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All order asymptotics of hyperbolic knot invariants from
non-perturbative topological recursion of A-polynomials

Gaëtan Borot and Bertrand Eynard1

Abstract. We propose a conjecture to compute the all-order asymptotic expansion of the
colored Jones polynomial of the complement of a hyperbolic knot, JN .q D e

2u
N / when

N ! 1. Our conjecture claims that the asymptotic expansion of the colored Jones poly-
nomial is a formal wave function of an integrable system whose semiclassical spectral curve
C would be the SL2.C/ character variety of the knot (the A-polynomial), and is formulated
in the framework of the topological recursion. It takes as starting point the proposal made
recently by Dijkgraaf, Fuji and Manabe (who kept only the perturbative part of the wave
function, and found some discrepancies), but it also contains the non-perturbative parts,
and solves the discrepancy problem. These non-perturbative corrections are derivatives of
Theta functions associated to C. For a large class of knots, this expansion is still in powers
of 1=N due to the special properties of A-polynomials. We provide a detailed check of
our proposal for the figure-eight knot and the once-punctured torus bundle L2R. We also
present a heuristic argument inspired from the case of torus knots, for which knot invariants
can be computed by a matrix model.
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1. Introduction

The asymptotic expansion of the colored Jones polynomial JN .K; q/ of a knot K
when N ! 1, and more generally of invariants of 3-manifolds, has received
much attention recently. The terms of such an asymptotic expansion are also in-
variants of 3-manifolds, which are interesting for themselves. They are generically
called “perturbative invariants.” Many intriguing properties of these expansions
have been observed, first in relation with hyperbolic geometry and the volume con-
jecture [58, 73], then concerning arithmeticity [30], modularity [62] or quantum
modularity [89, Examples 4 and 5].

1.1. Solutions of the A-hat recursion relation. Garoufalidis and Lê have shown
that the Jones polynomial of a knotK � S3, denote JN .K; q/, is q-holonomic [47]:
if we denote by � the shift N ! N C 1, there exists an operator AK.q

N=2; �; q/

which is polynomial in its three variables, so that

yAK � JN .K; q/ D 0:

More generally, one may consider the (infinite dimensional) space of solutions
J„.u/ of the difference equation

yAK.e
u; e„@u; e2„/ � J„.u/ D 0; (1)
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where we replaced formally u D N„ and q D e2„. The Jones polynomial is by
construction a solution of equation (1) where u=„ is restricted to a discrete set
of values. One may also look for solutions of equation (1) among formal power
series of the form

J„.u/ D „ı=2 exp
� X

���1

„� |�.u/
�
: (2)

The expectation values of Wilson loops in the representation of dimension N in
SL2.C/Chern–Simons theory – viewed as a perturbative quantum field theory ex-
panded around a flat connection ˛ with meridian holonomy u and coupling con-
stant „ D i�=integer – produce such formal series JCS;.˛/

„ .u/. For some examples
of hyperbolic 3-manifolds and a choice of triangulation, it has been observed [30]
that the asymptotics of Hikami integral1 JH;.˛/

„ .u/ (which depend on a choice of
integration contour �˛ � C) coincides with J

CS;.˛/

„ .u/. In other words, JH;.˛/

„ are
also solutions (in those examples) of equation (1).

We would like to propose a third method which we conjecture to provide for-
mal solutions of equation (1) for any hyperbolic 3-manifold M with 1 cusp2, and
relies only on algebraic geometry of the A-polynomial curve (Conjecture 5.5). The
representations

�1.@M/ �! SL2.C/

which extend to representations
�1.M/ �! SL2.C/

form a set whose algebraic closure is the union of points and curves. The union of
those curves can be obtained as the zero locus of a polynomial A.m; l/ 2 ZŒm; l�,
called the A-polynomial of M. The AJ conjecture3 [45] states that

lim
„!0

yA„.m; l; e2„/ / A.m; l/; (3)

where / means up to an (irrelevant) polynomial in m. Equation (3) has been
checked in numerous examples (it holds for instance for the figure-eight knot) and

1 The Hikami integral is a finite-dimensional constructed from a triangulation of a hyperbolic
3-manifold and an elimination procedure; however, it is not an invariant of 3-manifolds.

2 We identify a 3-manifold with 1 cusp with a compact manifold whose boundary is a torus.
3 Whereas the A-polynomial is defined for any 3-manifold with 1-cusp, the colored Jones

polynomial is only defined for knots and links in S3. However, for any knot in integer homology
spheres, there is an element in the Habiro ring which “defines” the analog of the colored Jones
function for all values of q at roots of unity, and this element is q-holonomic, [48], so allows to
define A. In this sense, the AJ conjecture make sense for any knot in an integer homology sphere.
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has been proved recently for a infinite class of knots [63]. In the light of the AJ
conjecture, we can summarize our work by saying that we propose an algorithm
to construct formal solutions of equation (1) starting only from the classical limit
of the operator yA. For the figure-eight knot, we have checked that it gives a correct
result for the first few terms.

