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Khovanov homology of a unicolored B-adequate link has a tail

Lev Rozansky1

Abstract. C. Armond [3] and S. Garoufalidis and T. Le [6] have shown that a unicolored

Jones polynomial of a B-adequate link has a stable tail at large colors. We categorify this

tail by showing that Khovanov homology of a unicolored link also has a stable tail, whose

graded Euler characteristic coincides with the tail of the Jones polynomial.
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1. Notations and basic facts

1.1. Links, adequate links and their diagrams. All diagrams of tangles and

links in this paper are framed, we assume blackboard framing. Links are presumed

unframed, unless speci�ed otherwise.

1 �is work was supported in part by the NSF grants DMS-0808974 and DMS-1108727.
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Each crossing of a link diagram D can be ‘spliced’ in two ways, we call them

A-splicing and B-splicing:

 !A

 

!
B

Let B.D/ denote the diagram which consists of two parts: the circles resulting

from B-splicing of all crossings of D (B-circles) and segments connecting those

circles at places where crossings were in D (struts). Schematically, one passes

from D to B.D/ in the following way:

 

!

where the arcs in the right diagram are parts of B-circles and the dashed segment

is a strut.

De�nition 1.1. � A crossing of D and its strut in B.D/ are called B-adequate,

if the strut connects two di�erent B-circles.

� A framed diagram D is B-adequate, if all of its crossings are B-adequate.

� A framed link is B-adequate, if it can be represented by a B-adequate framed

diagram.

� An unframed link L is called B-adequate, if there is at least one framed B-ad-

equate diagram which represents it.

Note that if an unframed link is B-adequate, then, generally, it can not be rep-

resented by a B-adequate framed diagram for all framings.

Adequate links were introduced by Raymond Lickorish and Morwen �istleth-

waite [9]. All alternating links are B-adequate, but not all B-adequate links are

alternating: an example of this is a torus knot Tm;�n, n � m � 3. More generally,

a link constructed by closing a totally negative braid is B-adequate. Torus knots

Tm;n, n � m � 3 provide examples of links which are not B-adequate.

Here are some notations associated with a link diagram D throughout the pa-

per:

V – a set of crossings (struts) in D or in B.D/,

�D – the number of crossings in D2,

�in
D – the number of B-inadequate crossings in D,

�D – the number of B-circles in B.D/,

�D – the framing number of D.
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�e following is an easy corollary of the results of section 7.7 of [8].

�eorem 1.2. �e numbers �L and �L are topological invariants of a B-adequate

framed link L, because they do not depend on the choice of representative B-ad-

equate diagram D for L. Moreover, if B-adequate framed links L and L0 di�er

only by framing, then

�L0 � �L D �L0 � �L D �.�L0 � �L/: (1.1)

For an unframed B-adequate link L we de�ne the minimal crossing number

�Š
L as the minimum among the numbers �D for B-adequate framed diagrams D

representing L.

1.2. �e Kau�man bracket and the Jones polynomial. �e Kau�man bracket

of a framed tangle diagram is de�ned by the splicing relation and the unknot nor-

malization condition:

D E

D q
1
2

D E

C q� 1
2

D E

; (1.2a)

D E

D �.q C q�1/: (1.2b)

�us de�ned, the bracket is framing-dependent:

D E

D �q
3
2

D E

:

�e Jones polynomial of a framed link L is the Kau�man bracket of its dia-

gram: JL.q/ D hLi.

1.3. Cables and coloring. We introduce coloring of tangle and link components

through cabling and Jones–Wenzl projectors. A cable of a strand is depicted by

using a thicker line with the label indicating the number of strands, and the Jones–

Wenzl projector is depicted by a box:

a D
::: a ;

a
:

For a positive integer N let JN;L.q/ denote the unicolored Jones polynomial

of L, that is, all components of L are colored by the same color N . A coloring of

a link component by N means that we assign the .N C1/-dimensional irreducible

representation of SU.2/ to it. Equivalently, the color N means that the link com-

ponent is N -cabled and we place the Jones–Wenzl projector on this cable.
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In this paper we consider unicolored links, that is, links, all of whose compo-

nents are colored by the same number N . �eir colored Jones polynomial JN;L.q/

is a Laurent polynomial of q2 up to an overall factor: if L is presented by a diagram

D, then

q
1
2

�DN 2C�DN JN;L.q/ 2 ZŒq˙2�:

1.4. Homological notations. Let A be a �nitely generated additive category: ob-

jects of A are �nite sums of elements of a �nite set A. Let KomC.A/ denote the

homotopy category of its complexes bounded from below: an object of KomC.A/

is a chain

A D .� � � �! AiC1 �! Ai �! � � � �! Am/; (1.3)

where Ai D
L

˛2A mi;˛ ˛ and mi;˛ 2 Z�0 are the multiplicities of generators.

�e notation m for multiplicity is treated in this paper as an arbitrary constant, so

the appearance of m in di�erent expressions does not imply that there is a relation

between the multiplicities, unless it is stated speci�cally. �e special multiplicities

appearing in a presentation of the categori�ed Jones–Wenzl projector are denoted

by �.

We use a non-standard notation for the translation functor: hA D AŒ1�, which

allows us to de�ne a functor p.h/ for any polynomial p.x/ with integer non-

negative coe�cients. In particular, we use a functor
®

i
j

¯

h
based on a combinatorial

polynomial

´

i

j

µ

x

D
.1 � x2i /.1� x2i�2/ � � � .1� x2i�2j C2/

.1� x2/.1� x4/ � � � .1� x2j /
: (1.4)

We also use a non-standard notation for the cone of two complexes:

hA
f
�! B D Cone.A

f
�! B/: (1.5)

in order to emphasize the fact that the cone Cone.A ! B/ can be presented as a

sum hA˚ B deformed by an extra di�erential A
f
�! B. Moreover, when we work

with bi-graded Khovanov complexes, there may be some confusion about which

of two gradings is homological, but our non-standard notation (1.5) speci�es all

degree shifts explicitly.

�e homological order jOjh of an object O 2 KomC.A/ is the minimum num-

ber m, for which O can be presented by a complex (1.3).
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Consider a direct system of complexes of KomC.A/: A0 ! A1 ! � � � : If this

system is ‘Cauchy’, that is, if for the cones Bi D Cone.Ai�1 ! Ai / there is a

limit limi!1 jBi jh D1, then, according to Proposition 3.7 of [10], there exists a

direct limit lim
!

Ai .

Since Ai � Cone.h�1Bi ! Ai�1/, the direct limit lim
!

Ai can be viewed as

a result of attaching the complexes Bi one after another to the initial complex

B0 D A0, hence we use the following notation for the complex lim
!

Ai :

lim
!

Ai � � � � �! Bi �! � � �
1

iD0
: (1.6)

In fact, if all Bi are ‘homologially minimal’ representatives of their equivalence

classes, then the sum
L1

iD0 Bi is well-de�ned (every chain object is �nitely gen-

erated) and lim
!

Ai is homotopy equivalent to
L1

iD0 Bi defomed by adding extra

di�erentials Bi

fij

��! Bj for all pairs i > j .

We refer to the r.h.s. of eq. (1.6) as a multi-cone, and we also use a similar

notation for the complex (1.3):

A D � � � �! hiAi �! � � �
1

iDm
:

Note the use of the functor h to set explicitly the correct homological degree of

the chain object Ai in the multi-cone.

If a multi-cone A is generated by complexes Ba:

A D � � � �!
M

j;a

mij;ah
j Ba �! � � � (1.7)

(where mij;a are multiplicities) but we do not care how those complexes are ar-

ranged within the multi-cone, then we use a ‘lump sum’ notation

A D
M

j;a

mtot
j;a h

j Ba

	

; mtot
j;a D

X

i

mij;a;

because, as a complex, A is a sum of Ba with total multiplicities
P

i mij;a de-

formed by an extra di�erential depicted as	.

If the category A is abelian, then we can compute the homology of the multi-

cone (1.6) with the help of the �ltered complex spectral sequence. �e E1 term

of this spectral sequence is the sum of homologies of Bi : E1 D
L1

iD0 H.Bi / and

it is determined by the lump sum form of the multi-cone.
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Remark 1.3. Since subsequent terms in the spectral sequence get only smaller,

there is a bound on the homological order of the homology of (1.6) in terms of

homological orders of its constituent complexes:

ˇ

ˇ

ˇH
�

� � � �! Bi �! � � �
1

iD0

�ˇ

ˇ

ˇ

h
� min

i
jH.Bi /jh:

In particular, for the lump sum multi-cone (1.7)

jH.A/jh � min¹jH.Ba/jh C j W mtot
j;a ¤ 0º:

1.5. Khovanov homology. In de�ning Khovanov complexes [8] for tangles we

follow the cobordism based approach of D. Bar-Natan [2], albeit with a di�erent

grading convention. We still have two degrees: h-degree degh and q-degree degq,

and we use the notations h and q for their translation functors (these functors in-

crease the corresponding degrees by 1). �e q-degree is the genuine homological

degree: it takes values inZ and its parity determines the sign factors. �e h-degree

is ‘pseudo-homological’, it takes values in 1
2
Z and it has no impact on signs, how-

ever it is the h-degree shift functor h which is present explicitly in the Khovanov

bracket.

