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Abstract. Using the link surgery formula for Heegaard Floer homology we �nd a spectral

sequence from the lattice homology of a plumbing tree to the Heegaard Floer homology of

the corresponding 3-manifold. �is spectral sequence shows that for graphs with at most

two “bad” vertices, the lattice homology is isomorphic to the Heegaard Floer homology of

the underlying 3-manifold.
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1. Introduction

Heegaard Floer homologies were introduced in 2001 by the �rst and third authors

as invariants of closed, oriented 3-manifolds [17, 18]. �e construction of the in-

variants relies on a choice of a Heegaard decomposition of the 3-manifold at hand,

and then applies Lagrangian Floer homology to a symplectic manifold (and two

Lagrangian subspaces of it) associated to the Heegaard decomposition. �e the-

ory comes in many variants: the version HF�.Y / is the most powerful in 3- and

4-dimensional applications, while the simpler cHF.Y / turns out to be more acces-

sible for computation. Since the introduction of the invariants, many results have

been found towards their computability [3, 6, 13, 23], but a convenient computa-

tional scheme in general is still missing. For 3-manifolds which can be presented

as the boundary of a negative de�nite plumbing with at most one bad vertex (in

the sense of De�nition 2.1), a relatively simple computational algorithm was de-

scribed in [16].

Motivated by the result of [16], in [8] András Némethi introduced an algebraic

object, the lattice homology for plumbed 3-manifolds, which – when considered

for negative de�nite plumbings – provides a bridge between certain analytic prop-

erties of the singularity with resolution the given plumbing, and the di�erential

topology of the boundary 3-manifold. Since lattice homology extends the combi-

natorial approach found in [16] to more general plumbings, it can be shown that for

a negative de�nite plumbing treeG with at most one bad vertex, the lattice homol-

ogy HF�.G/ and the Heegaard Floer homology group HF�.YG/ of the plumbed

3-manifold YG (obtained by plumbing circle bundles over spheres according to

G) are isomorphic. Indeed, Némethi extended the isomorphism of [16] to a larger

class of plumbing graphs which he called almost-rational [8]. (For the de�nition

of these notions, see Section 2. See also [11] for related results.) His results can

be viewed as evidence for a conjecture that, for a plumbing tree G, the lattice ho-

mology HF�.G/ is isomorphic to the Heegaard Floer homology HF�.YG/ of the

corresponding 3-manifold YG . Further evidence to the validity of this conjecture

is provided by the proof of a surgery exact triangle in lattice homology by Greene

and (independently) by Némethi [2, 10], and by the introduction of knot lattice

homology [14], cf. also [15].

In the present paper we show the existence of a spectral sequence from the lat-

tice homology of a tree G to the Heegaard Floer homology of the corresponding

plumbed 3-manifold YG. �is spectral sequence is derived from the surgery pre-

sentation of Heegaard Floer homology from [5], compare also [20, 21]. In the

statement below, the groups HF�.G/ and HF�.YG/ denote the regular lattice

and Heegaard Floer homologies after completion (with respect to the U variable).
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For a de�nition of HF�.G/ see Section 3. When the 3-manifold YG is a rational

homology sphere then the completed versions of the homologies determine the

ones de�ned over the polynomial ring, cf. [5]; moreover, the closed four-manifold

invariants can be de�ned using only the completed theory. �e main result of the

paper is:

�eorem 1.1. Suppose that G is a plumbing tree of spheres, and let YG be the

corresponding 3-manifold. �en, there is a spectral sequence ¹Eiº
1
iD1 with the

following properties.

� �e E2-term of the spectral sequence is isomorphic to the lattice homology

HF�.G/.

� �e spectral sequence converges to HF�.YG/.

� �e lattice homology HF�.G/ naturally splits according to Spinc structures

over YG (see text preceding De�nition 3.6); similarly, HF�.YG/ splits ac-

cording to Spinc structures. �e spectral sequence respects these splittings.

� If s 2 Spinc.YG/ is a torsion Spinc structure (e.g. if YG is a rational homology

sphere, this holds for any s 2 Spinc.YG/), the isomorphism of the E2-term

with HF�.G/ preserves the absolute Maslov grading.

� If s 2 Spinc.YG/ is a non-torsion Spinc structure, the isomorphism of the

E2-term with HF�.G/ preserves the relative Maslov grading.

Remark 1.2. �e E1-term of the above spectral sequence (as a sequence of mod-

ules over FJU K) recovers HF�.YG/ only as a vector space over F. More informa-

tion about the FJU K-module structure can be obtained by applying an analogous

spectral sequence over FŒU �=U n, see �eorem 4.11 below, and also the proof of

Corollary 1.3.

As an application, we derive the following result. (For the de�nition of type n

graphs, see De�nition 2.1 in Section 2. Negative de�nite type n graphs include

graphs with at most n bad vertices.) See [11, Section 8] for special cases of this

result.

Corollary 1.3. If a plumbing tree G is of type 2 then the lattice homology of G is

isomorphic to the Heegaard Floer homology of the underlying 3-manifold YG.

�e paper is organized as follows. In Section 2 we �x notations and describe

some necessary de�nitions, while in Section 3 we recall the basic concepts of

lattice homology. Section 4 is devoted to the discussion of the spectral sequence,
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and �nally in Section 5 we prove Corollary 1.3. In this proof we use the surgery

exact sequence of Greene and Némethi [2, 10]. For completeness, in an Appendix

we include a proof of this result adapted to the conventions used throughout our

paper.

2. Background

Suppose that � is a tree on n D n.�/ vertices with vertex set V D Vert.�/ D

¹v1; : : : ; vn.�/º, while G is the same graph together with an integer mv 2 Z (a

framing) attached to each vertex v of �. Let MG denote the associated incidence

matrix (with framings in the diagonal). �e plumbing 4-manifold de�ned by G

(when we plumb disk bundles over spheres according toG) will be denoted byXG ,

and its boundary 3-manifold is YG . It is not hard to see thatMG is the intersection

matrix of the 4-manifold XG in the basis ¹E1; : : : ; En.�/º � H2.XG IZ/ where

Ei corresponds to the vertex vi (i D 1; : : : ; n.�/). Let dv denote the number of

neighbors of a vertex v in the tree G; this quantity is sometimes called the degree

(or valency) of the vertex vi . Although lattice homology can be de�ned for graphs

containing cycles, in the present work we will restrict our attention to trees and

forests (disjoint unions of trees).

De�nition 2.1. � Suppose that G is a negative de�nite plumbing tree (that is,

the matrix MG is negative de�nite). According to [1] there is a class Z DP
i niEi with ni � 0 integers and Z ¤ 0 which satis�es Z � Ei � 0 for all

i , and for any other class Z0 D
P
i n

0
iEi with these properties ni � n

0
i holds

for all i . �e plumbing tree G is called rational if for Z D
P
i niEi we have

�X

i

niEi

�2
D 2

X

i

ni C
X

i

niE
2
i � 2:

(Let the canonical class Kcan 2 H
2.XG IZ/ de�ned by Kcan.Ei / D �2�E

2
i

for each Ei with i D 1; : : : ; n.�/. �e above condition is then equivalent to

requiring that the geometric genus p.Z/ D 1
2
.Z2CKcan �Z/C1 of the class

Z vanishes.)

� �e vertex v is a bad vertex ofG if dvCmv > 0, i.e. the valency of the vertex

is more than the negative of its framing.

� �e plumbing tree G is of type k if it has k vertices ¹vi1; : : : ; vikº on which

we can change the framings ¹mi1 ; : : : ; mikº in such a way that the result is

rational.
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Remark 2.2. �e above de�nition di�ers from the de�nition of Némethi [7]: we

use the term ’bad vertex’ as it was used in [16]. For negative de�nite trees, the

notion of almost-rational coincides with type 1. If a negative de�nite tree G has k

bad vertices then it is of type k. �e converse is false, cf. the example of Figure 1.

−3

−3

−3
−2

−2

−2

−m
−3

−3

−3

Figure 1. �e plumbing diagram of the �gure has at least n bad vertices (where n is the

valency of the central .�m/-framed vertex) and it is either type 1 or rational (depending on

the actual value of m). Note that all the .�2/-framed vertices are bad vertices (in the sense

of De�nition 2.1). It is easy to check that for�m su�ciently negative the graph is rational,

hence for any value of m the graph is of type 1.

