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Module categories over affine group schemes
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Abstract. Let k be an algebraically closed field of characteristic p � 0. Let G be an affine
group scheme over k. We classify the indecomposable exact module categories over the
rigid tensor category Cohf .G/ of coherent sheaves of finite dimensional k-vector spaces
on G, in terms of .H; /-equivariant coherent sheaves on G. We deduce from it the classi-
fication of indecomposable geometrical module categories over Rep.G/. WhenG is finite,
this yields the classification of all indecomposable exact module categories over the finite
tensor category Rep.G/. In particular, we obtain a classification of twists for the group alge-
bra kŒG� of a finite group scheme G. Applying this to u.g/, where g is a finite dimensional
p-Lie algebra over k with positive characteristic, produces (new) finite dimensional non-
commutative and noncocommutative triangular Hopf algebras in positive characteristic.
We also introduce and study group scheme theoretical categories, and study isocategorical
finite group schemes.
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1. Introduction

Let k be an algebraically closed field of characteristic p � 0. Let G be a fi-
nite group. Consider the fusion category Vec.G/ of finite dimensional G-graded
vector spaces over k, and the finite tensor category Rep.G/ of finite dimensional
representations of G over k. Etingof and Ostrik classified the indecomposable
exact module categories over Rep.G/, cf. [13], generalizing the classification of
Ostrik in zero characteristic [24]. Alternatively, one could use the duality between
Vec.G/ and Rep.G/ (provided by the usual fiber functor on Rep.G/) and the clas-
sification of the indecomposable exact module categories over Vec.G/ to obtain
the same result. In particular, the classification of the semisimple module cate-
gories of rank 1 provides the classification of twists for the group algebra kŒG�,
reproducing the classification given by Movshev in zero characteristic [20]. The
classification of twists for finite groups, together with Deligne’s theorem [6], en-
abled Etingof and the author to classify triangular semisimple and cosemisimple
Hopf algebras over k, cf. [9] (see also [14]).

The goal of this paper is to extend the classification of Etingof and Ostrik men-
tioned above to finite group schemesG over k, and in particular thus obtain (new)
finite dimensional noncommutative and noncocommutative triangular Hopf alge-
bras in positive characteristic by twisting kŒG�. However, in absence of Deligne’s
theorem in positive characteristic, the classification of finite dimensional triangu-
lar Hopf algebras in positive characteristic remains out of reach.

LetG be a finite group scheme over k. The idea is to first classify the indecom-
posable exact module categories over Rep.kŒG��/, where kŒG�� is the dual Hopf
algebra of the group algebra kŒG� ofG, and then use the fact that they are in bijec-
tion with the indecomposable exact module categories over Rep.G/ [13] to get the
classification of the latter ones. The reason we approach it in this way is that kŒG��
is just the Hopf algebra O.G/ representing the group schemeG, so Rep.kŒG��/ is
tensor equivalent to the tensor category Cohf .G/ D Coh.G/ of coherent sheaves
of finite dimensional k-vector spaces on G with the tensor product of convolution
of sheaves, which allows us to use geometrical tools and arguments. For example,
when G is an abstract finite group, Coh.G/ D Vec.G/.

In fact, in Theorem 3.7 we classify the indecomposable exact module cate-
gories over Cohf .G/, where G is any affine group scheme over k (i.e., G is not
necessarily finite). The classification is given in terms of .H;  /-equivariant co-
herent sheaves on G (see Definition 3.2). Since Cohf .G/ is no longer finite when
G is not, the proof requires working with Ind and Pro objects, which makes it tech-
nically more involved. Furthermore, when G is not finite, not all indecomposable
exact module categories over Rep.G/ are obtained from those over Cohf .G/ (see
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Theorem 4.5 and Remark 4.6); we refer to those which are as geometrical. So
the classification of module categories (even fiber functors) over Rep.G/ for infi-
nite affine group schemesG remains unknown (even when G is a linear algebraic
group over C).

In Section 5 we introduce the class of group scheme theoretical categories,
which extends both Cohf .G/ and Rep.G/, and generalize to them the results from
Sections 3 and 4 mentioned above.

As a consequence of our results, combined with [2, 13], we obtain in Corol-
lary 6.3 that gauge equivalence classes of twists for the group algebra kŒG� of
a finite group scheme G over k are parameterized by conjugacy classes of pairs
.H; J /, where H is a closed group subscheme of G and J is a nondegenerate
twist for kŒH� (just as in the case of abstract finite groups). Furthermore, in
Proposition 6.7 we show that a twist for G is nondegenerate if and only if it is
minimal (again, as for abstract finite groups), by showing directly, that is, with-
out using Deligne’s theorem, that a quotient of a Tannakian category is also Tan-
nakian (Proposition 6.5). We use this in Sections 6.4, 6.5 to give some examples
of twists for kŒA� and u.g/, where A is a finite commutative group scheme over
k with positive characteristic and g is a finite dimensional p-Lie algebra over k
of positive characteristic p. In particular, applying this to u.g/ yields (new) finite
dimensional noncommutative and noncocommutative triangular Hopf algebras in
positive characteristic.

We conclude the paper with Section 7 in which we extend [10] by giving the
construction of all finite group schemes which are isocategorical to a fixed finite
group scheme. In particular, it follows that two isocategorical finite group schemes
are necessarily isomorphic as schemes (but not as groups [10], [4, 5]).

Acknowledgement. The author is grateful to Pavel Etingof for stimulating and
helpful discussions.

2. Preliminaries

Throughout the paper we fix an algebraically closed field k of characteristic p � 0.

2.1. Affine group schemes. Let G be an affine group scheme over k, with unit
morphism e W Spec.k/ ! G, inversion morphism i W G ! G, and multiplication
morphism m W G � G ! G, satisfying the usual group axioms. Let O.G/ be the
coordinate algebra of G, i.e., O.G/ is the commutative Hopf algebra such that
G D Speck.O.G//. In other words, we are given a collection of group structures
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on the sets

G.R/
defD HomAlg.O.G/; R/

of R-valued points ofG, whereR is a commutative algebra over k, which is func-
torial in R. (See, e.g., [17] for the general theory of group schemes.)

A closed group subscheme of G is, by definition, an affine group scheme H
whose coordinate algebraO.H/ is a quotient ofO.G/ by a radical Hopf ideal I.H/:
O.H/ D O.G/=I.H/. The ideal I.H/ is referred to as the defining ideal of H in
O.G/. For example, the connected component of the identity in G is a normal
closed group subscheme of G, denoted by G0. Let

�0.G/
defD G=G0:

Then O.�0.G// is the unique maximal finite dimensional semisimple Hopf subal-
gebra of O.G/.

We let Rep.G/ denote the category of finite dimensional rational represen-
tations of G over k (equivalently, Rep.G/ is the category of finite dimensional
comodules over O.G/); it is a symmetric rigid tensor category. (See, e.g., [8] for
the definition of a tensor category and its general theory.)

2.1.1. Finite group schemes. An affine group scheme G is called finite if O.G/
is finite dimensional. In this case, O.G/� is a finite dimensional cocommutative
Hopf algebra, which is called the group algebra of G, and denoted by kŒG�. In
particular, Rep.G/ is a finite symmetric tensor category and Rep.G/ D Rep.kŒG�/
as symmetric tensor categories. A finite group scheme G is called constant if its
representing Hopf algebra O.G/ is the Hopf algebra of functions on some finite
abstract group with values in k, and is called étale if O.G/ is semisimple. Since
k is algebraically closed, it is known that G is étale if and only if it is a constant
group scheme [29]. A finite group scheme G is called infinitesimal if O.G/ is a
local algebra.

Theorem 2.1 ([29, 6.8, p. 52]). Let G be a finite group scheme. Then �0.G/ is
étale, G0 is infinitesimal, and G is a semidirect product

G D G0 Ì �0.G/:

If the characteristic of k is 0 then G D �0.G/ is étale.
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LetG be a finite commutative group scheme over k, i.e.,O.G/ is a finite dimen-
sional commutative and cocommutative Hopf algebra. In this case, kŒG� is also a
finite dimensional commutative and cocommutative Hopf algebra, so it represents
a finite commutative group scheme GD over k, which is called the Cartier dual
of G. For example, the Cartier dual of the group scheme p̨ (= the Frobenius ker-
nel of the additive group Ga) is p̨, while the Cartier dual of �p (= the Frobenius
kernel of the multiplicative group Gm) is the constant group scheme Z=pZ.