In our notations, Khovanov bracket of a crossing and of the unknot are

�� ��

D h
1
2

�� ��

s
�! h� 1

2

�� ��

;

�� ��

D .qC q�1/Q;

(1.8)

where h and q are degree shift functors, while s is the morphism corresponding

to the saddle cobordism. Note that degh s D �1, while degq s D 1, so s is odd.

�us de�ned, Khovanov bracket is invariant under the �rst Reidemeister move

only up to a degree shift:

�� ��

D h
1
2 q

�� ��

: (1.9)

Relations (1.8) transform into the relations (1.2) after the substitution h 7! q,

q 7! �q, hence in our notations the graded Euler characteristic of Khovanov

homology of a framed link equals its Jones polynomial:

JL.q/ D
X

i;j

.�1/j qiCj dim HKh
i;j .L/:

We will use the Khovanov bracket notation hh�ii very sparingly, because it

clutters the pictures, especially when the diagrams are big. Nevertheless, we hope

that the distinction between diagrams and their Khovanov complexes will be clear.
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Actually, we blur this distinction further by allowing the presence of categori�ed

Jones–Wenzl projectors within diagrams, since, strictly speaking, projectors are

not diagrams but rather complexes within Bar-Natan’s universal category.

1.6. A categori�ed Jones–Wenzl projector. An .a; b/-tangle is an embedding

of circles and segments, the segment endpoints coinciding with initial a points or

�nal b points. Imagine that the tangle goes from the bottom up. Depending on

the position of its endpoints, the segment is either straight, or a cap, or a cup. If

one of its endpoints is initial and the other is �nal (so the segment goes straight

through the tangle), then the segment is straight, if both endpoints are initial, then

the segment is a cap, and if both of its the segments are �nal, then the segment is

a cup.

�e width j� jwd of a tangle � is the number of its straight segments. An .a; a/

tangle has an equal number of cups and caps, we call this number a width de�cit

and denote it as j� jdf . Obviously, j� jdf D
1
2
.a � j� jwd/.

A Temperley–Lieb (TL) tangle is a �at tangle which contains no circles. Let Ta

be the set of all .a; a/ TL tangles. �e categori�ed Jones–Wenzl projector
a

was constructed independently by Frenkel, Stroppel and Sussan [5], Cooper and

Krushkal [3] and by the author [10]. It satis�es three essential properties: it is a

projector:
a

�
a

; (1.10)

it annihilates cups and caps:

a

b

a�b�2

�
a

b

a�b�2

� 0; (1.11)

and it has a presentation as a cone of an identity braid and a complex
a

gen-

erated by TL tangles with positive width de�cit and with non-negative h-degree

and q-degree shifts

a
� h

a
�! a ; (1.12)

where

a
D � � � �! hi

M

0�j �i
2Ta;j jdf>0

�ij; q
j hhii �! � � �

1

iD0

(1.13)

and �ij; are multiplicities.
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1.7. Khovanov bracket of colored tangles. We de�ne Khovanov bracket of col-

ored tangles by cabling tangle components and adding at least one categori�ed

Jones–Wenzl projector to each tangle component. �is means that we allow semi-

in�nite complexes which may extend in�nitely far into positive homological de-

gree.

�e colored Khovanov bracket is independent of the framing up to a degree

shift:
a
D h

1
2

a2

qa a
: (1.14)

2. Results

2.1. Overview

2.1.1. Bounds on colored Khovanov homology. Let LN denote the N -unicol-

ored version of the link L. For a B-adequate framed link L, a shifted Khovanov

homology of LN is de�ned by the formula

zHKh.LN / D h
1
2

N 2�Lq�LN HKh.LN /: (2.1)

In view of eq. (1.1), if links L and L0 di�er only by framing, then their shifted

Khovanov homologies are isomorphic: zHKh.L0
N / D zHKh.LN /.

�eorem 2.1. �ere are bounds on degrees of shifted homology of a B-adequate

link L: zHKh
i;j .LN / D 0, if one of the following conditions is met:

i < 0; (2.2)

j < �1
2
i � 1

2
�Š

L; (2.3)

j < �i; (2.4)

j D �i ¤ 0; (2.5)

where �Š
L is the minimum crossing number of a diagram representing L. Moreover,

dim zHKh
0;0 D 1: (2.6)

2.1.2. Tail of Khovanov homology. �e main result of this paper is a de�ni-

tion of special degree-preserving maps between shifted Khovanov homologies of

unicolored B-adequate links, such that these maps are isomorphisms at low h-de-

grees.
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�eorem 2.2. A B-adequate diagram of a link L determines a sequence of degree

preserving maps

zHKh.LN /
fN
��! zHKh.LN C1/ (2.7)

which are isomorphisms on zHKh
i;�.LN / for i � N � 1.

De�nition 2.3. �e tail homology H1.L/ is the direct limit of the direct system

determined by the sequence of maps fN , N 2 ZC :

H1.L/ D lim
!

zHKh.LN /: (2.8)

Corollary 2.4. �e maps

zHKh.LN / �! H1.L/ (2.9)

associated with the direct limit (2.8) are isomorphisms on zHKh
i;�.LN / for i � N �1,

hence the direct limit H1.L/ is �nite-dimensional in every bi-degree, it satis�es

the bounds H1
i;j .L/ D 0 at the conditions (2.2)–(2.5) and

dim H1
0;0.LN / D 1: (2.10)

Remark 2.5. To de�ne the maps (2.7) we have to choose a diagram D repre-

senting L, however we expect that the maps can be de�ned canonically, that is,

independently of that choice.

2.1.3. Relation to the tail of the Jones polynomial. �e bounds (2.2) and (2.3)

on H1.L/ mean that the graded Euler characteristic of the tail homology is well-

de�ned, because in its presentation as an alternating sum of homology dimensions

JL;1.q/ D
X

i;j

.�1/j qiCj dim H1
i;j .D/

there is only a �nite number of non-trivial terms for any given value of i C j .

�e bound (2.3) indicates that zHKh
i;j .LN / and H1

i;j .L/ are trivial when i C j <
1
2
i� 1

2
�Š

L, hence their high h-degrees contribute only to coe�cients at high powers

of q in the graded Euler characteristic. Since the map (2.9) is an isomorphism at

low h-degrees, we come to the following:

�eorem 2.6. �e graded Euler characteristic of the tail homology determines

the lower powers of q in the unicolored Jones polynomial of a B-adequate link:

JN;L.q/ D .�1/�LN q� 1
2

N 2�L��LN .JL;1.q/CO.q
1
2

N � 1
2

�Š
L//:

�is means that the tail homology categori�es the tail of the unicolored Jones

polynomial of B-adequate links studied by C. Armond [1] and by S. Garoufalidis

and T. Le [6].
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2.1.4. Tail homology is determined by a reduced B-diagram of a link. A link

diagram D0 is a B-reduction of a link diagram D, if the diagram B.D0/ is con-

structed from B.D/ in two stages: at �rst stage for each pair of distinct B-circles

of B.D/ connected by more that one strut we remove all connecting struts but one;

at the second stage we remove all B-circles which have only one strut attached to

them. Obviously, if D is B-adequate, then so is D0.

A link L0 is a B-reduction of a B-adequate link L, if L0 can be presented by a

diagram which is a B-reduction of a B-adequate diagram presenting L.

�eorem 2.7. If a link L0 is a B-reduction of a B-adequate link L, then their tail

homologies are isomorphic: H1.L0/ Š H1.L/.

Corollary 2.8. If Lˇ is a circular closure of a connected negative braid ˇ, then

the tail homology of Lˇ is that of an unknot: H1.Lˇ / Š H1./.

Proof. It is easy to see that Lˇ is B-adequate and a reduced B-diagram of Lˇ

consists of a single circle without struts. �

Corollary 2.9 (Invariance under strut doubling). If L is a B-adequate link and L0

is constructed by performing a replacement

 

! (2.11)

in a B-adequate diagram of L, then tail homologies of L and L0 are isomorphic:

H1.L/ Š H1.L0/.