Recall that a plumbing tree also provides a surgery diagram for the 3-manifold

it represents: replace each vertex of the diagram with an unknot, and arrange them

so that two unknots link if and only if the corresponding vertices are connected

by an edge. �e framings of the unknots are given by the integers attached to the

vertices of the plumbing graph. Note that (viewing the resulting framed link L D

.L1; : : : ; L`/ as a Kirby diagram) this procedure actually gives the 4-manifold

XG with the given 3-dimensional boundary YG. In addition, if L0; L00 are two

sublinks of the resulting link L in such a way that L0 � L00, then this surgery

theoretic approach also provides a cobordism associated to the pair: attach the 4-

dimensional 2-handles to YL0 along the components of L00 �L0 with the framings

speci�ed by G.

For later reference, let �.G/ denote the signature of the intersection matrix

MG (or equivalently, the 4-manifold XG), and de�ne �.G/ as the cardinality jV j

of its vertex set.

3. Review of lattice homology

For the sake of completeness we review the basic notions of lattice homology. �is

notion was introduced by Némethi [8] (see also [9, 11]). �e current presentation

is similar to the one discussed in [14], with the di�erence that now we consider
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the completed version of the theory (cf. Remark 3.5) and we allow the plumbing

graph to be not negative de�nite. Let G be a given plumbing tree/forest. Recall

that G is speci�ed by a graph �, together with a mapm from the vertices Vert.G/

to Z, and the integer m.v/ D mv is called the framing of v.

Next we recall the de�nition of the completed version of the lattice homology

group ofG. �e groupHF�.G/ is computed as the homology of the combinatorial

chain complex CF�.G/, which is a module over the ring FJU K of formal power

series (where F Š Z=2Z). To de�ne it, let Char.G/ � H 2.XG IZ/ denote the set

of characteristic cohomology classes on the 4-manifold XG ; i.e., it is the subset

of those K 2 H 2.XG IZ/ which have the property that

K � c � c � c .mod 2/

for all c 2 H2.XG IZ/. Let P.V / be the power set of V D Vert.G/, so that

E 2 P.V / simply means thatE � V . Now, theFJU K-module underlyingCF�.G/

is the direct product

CF�.G/ D
Y

ŒK;E�2Char.G/�P.V /

FJU KhŒK; E�i: (3.1)

CF�.G/ naturally admits an integral grading, called the ı-grading. �e ı-grad-

ing of an element U i ˝ ŒK; E� is given by the cardinality jEj of the subset E.

�is grading naturally descends to a Z=2Z-grading by considering only the parity

of jEj.

We de�ne the boundary map

@ W CF�.G/ �! CF�.G/

as follows. Given a subset I � E, we de�ne the G-weight f .ŒK; I �/ 2 Z of the

pair ŒK; I � by the formula

2f .ŒK; I �/ D
�X

v2I

K.v/
�
C
�X

v2I

v
�
�
�X

v2I

v
�
: (3.2)

Moreover, for a pair ŒK; E�, we de�ne the minimal G-weight g.ŒK;E�/ by the

formula

g.ŒK;E�/ D min¹f .ŒK; I �/ j I � Eº:

Next, for the vertex v 2 E � V consider the quantities

Av.ŒK;E�/ D g.ŒK;E � v�/
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and

Bv.ŒK;E�/ D min¹f .ŒK; I �/ j v 2 I � Eº

D
�K.v/C v � v

2

�
C g.ŒK C 2v�; E � v�/;

where v� denotes the Poincaré dual of the vertex v (when v is regarded as an ele-

ment of the second homologyH2.XG ; YGIZ/ of the plumbing 4-manifold). It fol-

lows trivially from the de�nition that min¹Av.ŒK;E�/; Bv.ŒK;E�/º D g.ŒK;E�/.

Let

avŒK; E� D Av.ŒK;E�/� g.ŒK;E�/

and

bvŒK; E� D Bv.ŒK;E�/� g.ŒK;E�/:

(�e equality min¹avŒK; E�; bvŒK; E�º D 0 immediately follows.) We de�ne the

boundary map on CF�.G/ by the formula

@ŒK;E� D
X

v2E

U avŒK;E�˝ ŒK; E � v�C
X

v2E

U bvŒK;E�˝ ŒK C 2v�; E � v� (3.3)

on ŒK; E� and extend it to CF�.G/ U -equivariantly and linearly. It is obvious that

the boundary map drops the ı-grading by one. A simple calculation (cf. [14])

shows that

Lemma 3.1. �e pair .CF�.G/; @/ is a chain complex, that is, @2 D 0.

De�nition 3.2. �e homologyH�.CF
�.G/; @/ of the chain complex .CF�.G/; @/

is the lattice homology HF�.G/ of the plumbing graph G.

Lattice homology is the homology of an in�nite direct product. Nonetheless,

it enjoys the following �niteness property:

Proposition 3.3. �e lattice homology groupHF�.G/ is a �nitely generatedFJU K

module.

Proof. �is can be easily seen by induction on the number of bad vertices in G,

using the long exact sequence in lattice homology ([2, 10], see also Corollary 6.8),

and using the result for graphs with no bad vertices as in [8].
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Remark 3.4. A number of further variants can be introduced along the same

lines: using the coe�cient ringFŒU�1; U K (the �eld of fractions for the ring of for-

mal power series in U ) we get CF1.G/ and the corresponding homology theory

HF1.G/. Since CF�.G/ is a subcomplex of CF1.G/, we can consider the quo-

tient complex CFC.G/, whose homology is HFC.G/. Setting U D 0 in CF�.G/

we get the homology theory bHF.G/, over the base ring F. More generally, by

setting U n D 0 (n 2 N) we get the chain complex cCFŒn�.G/ and, as its homology,

the version bHF
Œn�
.G/.

Remark 3.5. �e conventional de�nition of lattice homology considers direct

sum as opposed to direct product in the de�nition of CF�.G/ given in (3.1). Also,

the usual coe�cient ring is the polynomial ring FŒU � rather than FJU K. With the

changes in the present de�nition, in fact, we consider a completed version of the

theory. If G is negative de�nite, then the usual de�nition (given for example, in

[8, 14]) and the one given above determine each other. �is principle is not true in

general, cf. the second example in 3.11. We found the description adapted in this

paper to be in accord with the corresponding Heegaard Floer homology theories.

�e relation

K � K 0 () K �K 0 2 2H 2.XG ; YGIZ/

splits the generators into equivalence classes: U i ˝ ŒK; E� and U j ˝ ŒK 0; E 0� are

equivalent ifK � K 0. �is relation then splits the chain complex CF�.G/ as well,

and the de�nition of the boundary map in (3.3) shows that the boundary map re-

spects this splitting. SinceG is a tree, the 4-manifoldXG is simply connected, and

hence an element of K 2 Char.G/ speci�es a Spinc structure tK on XG , therefore

(by restricting tK to the boundary YG) induces a Spinc structure sK on YG . It is

not hard to see that K � K 0 holds if and only if sK and sK0 are isomorphic Spinc

structures on YG . Hence both the chain complexes and the homologies de�ned

above split according to the Spinc structures of YG . Recall that CF�.G/ admits a

ı-grading (given for the generator ŒK; E� by jEj), splitting the homologies further:

De�nition 3.6. For i � 0 de�ne HF�
i .G; s/ as the subgroup of HF�.G/ spanned

by those pairs ŒK; E� for which sK D s and jEj D i .

Lattice homology has a further grading, the (absolute or relative) Maslov grad-

ing. �is structure is simplest to describe in the case where the underlying Spinc

structure is torsion (i.e. the �rst Chern class of that Spinc structure is a torsion

cohomology class). We give the grading in that case �rst.
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Suppose that the Spinc structure sK associated to a generator U i ˝ ŒK; E� is

torsion. In this case de�ne the Maslov grading gr.U i ˝ ŒK; E�/ of a generator

U i ˝ ŒK; E� of CF�.G/ as

gr.U i ˝ ŒK; E�/ D �2i C 2g.K;E/C jEj C
1

4
.K2 � 3�.G/ � 2�.G//: (3.4)

(Recall that K2 is de�ned as the square of nK divided by n2, where

nK 2 H 2.XG ; YGIZ/ Š H2.XG IZ/;

and therefore it admits a cup square. As a result we expect gr.U i ˝ ŒK; E�/ to be

a rational number rather than an integer.)

Lemma 3.7. (cf. [14]) �e boundary map drops the Maslov grading gr by one.

Proof. Proceed separately for the two types of components of the boundary map.

After obvious simpli�cations, according to the de�nition of avŒK; E�we have that

gr.U i ˝ ŒK; E�/� gr.U i � U avŒK;E� ˝ ŒK; E � v�/

D 2g.ŒK;E�/C jEj C 2avŒK; E�� 2g.ŒK;E � v�/� jE � vj

D 1:

Similarly,

gr.U i ˝ ŒK; E�/� gr.U i � U bvŒK;E� ˝ ŒK C 2v�; E � v�/ D 1

follows from the same simpli�cations and the de�nition of Bv.ŒK;E�/.