Theorem 2.2 ([29, 6.8, p. 52]). Let G be a finite commutative group scheme
over k. Then G D Gee � Gec � Gce � Gcc decomposes canonically as a direct
product of four finite commutative group schemes over k of the following types:

� Gee is étale with étale dual (i.e., an abstract abelian groupA such thatp − jAj),

� Gec is étale with connected dual (e.g., Z=pZ),

� Gce is connected with étale dual (e.g., �p), and

� Gcc is connected with connected dual (e.g., p̨ Š ˛Dp ).

Recall that a finite commutative group scheme G is called diagonalizable
if O.G/ is the group algebra kŒA� of a finite abelian group A. For example, �n is
diagonalizable since O.�n/ D kŒZ=nZ�. In fact, any diagonalizable finite group
scheme G is a direct product of various �n. Clearly, the group algebra of a finite
diagonalizable group scheme is semisimple.

Theorem 2.3 (Nagata, see [1, p. 223]). LetG be a finite group scheme over k. The
group algebra kŒG� is semisimple if and only if G0 is diagonalizable and p does
not divide the order of G.k/. In particular, for an infinitesimal group scheme G,
if kŒG� is semisimple then G is diagonalizable.

2.2. p-Lie algebras. Assume that the ground field k has characteristic p > 0.
Let g be a finite dimensional p-Lie algebra over k and let u.g/ be its p-restricted
universal enveloping algebra (see, e.g., [16], [28]). Then u.g/ is a cocommutative
Hopf algebra of dimension pdim.g/ and its dual (commutative) Hopf algebra u.g/�
is a local algebra satisfying xp D 0 for any x in the augmentation ideal of u.g/�.
Recall that there is an equivalence of categories between the category of infinites-
imal group schemes G over k of height 1 and the category of finite dimensional
p-Lie algebras g over k, given by G 7! g, where kŒG� D u.g/.
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An n-dimensional torus is ann-dimensional abelianp-Lie algebra t over kwith
a basis consisting of toral elements hi (i.e., hpi D hi ). By a theorem of Hochschild
(see Theorem 2.3 above), tori are precisely those finite dimensionalp-Lie algebras
whose representation categories are semisimple (see [28]). In other words, u.t/ is
a semisimple commutative (and cocommutative) Hopf algebra, and

Rep.t/ D Rep.u.t//

is a fusion category. Moreover, it is known that u.t/ is isomorphic to the Hopf al-
gebra Fun..Z=pZ/n; k/ of functions on the elementary abelian p-group of rank n,
so

Rep.u.t// D Vec..Z=pZ/n/

is the fusion category of finite dimensional .Z=pZ/n-graded vector spaces.

2.3. Module categories over tensor categories. LetC be a rigid tensor category
over k, i.e., a k-linear locally finite abelian category, equipped with an associative
tensor product, a unit object and a rigid structure (see, e.g., [8]). In particular,
every object in C has finite length.

Let Ind.C/ and Pro.C/ denote the categories of Ind-objects and Pro-objects
of C, respectively (see, e.g., [18]). The rigid structure on C induces two duality
functors

Pro.C/ �! Ind.C/

(“continuous dual”) and

Ind.C/ �! Pro.C/

(“linear dual”), which we shall both denote by

X 7�! X�I
they are antiequivalence inverses of each other.

It is well known that the tensor structure on C extends to a tensor structure on
Ind.C/ and Pro.C/ (however, Ind.C/ and Pro.C/ are not rigid). It is also known that
Ind.C/ has enough injectives. More generally, recall that a (left) module category
over C is a locally finite abelian category M over k equipped with a (left) action

˝M W C � M �!M;

such that the bifunctor ˝M is bilinear on morphisms and biexact. Similarly, the
C-module structure on M extends to a module structure on Ind.M/ over Ind.C/.
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One can define a dual internal Hom in a C-module category M as follows: for
M1;M2 2 M, let Hom.M1;M2/ 2 Pro.C/ be the pro-object representing the left
exact functor

C �! Vec;
X 7�! HomM.M2; X ˝MM1/;

i.e.,
HomM.M2; X ˝M M1/ Š HomPro.C/.Hom.M1;M2/; X/:

For any M 2 M, the pro-object Hom.M;M/ has a canonical structure of a coal-
gebra. If M is indecomposable (i.e., M is not equivalent to a direct sum of two
nontrivial module subcategories) and exact (see definition below) then the cate-
gory ComodPro.C/.Hom.M;M// of right comodules over Hom.M;M/ in Pro.C/,
equipped with its canonical structure of a C-module category, is equivalent to M.
(This is a special case of Barr-Beck Theorem in category theory; see [13, Theo-
rem 3.17].) We note that in terms of internal Hom’s [13], the algebra Hom.M;M/

in Ind.C/ is isomorphic to the dual algebra of the coalgebra Hom.M;M/ under
the duality functor

� W Pro.C/ �! Ind.C/:

Example 2.4. Let H be a Hopf algebra over k, let

C
defD Rep.H/

be the rigid tensor category of finite dimensional representations of H over k, let

M
defD Vec

be the module category over C with respect to the forgetful functor C ! Vec
(equipped with the usual tensor structure), and let

ı
defD k

be the trivial representation. Then

Hom.ı; ı/ D H ı

is the finite dual ofH (i.e., the Hopf algebra of linear functionals onH vanishing
on a finite codimensional ideal ofH ). Indeed, letX 2 C and denote its underlying
vector space by xX . On one hand,

HomInd.C/.X;Hom.k; k// D HomVec.X ˝ k; k/
D HomVec. xX; k/
D xX�:
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On the other hand, since X is finite dimensional, we have that

HomInd.C/.X;H
ı/ D HomInd.C/.X;H

�/

D HomInd.C/.X ˝H; k/
D HomInd.C/. xX ˝k H; k/
D HomInd.C/.H; xX�/

D xX�:

Therefore the claim follows from Yoneda’s lemma.
Consequently,

Hom.ı; ı/ D .H ı/� D bH
is the profinite completion ofH with respect to its algebra structure (i.e., bH is the
inverse limit lim �H=I over all finite codimensional proper ideals I of H ).

Definition 2.5 (cf. [13]). A module category M over C is called exact if any ad-
ditive module functor M ! M1 from M to any other C-module category M1 is
exact.

Remark 2.6. The collection of exact module categories over C forms a 2-cate-
gory Mod.C/: the 1-morphisms are C-module functors, and the 2-morphisms are
natural transformations of C-module functors.

Proposition 2.7 (cf. [13]). Let C be a rigid tensor category over k, and let M be
a module category over C. Then the following are equivalent:

1) M is exact;

2) for any M 2 M and any injective object I 2 Ind.C/, I ˝ M is injective
in Ind.M/;

3) for any M 2M and any projective object P 2 Pro.C/, P ˝M is projective
in Pro.M/.

Proof. The proof that 1) implies 2) is exactly as the proof of [13, Proposition 3.16]
(after replacing “projective” by “injective” and “Hom” by “Hom”). More pre-
cisely, if M is exact then the C-module functor

Hom.M; ‹/ W M �! Pro.C/
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is exact. Therefore the functor

HomInd.M/.‹; I ˝M/ D HomInd.C/.Hom.M; ‹/; I /

is exact for any injective object I in Ind.C/, so I˝M is injective in Ind.M/. (Here
by HomInd.C/.Hom.M; ‹/; I / we mean HomInd.C/.1;Hom.M; ‹/�˝ I /.)

The proof that 2) implies 1) is exactly as the proof of [13, Proposition 3.11] (after
replacing “projective” by “injective”).

Finally, 2) is equivalent to 3) by duality.

Let C be a rigid tensor category over k, and let M be a module category over C.
Following [13], we say that two simple objects M1;M2 2 M are related if there
exists an object X 2 C such that M1 appears as a subquotient in X ˝M2.

Proposition 2.8. ([13]) Let C be a rigid tensor category over k and let M be an
exact module category over C. Then the following hold:

1) The above relation is an equivalence relation.

2) M decomposes into a direct sum

M D
M

Mi

of indecomposable exact module subcategories indexed by the equivalence
classes of the above relation.

Proof. 1) The proof is essentially the proof of [13, Lemma 3.8 and Proposition 3.9].
Namely, the proof that the relation is reflexive and transitive is exactly the same.
Suppose that M1 appears as a subquotient in X ˝M2, and let E.1/ 2 Ind.C/ be
the injective hull of the unit object 1 2 C. By Proposition 2.7, E.1/˝ X ˝M2 is
injective in Ind.M/, and hence

HomPro.M/.X
� ˝ E.1/� ˝M1;M2/ D HomInd.M/.M1; E.1/˝X ˝M2/ ¤ 0:

This implies the existences of Y 2 C such that HomM.Y ˝M1;M2/ ¤ 0, which
proves that the relation is also symmetric.