The final goal would be to identify our series with the genuine all-order asymp-
totics of invariants of 3-manifolds defined in the realm of quantum topology, like
the colored Jones polynomial. This step is subtle because of wild behavior when
q is a root of unity, and non trivial Stokes phenomena, as one can already observe
in the case of the figure-eight knot, for which rigorous results of Murakami [71]
are available (see §5.2). Though not completely predictive on the range of validity
in u, the generalized volume conjecture of Gukov asserts that Ju=„.q D e„/ has
an asymptotic expansion of the form of equation (2) when „ D i�=k and k is
a integer going to infinity, and the coefficients coincide with those of JCS;.˛/

„ .u/

for some ˛. In this framework, we can also reformulate our conjecture by saying
that our method retrieves the coefficients in the expansion of the colored Jones
polynomial (Conjecture 5.6), and will discuss in §5.2 how this statement has to
be understood.

1.2. Historical background. Let us describe briefly the origin of our proposals.
Twenty years ago, Witten showed in his pioneering article [86] that expectation
values of Wilson loops in a Chern–Simons theory with gauge group G on S3 n K

where K is a knot, compute knot invariants. Moreover, he proposed a correspon-
dence between Chern–Simons theory on a 3-manifold M and topological string
theory on T �M, cf. [87], which has been developed later on [49, 65]. More re-
cently, Bouchard, Klemm, Mariño and Pasquetti [15] suggested4 that amplitudes
in topological string theory can be computed from the axiomatics of the “topolog-
ical recursion” developed in [38]. Putting these two ideas together, Dijkgraaf, Fuji
and Manabe [26, 27], proposed that the topological recursion’s wave function,
applied to the SL2.C/-character variety of the knot, coincides with JCS

„ .u/. How-
ever, they kept only the “perturbative part” of the topological recursion’s wave
function, and their conjectured formula did not match JCS

„ .u/ or JH
„ .u/ for the

figure-eight knot. They could fix this mismatching problem by introducing ad-
ditional ad hoc constants to all orders. Here, we propose a formula using the
thoroughly non-perturbative wave function introduced in [35, 37], which should
successfully match JCS

„ .u/ without having to introduce additional terms.

4 This conjecture has been proved lately [41].
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1.3. Short presentation. Let us give a flavor of our construction (all terms will
be defined in the body of the article). The geometric component A.m; l/ D 0 of
the A-polynomial of K has a projective smooth model which is a compact Rie-
mann surface C0 of genus g. It is endowed with a point pc corresponding to the
complete hyperbolic metric on S3 n K, and a neighborhood zU � C0 of pc in bi-
jection with a neighborhood U � C of i� which parametrizes deformations of the
hyperbolic metric of S3 n K. Let pu the unique point in zU such that m.pu/ D eu.
We denote by � the involution of C0 sending .m; l/ to .1=m; 1=l/. In particular
we have p�u D �.pu/. In the following, p denotes a point of the curve, and in the
comparison with the asymptotics of the colored Jones near u D i� , one wishes to
specialize at p D pu. Let .A;B/ be a symplectic basis of homology on C0. We
construct a formal asymptotic series with leading coefficient

Q|�1.p/ D
pZ

o

ln l d lnm;

and for 5 � � 1,

Q|�.u/ D 1

2

�X
`D1

X
2hj �2Cdj Cnj >0P
j 2hj �2Cdj Cnj D�

 Ò
j D1

Z
�

� � �
Z

�
!

hj ;.dj /
nj

.2i�/dj dj Š nj Š

!
� U`;d;�: (4)

The notation Z
�

is used for
pZ

o

C
�.p/Z

�.o/

for some basepoint o, !h
n are the differentials forms computed by the topological

recursion for the spectral curve .C0; lnm; ln l/ with a Bergman kernel normalized
on A-cycles, and U`;d;� is .0; jd j/ tensor which is a sum of terms of the form

sO
iD1

r˝.
P

j 2Ji
dj /
#�
��

�

�
#�
��
�

� ;

5 The definition of Q|0.p/ involve in principle a regularization scheme. We do not attempt to
give a definition here, since it is not clear to us which scheme should be chosen to match Q|0 with
the order 1 term in the asymptotics of the colored Jones – which is expected to be related to the
open Reidemeister torsion.
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where J1; : : : ; Js denote a partition of ¹1; : : : ; `º in s subsets. #
��

�

�
denotes the

theta function with characteristics�; 	 2 Cg associated to the matrix of periods of
C0 for the chosen basis of homology. The notations #�

��
�

�
means that we specialize

its argument to

w D w� �
Z

�
da C 
„;

where da is the vector of holomorphic differentials dual to theA-cycles, 
„ 2 Cg is
a constant defined in equation (28), and r the gradient acting on the argument w.
Besides, the undotted version of theta means that we specialize to w D 
„.