We will �nd it convenient to use the following terminology:

De�nition 3.8. A Maslov graded chain complex is a Q-graded chain complex

over FJU K with the property that

� the di�erential drops grading by one and

� multiplication by U drops grading by two.

Lemma 3.7 and equation (3.4) together say that for a torsion Spinc structure s

the grading gr gives CF�.G; s/ a Maslov grading, in the sense of De�nition 3.8.

Lemma 3.9. Suppose that sK D sK0 is a torsion Spinc structure. �en the di�er-

ence

gr.U i ˝ ŒK; E�/ � gr.U j ˝ ŒK 0; E 0�/

is an integer, and it is congruent .mod 2/ to the di�erence jEj � jE 0j.
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Proof. In the di�erence the terms coming from �.G/ and �.G/ cancel, and the

ones originating from the U -exponents or from the g-function are obviously even.

We claim that the di�erence 1
4
.K2� .K 0/2/ is also even. Since sK D sK0 , we have

that K 0 D K C 2x for some vector x 2 H 2.XG ; YGIZ/, therefore

1

4
.K2 � .K 0/2/ D x � .K C x/;

which is even since K is characteristic. (Note that since x is in the relative co-

homology, the above product always makes sense.) �e only remaining terms are

jEj � jE 0j, verifying the statement.

We now turn to the non-torsion case. In this case the term K2 is not de�ned,

since nK is not in H 2.XG ; YGIZ/ for any non-zero n. Nevertheless, if sK D sK0 ,

we can still consider the di�erenceK2�.K 0/2 by writing it as .K�K 0/ �.KCK 0/.

�e assumption sK D sK0 then ensures thatK�K 0 admits a lift fromH 2.XG IZ/ to

H 2.XG ; YGIZ/, hence the above product makes sense. �is provides a possibility

of de�ning a relative Maslov grading. Note, however, that the lift of K � K 0

is not unique in general: by the long exact sequence of the pair .XG ; YG/ the

ambiguity for choosing such a lift lies in the group H 1.YG IZ/ Š H2.YGIZ/.

Suppose that x is a lift of 1
2
.K � K 0/ and y 2 H2.YG IZ/. �en the di�erence

we get for K2 � .K 0/2 by using x or x C y can be easily computed to be equal

to KjYG
.y/. (If the restriction KjYG

is torsion, then this evaluation is obviously

zero, and we are in the previous situation of having absolute Maslov gradings in

torsion Spinc structures.) �erefore if d denotes the divisibility of KjYG
(that is,

this cohomology class equals d -times a primitive one), then the valueK2� .K 0/2

is well-de�ned up to 4d , hence the relative Maslov grading is well-de�ned modulo

d only. (Note that for a characteristic cohomology classK the divisibility d of the

restriction KjYG
is always even.) In summary, we have:

Lemma 3.10. Fix two generators U i ˝ ŒK; E� and U j ˝ ŒK 0; E 0� and suppose

that sK D sK0 is a non-torsion Spinc structure over YG. �en, the relative Maslov

grading

gr.U i ˝ ŒK; E�; U j ˝ ŒK 0; E 0�/

D �2.i � j /C 2g.K;E/ � 2g.K;E 0/C jEj � jE 0j C
1

4
.K2 � .K 0/2/;

gives a well-de�ned element of Z=dZ, where d denotes the divisibility of c1.sK/.

�e proof of Lemma 3.7 readily adapts to the non-torsion case: in this case,

the lattice complex is a relatively Z=dZ-graded Maslov-graded complex.
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Examples 3.11. � Consider the example of the graphG with a single vertex v,

no edges and the decoration of the single vertex to be equal to C1. �en

a characteristic cohomology class K can be identi�ed with the odd number

K.v/ it takes as a value on v. �e generators of CF�.G/ are then Œ2nC1; ¹vº�

and Œ2nC 1�. �e boundary of Œ2nC 1� is 0, while

@Œ2nC 1; ¹vº� D

8
<
:
Œ2nC 1�C U nC1 ˝ Œ2nC 3� if n � �1,

U�.nC1/ ˝ Œ2nC 1�C Œ2nC 3� if n < �1.

�e map @ is then obviously injective on the subspace given by the �nite sums

of elements of the form Œ2nC 1; v�. By allowing in�nite sums (as we did),

the element

�1X

nD�1

U
1
2
.nC1/.nC2/Œ2nC 1; v�C

1X

nD0

U
1
2
n.nC1/Œ2nC 1; v�

generates HF�.G/ over FJU K. �is shows that in this case

HF�.G/ D HF�
1 .G/ D FJU K:

A simple calculation shows that this element has zero Maslov grading, in ac-

cordance with the Heegaard Floer homological computation for the plumbing

manifold YG given by G, which is di�eomorphic to S3.

� In the next example we assume thatG still has a single vertex v (and no edges)

and the framing of the single vertex is zero. �e underlying 3-manifold is now

S1 � S2. �e generators are of the form Œ2n� and Œ2n; v�, and two generators

are in the same Spinc structure if and only if the characteristic cohomology

classes coincide. As always, @Œ2n� D 0. A simple calculation shows that

@Œ2n; v� D .1C U n/Œ2n�:

Considering the theory over FŒU � (and allowing only �nite sums) the ho-

mology for the Spinc structure n ¤ 0 is FŒU �=.U n/, while for n D 0 it is

FŒU �˚ FŒU �. Working with the completed groups (and hence using the co-

e�cient ring FJU K), the term .1CU n/ is invertible for n ¤ 0 (and vanishes

if n D 0), hence according to the de�nition we adopted in the present paper

we have that

HF�.G; sn/ D 0; if n ¤ 0,

and

HF�.G; s0/ D FJU K˚ FJU K:
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(A simple computation shows that the Maslov gradings of the two generators

are 1
2

and �1
2
.) Moreover,

HF�
0 .G; s0/ Š FJU K and HF�

1 .G; s0/ Š FJU K:

�is simple computation shows that for non-torsion Spinc structures the

completed theory (over the ring FJU K) loses some information. On the other

hand, for torsion Spinc structures the completed theory determines the one re-

ferred to in Remark 3.5 (which is de�ned over FŒU �). We just note here that

the resulting homologies are again isomorphic to the corresponding com-

pleted Heegaard Floer homology groups.

4. �e spectral sequence

Before turning to the proof of our main result, we need to recall some de�nitions

and constructions from [5] (cf. also [19]). Recall that the plumbing graph deter-

mines a link L D .L1; : : : ; L`/ in S3: each vertex of the plumbing tree gives rise

to an unknot and these unknots are linked if and only if the corresponding vertices

are connected in the graph by an edge.

4.1. Constructions from link Floer homology. Let H denote the homology

groupH1.S
3�LIZ/. By �xing an orientation on the componentLi , it gives rise to

an oriented meridian �i , and these meridians generate H . Using these meridians

we can identify the group ring ZŒH � with the ring of Laurent polynomials on `

variables. De�ne H.L/ as

°X
ai � Œ�i � j ai 2 Q; and 2ai C `k.Li ; L� Li / 2 2Z

±
;

where `k.Li ; L � Li / is the linking number of the component Li with the rest

of the link. As it was discussed in [5, 19], the set H.L/ parametrizes the relative

Spinc structures on S3 � L.

Fix a multi-pointed Heegaard diagram H D .†;˛;ˇ;w; z/ representing the

link L, as in [19]. In this diagram w D .w1; : : : ; w`/ and z D .z1; : : : ; z`/ are

basepoints with the property that the pair wi and zi represents the i th component

Li of L. Recall that the multi-pointed diagram, in fact, speci�es an orientation

on the link. When we wish to underscore this structure, we write an oriented link

as EL.
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Given the Heegaard diagram and a choice of an element s 2 H.L/, we de�ne

the chain complex A
�.H; s/ as follows. Any intersection point x 2 T˛ \ Tˇ

has a Maslov grading M.x/ 2 Z (since the link L is in S3) and an Alexander

multi-grading A.x/ 2 H.L/, de�ned using the Heegaard diagram. �is Alexander

multi-grading is speci�ed (up to an overall additive constant, i.e. up to a vector),

as follows. If wi and zi are the pair of basepoints belonging to the i th component

of the link, and � 2 �2.x; y/ is any homotopy class connecting x and y, then the

i th component Ai .x/ of A.x/ satis�es

Ai .x/ � Ai .y/ D nzi
.�/ � nwi

.�/:

In an integral homology sphere (and speci�cally in S3) such � always exists and

the di�erence above is independent of the choice of �.

