .

Proposition 6.1. For every 3-manifold M , there exists a 3-manifold N of the form

N D L.2k1 ; �1/# � � � # L.2kj ; �1/;

such that for every positive integer s, M #2s#N is diagonal of prime type.

To prepare for the proof we recall some well-known facts about linking pairing.
A linking pairing on a finite abelian group G is a non-singular symmetric bilinear map
from G 	G to Q=Z. Two linking pairings 	; 	0 on respectively G; G0 are isomorphic
if there is an isomorphism between G and G0 carrying 	 to 	0. With the obvious block
sum, the set of equivalence classes of linking pairings is a semigroup.

Any non-singular n 	 n symmetric matrix B with integer entries gives rise to a
linking pairing 
B on Zn=BZn by 
B.x; x0/ D xt B�1x0 2 Q=Z, where x; x0 2 Zn

and xt is the transpose of x. A linking pairing is diagonal of type B if it is isomorphic
to 
B , where B is a non-singular n 	 n diagonal matrix with integer entries.

An enhancement of an n	n symmetric matrix B is any matrix of the form B ˚D,
where D is a diagonal matrix with entries 0 or ˙1 on the diagonal.

For any closed oriented 3-manifold M , there is a linking pairing 
.M/ on the
torsion subgroup of H1.M; Z/ defined by the Poincare duality; see [14]. For example,
if b ¤ 0 is an integer, then the lens space L.b; 1/ has linking pairing 
.b/, and
L.b; �1/ has linking pairing 
.�b/. Here .b/ is the 1 	 1 matrix with entry b.

It is clear that 
.M #M 0/ D 
.M/ ˚ 
.M 0/. The result of [20], Section 3.5,
shows the following.

Proposition 6.2. If the linking pairing 
.M/ on the torsion subgroup of H1.M; Z/

is diagonal of type B , then M can be obtained from S3 by surgery along an oriented
framed link whose linking matrix is an enhancement of B .

Proof of Proposition 6.1. In [4], Section 2.2, it was noticed that 
.M #M/ is almost
diagonal. More precisely,


.M #M / D 
B ˚ 	; (36)
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where B is a diagonal matrix whose diagonal entries are prime powers and 	 has the
form

	 D
jM

iD1

E
ki

0 :

Here Ek
0 is a certain linking form on Z=2k 	Z=2k . We don’t need the exact descrip-

tion of Ek
0 . For us it is important that (see [14])

Ek
0 ˚ 
.�2k/ D 
.�2k/ ˚ 
.2k/ ˚ 
.2k/: (37)

Note that there is still one 
.�2k/ in the right hand side of (37). From (37) and (36),


.N #.M #M/#s/ D s
B ˚
jM

iD1

.
.�2ki / ˚ 2s 
.2ki // D 
B0 ; (38)

where B 0 is a diagonal matrix with diagonal entries of the form ˙pm with prime
p. By Proposition 6.2, N #.M #M/#s is diagonal of prime type. This completes the
proof of Proposition 6.1.

7. Proof of the integrality in the SO.3/ case

Throughout this section G D SO.3/ and � is a root of unity of odd order r .

Proposition 7.1. For integer 0 � k � .r � 3/=2, arbitrary integer b, and " 2 f0; 1g,

H SO.3/.k; b; "/

H SO.3/.0; ˙1; 0/
2 ZŒ�1=4; e8�; (39)

and

H SO.3/.k; 0; "/

.1 � �/DSO.3/
2 ZŒ�1=4; e8�: (40)

Proof. First note that by Lemmas 4.3 (e) and 4.5 (b), O� � H SO.3/.0; ˙1; 0/. By
Lemma 4.5 (a), there is f".z; q/ 2 I2kC1C" � ZŒz˙1; q˙1� such that

H SO.3/.k; b; "/

H SO.3/.0; ˙1; 0/
�

2
X

n

�;SO.3/
q

b.n2�1/
4 q

�3"n
2 f".q

n; q/

x2kC1C"O�

: (41)

Since r is odd, .n2 � 1/=4 and .1 � n/=2 are integers, and there are integers
2�; 4� such that 2� 2 � 4� 4 � 1 .mod r/. We then have �.n2�1/=4 D �4�.n2�1/,
��3n=2 D ��3=2�3.1�n/ 2�

.
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The numerator of (41) is

2
X

n

�;SO.3/
q

b.n2�1/
4 q

�3"n
2 f".q

n; q/

D ��3"=2

2r�1X
nD0
n odd

�4�b.n2�1/C3"2�.1�n/ f".�
n; �/

D ��3"=2

r�1X
nD0

�4�b.n2�1/C3"2�.1�n/ f".�
n; �/;

(42)

where the second identity follows by replacing odd n 2 Œr; 2r � 1� with n � r , which
is even and in Œ0; r � 1�.

