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Abstract. We construct a graph-valued analogue of the Hom�ypt sl.3/ invariant for virtual

knots. �e restriction of this invariant for classical knots coincides with the usual Hom�ypt

sl.3/ invariant, and for virtual knots and graphs it provides new information that allows one

to prove minimality theorems and to construct new invariants for free knots. A novel feature

of this approach is that some knots are of su�cient complexity that they evaluate themselves

in the sense that the invariant is the knot itself seen as a combinatorial structure.
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1. Introduction

�is paper studies a generalization to virtual knot theory of the Kuperberg sl.3/

bracket invariant. Kuperberg discovered a bracket state sum for the sl.3/ spe-

cialization of the Hom�ypt polynomial that depends upon a reductive graphical

procedure similar to the Kau�man bracket but more complex.

In this paper we show that the Kuperberg bracket can be uniquely de�ned and

generalized to virtual knot theory via its reductive graphical equations. �ese

equations reduce to scalars only for the planar graphs from classical knots. For vir-

tual knots, there are unique graphical reductions to linear combinations of reduced

graphs with Laurent polynomial coe�cients. Let us call these “graph polynomi-

als.” �e ideal case, sometimes realized, is when the topological object is itself

the invariant, due to irreducibility. When this happens one can point to combina-

torial features of a topological object that must occur in all of its representatives

(�rst pointed out by Manturov in the context of parity). �is extended Kuperberg

bracket specializes to an invariant of free knots and allows us to prove that many

free knots are non-trivial without using the parity restrictions we had been tied to

before.

�e aim of the present article is to extend the Kuperberg combinatorial con-

struction of the quantum sl.3/ invariant for the case of virtual knots. In speaking

of knots in this paper we refer to both knots and links.

In Figure 1, we adopt the usual convention that whenever we give a picture

of a relation, we draw only the changing part of it; outside the �gure drawn, the

diagrams are identical.

A2 A�2

�A�1 �A

Figure 1. Kuperberg’s relation for sl.3/.



A graphical construction of the sl.3/ invariant for virtual knots 525

For the case of the sl.3/ knot invariant, one uses the relation shown in Figure 1,

see [3]. �is means that the left (resp., right) picture of (1) is resolved to a combi-

nation of the upper and lower pictures with coe�cients indicated on the arrows.

�e advantage of Kuperberg’s approach is that graphs of this sort which can be

drawn on the plane can be easily simpli�ed, by using further linear relations, to

collections of Jordan curves, which in turn, evaluate to elements from ZŒA; A�1�.

For planar graphs, these reductions continue all the way to scalars. In the case

of non-planar graphs, there is no immediate way to resolve such graphs to linear

combinations of collections of circles. We take it as an extra advantage of this ap-

proach that the non-planar resolutions leave irreducible graphs whose properties

re�ect the topology of virtual knots and links.

�e present paper is organized as follows. Section 2 is a review of concepts

from virtual knot theory, �at virtual knot theory and free knot theory. Section 3

contains the construction of the main invariant in this paper, generalizing the Ku-

perberg bracket for sl.3/: Applications of this invariant to questions of minimality

will be given elsewhere. Section 4 contains remarks about the results in the paper

and directions for future work.

2. Basics of virtual knot theory, �at knots and free knots

�is section contains a summary of de�nitions and concepts in virtual knot theory

that will be used in the rest of the paper.

Virtual knot theory studies the embeddings of curves in thickened surfaces of

arbitrary genus, up to the addition and removal of empty handles from the surface.

See [10, 12]. Virtual knots have a special diagrammatic theory, described below,

that makes handling them very similar to the handling of classical knot diagrams.

In the diagrammatic theory of virtual knots one adds a virtual crossing (see

Figure 2) that is neither an over-crossing nor an under-crossing. A virtual crossing

is represented by two crossing segments with a small circle placed around the

crossing point.