Formula (4) depends strongly on a convention for the basepoint �, and on char-
acteristics �; 	 2 Cg . Although we do not know the general prescription for those
data needed for comparison with asymptotics of knot invariants, we will see that
a natural choice arises for the examples of Section 6. If we change the homology
basis .A;B/, we merely obtain the same quantities for a different characteristics
�; 	. The dependence of |�1.u/ of the choice of branches for the logarithms will
be discussed later. For instance, the first coefficient is given by

2 Q|1.p/ D
Z �

!1
1 C 1

6

Z
�

Z
�

Z
�
!0

3 C
� r#�

��
�

�
2i� #�

��
�

� � r#��� �
2i� #

��
�

�� I
B

!1
1

C 1

2

r#�
��

�

�
2i� #�

��
�

� I
B

Z
�

Z
�
!0

3 C 1

2

r˝2#�
��

�

�
.2i�/2 #�

��
�

� I
B

I
B

Z
�
!0

3

C 1

6

� r˝3#�
��
�

�
.2i�/3 #�

��
�

� � r˝3#
��

�

�
.2i�/3 #

��
�

�� I
B

I
B

I
B

!0
3 :

In general, 
„ depend on „ in a non trivial way, so our series is not a priori a power
series in „. It is however a well-defined formal asymptotic series: as we will see,
j�.u/ is actually a function of „, which does not have a power series expansion in
powers of „. But A-polynomials of 3-manifolds are very special polynomials: for
K-theoretical reasons, 
„ is constant along sequences „ D i�=k where k ranges
over the integers. Hence, j�.u/ specialized to such subsequences of „, is indeed a
function of u only. We also point out that another huge simplification occurs for
a certain class of knots (containing the figure-eight knot). Let us denote ��, the
linear involution induced by � on the homology of C0. When �� D �id, we have
actually 
„ D 0. Thus, our series is always a power series in „ (without restriction)
in this case.
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The proposal of Dijkgraaf, Fuji and Manabe [27] is tantamount to setting

U`;d;� � ı`;1 ıd;0;

and thus miss the theta functions. For the figure-eight knot, as we indicated,U`;d;�
contributes as constants in Q|� for � � 1, and their value explain the renormaliza-
tions observed by these authors. To summarize, they are due the fact that the
geometric component of the character variety is not simply connected.

The leading coefficient Q|�1.pu/ is known to be related to the complexified
volume of M for a family of incomplete hyperbolic metrics parametrized by u.
Within our conjecture, the other coefficients Q|�.u/ also acquires a geometric mean-
ing, as primitives of certain meromorphic 1-forms on the SL2.C/ character variety.
The computation of the coefficients with our method is less efficient than making
an ansatz like equation (2), plugging into the A-hat recursion relation and solving
for the coefficients [30, 91]. However, it underlines the relevance of the geometry
of the character variety itself for asymptotics of knot invariants, and also suggests
unexpected links between knot theory and other topics in mathematical physics
(Virasoro constraints, integrable systems, intersection theory on the moduli space,
non-perturbative effects, etc.), via the topological recursion. It also provides a nat-
ural framework to discuss the arithmetic properties of perturbative knot invariants,
at least when �� D �id.

1.4. Outline. We first review the notions of geometry of the character variety
needed to present our construction (Section 2), and the axiomatics of the topo-
logical recursion with the definition of the correlators, the partition function and
the kernels (Section 3 and 4). We state precisely our conjecture concerning the
asymptotic expansion of the Jones polynomial in Section 5, and check it to first
orders for the figure-eight knot and the manifold L2R. Our intuition comes from
two other aspects of the topological recursion, namely its relation to integrable
systems [13] and to matrix integrals [3, 21, 34]. We give some heuristic motiva-
tions in Section 7, by examining the relation of our approach with computation
of torus knots invariants from the topological recursion presented in [17]. This
section is however independent of the remaining of the text. In Appendix A, we
propose a diagrammatic way to write |�, which may help reading the formulae,
but requires more notations.
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2. SL2.C/-character variety and algebraic geometry on A-spectral curves

We review standard facts on the SL2.C/-character variety of 3-manifolds, es-
pecially of hyperbolic 3-manifolds with 1-cusp. A work of reference is [23],
where most of the facts presented here are rigorously stated and proved. In Sec-
tions 2.8–2.11, we focus on the (irreducible components of the) character variety
seen as a compact algebraic curves. In order to prepare the presentation of the
topological recursion, we describe some algebraic geometry of the character va-
riety, with the notion of branchpoints, symplectic basis of cycles, theta functions,
Bergman kernel, etc.

2.1. A-polynomial and spectral curve. LetM be a 3-manifold with one cusp. If
R a SL2.C/ representation of�1.M/ and .m; l/ a basis ofZ2 ' �1.@M/ � �1.M/,
RŒm� and RŒl� can be written in Jordan form

RŒm� D
�
m ?

0 m�1

�
; RŒl� D

�
l ?

0 l�1

�
;

up to a global conjugation. When M is a knot complement in S3, the choice of l
and m is canonically the longitude and the meridian around the knot. In general,
we continue to call the (arbitrarily chosen) .m; l/ meridian and longitude.

The locus of possible eigenvalues .m; l/ 2 C� � C� has been studied in detail
in [23]. It is the union of points and curves. In particular, the union of the 1-
dimensional components is non empty and its algebraic closure coincides with
the zero locus of a polynomial with integer coefficients: A.m; l/ D 0. The latter
is uniquely defined up to normalization and is called the A-polynomial of M. The
A-polynomial is topological invariant of 3-manifolds endowed with a choice of
basis of �1.@M/, and it contains a lot of geometric information about M.

