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Dualizability and index of subfactors
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Abstract. In this paper, we develop the theory of bimodules over von Neumann algebras,
with an emphasis on categorical aspects. We clarify the relationship between dualizability
and finite index. We also show that, for von Neumann algebras with finite dimensional
centers, the Haagerup L2-space and Connes fusion are functorial with respect to homor-
phisms of finite index. Along the way, we describe a string diagram notation for maps
between bimodules that are not necessarily bilinear.
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1. Introduction

The operation .AHB ;BKC / 7! AH �B KC of Connes fusion is an associative
product on bimodules between von Neumann algebras [5, 31, 33, 42]. It behaves
formally like a tensor product, but its construction is somewhat involved and relies
heavily on the notion of non-commutative L2-space [7, 16, 43]. Connes fusion
is designed so as to have the L2-space as its identity: AL2A �A HB Š AHB Š
AH�BL

2BB . Altogether, von Neumann algebras, their bimodules, and bimodule
intertwiners form a symmetric monoidal bicategory [20]. As in any bicategory,
one can talk about a morphism being dualizable1 [27, 39]: a bimodule AHB is
called dualizable, with dual B xHA, if it comes equipped with maps

R� W AH �B
xHA �! AL

2.A/A; S W BL2.B/B �! B
xH �A HB (1.1)

subject to the duality equations .R�˝1/.1˝S/ D 1, .1˝R�/.S˝1/ D 1. The dual
bimodule B xHA is well defined up to unique isomorphism. In fact, under suitable
normalization conditions on the duality mapsR� and S , the dual bimodule is well
defined up to unique unitary isomorphism. If A and B are factors one can then
define the statistical dimension of AHB as R�R D S�S [25].

A subfactor N � M has an invariant called the index ŒM W N� 2 R�1 [ ¹1º
[17, 19], and this index is finite if and only if the bimodule NL2MM is dualizable.
When that bimodule is dualizable, the index may be defined as the square of the
statistical dimension of NL2MM . We show that this definition agrees with the
traditional notion of index, by comparing the squared statistical dimension with
the optimal bound of a Pimsner–Popa inequality for the subfactor [9, 21, 30].

Given two von Neumann algebras A and B that have finite-dimensional cen-
ters (in other words are finite direct sums of factors), we call a homomorphism
f W A! B finite if the bimodule AL2BB is dualizable. Restricting attention to
these finite homomorphisms makes the L2 construction functorial:

Theorem. The assignment
A 7�! L2.A/

is a functor from the category
²

objects: von Neumann algebras with finite-dimensional center
morphisms: finite homomorphisms

to the category of Hilbert spaces and bounded linear maps.

1As written, equation (1.1) corresponds to the notion of left dualizability, but since our
bicategory has a �-structure, there is no difference between left and right dualizability.
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We conjecture that this functor in fact extends to the category of all von Neumann
algebras and finite homomorphisms.

The Connes fusion H �A K is certainly functorial in H and K. We show that
it is moreover simultaneously functorial in the three variables H , K and A:

Theorem. The assignment

.H;A;K/ 7�! H �A K

is a functor from the category

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

objects: triples .H;A;K/ where A is a von Neumann algebra
with finite-dimensional center,H is a rightA-module,
and K is a left A-module

morphisms: triples .h; ˛; k/ where ˛ is a finite homomorphism
A1 ! A2, h is a module map H1 ! H2, and k is
a module map K1 ! K2

to the category of Hilbert spaces and bounded linear maps.

Note that our techniques and results all apply equally well to type I, II, and III
von Neumann algebras.

Outlook. Our motivation for studying von Neumann algebras and Connes fusion
comes from their relationship to quantum field theory and to the Stolz–Teichner
program on elliptic cohomology. Their relevance to quantum field theory is evi-
dent in Wassermann’s work [42] where Connes fusion is used to model the fusion
rules of superselection sectors of the chiral Wess–Zumino–Witten conformal field
theory with gauge group SU.N /. Moreover, for those theories, Wassermann com-
putes the Connes fusion explicitly, and recovers the Verlinde formulas.

The ongoing program of Stolz and Teichner aims to construct elliptic coho-
mology using local quantum field theories [37, 38]. Motivated by [42], Stolz
and Teichner proposed the use of Connes fusion in their description local quan-
tum field theories. Moreover, they asked asked whether there exits an interesting
3-category that deloops the bicategory of von Neumann algebras, their bimod-
ules, and bimodule intertwiners. Here, interesting can be taken to mean that the
3-category should have many dualizable objects: as a consequence of the cobor-
dism hypothesis [26] every dualizable object corresponds to a 3-dimensional local
quantum field theory. The present paper arose as a byproduct of our ongoing con-
struction of such a 3-category using conformal nets [2, 3].
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The construction of our 3-category of conformal nets depends very much on
the theory of von Neumann algebras, in particular non-commutative L2-spaces
and the index for subfactors. We hope that the present treatment of these topics
will help make our future papers more accessible for readers who do not have a
strong background in von Neumann algebras. This paper is not a complete survey
of the index for subfactors; we mostly only discuss what we will need later on.
Many of the results in this paper are surely well-known to experts; for example the
identification of the index, defined using statistical dimension, with what we later
call the minimal index, is no doubt known, but we are not aware of a reference.

Outline. Our new graphical notation is described in Section 2, along with pre-
liminaries concerning von Neumann algebras and Haagerup’s L2-space. We em-
phasize the fact that it is not necessary to chose a state � W A ! C in order to
defineL2.A/ [16]. In Section 3, we discuss Connes fusion and some of its elemen-
tary properties. In Section 4, we investigate the concept of dualizable bimodules.
We prove that the endomorphism algebra End.AHB/ of a dualizable bimodule is
finite-dimensional and is equipped with a canonical trace. Moreover, we show the
dual is well defined up to unique unitary isomorphism. In Section 5, we define
the statistical dimension of a dualizable bimodule and introduce the categorical
definition of the index of a subfactor, namely ŒM W N� defD dim.NL2MM /

2. In Sec-
tion 6, we present our new results: the functoriality of L2 and of Connes fusion.
Finally, in Section 7, we use the Pimsner–Popa inequality to show that the cate-
gorical definition of the index agrees with other definitions [9, 17, 18, 21, 30]. We
end the paper with some useful inequalities for the index.

2. Preliminaries

Von Neumann algebras. Given a complex Hilbert spaceH , let B.H/ denote its
algebra of bounded operators. The ultraweak topology on B.H/ is the topology of
pointwise convergence with respect to the pairing with its predual, the trace class
operators.

Definition 2.1. A von Neumann algebra is a topological �-algebra that is embed-
dable as a closed subalgebra of B.H/ with respect to the ultraweak topology.

Definition 2.2. Let A be a von Neumann algebra. A left (right) A-module is a
Hilbert space H equipped with a continuous homomorphism from A (resp. Aop)
to B.H/. We will use the notationAH (respectivelyHA) to denote the fact thatH
is a left (right) A-module.
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The main distinguishing feature of the representation theory of von Neumann
algebras is the following:

Proposition 2.3 ([10, Remark 2.1.3. (iii)]). Let A be a von Neumann algebra and
letH andK be two faithful left A-modules. ThenH˝`2 Š K˝`2. In particular,
any A-module is isomorphic to a direct summand of H ˝ `2. �

If the Hilbert spaces H and K in this proposition are separable, then `2 can be
taken to mean `2.N/. Otherwise, the proposition is true for `2 D `2.X/, for X
some set of sufficiently large cardinality.

The spatial tensor product A1 x̋A2 of von Neumann algebras Ai � B.Hi / is
the closure in B.H1 ˝ H2/ of the algebraic tensor product A1 ˝alg A2; by the
above proposition, this closure is independent of the choices of Hilbert spaces
H1 and H2. The spatial tensor product is a symmetric monoidal structure on the
category of von Neumann algebras.

The Haagerup L2-space. Given a von Neumann algebra A, the space of con-
tinuous linear functionals A ! C forms a Banach space A� D L1.A/ called the
predual of A. It is equipped with two commuting A actions given by

.a�b/.x/
defD �.bxa/

and a cone
L1C.A/

defD ¹� 2 A� j �.x/ � 0; x 2 ACº:
Here,

AC
defD ¹a�a j a 2 Aº

is the set of positive elements of A.
The HaagerupL2-space ofA is anA-A-bimodule that is canonically associated

to A. It is denotedL2.A/ and its construction does not depend on any choices [16].
It is the completion of M

�2L1
C
.A/

C
p
�

with respect to some pre-inner product. We will provide more details of the con-
struction of L2.A/ at the beginning of Section 6.

Remark 2.4. At this point,
p
� 2 L2A should be treated as a formal symbol.

However, there exists a natural �-algebra structure on
L
p L

pA in which
p
� is

the (unique positive) square root of � 2 L1A – see Remark 6.3 for further details.
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As a consequence of that characterization, we learn that

u
p
�u� Dp

u�u� (2.5)

for every � 2 L1C.A/ and every unitary u 2 A.

Remark 2.6. There is an isomorphism L2.A/ Š L2.Aop/ under which the left
action of A on L2A is equal to the right action of Aop on L2.Aop/, and the right
action of A on L2A is equal to the left action of Aop on L2.Aop/.

The L2 construction is compatible with direct sums, in the sense that

L2.A˚ B/ D L2.A/˚ L2.B/:

This is a corollary of the relationship expressed in the following lemma, between
the L2-space construction and the operation of taking the corner algebra pAp
associated to a projection p 2 A.

Lemma 2.7 ([7, Lemma 2.6]). Given any projection p 2 A, there is a canonical
unitary isomorphism L2.pAp/ Š p.L2A/p sending

p
� 2 L2.pAp/ to

p
� ı E,

where E.a/ D pap. �

The bimodule L2.A/ may be characterized as follows. It is a Hilbert space
H with faithful left and right actions of A, equipped with an antilinear isometric
involution J and a self-dual cone P � H subject to the properties

(i) JAJ D A0 on H ,

(ii) JcJ D c� for all c 2 Z.A/,
(iii) J � D � for all � 2 P ,

(iv) aJaJ.P / � P for all a 2 A,

(v) �a D Ja�J � for all � 2 H and all a 2 A.

Here,
A0 defD ¹b 2 B.H/ j Œa; b� D 0; a 2 Aº

is the commutant of A; JAJ D ¹JaJ j a 2 Aº; and the cone P is called self-
dual if P D ¹� 2 H j h�; �i � 0; � 2 P º. The operator J is called the modular
conjugation. A Hilbert space H , so equipped with a modular conjugation J and
a self-dual cone P , is called a standard form. Such a standard form is unique up
to unique unitary isomorphism [7].
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Remark 2.8. If � is a faithful normal weight (an unbounded version of a state)
on a von Neumann algebra A, then the GNS Hilbert space L2.A; �/ is a standard
form for A [1] and therefore serves as a particular construction of the bimodule
L2.A/. For example, taking � to be the usual trace tr on B.H/, we see that the
ideal of Hilbert-Schmidt operators on H is a standard form for B.H/.

Example 2.9. LetH be a Hilbert space and xH its complex conjugate. ThenH˝ xH
is canonically identified with the ideal of Hilbert-Schmidt operators on H . Let
P � H ˝ xH correspond to the positive Hilbert-Schmidt operators, and J to the
operation x 7! x�, for x a Hilbert-Schmidt operator. Then .H ˝ xH; J; P / is a
standard form for B.H/. We have J.�˝x�/ D �˝ N�, and �˝ N� 2 P for all � 2 H .2

Example 2.10. Let .H; JA; PA/ and .K; JB ; PB/ be standard forms for von Neu-
mann algebras A and B . Then there is a self-dual cone PA x̋B in H ˝K such that
.H˝K; JA˝JB ; PA x̋B/ is a standard form for A x̋B , and such that � ˝ � 2 PA x̋B
whenever � 2 PA and � 2 PB [28, 34]. Note that in general PA x̋B is strictly larger
than the convex closure of ¹� ˝ � j � 2 PA; � 2 PBº.