By Proposition 4.1, the right hand side of (42) is divisible by the denominator of
the right hand side of (41), and (39) follows.

Statement (40) follows from (39) with b D 0 and Lemma 4.5(c), which says that
H SO.3/.0; ˙1; 0/ � .1 � �/ DSO.3/.

Proof of Theorem 2. By Proposition 7.1, each factor in the right hand side of (10)
is in ZŒ�1=4; e8�, hence �

SO.3/
M;L0 .�/ 2 ZŒ�1=4; e8� if M is diagonal.

Now suppose M is an arbitrary 3-manifold. Let N be the manifold described
in Proposition 6.1, for which M #M #N is diagonal. Since the Witten–Reshetikhin–
Turaev invariant is multiplicative with respect to connected sum, we get

.�
SO.3/
M;L0 .�//2�

SO.3/
N .�/ 2 ZŒ�1=4; e8�:

Since 2k is coprime to r , �
SO.3/

L.2k ;�1/
.�/ is a unit in ZŒ�1=4� by Lemma 4.6 (a). It

follows that �
SO.3/
N .�/ is a unit, hence .�

SO.3/
M;L0 .�//2 2 ZŒ�1=4; e8�. By Lemma 4.3 (c),

�
SO.3/
M;L0 .�/ 2 ZŒ�1=4; e8�. This completes the proof of the theorem.

8. Proof of the integrality in the SU.2/ case

If the order of � is odd, then by the splitting property (Proposition 5.9),

�
SU.2/
M;L0 .�/ D �

Z=2
M;L0.�/ �

SO.3/
M;L0 .�/:

Both factors of the right hand side are algebraic integers by Theorem 2 and Proposi-
tion 5.9. Hence �

SU.2/
M;L0 .�/ is also an algebraic integer.

Therefore throughout the remaining part of this section we will assume that r D
ord.�/ is even. Note that in this case the order of �1=4 is always 4r and e8 2 ZŒ�1=4�.
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Proposition 8.1. Let r D ord.�/ be even. Suppose b D ˙ps , where p is 0, 1 or a
prime, k an integer, and " 2 f0; 1g. Then

H SU.2/.k; b; "/

H SU.2/.0; ˙1; 0/
2 ZŒ�1=4� and

H SU.2/.k; 0; "/

.1 � �/ DSU.2/
2 ZŒ�1=4�:

The following lemma will be used in the proof of the above proposition for odd b.

Lemma 8.2. Suppose b is odd, r is even, a 2 Z, and f 2 Ik . Then

A
defD

X
n

�;SU.2/
q

bn2

4 C an
2 f .qn; q/

xkO�

belongs to Z.2/Œ�
1=4�, where Z.2/ is the set of all rational numbers with odd denom-

inators.

Proof. Let r D rero, where ro is odd, and re is a power of 2. Then ord.�1=4/ D
4r D .4re/ro, with 4re and ro coprime. By definition,

X
n

�;SU.2/
q

bn2

4
C an

2 qnj

D 1

4
G.b; 4j C 2a; �1=4/ (by Proposition 4.4 (d))

D 1

4
G.bro; 4j C 2a; �ro=4/G.4bre; 4j C 2a; �re/

D 1

4
�da2=4G.bro; 0; �ro=4/�d.j 2Caj /G.4b re; 4j C 2a; �re /;

(43)

where d is any multiple of ro such that db � �1 .mod 4re/.
Let us extend �.z/ D z ˝ z to a ZŒq˙1�-algebra homomorphism

� W ZŒz˙1; q˙1� �! ZŒz˙1; q˙1� ˝ZŒq˙1� ZŒz˙1; q˙1�:

Define Q.j / D dj 2 C daj . Also define a ZŒq˙1=4�-module homomorphism

T W ZŒz˙1; q˙1=4� �! ZŒq1=4�

by
T .zj / D G.4b re; 4j C 2a; �re /:

Using (43) we can rewrite
X

n

�;SU.2/
q

bn2

4
C an

2 f .qn; q/

D �da2=4

4
G.bro; 0; �ro=4/ ev�f.LQ ˝ T /.� f /g:

(44)
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It is enough to consider the case f D zm.qlzI q/k. Applying Corollary 3.7 to
�.zm.qlzI q/k/, using z1 D z ˝1 and z2 D 1˝z, we see that A is a ZŒ�˙1=4�-linear
combination of terms of the form