The A-polynomial has many properties, and we shall highlight those we need
along the way. The first one is that, since .m; l/ and .1=m; 1=l/ describe the same
representation up to conjugation, the A-polynomial is quasi-reciprocal: there ex-
ists integers a; b and a sign " such that

"malb A.1=m; 1=l/ D A.l; m/:

To simplify, we assume throughout the paper that M is a knot complement in
a homology sphere, although most of the ideas can be extended to arbitrary 3-
manifolds. In particular, this assumption implies [23] that the A-polynomial is
actually even in m. We take this property into account by defining x D m2 and
y D l . The 1-form

� D ln l d lnm (5)

is related to a notion of volume and will play an important role.
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The A-polynomial might not be irreducible. We denote generically A.m; l/ an
irreducible factor, its zero locus in .C�/2 is denoted C and called component.There
always abelian representations with l D 1, so .l � 1/ is always a factor, it defines
the abelian component. The remaining components are called non-abelian, and for
any hyperbolic knot, there exist at least one non-abelian component [23, Proposi-
tion 2.6]. From now on, we focus on non-abelian components. C is in general a
singular curve, i.e.

Z D ¹.m; l/ 2 .C�/2 W @mA.m; l/ D 0 and @lA.m; l/ D 0º ¤ ;:

However, after a birational transformation Q W .m; l/ 7! .m0; l 0/, we can obtain a
smooth projective model C0 of C. It provides of a compact Riemann surface C0, a
finite subset Z0 � C0, and a isomorphism of Riemann surfaces C0 n Z0 ! C n Z.
x and y can then be seen as meromorphic functions on C0.

We refer to the triple .C0; x; y/ as the spectral curve of the component we
considered. The examples treated in detail in Section 6 illustrate the method to
arrive unambiguously to the spectral curve. Properties of those spectral curves
for many example of knots up to 10 crossings are given in Appendix B. In all
those cases, we have found that (1) the set of singular points of any component C
is Z D C \ ¹.m; l/ D .1;˙1/º; (2) the irreducible factors of the A-polynomial all
have A 2 ZŒm; l�. We do not know if (1) is a general fact, but there exist examples
for which (2) is not true.

2.2. Properties of the A-polynomial. As a polynomial, the A-polynomial of a
3-manifold is very special: it satisfies the Boutroux condition and a quantization
condition. These two properties hold for any 3-manifold (and any component of
its A-polynomial). They come from a property in K-theory, which is proved in
[23, p. 59], and were clarified in [64] Before coming to the K-theoretic point of
view, let us describe these properties.

Boutroux condition. We have a Boutroux property: for any closed cycle � �
C0 n Z0, I

�

Im� D 0:

For hyperbolic 3-manifolds, this is related to the existence of a function giving
the hyperbolic volume. The Boutroux condition has been underlined in [57] for
plane curves of the form Pol.x; y/ D 0 endowed with the 1-form � D y dx. It ap-
pears naturally in the asymptotic study of matrix integrals, (bi)orthogonal poly-
nomials and Painlevé transcendents, and is related to a choice of steepest descent
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integration contours to apply a saddle-point analysis [8, 9]. Actually, Hikami ob-
served [54] that the A-polynomial can be obtained as the saddle-point condition
in integrals of product of quantum dilogarithm constructed from triangulations
and related to knot invariants. So, it is not surprising to meet a Boutroux property
here.

Quantization condition. The real periods of � are quantized: there exists a pos-
itive integer & such that, for any closed cycle � � C0 nZ0 with base point p0 such
that lnm.p0/ D 0; i� , I

�

Re� 2 2�2

&
� Z: (6)

This condition has first been pointed out by Gukov [51] in his formulation of the
generalized volume conjecture, as a necessary condition for the SL2.C/-Chern–
Simons theory to be quantizable. In our framework also, equation (6) implies the
existence of a expansion in powers of „ for certain quantities. We explain the
mechanism in Section 2.10.

2.3. Triangulations and hyperbolic structures on 3-manifolds. By definition,
an oriented 3-manifold M is hyperbolic if it can be endowed with a smooth, com-
plete hyperbolic metrics with finite volume. There exists an infinite number of
hyperbolic knots, i.e. knots whose complement in the ambient space is hyper-
bolic. The A-polynomial of an hyperbolic 3-manifold M is closely related to the
deformations of the hyperbolic structure on M. We review this relation and follow
the foundational work of W. Thurston [84] and Neumann and Zagier [78].

Mostow rigidity theorem then states that the metrics in the definition above is
unique. M is either compact, or has c cusps. We assume that M can be decom-
posed in a set of ideal tetrahedra glued face to face. Ideal means that all vertices
of the triangulations are on the cusps. It can then identified with the interior of an
oriented, bordered compact 3-manifold, whose boundary consists in c tori. So, its
Euler characteristics is 0, and counting reveals that the number of tetrahedra NT

equals the number of distinct edges in the triangulation. And, by construction, the
number of vertices is c, the number of cusps.