Given s D .s1; : : : ; s`/ and �, we de�ne the s-modi�ed multiplicity of � 2

�2.x; y/ by the formulas

Eis .�/ D max¹si � Ai .x/; 0º �max¹si � Ai .y/; 0º C nzi
.�/ (4.1)

D max¹Ai.x/ � si ; 0º �max¹Ai.y/ � si ; 0º C nwi
.�/: (4.2)

�is quantity has the following two properties.

� Eis.�/ � 0 if all the local multiplicities of � are non-negative.

� If �1 2 �2.p; q/ and �2 2 �2.q; r/, then for �1 � �2 2 �2.p; r/

Eis.�1 � �2/ D E
i
s.�1/CE

i
s.�2/:

Given s D .s1; : : : ; s`/ 2 H.L/, we de�ne the corresponding chain complex

A
�.H; s/, which is a free module over the algebra A D FJU1; : : : ; U`K generated

by T˛ \ Tˇ , and equipped with the di�erential

@x D
X

y2T˛\Tˇ

X

�2�2.x;y/
�.�/D1

#
�
M.�/

R

�
� U

E1
s1
.�/

1 � � �U
E`

s`
.�/

`
� y: (4.3)

Note that this complex also depends on the choice of a suitable almost complex

structure on the symmetric product. We suppress this almost complex structure

from the notation for simplicity.

According to [5], the above complex is related to the Heegaard Floer homology

of the 3-manifold obtained as su�ciently large surgeries on a link. (See also [20,

22] for the analogues for knots.) More formally, let ƒ D .ƒ1; : : : ; ƒ`/ 2 Z` be

a vector of framings, and let Yƒ.L/ denote the 3-manifold we get by performing

ƒi -surgery on Li for i D 1; : : : ; `. �en, the following holds.
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�eorem 4.1. ([5, �eorem 10.1]) If ƒ is su�ciently large (that is, for all i the

coordinate ƒi 2 Z is su�ciently large) then the Heegaard Floer chain complex

CF�.Yƒ.L/; s/ is quasi-isomorphic to A
�.H; s/.

Although for general links A�.H; s/ can be challenging to compute, in the

case where L is the link diagram associated to a plumbing tree, the complex

A
�.H; s/ can be easily determined with the help of the above theorem. Recall

that an L-space is a rational homology 3-sphere Y with the property that for each

Spinc structure s over Y, the Heegaard Floer homology HF�.Y; s/ Š FJU K.

Lemma 4.2. Let G be a plumbing tree and L be its corresponding link in S3.

�en, for each s 2 H.L/, there is a homotopy equivalence A
�.H; s/ ' FJU K.

Proof. By �eorem 4.1 (which is identical to [5, �eorem 10.1]), A�.H; s/ com-

putes the Heegaard Floer homology of a 3-manifold obtained by su�ciently posi-

tive surgeries on L. By [16, Lemma 2.6], this 3-manifold is an L-space, providing

the desired isomorphism.

�e result given in [5, �eorem 7.7] (restated in �eorem 4.3 below) provides

a chain complex, described in terms of the A�.H; s/ from above, which computes

the Heegaard Floer homology of arbitrary surgeries on L. To describe this, we

need a little more notation. Let us �xƒ D .ƒ1; : : : ; ƒ`/. LetM � L be a sublink

with m components. �e projection map

 M W H.L/ �! H.L �M/

is de�ned as follows. Label the components of L D L1 [ � � � [ L`, and the com-

ponents of L �M D Lj1
[ � � � [ Lj`�m

. We then de�ne

 M D . Mj1
; : : : ;  Mj`�m

/

by

 Mji
.s/ D sji

�
`k.Lji

;M/

2
:

Here, `k.Lji
;M/ denotes the linking number of Lji

with M ; recall that both are

oriented (via an orientation induced from the ambient link EL).

For each sublink M � L �x a Heegaard diagram H
L�M for L � M . As a

module over A D FJU1; : : : ; U`K, the surgery complex for the 3-manifold Yƒ.L/

is de�ned by

.C�.H; ƒ/;D�/ D
M

M�L

Y

s2H.L/

A
�.HL�M ;  M .s//: (4.4)
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To de�ne its di�erential, we need yet more notation. We need to give some al-

gebraically de�ned maps, which are indexed by sublinks M � L, equipped with

orientations (not necessarily agreeing with the induced orientation from EL). We

write this data (sublink, together with a possibly di�erent orientation) EM ; and

let IC. EL; EM/ resp. I�. EL; EM/ denote the sublink consisting of components of M

whose orientation (in EM ) agree resp. disagree with the orientation on the ambient

link EL. For a sublink M � L, we let �.M/ denote the set of orientations on M .

Let xH.L/ denote the extension of H.L/, where we allow some of the compo-

nents to be ˙1. For i 2 ¹1; : : : ; `º, we de�ne a projection map

p
EM W H.L/ �! xH.L/

so that the i th component of p
EM .s/ is speci�ed by

8
ˆ̂̂
<
ˆ̂̂
:

C1 if i 2 IC. EL; EM/;

�1 if i 2 I�. EL; EM/;

si otherwise.

�ere are algebraically de�ned maps

I
EM

s W A
�.H; s/ �! A

�.H; p
EM .s//

given by

I
EM

s x D
Y

i2IC. EL; EM/

U
max.Ai .x/�si ;0/
i �

Y

i2I�. EL; EM/

U
max.si �Ai .x/;0/
i � x:

Fix an orientation EM on M and let J.M/ � xH.L/ denote the subspace s D

.s1; : : : ; s`/, for which si D C1 if Li 2 IC.M/, and si D �1 if Li 2 I�.M/.

Counting holomorphic curves induces a homotopy equivalence

�
EM

s W A
�.H; p

EM .s// �! A
�.HL�M ;  

EM .s//:

(�is homotopy equivalence was called OD
EM

s in [5]. We renamed it so that that it

does not look like a di�erential.)

�e di�erential on the surgery complex is given as a sum of components

ˆ
EM

s W A
�.H; s/ �! A

�.HL�M ;  
EM .s//;

de�ned by

ˆ
EM

s D �
EM

p EM .s/
ı I

EM
s :
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We now de�ne the boundary operator D� on the surgery complex (4.4) as follows.

For s 2 H.L/ and x 2 A
�.HL�M ;  M .s//, we set

D
�.s; x/ D

X

N�L�M

X

EN2�.N/

.sCƒ EL; EN
; ˆ

EN
 M .s/

.x//

2
M

N�L�M

M

EN2�.N/

A
�.HL�M�N ;  M[ EN .s// � A

�.H; ƒ/:

Of course, the homotopy equivalences �
EM

s appearing in the di�erential ˆ
EM

s are,

in general, tricky to compute. For our present purposes, though, it turns out that

a precise computation is unnecessary.

Recall that .C�.H; ƒ/;D�/ is a module over FJU1; : : : ; UnK. Choosing U D

U1, we can view it as a module over FJU K (it will turn out that our results are

independent of the numbering of the Ui ).

�e complex .C�.H; ƒ/;D�/ admits a natural splitting into summands, as fol-

lows. Consider the subspace H.L;ƒ/ of H1.Y � L/ spanned by framings ƒi of

the components of L. �e complex .C�.H; ƒ/;D�/ naturally splits into sum-

mands indexed by the quotient space H.L/=H.L;ƒ/. In turn, this quotient space

is naturally identi�ed with Spinc.Y;ƒ/, via for example, the �lling construction

from [19, Section 3.7].

One of the key results in [5] is the following:

�eorem 4.3. ([5, �eorem 7.7]) �e homology of the chain complex .C�.H; ƒ/,

D
�/ is identi�ed with HF�.YG/. Indeed, the identi�cation respects the splitting

of both spaces into summands indexed by Spinc.YG/.

�e surgery complex has a natural �ltration S induced by the number of com-

ponents in the sublink M . �e di�erential D� then splits as

D
� D

1X

kD0

D
�
k ;

where D
�
k

is a term which drops the �ltration level by exactly k. In particular, D�
0

is the di�erential on the associated graded complex.

By the E1-term of the spectral sequence, we mean the chain complex whose

underlyingFJU K-module isH�.C
�.H; ƒ/;D�

0 /, and whose di�erential is induced

by D
�
1 .



A spectral sequence on lattice homology 503

Proposition 4.4. �e E1-term in the �ltration on .C�.H; ƒ/;D�/ is identi�ed with

CF�.G/.