Moves on virtual diagrams generalize the Reidemeister moves for classical

knot and link diagrams (Figure 2). �e detour move is illustrated in Figure 3. �e

moves designated by (B) and (C) in Figure 2, taken together, are equivalent to

the detour move. Virtual knot and link diagrams that can be connected by a �nite

sequence of these moves are said to be equivalent or virtually isotopic. A virtual

knot is an equivalence class of virtual diagrams under these moves.
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planar
isotopy
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Figure 2. Moves.

Figure 3. Detour Move.

Virtual diagrams can be regarded as representatives for oriented Gauss codes;

see [6, 10, 11] (Gauss diagrams). Such codes do not always have planar realiza-

tions. Virtual isotopy is the same as the equivalence relation generated on the col-

lection of oriented Gauss codes by abstract Reidemeister moves on these codes.

�e reader can see this approach in [9, 6, 16]. It is of interest to know the least

number of virtual crossings that can occur in a diagram of a virtual knot or link.

If this virtual crossing number is zero, then the link is classical. For some re-

sults about estimating virtual crossing number see [8, 13, 17] and see the results of

Corollaries 3.3 and 3.4 in Section 3 of the present paper.
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Figure 4. �e Z-Move.

Flat and Free Knots and Links. Every classical knot diagram can be regarded

as a 4-regular plane graph with extra structure at the nodes. Let a �at virtual

diagram be a diagram with virtual crossings as we have described them and �at

crossings consisting in undecorated nodes of the 4-regular plane graph, retaining

the cyclic order at a node. Two �at virtual diagrams are equivalent if there is a

sequence of generalized �at Reidemeister moves (as illustrated in Figure 2) taking

one to the other. A generalized �at Reidemeister move is any move as shown in

Figure 2 where one ignores the over or under crossing structure. �e moves for

�at virtual knots are obtained by taking Figure 2 and replacing all the classical

crossings by �at (but not virtual) crossings. In studying �at virtuals the rules

for changing virtual crossings among themselves and the rules for changing �at

crossings among themselves are identical. Detour moves as in part C of Figure 2

are available for virtual crossings with respect to �at crossings and not the other

way around.

To each virtual diagram K there is an associated �at diagram F.K/, obtained

by forgetting the extra structure at the classical crossings in K: We say that a virtual

diagram overlies a �at diagram if the virtual diagram is obtained from the �at

diagram by choosing a crossing type for each �at crossing in the virtual diagram.

If K and K 0 are isotopic as virtual diagrams, then F.K/ and F.K 0/ are isotopic as

�at virtual diagrams. �us, if we can show that F.K/ is not reducible to a disjoint

union of circles, then it will follow that K is a non-trivial and non-classical virtual

link.
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De�nition. A virtual graph is a 4-regular graph that is immersed in the plane

giving a choice of cyclic orders at its nodes. �e edges at the nodes are connected

according to the abstract de�nition of the graph and are embedded into the plane so

that they intersect transversely. �ese intersections are taken as virtual crossings

and are subject to the detour move just as in virtual link diagrams. We allow circles

along with the graphs of any kind in our work with graph theory.

Framed nodes and framed graphs. We use the concept of a framed 4-valent

node where we only specify the pairings of opposite edges at the node. In the cyclic

order, two edges are said to be opposite if they are paired by skipping one edge

as one goes around. If the cyclic order of a node is Œa; b; c; d � where these letters

label the edges incident to the node, then we say that edges a and c are opposite,

and that edges b and d are opposite. We can change the cyclic order and keep the

opposite relation. For example, in Œc; b; a; d � it is still the case that the opposite

pairs are a; c and b; d: A framed 4-valent graph is a 4-valent graph where every

node is framed. When we represent a framed 4-valent graph as an immersion in

the plane, we use virtual crossings for the edge-crossings that are artifacts of the

immersion and we regard the graph as a virtual graph. For an abstract framed

4-valent graph, there are no classical crossings - the only Reidemeister moves that

occur are among the virtual crossings.