2) For an equivalence class i let Mi be the full subcategory of M consisting of
objects all simple subquotients of which lie in i . Clearly, Mi is an indecomposable
module subcategory of M and M D L

Mi . Furthermore, Mi is exact since so
is M.
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Definition 2.9 (cf. [13]). Let M be an exact module category over C. We say that
an object ı 2M generates M if for any M 2M there exists X 2 C such that

HomM.X ˝M ı;M/ ¤ 0:

Remark 2.10 (cf. [13]). It is known that ı generates M if and only if its simple
subquotients represent all equivalence classes of simple objects in M. Therefore,
ı generates M if and only if for any M 2 M there exists X 2 C such that M is a
subquotient of X ˝M ı.

Corollary 2.11. Let M be an indecomposable exact module category over a rigid
tensor category C, and let ı 2M be a simple object. Then ı generates M.

3. Exact module categories over Cohf .G/

Let G be an affine group scheme over k (see Section 2.1).

3.1. The category Cohf .G/. We shall denote by Cohf .G/ (resp., Coh.G/) the
abelian category of coherent sheaves of finite dimensional k-vector spaces on G,
i.e., coherent sheaves supported on finite sets in G (resp., all coherent sheaves
of k-vector spaces on G). Recall that Cohf .G/ (resp., Coh.G/) is a rigid tensor
category (resp., tensor category) with the convolution product

X ˝ Y defD m�.X � Y /

as the tensor product (where m� is the direct image functor of m). It is well
known that Cohf .G/ (resp., Coh.G/) is tensor equivalent to the rigid tensor cate-
gory Rep.O.G// of finite dimensional k-representations of the Hopf algebra O.G/
(resp., the tensor category of finitely generated k-representations of the Hopf al-
gebra O.G/). Recall also that Ind.Cohf .G// is the category of locally finite rep-
resentations of O.G/, i.e., representations in which every vector generates a finite
dimensional subrepresentation, while

Ind.Coh.G// D QCoh.G/

is the category of quasicoherent sheaves of k-vector spaces onG, i.e., the category
of all k-representations of the Hopf algebra O.G/.
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Let ıg denote the simple object in Cohf .G/ corresponding to the closed point
g 2 G. It is well known that Ext1O.G/.ıg ; ıh/ D 0 if g ¤ h, and hence Cohf .G/
decomposes, as an abelian category, into a direct sum

Cohf .G/ D
M
g2G

Cohf .G/g ;

where Cohf .G/g is the abelian subcategory of sheaves supported at g. Since each
of these subcategories has a unique simple object, there is a unique indecompos-
able projective object in the pro-completion category, which is

Pg
defD2O.G/g (= the completion of O.G/ at g).

Therefore any projective in Pro.Cohf .G// is a completed direct sum of such Pg .

Example 3.1. If G is a finite abstract group, i.e., a constant group scheme over k,
then Cohf .G/ D Coh.G/ is nothing but the fusion category Vec.G/ of finite
dimensional G-graded vector spaces over k.

3.2. Equivariant coherent sheaves. Let H be a closed group subscheme of G
(see Section 2.1), and let

� W G �H �! G

be its free action on G by right translations (in other words, the free actions of
H.R/ on G.R/ by right translations are functorial in R, R a commutative algebra
over k). Set

�
defD �.id �mjH / D �.� � id/ W G �H �H �! G:

Let

p1GH W G �H �! G;

p1GHH W G �H �H �! G;

p12GHH W G �H �H �! G �H

denote the projections on G, G and G �H , respectively. We clearly have that

p1GH ı p12GHH D p1GHH :
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Let W H �H ! Gm be a normalized 2-cocycle. Equivalently, is a Drinfeld
twist for O.H/, i.e.,  2 O.H/ ˝ O.H/ is an invertible element satisfying the
equations

.�˝ id/. /. ˝ 1/ D .id ˝�/. /.1˝  /;
."˝ id/. / D .id ˝ "/. / D 1:

We let O.H/ be the (“twisted”) coalgebra with underlying vector space O.H/

and comultiplication � given by

� .f /
defD �.f / ;

where � is the standard comultiplication of O.H/.
Note that  (like any other regular non-vanishing function) defines an auto-

morphism of any coherent sheaf on H �H by multiplication.

Definition 3.2. Let  W H � H ! Gm be a normalized 2-cocycle on a closed
group subschemeH of G.

1) An .H;  /-equivariant coherent sheaf .S; �S/ on G is a pair consisting of
an object S 2 Coh.G/ and an isomorphism

�S W .p1GH /�.S/
Š�! ��.S/

of sheaves onG�H , such that the diagram of morphisms of sheaves onG�H�H

.p1GHH /�.S/

.id�mjH /�.�S /

��

.p12
GHH

/�.�S / �� ��.S/

.��id/�.�S /

��
��.S/

id� 
�� ��.S/

is commutative.
2) Let .S; �S/ and .T; �T / be two .H;  /-equivariant coherent sheaves on G.

A morphism � W S ! T in Coh.G/ is said to be .H;  /-equivariant if the diagram
of morphisms of sheaves on G �H

.p1GH /
�.S/

�S

��

.p1
GH

/�.�/
�� .p1GH /

�.T /

�T

��
��.S/

��.�/

�� ��.T /

is commutative.
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3) Let Coh.H; /
f

.G/ be the abelian category of .H;  /-equivariant coherent
sheaves on G with finite support in G=H (i.e., sheaves supported on finitely many
H -cosets), with .H;  /-equivariant morphisms.

Example 3.3. Coh.¹1º;1/
f

.G/ D Cohf .G/, and Coh.G; /
f

.G/ D Vec (the unique
simple object being the regular representation O.G/).

Remark 3.4. Let .H 0;  0/ be another pair consisting of a closed group subscheme
H 0 of G and a normalized 2-cocycle  0 on it. By considering the free right action
of H 0 �H on G given by

g.a; b/
defD a�1gb;

we can similarly define ..H 0;  0/; .H;  //-biequivariant coherent sheaves on G,
and the abelian category Coh..H

0; 0/;.H; //

f
.G/.

Remark 3.5. 1) In [21, p. 110], an H -equivariant sheaf .S; �S/ on G is referred
to as a sheaf S on G together with a lift �S of the H -action � on G to S .

2) It is well known that the (geometric, hence also categorical) quotient scheme
G=H exists. Let Cohf .G=H/ be the abelian category of coherent sheaves of finite
dimensional k-vector spaces on G=H , and let � W G ! G=H be the canonical
H -invariant morphism. It is known that the inverse image functor

�� W Cohf .G=H/ �! Coh.G/

determines an equivalence of categories between Cohf .G=H/ and Coh.H;1/
f

.G/,
with �H� as its inverse (where �H� is the subsheaf of H -invariants of ��).

This following lemma will be very useful in the sequel.

Lemma 3.6. Let H be a closed group subscheme of an affine group scheme G
over k, acting on itself and on G by right translations

�H W H �H ! H and �G W G �H ! G;

respectively. Let
	 W H ,�! G

be the inclusion morphism, and let  be a normalized 2-cocycle on H . The fol-
lowing hold:
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1) the structure sheaf O.H/ has a canonical structure of an .H;  /-equivariant
coherent sheaf onH , making it the unique (up to isomorphism) simple object
of Coh.H; /

f
.H/;

2) the sheaf 	�O.H/ 2 Coh.G/ (i.e., the representation of O.G/ on O.H/ com-
ing from the morphism 	) is a simple object in Coh.H; /

f
.G/;

3) m�.X �M/ 2 Coh.H; /
f

.G/, for all X 2 Cohf .G/ and M 2 Coh.H; /
f

.G/.

Proof. 1) Consider the isomorphism

'
defD .�H ; p2HH / W H �H

Š�! H �H;
where p2HH W H �H ! H is the projection on the second coordinate. It is clear
that p1HH ı ' D �H , so

.p1HH ı '/�O.H/ D ��
HO.H/:

Now, multiplication by  defines an isomorphism

��
HO.H/ D .p1HH ı '/�O.H/

 �! .'� ı .p1HH /�/O.H/;
and since we have that .p1HH /

�O.H/ D O.H/˝ O.H/, we get an isomorphism

� W .p1HH /�O.H/
D�! O.H/˝ O.H/

'�

�! '�.O.H/˝ O.H//
 �1

�! ��
HO.H/:

The fact that .O.H/; �/ is an .H;  /-equivariant coherent sheaf on H can be
checked now in a straightforward manner. Clearly, .O.H/; �/ is the unique (up
to isomorphism) simple object of Coh.H; /

f
.H/ (see Example 3.3).