Proof. Obviously, L and L0 have the same B-reduction. �

�e latter corollary is a categori�cation of a similar property of the tail of the

unicolored Jones polynomial observed by C. Armond and O. Dasbach [4, 1]. �is

property suggests that a single crossing plays the role of a categori�ed Jones–

Wenzl projector in the tail homology. In order to make this statement precise,

tail homology has to be de�ned for knotted graphs, which may include both �nite

and in�nite colors, so that the essential property of contracting cups/caps can be

formulated. We hope to address this issue in a subsequent paper. Meanwhile, we

prove in Appendix that for large N a crossing of two N -cables is, indeed, homo-

logically close to the Jones–Wenzl projector placed on two parallel N -cables.
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2.2. Technicalities. We prove most statements of the previous subsection not

just for B-adequate links, but for any link diagram. However, we conjecture that

the results are trivial for B-inadequate diagrams, because their tail homology is

trivial, if de�ned as a direct limit of the system that we construct. We expect that

B-inadequate links also have tail homology, but the proof that the tail of their

Khovanov homology stabilizes in the limit of large color requires new ideas.

2.2.1. Shifted Khovanov homology. Let D be a diagram of a tangle which may

include single lines, cables and Jones–Wenzl projectors. We de�ne n�.D/ to be

the total number of single line crossings in D (that is, a crossing between an a-

cable and a b-cable contributes ab to n�.D/). �e following is an obvious corol-

lary of eq. (1.8) and the fact that, according to (1.12) and (1.13), j jh D 0:

�eorem 2.10. �e complex hhDii has a lower homological bound: jhhDiijh �

�1
2
n�.D/:

Let D be a diagram of a link which may include single lines, cables and Jones–

Wenzl projectors. De�ne nı.D/ to be the total number of circles in the diagram

constructed from D by replacing the Jones–Wenzl projectors with identity braids

and performing B-splicings on all crossings. Now we de�ne the shifted Khovanov

homology of D:
zHKh.D/ D h

1
2

n�.D/qnı.D/HKh.D/:

�e following is a particular case of �eorem 2.10:

�eorem 2.11. If i < 0, then zHKh
i;�.D/ D 0.

For a link diagram D let DN denote the corresponding unicolored diagram

(that is, every link components is N -cabled and contains at least one Jones–Wenzl

projector). �en, obviously, n�.DN / D N 2�D and nı.DN / D N�D , so

zHKh.DN / D h
1
2

N 2�Dq�DN HKh.DN /: (2.12)

Hence, if D is B-adequate and represents a link L, then zHKh.DN / coincides with

the shifted homology de�ned by eq. (2.1).

Now �eorem 2.1 is a corollary of �eorem 2.11 and the following:

�eorem 2.12. �e shifted homology of a unicolored diagram DN has a bound:
zHKh

i;j .DN / D 0 if one of the following conditions is satis�ed:

j < �1
2
i � 1

2
�D �

3
2
�in

D ; (2.13)

j < �i � �in
D (2.14)
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Moreover, if D is B-adequate, then

dim zHKh
i;�i D

´

0; if i > 0,

1; if i D 0.
(2.15)

�eorem 2.2 is a special case of the following:

�eorem 2.13. For any link diagram D there is a sequence of degree preserving

maps

zHKh.DN /
fN
��! zHKh.DN C1/; (2.16)

which are isomorphisms on zHKh
i;� for i � N � 1.

�is theorem implies that the direct system formed by maps (2.16) has a limit

H1.D/ D lim
!

zHKh.DN /: (2.17)

which is �nite-dimensional in every bi-degree.

Conjecture 2.14. If the diagram D is not B-adequate, then the direct limit (2.17)

is trivial: H1.D/ D 0.

2.3. Discussion. We conjecture that B-adequate links have a tri-graded homol-

ogy HÏ.L/, which has an additional ‘b-grading’, whose zero-degree part coin-

cides with the tail homology H1.L/:

HÏ.L/ D
M

i;j
k�0

HÏ

i;j;k.L/; HÏ

i;j;0.L/ D H1
i;j .L/:

�is homology should have a family of mutually anti-commuting di�erentials dN ,

N 2 ZC, with degrees degq dN D �1, degh dN D 1 and degb D �1 such that

homology of HÏ.L/ with respect to dN matches the shifted Khovanov homology
zHKh up to a level proportional to N 2, after the b-degree is converted into h-degree:

zHKh

Q{;�.L/ D
M

iCN kDQ{

H
dN

i;�;k

�

HÏ.L/
�

; if Q{ � aLN 2; (2.18)

where aL is a constant determined by L.

�ere are three reasons to formulate this conjecture. �e �rst reason is that the

proof of �eorem 2.2 is based on numerous long exact sequences (3.2), in which

the ‘correction homology’ starts at homological degree proportional to N .
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�e second reason is that, according to Garoufalidis and Le [6], the tail of the

Jones polynomial of B-adequate links has a ‘telescopic’ structure. �ey show that

if L is alternating, then there exists a family of Laurent series ˆn.q/ D
P

m amqm

such that for any k > 0 the combined series Fk.q/ D
Pk

nD0 ˆn.q/ is a better

approximation for the tail of the colored Jones polynomial that just the �rst term

ˆ0.q/ D JL;1.q/. With the help of the colored Kau�man bracket (cf. (3.10)) we

can prove a similar result for all B-adequate links and we expect that the 2-variable

series

JL;Ï.b; q/ D

1
X

nD0

bnˆn.q/ (2.19)

is the bi-graded Euler characteristic of the tri-graded homology HÏ.L/.

�e third reason for our conjecture comes from the paper by Gukov and Stošić;

see [7]. Based on QFT models of Khovanov homology, they suggest that its de-

pendence on color should be similar to the dependence of the SU.n/ homology

on n: this homology may be presented as a homology of a special di�erential act-

ing on SU.N / homology if N > n. We suggest to go half step further. Ultimately,

the SU.N / homology may be presented, at least, conjecturally, from the tri-graded

HOMFLY-PT homology with the help of special di�erentials dn and we expect

that a similar process may work for the tail homology.

We expect that the formation of a stable tail of a unicolored B-adequate link

is a general feature which originates in the tri-graded homology when the Young

diagram describing the color has a very large value of one of the di�erences be-

tween the lengths of rows or columns. In particular, it could be easy to follow the

tail formation in case when the diagram consists of a single very large column.

Witten suggested [11] that a series of the form (2.19) should represent the

graded Euler characteristic of Khovanov homology in the background of a �at

U.1/-reducible SU.2/ connection in the link complement. We conjecture that if a

link can be presented as a circular closure of a totally negative braid, then the tail

homology coincides with the one related to the �at U.1/-reducible SU.2/ connec-

tion.

2.4. Acknowledgements. �e author thanks Eugene Gorsky for sharing the re-

sults of his un�nished research and, in particular, the conjecture about the struc-

ture of Khovanov homology of a colored unknot and its stabilization in the limit

of high color.
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3. Five tools

�e proof of �eorems 2.12 and 2.13 requires �ve tools: local transformations,

purging, braid straightening, colored Khovanov bracket and recurrence relations

between categori�ed Jones–Wenzl projectors. Local transformations relate ho-

mologies of similar diagrams. Purging gets rid of redundant TL tangles in com-

plexes, which contain Jones–Wenzl projectors, thus improving estimates of homo-

logical order. Straightening a braid is a simple observation that braiding within a

cable attached to a projector results only in degree shifts. �e colored Khovanov

bracket is a special presentation of a crossing of two cables attached to Jones–

Wenzl projectors. Finally, recurrence relations relate Jones–Wenzl projectors on

N and N C 1 strands.

3.1. Local replacements and local transformations. A local replacement is a

pair of tangles �i and �f , which may contain single and cabled lines, as well as

Jones–Wenzl projectors. Both tangles should have the same sets of incoming legs

and the same sets of outgoing legs. Hence if an initial diagram Di contains the

tangle �i attached by its legs to the rest of the diagram, then we can construct a

�nal diagram Df by replacing �i with �f . If �i or �f is not an actual diagram, but

rather a complex of diagrams within the universal category, the local replacement

still makes sense as a construction of hhDfii from hhDiii.

A local transformation is a local replacement together with a speci�ed degree

preserving morphism hh� 0
f ii

g
�! hh�iii, where we use a shortcut hh� 0

f ii D qmfhnf hh�fii.1

�e morphism g determines the presentation of hh�iii as a cone

hh�iii � hh�cii �! hh�
0
fii ; where hh�cii D hhh� 0

f ii
g
��! hh�iii : (3.1)

Up to a degree shift, the ‘correction’ complex hh�cii may be the categori�cation

complex of an actual tangle �c, or it may be just a convenient shortcut.