String diagrams. String diagrams are a standard notation in monoidal categories
and in bicategories [14, 35] and are often used in the context of von Neuman alge-
bras [12, 6]. We briefly recall this notation and discuss an extension that will be
useful later on.

In string diagrams, algebras are represented by shades, bimodules are repre-
sented by lines, and homomorphisms are nodes. For example, an A-B-bilinear
map f between two bimodules AHB and AKB is depicted by the diagram

K

H

f ;

where the light shade corresponds to the algebra A and the darker shade corre-
sponds to the algebra B . Other morphisms, such as

g W AH �B KC �! AMC ;

h W AHA �! AL
2AA;

or
k W AL2AA �! AH �B KA

2 Here, N� 2 xH is the image of � 2 H under the antilinear map IdH W H ! xH .
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are drawn similarly:

M

H K

g ;

H

h ; and

H K

k :

(Here, � is the operation of Connes fusion, which will be introduced in the follow-
ing section, andAL2AA is the identity with respect to that operation.) The identity
morphism between bimodules is drawn as a single vertical line . Horizontal
juxtaposition of pictures corresponds to Connes fusion, and vertical concatena-
tion corresponds to composition of morphisms. A more complicated composition
of bimodule morphisms, such as

A
H �

B
K
D

1H�f����! A
H �

B
P �

C
N
D

g�1N����! A
M �

C
N
D

is denoted

M

H

N

K

g

f
:

Our addition is the introduction of a notation for morphisms that are only left-
linear, or only right-linear. We denote them by nodes that extend to the right and
to the left of the diagram, respectively. Thus, an A-linear morphism f between
bimodules AHB and AKC is denoted

f

K

H

:

We will always use the color white for the algebra C. For example, aB-linear map
g from AHB to some right B-module KB is drawn like this:

g

K

H

:
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Our conventions also allow us to speak about algebra elements using the same
graphical notation, as every right (left) A-linear morphism L2.A/ ! L2.A/ is
given by left (right) multiplication by an element a 2 A. Such an element will be
denoted

a ; or a ;

depending on whether we view it as acting on the left or on right on L2.A/. The
fact that an A-linear morphism f W AHB ! AHB commutes with the left action
of an element a 2 A is then nicely rendered by the equation

a

f
D

a

f
:

Finally, we can also denote vectors graphically, given that an element � 2 H is
equivalent to a map C! H . For example, a vector in a bimoduleAHB is denoted

�

H

:

The node � extends both to the right and to the left, as the map � W C ! AHB is
neither A- nor B-linear. Also, the space above � is white because the source of
the above map is CCC.

3. Connes fusion

Definition 3.1. Given two modules HA and AK over a von Neumann algebra A,
their Connes fusion H �A K is the completion of

hom.L2.A/A; HA/˝A L2.A/˝A hom.AL2.A/;AK/ (3.2)

with respect to the inner product

h�1 ˝ �1 ˝  1; �2 ˝ �2 ˝  2i defD h.��
2�1/�1. 1 

�
2 /; �2i;

see [5, 31, 33, 42]. In the above equation, we have written the action of  i on the
right, which means that  1 �

2 stands for the composite

L2.A/
 1��! K

 �
2��! L2.A/:
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The image in the Connes fusion of an element

� ˝ � ˝  D �

H

˝
�

˝  

K
is equal to

�  

H K

�

:

Strictly speaking, the latter picture refers to the morphism

C
��! L2A Š L2A�A L2A

�� ���! H �A K;

but we can always identify a map from C to some vector space with the vector that
is the image of 1 under that map.

Remark 3.3. It is useful to note that the completion map from (3.2) to H �A K
factors through both H ˝A hom.AL2.A/;AK/ and hom.L2.A/A; HA/˝A K. The
Hilbert spaceH �AK therefore admits two alternative asymmetric definitions, as
completions of either of those tensor products.

Remark 3.4. A pair of vectors � 2 HA, � 2 AK does not represent anything in
H �A K. This is nicely reflected by the fact that it is not possible to assemble the
pictures

�

H

and
�

K

into a meaningful diagram.

Remark 3.5. There exist two algebraic alternatives to von Neumann bimodules
and Connes fusion. In both cases, the Connes fusion is replaced by a simpler,
purely algebraic operation.

In the first alternative, bimodules are replaced by homomorphism (often endo-
morphisms) of von Neumann algebras, and one usually restricts attention to type
III factors [21, 22]. In this case, Connes fusion becomes merely the composition
of homomorphisms. The translation from homomorphisms back to bimodules is
as follows: given a homomorphism ' W A ! B , one precomposes the left ac-
tion on L2.B/ by ' to get a bimodule 'L

2.B/. Given a second homomorphism
 W B ! C , there is a canonical isomorphism 'L

2.B/�B  L
2.C / Š  ı'L2.C /

of A-C -bimodules.
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The second alternative has been pointed out by Thom [41]: the functor

AHB 7�! hom.L2.B/B ; HB/

provides an equivalence between the bicategory of dualizable bimodules (Defini-
tion 4.4) that are topologically finitely generated (i.e., for which there is a finite set
that spans a dense submodule) both as left and as right modules, and the bicategory
of algebraic bimodules (i.e., no Hilbert space structure) that are finitely generated
projective both as left and as right modules. Under that equivalence, Connes fu-
sion corresponds to the usual algebraic tensor product. Note that this does not
provide a description of all dualizable bimodules. For example, the bimodule
B.H/HC is dualizable (it is even a Morita equivalence), but the corresponding al-
gebraic bimodule is certainly not finitely generated.

Lemma 3.6. LetH be a Hilbert space. View its complex conjugate xH as a right
B.H/-module by

N�a defD a��:

Then there is a canonical isomorphism xH �B.H/ H Š C.

Proof. The Hilbert space L2.B.H// is canonically isomorphic to the space of
Hilbert-Schmidt operators on H , that is to H ˝ xH ; see Example 2.9. Following
Remark 3.3, the Connes fusion xH �B.H/ H is obtained from

hom..H ˝ xH/B.H/; xHB.H//˝B.H/ H (3.7)

by completing it with respect to the inner product

h�1 ˝ �1; �2 ˝ �2i defD h.��
2�1/�1; �2i:

There is an isomorphism

xH �! hom..H ˝ xH/B.H/; xHB.H//

N� 7�! .� ˝ N� 7! h�; �i�/:
Applying the inverse of this isomorphism to the first term of (3.7), we obtain the
vector space xH ˝B.H/ H with inner product

h N�1 ˝ �1; N�2 ˝ �2i defD h�2h�1; �1i; �2i D h�1; �1ih�2; �2i:

The map N�˝� 7! h�; �i W xH˝B.H/H ! C is therefore a unitary isomorphism.
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Remark 3.8. The functorH �A� can be characterized by the existence of a right
A-module isomorphism H �A L2.A/ Š H (see [36]).

Connes fusion shares the formal properties of the usual algebraic tensor prod-
uct:

Proposition 3.9 ([20]). There is a bicategory whose objects are von Neumann
algebras, whose arrows are bimodules, and whose 2-morphisms are maps of bi-
modules. The composition of arrows is given by Connes fusion.

Spatial tensor product of von Neumann algebras and tensor product of Hilbert
spaces provides a symmetric tensor product on this bicategory, but since the for-
mal definition of a symmetric monoidal bicategory is somewhat lengthy, we do
not pursue this in detail here.

The invertible arrows of this bicategory are called Morita equivalences, and
have the following alternative characterization:

Proposition 3.10. A bimodule AHB is invertible with respect to Connes fusion if
and only if the two algebras act faithfully, and

B 0 defD ¹x 2 B.H/ j Œx; B� D 0º D A:
In that case, the inverse bimodule is given by the complex conjugate Hilbert space
xH , with actions

b N� defD �b� and N�a defD a��:

Proof. We first assume that the two actions are faithful and that B 0 D A. Using a
unitary A-module identification H ˝ `2 Š L2A˝ `2, we get isomorphisms

AH �B
xHA Š A.H ˝ `2/�B x̋ B.`2/ H ˝ `2A
Š A.L

2A˝ `2/�A x̋B.`2/ L
2A˝ `2A

Š AL
2A�A L2AA Š AL

2A�A L2AA Š AL
2AA:

(3.11)

The first isomorphism follows from Lemma 3.6, and the fourth one is given by the
modular conjugation on L2A. Similarly, we have B xH �A HB Š BL

2.B/B , and
so AHB is invertible. Conversely, if AH �B

xHA Š AL
2AA, then the A-action is

faithful and we have

B 0 � End
�
H �B

xHA

� D End
�
L2AA

� D A;
from which B 0 D A follows. Similarly, the faithfulness of the right B-action
follows from the isomorphism B

xH �A HB Š BL
2.B/B .
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Lemma 3.12. LetAH be a faithfulA-module and let f W KA ! LA be anA-linear
map. Then f is injective if and only if f ˝ 1H W K �AH ! L�AH is injective.

Proof. Pick an A-module identification H ˝ `2 Š L2A˝ `2. We then have

f is injective () K �A L2A
f˝1���! L�A L2Ais injective

() K �A L2A˝ `2 f˝1˝1�����! L�A L2A˝ `2is injective

() K �A H ˝ `2 f˝1˝1�����! L�A H ˝ `2is injective

() K �A H
f˝1���! L�A H is injective:

Remark 3.13. The construction ofAH�B
xHA Š AL

2AA in (3.11) used the choice
of anA-linear unitary x W H ˝ `2 Š L2A˝ `2. Nevertheless, we claim that (3.11)
is canonical. Note first that x enters (3.11) only through the isomorphism

A.H ˝ `2/�B x̋ B.`2/ H ˝ `2A Š A.L
2A˝ `2/�A x̋B.`2/ L

2A˝ `2A: (3.14)

In order to understand (3.14) we provide a bit more notation. Conjugation by x
yields an isomorphism f W B x̋B.`2/ ! A x̋B.`2/. Using this, x can be viewed
as an isomorphism of A-B x̋B.`2/-bimodules H ˝ `2 Š .L2A˝ `2/f , where
the right action of B x̋B.`2/ on L2A ˝ `2 is defined by f . Similarly, the com-
plex conjugate Nx yields an isomorphism of B x̋B.`2/-A-bimodules H ˝ `2 Š
f
.L2A˝ `2/. The map (3.14) is then the composition of x � Nx with the isomor-

phism

.L2A˝ `2/
f

�B x̋ B.`2/ f .L
2A˝ `2/ Š .L2A˝ `2/�A x̋ B.`2/ L

2A˝ `2

that sends '˝ �˝ to .' ıL2.f �1//˝L2.f /� ˝ . ıL2.f �1//. Suppose that
y W H ˝ `2 Š L2A˝ `2 is another left A-module identification. Conjugation by
y yields a second isomorphism g W B x̋B.`2/! A x̋B.`2/. Now,

yx� W L2A˝ `2 �! L2A˝ `2

is left A-linear, and so there is a unitary u 2 A x̋B.`2/ whose right action Ru
on L2A ˝ `2 is yx�. The left action Lu� on L2A˝ `2 is then given by Ny Nx�.
Let also v 2 B x̋B.`2/ be such that Rv D x�y. We then have f .v/ D u, and
g�1f D ad.v/. Altogether, the two maps that we are trying to compare are along
the top and along the bottom of the following diagram
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.L2A˝ `2/ f �B x̋ B.`2/ f .L
2A˝ `2/

rl rr

.L2A˝ `2/ g �B x̋ B.`2/ g.L
2A˝ `2/

x � Nx

y � Ny

Ru �Lu�

Š

Š

where

rl defD A.H ˝ `2/�B x̋ B.`2/ H ˝ `2A
and

rr defD A.L
2A˝ `2/�A x̋B.`2/ L

2A˝ `2A
It is not hard to check that the left triangle commutes. For the commutativity of the
right triangle, we show that the vertical map '˝�˝ 7! .Ruı'/˝�˝.Lu� ı /
agrees with the map that goes down the right side of the diagram. Indeed, recalling
from (2.5) that L2.g�1f / D L2.ad.v// D LvRv� , that map is

' ˝ � ˝  7�!.' ı L2.f �1g//˝ L2.g�1f /� ˝ . ıL2.f �1g/

D .' ı Lv�Rv/˝ v�v� ˝ . ıLv�Rv/

D .' ı Rv/˝ � ˝ . ıLv�/ D .Ru ı '/˝ � ˝ .Lu� ı  /:
It follows that (3.11) is independent of x.