2) Since 	 is affine, the commutative diagrams

H �H

��idH

��

p1
HH �� H

�

��
G �H

p1
GH

�� G

H �H

��idH

��

�H �� H

�

��
G �H

�G

�� G

yield isomorphisms

.p1GH /
�	�O.H/

Š�! .	 � idH /�.p1HH /�O.H/ (3.1)
and

.	 � idH /���
HO.H/

Š�! ��
G 	�O.H/ (3.2)

(“base change”).
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Let
� W .p1HH /�O.H/

Š�! ��
HO.H/

be the isomorphism constructed in 1). Since 	 isH -equivariant, we get an isomor-
phism

.	 � idH /�.p1HH /�O.H/
.��idH /�.�/���������! .	 � idH /���

HO.H/: (3.3)

It is now straightforward to check that the composition of isomorphisms (3.1), (3.3)
and (3.2)

.p1GH /
�	�O.H/

Š�! ��
G	�O.H/

endows 	�O.H/ with a structure of an .H;  /-equivariant coherent sheaf on G.
Clearly, 	�O.H/ is simple.

3) Consider the right action id � � W G � G �H ! G � G of H on G � G,
and identify H with the subgroup ¹1º �H � G � G. Since M 2 Coh.H; /

f
.G/,

it is clear that X �M 2 Coh.G �G/ is an .H;  /-equivariant coherent sheaf on
G�G. But sincem W G�G ! G isH -equivariant,m� carries .H;  /-equivariant
coherent sheaves on G �G to .H;  /-equivariant coherent sheaves on G.

3.3. Exact module categories. LetG,H and be as in Sections 3.1 and 3.2, and
consider the coalgebra O.H/ in Coh.G/. Let 2O.H/ be its profinite completion
with respect to the algebra structure of O.H/ (see Example 2.4); it is a coalgebra
object in both Pro.Coh.G// and Pro.Cohf .G//. Let ComodPro.Cohf .G//.

2O.H/ /

be the abelian category of right comodules over 2O.H/ in Pro.Cohf .G//.

Proposition 3.7. LetG be an affine group scheme over k, letH be a closed group
subscheme of G, let

	 W H ,�! G

be the inclusion morphism, let  be a normalized 2-cocycle on H , and let

ı D ı.H; / defD 	�O.H/ 2 Coh.H; /
f

.G/:

The following hold.

1) Set
M

defD Coh.H; /
f

.G/:

The bifunctor

˝M W Cohf .G/ � M �!M;

X � M 7�! m�.X �M/;

defines on M a structure of an indecomposable Cohf .G/-module category.
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2) Set
V

defD ComodPro.Cohf .G//.
2O.H/ /:

The bifunctor
˝V W Cohf .G/ � V �! V;

X � V 7�! m�.X � V /;

defines on V a structure of an Cohf .G/-module category.

3) The categories Coh.H; /
f

.G/ and ComodPro.Cohf .G//.
2O.H/ / are equivalent

as module categories over Cohf .G/. In particular, Hom.ı; ı/ and 2O.H/ 

are isomorphic as coalgebras in Pro.Cohf .G//.

Proof. 1) Since m.m � id/ D m.id � m/ and  is a 2-cocycle, it follows from
Lemma 3.6 that ˝M defines on M a structure of an Cohf .G/-module category.
Clearly, Cohf .H/ is the subcategory of Cohf .G/ consisting of those objectsX for
whichX˝M ı is a multiple of ı, and any objectM 2M is of the formX˝M ı for
some X 2 Cohf .G/. In particular, the simple object ı (see Lemma 3.6) generates
M, so M is indecomposable.

2) An object .V; 
V / in V is a pair consisting of an object V 2 Pro.Cohf .G//
and a morphism


V W V ! V ˝ 2O.H/ 

in Pro.Cohf .G// satisfying the comodule axioms. Clearly, if X 2 Cohf .G/ then
m�.X � V / 2 Pro.Cohf .G//, and


m�.X�V /
defD idX ˝ 
V

is a morphism in Pro.Cohf .G// defining on m�.X � V / a structure of a right
comodule over 2O.H/ .

3) For any S 2 Pro.Cohf .G// there is a natural isomorphism

HomG�H .��.S/; .p1GH /�.S// Š HomG.S; ��.p1GH /�.S//

(“adjunction”). Since ��.p1GH /�.S/ Š S ˝ 1O.H/, we can assign to any isomor-
phism

� W ��.S/ �! .p1GH /
�.S/

a morphism


� W S �! S ˝ 1O.H/:
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It is now straightforward to verify that .S; ��1/ is an .H;  /-equivariant sheaf on
G if and only if the morphism


� W S �! S ˝ 2O.H/ 

is a comodule map.

Example 3.8. We have that Coh.¹1º;1/
f

.G/ D Cohf .G/ is the regular module, and
Coh.G;1/

f
.G/ D Vec is the usual fiber functor on Cohf .G/.

We are now ready to state and prove the main result of this section.

Theorem 3.9. LetG be an affine group scheme over k. There is a bijection between
conjugacy classes of pairs .H;  / and equivalence classes of indecomposable ex-
act module categories over Cohf .G/, assigning .H;  / to Coh.H; /

f
.G/.

Proof. We first show that the indecomposable module category

M
defD Coh.H; /

f
.G/

over Cohf .G/ is exact. To this end, we have to show that if P 2 Pro.Cohf .G// is
projective and X 2M, then P ˝M X is projective (see Proposition 2.7). Clearly,
it is sufficient to show it for

X
defD ı D ı.H; /:

Moreover, since any projective in Pro.Cohf .G// is a completed direct sum of Pg
(see Section 3.1), it suffices to check thatPg˝Mı is projective. Furthermore, since
Pg D ıg ˝ P1, and ıg˝M ‹ is an autoequivalence of M as an abelian category
(since ıg is invertible), it suffices to do so for g D 1. Finally, this is done just by
computing this product explicitly using the definition, which yields that

P1 ˝M ı D2O.H/1 ˝k P.ı/;
where P.ı/ is the projective cover of ı (i.e., the unique indecomposable projective
in the block of Pro.M/ containing ı; as a sheaf on G, it is the function algebra on
the formal neighborhood of H ), and hence projective as desired.

Conversely, we have to show that any indecomposable exact module category
M over Cohf .G/ is of the form Coh.H; /

f
.G/. Indeed, let ı 2M be a simple object

generating M (such ı exists by Corollary 2.11), and consider the full subcategory

C
defD ¹X 2 Cohf .G/ j X ˝M ı D dimk.X/ıº
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of Cohf .G/. Clearly, C is a tensor subcategory of Cohf .G/. Therefore, there exists
a closed group subscheme H of G such that C Š Cohf .H/ as tensor categories,
and we may identify C with Cohf .H/. Moreover, the functor

F W C D Cohf .H/ �! Vec;
X 7�! HomM.ı; X ˝M ı/;

together with the tensor structure

F.�/˝ F.�/ Š�! F.� ˝ �/

coming from the associativity constraint, is a fiber functor on Cohf .H/. Letting xX
denote the underlying vector space of X (where we view X as an O.H/-module),
we see that F.X/ D xX . We therefore get a functorial isomorphism

xX ˝ Y Š�! X ˝ Y ;

which is nothing but an invertible element  of O.H/ ˝ O.H/ D O.H ˝ H/
taking values in Gm.k/. Clearly,  is a twist for O.H/. To summarize, we have
obtained that the C-submodule category hıi of M consisting of all multiples of ı
is equivalent to Coh.H; /

f
.H/ as a module category over C D Cohf .H/.

Finally, letX 2 Cohf .G/, and letXH 2 Cohf .H/ be the maximal subsheaf of
X which is scheme theoretically supported on H (i.e., XH consists of all vectors
in xX which are annihilated by the defining ideal of H in O.G/). Now, on the one
hand, since for any g 2 G, ıg ˝M ı is simple, and ıg ˝M ı Š ı if and only if
g 2 H , it is clear that

HomPro.Cohf .G//.Hom.ı; ı/; X/ D HomM.ı; X ˝M ı/ D XH

(since it holds for any simple X). On the other hand, it is clear that

HomPro.Cohf .G//.
2O.H/ ; X/ D XH :

Thus, by Yoneda’s lemma, the two coalgebras Hom.ı; ı/, 2O.H/ are isomorphic
in Pro.Cohf .G//. But this implies that M is equivalent as a module category
over Cohf .G/ to ComodPro.Cohf .G//.