Let Di be a diagram of a link which contains �i and let Df and Dc be the

diagrams constructed by replacing �i with �f and �c. �e relations (3.1) imply a

long exact sequence

h�1HKh.Dc/ �! qmfhnf HKh.Df/
g
��! HKh.Di/ �! HKh.Dc/: (3.2)

For all local transformations considered in this paper, there are relations

nf D
1
2
n�.Df/ �

1
2
n�.Di/; mf D nı.Df/ � nı.Di/;

1 �e unnatural direction of morphism is chosen for future convenience.
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hence eq. (3.2) turns into the following sequence of degree preserving maps be-

tween shifted homologies:

h�1HKh.D0
c/ �!

zHKh.Df/
g
��! zHKh.Di/ �! HKh.D0

c/;

where HKh.D0
c/ D h

1
2

n�.Di/qnı.Di/HKh.Dc/. �is exact sequence implies the fol-

lowing:

Proposition 3.1. If HKh
i;�.Dc/ D 0 for i �Mh� 1, then the degree preserving map

zHKh.Df/
g
�! zHKh.Di/; (3.3)

is an isomorphism on zHKh
i;� for

i �Mh C
1
2
n�.Di/ � 2: (3.4)

3.2. Purging. Purging is a process of using eq. (1.11) to remove constituent

TL tangles of a complex, whose cups or caps are connected directly to a Jones–

Wenzl projector. Let Ta;b be the set of all (a,b) TL tangles and let T�
a;b
D ¹ 2

T
�
a;b
W j jwd D bº. In other words, T�

a;b
is a subset of .a; b/ TL tangles, which

contain no cups, but only caps and straight segments.

Proposition 3.2. �ere is a homotopy equivalence

� � � �! hi
M

j
2Ta;b

mij; q
j 

a b
�! � � �

b b

� � � � �! hi
M

j

2T�
a;b

mij; q
j 

a b b
�! � � � (3.5)

3.3. Straightening a braid attached to a Jones–Wenzl projector

�eorem 3.3. �e categori�cation complex of the tangle composition of the Jones–

Wenzl projector with a braid ˇ is homotopy equivalent to the shifted complex of

the Jones–Wenzl projector:

ˇ
a a a

� h
1
2

.nC�n�/

a
;

where nC (n�) is the number of positive (negative) elementary crossings in a pre-

sentation of ˇ.
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Proof. It is su�cient to prove this equivalence in the case of nC D 1 and n� D 0

(the case of nC D 0 and n� D 1 is similar and other cases can be proved by

consequent composition of elementary crossings). �us we replace the positive

crossing by its Khovanov complex

D h
1
2 ����! h� 1

2

and observe that the second term in the resulting cone is contractible. �

�is proposition has important special cases:

aC1

a
� h

a
2

aC1
; (3.6a)

aC1 a
� h� a

2
aC1

; (3.6b)

and two similar cases with opposite powers of h when the cable runs over the

single line.

3.4. Colored Khovanov bracket

�eorem 3.4 (Single strand splicing). A Khovanov bracket of the crossing of two

equally colored strands can be presented as a cone:

aC1

aC1

aC1

aC1

� haC 1
2

aC1

aC1

aC1

aC1

�! h�.aC 1
2

/

aC1

aC1

aC1

aC1

:

(3.7)

Proof. Split o� a single strand from each crossing cable, apply the Khovanov

bracket relation (1.8) to their crossing:

aC1

aC1

aC1

aC1

� h
1
2

aC1

aC1

aC1

aC1

�! h� 1
2

aC1

aC1

aC1

aC1

and then use the relations (3.6) to bring both tangles to the form of eq. (3.10). �
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�eorem 3.5 (Colored Khovanov bracket). A Khovanov bracket of the crossing

of two equally colored strands can be presented as a multi-cone of crossingless

colored tangles:

a

a

a

a

� h� 1
2

a2

� � � �! hk2.i/Cni

a�k.i/

a�k.i/

k.i/k.i/

a

a

a

a

�! � � �

1

iD0

; (3.8)

such that

ni � 0; i � 2k � 1 (3.9)

and the lump sum form of this multi-cone is

a

a

a

a

� h� 1
2

a2
a
M

kD0

hk2

´

a

k

µ

h

a�k

a�k
kk

a

a

a

a
	

: (3.10)

Proof. We prove this theorem by induction over a. At a D 1 it amounts to Kho-

vanov bracket (1.8). Suppose that it holds for some a and consider the crossing

of two .a C 1/-cables. We split each cable into an a-cable and a single line and

apply eqns. (3.8) and (3.10) to the crossing of a-cables:

aC1

aC1

aC1

aC1

� h� 1
2

a2
a
M

kD0

hk2

´

a

k

µ

h

a�k
aC1

aC1

aC1

aC1
	

� h� 1
2

a2

� � � �! hk2.i/Cni

a�k.i/

aC1

aC1

aC1

aC1

�! � � �

1

iD0

:

(3.11)
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�e categori�cation complex of a constituent tangle of the resulting multi-cone

can be simpli�ed:

a�k
aC1

aC1

aC1

aC1

� h2k�a

a�k

a�k

kk

aC1

aC1

aC1

aC1

� h2k�a h
1
2

a�k

a�k

kC1kC1

aC1

aC1

aC1

aC1

�! h� 1
2

a�kC1

a�kC1

kk

aC1

aC1

aC1

aC1

:

(3.12)

Here the �rst homotopy equivalence follows from eq. (3.6) and the second one is

the application of Khovanov bracket (1.8) to the crossing of two single lines. We

substitute eq. (3.12) for every constituent tangle in both multi-cones of eq. (3.11).

�e lump sum multi-cone transforms into the r.h.s. of eq. (3.10) for the intersection

of two .aC 1/-cables with the help of a simple identity

´

a

k � 1

µ

h

C h2k

´

a

k

µ

h

D

´

aC 1

k

µ

h

:

Associativity of the cone operation implies that the second multi-cone of eq. (3.11)

can be brought to the linear form of the r.h.s. of eq. (3.8), so it remains to verify

inequalities (3.9). �e �rst inequality follows from the lump sum multi-cone for-

mula (3.10) which we have just proved. Let us verify the second inequality for

two tangles of the cone (3.12) after they appear through the substitution in the

second multi-cone of eq. (3.11). Since every constituent tangle of (3.11) is re-

placed by a cone of two tangles, the second tangle of the cone (3.12) will appear

at the multi-cone position i 0 D 2i and the second inequality of (3.9) for it obvi-

ously holds. �e �rst tangle of (3.11) appears at the position i 0 D 2i C 1 and

it carries k0 D k C 1. �e inequality 2i 0 C 1 � 2k0

� 1 follows easily from the

assumed inequality i � 2k � 1. �
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3.5. Recurrence relations for categori�ed Jones–Wenzl projectors

Proposition 3.6. A larger Jones–Wenzl projector absorbs a smaller one:

N N
�

N C1 N C1
: (3.13)

Proof. In view of eqns. (1.12) and (1.13) for a D N , this equivalence is a result

of purging the smaller projector with the larger one. �

Let us introduce a shortcut notation:

N C1 N C1
D

N N
; (3.14)

where the complex is de�ned by eq. (1.12).

Proposition 3.7. �us de�ned, the complex has a multi-cone presentation

N C1 N C1
� � � � �! hi

i
M

j D0

�ijq
j

N N
�! � � �

1

iD0

; (3.15)

where �ij are the multiplicities of the Temperley–Lieb tangle inside the dotted box,

with which it appears in the r.h.s. of eq. (1.13).

Proof. We purge the complex with the help of two N -strand Jones–Wenzl

projectors. �e tangle in the dotted box is the only .N C 1; N C 1/ TL tangle

which is not contracted when sandwiched between them. �

�eorem 3.8. �e .NC1/-strand categori�ed Jones–Wenzl projector is homotopy

equivalent to a cone

N C1 N C1
� h

N C1 N C1
�!

N N
: (3.16)

Proof. Consider a sequence of homotopy equivalences

N C1 N C1
�

N N
� h

N N
�!