A component of a framed graph is obtained by taking a walk on the graph so

that the walk contains pairs of opposite edges from every node that is met during

the walk. �at is, in walking, if you enter a node along a given edge, then you exit

the node along its opposite edge. Such a walk produces a cycle in the graph and

such cycles are called the components of the framed graph. Since a link diagram

or a �at link diagram is a framed graph, we see that the components of this framed

graph are identical with the components of the link as identi�ed by the topologist.

A framed graph with one component is said to be unicursal.

When we take virtual knot diagrams only up to framing of their classical nodes,

we are allowing the Z-move as illustrated in Figure 4. In the Z-move one can

interchange a crossing with an adjacent virtual crossing, as shown in the �gure.

We call virtual knots and links modulo the Z-move, Z-knots. We call �at virtual

knots modulo the Z-move, free knots. �us free knots are the same as framed

4-valent graphs taken up to the �at Reidemeister moves. �e theory of free knots

is identical with the theory that one gets when one takes �at virtuals modulo the

�at Z-move as shown in Figure 4. We say that a virtualization move has been

performed on a crossing if it is �anked by two virtual crossings. We illustrate this

operation in Figure 4 and show that virtualization does not change the equivalence
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class of a �at diagram under the Z-move. �is means that any invariant of free

knots must be invariant under virtualization.

3. Construction of the main invariant

Let S be the collection of all trivalent bipartite graphs with edges oriented from

vertices of the �rst part to vertices of the second part. Let T D ¹t1; t2; : : : º be the

(in�nite) subset of connected graphs from S having neither bigons nor quadrilat-

erals. Let M be the module ZŒA; A�1�Œt1; t2; : : : � of formal commutative products

of graphs from T with coe�cients that are Laurent polynomials. Disjoint unions

of graphs are treated as products in M. Our main invariant will be valued in M.

Statement 1. Figure 5 shows the reduction moves for the Kuperberg bracket. �e

last three lines of the �gure will be called the relations in that Figure. �ere exists

a unique map f W S ! M which satis�es the relations in Figure 5. Note that we

have shown part of these relations in Figure 1. �e resulting evaluation yields a

topological invariant of virtual links when the �rst two lines of Figure 5 are used

to expand the link into a sum of elements of S:

��

��

��

��

��

D

�A1

�A�1A2

A�2

C

.A C A�3/

.A6 C 1 C A�6/D

Figure 5. Kuperberg Bracket.
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Proof. �e relations we are going to use to prove the statement are as shown in

Figure 5. Note that for the case of planar tangles this map to diagrams modulo rela-

tions was constructed explicitly by Kuperberg [3], and the image was inZŒA; A�1�.

We are going to follow [3], however, in the non-planar case, the graphs can not

be reduced just to collections of closed curves (in the case of the plane, Jordan

curves) and so later evaluate to polynomials. In fact, irreducible graphs will ap-

pear in the non-planar case. First, we treat every 1-complex with all components

being graphs from S and circles. We treat it as the formal product of these graphs,

where each circle evaluates to the factor .A6 C A�6 C 1/. We note that if a graph

� from S has a bigon or a quadrilateral, then we can use the relations shown in

Figure 5 (resolution of quadrilaterals, resolution of bigons, loop evaluation) to re-

duce it to a smaller graph (or two graphs, then we consider it as a product). So,

we can proceed with resolving bigons and quadrilaterals until we are left with a

collection of graphs tj and circles; this gives us an element from M; once we prove

the uniqueness of the resolution, we set the stage for proving the existence of the

invariant. We must carefully check well-de�nedness and topological invariance.

In what follows, we shall often omit the letter f by identifying graphs with their

images or intermediate graphs which appear after some concrete resolutions.

Our goal is to show that this map f W S ! M is well-de�ned. We shall prove

it by induction on the number of graph edges. �e induction base is obvious and

we leave its articulation to the reader. To perform the induction step, notice that

all of Kuperberg’s relations are reductive: from a graph we get to a collection of

simpler graphs.