4. Dualizable bimodules

A von Neumann algebra whose center is one dimensional is called a factor. A
von Neumann algebra has finite-dimensional center if and only if it is a finite
direct sum of factors. Given an A-B-bimodule H over von Neumann algebras
with finite-dimensional center, we say that a B-A-bimodule xH is dual to H if it
comes equipped with maps

R W AL2.A/A �! AH �B
xHA; (4.1a)

and
S W BL2.B/B �! B

xH �A HB (4.1b)
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subject to the duality equations .R� ˝ 1/.1 ˝ S/ D 1, .S� ˝ 1/.1 ˝ R/ D 1,
and to the normalization condition R�.pxq ˝ 1/R D S�.1˝ pxq/S for all x 2
End.AHB/ and all minimal central projections p 2 Z.A/ and q 2 Z.B/. The
first two conditions are classical [27]. The latter was inspired by [25, Lemma 3.9].
The above equations are best depicted using string diagrams. The duality equations
are given by

R�

S
D (4.2a)

and

S�

R
D (4.2b)

and the normalization condition is

x

R�

R

qp D x

S�

S

p q : (4.3)

The two shades stand for the algebras A and B , and the lines correspond to the bi-
modulesAHB andB xHA. Note that the two sides of (4.3) are in pEnd.AL2.A/A/ Š
pZ.A/ Š C and qEnd.BL2.B/B/ Š qZ.B/ Š C, respectively, and so it makes
sense to ask for them to be equal.

Definition 4.4. A bimodule whose dual module exists is called dualizable.

We will show later, in Corollary 6.12, that the dual of a dualizable bimodule
is canonically isomorphic to the complex conjugate of the bimodule. For the time
being, we now reserve the notation B xHA for the dual.

Remark 4.5. In the literature, the term dual typically refers to a solution of (4.2)
only. (When the conditions (4.2) are re-expressed purely in terms of R and S� the
triple . xH;R; S�/ is called a right dual, and when the conditions are re-expressed
in terms of R� and S the triple . xH; S;R�/ is called a left dual.) Such a dual, if it
exists, is well defined up to unique isomorphism. However, in our Hilbert space
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context, having an object that is well defined up to unique isomorphism is not
sufficient, as the isomorphism might fail to be unitary. Condition (4.3) is added
to ensure that the dual is well defined up to unique unitary isomorphism – see
Theorem 4.22.

Lemma 4.6. LetAHB andBKA be irreducible bimodules. IfH is dualizable, then

homA;A.L2.A/;H �B K/ Š
´
C if B xHA Š BKA,
0 otherwise.

Proof. The map f 7! .S� ˝ 1/.1 ˝ f / is an isomorphism between the vector
spaces hom.AL2.A/A;AH �B KA/ and hom.B xHA;BKA/.

We will see later, in Lemma 4.20, that given two A-B-bimodules, their di-
rect sum is dualizable if and only if they are both dualizable. One direction is
straightforward, and is given presently as Lemma 4.7. Similarly, given a non-zero
A-B-bimodule and a non-zero B-C -bimodule, their Connes fusion is dualizable
if and only if they are both dualizable. Again one direction is easier, and is given
here as Lemma 4.8. The other direction is established in Corollary 7.9.

Lemma 4.7. LetAHB andAKB be dualizable bimodules, with respective structure
maps R, S , zR, and zS . Then A.H ˚K/B is dualizable, with dualA. xH ˚ xK/B , and
structure maps

0
BB@
R

0

0
zR

1
CCA W L2.A/ �! .H ˚K/�

B
. xH ˚ xK/;

and 0
BB@
S

0

0
zS

1
CCA W L2.B/ �! . xH ˚ xK/�

A
.H ˚K/:

Lemma 4.8. Let AHB and BKC be dualizable bimodules, with respective struc-
ture maps R, S , and zR, zS . Their fusion AH �B KC is then also dualizable, with
dual C xK �B

xHA, and structure maps

yR defD .1˝ zR˝ 1/R and yS defD .1˝ S ˝ 1/ zS:
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Proof. The duality equations (4.2) for yR and yS are straightforward. To verify the
normalization condition (4.3), we make use of the graphical calculus introduced
earlier:

x

yR�

yR
qp D x

R�

R

zR�

zR
qp D

X
i

x

R�

R

zR�

zR
qp ei

D
X
i

x

S�

S

zR�

zR
qp

ei

D
X
i

x

zS�

zS

S�

S

p qei D x

zS�

zS

S�

S

p q D x

yS�

yS
p q :

Here, ei 2 Z.B/ are the minimal central projections of B . The shades correspond
to the algebrasA,B ,C , and the lines stand for the bimodulesH , xH ,K, and xK.

We henceforth often abbreviate the maps

R W AL2.A/A �! AH �B
xHA

and
S W BL2.B/B �! B

xH �A HB

as
and

respectively. We will show, in Theorem 4.12, that a bimodule between von Neu-
mann algebras with finite-dimensional centers is “non-normalized dualizable" if
and only if it is dualizable. We first record two lemmas regarding consequences
of the duality equations (4.2).
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Lemma 4.9. Let AHB be a non-zero bimodule between factors. If R and S are
maps as in (4.1) satisfying (4.2), thenR and S are injective and .R�R/.S�S/ � 1.

Proof. The expressionsR�R D and S�S D are in C (in fact in R) because
A and B are factors. AsH is non-zero andA andB are factors,H is faithful, both
as an A-module and a Bop-module. By (4.2) and Lemma 3.12, this implies that S
and R are injective. In particular, and are nonzero. Letting

e1
defD � ��1 �

and
e2

defD � ��1 �
(these are the Jones projections), we have

e1 D e1e1 � e1e2e1 D
� � ��1

e1 H) 1 � � � ��1 H) � � 1:

The next lemma is similar to [25, Lemma 3.2].

Lemma 4.10. LetAHB be a bimodule between factors. If there exist maps R and
S as in (4.1) satisfying (4.2), then AHB is a finite direct sum of irreducible bi-
modules; its algebra of bimodule endomorphisms is therefore finite-dimensional.
Moreover, the (non-normalized) state ' W End.AHB/! C given by

' W x 7�! x (4.11)

is faithful.

Proof. For any non-zero projection p 2 End.AHB/, we have

1 D ��p�� D
����� p

�����
�

����� p

����� �
�����

�����
D

����� p

����� �
�����

�����
D

q
'.p/ �

q
;
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where the last step follows from the general identity ka�ak D kak2. Let

c
defD . /�1:

By the above estimate, we have '.p/ � c for any non-zero projection p. In par-
ticular, ' is faithful. If H failed to be a finite direct sum of irreducible bimod-
ules, we could pick countably many non-zero mutually orthogonal projections
pn 2 End.AHB/, and get

'.1/ > '
� NX
nD1

pn

�
D

NX
nD1

'.pn/ �
NX
nD1

c D Nc

for every N . This is clearly impossible. Our bimodule is therefore a finite direct
sum of irreducible ones and its endomorphism algebra is finite-dimensional.

We can now prove that a bimodule that admits a not-necessarily normalized
dual in fact admits a normalized dual:

Theorem 4.12. LetAHB and B xHA be bimodules between von Neumann algebras
with finite-dimensional center, and let

zR W AL2.A/A �! AH �B
xHA (4.13a)

and
zS W BL2.B/B �! B

xH �A HB (4.13b)

be bimodule maps satisfying (4.2). Then it is possible to find new maps R and S
as in (4.1) that satisfy both (4.2) and (4.3).

Proof. We first assume that A and B are factors. For this proof, we write for
zR and for zS , and let ';  W End.AHB/! C be given by

' W m 7�! m

and

 W m 7�! m :
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The state ' is faithful by the previous lemma, and so is for similar reasons. Pick a
trace � W End.AHB/! C; one exists because the algebra is finite-dimensional. Let
a; b 2 End.AHB/ be the unique solutions to the equations ' D a� and  D b� ;
here, we use the action of the algebra End.AHB/ on its L1-space, as introduced
in Section 2. Since ' and  are positive and faithful, a and b are positive and
invertible.

The new structure mapsR and S are given in terms of the old ones zR and zS by

R
defD .x ˝ 1/ zR D x

and

S
defD .1˝ x�1/ zS D

x�1

for some appropriately chosen positive element x 2 End.AHB/. Clearly R and
S satisfy the duality equations (4.2). To ensure that they also satisfy the normal-
ization equation (4.3), the element x needs to satisfy '.xyx/ D  .x�1yx�1/ for
all y 2 End.AHB/, which is to say x'x D x�1 x�1 or, equivalently, xax D
x�1bx�1. That equation has a unique positive solution:3

xax D x�1bx�1 () x2ax2 D b
() p

ax2ax2
p
a D pabpa

() p
ax2
p
a D

qp
ab
p
a

() x2 D pa�1
qp

ab
p
a
p
a

�1

() x D
r
p
a

�1
qp

ab
p
a
p
a

�1
:

When A DL
Ai and B DL

Bj are direct sums of factors, then we can write
H as a direct sum of Ai -Bj -bimodules H D L

Hij , and similarly xH DL xHj i .
We also have

L2A Š
M

L2Ai and L2B Š
M

L2Bj

by Lemma 2.7. The maps (4.13) induce structure maps
zRij W L2Ai �! Hij �Bj

xHj i
and

zSij W L2Bj �! xHj i �Ai Hij

3Courtesy of http://mathoverflow.net/questions/70838.

http://mathoverflow.net/questions/70838
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to which we can apply the above argument and get

Rij W AiL2.Ai/Ai �! AiHij �Bj
xHj iAi

and
Sij W BjL2.Bj /Bj �! Bj

xHj i �Ai HijBj

subject to (4.2) and (4.3).
The desired maps R and S are then given by

L2A Š
M
i

L2Ai

L
ij Rij�����!

M
ij

�
Hij �

Bj

xHj i
� �M

ijk

�
Hij �

Bj

xHjk
� Š H �B

xH

and

L2B Š
M
j

L2Bj

L
ij Sij�����!

M
ij

� xHj i �
Ai

Hij
� �M

lij

� xHli �
Ai

Hij
� Š xH �A H:

Remark 4.14. We will see later, in Proposition 7.17, that when H is irreducible
the mere existence of non-zero maps

zR W L2.A/ �! H �B
xH

and
zS W L2.B/ �! xH �A H

implies that AHB is dualizable.

We now discuss two lemmas that we will need in order to prove, in Theo-
rem 4.22, that the dual is well defined up to unique unitary isomorphism.

Lemma 4.15. Let A and B be factors, and let AHB be a dualizable bimodule,
with structure maps R and S subject to (4.2) and (4.3). Then the state ' defined
in (4.11) is a trace.

Proof. By a few applications of (4.2) and some planar isotopies, we get

x

y
D

y

x
and

x

y
D

y

x
: (4.16)
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Combining these equations with (4.3) yields

y

x
D

x

y
D

x

y
D

y

x
D

y

x
:

The latter being true for any y 2 End.AHB/ and the state ' being faithful by
Lemma 4.10, it follows that

Ox defD x D x :

Equivalently, the map x 7! Ox is an involution.
As in the proof of the previous lemma, pick a trace � and a positive invertible

element a such that ' D a� . Our goal is to show that ' is a trace; this is true
provided a is central. Equation (4.16) implies a Ox D xa for all x. Equivalently,
we have Ox D a�1xa. Because the map x 7! Ox is an involution, we have x D OOx D
a�2xa2. Since a is positive and its square is central, a is also central.