Proof. Let us �rst identify the FJU K-modules. Recall that Vert.G/ can be used to

index the components of L, therefore sublinks of L naturally correspond subsets

of V D Vert.G/. Furthermore, a characteristic elementK 2 H 2.XG IZ/ speci�es

a Spinc structure on XG , and therefore an element s 2 H.L/. By Lemma 4.2, we

have that H�.A
�.HL�M ;  M .s/// D FJU K. Mapping the generator U i ˝ ŒK; E�

of CF�.G/ to U i in the factor H�.A
�.HL�M ;  M .s/// of H�.C

�.H; ƒ/;D�
0 /

corresponding to the sublink M indexed by E and the Spinc structure s corre-

sponding to K, we get an isomorphism

CF�.G/! H�.C
�.H; ƒ/;D�

0 /

of FJU K-modules.

�erefore, in order to verify the lemma, we need to identifyD
�
1 with the bound-

ary operator @ of CF�.G/ described in equation (3.3). Let M 0 � M denote a

sublink with jM j D jM 0j C 1. �e boundary map D
�
1 applied to an element

of H�.A
�.HL�M ;  M .s/// has two components in H�.A

�.HL�M 0
;  M

0
.s///,

which correspond to the two orientations of the knot M � M 0. Let us denote

these two components by dC
1 and d�

1 . Recall that M �M 0 is a knot, and hence it

corresponds to some vertex v of the plumbing graph G. Although M 0 �M is the

unknot in S3, in YM it represents a possibly complicated knot, which we denote

Kv � YM .

�e components dC
1 and d�

1 of the di�erential have an interpretation as a four-

manifold invariant. Speci�cally, the following square commutes:

H�.A
�.HL�M ;  M .s/// H�.A

�.HL�M 0
;  M

0
.s///

HF�.YM / HF�.YM 0/:

 !
d˙

1

 !  !
 !

t˙

Here, YM resp. YM 0 denotes any su�ciently large positive surgery onM respM 0,

the vertical maps are the identi�cations from Lemma 4.2, the top horizontal map

is either of the two maps d˙
1 , and the bottom horizontal map is induced by the

single two-handle cobordism W from YM to YM 0 , equipped with one of the two

Spinc structures tC or t� of maximal square. An orientation onM �M 0 speci�es

which component d˙
1 we are using: when the orientation ofM �M 0 agrees with

that on L, we denote the component by dC
1 , and the other by d�

1 .



504 P. Ozsváth, A. I. Stipsicz, and Z. Szabó

�e orientation on M �M 0 also speci�es which of the two maximal square

Spinc structures t˙ we are using. Both tC and t� are Spinc structures with maximal

square, they have the same evaluation on YM , and

tC D t� C PDŒF �;

where here F 2 H2.W; YM IZ/ Š Z is the generator with the property that

@F 2 H1.YM IZ/ corresponds to our knot M � M 0 with its given orientation.

(Commutativity of the above square is veri�ed in [5, �eorem 10.2].)

Both top horizontal maps are non-trivial (they are isomorphisms in all su�-

ciently large degrees), so they must both be multiplication by some power of U .

We let ˛v denote the U -power associated to dC
1 and ˇv denote the U -power as-

sociated to d�
1 . Before �nishing the proof of Proposition 4.4, we need to verify a

series of lemmas.

Lemma 4.5. �e exponents ˛v and ˇv are independent of the surgery coe�-

cients ƒ.

Proof. �is is clear: the maps dC
1 and d�

1 make no reference to surgery coe�-

cients.

�e same property holds on the lattice homology side.

Lemma 4.6. Let G and G0 be two plumbing graphs, whose underlying graphs �

and � 0 coincide. Fix K 2 Char.G/, E � Vert.G/ D Vert.G0/ and v 2 E. Let

K 0 2 Char.G0/ be the characteristic vector with

K 0.v/Cm0
v D K.v/Cmv;

K 0.w/ D K.w/;

for all w ¤ v. �en,

avŒK; E� D avŒK
0; E�;

bvŒK; E� D bvŒK
0E�:

Proof. By equation (3.2) and the choice of K 0, f ŒK; I � D f ŒK 0; I �. Since f

determines av and bv, the claim follows.
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Lemma 4.7. For su�ciently negative surgery coe�cients along the sublink M ,

we have that

av D ˛v and bv D ˇv:

Proof. If the surgery coe�cients along the sublink M 0 are su�ciently negative,

the 3-manifold YM 0 is an L-space. �erefore the statement of the lemma is essen-

tially [15, Proposition 4.1] (cf. [15, Remark 4.2]) applied to the graph M 0, where

v DM �M 0 is the distinguished vertex.

Now we return to the conclusion of the proof of Proposition 4.4. �e iden-

ti�cation stated in the proposition is equivalent to the statement that av D ˛v

and bv D ˇv for the given framing ƒ. �is statement, however, is an immediate

consequence of Lemmas 4.5, 4.6, and 4.7.

Proposition 4.8. �e identi�cation of Proposition 4.4 respects the (relative or

absolute, depending on the Spinc structure) Maslov gradings.

Proof. Recall that in the proof of Proposition 4.4 the generator ŒK; E� of CF�.G/

has been identi�ed with the pair .s;M/, where M is a sublink of the link L de-

�ned by the plumbing graph G and s is a relative Spinc structure. In particular,

jM j D jEj. We claim that this identi�cation respects Maslov gradings. Indeed, if

K represents a torsion Spinc structure, then the absolute Maslov grading of ŒK; ;�

(thought of as an element of CF�.G/) coincides with that of .s; ;/ (thought of

as an element of .C�.H; ƒ/;D�/). Since the boundary map drops Maslov grad-

ing by one, the identi�cation of Maslov gradings extends to all generators of the

form ŒK; E�. �e same argument applies in the relatively graded setting (when K

restricts to a non-torsion class on @XG D YG).

We now turn to the proof of �eorem 1.1:

Proof of �eorem 1.1. �eorem 4.3 presents HF�.YG/ as the homology of a �l-

tered chain complex. �eorem 1.1 now follows from this theorem, together with

the interpretation of the E1-term on the �ltration provided by Proposition 4.4.

Proposition 4.8 then provides the proof of the claim about the identi�cation of

Maslov gradings.

Certain higher di�erentials in the spectral sequence vanish for a priori reasons.

�is is most easily seen when one appeals to gradings.
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Proposition 4.9. �e di�erential D�
2n on the page E2n vanishes.

Proof. Note �rst that all di�erentials onEr drop Maslov grading by 1, and in par-

ticular change the Maslov grading by 1 .mod 2/ (see Lemma 3.7). By Lemma 3.9

the relative Maslov grading of any element U i ˝ ŒK; E� agrees with jEj .mod 2/.

Moreover, D�
k

drops jEj by k. It follows from these observations and the identi�-

cation of the Maslov gradings on the two theories (given by Proposition 4.8) that

D�
2n vanishes.

4.2. Module structures and the spectral sequence. After establishing �eo-

rem 1.1, we need a slight further re�nement in order to provide the proof of Corol-

lary 1.3.

Suppose all the higher di�erentials on the spectral sequence appearing in �e-

orem 1.1 vanish. Even in this case we cannot necessarily conclude that HF�.YG/

is computed by lattice homology: this method allows us to identify the two theo-

ries only as vector spaces over F, but not as FJU K-modules. In certain cases, this

indeterminacy can be removed by working with coe�cients in FŒU �=U n for all n.

In the rest of the section we spell out the details of this observation.

�e complex .CŒn�.H; ƒ/;D�
Œn�
/ will denote the complex over FŒU �=U n de-

�ned by taking the complex de�ned in Proposition 4.4, .C.H; ƒ/;D�/, and set-

ting U n D 0. (Recall that we viewed .C.H; ƒ/;D�/ as a module over FJU K by

de�ning the action by U to be multiplication by U1. To view it as a module over

FŒU �=U n, we must setU n1 D 0.) �e complex .CŒn�.H; ƒ/;D�
Œn�
/ naturally inherits

a �ltration from .C.H; ƒ/;D�/.

Lemma 4.10. Fix any positive integer n, and consider the spectral sequence on

.CŒn�.H; ƒ/;D�
Œn�
/ induced from its �ltration. �is spectral sequence has E1-term

isomorphic to cCFŒn�.G/.