Assume for all graphs with at most 2n vertices that the statement holds. Now,

let us take a graph � from S with 2n C 2 vertices. Without loss of generality, we

assume this graph is connected. If it has neither bigon nor quadrilateral, we just

take the graph itself to be its image. Otherwise we use the relations resolution

of bigons or resolution of quadrilaterals as in Figure 5 to reduce it to a linear

combination of simpler graphs; we proceed until we have a sum (with Laurent

polynomial coe�cients) of (products of) graphs without bigons and quadrilaterals.

According to the induction hypothesis, for all simpler graphs, there is a unique

map to M. However, we can apply the relations in di�erent ways by starting from

a given quadrilateral or a bigon. We will show that the �nal result does not depend

on the bigon or quadrilateral we start with. To this end, it su�ces to prove that

if � can be resolved to ˛�1 C ˇ�2 from one bigon (quadrilateral) and also to

˛0� 0

1 C ˇ0� 0

2 from the other one, then both linear combinations can be resolved

further, and will lead to the same element ofM. �is will show that �nal reductions

are unique.
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Whenever two nodes of a quadrilateral coincide, then two edges coincide and

it is no longer subject to the quadrilateral reduction relation. �us we assume

that quadrilaterals under discussion have distinct nodes. Note that if two polygons

(bigons or quadrilaterals) share no common vertex then the corresponding two

resolutions can be performed independently and, hence, the result of applying

them in any order is the same. So, in this case, ˛�1 C ˇ�2 and ˛0� 0

1 C ˇ0� 0

2

can be resolved to the same linear combination in one step. By the hypothesis,

f .�1/; f .�2/; f .� 0

1/; f .� 0

2/ are all well de�ned, so, we can simplify the common

resoltion for ˛�1 C ˇ�2 and ˛0� 0

1 C ˇ0� 0

2 to obtain the correct value for f of any

of these two linear combinations, which means that they coincide.

If two polygons (bigons or quadrilaterals) share a vertex, then they share an

edge because the graph is trivalent. If a connected trivalent graph has two di�er-

ent bigons sharing an edge then the total number of edges of this graph is three,

and the evaluation of this graph in T follows from an easy calculation. �erefore,

let us assume we have a graph � with an edge shared by a bigon and a quadrilat-

eral. We can resolve the quadrilateral �rst, or we can resolve the bigon �rst. �e

calculation in Figure 6 shows that after a two-step resolution we get to the same

linear combination.

C .A3 C A�3/

1 C .A6 C A�6 C 1/1 C .A6 C A�6 C 1/ D .A3 C A�3/2

Figure 6. Two Ways of Reducing a Quadrilateral and a Bigon.
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A similar situation happens when we deal with two quadrilaterals sharing an

edge, see Figure 7. Here we have shown just one particular resolution, but the

picture is symmetric, so the result of the resolution when we start with the right

quadrilateral, will lead us to the same result. See also Figure 8 and Figure 9.

�ese �gures illustrate two other ways in which the edge can be shared. Note that

Figure 8 illustrates a possibly non-planar case, and that we use the abstract graph

structure (no particular order at the trivalent vertex) in the course of the evaluation.

�ese cases cover all the ways that shared edges can occur, as the reader can easily

verify.

D C

CD .A3 C A�3/

Figure 7. Resolving two adjacent squares.

D C

D 2.A3 C A�3/2

Figure 8. Resolving two di�erent adjacent squares.



A graphical construction of the sl.3/ invariant for virtual knots 533

C

X X2

Y 2 C Y

X2Y

X2Y D .Y C 1/Y D Y 2 C Y

X D .A3 C A�3/ Y D .A6 C 1 C A�6/

��

��

��

��

�
�

Figure 9. Resolving two annular squares.