As a corollary of the above proof, we see

x D x ; and thus also Nx defD x D x : (4.17)

Remark 4.18. The first equation in (4.17) is essentially the same as [12, Theorem
4.1.18] or [13, Corollaries 2.35 and 2.39], which states that the nth power of the
operation

�n W x

8̂̂ ˆ̂̂̂̂ < ˆ̂̂̂̂ ˆ̂ :

n

7�! x (4.19)

is the identity. One should note that Jones’ rotation �n does not always agree with
our way of interpreting figure (4.19). It agrees when the type II1 subfactorA � B
is extremal, that is, when the normalized traces on A0 and B coincide on A0 \ B
or, equivalently, when the minimal conditional expectation B ! A is equal to the
trace preserving one. See also Warning 5.11.
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Lemma 4.20. Let AHB be a dualizable bimodule with dual B xHA, and let p 2
End.AHB/ be a projection. The A-B-bimodule pH is then dualizable and its dual
is given by Np xH , where

Np defD p D p 2 End.B xHA/: (4.21)

Moreover, its statistical dimension (see Definition 5.1) is given by

dim.pH/ D p :

Proof. Let 	 W H � pH , N	 W xH � Np xH be the orthogonal projections, so that
p D 	�	 and Np D N	� N	 . The maps

	 N	 and N	 	

exhibit Np xH as dual to pH . The statistical dimension is therefore given by

dim
�
pH

� D 	 N	
	� N	� D p Np D p p D p :

Theorem 4.22. Let AHB be a dualizable bimodule. Then its dual .B xHA; R; S/ is
well defined up to unique unitary isomorphism.

Proof. Let B xHA and B xH 0
A be two bimodules that are dual toAHB , with respective

structure maps R, S , R0, S 0:

R D ; S D ; R0 D ; S 0 D :

Here, thick lines represent xH , and thick dotted lines represent xH 0. The isomor-
phism between xH and xH 0 is given by

v
defD .S� ˝ 1/.1˝R0/ D :

This isomorphism is certainly the unique isomorphism intertwining R andR0, and
S and S 0. Our goal is to show that v is unitary. In other words, we need to show
that v is equal to v��1; note that is the inverse of v�. We can rewrite R0
and S 0 as

R0 D v ; S 0 D
v��1 :
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Equation (4.3) for R0 and S 0 then reads

v

v�
xp q D

v��1

v�1
xp q : (4.23)

Given minimal central projections p 2 A and q 2 B , the map

trpq W y 7�! yq p

is a trace on End.B xHA/, as can be seen by applying Lemma 4.15 to the bimod-
ule qB.q xHp/pA. Applying Lemma 4.10 to each summand in the decomposition
xH DL

pq q
xHp, and using the fact that End. xH/ D L

pq End.q xHp/, it follows
that the traces trpq are jointly faithful. That is, given a positive element y, there
exists at least one trpq such that trpq.y/ 6D 0. Letting Nx be as in (4.17), equa-
tion (4.23) implies

trpq.v�v Nx/ D trpq.v�1v��1 Nx/; x 2 End.AHB/:

This being true for all p, q, it follows that v�v D v�1v��1. In other words, v�v D
.v�v/�1. Since v�v is positive, we must have v�v D 1.

5. Statistical dimension and index

The following definition is well known. Our approach follows [25].

Definition 5.1. If A and B are factors, then the statistical dimension of a dualiz-
able bimodule AHB is given by

dim.AHB/
defD R�R D S�S 2 R�0:

For non-dualizable bimodules, one simply declares dim.AHB/ to be1.

The basic properties of the statistical dimension can be found in many places
[18, 19, 21, 25]. We include some proofs for completeness.
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Proposition 5.2. The statistical dimension of a non-zero bimoduleAHB is always
� 1, and is equal to 1 if and only if H is invertible. The statistical dimension is
additive under direct sums, and multiplicative under Connes fusion.4 It is also
multiplicative under external tensor product. In other words,

dim.AHB/ 2 ¹0º [ Œ1;1�; and it is 0 if and only if H D 0; (5.3)

dim.AHB/ D1 if and only if A0 D B; (5.4)

dim.A.H ˚K/B/ D dim.AHB/C dim.AKB/; (5.5)

dim.AH �B KC / D dim.AHB/ dim.BKC /; (5.6)

dim..AHB/˝C .CKD// D dim.AHB/ dim.CKD/ (5.7)

Proof. (5.3). If H 6D 0, then dim.AHB/ � 1 by Lemma 4.9. If H D 0, then
clearly R�R D 0.

(5.4). Let e1, e2 be as in Lemma 4.9. If dim.AHB/ D 1, then e1 D e1e2e1
and e2 D e2e1e2. As e1 and e2 are projections, the first equation implies e2 � e1,
while the second implies e1 � e2. Thus e1 D e2. >From this (and a reflection
along a vertical axis of the argument so far), we get D D .
As A is a factor and AHB ¤ 0, the latter is a faithful A-module. Lemma 4.9
implies that the projection RR� D is non-trivial. Thus, the previous equation
implies D . The map R is therefore invertible, and similarly for S . Having
shown B

xH �A HB Š L2B and AH �B
xHA Š L2A, the result follows from

Proposition 3.10.
Conversely, ifH is invertible, there exist unitary maps zR W L2.A/! H �B

xH
and S W L2.B/! xH �A H . Since AHB is irreducible,



defD . zR� ˝ 1/.1˝ S/

is a scalar, and so
R

defD 
 zR
and S satisfy (4.2). Again becauseAHB is irreducible (and R and S are unitary),
the normalization condition (4.3) is satisfied as well. Thus d D R�R D 1.

(5.5). If eitherH orK is not dualizable, then both sides of (5.5) are infinite by
Lemma 4.20. If they are both dualizable, then Lemma 4.7 provides a description
of the duality maps for H ˚K, which we can use to compute

dim.H ˚K/ D
0
BB@
R

0

0
zR

1
CCA

0
BB@
R

0

0
zR

1
CCA

�
D R�RC zR� zR D dim.H/C dim.K/:

4 For this to always be true, it is appropriate to use the convention 0�1 D 0.
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(5.6). If both H and K are dualizable, then using the duality maps described
in Lemma 4.8, we compute

dim.H�BK/ D R�.1˝ zR�˝1/.1˝ zR˝1/R D R� dim.K/R D dim.H/ dim.K/:

If either H or K is zero, then the equation clearly holds. The remaining case
H 6D 0, dim.K/ D 1 requires different techniques5 and will be treated later, in
Corollary 7.9.

(5.7). Apply equation (5.6) to the decomposition

.AHB/˝C .CKD/ Š ..AHB/˝C .CL
2CC // �

B x̋C
..BL

2BB/˝C .CKD//:

Remark 5.8. As was shown in the celebrated papers [11, 17], equation (5.3) can
be improved: the statistical dimension of a bimodule can only take values in the
set ¹2 cos.�

n
/I n D 2; 3; 4; : : :º [ Œ2;1�.

If the von Neumann algebras A DL
Ai and B DL

Bj are finite direct sums
of factors (in other words have finite-dimensional centers), then any A-B-bimod-
ule H can be written as a direct sum

H D
M

Hij (5.9)

of Ai -Bj -bimodules. The statistical dimension of AHB is then best taken to be a
matrix of numbers [40]:

dim.AHB/ij
defD dim.AiHijBj /:

This matrix-valued statistical dimension for bimodules between von Neumann al-
gebras with finite center satisfies the same formal properties (5.3)–(5.7) as above,
provided the right hand sides of (5.6) and (5.7) are interpreted in terms of matrix
and Kronecker products, respectively.

As will be shown later, in Corollary 7.14, the following definition of index is
equivalent to other definitions that exist in the literature [9, 17, 18, 21, 30]:

Definition 5.10. The index ŒB W A� of an inclusion of factors � W A! B is the
square of the statistical dimension of AL2BB .

Warning 5.11. The above definition does not always agree with Jones’ original
definition [11]. It agrees if and only if the type II1 subfactor A � B is extremal,
that is, the normalized traces on A0 and B coincide on A0 \ B .

5Note that the special case dim.H/ D 1, dim.K/D 1 is straightforward, as fusing with an
invertible bimodule certainly doesn’t change the property of having a dual or not.
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Let � W A ! B be a subfactor. If the index ŒB W A� is finite, we say that � is
a finite homomorphism. More generally, if A and B are von Neumann algebras
with finite-dimensional centers, we say that a homomorphism A! B is finite if
all the matrix entries of dim.AL2BB/ are finite. Of course, this simply amounts to
the following definition:

Definition 5.12. A homomorphism A! B between von Neumann algebras with
finite-dimensional centers is finite if the associated bimoduleAL2BB is dualizable.

When dealing with inclusions of von Neumann algebras with finite-dimen-
sional center, the matrix dim.AL2BB/ is much better behaved than the correspond-
ing matrix of indices. We propose a new notation for it:

Definition 5.13. Given a finite homomorphism f W A ! B between von Neu-
mann algebras with finite-dimensional center, we let

�B W A�
defD dim.AL2BB/

denote the matrix of statistical dimensions of AL2BB .

Following (5.6), the matrix of statistical dimensions satisfies

�B W A��C W B� D �C W A�: (5.14)

As an corollary of Lemma 4.10, we have the following result.

Lemma 5.15. Let f W A ! B be a finite homomorphism between von Neumann
algebras with finite-dimensional center. Then the relative commutant of f .A/ in
B is finite-dimensional.

Proof. The relative commutant of f .A/ in B is the endomorphism algebra of the
bimodule AL2.B/B . Apply Lemma 4.10 to every summand in the decomposition
(5.9) of that bimodule.

Lemma 5.16. LetAHB be a bimodule between von Neumann algebras with finite-
dimensional center. Assume B acts faithfully, and let B 0 	 A be the commutant
of B on H . Then dim.AHB/ D �B 0 W A�.

Proof. The bimodule B0HB is a Morita equivalence, and its matrix of statistical
dimensions is therefore an identity matrix. We have

dim.AHB/ D dim.AL2B 0 �B0HB/ D dim.AL2B 0
B0/ dim.B0HB/ D dim.AL2B 0

B0/:

The last expression is the definition of the matrix �B 0 W A�.
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Corollary 5.17. If A � B � B.H/ are von Neumann algebras with finite-dimen-
sional centers, then �B W A� D �A0 W B 0�T . In particular, if A and B are factors,
then ŒB W A� D ŒA0 W B 0�.

Proof. Let xH denote the complex conjugate of H , with actions as in Proposi-
tion 3.10. Applying Lemma 5.16 twice, we have �B W A� D dim.AHB0/ D
dim.B0 xHA/T D �A0 W B 0�T .

Lemma 5.18. Let B be a factor, and let A � B be a subalgebra with finite-
dimensional center. Call its minimal central projections p1; : : : ; pn. Then

X
ŒpiBpi W piA� D k�B W A�k2;

where k k stands for the `2-norm of a vector.

Proof. The i th entry in the vector �B W A� D dim.AL2BB/ is by definition

dim.piA.piL
2B/B/ D dim.piA.piL

2Bpi /piBpi / D dim.piAL
2.piBpi /piBpi /;

where the first equality holds because B.L2Bpi /piBpi is an invertible bimodule,
and the second one follows from Lemma 2.7. Therefore,

dim.piA.piL
2B/B/

2 D ŒpiBpi W piA�:

The results now follows by summing over all the indices i .