2O.H/ / (asM is indecomposable, exact, and
generated by ı), hence also to Coh.H; /

f
.G/ by Proposition 3.7.
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4. Exact module categories over Rep.G/

Let C be a rigid tensor category. Given two exact module categories M, N over C,
let FunC.M;N/ denote the abelian category of C-functors from M to N. The dual
category of C with respect to M is the category

C�
M

defD EndC.M/

of C-endofunctors of M. If M is indecomposable, C�
M is a rigid tensor category,

and M is an indecomposable exact module category over C�
M. Also, FunC.M;N/

is an exact module category over C�
M via the composition of functors.

4.1. Module categories. Let us keep the notation from Section 3, and set

M.H;  /
defD Coh.H; /

f
.G/I

in particular, M.G; 1/ D Vec is the usual fiber functor on Cohf .G/. We also set

M.G; .H;  //
defD Coh.G;.H; //

f
.G/

(see Remark 3.4).
Recall that the 2-cocycle  determines a central extension H of H by Gm.

By an .H;  /-representation of H we shall mean a rational representation of the
group scheme H on which Gm acts with weight 1 (i.e., via the identity char-
acter). Let us denote the category of finite dimensional .H;  /-representations
of the group scheme H by Rep.H;  /. Clearly, Rep.H;  / is equivalent to the
category Corep.O.H/ / of finite dimensional comodules over the twisted coal-
gebra O.H/ (see Section 3.2).

Lemma 4.1. The following hold.

1) The categories FunCohf .G/.M.G; 1/;M.H;  // andM.G; .H;  // are equiv-
alent as abelian categories. In particular, Rep.G/ is equivalent as a tensor
category to Cohf .G/�M.G;1/

.

2) The categories FunCohf .G/.M.G; 1/;M.H;  // and Rep.H;  / are equiva-
lent as module categories over Rep.G/.

Proof. 1) Since M.G; 1/ D Vec, an abelian functor M.G; 1/ ! M.H;  / is just
an .H;  /-equivariant sheafX on G. The fact that the functor is a Cohf .G/-mod-
ule functor gives X a commuting G-equivariant structure for the left action of G
on itself, i.e., X is .G; .H;  //-biequivariant. In the other direction, it is clear
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that any .G; .H;  //-biequivariant sheaf on G defines a Cohf .G/-module functor
M.G; 1/!M.H;  /.

Finally, the category of .G;G/-biequivariant sheaves on G is equivalent to the
category Rep.G/ as a tensor category, and the second claim follows.

2) By 1), we may identify FunCohf .G/.M.G; 1/;M.H;  // and M.G; .H;  //

as abelian categories.
Now, if X is a .G; .H;  //-biequivariant sheaf on G then the inverse image

sheaf e�.X/ on Spec.k/ (“the stalk at 1”) acquires a structure of an .H;  /-rep-
resentation via the action of the element .h; h�1/ in G �H , i.e., it is an object in
Rep.H;  /. We have thus defined a functor

M.G; .H;  // �! Rep.H;  /;
X 7�! e�.X/:

Conversely, an .H;  /-representation V can be spread out over G and made
into a .G; .H;  //-biequivariant sheaf X on G, with global sections O.G/˝k V .
We have thus defined a functor

Rep.H;  / �!M.G; .H;  //;

V 7�! O.G/˝k V:

Finally, it is straightforward to verify that the two functors constructed above
are mutually inverse.

Example 4.2. The Rep.G/-module category Rep.¹1º; 1/ D Vec is the usual fiber
functor on Rep.G/.

The proof of the next lemma is similar to the proof of Lemma 4.1.

Lemma 4.3. We have that Cohf .G/ is equivalent to Rep.G/�Rep.¹1º;1/ as a tensor
category, and the categories FunRep.G/.Rep.¹1º; 1/;Rep.H;  // andM.H;  / are
equivalent as module categories over Cohf .G/.

Lemma 4.3 prompts the following definition.

Definition 4.4. A geometrical module category N over Rep.G/ is an exact mod-
ule category N such that FunRep.G/.Rep.¹1º; 1/;Ni/ ¤ 0 for any indecomposable
direct summand module category Ni of N.
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Clearly, geometrical module categories over Rep.G/ form a full 2-subcategory
Modgeom.Rep.G// of the 2-category Mod.Rep.G// (see Remark 2.6).

We can now deduce from Lemmas 4.1, 4.3 the main result of this section,
which says that geometrical module categories over Rep.G/ are precisely those
exact module categories which come from exact module categories over Cohf .G/.
More precisely, we have the following theorem, which generalizes a known result
in the finite group case (see [24]).

Theorem 4.5. Let G be an affine group scheme over k. Then the 2-functors

Mod.Cohf .G// �!Modgeom.Rep.G//;
M 7�! FunCohf .G/.M.G; 1/;M/;

and
Modgeom.Rep.G// �!Mod.Cohf .G//;

N 7�! FunRep.G/.Rep.¹1º; 1/;N/;
are 2-equivalences which are mutually inverse. In particular, there is a bijec-
tion between conjugacy classes of pairs .H;  / and equivalence classes of in-
decomposable geometrical module categories over Rep.G/, assigning .H;  / to
Rep.H;  / D Corep.O.H/ /.

Remark 4.6. 1) If G is not finite, Rep.G/ may very well have nongeometrical
module categories (even fiber functors). For example, let

G
defD G2a over C,

let
J

defD exp.x ˝ y/;
where x; y are a basis of the (nilpotent) Lie algebra C2 (this makes sense on
G-modules, since on them x; y are nilpotent so the Taylor series for exponen-
tial terminates), and let N be the semisimple Rep.G/-module category of rank 1
corresponding to the twist J . Then the twisted algebra O.G/J is the Weyl alge-
bra generated by x; y with yx � xy D 1, so it does not have finite dimensional
modules. Hence, FunRep.G/.M.G; 1/;N/ D 0.

Note that there is no 2-cocycle  with values in Gm (there is one with values
in Ga, namely,

 ..x1; x2/; .y1; y2// D x1y2 � x2y1;
but to make it take values in Gm, one needs to take exponential, which is not
algebraic).
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2) The classification of fiber functors on Rep.G/, where G is a unipotent alge-
braic group, is given in [12]. See also [11] for the construction of fiber functors on
Rep.G/ for other algebraic groups. However, the classification of fiber functors is
not known for SLn, n � 4 (it is known for n � 3, cf. [22] and [23]).

4.2. Semisimple module categories of rank 1. Recall that the set of equiva-
lence classes of semisimple module categories over Rep.G/ of rank 1 is in bi-
jection with the set of equivalence classes of tensor structures on the forgetful
functor Rep.G/! Vec. Therefore, Theorem 4.5 implies that the conjugacy class
of any pair .H;  / for which the category Corep.O.H/ / is semisimple of rank
1 gives rise to an equivalence class of a tensor structure on the forgetful functor
Rep.G/! Vec. Clearly, for such pair .H;  /,H must be a finite group subscheme
ofG (as a simple coalgebra must be finite dimensional). This observation suggests
the following definition.

Definition 4.7. Let H be a finite group scheme over k. We call a 2-cocycle
 W H � H ! Gm (equivalently, a twist  for O.H/ D kŒH��) nondegener-
ate if the category Corep.O.H/ / of finite dimensional comodules over O.H/ 
is equivalent to Vec (i.e., if the coalgebra O.H/ is simple).

We thus have the following corollary.

Corollary 4.8. The conjugacy class of a pair .H;  /, where H is a finite closed
group subscheme ofG and  W H �H ! Gm is a nondegenerate 2-cocycle, gives
rise to an equivalence class of a Hopf 2-cocycle for O.G/.

Remark 4.9. Finite group schemes having a nondegenerate 2-cocycle may be
called group schemes of central type in analogy with finite abstract groups.

5. Group scheme theoretical categories

In this section we extend the classes of rigid tensor categories Rep.G/ and Cohf .G/
to a larger class of group scheme theoretical categories, exactly in the same way
as it is done for finite groups [24].

Let G be an affine group scheme over k, and let ! 2 H 3.G;Gm/ be a normal-
ized 3-cocycle. Equivalently, ! 2 O.G/˝3 is a Drinfeld associator for O.G/, i.e.,
! is an invertible element satisfying the equations

.id˝ id˝�/.!/.�˝ id˝ id/.!/ D .1˝ !/.id˝�˝ id/.!/.! ˝ 1/;
."˝ id˝ id/.!/ D .id˝ "˝ id/.!/ D .id˝ id˝ "/.!/ D 1:

The proof of the following lemma is straightforward.
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Lemma 5.1. The category Cohf .G/ (resp., Coh.G/) with tensor product given
by convolution of sheaves and associativity constraint given by the action of !
(viewed as an invertible element in O.G/˝3) is a rigid tensor category (resp.,
tensor category).