N N

� h
N C1 N C1

�!
N N

:

(3.17)
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�e �rst homotopy equivalence comes from eq. (3.13), the second follows from

eq. (1.12) and the last one follows from eqns. (3.14) and (1.10). �

�eorem 3.9. �e .N C 1/-strand categori�ed Jones–Wenzl projector can be

presented as the following cone:

N C1 N C1
� h2N C1q2

N C1 N C1
�! hN

N N
: (3.18)

Lemma 3.10. �ere is a homotopy equivalence

N N
� hNq2

N C1 N C1
: (3.19)

Proof. Consider the composition of the line winding around the N -cable with the

left portion of the complex which generates the multi-cone (3.15):

N N �1
�

N N �1
� hq2

N N �1

� hNq2

N N �1
:

(3.20)

Here the �rst equivalence is purely topological: the projector is moved left along

the cable, the second equivalence uses eq. (1.9) to remove two framing kinks on the

single line and the third equivalence follows from eq. (3.6). �e equivalence (3.19)

comes from applying equivalence (3.20) to every constituent complex in the multi-

cone (3.15). �

Proof of �eorem 3.9. Eq. (3.18) follows from a sequence of homotopy equiva-

lences:

N C1 N C1
� hN

N N

� hN C1

N N
�! hN

N N

� h2N C1q2

N C1 N C1
�! hN

N N
:
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Here the �rst equivalence follows from eq. (3.6), the second equivalence follows

from eq. (3.16), the third equivalence follows from eqns. (3.19) and (1.10). �

�eorem 3.11. �e .N C 1/-strand categori�ed Jones–Wenzl projector is homo-

topy equivalent to a cone

N C1 N C1
� h2Nq

N C1 N C1
�! h

1
2

N N
; (3.21)

in which the complex has the following multi-cone presentation:

N C1 N C1
� � � � �! hi

i
M

j D0

Q�ijq
j

N N
�! � � �

1

iD0

; (3.22)

where

Q�ij D

8

<

:

�i�1;j �1 if i � 1;

1 if i D 0:

Lemma 3.12. �ere is a homotopy equivalence

N N
� hNq

N N
�! h�N C 1

2

N N
: (3.23)

Proof. �e lemma is proved by applying Khovanov bracket formula (1.8) to one

of the elementary crossings in the l.h.s. diagram:

N N
� h

1
2

N N
�! h� 1

2

N N
:

�e diagrams in the r.h.s. cone are reduced to those of eq. (3.23) with the help of

eqns. (1.9) and (3.6). �

Proof of �eorem 3.11. A substitution of eq. (3.23) into eq. (3.18) yields the cone

presentation (3.21) with

N C1 N C1
D hq

N C1 N C1
�!

N N

and eq. (3.22) follows from eq. (3.15). �
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If we connect the endpoints of the upper single line in eq. (3.21) and apply

the framing relation (1.9) to the last diagram in that relation, then we come to the

following corollary

Corollary 3.13. �ere is a homotopy equivalence

N N
� h2Nq

N N
�! q�1

N N
; (3.24)

where

N N
� � � � �! hi

i
M

j D0

Q�ijq
j

N N
�! � � �

1

iD0

: (3.25)

4. �e morphisms fN and the proof of �eorem 2.13

4.1. General setup. For a link diagram D we give a precise de�nition of a di-

agram (a complex) DN . DN is constructed by �rst N -cabling all components of

D and then placing a categori�ed Jones–Wenzl projector at every edge of D, an

edge being a piece of N -cabled strand between two crossings.

�e map fN of eq. (2.16) is a composition of many maps between Khovanov

homologies of a sequence of diagrams related by local transformations, the �rst

diagram in that sequence being DN C1 and the last being DN (recall that maps go

backwards).

We use three types of local transformations, which are based on the following

local replacements:

(I):

 

!

N C1 N C1

N C1 N C1

N

N

N C1 N C1

N C1 N C1

;

(4.1)

(II):

 

!
N N N N

; (III):

 

!
N N N N

:

�e thick gray lines in these pictures mark the B-circles of the diagram B.D/.
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�e transition from the diagram DN C1 to DN is performed in two stages. At

the �rst stage we apply the �rst replacement of (4.1) to every crossing of DN C1.

�e result is the diagram zDN , which consists of two parts connected at Jones–

Wenzl projectors. �e �rst part is the N -cabled diagram DN and the second part

consists of non-intersecting circles formed by single lines appearing in the �nal

diagrams of replacements (I) of (4.1). �ese single line circles go along the B-

circles. We orient them clockwise and assume that in our pictures the clockwise

orientation corresponds to the direction from the left to the right. �e circles

are attached to DN at the Jones–Wenzl projectors and those junctions have four

possible forms:

N N
;

N N
;

N

N
;

N

N
: (4.2)

At the second stage of the transition from DN C1 to DN we remove the single

circle lines of zDN one-by-one. In order to remove a particular circle we select an

‘initial’ Jones–Wenzl projector on it and then detach the single lines from other

projectors going clockwise. During this process, the single line between the initial

and current Jones–Wenzl projectors are kept on the same side of the B-circles. If

the current projector has the incoming and outgoing single lines on the opposite

sides of the B-circle (third and fourth type of (4.2)) then, prior to detachment,

we perform the following transformation for the junction of the third type (and a

similar transformation for the fourth type):

N

N
� � � �

N

N
� � �

�
N

N
� � � ;

(4.3)

In these pictures the left projector is initial, the right projector is current, the �rst

homotopy equivalence comes from the Reidemeister moves, while the second

equivalence comes from eq. (3.6). Note that the single line between the initial

and current projectors is kept always above the rest of the diagram.

After the single lines attached to the current projector are brought to the same

side of the B-circle, we detach the single line from that projector by the local

replacement (II) of (4.1) and pass to the next projector on the single line.

�e single line is kept above the rest of the diagram, so once it is detached from

all projectors except the initial one, it can be contracted to a small loop attached

to that initial projector with the help of Reidemeister moves. �e �nal step is the

removal of that loop by the replacement (III) of (4.1). After all single line circles

are removed, the diagram zDN becomes DN .
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Our transition from DN C1 to DN is generally similar to that used by C. Ar-

mond[1], but the details are di�erent. In particular, we do not replace .NC1/-cable

crossings by projectors, but rather apply replacements (I) of (4.1) directly to the

crossings.

4.2. Local transformations generate isomorphisms at low h-degrees. We de-

scribe the local transformations related to replacements (4.1) and show that the

corresponding maps (3.3) between shifted homologies are isomorphisms at low

h-degrees, thus proving �eorem 2.13.

4.2.1. Local transformation I. Set

�i D

N C1 N C1

N C1 N C1

; (4.4a)

�f D N

N

N C1 N C1

N C1 N C1

; (4.4b)

�c D hN C 1
2

NNN C1 N C1

N C1 N C1

; (4.4c)

while hh� 0
fii D h�N C 1

2 hh�fii. �eorem 3.4 provides the exact triangle relation (3.1).

Proposition 4.1. Let Di be the diagram constructed by performing local replace-

ments I of (4.1) on some vertices of DN C1 and let Df be the diagram constructed

by performing the local replacement I on the ‘current’ vertex in Di. �en the

degree preserving map (3.3) is an isomorphism on zHKh
i;� for i � 2N � 1.

Proof. Let Dc be the diagram constructed by performing the local replacement

�i �c on the current vertex. We estimate the homological order of HKh.Dc/ with

the help of �eorem 2.10: since n�.Dc/ D n�.Di/ � 2N � 1, then HKh
i;�.Dc/ D 0

for i � �1
2
n�.Di/C 2N (we took into account the shift hN C 1

2 of �c in eq. (4.4))

and the claim of the theorem follows from Proposition 3.1. �
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4.2.2. Local transformation II. Set

�i D
N N

; �f D
N N

; �c D h
N C1 N C1

; (4.5)

while hh� 0
fii D hh�fii. �e exact triangle relation (3.1) is provided by �eorem 3.8.

Proposition 4.2. Let Di be a diagram constructed by removing some single line

circles from zDN and by detaching the ‘current’ single line circle from the projec-

tors which lie between the initial one and the current one and let Df be the diagram

constructed from Di by detaching the single line from the current projector. �en

the degree preserving map (3.3) is an isomorphism on zHKh
i;� for i � N � 1.

�e proof uses the following

Lemma 4.3. �e tangle

� D

N N

N N

(4.6)

has a homological bound j� jh � �
1
2
N 2:

Remark 4.4. �is bound is better than the crude bound of �eorem 2.10. In fact,

it coincides with that bound, if we neglect the intersections between the single line

and the N -cables.