For more results about statistical dimension and index, we refer the reader to
[15, 17, 18, 19, 23, 24].

6. Functoriality of the L2-space and of Connes fusion

The inner product on L2(A). We mentioned earlier that for a von Neumann al-
gebra A, its L2-space is a completion of the vector space

L
�2L1

C
.A/ C
p
� with

respect to some pre-inner product. To define hp�;p i, one considers the func-
tion

f .t/
defD �.ŒD� W D �t /;
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where ŒD� W D �t 2 A denotes Connes’ Radon–Nikodym derivative.6 The func-
tion f can be analytically continued from R to the strip =m.t / 2 Œ0; 1�, and the
value of the inner product is then given by f .i=2/:

hp�;p i defD anal.cont.
t!i=2

�.ŒD� W D �t /: (6.1)

In particular, we have kp�k2 D �.1/.
The cone of positive elements in L2A is given by

L2C.A/
defD ¹p�j� 2 L1C.A/º;

and the two actions of A on L2A are prescribed by

hap
�b;

p
 i defD anal.cont.

t!i=2
�.ŒD� W D �t� t .b/a/;

where � t is the modular flow.7 The space L2A is also equipped with the modular
conjugation JA, that sends 


p
� to N
p� for 
 2 C, and satisfies

JA.a�b/ D b�JA.�/a�: (6.2)

Altogether, the triple .L2.A/; JA; L2C.A// is a standard form for the von Neumann
algebra A; compare [5, p.528].

The above constructions are compatible with spatial tensor product in the sense
that there is a natural isomorphism L2.A x̋B/ Š L2.A/ ˝ L2.B/ that respects
the left and right A x̋B-actions, and intertwines the modular involutions – see
Example 2.10.

Remark 6.3 (The modular algebra). The construction of L2A is best understood
in the larger context of the modular algebra [29, 43] – recall Remark 2.4. The
modular algebra is

L�A defD
M

p2C�
<e�0

[¹1º
LpA;

and can be represented as an algebra of unbounded operators on a Hilbert space.
The product sendsLp.A/
Lq.A/ toL

1
1=pC1=q .A/, andL1.A/ is a synonym forA.

Given p 2 C�<e�0, then for every � 2 L1CA, its pth root �1=p (in the sense of
functional calculus) belongs to LpA. In particular, we have

p
� � �1=2 2 L2.A/.

6 We work with a definition of the Radon–Nikodym derivative ŒD� W D �t that does not
require � and to be faithful; it satisfies ŒD� W D �t 2 s�As where s� and s are the support
projections of � and  .

7 We do not assume that  is faithful in defining the modular flow �
 
t . For a 2 A, we have

�
 
t .a/ 2 s As .
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The modular conjugation JA W L2.A/ ! L2.A/ is then simply the restriction of
the �-operation on L�A. There is also a faithful normal trace Tr W L�A! C given
by

Tr.�/ D
8<
:�.1/ for � 2 L1.A/
0 for � 2 Lp.A/; p 6D 1:

By definition, it satisfies Tr.�a/ D �.a/ for � 2 L1A and a 2 A.
Using complex exponentiation in the algebra L�A, the Radon–Nikodym de-

rivative and the modular flow can be recovered8 as

ŒD� W D �t D �it �it

�
 
t .a/ D  ita �it .t 2 R/:

(6.4)

We can therefore rewrite the quantity that appears in the right hand side of (6.1)
as

�.ŒD� W D �t / D Tr.�ŒD� W D �t / D Tr.��it �it / D Tr.�1Cit �it /:

The last expression Tr.�1Cit �it / can be evaluated for any t in the strip =m.t / 2
Œ0; 1�, because<e.1C i t / and<e.�i t / are both non-negative there. Moreover, the
dependence on t is analytic by [43, Corollary 2.6]. One can therefore rewrite the
inner product on L2.A/ as

hp�;p i D Tr.�1Cit �it /jtDi=2 D Tr.�1=2 1=2/;

and the fact that it is symmetric follows from the trace property. The inner product
also admits the following alternative definition:

hp�;p i defD anal.cont.
t!�i=2

 .ŒD� W D �t /:

This definition agrees with definition (6.1) because

 .ŒD� W D �t / D Tr. �it �it / D Tr.�it 1�it /

and
Tr.�it 1�it /jtD�i=2 D Tr.�1=2 1=2/:

We will need the following lemma later on in order to identify the dual of the
bimodule AL2BB associated to a finite homomorphism A! B .

8 Unfortunately, one cannot use (6.4) to define ŒD� W D �t and � t , as the Radon–Nikodym
derivative and the modular flow are needed for the construction of the modular algebra – see [43].
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Lemma 6.5. Let ¹pi 2 Aº be orthogonal projections adding up to 1. If � 2 L1C.A/
satisfies pi�pj D 0 for all i and j with i ¤ j , then pi

p
�pj D 0 for all i and j

with i ¤ j .

Proof. Applying functional calculus to an (unbounded) operator in block diago-
nal form yields an operator in block diagonal form. The result follows since the
modular algebra has a representation by unbounded operators [43], and

p
� is

obtained from � by functional calculus.

In our analysis of conditional expectations in section 7, we will use the follow-
ing general fact relating Radon–Nikodym derivatives in different algebras – see [4,
Lemma 1.4.4] and [8, Theorem 4.7]. LetA � B be a subalgebra, and letE W B ! A

be a faithful completely positive normal map such that E.axb/ D aE.x/b for
x 2 B , a; b 2 A; in this case,

ŒD.� ı E/ W D. ı E/�t D ŒD� W D �t : (6.6)

Functoriality of the L2-space. The following theorem is closely related to some
known results [15, 19]. Nevertheless, it appears to be new:

Theorem 6.7. The assignment A 7! L2.A/ defines a functor from the category of
von Neumann algebras with finite-dimensional center and finite homomorphisms,
to the category of Hilbert spaces and bounded linear maps.

Proof. Given a finite homomorphism A ! B between von Neumann algebras
with finite-dimensional center, let EA;B W B ! A be the map given by

EA;B.b/�
defD R�.b ˝ 1/R�; � 2 L2.A/; (6.8)

where R W AL2.A/A ! AL
2.B/ �B L2.B/A is as in (4.1), and the b that appears

in the right hand side of (6.8) acts by left multiplication on L2.B/. Graphically,
this is

EA;B.b/
defD bb :

As before, the two shades represent the algebras A and B , and the lines stand for
the bimodule AL2BB and its dual. The fact that the box labeled EA;B.b/ extends
to the left of the picture refers to the fact that the mapEA;B.b/ W AL2AA ! AL

2AA
is only right A-linear.
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The map (6.8) satisfiesEA;B.aba0/ D aEA;B.b/a0 for any a; a0 2 A and b 2 B .
Moreover, for every sequence A! B ! C of composable arrows, we have

EA;B ı EB;C D EA;C (6.9)

by Lemma 4.8. The map

L2.f / W L2.A/ �! L2.B/

associated to the finite homomorphism f W A! B is then defined by

L2.f / W p� 7!p
� ı EA;B : (6.10)

To see that this map is well defined and bounded, we exhibit a constant C such
that ��� X

j

cj
p
�j ı EA;B

���2 � C � ��� X
j

cj
p
�j

���2; cj 2 C; �j 2 L1C.A/:

Let ¹p˛º be the minimal central projections ofA. SinceEA;B.1/ is central, we can
write it as EA;B.1/ DP

˛ C˛p˛ for some given constants C˛. Let

C
defD max

˛
C˛ D kEA;B.1/k:

Using the shorthand notation

�j;˛
defD �jp˛;

we then have�� P
j cj

p
�j ı EA;B

��2
DP

j;k cj Nckh
p
�j ı EA;B ;

p
�k ı EA;Bi

DP
j;k cj Nckanal.cont.

t!i=2
�j ı EA;B.ŒD.�j ıEA;B/ W D.�k ı EA;B/�t /

DP
j;k cj Nckanal.cont.

t!i=2
�j ı EA;B.ŒD�j W D�k�t /

DP
j;k cj Nckanal.cont.

t!i=2
�j .EA;B.1/ŒD�j W D�k�t /

DP
˛;j;k cj Nckanal.cont.

t!i=2
�j;˛.C˛ŒD�j;˛ W D�k;˛�t /

DP
˛ C˛

�� P
j cj

p
�j;˛

��2
� C �P˛

�� P
j cj

p
�j;˛

��2
D C � �� X

j

cj
p
�j

��2;



Dualizability and index of subfactors 321

where the third equality follows from (6.6) and the fourth one follows from the
A-linearity of EA;B .

The compatibility of (6.10) with composition follows from (6.9).

Remark 6.11. Given a finite homomorphism f W A! B between von Neumann
algebras with finite-dimensional centers, one can also define

Lp.f / W LpA �! LpB; �1=p 7�! .� ı EA;B/1=p:

These assemble to a �-algebra homomorphism
L
LpA!L

LpB; see [43, Sec-
tion 3].

Corollary 6.12. Let AHB be a bimodule between von Neumann algebras with
finite-dimensional center. Then its dual bimodule, if it exists, is canonically iso-
morphic to the complex conjugate Hilbert space, with actions given by

b N�a defD a��b�:

Proof. LetAHB be dualizable. By Lemma 4.10 and the decomposition (5.9), this
bimodule is a finite direct sum of irreducible bimodules. Both duals and complex
conjugates being compatible with the direct sum operation, it is enough to treat
the irreducible case. We assume for simplicity that the action � W A ! B.H/ is
faithful. The general case follows.

Let B xH c
A denote the complex conjugate ofAHB , and let B 0 be the commutant

of B on H . By Proposition 3.10, we have B0H �B
xH c
B0 Š B0L2.B 0/B0 , and so

AH �B
xH c
A Š AL

2.B 0/�B0 H �B
xH c �B0 L2.B 0/A

Š AL
2.B 0/�B0 L2.B 0/�B0 L2.B 0/A

Š AL
2.B 0/A:

By Theorem 6.7, we therefore get a map AL2.A/A ! AH �B
xH c
A which is non-

trivial by construction – see for instance equation (6.20). The result now follows
from Lemma 4.6.

Remark 6.13. The isomorphism between any dual and the complex conjugate
bimodule constructed in the proof of Corollary 6.12 is in fact unitary. We do not
include a proof – see Proposition 6.16 for a related result.
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In the special case of the bimodule AL2.B/B associated to a finite homomor-
phism f W A! B , together with a chosen dual .BL2BA; R; S/, the isomorphism
L2B Š L2Bc is given by

L2B Š L2B �A L2A
1˝L2.f /������! L2B �A L2B Š L2B �A L2B �B L

2B

S�˝1����! L2B �B L
2B Š L2B J��! L2B

c
;

where J is the modular conjugation. This isomorphism L2B Š L2B
c

is chosen
so as to make the composite

AL
2.A/A

R��! AL
2.B/�B L2.B/A

Š AL
2.B/�B L2.B/

c

A
1˝J���! AL

2.B/�B L
2.B/A Š AL

2.B/A

equal to L2.f /.
Instead of identifying the dual ofAL2BB with BL2B

c

A, we can identify it with
BL

2BA, as follows. There is an isomorphismˆ between any dual ofAL2.B/B and
BL

2.B/A given by

BL2BA Š BL2B �A L2AA
1˝L2.f /������! BL2B �A L2BA

Š BL2B �A L2B �B L
2BA

S�˝1����! BL
2B �B L

2B Š BL
2BA:

(6.14)

In graphical notation we have

ˆ
defD

BL2BA

BL
2BA

S�

L2.f /
:

The isomorphism ˆ makes the following diagram commutative:

AL
2AA AL

2.B/�B L2.B/A

AL
2BA AL

2.B/�B L
2.B/A :

R

L2.f / 1˝ˆ
Š

(6.15)
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Proposition 6.16. Let f W A! B be a finite homomorphism, and let .L2B;R; S/
be a chosen dual to the bimodule AL2BB associated to f . The isomorphism

ˆ
defD .S� ˝ 1/.1˝ L2.f //

from BL2BA to BL2BA is unitary.