Let us denote the rigid tensor category (resp., tensor category) from Lemma 5.1
by Cohf .G; !/ (resp., Coh.G; !/).

Let H be a closed group subscheme of G, and let  2 C 2.H;Gm/ be a nor-
malized 2-cochain such that d D !jH . Let Coh.H; /

f
.G; !/ be the category of

.H;  /-equivariant coherent sheaves on .G; !/ with finite support in G=H ; it is
defined similarly to Coh.H; /

f
.G/ (the case ! D 1) with the obvious adjustments.

The proof of the following lemma is similar to the proof of Lemma 3.6.

Lemma 5.2. The category Coh.H; /
f

.G; !/ admits a structure of an indecompos-
able exact module category over Cohf .G; !/ given by convolution of sheaves.

The proof of the following classification result is similar to the proof of Theo-
rem 3.9.

Theorem 5.3. There is a bijection between conjugacy classes of pairs .H;  / and
equivalence classes of indecomposable exact module categories over Cohf .G; !/,
assigning .H;  / to Coh.H; /

f
.G; !/.

Let us denote by C.G;H; !;  / the dual category of Cohf .G; !/ with respect
to its indecomposable exact module category Coh.H; /

f
.G; !/; it is equivalent

to the tensor category of ..H;  /; .H;  //-biequivariant sheaves on .G; !/, sup-
ported on finitely many left H -cosets (equivalently, right H -cosets), with tensor
product given by convolution of sheaves.

Definition 5.4. A group scheme theoretical category is a rigid tensor category
which is tensor equivalent to some C.G;H; !;  /.

Example 5.5. 1) Both Rep.G/ and Cohf .G; !/ are group scheme theoretical cat-
egories.

2) (The center) The center Z.Cohf .G// of Cohf .G/ is a group scheme theo-
retical category. Indeed, it is tensor equivalent to C.G � G;G; 1; 1/, where G is
considered as a closed group subscheme of G � G via the diagonal morphism
� W G ! G �G.
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For finite groups G, Cohf .G/ D Rep.Fun.G//, so Z.Rep.Fun.G/// is equiv-
alent to Rep.D.Fun.G/// (where D.Fun.G// D CŒG� Ë Fun.G/ is the Drinfeld
double), and it is well known that Rep.CŒG�ËFun.G// is equivalent to the category
of G-equivariant coherent sheaves on G.

In the algebraic group case, the same is true. Let us give an instructive example:
suppose that G is a semisimple adjoint algebraic group over C (i.e., with trivial
center). Let g� D Lie.G/� be the coadjoint representation, regarded as a commu-
tative algebraic group (multiple of Ga). A coherent sheaf with finite dimensional
space of global sections must be supported on a finite conjugacy class, i.e., at 1.
So we are talking aboutG-equivariant coherent sheaves onG supported (scheme-
theoretically) at 1. This is the same as sheaves on g with the same property (by
using the exponential map), i.e., G-equivariant Sg�-modules, i.e., G-equivariant
algebraic representations of g�, which is the same as representations of the semidi-
rect product G Ë g�. Therefore, the center Z.Cohf .G// is braided equivalent to
Rep.G Ë g�/ equipped with its natural (nonsymmetric) braided structure.1

Definition 5.6. Let

C
defD C.G;H; !;  / and M.H;  /

defD Coh.H; /
f

.G; !/:

A geometrical module category N over C is an exact module category N such
that FunC.M.H;  /;Ni/ ¤ 0 for any indecomposable direct summand module
category Ni of N.

It is clear that geometrical module categories over C.G;H; !;  / form a full
2-subcategory Modgeom.C.G;H; !;  //of the 2-category Mod.C.G;H; !;  // (cf.
Remark 2.6).

The following extends Theorem 4.5 (see also Remark 6.2 in the next section).

Theorem 5.7. Let C defD C.G;H; !;  /, M.H;  / defD Coh.H; /
f

.G; !/. Then the
2-functors

Mod.Cohf .G; !// �!Modgeom.C/;

M 7�! FunCohf .G;!/.M.H;  /;M/;

and
Modgeom.C/ �!Mod.Cohf .G//;

N 7�! FunC.M.H;  /;N/;

1 The R-matrix for this category is exp.
P
xi ˝ x�

i
/, where xi is a basis of g and x�

i
the

dual basis of g�. Note that applying R in X ˝ Y , where X;Y 2 Rep.G Ë g�/, the exponential
will turn into a finite sum (almost all terms of the Taylor series of the exponential will be zero)
because g� acts nilpotently on Y .
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are 2-equivalences which are mutually inverse. In particular, there is a bijection
between conjugacy classes of pairs .H 0;  0/, where H 0 is a closed group sub-
scheme ofG and  0 2 C 2.H 0;Gm/ satisfies d 0 D !jH 0 , and equivalence classes
of indecomposable geometrical module categories over C.G;H; !;  /.

6. Exact module categories over finite group schemes

In this section G will denote a finite group scheme over k (see Section 2.1.1).

6.1. Module categories. By [13, Theorem 3.31], Theorem 4.5 can be strength-
ened in the finite case to give a canonical bijection between exact module cate-
gories over Cohf .G/ D Coh.G/ and Rep.G/ (i.e., for finite group schemes, every
exact module category over Rep.G/ is geometrical). Namely, we have the follow-
ing result.

Theorem 6.1. Let G be a finite group scheme over k. The 2-functors

Mod.Coh.G// �!Mod.Rep.G//;
M 7�! FunCoh.G/.M.G; 1/;M/;

and
Mod.Rep.G// �!Mod.Coh.G//;

N 7�! FunRep.G/.Rep.¹1º; 1/;N/;
are 2-equivalences which are mutually inverse. In particular, the equivalence
classes of indecomposable exact module categories over Rep.G/ D Rep.kŒG�/
are parameterized by the conjugacy classes of pairs .H;  /, where H is a closed
group subscheme of G and  W H �H ! Gm is a normalized 2-cocycle.

Remark 6.2. More generally, the equivalence classes of indecomposable exact
module categories over C.G;H; !;  / are parameterized by the conjugacy classes
of pairs .H 0;  0/, where H 0 is a group subscheme of G and  0 2 C 2.H 0;Gm/
satisfies d 0 D !jH 0 .

6.2. Twists for kŒG�. By [2], there is a bijection between nondegenerate twists
for kŒG� and nondegenerate twists for O.G/. Hence, as a consequence of Theo-
rem 6.1, we deduce the following strengthening of Corollary 4.8.
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Corollary 6.3. Let G be a finite group scheme over k. The following four sets are
in canonical bijection one with the other:

1) the set of equivalence classes of tensor structures on the forgetful functor on
Rep.G/;

2) the set of gauge equivalence classes of twists for kŒG�;

3) the set of conjugacy classes of pairs .H;  /, whereH is a closed group sub-
scheme of G and  W H �H ! Gm is a nondegenerate 2-cocycle;

4) the set of conjugacy classes of pairs .H; J /, whereH is a closed group sub-
scheme of G and J is a nondegenerate twist for kŒH�.

Remark 6.4. Corollary 6.3 was proved for étale group schemes in [20], [9] and [2].

6.3. Minimal twists for kŒG�. Recall that a twist J for kŒG� is called minimal
if the triangular Hopf algebra .kŒG�J ; J�1

21 J / is minimal, i.e., if the left (right)
tensorands of J�1

21 J span kŒG�; cf. [26].
Using Deligne’s theorem [6], it is shown in [9, 2] that a twist for a finite abstract

group is minimal if and only if it is nondegenerate. In this section we show that
the same holds for any finite group scheme, without using Deligne’s theorem. In
order to achieve it, we shall need the following result about quotients of Tannakian
categories, which is of interest by itself.2

Proposition 6.5. LetG be a finite group scheme over k, let C be a symmetric rigid
tensor category over k, and suppose there exists a surjective3 symmetric tensor
functor F W Rep.G/ ! C. Then there exists a closed group subscheme H of G
such that C Š Rep.H/ as symmetric rigid tensor categories, and

ForgetG Š ForgetH ı F:

Proof. Consider the image F.O.G// of the commutative unital algebra object
O.G/ in Rep.G/; it is a commutative unital algebra object in C. Let I 2 C be
a maximal ideal subobject of F.O.G//, and set

R
defD F.O.G//=I:

2 We are grateful to the referee for pointing to us that this result is a special case of [3,
Proposition 1]. We include our proof for the sake of completeness, and convenience of the reader.