�us, we have performed the induction step and proved the well-de�nedness

of the mapping. Note that the ideas of the proof are the same as in the classical

case; however, we never assumed any planarity of the graph; we just drew graphs

planar whenever possible. Note that the situation in Figure 8 is principally non-

planar. �e invariance under virtualization follows from this de�nition because the

graphical pieces into which we expand a crossing, as in Figure 10, are, as graphs,

symmetric under the interchange produced by the virtualization.

Remark. We can, in the case of �at knots or standard virtual knots represented

on surfaces, enhance the invariant by keeping track of the embedding of the graph

in the surface and only expanding on bigons and quadrilaterals that bound in the

surface. We will not pursue this version of the invariant here. In undertaking this

program we will produce evaluations that are not invariant under the Z-move for

�ats or for virtual knots.

Now we give a formal description of our main invariant. �is evaluation is

invariant under the Z-move. It is de�ned for virtual knots and links and it special-

izes to an invariant of free knots. Let K be an oriented virtual link diagram. With

every classical crossing of K, we associate two local states, the oriented one and

the unoriented one: the oriented one shown in the upper picture of Figure 1, and

the unoriented one shown in the lower picture of Figure 1. A state of the diagram

is a choice of local state for each crossing in the diagram.
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We de�ne the bracket J�K (generalized Kuperberg bracket) as follows. Let K

be an oriented virtual link diagram. For a state s of a virtual knot diagram K,

we de�ne the weight of the state as the coe�cient of the corresponding graph

according to the Kuberberg relations (1). More precisely, the weight of a state

is the product of weights of all crossings, where a weight of a positive crossing

is A2wr for the oriented resolution and �A�wr for the unoriented resolution, wr

stands for the writhe number (the oriented sign) of the crossing.

Set

JKK D
X

s

w.Ks/ � f .Ks/ 2 M; (1)

where w.Ks/ is the weight of the state.

�eorem 3.1. For a given diagram K; the normalized bracket .A�8 wr.K//JKK is

invariant under all Reidemeister moves and the virtualization move. Here wr.K/

denotes the writhe obtained by summing the signs of all the classical crossings in

the corresponding diagram.

Proof. �e invariance proof under Reidemeister moves repeats that of Kuperberg.

Note that the writhe behaviour is a consequence of the relations in Figure 5. �e

only thing we require is that the Kuperberg relations (summarized in Figure 5) can

be applied to yield unique reduced graph polynomials. �e discussion preceding

the proof, proving Statement 1, handles this issue.

From the de�nition of JKK we have the following result.

Corollary 3.2. If JKK does not belong to ZJA; A�1K � M then the knot JKK is

not classical.

Recalling that a free link is an equivalence of virtual knots modulo virtual-

izations and crossing switches and taking into account that the skein relations in

Figure 1 for J�K for and are the same when specifying A D 1, we get the

following

Corollary 3.3. Both JKKAD1 and JKKAD�1 are invariants of free links.

Notation. By the unoriented state Kus of virtual knot diagram (resp., free knot

diagram) K we mean the state of K where all crossings are resolved in a way

where an edge is added. Note that Kus is treated as a graph.
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Corollary 3.4. Assume for a virtual knot (or free knot) K with n classical cross-

ings the graph Kus has neither bigons nor quadrilaterals. �en every knot K 0

equivalent to K has a state s such that K 0

s contains Kus as a subgraph. �is state

can be treated as an element of M. In particular, K is minimal, and all minimal

diagrams of this free knot have the same number of crossings.

Note that the coincidence of Kus and K 0

us does not guarantee the coincidence

of K and K 0. For example, if K and K 0 di�er by a third unoriented Reidemeister

move, then, of course, JKK D JK 0K. �e corresponding resolutions Kus and K 0

us

will coincide (they will have a hexagon inside).

Corollary 3.5. Let K be a four-valent framed graph with n crossings and with

girth number at least �ve. �en the hypothesis of Corollary 3.4 holds.