B D

G.b ro; 0; �ro=4/

4O�

�
.�I �/k ev�fLQ.zm.zI q/k1
/g

xk.�I �/k1

�
T .zm.zI q/k2
/

.�I �/k2

�
(45)

with ki � k. There are three factors on the RHS of (45) and we will show that each
factor belongs to Z.2/Œ�

1=4�. The last factor in B is in ZŒ��. In fact, if zm.zI q/k2
DP

j cj .q/zj then

T .zm.zI q/k2
/ D

X
j

cj .�/G.4bre; 4j C 2a; �re /

D
X

j

cj .�/

ro�1X
nD0

�2re.bren2C.2j Ca/n/

D
X

n

�4br2
e n2C2rean

X
j

cj .�/�4ren j

D
X

n

�4br2
e n2C2ren.aC2m/.�4renI �/k2

;

which is divisible by .�I �/k2
in ZŒ��. This shows that the last factor of (45) is in

Z.2/Œ�
1=4�.

By Theorem 3.2, ev�.LQ.zm.zI q/k1
// is in xk1

ZŒ��. Hence the second factor
is in

.�I �/k xk1

xk.�I �/k1

ZŒ�� D .�I �/bk=2c
.�I �/bk1=2c

ZŒ�� � ZŒ��:

By Proposition 4.4 (b), G2.b ro; 0; �ro=4/ � 8re, while, by Lemma 4.3 (e), O2
�

�
r=2 It follows that the square of the first factor, and hence the first factor itself, is in
re

r
ZŒ�� D 1

ro
ZŒ�� � Z.2/Œ��: Here we use the fact that Z.2/Œ�� is integrally closed.

We can conclude that B , and hence A, is in Z.2/Œ��:

Proof of Proposition 8.1. By Lemma 4.5 there is f".z; q/ 2 I2kC1C" such that

H SU.2/.k; b; "/

H SU.2/.0; ˙1; 0/
�

1

4

4r�1X
nD0

�
b
4

.n2�1/��3"n=2f".�
n; �/

x2kC1C"O�

: (46)
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We split the proof into 3 cases: (1) b � 0 mod 4; (2) b D ˙2; and (3) b is odd.

(1) b D 4b0; b0 2 Z. Since H SU.2/.k; b; 1/ D 0 by Lemma 4.5 (d), we can
assume " D 0. By (46),

H SU.2/.k; b; 0/

H SU.2/.0; ˙1; 0/
�

1

4

4r�1X
nD0

�b0.n2�1/f0.�n; �/

x2kC1O�

D

r�1X
nD0

�b0.n2�1/f0.�n; �/

x2kC1O�

;

which is in ZŒ�� by Proposition 4.1.

(2) b D ˙2. Again H SU.2/.k; b; 1/ D 0 by Lemma 4.5 (d), and we can assume
" D 0. This case was studied in [3], where the exact value of H SU.2/.k; ˙2; 0/ was
obtained. By [3], Lemma 5.2, we have

H SU.2/.k; ˙2; 0/ � 2
p

r

kY
iD0

1 � �.2iC1/=2

1 � �2iC1

D 2
p

r

kY
iD0

1

1 C �.2iC1/=2
:

Hence from Lemma 4.5, with k � r=2 � 1,

H SU.2/.k; ˙2; 0/

H SU.2/.0; ˙1; 0/
�

p
r=O�

kY
iD0

.1 C �.2iC1/=2/

2 zZŒ�1=4�

where

z D
p

r=O�

r=2�1Y
iD0

.1 C �.2iC1/=2/

:

The square of the numerator of z is r=O2
�

� 2, by Lemma 4.3.
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Let us calculate the square of the denominator. For any integer j one has

.1 C �.2j C1/=2/ � .1 � �.2j C1/=2/:

Hence


 r=2�1Y
j D0

.1 C �.2j C1/=2/
�2 �

r=2�1Y
j D0

.1 C �.2j C1/=2/.1 � �.2j C1/=2/

D
r=2�1Y
j D0

.1 � �.2j C1//

�

r�1Y
j D1

.1 � �j /

r=2�1Y
j D1

.1 � �2j /

D r

r=2
D 2:

We can conclude that
H SU.2/.k; ˙2; 0/

H SU.2/.0; ˙1; 0/
2 ZŒ�1=4�:

(3) Assume that b is odd. Splitting the sum in the numerator of the right hand side
of (46) into even and odd n we get

1

4

4r�1X
nD0

�b.n2�1/=4��3"n=2f".�
n; �/

D 1

4

n
��b=4

2r�1X
nD0

�bn2�3"nf".�
2n; �/

C ��3"=2

2r�1X
nD0

�b.n2Cn/�3"nf".�
2nC1; �/

o

D 1

2

n
��b=4

r�1X
nD0

�bn2�3"nf".�
2n; �/

C ��3"=2

r�1X
nD0

�b.n2Cn/�3"nf".�
2nC1; �/

o
:

(47)
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Since f".z
2; q/ and f".z

2q; q/ belong to I2kC1C" (according to Proposition 3.1),
each summand in the curly brackets of the right hand side of (47) is divisible by
x2kC1C"O� , by Proposition 4.1. It follows from (46) that

H SU.2/.k; b; "/

H SU.2/.0; ˙1; 0/
2 1

2
ZŒ�1=4�;

which, together with Lemma 8.2, implies

H SU.2/.k; b; "/

H SU.2/.0; ˙1; 0/
2 1

2
ZŒ�1=4� \ Z.2/Œ�

1=4� D ZŒ�1=4�:

Finally

H SU.2/.k; 0; "/

.1 � �/ DSU.2/
2 ZŒ�1=4�

follows from Lemma 4.5 (c), which says that H SU.2/.0; ˙1; 0/ � .1��/ DSU.2/.

Proof of Theorem 1. By Proposition 8.1, each factor in the right hand side of (10)
is in ZŒ�1=4�, hence �

SU.2/
M;L0 .�/ 2 ZŒ�1=4� if M is diagonal of prime type.

Now suppose M is an arbitrary 3-manifold. According to Proposition 6.1, there
exist lens spaces L.2k1 ; �1/; : : : ; L.2kj ; �1/, such that M #2s#N is diagonal of prime
type for every positive integer s. Here

N
defD #j

iD1 L.2ki ; �1/ :

By Lemma 4.6, there is an odd colored knot Ki � L.2ki ; �1/ such that �
SU.2/

L.2ki ;�1/;Ki

is not 0. The knots Ki together form a link L00 � N , and

�
SU.2/
N;L00 .�/ D

Y
i

�
SU.2/

L.2ki ;�1/;Ki

¤ 0:

Taking the connected sum of .N; L00/ with 2s copies of .M; L0/, we get a diagonal
3-manifold of prime type. Hence,

.�
SU.2/
M;L0 .�//2s�

SU.2/
N;L00 .�/ 2 ZŒ�1=4�

for every positive integer s. Applying Lemma 4.3 (c), we get �
SU.2/
M;L0 .�/ 2 ZŒ�1=4�.
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Appendix. Proof of Theorem 2.1

A.1. Algebraic preliminaries. We first recall the universal quantized algebra Uh D
Uh.sl2/ and some of its properties. For more details see e.g. [12].

The universal quantized algebra Uh D Uh.sl2/ is the h-adically complete QŒŒh��-al-
gebra, topologically generated by the elements H; E; and F , satisfying the relations

HE � EH D 2E;

HF � FH D �2F;

EF � FE D K � K�1

v � v�1
;

where
K

defD exp.hH=2/; v
defD exp.h=2/; v2 D q:

The algebra Uh has a structure of Hopf algebra, which makes Uh into a Uh-module
via the adjoint representation, and defines a tensor product on the set of Uh-modules.

In particular, the completed tensor powers U
Ő m

h
is a Uh-module via the adjoint rep-

resentation. For a set Y � U
Ő m

h
its subset of invariant elements is defined by

Y inv defD fy 2 Y j a � y D �.y/; for all a 2 Uhg;

where � is the antipode of Uh and a � y is the adjoint action. It is known that .Uh/inv

is exactly the center of Uh.
For each positive integer n there is a unique n-dimensional irreducible Uh -module,

denoted by Vn, we set V
defD V2. Let

R D SpanZŒv˙1�fVn; n � 1g;

which is a ZŒv˙1�-algebra whose multiplication is the tensor product. One has

VnV D VnC1 C Vn�1; (A.48)

and as a ring R D ZŒv˙1�ŒV �, the ZŒv˙1�-polynomial algebra in V .
For an Uh-module W and x 2 Uh the quantum trace is defined by

trW
q .x/ D tr.xK�1; W /;

which can be linearly extended to the case when W is a ZŒv˙1�-linear combination
of Uh-modules.