Proof. The algebra B \ A0 D End.AL2BB/ is finite-dimensional by Lemma 4.10
and decomposition (5.9). Letp1; : : : ; pn 2 B\A0 be mutually orthogonal minimal
projections adding up to 1, and let Npi defD .S�˝ 1/.1˝pi ˝ 1/.1˝R/ be the dual
projection defined in equation (4.21). Let E W B ! A be as in (6.8). For every
i ¤ j and � 2 L1CA, the element pi .� ıE/pj 2 L1.B/ is zero, as

.pi .� ı E/pj /.b/ D � ıE.pj bpi /

and

E.pj bpi / D bb

pi

pj

D bb Npi
pj

D
bb

pi

pj D 0:

It follows from Lemma 6.5 that pi
p
� ıEpj D 0 for i ¤ j . The map

L2.f / W p� 7�!p
� ı E

therefore factors as

L2.f / W L2A L2.B/ ŠL
ij piL

2.B/pj

L
i piL

2.B/pi :

 ! 

!L
ŒL2.f /�i

 
-

!

We have a similar factorization of R by Lemma 4.7:

R W L2A L2.B/�
B
L2.B/ ŠL

ij piL
2.B/�

B
NpjL2.B/

L
i piL

2.B/�B NpiL2.B/ :

 ! 

!
L
Ri

 
-

!
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Let us write

ĵk W NpjL2.B/ �! L2.B/pk

for the components of ˆ. Given that B NpjL2.B/A and BL2.B/pkA are irreducible
bimodules, the maps ĵk are either zero or a scalar multiple of some unitary.
By the commutativity of (6.15) (and since Ri ¤ 0), the subspace

L
i piL

2.B/�B NpiL2.B/

of L2.B/�B L2.B/ goes to
L
i piL

2.B/pi under the map

1˝ˆ W L
ij piL

2.B/�
B
NpjL2.B/

�!L
ik piL

2.B/�B L
2.B/pk Š

L
ik piL

2Bpk :

It follows that ĵk D 0 whenever j ¤ k. We can therefore rewrite ˆ as

ˆ DL
ˆi W

L
i NpiL2.B/ �!

L
i L

2.B/pi ;

where each ˆi is a scalar multiple of some unitary.
To finish the argument, we show that each ˆi has norm 1. Let

qi 2 Z.A0/ D Z.A/

be the central support projection of pi 2 A0. The maps

ŒL2.f /�i W AL2AA �! ApiL
2.B/piA

and

Ri W AL2AA �! ApiL
2.B/�B NpiL2.B/A

factor throughAqi .L2A/A, and are therefore scalar multiples of partial isometries.
Given � 2 qi .L1CA/, we have

��ŒL2.f /�i.p�/��2 D ��piL2.f /.p�/��2
D ��pip� ıE��2
D hpip� ı E;p� ıEi
D � ıE.pi / D E.pi / � �.1/;
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where E.pi / 2 qiZ.A/ Š C. Similarly, we have��Ri .p�/��2 D ��piR.p�/��2
D

*
pi

p
�

;
pi

p
�

+

D pi

p
�

p
�

�

D pi � hp�;p�i

D E.pi / � �.1/:

It follows that kRik2 D kŒL2.f /�ik2 D E.pi /. Since (6.15) is commutative, we
thus get kˆik D kŒL2.f /�ik=kRik D 1, and the map ˆ D L

ˆi is therefore
unitary.

The reader may wonder whether the condition of finite-dimensional center was
really needed in Theorem 6.7. We saw in Theorem 4.12 that a bimodule between
von Neumann algebras with finite-dimensional centers is dualizable if and only if
there exist maps R and S satisfying (4.2): though a priori dualizability requires
both conditions (4.2) and (4.3), in fact it is detected by condition (4.2) only. If the
centers ofA andB are not atomic (that is, if one of them containsL1.Œ0; 1�/), then
we do not know how to formulate (4.3). We therefore do not have a good notion of
duality in that context; however, we may still define a homomorphism f W A! B

between arbitrary von Neumann algebras to be finite if there exist maps R and S
satisfying (4.2), that is giving a not-necessarily normalized dual for the bimodule
AL

2BB .

Conjecture 6.17. The assignment A 7! L2A extends to a functor from the cate-
gory of all von Neumann algebras and finite homomorphisms to the category of
Hilbert spaces and bounded linear maps.

The following two lemmas describe how the functor L2 interacts with the
basic operations of taking corner and block-diagonal subalgebras. Recall from
Lemma 2.7 that the L2-space of the corner algebra

A0
defD pAp

is given by L2.A0/ D p.L2A/p.
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Lemma 6.18. Let f W A ! B be a finite homomorphism between von Neumann
algebras with finite-dimensional centers. Given a projection p 2 A, let

A0
defD pAp;

B0
defD pBp;

and

f0
defD f jA0 W A0 ! B0;

where we identify p with its image f .p/ 2 B . Then the homomorphism f0 is finite,
and

L2.f0/ D L2.f /jL2.A0/;
where we have identified L2.A0/ and L2.B0/ with the subspaces pL2.A/p and
pL2.B/p of L2.A/ and L2.B/ respectively.

Proof. The structure maps (4.1) for the dual of AL2.B/B restrict to maps

R0 W A0L2A0A0 D A0pL
2ApA0

�! A0pL
2B �B L2BpA0 D A0pL

2Bp �B0 pL
2BpA0 ;

and

S0 W B0L2B0B0 D B0pL
2BpB0

�! B0pL
2B �A L2BpB0 D B0pL

2Bp �A0 pL2BpB0 :

Here we use the invertibility of BL2BpB0 to rewrite the targets of R0 and S0.
These satisfy the duality equations (4.2) and the normalization (4.3), and therefore
exhibit B0.pL2.B/p/A0 as the dual of A0L2.B0/B0 . For every b 2 B0, we have

EA;B.b/� D R�.b ˝ 1/R� D R�
0.b ˝ 1/R0� D EA0;B0.b/� for � 2 L2.A0/;

and
EA;B.b/� D R�.b ˝ 1/R� D R�.pb ˝ 1/R.1� p/� D 0 for � 2 L2.A0/?;

from which it follows that EA0;B0 D EA;B jB0 . Given a state � W A0 ! C, the
image of L2.f0/.

p
�/ in L2.B/ is the square root of

b 7�! �.EA0;B0.pbp// D �.EA;B.pbp// D �.pEA;B.b/p/;

and is thus equal to the image of
p
a 7! �.pap/ under L2.f /.
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Lemma 6.19. LetA be a factor, and p1; : : : ; pn 2 A be a collection of orthogonal
projections that add up to 1. Let � W L

piApi ! A denote the inclusion. Then
L2.�/ is the natural inclusion

L2.
L
piApi/ Š

M
piL

2.A/pi ,�! L2.A/;

where the first isomorphism is given by Lemma 2.7. In particular, L2.�/ is an
isometry.

Proof. We write Ai for piApi . The inclusions

R W ˚AiL
2.

L
Ai/˚Ai Š

L
piL

2.A/pi ,�! L2.A/ Š ˚AiL
2.A/�A L2.A/˚Ai

and

S W AL2.A/A ,�!L
i

L2.A/ ŠL
i

L2.A/pi �̊
Ai
piL

2.A/ Š AL
2.A/ �̊

Ai
L2.A/A

exhibit ˚AiL2.A/A as the dual of AL2.A/˚Ai . For �i 2 L2.Ai / and a 2 A, equa-
tion (6.8) reads
L
i

�i
R7�!P

i

�i
a7�!P

i

a�i
R�

7�!L
j

pj .
P
i

a�i /pj DL
i

piapi�i D
�L
i

piapi
�
.
L
i

�i /:

The map E defD E˚Ai ;A is therefore given by E.a/ DL
qi .a/, where

qi .a/
defD piapi :

It follows that L2.�/.
p˚�i / D

p
.˚�i / ı E D pP

�i ı qi D Pp
�i ı qi . Sincep

�i 2 L2.Ai /maps to
p
�i ı qi 2 L2.A/ under the map described in Lemma 2.7,

this finishes the proof.

One drawback of the construction presented in Theorem 6.7 is that the maps
L2.f / W L2.A/ ! L2.B/ are not isometric. For example, if � W A ! B is a finite
map between factors, then L2.�/ is 4

p
ŒB W A� Dp

�B W A� times an isometry. This
can be checked on positive vectors: since kp�k2 D �.1/ and kp� ıEA;Bk2 D
�.EA;B.1// D EA;B.1/�.1/, it follows that

kL2.�/.p�/kıkp�k Dp
EA;B.1/ D

p
R�R D

p
dim.AL2BB/ (6.20)

for any
p
� 2 L2C.A/. In some sense, that is inevitable. Assuming that � is in-

jective, let L2.�/iso denote the isometry in the polar decomposition of L2.�/. The
assignment

.� W A! B/ 7�! .L2.�/iso W L2.A/! L2.B// (6.21)
is not a functor – this issue is already visible with finite-dimensional commutative
von Neumann algebras. Nevertheless, we have the following result.
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Proposition 6.22. When restricted to the subcategory of von Neumann algebras
with finite-dimensional center and injective finite homomorphisms � W A! B that
satisfy Z.B/ � �.A/, the assignment � 7! L2.�/iso is a functor.

Proof. We can write � W A! B as a direct sum of maps �j W Aj ! Bj , where each
Bj is a factor. Let us decompose each Aj as a direct sum of factors Aj DL

i Aij ,
where Aij D pijAj , and pij are the minimal central projections of Aj . We can
then factor � as

� W A DL
ij

Aij �!L
ij

pijBjpij �!L
j

Bj D B:

Applying the functor L2 (as defined in Theorem 6.7) to the above maps, we get

L2.�/ W L2.A/ DL
ij

L2.Aij / �!L
ij

L2.pijBjpij /
?�!L

j

L2.Bj / D L2.B/:

The map ? is an isometry by Lemma 6.19. The isometry L2.�/iso is therefore the
composite of L2iso W

L
L2.Aij / ! L

L2.pijBjpij / with the natural inclusionL
L2.pijBjpij / ,!L

L2.Bj / described in Lemma 2.7.
Given two composable inclusions � W A! B and 
 W B ! C withZ.B/ � �.A/

andZ.C/ � 
.B/, we now show thatL2.
ı�/iso D L2.
/isoıL2.�/iso. Let us write
C D L

Ck , B D L
Bjk , and A D L

Aijk as sums of factors, where �.Aijk/ �
Bjk and 
.Bjk/ � Ck. The corresponding minimal central projections are denoted
pijk 2 Aijk and qjk 2 Bjk . To compare L2.
 ı �/iso with L2.
/iso ı L2.�/iso, we
consider the following diagram

L
jk L

2.Bjk/
L
jk L

2.qjkCqjk/
L
k L

2.Ck/

L
ijk L

2.pijkBpijk/
L
ijk L

2.pijkCpijk/

L
ijk L

2.Aijk/

L2iso

L2iso

L2iso
L2iso

The upper right triangle is a diagram of inclusions and commutes for obvious
reasons. The upper left rectangle commutes by the functoriality of the L2 con-
struction (Theorem 6.7) and by the compatibility of polar decomposition with the
operation of composing with an isometry. Finally, note that whenever we have
a subfactor inclusion f W N ! M then, by equation (6.20), the corresponding
map L2.f / is a scalar multiple of an isometry. The commutativity of the bot-
tom triangle thus holds because Aijk ,! pijkBpijk ,! pijkCpijk are subfactor
inclusions.
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Functoriality of Connes fusion. By construction, the operation of Connes fu-
sion .HA;AK/ 7! H �A K is a functor in H and K. We now investigate in what
sense it is a functor of the three variables H , A, and K. Consider the following
category. Its objects are triples .H;A;K/ consisting of a von Neumann algebra A
with finite-dimensional center, a right module H , and a left module K. A mor-
phism from .H1; A1; K1/ to .H2; A2; K2/ is a triple ˛ W A1 ! A2, h W H1 ! H2,
k W K1 ! K2, where ˛ is a finite homomorphism, and h and k are A1-linear maps.