Proof. �is is true because (thanks to Lemma 4.2) the E1-termH�.C.H; ƒ/;D
�
0 /

is torsion free, as an FJU K-module. More explicitly, consider the �ltered chain

complex

C D .C.H; ƒ/;D�/:

�e associated spectral sequence has

E1 D H�.C;D
�
0 /;

equipped with the di�erential induced by the D
�
0 -chain map D

�
1 .
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�e �ltered chain complex

C 0 D .CŒn�.H; ƒ/;D�
Œn�/

is gotten from C by C ˝ FŒU �=U n. In general, its E1-term is computed by

E1.C
0/ D H�..C;D

�
0 /˝ FŒU �=U n/˚ Tor.H�.C;D

�
0 /˝ FŒU �=U n/;

converging to H�.C
0/. In the case at hand, though,H�.C;D

�
0 / is a direct product

of Heegaard Floer homology groups of 3-manifolds obtained as large surgeries

on various components of our link, each of which, according to Lemma 4.2, con-

tributing a factor of FJU K. Since

Tor.FJU K;FŒU �=U n/ D 0;

we have that

Tor.H�.C;D
�
0 /˝ FŒU �=U n/ D 0:

It follows that

E1.C
0/ D E1.C /˝ FŒU �=U n;

equipped with the di�erential induced from D
�
1 . But this E1-term is precisely

cCFŒn�.G/.

Now the version of �eorem 1.1 for the U n D 0 truncated theory has the fol-

lowing shape.

�eorem 4.11. Suppose that G is a plumbing tree of spheres, and let YG be the

corresponding 3-manifold. �en there is a spectral sequence ¹Eiº
1
iD1 with the

property that

� the E2-term of the spectral sequence is isomorphic to the U n D 0-specialized

lattice homology bHF
Œn�
.G/ and

� the spectral sequence converges to the U n D 0-specialized Heegaard Floer

homology group bHF
Œn�
.YG/.

�eorem 4.11 can be used to gain a little more information about theFJU K-mod-

ule structure on HF�.YG/ (in terms of lattice homology). �is improvement rests

on the following algebraic result.

Lemma 4.12. Suppose that C and C 0 are two Maslov-graded chain complexes

over FJU K whose homologies are �nitely generated (as FJU K-modules). If for all

n � 1,

H�.C ˝ FŒU �=U n/ Š H�.C
0 ˝ FŒU �=U n/

as F-vector spaces, then it follows that H�.C / Š H�.C
0/ as FJU K-modules.
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Proof. Fix a rational number d and an integer k > 0. Let M.d; k/ denote the

Maslov-graded FJU K-module with the following two properties:

� M.d; k/ Š FŒU �=U k as an FJU K-module, and

� the generator of M.d; k/ has Maslov grading d (i.e. the whole module is

supported in Maslov gradings between d and d � 2k).

We extend the de�nition of M.d; k/ to k D 0 to be the Maslov-graded FJU K-

module with the following two properties:

� M.d; 0/ Š FJU K as an FJU K-module, and

� the generator of M.d; 0/ has Maslov grading d (i.e. the whole module is

supported in Maslov gradings � d ).

Since FJU K is a principal ideal domain, the �nitely-generated, Maslov-graded

FJU K-moduleH�.C / splits as the direct sum of modules of the formM.d; k/; i.e.

H�.C / Š
M

d2Q;k2¹0;::: º

M.d; k/cd;k ;

where cd;k is a collection of non-negative integers, only �nitely many of which

are positive.

Our goal is to show that ¹H�.C ˝ FŒU �=U n/º1nD1 uniquely determines the

isomorphism type of H�.C / as an FJU K-module, i.e. it uniquely determines the

coe�cients ¹cd;kºd;k.

�is statement follows from an application of the universal coe�cients theo-

rem, stating that

H�.C ˝ FŒU �=U n/

Š .H�.C /˝ FŒU �=U n/˚ Tor��2k�1.H�.C /;FŒU �=U
n/;

(4.5)

where the perhaps unfamiliar shift in grading (of 2kC 1, rather than simply 1) on

the Tor results from the fact that the action by U shifts Maslov grading by 2.

We �nd it convenient to encode the input data in terms of a two-variable gen-

erating function

PC .s; t / D
X

n�0;m

dimFHm.C ˝ FŒU �=U n/snt�m:

By (4.5),

PH�.C/ D
X

d;k

cd;k � PM.d;k/;
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where

PM.d;k/ D
X

n�0;m

dimF.Mm.d; k/˝ FŒU �=U n/snt�m

C t2kC1
X

n�0;m

dimF.Mm.d; k/˝ FŒU �=U n/snt�m:

�e lemma is proved once we show that the functions PM.d;k/ are linearly inde-

pendent (over Z). �is, in turn, follows form a straightforward calculation:

PM.d;k/ D t
�d

 Pk�1
iD0 .st

2/i

1 � s
C t2kC1

Pk�1
iD0 s

i

1 � st2

!

D t�d

 
1 � .st2/k C t2kC1.1� sk/

.1� s/.1 � st2/

!
;

thought of as a rational function in s; and also

PM.d;0/ D
t�d

.1� s/.1� st2/
:

Note that .1� s/.1� st2/PM.d;k/ is a degree-k polynomial in s. When k > 0, the

coe�cient of sk is �t�d .t2k C t2kC1/, while at k D 0, we get the constant (in s)

polynomial t�d . �e linear independence of the PM.d;k/ follows immediately.

Remark 4.13. A version of Lemma 4.12 applies when C andC 0 are two relatively

Z=dZ Maslov-graded chain complexes, as well. In that case, the generating func-

tion PM .s; t / is de�ned over ZŒZ=dZ�JsK; i.e. t is a primitive d th root of unity.

Corollary 4.14. Suppose that all higher di�erentials D�
i vanish for i � 2 in the

spectral sequence associated to .C�.H; ƒ/;D�/. Suppose that the same holds

for all the truncated spectral sequences .CŒn�.H; ƒ/;D�
Œn�
/. �en, HF�.G/ and

HF�.YG/ are isomorphic as FJU K-modules.

Proof. �is follows quickly from Lemma 4.12.

5. Graphs of type 2

�e proof of Corollary 1.3 relies on the following simple corollary of the existence

of the surgery triangle for lattice homology. (�e exact sequence we will use in

the proof has been described by Greene [2, �eorem 3.1], and independently by

Némethi [10]; see also the Appendix for a version adapted to the present notational

conventions.)
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�eorem 5.1. Suppose that the plumbing tree G is of type k. �en

HF�
q .G/ D 0 for q > k.

Proof. �e proof of the theorem proceeds by induction on k. For k D 0 (i.e. if

G is rational), the claim follows from [8, Proposition 4.1.4.]. Suppose now that G

is of type .k C 1/ and assume that the claim of the theorem holds for graphs of

type at most k. Let v be a vertex of G from the set ¹vi1; : : : ; vikC1
º appearing in

De�nition 2.1 of the type of G. �en, by the same de�nition, G � v is of type k.

Let G�n denote the graph we get from G by decreasing the framing of the chosen

v by n 2 N. If n is su�ciently large, then (again by De�nition 2.1) the graph G�n

is of type k. Fix now q > k C 1 and consider the following portion of the long

exact sequence associated to .G�n; v/ (cf. Corollary 6.8):

� � � �! HF�
q .G�n/ �! HF�

q .G�nC1/ �! HF�
q�1.G � v/ �! � � � :

By the inductive assumption, the �rst and the third terms vanish, hence by ex-

actness so does the middle term. Iterating this argument until we get the given

framing on v, the result follows and shows that HF�
q .G/ D 0 for q > k C 1.

In a similar manner, we get

�eorem 5.2. If the plumbing tree G is of type k then

bHF
Œn�

q .G/ D 0 for all q > k and all n 2 N.

Remark 5.3. For G negative de�nite, �eorem 5.1 can be sharpened to q � k.

�is strengthening, however, does not hold for the truncated theories bHF
Œn�
.G/,

hence the negative de�nite assumption does not improve �eorem 5.2 in this sense.

From these results the proof of the corollary is a simple exercise.

Proof of Corollary 1.3. Suppose thatG is a plumbing tree (or forest) of type 2 and

consider the spectral sequence provided by �eorem 1.1. By Proposition 4.9 we

have that E2 D E3, and since by �eorem 5.1 the homology (and so the E2-table

of the spectral sequence) concentrates on the rows with jEj-gradings 0; 1; 2, the

higher di�erentials point from or to vanishing groups, implying that D�
i D 0 for

all i � 3. �is means that E2 D E1, hence by �eorem 1.1 the lattice and Hee-

gaard Floer homologies coincide, as vector spaces over F. To get the correspond-

ing isomorphism as FJU K-modules, we use the version of the spectral sequence

over FŒU �=U n, �eorem 4.11 cf. Corollary 4.14. For torsion Spinc structures, the
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isomorphism of Maslov-graded FJU K-modules follows now from Lemma 4.12.