So, this proves the minimality of a large class of framed four-valent graphs

regarded as free knots: all graphs having girth � 5 and many other knots. For

example, consider the free knot Kn whose Gauss diagram is the n-gon, n > 6:

it consists of n chords where i-th chord is linked with exactly two chords, those

having numbers i � 1 and i C 1 (the numbers are taken modulo n). �en Kn

satis�es the condition of 3.4 and, hence, is minimal in a strong sense.

Note that the triviality of such n-gons as free knots was proven only for n � 6.

Remark 3.6. �e above argument works for links and tangles as well as knots.

From the construction of J�K we get the following corollary.

Corollary 3.7. Let K be a virtual (resp., �at) knot, and let �1 � � � �k be a product

of irreducible graphs which appear as a summand in JKK (resp., JKKjAD1) with

a non-zero coe�cient. �en the minimal virtual crossing number of K is greater

than or equal to the sum of crossing numbers of graphs:

cr.�1/ C � � � C cr.�k/

and the underlying genus of K is less than or equal to the sum of genera

g.�1/ C � � � C g.�k/

(in virtual or free knot category).
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�e above corollary easily allows one to reprove the theorem �rst proved in [17],

that the number of virtual crossings of a virtual knot grows quadratically with

respect to the number of classical knots for some families of graphs. In [17], it

was done by using the parity bracket. Now, we can do the same by using

FreeJKK D JKKjAD1:

With this invariant one can easily construct in�nite series of trivalent bipartite

graphs which serve as Kus for some sequence of knots Kn and such that the min-

imal crossing number for these graphs grows quadratically with respect to the

number of crossings. Recalling that the number of vertices comes from the num-

ber of classical crossings of Kn, we get the desired result.

4. Remarks

�is article arose through our discussions of new possibilities in virtual knot the-

ory and in relation to advances of Manturov using parity in virtual knot theory,

particularly in the area of free knots. Manturov was the �rst person to show that

many free knots are non-trivial. A free knot is a Gauss diagram with only chords

and without signs on the chords or orientations on them. Such Gauss diagrams

are taken up to Reidemeister moves and they underlie the structures of virtual knot

theory.

�e constructed invariant has the following properties.

(1) It coincides with the usual sl.3/ quantum invariant in the case of the classical

knots.

(2) It does not change under virtualization (i.e. under the Z-move as de�ned in

this paper) ; its speci�cation at A D 1 gives rise to an invariant of free knots.

(3) For virtual knots, that are complcated enough, the new invariant is valued in

a certain module whose generators are graphs.

(4) �e invariant produces many new examples of minimality in a strong sense

for free knots in the �avour of the parity bracket, [5, 14]. But it goes beyond

simple parity and can discriminate certain free knots that have only even

crossings.

In the paper [4], there is a model for the sl.n/-version of the Hom�ypt polyno-

mial for classical knots. �is model is based on patterns of smoothings as shown

in Figure 10.
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Figure 10. Murakami–Ohtsuki–Yamada relation for sl.n/.

�ese patterns suggested to us the techniques we use in this paper with the

Kuperberg bracket, and we expect to generalize them further. In this method, the

value of the polynomial for a knot is equal to the linear combination of the values

for two graphs obtained from the knot by resolving the two crossings as shown in

Figure 10.

In the present paper we enhance the Hom�ypt sl.3/ invariant by using the fol-

lowing observation: if a trivalent graph is complicated enough so that it admits

no further simpli�cation, it can be evaluated as itself. �en the obtained “poly-

nomial” sl.3/ invariant will be valued not just in Laurent polynomials in one vari-

able A, but in a larger ring where trivalent graphs act as variables. A key point

here is that it can be the case that a topological object such as a free knot is its

own invariant! See [15] for a use of this idea. �is is what happens when we meet

irreducibility in the graphical expansion of our invariant. �en it is possible for

the expansion to simply stop at the object itself. �is rigidity occurs when the

non-planar graphs in the expansion of the generalized Kuperberg bracket are irre-

ducible. �en these graphs are valued as themselves, rather than as polynomials

in other graphs.
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