Proof of Lemma 4.3. Applying eq. (3.10) to the N -cable crossing in � we get the

presentation

hh�ii � h� 1
2

N 2
N
M

iD0

hi2

´

N

i

µ

h

�i

	

; hh�i ii D
i i

N �i

N �iN N

N N

:

�e homological order of �i can be estimated with the help of �eorem 2.10:

jhh�i iijh � �i . Since the polynomial
®

N
i

¯

h
has only non-negative powers of h

and i2 � i � 0 for all integer i , we come to the estimate of Lemma 4.3. �
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Proof of Proposition 4.2. Let Dc be the diagram constructed from Di by replac-

ing the current projector (�i of eq. (4.5)) with the tangle complex �c of eq. (4.5).

By Proposition 3.1, we have to prove the bound:

HKh
i;�.Dc/ D 0 for i � �1

2
n�.Di/CN:

Since the complex �c of eq. (4.5) is a multi-cone (3.15) generated by an ‘elemen-

tary’ tangle

�e D
N N

(4.7)

then, according to Remark 1.3, it is su�cient to prove

HKh
i;�.De/ D 0 for i � �1

2
n�.Di/CN � 1, (4.8)

where De is the diagram constructed by replacing �i in Di with �e.

Consider a tangle within De which consists of the right half of �e and the cable

crossing which follows the current projector and transform its complex with the

help of two homotopy equivalences:

N N

N �1 N

�

N N

N �1 N

� h
1
2

N

N N

N �1 N

:

(4.9)

�e �rst equivalence comes from sliding the upper left projector down right along

its N -cable, and the second equivalence comes from eq. (3.6). �e dashed line

indicates the possible presence of another single line which has not been removed

yet, however, it plays no role in these calculations.

Let D0
e denote the diagram De in which the left tangle of eq. (4.9) has been

replaced by the right tangle, then

De � h
1
2

N D0
e: (4.10)

We would like to estimate jD0
ejh with the help of �eorem 2.10. In doing so we

would have to take into account possible crossings coming from the stretch of the

single line between the initial projector and the left projector of the tangle �e of
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eq. (4.7) and N -cables participating in the crossings attached to the current single

line circle. �ese new crossings are generated by the Reidemeister moves involved

in the �rst homotopy equivalence of eq. (4.3): when a single line is �ipped to the

other side of the circle, it may come across the N -cable crossings, from which

parts of this line originate through replacements I of (4.1) (see the picture (4.6)

of the tangle �). However, Remark 4.4 indicates that these crossings between

the single line and the N -cables may be ignored when applying the estimate of

�eorem 2.10, so jD0
ejh � �

1
2
n0

�.D0
e/, where n0

�.D0
e/ is the number of single line

intersections within D0
e, except those which we can ignore.

�e cable intersection of the left tangle of eq. (4.9) involves two N -cables,

while the same intersection in the right tangle involves both a N -cable and a

.N � 1/-cable, hence n0
�.D0

e/ D n�.Di/ � N and the inequality (4.8) follows

from eq. (4.10). �

4.2.3. Local transformation III. Set

�i D
N N

; �f D
N N

; �c D h2Nq
N N

; (4.11)

while hh� 0
fii D q�1hh�fii and the cone relation (3.1) is eq. (3.24).

Proposition 4.5. Let Di be a diagram constructed by removing some single line

circles from zDN and by detaching the ‘current’ single line circle from the all of its

projectors, except the initial one, to which it is attached as in the picture (4.11) of

tangle �i. Let Df be the diagram Di from which this circle is completely removed.

�en the degree preserving map (3.3) is an isomorphism on zHKh
i;� for i � 2N � 2.

Proof. Since the complex �c of eq. (4.11) is a multi-cone (3.25) generated by the

elementary tangle �f of eq. (4.11), then, according to Remark 1.3, the claim of this

proposition would follow from the bound

HKh
i;�.Df/ D 0 for i � �1

2
n�.Di/ � 1.

�e latter follows from �eorem 2.10 coupled with an obvious relation n�.Di/ D

n�.Df/. �

4.3. Proof of �eorem 2.13. Of all three types of local transformations con-

sidered in Propositions 4.1, 4.2 and 4.5, it is the local transformation (4.5) which

yields the weakest estimate of the homological degrees at which the map (2.16) is

an isomorphism, and this is the estimate of �eorem 2.13 �
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5. Proof of �eorem 2.12

In order to compute the shifted homology zHKh.DN /, we apply the colored Kho-

vanov bracket (3.10) to all crossings of DN . As a result, this diagram turns into a

multi-cone of �at diagrams of a special kind. Let V be the set of crossings of D.

A state of DN is a map s W V ! ¹0; 1; : : : ; N º, v 7! sv . It determines a diagram

Ds constructed by performing the following local transformations at each crossing

v 2 V:

 

!

N N

N N

sv sv

N �sv

N �sv
N N

N N

:

�e gray strips in Ds combine into B-circles in the background of this diagram.

�e diagrams Ds for all states s generate a multi-cone presentation of DN ,

hence zHKh.DN / can be computed by spectral sequence, and its E1 term is a sum

of appropriately shifted homologies HKh.Ds/:

E1 D qN�D

M

s
k�0

ms;k h
jjsjjCk HKh.Ds/;

where jjsjj D
P

v2V s2
v . Hence, a component E1

i;j of bi-degree i; j (both are ho-

mological and have nothing to do with �ltration!) has the form

E1
i;j D

M

s
k�0

ms;kHKh

i�jjsjj�k;j �N�D
.Ds/: (5.1)

As we already noted in Remark 1.3, further steps of spectral sequence may

only reduce homology, hence E1
i;j D 0 implies zHKh

i;j .DN / D 0. Moreover, all

di�erentials have bi-grading (-1,1), hence E1
iC1;j �1 D E1

i�1;j C1 D 0 implies

zHKh
i;j .DN / D E1

i;j . �ese arguments imply that �eorem 2.12 follows from the

proposition

Proposition 5.1. E1
i;j D 0 if one of the following conditions is satis�ed:

i < 0; (5.2)

j < �1
2
i � 1

2
�D �

3
2
�in

D ; (5.3)

j < �i � �in
D �N�D : (5.4)
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Moreover, if D is B-adequate, then

E1
i;�i D

8

<

:

0; if i ¤ 0,

Q; if i D 0.
(5.5)

In view of eq. (5.1), Proposition 5.1 follows from the next one:

Proposition 5.2. HKh
i;j .Ds/ D 0 if one of the following three conditions is satis�ed:

i < 0; (5.6)

j < �1
2
jjsjj � 1

2
�D �

3
2
�in

D � N�D ; (5.7)

j < �jjsjj � �in
D �N�D : (5.8)

Furthermore, if a diagram D is B-adequate, then HKh
i;j .Ds/ D 0 for

HKh

0;�jjsjj�N�D
.Ds/ D

8

<

:

0; if jjsjj > 0;

Q; if jjsjj D 0.
(5.9)

Proof of Proposition 5.1. Conditions (5.2)–(5.4) follow easily from (5.6)–(5.8).

In order to prove eq. (5.5), observe that according to eq. (5.5), E1
i;�i is a sum of

homologies HKh
i 0;j 0.Ds/ with i 0 D i � jjsjj � k, j 0 D �i �N�D , hence

j 0 D �jjsjj �N�D � i 0 � k:

Since i 0 � 0 by eq. (5.6) and k � 0 by eq. (5.1), then in view of the bound (5.8)

with �in
D D 0 we conclude that non-trivial contributing homology exists only for

i 0 D k D 0, so j 0 D �jjsjj � N�D and i D jjsjj. �us we proved that E1
i;�i is a

sum of homologies HKh

0;�jjsjj�N�D
.Ds/ with jjsjj D i , hence eq. (5.5) follows from

eq. (5.9) and from the fact that the state s with jjsjj D 0 is unique (it corresponds

to B-splicing all crossings in DN ) and its multiplicity in the presentation of E1
i;�i

is one, because complete B-splicing has multiplicity one in eq. (3.10). �

Proof of Proposition 5.2. First of all, we observe that the bound (5.6) follows

from the fact that Ds has no crossings, while the formulas (1.12), (1.13) for the

categori�ed Jones–Wenzl projector contain only non-negative shifts of h-degree.

�e proof of other bounds requires a simpli�cation of the complex, whose ho-

mology yields Khovanov homology HKh.Ds/. We cut the diagram Ds into pieces

(tangles), simplify their Khovanov complexes and then glue those complexes back

together.
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Consider a neighborhood of a B-circle c within a diagram Ds and cut in the

middle all strut lines which are attached to it. We are going to simplify the complex

of the resulting colored tangle �s;c by inserting two extra Jones–Wenzl projectors

in it and then purging all other (preexisting) projectors.

For a � b let the box
a b

denote any TL tangle with the property

ˇ

ˇ

ˇ

ˇ

ˇ a b

ˇ

ˇ

ˇ

ˇ

ˇ

wd

D b:

In other words, a tangle contains no cups, but only caps and straight seg-

ments.