In a ideal tetrahedron T, let us choose an oriented edge e pointing towards a
vertex ı. If we intersect T by a horosphere centered at ı, we obtain a triangle
whose sum of angles is � . It is thus similar to some euclidean triangle T .ze/ with
vertices 0, 1 and ze. We choose a representative for which the image of ze in the
tetrahedron belongs to e, and such that Im ze > 0. ze is called a shape parameter,
and we may define in a unique way logarithmic shape parameters 
e D ln ze,
which are more natural to express geometric conditions.
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For a given vertex with incident edges e1; e2; e3 in cyclic order, the shape pa-
rameters are ze1

, 1 � z�1
e1

and .1 � ze1
/�1. As a manifestation of the angle sum

condition around a Euclidean condition, we have


e1
C 
e2

C 
e3
D i�

and in particular, the product of the shape parameters around a vertex is always �1.
The shape parameter of an edge in opposite orientation is z�e D �z�1

e . Opposite
edges in the tetrahedron have the same shape parameter. Thus, the triangulation
depends a priori on NT shape parameters.

An oriented edge in the ideal triangulation of M correspond to the identifica-
tion of a collection of distinct oriented edges .ej /j of the tetrahedra. Since M is
smooth along edges, we have NT gluing conditions, which are in general redun-
dant: X

j


ej
D 2i�; (7)

The data ofNT shape parameters satisfying equation (7) fixes a hyperbolic metrics
with finite volume for M, which in general becomes singular when approaching
the vertices of the triangulation. The completion Mz of M with respect to this
metrics is a topological space, which may differs from M by addition of set of
points at the cusps. Mz happens to be a genuine hyperbolic manifold if and only
if for any vertex � 2 ¹1; : : : ; cº in the triangulation

˛� �
X
e�


e�
D 2i�: (8)

where ¹e�º is the set of oriented edges of tetrahedra whose image in the trian-
gulation points towards �. It is shown in [78, 84], that the set of solutions of
equations (7)–(8) is discrete. Moreover, in the neighborhood of a solution (i.e.
of a manifold Mz0

), the cusp anomalies ˛� are local coordinates for the set of
solutions of equation (7).

In a triangulated hyperbolic 3-manifold Mz0
, there is a natural PSL2.C/ repre-

sentation of the fundamental group of Mz0
, namely the holonomy representation.

If we assume only c D 1 cusp, let us choose two closed paths �m; �l � M which
are representatives of a meridian and a longitude. Then, the holonomy eigenval-
ues .m; l/ arise such that m2 (resp. l2) is the product of the shape parameters of
the oriented edges crossed by �m (resp. �l). The holonomy representation can
be lifted [23, p. 71] to a SL2.C/ representation. The lift is not unique because
of a choice of square root, but we always have lc D �1, cf. [19], and we can
choose mc D �1. Now, if we waive the completeness requirement for hyperbolic
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metrics on M, we have a 1-parameter deformation of hyperbolic metrics in the
neighborhood of Mz0

, and .m; l/ can be defined in a unique way as continuous
(in fact, holomorphic) functions along the deformation. Also, the locusU of .m; l/
achieved by the deformation is included in some 1-dimensional component of the
A-polynomial curve: the6 geometric component Cgeom. .mc ; lc/ D .�1; 1/ is very
often a singular point in Cgeom, but e.g. the germ of l as a function of m is well
defined along the deformation. So, there is a unique lift pc of this point to the
smooth model Cgeom

0 . Logarithmic variables on C
geom
0 are also very useful. We

define .u; v/ as holomorphic functions on C
geom
0 n ¹singularities and branch cutsº

assuming the initial value .i�; i�/ at pc, and such that .m; l/ D .eu; ev/. The
branches of the logarithm in equation (5) can be unambiguously chosen as

� D v du:

There is a map from the variety Z of shape parameters achieved by deformed
hyperbolic structures on M, to Cgeom, which is 1-to-1 at least in a neighborhood
zU � U of .mc ; lc/ D .�1;�1/. If p 2 zU, we denote z.p/ 2 Z the corresponding
point. For a countable set of points z 2 Z (corresponding to a countable set of
points in Cgeom), the space Mz is not as wild as in the generic case. Indeed, if
there exists coprime integers q; q0 such that quC q0v D i� , Mz is a manifold that
is just obtained from M by performing a .q; q0/ Dehn filling of the cusp.

2.4. Volume and Chern–Simons invariant. By a standard computation, the
volume of an ideal tetrahedron with shape parameter z, endowed with its com-
plete hyperbolic metrics, is given by the Bloch-Wigner dilogarithm D.z/, which
is a continuous function defined on C n ¹0; 1º as

D.z/ D Im Li2.z/C arg.1� z/ ln jzj: (9)

The hyperbolic volume of Mz is thus

Vol.Mz/ D
X

e

D.ze/;

and the functional relations satisfied by the dilogarithm ensure that it does not
depend on the triangulation.