Theorem 6.23. The assignment

.H;A;K/ 7�! H �A K

extends to a functor from the category described above to the category of Hilbert
spaces and bounded linear maps.

Proof. Given a morphism .h; ˛; k/ W .H1; A1; K1/ ! .H2; A2; K2/ of the above
category, we describe the induced map h�˛ k W H1�A1K1 ! H2�A2K2. Recall
that the composite (6.14) provides an isomorphism ˆ between the dual of the
bimodule A1L2.A2/A2 and the bimodule A2L2.A2/A1 . Let

R W A1L2.A1/A1 �! A1L
2.A2/�A2 L2.A2/A1

1˝ˆ���! A1L
2.A2/�A2 L2.A2/A1 ;

and
S W A2L2.A2/A2 �! A2L

2.A2/�A1 L2.A2/A2
ˆ˝1���! A2L

2.A2/�A1 L2.A2/A2
denote the composition of the normalized duality maps (4.1) with the aforemen-
tioned isomorphism.

We define the image of an element

�1 ˝ �1 ˝  1 2 homA1
�
L2A1; H1

�˝ L2A1 ˝ homA1
�
L2A1; K1

�
under the map h �˛ k to be �2 ˝ �2 ˝  2, where �2 2 homA2.L2A2; H2/ and
 2 2 homA2.L2A2; K2/ are given by

�2 W L2A2 Š L2A1 �
A1
L2A2

�1˝1���! H1 �
A1
L2A2

h˝1���! H2 �
A1
L2A2

Š H2 �
A2
L2A2 �

A1
L2A2

1˝S�

����! H2 �
A2
L2A2 Š H2;

and

 2 W L2A2 Š L2A2 �
A1
L2A1

1˝ 1����! L2A2 �
A1
K1

1˝k���! L2A2 �
A1
K2

Š L2A2 �
A1
L2A2 �

A2
K2

S�˝1����! L2A2 �
A2
K2 Š K2;
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and
�2

defD R.�1/ 2 L2.A2/�A2 L2.A2/ Š L2.A2/:
Note that �2 D L2.˛/.�1/ by diagram (6.15). Graphically, the above map sends

�1

H1

˝

�1

˝  1

K1

to

�1

h

H2

˝

�1

˝
 1

k

K2

;

and is therefore given by

h�˛ k W �1  1

H1 K1

�1

7!
�1

h k

 1

�1

H2 K2

D
�1

h

 1

k

�1

H2 K2

: (6.24)

Here, the two shades correspond to the algebras A1 and A2, the unlabeled line
between those shades corresponds to the bimodule A1L2.A2/A2 and its dual bi-
module A2L2.A2/A1 , and the isomorphism (6.14) has been suppressed from the
notation. Abstracting out �1, �1,  1 from (6.24), we can rewrite h�˛ k in a more
concise form, as

h�˛ k D h k

H2

H1

K2

K1

:

The latter description also makes it clear that h �˛ k is bounded. Compatibility
with composition follows from Lemma 4.8.



Dualizability and index of subfactors 331

We record the following lemma for future use. Once again, we make implicit
use of the identification (6.14) and of its basic property (6.15).

Lemma 6.25. Let f W A ! B be a finite map between von Neumann algebras
with finite-dimensional center. Then the map

B �! hom.L2AA; L2BA/

given by

b 7�! .b ˝ 1/L2.f / D b

is an isomorphism.

Proof. The inverse map is

x 7�! x 2 hom.L2BB ; L2BB/ Š B:

7. Index via conditional expectations

In this section, we recall the work of Pimsner and Popa on conditional expecta-
tions, and use it to establish the equivalence between the definition of index via
statistical dimension (Definitions 5.1 and 5.10) and other notions of index that exist
in the literature [9, 17, 18, 21, 30]. The basic inequality (7.4) was introduced in [30]
for type II von Neumann algebras, and later in [19, 21, 22] for arbitrary von Neu-
mann algebras. Further references include [32, section 1.1] and [18, section 3.4].

Given a subfactor 9 N � M , a completely positive normal map E W M ! N

is called a conditional expectation if E.1/ D 1 and E.axb/ D aE.x/b for all
x 2M and a; b 2 N . It may happen that, for some 
, the conditional expectation
satisfies the Pimsner–Popa inequality

E.x/ � 
�1x; x 2MC:

Following [21], the index of the conditional expectation is the smallest possible
such 
,

Ind.E/ defD inf¹
 j E.x/ � 
�1x; x 2MCº: (7.1)

9 Note that in this section, we usually (but not always) use the letters N and M to refer
to factors, as is traditional, and use the letters A and B to refer to more general von Neumann
algebras.
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We call a conditional expectation finite if its index is finite. For subfactors ad-
mitting finite conditional expectations, Longo proves [21, Theorem 5.5] that there
exists a unique conditional expectation minimizing Ind.E/ – see also [9, 19]. For
a general subfactor, he defines the minimal index to be

Ind.N;M/
defD inf

E
Ind.E/ D inf

E
inf¹
 j E.x/ � 
�1x; x 2MCº; (7.2)

where the infimum runs over all conditional expectations E W M ! N . We will
show later, in Corollary 7.14, that the index (Definition 5.10) agrees with the min-
imal index if N and M are infinite-dimensional – see Warning 7.16.

If the subfactor has finite index, then an example of a conditional expectation
is given by ŒM W N�� 12 times the map (6.8),

E0.b/
defD ŒM W N�� 12 � bb D � ��1 � bb :

We call E0 the minimal conditional expectation. We will show later, in Proposi-
tion 7.10, that the minimal conditional expectation minimizes Ind.E/, thus justi-
fying its name.

We begin by observing that the index of a subfactor provides an upper bound
on the index of the minimal conditional expectation:

Proposition 7.3. The minimal conditional expectation E0 satisfies the inequality

E0.x/ � ŒM W N��1x; x 2MC: (7.4)

In other words, Ind.E0/ � ŒM W N�.
Proof. Let x be a positive element of M , and let us write d defD ŒM W N� 12 for
the statistical dimension of NL2MM . Because the map d�1 is a projection,
we have d�1 � . As a consequence of the general fact .a � b/ H)
.yay� � yby�/, it follows that

d�1 x D d�1

p
x

p
x

D

p
x

p
x

d�1 �

p
x

p
x

D x :

Now multiply both sides by d�1 to get the desired inequality.
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The following proposition establishes the connection between the Pimsner–
Popa inequality and dualizability.

Proposition 7.5. Let A � B be von Neumann algebras with finite-dimensional
centers, and letE W B ! A be a conditional expectation. If there exists a constant
� > 0 such thatE.x/ � �x for all x 2 BC, thenAL2BB is a dualizable bimodule.

Proof. We show that BL2BA is the dual ofAL2BB . To do so, we construct maps

R D W AL2.A/A �! AL
2BA Š AL

2.B/�B L
2.B/A (7.6a)

and

S D W BL2.B/B �! BL
2.B/�A L2.B/B (7.6b)

satisfying the duality equations (4.2), and appeal to Theorem 4.12 in order to
achieve the normalization (4.3).

Using equation (6.6) we see that the map R defined by
p
� 7! p� ı E is an

isometry. Let
e

defD RR� D
be the corresponding Jones projection. By [32, Theorem 1.1.6], there exists a set of
elements bj 2 B such that ¹bj eb�

j º are mutually orthogonal projections forming
a partition of unity, and such that

P
bjb

�
j 2 B is a bounded operator. Here,

both bj and b�
j refer to left multiplication operators on L2B . It follows that the

map
P
bj W L

j L
2.B/ ! L2.B/ is also bounded. Let K be the right A-moduleL

j L
2A, and let m and Nm be the two maps

m W K �
A
L2B Š

M
j

L2.B/

P
.bj �/����! L2B;

and

Nm W L2B �
A

NK Š
M
j

L2.B/

P
.�bj /����! L2B:

Graphically, the equation
P
bj eb

�
j D 1 means that the map

m�

m

W L2.B/ �! L2.B/
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is the identity, where the dotted line stands for K. It is then easy to check that,
along with R, the map

S
defD
m� Nm�

m Nm
D
m�

m

D
Nm�

Nm

satisfies the duality equations (4.2).

The above proof also shows that the following variant of Proposition 7.5 holds.

Proposition 7.7. Let f W A ! B be a map between arbitrary von Neumann al-
gebras, and let E W B ! A be a conditional expectation such that E.x/ � �x

for all x 2 BC. Then f is a finite homomorphism in the sense (see the discussion
before Conjecture 6.17) thatAL2BB admits a not-necessarily normalized dual bi-
module. �

As a first application of the Pimsner–Popa inequality, we have the following
result.

Lemma 7.8. LetN � P �M be factors. Then ŒM W N� <1 H) ŒP W N� <1.

Proof. Let E W M ! N be the minimal conditional expectation. Then EjP is a
conditional expectation subject to the same bound: EjP .x/ � ŒM W N��1x, with
x 2 PC. The subfactor N � P satisfies the condition of Proposition 7.5, and so
NL

2PP is dualizable.

Corollary 7.9. Let N , P , M be factors, and let NHP and PKM be non-zero
bimodules. If their fusion NH �P KM is a dualizableN -M -bimodule, then NHP
and PKM are dualizable.

Proof. We show that NHP is dualizable. Let P 0 be the commutant of P on H ,
and let M 0 be the commutant of M on H �P K. We have N � P 0 � M 0. By
Lemma 5.16, we have ŒM 0 W N� < 1, which implies ŒP 0 W N� < 1 by the
above lemma. By a second application of Lemma 5.16, we deduce that NHP is
dualizable.

This argument might looks circular at first glance, as Lemma 5.16 depends
on (5.6). However, Lemma 5.16 only depends on the special case of (5.6) men-
tioned in footnote 5, and is thus independent of the result of this corollary.
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Unless the factors are finite-dimensional, the Pimsner–Popa inequality also
provides a characterization of the minimal conditional expectation and of the in-
dex. For a subfactor N �M of finite index, let

E0.m/
defD ŒM W N�� 12R�.m˝ 1/R;

as before.

Proposition 7.10. Assume the factors N and M are infinite-dimensional, and
N � M is of finite index.

(a) If 0 < 
 < ŒM W N�, there exists x 2MC such that

E0.x/ 6� 
�1x: (7.11)

In other words, Ind.E0/ � ŒM W N�, and therefore, by (7.4), Ind.E0/ D
ŒM W N�.

(b) If E W M ! N is a conditional expectation and E 6D E0, then there exists
x 2MC such that

E.x/ 6� ŒM W N��1x: (7.12)

In other words, Ind.E/ > ŒM W N�.