Lemma 5.3. �e Khovanov categori�cation complex of the colored tangle dia-

gram �s;c can be presented in the form

hh�s;cii � � � � �! hi
M

0�j �i

qj

 

M

�

mij;� hh�ii

!

�! � � �

1

iD0

; (5.10)

where the diagrams � are of one of two types depicted in Figure 1, in which

N1; N2 � N .

N1

N2

���

���

to struts

to struts

N1

���

���

to struts

to struts

Figure 1. A purged vicinity of a B-circle
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We will prove the lemma after we �nish the proof of Proposition 5.2.

By gluing the complexes (5.10) back together we get a complex

hhDsii � � � � �! hi
M

0�j �i

qj

0

@

M

Dı

mij;� hhDıii

1

A �! � � �

1

iD0

such that HKh.Ds/ D H.hhDsii/. �e ‘circle diagrams’ Dı which result from gluing

the diagrams of Figure 1 at the strut line cutting points and replacing projectors

with complexes (1.12) and (1.13), consist of multiple single line circles. In view

of the second formula of eq. (1.8), the lowest q-degree in the homology HKh.Ds/

may be bounded by the highest number of circles in those circle diagrams.

�e circles in circle diagrams are of three types. �e �rst type is jumping

circles: they contain at least one strut line. �e circles of the second and third type

stay within the same B-circle. A straight circle goes along its B-circle, passing

straight through each Jones–Wenzl projector on its way. A winding circle changes

its direction at least twice, because it contains at least one cup and one cap of a

constituent TL tangle coming from one of projectors.

Let us prove the inequalities (5.7) and (5.8) by �nding upper bounds for the

numbers nj, ns and nw of jumping, straight and winding circles respectively in a

circle diagram.

We begin with nj. A jumping circle must contain at least two strut lines of

an adequate crossing or at least one strut line of an inadequate crossing, so the

number of jumping circles nj has a bound:

nj �
X

v2Vad

sv C 2
X

v2Vin

sv; (5.11)

where Vad;Vin � V are the subsets of B-adequate and B-inadequate crossings.

�e obvious inequalities

sv �
1
2
s2

v C
1
2
; 2sv �

1
2
s2

v C 2; sv � s2
v ; 2sv � s2

v C 1;

(the third inequality uses the fact that sv is integer) indicate that the bound (5.11)

implies to other bounds:

nj �
1
2
jjsjj C 1

2
�D C

3
2
�in

D ; nj � jjsjj C �in
D ; (5.12)

which means that the �rst three terms in the r.h.s. of the inequality (5.7) and the

�rst two terms in the inequality (5.8) bound the negative contribution of jumping

circles to the q-degree of HKh.Ds/.
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Next we prove the bound

ns;c C nw;c � N; (5.13)

where ns;c and nw;c are the numbers of straight and winding circles within any

given B-circle c. It implies the bound ns C nw � N�D and combined with

the bounds (5.12) they imply the bounds (5.7) and (5.8). In order to prove the

bound (5.13), we observe that in the �rst diagram a straight circle contains one

strand from the N1-cable and one strand from the N2-cable, while a winding cir-

cle contains at least two strands from one of these cables, hence there is a bound

ns;c C nw;c �
1
2
.N1 CN2/ � N: (5.14)

�e second diagram is treated similarly, if we set N2 D 0 in the previous argument.

�us we proved the bounds (5.7) and (5.8).

It remains to prove eq. (5.9). Since this time D is B-adequate, the second in-

equality of (5.12) becomes nj � jjsjj. Since we consider only homology of zeroth

h-degree, then according to eqns. (1.12) and (1.13), we may replace Jones–Wenzl

projectors with identity braids, so there is only one circle diagram Dı contributing

to HKh

0;�jjsjj�N�D
.Ds/, and this circle diagram has no winding circles: nw D 0. Fur-

thermore, ns � N�D , but if jjsjj ¤ 0, then there is at least one pair of strut lines in

Ds, so ns < N and njCns < jjsjjCN�D , hence HKh

0;�jjsjj�N�D
.Ds/ D 0. If jjsjj D 0,

then Ds has no strut lines and consists of disjoint N -cabled circles, so the relevant

circle diagram Dı consists of N�D single-line circles, and HKh
0;�N�D

.Ds/ D Q

follows from the second equation of (1.8). �

Proof of Lemma 5.3. We prove the lemma by ‘purging’ categori�ed Jones–Wenzl

projectors appearing in the tangle �s;c . In order to bring the complex hh�s;cii to the

form (5.10) with diagrams � depicted in Figure 1, we insert two extra Jones–Wenzl

projectors side-by-side at any place on the cable which runs along the B-circle.

�en we go from the front one (relative to the clockwise orientation) to the back

one in the clockwise direction, purging each preexisting projector that appears on

our way. It is easy to prove by induction that after every projector purge we get a

multi-cone presentation

hh�s;cii � � � � �! hi
M

0�j �i

qj

 

M

�

m0
ij;�hh�ii

!

�! � � �

1

iD0

whose constituent diagrams � have one of two possible forms between the front

projector and the �rst unpurged projector (which lies in the pictures to the left of

the dashed line) depicted in Figure 2.
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���

���

to struts

to struts

;

���

���

to struts

to struts

Figure 2. Purging Jones–Wenzl projectors along a B-circle

In both diagrams the left projector on the grey strip is the front one, the middle

projector is the �rst unpurged one and the right projector is the second unpurged

one. It is not hard to see that if we purge the middleprojector, then we get similar

diagrams with the third projector becoming the �rst unpurged one (the left diagram

may become of either left or right type after the purge, while the right diagram

remains of the same type). �e q-degree shifts remain non-negative, because the

purging does not produce any circles: it just makes explicit various line connec-

tions that were hidden inside the constituent TL tangles of the purged projector.

�

6. Proof of invariance of the tail homology under B-reduction

Proof of �eorem 2.7. A removal of a B-circle connected to the rest of the B-di-

agram by a single strut corresponds to the �rst Reidemeister move, hence the in-

variance of the tail homology under this removal follows from the fact that tail

homology of a B-adequate link is determined by shifted Khovanov homologies of

its unicolored diagrams and the latter are invariant under this type of �rst Reide-

meister moves.

In view of Corollary 2.4, the invariance of the tail homology under the removal

of ‘extra’ struts follows from the next lemma. �
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Lemma 6.1. Suppose that two distinct B-circles of a link diagram D are connected

by multiple struts and the diagram D0 is constructed by removal of one of those

struts. �en there exists a degree preserving map zHKh.D0
N /

g
�! zHKh.DN / which is

an isomorphism on zHKh
i;� for i � N � 1.

�e proof of this lemma is similar to proofs of Section 4: we show that DN

can be constructed from D0
N with the help of a local transformation and prove the

homological smallness of the correction diagram.

We need a simple corollary of �eorem 3.5

Corollary 6.2. �e Khovanov bracket formula (3.8) for the colored crossing can

be recast in the form

N N

N N

� h� 1
2

N 2

N N

N N

� �!

N N

N N

;

(6.1)

where

N N

N N

� �

N
M

kD1

hk2

´

a

k

µ

h

k k

N �k

N �kN N

N N

	

: (6.2)

Proof. According to the second inequality of (3.9), k.0/ D 0, hence the the right

tangle of the cone (6.1) is the one that appears at i D 0 in the multi-cone (3.8).

According to eq. (3.10), this tangle has multiplicity one, so this is the only place

where it may appear in that multi-cone, and it has a zero shift of h-degree. �

Proof of Lemma 6.1. Since D0 is constructed from D by a removal of a single

crossing (strut of B.D/), we set

�i D

N N

N N

;
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�f D

N N

N N

;

�c D h� 1
2

N 2

N N

N N

� ;

so that Di D D and Df D D0, while the relation (3.1) comes from (6.1) if we

set mf D 0 and nf D �
1
2
N 2. Since n�.�i/ D N 2 , in view of Proposition 3.1 it

remains to establish the bound zHKh
i;�.Dc/ D 0; if i � N . Let Dc;k be the diagram

Dc in which �c is replaced by a constituent tangle �c;k from the r.h.s. of eq. (6.2),

in which one strand of a k-cable is separated from the others:

�c;k D k�1 k

N �k

N �kN N �1 N

N N �1 N

� k k

N �k

N �kN N

N N

:

�e lump sum presentation (6.2) of �c allows us to use Remark 1.3: it is su�cient

to establish a bound

zHKh
i;�.Dc;k/ D 0; if i � N � k; (6.3)

because the tangle �c;k has an extra h-degree shift hk2
in the lump sum formula,

see eq. (6.2), and k2 � k � 0.