6 The geometric component is usually defined as the component of the PSL2.C/ character
variety containing the (unique) discrete faithful representation of �1.M/. When projecting to
representations of �1.@M/ and lifting to SL2.C/ representations, we may obtain 1 or 2 irre-
ducible factors of the A-polynomial. Here, we chose the one containing .mc ; lc/ D .�1; �1/,
and we called it geometric component.
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Another invariant of hyperbolic 3-manifolds is the Chern–Simons invariant.
For compact manifolds, it was introduced in [22] and belongs to R=.2�2Z/. For
manifolds Mz obtained by Dehn surgery on a hyperbolic manifold M, this defi-
nition was generalized in [68] and the invariant belongs to R=�2Z. Its definition
in terms of a triangulation involves

P
e Re Li2.ze/ plus a tricky part described

in [74]. Note that, a priori, the Chern–Simons invariant CS.Mz/ only makes sense
when Mz is a (smooth) manifold.

From a differential geometry standpoint, [78] and independently [88, Theo-
rem 2] proved that both invariants can be extracted from the function on Cgeom,

ˆ.p/ �
pZ

o

� D
pZ

o

v du;

and

dˆ.p/ D i
2

d.Vola C iCSa/:

For a point p 2 zU � Cgeom, the volume of Mz.p/ is directly related to the imagi-
nary part of ˆ.p/:

Vol.Mz.p// � Vol.Mz.pc// D Vola.p/ � 2Reu Im v;

and thanks to the Boutroux condition, it does not depend of the path from pc to
p. If we assume that Mz.p/ is the manifold obtained by .q; q0/ Dehn filling, the
real part is related to the Chern–Simons invariant of Mz.p/. The formula involves
the conjugate integers .r; r 0/ such that qr 0 � q0r D 1:

CS.Mz.p// � CS.Mz.p0// D CSa.p/C �.r ImuC r 0 Im v/;

and thanks to the quantization condition, it does not depend modulo 2�2Z=& of
the choice of path from pc to p. In this article, we call Vola the analytic volume,
and CSa the analytic Chern–Simons term.

Remark 2.1. Even if M is not hyperbolic, the primitive of the 1-form ln l d lnm
(i.e. a functionˆ so that dˆ D ln l d lnm) defined over (one of the component of)
the A-polynomial curve varieties defines a notion of complexified volume, whose
imaginary part is closely related to the notion of volume of a representation.

It is enlightening to understand the volume, the Chern–Simons invariant and
the properties raised in §2.2 from the point of view of K-theory. This is the matter
of the next two paragraphs.
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2.5. Bloch group and hyperbolic geometry. Let K be a number field or a func-
tion field. To fix notations, K� is the multiplicative group of invertible elements
of K, and KC is just K considered as an additive group. For an abelian group G,
the exterior product

V2
ZG is the Z-module generated by the antisymmetric ele-

ments x ^ y for x; y 2 G, modulo the relations of compatibility with the group
law .n � x/^ y D n.x ^ y/. When S is a set, Z �S is the free Z-module with basis
the elements of S .

The pre-Bloch group P.K/, cf. [11], is the quotient of Z � .K� n ¹1º/ by the
relations Œz�C Œ1 � z� D 0 and Œz�C Œ1=z� D 0 for any z 2 K� n ¹0º, and the five
term relations

Œz�C Œz0�C Œ1 � zz0�C
h 1 � z
1� zz0

i
C
h 1� z0

1 � zz0
i

D 0

for any z; z0 2 K� n¹1º such that zz0 ¤ 1. Those combinations appear precisely in
the functional relations of the functionD.z/ of equation (9). Indeed,D induces a
well-defined function D W P.K/ ! R if we interpreter

D
�
 D

X
j

Œzj �
�

D
X

j

D.zj /:

For a hyperbolic manifold M with a triangulation, a point p in Cgeom deter-
mines shape parameters z.p/ D .ze.p//e for the triangulation. We can apply the
above construction to a field K where the functions z live. It is in general an
extension of the field C.Cgeom/, of finite degree that we denote d . The element

z D
X

e

Œze� 2 P.K/ (10)

is actually independent of the triangulation. Also, the volume is a well-defined
function on Cgeom, given by D.z/.

Up to now, the introduction of the pre-Bloch group has served merely as a
rephrasing of §2.4. Neumann and Yang [77] took a step further to reach the Chern–
Simons invariant. We introduce the Rogers dilogarithm, which is a multivalued
holomorphic function on C� n ¹1º:

R.z/ D Li2.z/C ln z ln.1� z/
2

:
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Some computations shows that the diagram below7 is well-defined and commu-
tative:

P.C/

V2
Z CC

V2
Z C�B.C/

C=Q

� �

O� �
e

�.Œz�/ D 2 z ^ .1 � z/;

�.Œz�/ D ln z
2i�

^ ln.1 � z/
2i�

C 1 ^ R.z/

2�2
;

e.
 ^ 
0/ D 2 e2i�� ^ e2i�� 0

The Bloch group of C by definition

B.C/ D ker�;

and we have �.B.C// � Ker e. As a matter of fact,


 7�! 1 ^ 
 2
2̂

Z

CC

induces an isomorphism between C=Q and Ker e. Thus, there is a map O� from
the Bloch group to C=Q. Coming back to hyperbolic geometry: since two edges
carry the same shape parameter in each tetrahedron, the element z defined in
equation (10) actually sits in B.C/ � P.C/. When Mz is a manifold, it was proved
in [76] that O� gives the irrational part of the Chern–Simons invariant:

CS.Mz/ D �2�2 Re O�.z/ mod 8�2Q:

2.6. K-theory viewpoint. We now review the interpretation of the Boutroux and
quantization condition in the context of K-theory, and its relations to hyperbolic
geometry.