The quantum trace preserves ad-invariance, which means the following. Suppose
W 2 R and y 2 .U ˝m

h
/inv, then .id˝.m�1/ ˝ trW

q /.y/ 2 .U
˝.m�1/

h
/inv.
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A.2. New bases for R. In R consider the following elements: P
.0/
0 D P

.1/
0 D 1,

P .0/
n D

nY
j D1

.V � �2j �1/ ; P .1/
n D

nY
j D1

.V � �2j / ;

where �j D vj Cv�j . Note that P
.0/
n is Pn of [12]. Since P

.0/
n is a monic polynomial

of degree n in V with coefficients in ZŒv˙1�, it is clear that the set fP .0/
n ; n D

0; 1; 2; : : : g forms a ZŒv˙1�-basis of R. Similarly, fP .1/
n ; n D 0; 1; 2; : : : g also

forms a ZŒv˙1�-basis of R. It is not difficult to express Vn through these bases. In
fact, (A.48), together with an easy induction, will give the following identities, the
first of which was obtained in [12]:

Vn D
n�1X
kD0

�
n C k

2k C 1

�
P

.0/

k
and Vn D

n�1X
kD0

�
n C k

2k C 1

�
�n

�kC1

P
.1/

k
: (A.49)

A.3. Integral subalgebras and their completions. Following [12] let U
.0/
q be the

ZŒq˙1�-subalgebra of Uh generated by e, K˙2, and zF .l/ with l D 0; 1; 2; : : : , where

zF .l/ defD ql.1�l/=4F lKl=Œl�Š and e
defD f1gE:

Let U
.1/
q D K U

.0/
q and Uq D U

.0/
q ˚ U

.1/
q .

Let Fp.U˝m
q / � U˝m

q be the ZŒq˙1�-span of elements of the form y1 ˝ y2 ˝
� � � ˝ ym, where each yj belongs to Uq , and one of them belongs to Uq epUq . For
a set Y � U˝m

q define its completion

zY defD
n 1X

j D0

zp j zp 2 Y \ Fp.U˝m
q /

o
:

In particular, when m D 1, one can define zUq and zU."/
q for " 2 f0; 1g. For

e D ."1; : : : ; "m/ 2 f0; 1gm, let
A

U
˝.e/
q be the completion of U

."1/
q ˝ � � � ˝ U

."m/
q

defined as above.
The center Z.Uq/ D .Uq/inv is freely generated as an ZŒq˙1�-algebra by the

quantum Casimir operator

C D .1 � q�1/ zF .1/K�1e C K C q�1K�1 2 U.1/
q :

Set

� .0/
n D

nY
iD1

.qC 2 � .qi C 2 C q�i // and � .1/
n D C� .0/

n :
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Theorem 1.1 in [11] states that

. zU."/
q /inv D

n X
p�0

ap� ."/
p j ap 2 ZŒq˙1�

o
: (A.50)

We will need the following result.

Proposition A.3. Suppose x 2 U
."/
q , " 2 f0; 1g. Then for every n, trP

."/
n

q .x/ belongs
to .qI q/nZŒq˙1�.

Proof. If " D 0, this is [12], Lemma 8.5. The case " D 1 can be proved similarly. It

is enough to set x D zF .l/K2j C1el 0
. It is easy to see that trP

.1/
n

q . zF .l/K2j C1el 0
/ D 0

if l ¤ l 0. Set

B.n; l; j /
defD trP

.1/
n

q . zF .l/K2j C1el/:

Then it is clear that B.n; l; j / D 0 when l > n because el vanishes on V1; : : : ; VnC1.
When l � n, by a similar argument as in the proof of [12], Lemma 8.8, we have

B.n; l; j / D fj � ngfj C ngB.n � 1; l; j / C qj .1 � q�l/B.n � 1; l � 1; j C 1/:

The above recursive relation and a simple induction will show that

B.n; l; j / D q�.j Cl/n.qI q/n.qI q/n�l

�
j � 1

n � l

��
j C n

n � l

�
2 .qI q/nZŒq˙1�:

Lemma A.4. For every non-negative integers k, p and " 2 f0; 1g, one has

tr
P

."/
k

q .� ."/
p / D ık;p

f2k C 1gŠ
v"f1g �"

kC1: (A.51)

Proof. The case " D 0 is proved in [12], Proposition 6.3. Hence, we restrict to " D 1.
As explained in [12], Section 6.3.1, there exists a homomorphism

' W R �! Z.Uq ˝ ZŒv˙1�/

sending V to vC . In particular, for

S .1/
n

defD V

nY
j D1

.V 2 � .�j /2/

we have '.S
.1/
n / D v�

.1/
n . Moreover, for any x; y 2 R,

trx
q.'.y// D JH .x; y/

defD hx; yi;
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where hx; yi is the Rosso pairing defined as the colored Jones polynomial of the
0-framed Hopf link H , whose two components are colored by x and y. Note that
this pairing is symmetric. Hence, for " D 1, the left hand side of (A.51) is equal to
hP .1/

k
; v�1S

.1/
p i.