Proof. (a) We let

W L2N �! L2M

and

W L2M �! L2M �N L
2M

be normalized duality maps for the bimodule

NHM
defD NL

2MM :

Let d D ŒM W N� 12 be the statistical dimension of H , and let e D d�1 be
the Jones projection. Since dim.N / D 1, one can find a right M -module KM
such thatK�M L2.M/N is isomorphic to L2NN – use the classification of mod-
ules over factors of type different from In. Pick a unitary isomorphism u W K �M

L2.M/N ! L2NN and set

x
defD .u˝ 1/.1˝ e/.u� ˝ 1/:
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We then have

E0.x/ D E0

0
BBBB@d�1

u�

u

1
CCCCA

D d�2
u�

u

D ŒM W N��1
u�

u

D ŒM W N��1;

where the dotted line stands forK. Since x is a non-zero projection and ŒM W N��1
is a scalar, it follows that E0.x/ 6� �x for any � > ŒM W N��1.
b. We need to check that E0 minimizes Ind.E/. Let pi be the minimal cen-
tral projections of N 0 \M D End.NL2MM /, let d D ŒM W N� 12 , and let di D
ŒpiMpi W piN� 12 . Note that piN � piMpi is an irreducible subfactor, that is
.piN/

0 \ piMpi D C. Thus by [21, Proposition 5.3], there exits only one con-
ditional expectation piMpi ! piN . Using part (a) and Proposition 7.5 we con-
clude that for piN � piMpi , the index coincides with the minimal index. Thus
di D .Ind.piN; piMpi //

1
2 . According to [21, Theorem 5.5], it suffices to check

that E0jN 0\M is a trace and that

E0.pi / D diP
di
: (7.13)

The first condition was proven in Lemma 4.15. To check the latter, let

Hi
defD pi .L2.M//:
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We then have

di D dim.piNL
2.piMpi /piMpi /

D dim.piNpi .L
2M/pipiMpi /

D dim.piNpiL
2M �

M
L2MpipiMpi /

D dim.piNpiL
2MM /

D dim.Hi/

D pi ;

where the second equality is Lemma 2.7, the fourth one holds by equations (5.4)
and (5.6), and the last one is given by Lemma 4.20. Note that

P
di D d now

follows by equation (5.5). By the definition of E0, we therefore have

� P
di

� �E0.pi / D dE0.pi/ D pi D di :

Corollary 7.14. Let N � M be infinite-dimensional factors, let ŒM W N� be
the index, as in Definition 5.10, and let Ind.N;M/ be the minimal index, as in
equation (7.2). Then

ŒM W N� D Ind.N;M/: (7.15)

Warning 7.16. As noted in [21], the equality (7.15) fails to be true, for example,
for the subfactorsC ,! Mn.C/. The minimal index Ind.N;M/ is not a good notion
of index in the case of finite dimensional factors.

Now is an appropriate moment to pay our debt to Remark 4.14, by giving a
particularly mild condition that ensures that a bimodule is dualizable – compare
[22, Theorem 4.1].

Proposition 7.17. LetAHB and BKA be irreducible bimodules between von Neu-
mann algebras with finite-dimensional centers. If there exist non-zero maps

zR W AL2.A/A �! AH �B KA

and
zS W BL2.B/B �! BK �A HB ;

then AHB and BKA are dualizable.
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Proof. We denote zR by and zS by . We may assume without loss of gener-
ality that A and B are factors, and that zR and zS are isometries. Define conditional
expectations E W B 0 ! A and F W A0 ! B by

E W x 7�! bx ;

and

F W y 7�! by ;

where the commutants are taken on H .
Denote by U.A/ the group of unitary elements of A. For any non-zero pro-

jection p 2 B 0, the least upper bound
W
u2U.A/ upu� belongs to A0 \ B 0 D

End.AHB/ D C and is therefore equal to 1. If E.p/ were zero, we would have

1 D E.1/ D E.Wupu�/ DW
E.upu�/ DW

uE.p/u� D 0:

Thus the conditional expectation E is faithful, and similarly F is faithful. It fol-
lows from [22, Proposition 4.4] that the inclusion A � B 0 has finite index. By
Lemma 5.16, we then have dim.AHB/ D �B 0 W A� < 1, and so AHB is dualiz-
able. The bimodule BKA is dualizable for similar reasons.

We finish this section by establishing some useful inequalities for the matrix of
statistical dimensions �B W A� – recall Definition 5.13 – associated to a finite ho-
momorphism A ! B of von Neumann algebras with finite-dimensional centers.
Our proofs are all based on the Pimsner–Popa inequality.

Let A1; B1 � B.H1/ and A2; B2 � B.H2/ be von Neumann algebras such that
Ai commutes with Bi . The algebras A1 _B1 � B.H1/ and A2 _B2 � B.H2/ are
therefore completions of the corresponding algebraic tensor products A1 ˝alg B1
and A2 ˝alg B2. Given homomorphisms ˛ W A1 ! A2 and ˇ W B1 ! B2, the
induced map ˛ ˝ ˇ W A1 ˝alg B1 ! A2 ˝alg B2 does not always extend to a
map A1 _ B1 ! A2 _ B2. This will however be the case in the presence of an
˛ ˝ ˇ-equivariant surjective homomorphisms h W H1 ! H2.
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Lemma 7.18. Let Ai , Bi , Hi , and h be as above. If the algebras Ai , Bi , and
Ai _ Bi have finite-dimensional centers and the homomorphisms ˛ W A1 ! A2
and ˇ W B1 ! B2 are finite, then the induced map

˛ ˝ ˇ W A1 _ B1 �! A2 _ B2 (7.19)

is a finite homomorphism.

Proof. Let us write _H1 and _H2 for the completions inside B.H1/ and B.H2/,
respectively. We can then factor the map (7.19) as

A1 _H1 B1 �! A1 _H2 B1 �! A2 _H2 B1 �! A2 _H2 B2:

The first map is a projection, and therefore finite. We analyze the second map – the
third one is similar. >From now on let _ mean _H2 . The restriction to A0

1 \B 0
1 D

.A1 _ B1/0 of the minimal conditional expectation E0 W A0
1 ! A0

2 satisfies the
same Pimsner–Popa bound as E0. The homomorphism .A1 _ B1/0 ! .A2 _ B1/0
is therefore finite by Proposition 7.5. Corollary 5.17 finishes the argument.

Proposition 7.20. Let A be an infinite-dimensional factor sitting in a von Neu-
mann algebra B . If there exists a conditional expectation E W B ! A satisfying
the Pimsner–Popa bound

E.x/ � ��1x; x 2 BC; (7.21)

then B has finite-dimensional center. Furthermore, letting pi be the minimal cen-
tral projections of B , we then have

P
ŒpiB W A� � �. In other words, we have the

inequality ���B W A�
�� � p�;

where kk stands for the `2 norm of a vector.

Proof. Let qi 2 B be non-zero central projections adding up to 1. Since

aE.qi / D E.aqi / D E.qia/ D E.qi /a

for all a 2 A, the element E.qi / is central in A, and hence a scalar. >From the
bound (7.21), we conclude that E.qi / � ��1. Summing up over all indices i , we
deduce

1 D E.1/ D E� P
qi

� DP
i E.qi / �

P
i �

�1;

from which it follows that the number of qi ’s is at most �. The center of B is
therefore finite-dimensional.
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Now let pi be the minimal central projections of B , and let Bi
defD piB . The

restriction Fi
defD EjBi W Bi ! A satisfies all the properties for being a conditional

expectation, except that it does not send the unit pi of Bi to 1. The map Ei
defD

Fi .pi /
�1Fi is therefore a conditional expectation. It satisfies the bound

Ei .x/ � Fi .pi /�1��1x; x 2 BiC;
from which it follows that ŒBi W A� � Fi .pi /�. Adding up over indices, we get
that

P
ŒBi W A� �P

Fi .pi /� D E.Ppi /� D E.1/� D �.

The following result is, in some sense, dual to Proposition 7.20.

Proposition 7.22. Let A D ˚Ai be a sum of finitely many infinite-dimensional
factors Ai , and suppose that A is a subalgebra of some factor B . Let E W B ! A

be a conditional expectation satisfying

E.x/ � ��1x; x 2 BC: (7.23)

Letting pi be the minimal central projections of A, we have
P
ŒpiBpi W Ai � � �.

In other words, we have the inequality���B W A�
�� � p�;

where kk stands for the `2 norm of a vector.

Proof. Under our assumption on A the optimal � satisfying (7.23) can be iden-
tified with the Kosaki index kE�1.1/k of the conditional expectation E, see [32,
Theorem 1.1.6]. By its definition [17, 18], the Kosaki index does not change under
tensor product with another factor. In particular, given a type III factorR, we con-
clude that the conditional expectation E ˝ R W B x̋R ! A x̋R satisfies the same
bound (7.23) as E. The index of Ai ˝R in pi .B ˝R/pi being equal to that of Ai
in piBpi , we may assume without loss of generality that B is a type III factor.

Let us define Bij
defD piBpj : If B is a type III factor, then the projections pi are

all Murray-von Neumann equivalent; we can therefore identify each matrix block
Bij with a given algebra, say C , and get an isomorphism

B D
M
ij

Bij ŠMn.C /:

Taking the composite Bi i ,! B
E�! A � Ai , we get a conditional expectation

Ei W Bi i ! Ai . Let 
i be the smallest number for which the Pimsner–Popa in-
equality

Ei .x/ � 
�1
i x; x 2 Bi iC
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holds, and note that there exist projections ei 2 Bi i such that Ei .ei / D 
�1
i pi ;

for example, we can take ei to be a Jones projection as in the proof of Proposi-
tion 7.10 (a).

Let uij 2 C be partial isometries with uiju�
ij D ei , u�

ij D uj i , and uijujk D
uik . In particular, we have ui i D ei . Consider now the projection Q 2 Mn.C /

given by

Qij
defD
p
�i�jP
k

�k
uij :

We then have

E.Q/ D
M

Ei .Qi i / D
M

Ei .
�iP
k

�k
ei / D

M
�iP
k

�k
Ei .ei / D

M
1P
k

�k
pi

D 1P
k



k

:

Combined with the bound (7.23), the above estimate shows that� �P

k. To fin-

ish the proof, we use the inequality 
i � ŒpiBpi W piA�, which follows from (7.11)
and (7.12).

Remark 7.24. We expect that, analogously to Proposition 7.20, when A � B

with B a factor, the existence of a conditional expectation B ! A satisfying a
Pimsner–Popa bound actually implies that A has finite-dimensional center.

Given the results of Propositions 7.20 and 7.22 it is natural to ask the following:

Question 7.25. Let A � B be von Neumann algebras with finite-dimensional
center, and let E W B ! A be a conditional expectation satisfying the Pimsner–
Popa bound E.x/ � ��1x, for all x 2 BC. For which norm kk on matrices do we
then get the inequality k�B W A�k � p� ?

Finally, we use the previous two propositions to explain the relationship be-
tween index and the operations of relative commutant and of completed tensor
product.

Corollary 7.26. LetN �M � A � B.H/ be subalgebras with N andM factors
and ŒM W N� < 1. Suppose that one of the two relative commutants N 0 \ A or
M 0 \ A is a factor, and that the other one has finite-dimensional center. In this
case, ���N 0 \ A WM 0 \ A�

�� � �M W N �:
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Proof. By Corollary 5.17, we know that ŒN 0 WM 0� D ŒM W N�. Let E 0 W N 0 !M 0
be the minimal conditional expectation from N 0 to M 0. If a 2 A0 � N 0 and
x 2 N 0 \ A, then we have aE 0.x/ D E 0.ax/ D E 0.xa/ D E 0.x/a, showing
that E 0.x/ 2 M 0 \ A. The restriction E defD E 0jN 0\A is therefore a conditional
expectation from N 0 \ A to M 0 \ A. By the Pimsner–Popa inequality for E 0, we
know that

E.x/ � ŒN 0 W M 0��1x D ŒM W N��1x; x 2 N 0 \ A:

By Proposition 7.20 or Proposition 7.22, it follows that
���N 0 \ A W M 0 \ A�

�� �
�M W N �.

Corollary 7.27. Let N � M � B.H/ be factors with ŒM W N� < 1, and let
A � B.H/ be an algebra that commutes withM . Suppose that one of the algebras
N _A andM _A is a factor, and that the other one has finite-dimensional center.
In this case, ���M _ A W N _ A�

�� � �M W N �:

Proof. By the previous corollary, we have
���N 0 \ A0 W M 0 \ A0�

�� � �M W N �.
The result now follows from Corollary 5.17, because .M _ A/0 D M 0 \ A0 and
.N _ A/0 D N 0 \ A0.
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