For non-torsion Spinc structures, we appeal to the modi�cation of the proof of

Lemma 4.12 described in Remark 4.13.

6. Appendix: the exact sequence

For completeness, in this �nal section we prove the exact sequences in lattice

homology used above. �ese results could be derived from [2, 10], but we �nd it

convenient to include this proof here, as it follows the conventions and formalism

introduced in Section 3.

Let G be a plumbing graph, and v 2 Vert.G/ be a distinguished vertex with

framingmv . G�v will denote the graph obtained by omitting the vertex v. We de-

�ne the extension map

ˆv W CF
�.G � v/ �! CF�.G/

by the formula

ˆv.ŒK;E�/ D
X

p�mv .mod 2/

Œ.K; p/; E�: (6.1)

On the right-hand-side we write characteristic vectors forG as pairs .K; p/, where

K is a characteristic vector for G � v, and p is the evaluation of the characteristic

vector on the distinguished vertex v. Since any component of ˆv.ŒK;E�/ deter-

mines ŒK; E�, it is easy to see that the above formula indeed provides a function

on CF� (meaning that any component of ˆv.x/ for a possibly in�nite sum x has

coe�cient in FJU K). In fact, the above principle also shows that ˆv is injective.

Lemma 6.1. For each vertex v 2 Vert.G/, the map ˆv is a chain map.

Proof. �is follows immediately from the fact that for any E � G � v, the

.G � v/-weight fG�vŒK; E� of the pair ŒK; E� agrees with theG-weight fG Œ.K; p/;

E� of the pair Œ.K; p/; E� where p is any integer with the allowed parity. (Here

fG�v and fG refer to the function de�ned in equation (3.2) with the respective

graphs G � v and G.) �is implies that the corresponding functions gG�v and gG

of minimal weights also coincide, and since the boundary maps are determined

by these minimal weight functions, the result follows at once.
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Let GC1.v/ denote the graph G with the same framings, except on the vertex

v we consider mv C 1 instead of mv . De�ne the map

‰v W CF
�.G/ �! CF�.GC1.v//

by the formula

‰v Œ.K; p/; E� D

1X

mD�1

U sm ˝ Œ.K; pC 2m � 1/; E�; (6.2)

where

sm D gGC1.v/Œ.K; pC 2m� 1/; E� � gG Œ.K; p/; E�C
m.m � 1/

2
:

It is easy to see that when v 62 I � E the equality

fGC1.v/Œ.K; pC 2m� 1/; I � D fG Œ.K; p/; I �

holds, hence

sm D
m.m � 1/

2
� 0

in this case. If v 2 I � E then fGC1.v/Œ.K; p C 2m � 1/; I � � fG Œ.K; p/; I � is

at most jmj in absolute value, hence after adding m.m�1/
2

to it, the result will be

nonnegative. In conclusion, sm is nonnegative for any .K; p/ and m.

Once again, a short argument is needed to con�rm that the above formula de-

�nes a function on CF�, that is, for an in�nite sum
P
i2Z U

mi ŒKi ; Ei � all coor-

dinates of the image admit a coe�cient in FJU K. �is property follows from the

fact that if p C 2m is �xed then the value sm converges to in�nity as m ! ˙1,

implying that at most �nitely many terms Œ.K; pC 2m� 1/; E� with pC 2m �xed

can have a given U -power in the image.

Lemma 6.2. �e map ‰v is a chain map.

Before starting the proof of this lemma, we need to de�ne one further map.

Suppose that the graph Ge is constructed from G by adding a new vertex e with

framing .�1/ and an edge connecting e and v. Consider the map

P W CF�.Ge/ �! CF�.GC1.v//

given by the formula

P Œ.K; p; 2m� 1/; E� D

8
<
:
U s ˝ Œ.K; pC 2m� 1/; E� if e 62 E,

0 if e 2 E,
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where

sm D gGC1.v/Œ.K; pC 2m� 1/; E� � gGe
Œ.K; p; 2m� 1/; E�C

m.m � 1/

2
:

(Once again, .K; p; 2m� 1/ denotes the cohomology class on Ge which is K on

G � v, takes the value p on v and the value 2m � 1 on e.) As above, it can be

veri�ed that P extends to a well-de�ned function on CF�.Ge/.

Lemma 6.3. �e map P is a chain map.

Proof. We wish to prove that

@ ı P Œ.K; p; 2m� 1/; E� D P ı @Œ.K; p; 2m� 1/; E�:

First, we consider the case where e 2 E. In this case the left hand side is zero.

Moreover,

P ı @Œ.K; p; 2m� 1/; E�

D P.U aeŒ.K;p;2m�1/;E� ˝ Œ.K; p; 2m� 1/; E � e�/

C P.U beŒ.K;p;2m�1/;E� ˝ Œ.K; pC 2; 2m� 3/; E � e�/

D U d1 ˝ Œ.K; pC 2m � 1/; E � e�C U d2 ˝ Œ.K; pC 2m � 1/; E � e�;

where

d1 D aeŒ.K; p; 2m� 1/; E�C gŒ.K; pC 2m� 1/; E � e�

� gŒ.K; p; 2m� 1/; E � e�C
m.m � 1/

2

and

d2 D beŒ.K; p; 2m� 1/; E�C gŒ.K; pC 2m� 1/; E � e�

� gŒ.K; pC 2; 2m� 3/; E � e�C 2m2 � 6mC 4:

In fact, it is easy to see that

d1 D gŒ.K; pC 2m � 1/; E � e�� gŒ.K; p; 2m� 1/; E�C
m.m � 1/

2
D d2;

so the two terms cancel.

Next, suppose that e 62 E. Observe that

P ı @Œ.K; p; 2m� 1/; E� D
X

w2E

U c1.w/ ˝ Œ.K; pC 2m� 1/; E �w�

C U d1.w/ ˝ Œ.K; pC 2m� 1/C 2w�; E �w�;
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and

@ ı P Œ.K; p; 2m� 1/; E� D
X

w2E

U c2.w/ ˝ Œ.K; pC 2m� 1/; E �w�

C U d2.w/ ˝ Œ.K; pC 2m� 1/C 2w�; E �w�;

In fact, it is easy to see that

c1.w/ D gŒ.K; pC 2m � 1/; E �w�� gŒ.K; p; 2m� 1/; E�C
m.m � 1/

2

D c2.w/

and

d1.w/ D gŒ.K; pC 2m� 1/; E �w�� gŒ.K; p; 2m� 1/; E�

C
m.m � 1/

2
C
L.w/C w �w

2

D d2.w/;

where

L D .K; pC 2m � 1/

and w � w is taken in GC1.v/. �is completes the veri�cation of the statement of

the lemma.

Proof of Lemma 6.2. Consider now the map

ˆe W CF
�.G/ �! CF�.Ge/:

�e map ‰v is simply the composition P ı ˆe , and since both maps are chain

maps, so is ‰v , concluding the proof of the lemma.

�eorem 6.4. For any v 2 G, the U -equivariant maps ‰v and ˆv �t into a short

exact sequence of chain complexes

0 �! CF�.G � v/
ˆv
���! CF�.G/

‰v
���! CF�.GC1.v// �! 0: (6.3)

�e theorem could be proved by a direct check of exactness at each term –

we rather choose an alternative way of �rst dealing with the U D 0 theory (and

the corresponding result there) and then apply abstract reasoning to verify the

theorem. De�ne the map

ŷ
v W cCF.G � v/ �! cCF.G/
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corresponding to ˆv by the same formula as given by (6.1). Next de�ne

y‰v W cCF.G/ �! cCF.GC1.v//

(corresponding to the map ‰v) by the same formula as given in equation (6.2),

after setting U D 0.

Lemma 6.5. �e map

y‰v W cCF.G/ �! cCF.GC1.v//

corresponding to ‰v in the U D 0 theory is given by the formula

y‰v.Œ.K; p/; E�/ D Œ.K; pC 1/; E�C Œ.K; p � 1/; E� (6.4)

if v 62 E and by

y‰v.Œ.K; p/; E�/

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Œ.K; pC 1/; E�C Œ.K; p � 1/; E�

if Av.Œ.K; p/; E�/ < Bv.ŒK; p�; E/,

Œ.K; pC 1/; E�C Œ.K; p � 1/; E�C Œ.K; p � 3/; E�

if Av.Œ.K; p/; E�/D Bv.ŒK; p�; E/,

Œ.K; p � 1/; E�C Œ.K; p � 3/; E�

if Av.Œ.K; p/; E�/ > Bv.ŒK; p�; E/,

for v 2 E.