Consider the portion of Dc;k between the left k-cable of �c;k and another cross-

ing which connects the same B-circles:

N N

N

N

k

N �k

N �k

� � �

� � � � � �

(6.4)
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As usual, gray strips indicate B-circles of the B-diagram. We showed explicitly

one of the crossings attached to a B-circles. Consider a modi�cation of this dia-

gram which results from a repeated application of of Propositions 4.1 and 4.2 to

these crossings:

kN N

N

N

k

N �k

N �k
� � �

� � � � � �

: (6.5)

Let D0
c;k

be the diagram constructed from Dc;k by replacing the subdiagram (6.4)

with the diagram (6.5). According to Propositions 4.1 and 4.2 there is a map of

shifted Khovanov homologies zHKh.D0
c;k

/! zHKh.Dc;k/, which is an isomorphism

on zHKh
i;�.Dc;k/ for i � N � k. We are going to show that

zHKh
i;�.D0

c;k/ D 0 if i � N � k; (6.6)

hence this will imply the bound (6.3).

Consider a sequence of homotopy equivalences:

N

N

k

N �k

N �k

�

N

N

k

N �k

N �k

� h
N k�

1
2

k2

qk
k

N �k

N �k

N

N

:

(6.7)

Here the �rst homotopy equivalence comes from sliding k-cable projectors to the

left along N -cables and then contracting double projectors into single ones, while

the second homotopy comes from eqns. (1.14) and (3.6). Let D00
c;k

be the diagram

constructed from D0
c;k

by replacing the left tangle of eq. (6.7) with the right tangle.

Since n�.D00
c;k

/ D n�.D0
c;k

/C.N �k/2�N 2, homotopy equivalence (6.7) implies

the isomorphism of shifted Khovanov homologies

zHKh.D0
c;k/ D hk.2N �k/qk zHKh.D00

c;k/

and the bound (6.6) follows from �eorem 2.11. �
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A. A single crossing of colored strands approximates

a Jones–Wenzl projector

Let D be a diagram which may include both single and cabled lines as well as

Jones–Wenzl projectors. Suppose that D has a crossing of two N -cables with a

projector on each. Let D0 be a diagram, in which the crossing is replaced with a

Jones–Wenzl projector:

 

!

N N

N N

N N

N N

:

�eorem A.1. �ere exists a map

zHKh.D/
g
��! zHKh.D0/

which is an isomorphism on zHKh
i;� for i � 2N � 2.

Proof. Consider three tangles

�i D

N N

N N

;

�f D

N N

N N

;

�c D h
1
2

N 2

N

N

N

N

;

where the complex
a

is de�ned by eq. (1.13), and set

hh� 0
f ii D h

1
2

N 2

hh�fii:

�ese tangles have a relation (3.1) which comes from a sequence of homotopy
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equivalences:

N N

N N

� h
1
2 N 2

N

N

N

N

� h
1
2

N 2

h

N

N

N

N

�!

N N

N N

:

Here the �rst homotopy equivalence comes from eq. (3.6), while the second equiv-

alence comes from eq. (1.12).

In order to put a bound on the homological order of Dc, we purge the gray

box in �c, that is, we contract all constituent TL tangles, whose cup or cap is

connected directly to Jones–Wenzl projectors sitting on N -cables. After the purge,

the complex of �c takes the form

�c � � � � �!
M

0�j �i
k�1

�ij;k h
iqj

N

N

k k

N �k

N �k N

N

�! � � �

1

kD1

� � � � �!
M

0�j �i
k�1

�ij;k h
iCk.N �k/C 1

2
k2

qj Ck
k k

N
�k

N
�k

N N

N N

�! � � �

1

kD1

:

We used homotopy equivalence (6.7). Note that there are no tangles with k D 0,

because the complex (1.13) does not contain identity braids.

Let Dc;k be the diagram Dc in which the complex �c is replaced by the tangle

diagram

�c;k D k k

N
�k

N
�k

N N

N N

:

According to �eorem 2.10, HKh
i;�.Dc;k/ D 0 for i � �1

2
.N � k/2 � 1

2
n�.Di/ � 1,

so, by Remark 1.3, HKh
i;�.Dc/ D 0 for i � �1

2
n�.Di/ C 2N � 2 (here we used

inequality 2N k � k2 � 2N � 1 for k � 1). Now the claim of �eorem A.1 follows

from eq. (3.4). �



Khovanov homology of a unicolored B-adequate link has a tail 579

References

[1] C. Armond, �e head and tail conjecture for alternating knots. Algebr. Geom.

Topol. 13 (2013), 2809–2826. MR 3116304 Zbl 1271.57005

[2] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9

(2005), 1443–1499. MR 174270 Zbl 1084.57011

[3] C. Cooper and V. Krushkal, Categori�cation of the Jones–Wenzl Projectors. Quan-

tum Topol. 3 (2012), 139–180. MR 2901969 Zbl 06033706

[4] C. Armond and O. Dasbach, Rogers–Ramanujan type identities and the head and tail

of the colored Jones polynomial. Preprint 2011 arXiv:1106.3948 [math.GT]

[5] I. Frenkel, C. Stroppel, and J. Sussan, Categorifying fractional Euler characteris-

tics, Jones–Wenzl projector and 3j -symbols Quantum Topol. 3 (2012), 181–253.

MR 2901970 Zbl 1256.17006

[6] S. Garoufalidis and �. T. Q. Lê, Nahm sums, stability and the colored Jones poly-

nomial. Preprint 2011. arXiv:1112.3905 [math.GT]

[7] S. Gukov and M. Stošić, Homological algebra of knots and BPS states. In J. Block,

J. Distler, R. Donagi, and E. Sharpe (eds.), String-Math 2011. Proceedings of the

conference held at the University of Pennsylvania, Philadelphia, PA, June 6–11,

2011. Proceedings of Symposia in Pure Mathematics, 85. American Mathemati-

cal Society, Providence, R.I., 2012, 125-171. MR 2985329 MR 2976629 (collection)

Zbl 1253.00016 (collection)

[8] M. Khovanov, A categori�cation of the Jones polynomial. Duke Math. J. 101 (2000),

359–426. MR 1740682 Zbl 0960.57005

[9] R. Lickorish and M. �istlethwaite, Some links with nontrivial polynomials and

their crossing-numbers. Comment. Math. Helv. 63 (1988), 527–539. MR 0966948

Zbl 0686.57002

[10] L. Rozansky, An in�nite torus braid yields a categori�ed Jones–Wenzl projector.

Fund. Math. 225 (2014), 305–326. MR 3205575 Zbl 06292126

[11] E. Witten, Fivebranes and knots. Quantum Topol. 3 (2012), 1–137. MR 2852941

Zbl 1241.57041

Received June 11, 2012; revised March 13, 2014

Lev Rozansky, Department of Mathematics,

University of North Carolina at Chapel Hill, CB #3250, Phillips Hall, Chapel Hill,

N.C. 27599, U.S.A.

e-mail: rozansky@math.unc.edu

http://www.ams.org/mathscinet-getitem?mr=3116304
http://zbmath.org/?q=an:1271.57005
http://www.ams.org/mathscinet-getitem?mr=174270
http://zbmath.org/?q=an:1084.57011
http://www.ams.org/mathscinet-getitem?mr=2901969
http://zbmath.org/?q=an:06033706
http://arxiv.org/abs/1106.3948
http://www.ams.org/mathscinet-getitem?mr=2901970
http://zbmath.org/?q=an:1256.17006
http://arxiv.org/abs/1112.3905
http://www.ams.org/mathscinet-getitem?mr=2985329
http://www.ams.org/mathscinet-getitem?mr=2976629
http://zbmath.org/?q=an:1253.00016
http://www.ams.org/mathscinet-getitem?mr=1740682
http://zbmath.org/?q=an:0960.57005
http://www.ams.org/mathscinet-getitem?mr=0966948
http://zbmath.org/?q=an:0686.57002
http://www.ams.org/mathscinet-getitem?mr=3205575
http://zbmath.org/?q=an:06292126
http://www.ams.org/mathscinet-getitem?mr=2852941
http://zbmath.org/?q=an:1241.57041
mailto:rozansky@math.unc.edu

	Notations and basic facts
	Results
	Five tools
	The morphisms    f _ N    and the proof of Theorem 2.13
	Proof of Theorem 2.12
	Proof of invariance of the tail homology under B-reduction
	A single crossing of colored strands approximates a Jones–Wenzl projector
	References