3 By saying thatF is surjective we mean that any objectX 2 C is isomorphic to a subquotient
of F .V / for some V 2 Rep.G/.
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Then R is a commutative unital algebra object in C. Let ModC.R/ be the cat-
egory of modules in C over R. Clearly, R is a simple object in ModC.R/, so
HomC.1; R/ D HomR.R;R/ D k.

Observe that for any X 2 C, there exists a finite dimensional vector space xX
such that X ˝R Š xX ˝k R as modules over R (i.e., X ˝R is free). Indeed, this
follows since O.G/ 2 Rep.G/ has this property and F is surjective. Therefore,
since HomC.1; R/ D k, it follows that

HomR.R;X ˝ R/ D HomC.1; X ˝R/
canonically by Frobenius reciprocity, which implies that there is a canonical iso-
morphism

HomC.1; X ˝R/˝k R Š�! X ˝R:
Hence the functor

L W C �! Vec;
X 7�! HomC.1; X ˝R/;

together with the tensor structure given by

L.X ˝ Y / D HomC.1; .X ˝ Y /˝R/
Š�! HomC.1; X ˝ .L.Y /˝k R//
Š�! HomC.1; .L.X/˝k L.Y //˝k R/
Š�! L.X/˝k L.Y /;

is a fiber (= exact tensor) functor on C. But then a standard argument (see e.g., [7])
yields that C is equivalent to Rep.A/ for some finite dimensional Hopf algebra A
over k, as a rigid tensor category. Hence, there exists an injective homomorphism

A
1�1���! kŒG�

of Hopf algebras, and the result follows.

Remark 6.6. Proposition 6.5 holds for any affine group scheme over k (i.e., not
necessarily finite). Namely, quotients of Tannakian categories are Tannakian. The
proof is essentially the same, except that O.G/ and its image under (the exten-
sion of) F are Ind objects, so certain adaptations are required (see [3, Proposi-
tion 1]).

We can now state and prove the main result of this section.
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Proposition 6.7. Let G be a finite group scheme over k, and let J be a twist for
kŒG�. Then J is minimal if and only if it is nondegenerate.

Proof. Suppose J is minimal. By Corollary 6.3, there exist a closed group sub-
scheme xH of H and a nondegenerate twist xJ for kŒ xH� such that the image of xJ
under the embedding

kŒ xH� xJ ,�! kŒH�J

is J . Since J is minimal and xH � H , it follows that xH D H .
Conversely, suppose J is nondegenerate. Let .A; J�1

21 J / be the minimal trian-
gular Hopf subalgebra of .kŒG�J ; J�1

21 J /. The restriction functor

Rep.G/ �! Rep.A/

is a surjective symmetric tensor functor. Thus by Proposition 6.5, Rep.A/ is equiv-
alent to Rep.H/, as a symmetric tensor category, for some closed group sub-
schemeH of G. Now, it is a standard fact (see e.g., [14]) that such an equivalence
functor gives rise to a twist I 2 kŒH�˝2 and an isomorphism of triangular Hopf
algebras

.kŒH�I ; I�1
21 I /

Š�! .A; J�1
21 J /:

We therefore get an injective homomorphism of triangular Hopf algebras

.kŒH�I ; I�1
21 I /

1�1���! .kŒG�J ; J�1
21 J /;

which implies that JI�1 is a symmetric twist for kŒG�. But by [7, Theorem 3.2],
this implies that JI�1 is gauge equivalent to 1 ˝ 1. Therefore, the triangular
Hopf algebras .kŒG�JI�1

; I21J
�1
21 JI

�1/ and .kŒG�; 1˝1/ are isomorphic. In other
words, .kŒG�I ; I�1

21 I / and .kŒG�J ; J�1
21 J / are isomorphic as triangular Hopf al-

gebras, i.e., the pairs .G; J / and .H; I / are conjugate. We thus conclude from
Corollary 6.3 that H D G, and hence that J is a minimal twist, as required.

6.4. The commutative case. Let A be a finite commutative group scheme over
k and let AD be its Cartier dual (see Section 2.1). By definition, kŒA� D O.AD/

and kŒAD� D O.A/. Therefore, Corollary 6.3 implies the following.

Proposition 6.8. There is a canonical isomorphism of abelian groups between the
group of gauge equivalence classes of twists for kŒA� and the groupH 2.AD;Gm/.
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Corollary 6.9. Suppose that either A D Aec or A D Ace . Then the equivalence
classes of indecomposable exact module categories over Rep.A/ are in bijection
with the conjugacy classes of closed group subschemes of A. In particular, the
trivial twist is the only twist for kŒA�, i.e., the forgetful functor on Rep.A/ has only
the trivial tensor structure.

Proof. By Proposition 6.8, it suffices to show that in both casesH 2.A;Gm/ D 0.
Indeed, consider the group homomorphism

H 2.A;Gm/ �! Hom.A � A;Gm/;
 7�!  �1

21  I
it is well defined since for any two choices 1;  2 the 2-cocycle 1 �1

2 is symmet-
ric, and it is known that H 2

s .A;Gm/ D Ext1.A;Gm/ D 0 (see, e.g., [21]). Clearly,
its image is contained in the group of skew-symmetric bilinear forms on A, i.e., is
contained in Hom.A; AD/. But since Hom.Aec ; Ace/ D 0, Hom.A; AD/ D 0, so
the above homomorphism is trivial. This means that

H 2.A;Gm/ D H 2
s .A;Gm/ D 0;

as claimed.

In contrast, the cases A D Aee (see Remark 6.4) and A D Acc (see Exam-
ple 6.13) are more interesting, as demonstrated also by the following proposition.

Proposition 6.10. Let  2 H 2.A � AD;Gm/ be the class represented by the
2-cocycle given by

 ..a1; f1/; .a2; f2// D hf1; a2i;
where
h�; �i denotes the canonical pairing

h�; �i W AD � A �! Gm:

Then  is nondegenerate, that is, it corresponds to a nondegenerate twist for
kŒA � AD�.

Proof. It is straightforward to verify that the corresponding twist for O.A � AD/
(which we shall also denote by  ) is given by  D P

fi ˝ ai ; where fi and
ai are dual bases of O.A/ and O.A/�, respectively. But .O.A � AD/ /� is an
Heisenberg double, hence a simple algebra by [Mon, Corollary 9.4.3] (see [2]),
so  is nondegenerate.
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6.5. p-Lie algebras. Assume that k has characteristic p > 0. In the case of
p-Lie algebras (see Section 2.2), Theorem 6.1 and Corollary 6.3 translate into the
following result.

Theorem 6.11. Let g be a finite dimensionalp-Lie algebra over k. The equivalence
classes of indecomposable exact module categories over Rep.g/ are parameter-
ized by the conjugacy classes of pairs .h;  /, where h is a p-Lie subalgebra of g
and  is a Hopf 2-cocycle for u.h/. In particular, the gauge equivalence classes
of twists for u.g/ are in bijection with conjugacy classes of pairs .h; J /, where h

is a p-Lie subalgebra of g and J is a nondegenerate twist for u.h/.

Example 6.12 (semisimplep-Lie algebras). Let t be a torus, i.e., thep-Lie algebra
of a connected diagonalizable group scheme. Then Corollary 6.9 tells us that the
forgetful functor on Rep.t/ has only the trivial tensor structure, which is in contrast
with the étale case.

Example 6.13. Let a be the 2-dimensional abelian p-Lie algebra with basis h; x
such that hp D 0 and xp D 0 (it is the p-Lie algebra of the group scheme p̨� p̨).
Then it is straightforward to verify that

J
defD exp.h˝ x/ D

p�1X
iD0

hi ˝ xi
i Š

is a nondegenerate twist for u.a/. In fact, the algebra .u.a/J /� is isomorphic to
the truncated Weyl algebra kŒx; y�=.xy �yx � 1; xp; yp/, which is known to be a
simple algebra ([27, p. 73]).

Example 6.14. Let g be the unique 2-dimensional nonabelian p-Lie algebra with
basis x; y such that Œx; y� D y, xp D x and yp D 0 (it is the p-Lie algebra of the
Frobenius kernel of the group scheme Gm Ë Ga of automorphisms of the affine
line A1). It is straightforward to verify that the element

J
defD
p�1X
iD0

x.x � 1/ � � � .x � i C 1/˝ yi
i Š

is a nondegenerate twist for u.g/, and that .u.g/J ; J�1
21 J / is a noncommutative

and noncocommutative minimal triangular Hopf algebra of dimension p2.
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Example 6.15 (Frobeniusp-Lie algebras). Let g be a finite dimensional Frobenius
p-Lie algebra over k. By definition, this means that there exists a linear functional
� 2 g� such that the bilinear form .x; y/ 7! �.Œx; y�/ on g is nondegenerate.
Let u�.g/ be the associated reduced universal enveloping algebra, i.e., u�.g/ is
the quotient algebra of the universal enveloping algebra U.g/ of g by the ideal
generated by elements xp � xŒp� � �.x/p1, x 2 g. By a well known result of
Premet and Skryabin [25], u�.g/ is a simple algebra. Therefore any Frobenius
p-Lie algebra possesses a nondegenerate twist.