Proof. Indeed, if v 62 E we have

gG1
Œ.K; pC 2m� 1/; E�� gG.Œ.K; p/; E� D 0;

hence sm D
m.m�1/

2
; which is positive unless m D 0; 1, hence provides only the

two terms of Formula (6.4) in the U D 0 theory.

�e case of v 2 E requires a little more care. Suppose �rst that

Av.Œ.K; p/; E�/ < Bv.ŒK; p�; E/;

meaning that the value gŒ.K; p/; E� is taken on a subset I � E which does not

contain v. �erefore for nonnegative m the di�erence of the g-functions is zero,

hence sm D 0 implies m.m�1/
2
D 0, which holds exactly whenm D 0; 1, providing

the two terms in the expression. For m < 0 and

Bv.ŒK; p�; E/� Av.Œ.K; p/; E�/ D k > 0
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the value of sm is mC kC m.m�1/
2

, which is strictly positive for any m < 0 (since

k � 1).

Suppose now that

Av.Œ.K; p/; E�/D Bv.ŒK; p�; E/:

In this case for m � 0 the di�erence of the g-functions is zero, hence sm D 0 is

equivalent with m.m�1/
2
D 0, providing the two terms corresponding to m D 0; 1.

For negative m the term sm is equal to mC m.m�1/
2

, and this is zero exactly when

m D �1, giving the third term in the expression.

Finally if

Av.Œ.K; p/; E�/ > Bv.ŒK; p�; E/;

then for m > 0 the di�erence of the g-functions is positive (and m.m�1/
2

is non-

negative), while for m � 0 the value of sm is equal to mC m.m�1/
2

, which is zero

exactly when m D 0;�1, giving the claimed two terms in this case.

Having these formulae, now it is easy to see that the short sequence of (6.4)

given by the maps on the U D 0 theory is exact, providing the long exact sequence

on homologies:

Proposition 6.6. For any v 2 G, the maps ŷ v and y‰v �t into the short exact

sequence

0 �! cCF.G � v/
ŷ

v
���! cCF.G/

y‰v
���! cCF.GC1.v// �! 0 (6.5)

of chain complexes.

Proof. Each group cCF.G � v/, cCF.G/, and cCF.GC1/ splits into a direct product

indexed by pairsK 2 Char.G�v/,E � Vert.G/. �e maps ŷ v and y‰v obviously

respect this splitting. We claim that these maps �t into short exact sequences for

each summand.

More precisely, in the case where v 62 E, the corresponding summand of
cCF.G � v/ is one-dimensional, generated by the element ŒK; E�, and the desired

short exact sequence is

0 �! FŒK; E�
�v

��!
Y

i2Z

FŒ.K; k C 2i/; E�
 v

��!
Y

i2Z

FŒ.K; k C 2i C 1/; E� �! 0;
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where

�v.ŒK;E�/ D
X

i2Z

Œ.K; k C 2i/; E�

and

 v.Œ.K; p/; E�/D Œ.K; pC 1/; E�C Œ.K; p � 1/; E�:

A right inverse for  v is determined by

rŒ.K; p � 1/; E� D

1X

iD0

Œ.K; pC 2i/; E�;

and it is easy to see that ker v DIm�v .

In the case where v 2 E, we declare the corresponding summand of cCF.G�v/
to be trivial, so we claim that the corresponding sequence

0 �! 0
�v
��!

Y

i2Z

FŒ.K; k C 2i/; E�
 v
��!

Y

i2Z

FŒ.K; k C 2i C 1/; E� �! 0

is short exact, i.e.  v is an isomorphism. Indeed, the map

q W
Y

i2Z

FŒ.K; k C 2i C 1/; E� �!
Y

i2Z

FŒ.K; k C 2i/; E�;

which is uniquely determined by

q.Œ.K; p�1/; E�/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

1X

iD0

Œ.K; pC 2i/; E�

if Av.Œ.K; p/; E�/ < Bv.Œ.K; p/; E�/,

0X

iD�1

Œ.K; pC 2i/; E�

if Av.Œ.K; p/; E�/ > Bv.Œ.K; p/; E�/,

1X

iD�1

Œ.K; pC 2i/; E�

if Av.Œ.K; p/; E�/ D Bv.Œ.K; p/; E�/,

provides an inverse for  v . Indeed, the fact that  v ıq and q ı v are both equal to

the (respective) identities follows from the principle, that for a given ŒK; E� there

is exactly one value of p for which

AvŒ.K; p/; E� D BvŒ.K; p/; E�:

�e short exact sequences then induce a long exact sequence on homologies,

and since both ŷ v and y‰v respect the grading of ŒK; E� induced by jEj, we get

the following result.
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Corollary 6.7. �e short exact sequence of Proposition 6.6 induces a long exact

sequence

� � � �!bHFiC1.GC1.v// �!bHFi .G � v/ �!bHFi .G/

�!bHFi .GC1.v// �!bHFi�1.G � v/ �! � � �

on ı-graded lattice homology.

With the above result at hand we return to the theory over FJU K.

Proof of �eorem 6.4. First we claim that‰v ıˆv D 0. �is follows from the fact

that

.‰v ıˆv/ŒK;E� D
X

p

X

m

U
m.m�1/

2 ˝ Œ.K; pC 2m � 1/; E�:

(Note that since v 62 E, we have that

gGC1.v/Œ.K; pC 2m� 1/; E� D gG Œ.K; p/; E�;

hence sm D
m.m�1/

2
.) Observe that each term in the above sum appears exactly

twice: the term corresponding to .p;m/ agrees with the term corresponding to

.p C 4m� 2;�mC 1/. Indeed, the system

8
<
:
p C 2m � 1 D p0 C 2m0 � 1;

m.m � 1/ D m0.m0 � 1/

has exactly the two solutions for .p0; m0/ given above. �is cancellation then shows

that .‰v ıˆv/ŒK;E� D 0, verifying the claim.

We de�ne two homology theories associated to the pair .G; v/: let bHSES.G; v/

denote the homology of the short exact sequence (6.5) (viewed as a chain com-

plex with underlying group the sum of the terms in the sequence and boundary

map equal to the maps in the sequence). Similarly, H�
SES.G; v/ will denote the

homology of the sequence (6.3). (Since the compositions of consecutive maps in

these sequences are zero, these homologies are de�ned.) �e content of Propo-

sition 6.6 is that bHSES.G; v/ D 0, while in �eorem 6.4 we want to show that

H�
SES.G; v/ D 0. �e two homologies are, however, connected by the Universal

Coe�cient �eorem. Indeed, H�
SES.G; v/ is de�ned over the ring FJU K, while the

chain complex de�ningbHSES.G; v/ can be given from (6.3) by considering the ten-

sor product of the CF�-modules with F over FJU K, where a power series in FJU K

acts through its constant term on F. By the Universal Coe�cient �eorem [24]

(and by the fact thatF is a �eld) we get that H�
SES.G; v/˝FJU KF D bHSES.G; v/ D 0.
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Since FJU K is a principal ideal domain, the tensor product of any nontrivial mod-

ule withF (overFJU K) is nontrivial: consider a nontrivial element x 2 H�
SES.G; v/

and observe that the submodule generated by it is isomorphic to FJU K=.f .U //

with f .0/ D 0 (since FJU K is a PID), and FJU K=.f .U // ˝FJU K F D F ¤ 0.

Since we showed that bHSES.G; v/ D 0, this last observation then implies that

H�
SES.G; v/ D 0, concluding the proof of the �eorem.

Corollary 6.8. �e short exact sequence of �eorem 6.4 induces a long exact

sequence

� � � �! HF�
iC1.GC1.v// �! HF�

i .G � v/ �! HF�
i .G/

�! HF�
i .GC1.v// �! HF�

i�1.G � v/ �! � � �

on ı-graded lattice homology.

Proof. �e short exact sequence of �eorem 6.4 induces a long exact sequence

on the homologies, and it is easy to see that both ‰v and ˆv respects the grading

of a generator ŒK; E� given by the cardinality of E, hence the long exact sequence

admits the form stated in the corollary.

�eorem 6.4 also gives a long exact sequence

� � � �!bHF
Œn�

iC1.GC1.v// �!bHF
Œn�

i .G � v/ �!bHF
Œn�

i .G/

�!bHF
Œn�

i .GC1.v// �!bHF
Œn�

i�1.G � v/ �! � � � :

�is is gotten by tensoring the short exact sequence from equation (6.3) with

FŒU �=U n, and then taking the associated long exact sequence in homology.
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