Since �n
defD vn C v�n D hVn; V i=Œn�, for every f .V / 2 R we have

hVn; f .V /i D Œn�f .�n/: (A.52)

Hence if m < n, then hV2mC2; P
.1/
n i D 0 and hS .1/

n ; VmC1i D 0.
Using VnV D VnC1 C Vn�1, we get

P .1/
n D VnC1 C a ZŒv˙1�-linear combination of V1; V2 : : : ; Vn

and

S .1/
n D V2nC2 C a ZŒv˙1�-linear combination of V2; V4; : : : ; V2n:

Therefore, from Identity (A.52), we have hS .1/
m ; P

.1/
n i D 0 if m ¤ n.

Finally

v trP
.1/
n

q .� .1/
n / D hS .1/

n ; P .1/
n i

D hS .1/
n ; VnC1i

D Œn C 1��nC1

nY
j D1

..�nC1/2 � .�j /2/

D Œn C 1��nC1

nY
j D1

fj gf2n C 2 � j g:

This completes the proof of the lemma.

A.4. Proof of Theorem 2.1. Suppose L t L0 is an oriented framed link with fixed
colors s D .s1; : : : ; sl/ on L0. Here L has m ordered components and "i are defined
in (2).

According to [10], Section 1.2, there is an element JT 2 .U
Ő .mCl/

h
/inv such that

JL.n/ D .tr
Vn1
q ˝ � � � ˝ trVnm

q ˝ tr
Vs1
q ˝ � � � ˝ tr

Vsl
q /.JT /:

(In [10], JT is the universal invariant of a bottom tangle whose closure is L t L0.)



138 A. Beliakova, Q. Chen, and T. Le

Using (A.49) to express Vni
as a linear combination of P

."i /

k
, we have

JL.n/ D
ni �1X
ki D0

.tr
P

."1/

k1
q ˝ � � � ˝ tr

P
."m/
km

q ˝ tr
Vs1
q ˝ � � � ˝ tr

Vsl
q /.JT /

	
mY

iD1

�
ni C ki

2ki C 1

�
�

"i
ni

�
"i

ki C1

D
ni �1X
ki D0

.tr
P

."1/0

k1
q ˝ � � � ˝ tr

P
."m/0

km
q ˝ tr

Vs1
q ˝ � � � ˝ tr

Vsl
q /.JT /

	
mY

iD1

�
ni C ki

2ki C 1

�
fkigŠ �

"i
ni

�
"i

ki C1

;

which is (4) with

cLtL0.k/ D .tr
P

."1/0

k1
q ˝ � � � ˝ tr

P
."m/0

km
q ˝ tr

Vs1
q ˝ � � � ˝ tr

Vsl
q /.JT /:

Here P
."/0

k
D P

."/

k
=fkgŠ.

Without loss of generality, we may assume k1 D k D max.k1; : : : ; km/. By
Theorem A.3 in [2],

.id˝m ˝ tr
Vs1
q ˝ � � � ˝ tr

Vsl
q /.JT / 2 qa.

A

U˝.e/
q /inv;

for some a 2 1
4
Z. Let

y
defD .id ˝ tr

P
."2/0

k2
q ˝ � � � ˝ tr

P
."m/0

km
q ˝ tr

Vs1
q ˝ � � � ˝ tr

Vsl
q /.JT /:

Then

cLtL0.k/ D tr
P

."1/0

k1
q .y/:

Proposition A.3, as well as the fact that quantum trace preserves ad-invariance,
gives us y 2 qa.U

."1/
q /inv. Hence y has a presentation y D qa

P
p�0 dp�

."1/
p with

dp 2 ZŒq˙1�. We then have

tr
P

."1/0

k1
q .y/ D qa

X
p

dp tr
P

."1/0

k1
q .� ."1/

p /;

which belongs to
.qkC1I q/kC1

1 � q
ZŒq˙ 1

4 �

by Lemma A.4.
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