Since there are nonsolvable Frobenius p-Lie algebras, we see that there exist
finite group schemes of central type which are not solvable (unlike in the étale
case [9]). For example, the 6-dimensional p-Lie subalgebra g of gl3, consisting
of the matrices with zero last row, is not solvable but is Frobenius (e.g., let � 2 g�
be defined on the standard basis Eij by

�.E12/ D �.E23/ D 1 and �.E11/ D �.E13/ D �.E21/ D �.E22/ D 0/:

Example 6.16 (the Witt p-Lie algebra). Letw be thep-dimensionalp-Lie algebra
with basis xi , i 2 Fp, such that Œxi ; xj � D .j � i/xiCj , xp0 D x0 and xpi D 0

for i ¤ 0. Note that for any i ¤ 0, the elements x defD i�1x0, y
defD ixi span a

2-dimensional nonabelian p-Lie subalgebra of w. We thus obtain twists J.i/ for
u.w/, i 2 F�

p , as in Example 6.14, and hence pp-dimensional noncommutative
and noncocommutative triangular Hopf algebras u.w/J.i/. (See [15] for similar
results.)

7. Isocategorical finite group schemes

Following [10], we say that two finite group schemes G1, G2 over k are isocate-
gorical if Rep.G1/ is equivalent to Rep.G2/ as a tensor category (without regard
for the symmetric structure). Then G1, G2 are isocategorical if and only if the
Hopf algebras kŒG1�, kŒG2� are twist equivalent [10].

7.1. The construction of isocategorical finite group schemes. The construction
of all finite group schemes isocategorical to a fixed finite group scheme given
below extends the one given in [10] for étale groups (see also [4, 5]).

Let G be a finite group scheme over k, let A be a commutative normal closed
group subscheme of G, let AD be the Cartier dual of A (see Section 2.1.1), and set

K
defD G=A:
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Let
R W AD � AD �! Gm

be a G-equivariant nondegenerate skew-symmetric (i.e., R.a; a/ D 0 for all
a 2 AD) bilinear form on AD . It is known that the image of the group homo-
morphism

H 2.AD;Gm/ �! Hom.AD � AD;Gm/;
 7�!   �1

21 ;

is the group of skew-symmetric bilinear forms on AD. Therefore, the form R

defines a class in H 2.AD;Gm/
K represented by any 2-cocycle J 2 Z2.AD;Gm/

such that R D JJ�1
21 .

Let
� W H 2.AD;Gm/

K �! H 2.K; A/

be the homomorphism defined as follows. For c 2 H 2.AD;Gm/
K , let J be a 2-co-

cycle representing c. Then for any g 2 K, the 2-cocycle J gJ�1 is a coboundary.
Choose a cochain

z.g/ W AD �! Gm such that dz.g/ D J gJ�1;

and let
Qb.g; h/ defD z.gh/z.g/�1.z.h/g/�1:

Then for any g; h 2 K, the function

Qb.g; h/ W AD �! Gm

is a group homomorphism, i.e., Qb.g; h/ belongs to the group A. Thus, Qb can be
regarded as a 2-cocycle of K with coefficients in A. So Qb represents a class b
in H 2.K; A/, which depends only on c and not on the choices we made. So we
define � by �.c/ D b.

Now, let
b

defD �.R/;
and let Qb be any cocycle representing b. For any  2 G, let N be the image of 
in K. Introduce a new multiplication law 	 on the scheme G by

1 	 2 defD Qb. N1; N2/12:

It is easy to show that this multiplication law introduces a new group scheme
structure on G, which (up to an isomorphism) depends only on b and not on Qb.
Let us call this finite group scheme Gb.
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Theorem 7.1. The following hold:

1) the finite group scheme Gb is isocategorical to G;

2) any finite group scheme isocategorical to G is obtained in this way.

In particular, two isocategorical finite group schemes are necessarily isomor-
phic as schemes (but not as groups [10]).

7.2. Sketch of the proof of Theorem 7.1. Suppose that G1 and G2 are isocate-
gorical, and fix a twist J for kŒG1� such that kŒG1�J and kŒG2� are isomorphic as
Hopf algebras (but not necessarily as triangular Hopf algebras). Clearly, the Hopf
algebra kŒG1�J is cocommutative. Set,

RJ
defD J�1

21 J:

Let .kŒG1�J /min � kŒG1�
J be the minimal triangular Hopf subalgebra of the

triangular Hopf algebra .kŒG1�J ; RJ / [26]. Since .kŒG1�J /min is isomorphic to its
dual with opposite coproduct (via RJ ), .kŒG1�J /min is cocommutative and com-
mutative. This implies that .kŒG1�J /min is isomorphic to the group algebra kŒA�
of a commutative group scheme A. Therefore, there exists a twist

J 0 2 .kŒG1�J /min ˝ .kŒG1�J /min

such that
RJ D RJ 0

:

But this implies (exactly as in the proof of Proposition 3.4 in [10]) that there exists
a twist yJ for kŒG1� such that kŒG1�J is isomorphic to kŒG1� yJ as triangular Hopf
algebras, and yJ 2 .kŒG1� yJ /min ˝ .kŒG1� yJ /min.

Thus, we can assume, without loss of generality, that J 2 .kŒG1�J /˝2min. This
implies that .kŒG1�J /min D kŒA�, where A is a commutative closed group sub-
scheme of G1, and J 2 kŒA�˝ kŒA�.

Proposition 7.2. The closed group subscheme A is normal in G1 (i.e., kŒA� is
invariant under the adjoint action Ad of kŒG1� on itself), and the action of the
group scheme K defD G1=A on A by conjugation preserves RJ .

Proof. By cocommutativity of kŒG1�J ,

J�1�.g/J D J�1
21 �.g/J21 for all g 2 kŒG1�,

hence
�.g/RJ D RJ�.g/
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(here we use that kŒA� is commutative, so RJ D JJ�1
21 ). But then, using the

cocommutativity of kŒG1�J again, we get that RJ is invariant under the adjoint
action of kŒG1�, i.e.,

Ad.g/RJ D ".g/RJ for all g 2 kŒG1�.
Since the left (and right) tensorands of RJ span kŒA�, the result follows.

We can thus view J not only as a twist for kŒA� but also as a 2-cocycle of AD
with values in Gm, according to Proposition 6.8. For g 2 K let us write J g for
the action of g on J . Since RJ is invariant under G1, J gJ�1 D J

g
21J

�1
21 , which

implies that the 2-cocycle J gJ�1 W AD � AD ! Gm is symmetric. Hence there
exists a cochain

z.g/ W AD �! Gm

(i.e., an invertible element in O.AD/ D kŒA�) such that

J gJ�1 D dz.g/:
By identifying kŒG1�J with kŒG2�, we can consider the morphism of schemes

' W G1 �! G2; ;

'./ 7�! z./�1;

(where by z./ we mean z.A/). Then the morphism ' is bijective (with inverse
'�1./ D z./).

Finally, it is obvious from the definition of ' that

'.1/'.2/ D Qb. N1; N2/'.12/;
where

Qb.g; h/ D z.gh/

z.g/
z.h/g 2 kŒA��:

Furthermore, the morphism

Qb defD Qb.g; h/ W AD �! Gm

is a group homomorphism, i.e., Qb 2 A, and it is clear that Qb is a 2-cocycle of K
with coefficients in A. Let b be the cohomology class of Qb in H 2.K; A/. We have
shown that

'.1 	 2/ D '.1/'.2/;
i.e., that ' is an isomorphism of group schemes .G1/b ! G2. This completes the
proof of part 2) of Theorem 7.1, since by the definition of b we have b D �.RJ /.
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Finally, part 1) is essentially obvious from the above. Namely, if G is a finite
group scheme, A its commutative normal closed group subscheme,

K
defD G=A

and
b

defD �. NR/ 2 H 2.K; A/;

then choose a twist J 2 kŒA�˝2 such that R D J�1
21 J and get that kŒG�J is iso-

morphic as a Hopf algebra to kŒGb� (so the group schemes G and Gb are isocate-
gorical).
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