Symbols. After a classical result of Matsumoto [69, §11], the second K-group
K2.K/ of a field K is isomorphic to

V2
ZK� modulo the relations z ^ .1� z/ D 0.

In other words, K2.K/ D coker�=2, where � is the morphism introduced in §2.5.
The elements of K2.K/ are usually called symbols, and denoted ¹z1; z2º. When C

is a component of an A-polynomial of a 3-manifold, a theorem [23, p. 61] shows
the existence of a integer & , that we choose minimal, such that

2& � ¹m; lº D 0 2 K2.C.C//: (11)

7 The factor of 2 is convenient for applications to knot theory in the homology spheres.
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Regulators. If z1; z2 2 C.C/, and P denotes the set of zeroes and poles of z1; z2,
the regulator map is defined as

rŒz1; z2� W H1.C n Z;P/ �! C�

� 7�! exp
�
1

2i�

�I
	

ln z1 d ln z2 � ln z1.o/

I
	

d ln z2

�	
:

o is a basepoint in � and given a choice of branch of ln z1 and ln z2 at o, the loga-
rithms are analytically continued starting from o along � . One can show that this
definition does not depend on o, on the initial choice of branches for the logarithm,
and of the representative z1; z2 of the symbol ¹z1; z2º. Hence, there exists a map

r W K2.K/ �! lim�!
P finite

Hom.H1.C n Z/;C�/:

If ¹z1; z2º is 2& -torsion (as in equation (11)), we see that rŒz1; z2�.�/ is a 2& th-
root of unity for all closed cycles � . We deduce that, for any closed cycle � with
basepoint o such that ln z1.o/ D 0; i� and the integral is well-defined,I

	

ln z1 d ln z2 2 2�2

&
Z: (12)

This line of reasoning has been written explicitly in [64]. This can be applied to
¹m; lº for a component of an A-polynomial, and justifies the Boutroux and the
quantization condition of §2.2.

Tame symbol and Boutroux condition. Given an algebraic curve C with two
functions z1, z2 defined on it, it might not be easy to check if ¹z1; z2º is torsion.
However, it is elementary to check if there is a local obstruction to being torsion,
i.e. if equation (12) holds for all contractible, closed cycles � in C. We focus
in this paragraph only on the imaginary part of equation (12), which gives rise
to the Boutroux condition, and discuss its relation with the tame condition. The
reason is that the Boutroux condition already has interesting consequences for the
Baker–Akhiezer kernel (§2.10) and thus the construction of Section 4.

This is formalized as follows. To any z1; z2 2 K�, we can associate the regu-
lator form, which is the 1-form

�Œz1; z2� D ln jz1j.d arg z2/ � ln jz2j.d arg z1/

D Im.ln z1 d ln z2/ � d.arg z1 ln jz2j/:
For any point p 2 C0, let

Tp W K2.K/ �! C�
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be the map defined by

Tp.¹z1; z2º/ D .�1/ordpz1� ordpz2 z1.p/
ordpz2 z2.p/

�ordpz1

D exp.i� .Res
p

d ln z1/.Res
p

d ln z2/C Res
p
Œ.d ln z2/ ln z1 � .d ln z1/ ln z2�/:

(13)

This expression is indeed independent of the representative of ¹z1; z2º. It is also
independent of the branches of the logarithms and of the basepoint to define the
integral over a small circle around p. A computation shows

Res
p
�Œz1; z2� D �i ln jTp.¹z1; z2º/j;

so Tp is closely related to the regulator map rŒz1; z2� evaluated on a small cir-
cle around p. For a given curve, z1 and z2 only have a finite number of zeroes
and poles, so Tp.¹z1; z2º/ D 1 except at a finite number of points. Note that the
Riemann bilinear identity applied to the meromorphic 1-forms dz1

z1
and dz2

z2
im-

plies
Q

p2C0
Tp.¹z1; z2º/ D 1. We say that ¹z1; z2º is a weakly tame symbol if

jTp.¹z1; z2º/j D 1 for all p, i.e. we define the subgroup

Kw�tame
2 .C/ D

\
p2C.C/

ker jTpj:

It is very easy to check if an element of K2.C.C// is weakly tame of not, given
equation (13), and this provides a local obstruction for the Boutroux condition,
and a fortiori for being torsion. Moreover, if there exists an integer &0 such that
Tp.¹z1; z2º/ is a 2& th

0 -root of unity for all p 2 C, and if ¹z1; z2º is torsion, &0 must
divide the order of torsion. The tame group itself is defined as

Ktame
2 .C/ D

\
p2C.C/

kerTp:

�Œz1; z2� is always closed, since �Œz1; z2� D Im.d ln z1 ^ d ln z2/ D 0. It is in
general not exact, but �Œz; 1 � z� D dD.z/. So, we can illustrate this discussion
in the context of hyperbolic 3-manifolds. The shape parameters .ze/e sit in an
extension K of C.Cgeom/ of some degree & , we have at our disposal the element
 2 B.K/ (see equation (10)) and the symbol ¹m2; lº D P

e¹ze; 1 � zeº is by
construction zero in K2.K/. By coming back to K2.C.C

geom//, one only obtains
that &0 � ¹m2; lº, so ¹m; lº is 2& -torsion. Hence ¹m; lº is weakly tame in a trivial
way.
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2.7. Arithmetics and cusp field. We now come to aspects of the A-polynomial
which are relevant to the arithmeticity properties of the perturbative invariants of
3-manifolds. We aim at preparing for a clarification of the arithmetic nature of the
invariants defined from the topological recursion in Section 3.1, especially when
applied to A-polynomials. Unless precised otherwise, we work in the remaining
of this section with any of the irreducible factor of the A-polynomial which is not
of the form .lma ˙ 1/, and the corresponding spectral curve .C0; u; v/ is endowed
with a marked point pc 2 C0 such that m2.pc/ D l2.pc/ D 1.

We already stated that m.pc/; l.pc/ is a singular point for A. More precisely,

A.m; l/ / .l � l.pc//
a C

� l � l.pc/

m �m.pc/

�
in the neighborhood of this singularity. If A was a polynomial with integer co-
efficients, C is also a polynomial with integer coefficients, called the cusp poly-
nomial. Although it contains less information than the A-polynomial, it retains
some geometric significance and is closely related to the C-polynomial studied
by Zhang [90]. We also introduce the cusp field F, which is the splitting field of
the cusp polynomial. In particular, at the vicinity of pc in C0, we have .l C 1/ 	
�.mC 1/ where � is a root of C , thus an element of the cusp field.

There are several notions of fields associated to a hyperbolic 3-manifold M. In
presence of an ideal triangulation of M, the tetrahedron field is the field generated
by the shape parameters of the tetrahedra. From another point of view, M can be
realized as quotients H3=� where � is a discrete subgroup of PSL2.C/ of finite
covolume. One can define the invariant trace field, which is the field generated
by the trace of squares of elements of �. It is clear that

cusp field � invariant trace field � tetrahedron field:

For hyperbolic knot complements, there are examples where the cusp field is
strictly smaller than the tetrahedron field [75], but the invariant trace field co-
incide with the tetrahedron field after a more general theorem of Neumann and
Reid [75, Theorem 2.4]. The numbers produced from the topological recursion
will naturally live in the cusp field F.

Remark 2.2. When C is the geometric component of an A-polynomial of a trian-
gulated 3-manifold, [20] ensures that the shape parameters are rational functions
of l and m. Hence, the order of torsion of ¹m; lº is 2.

2.8. Definition of A-spectral curves. Since we will often use this setting, we
give the name A-spectral curve (over a field K) to the object composed by the
following data.
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� A curve C defined by an equation of the form Pol.m; l/ D 0 (with coefficients
in K), such that ¹m; lº is 2& -torsion in K2.C.K// for some minimal integer &
(We assume that Pol.m; l/ is irreducible and not proportional to lmb ˙ 1 for
some integer b.

� A compact Riemann surface C0 which is the projective smooth model for C,
and a marked point pc 2 C0 such that l.pc/

2 D m.pc/
2 D 1.

� Two holomorphic functions u D lnm and v D ln l on

C0 n ¹singularities and branch cutsº ;

and the differential form � D v du.

� We add the technical assumption that the zeroes of v are simple.

One may wonder if all A-spectral curves overK arise as components of the A-poly-
nomial of some 3-manifold. The answer does not seem to be known. Ktame

2 .C/ (and
a fortiori Kw:tame

2 .C/) for a compact Riemann surface C0 of genus g � 1 defined
over Q is in general not trivial. Part of a conjecture of Beilinson predicts that
a certain subgroup of Ktame

2 .C/ has rank g. Yet, non zero tame symbols are not
easy to exhibit, see for instance [31] where elements in the tame group of some
hyperelliptic curves over Q are constructed.

2.9. Algebraic geometry on the spectral curve. We now come to the study of
algebraic geometry on the spectral curve .C0; u; v/

Topology, cycles, and holomorphic 1-forms. The curve C0 defines a compact
Riemann surface of a certain genus g. Actually, the genus can be computed from
the polynomialA.m; l/ as the dimension g of the space of holomorphic forms, i.e.
rational expressions h.m2; l/dm which are nowhere singular. Let .Aj ;Bj /j be a
symplectic basis of homology cycles,

Aj \Aj 0 D 0 Bj \Bj 0 D 0 Aj \Bj 0 D ıj;j 0 ; for all j; j 0 2 ¹1; : : : ; gº: (14)

For the moment, we choose an arbitrary basis, and we will have to consider later
how objects depend on the basis, i.e to describe the action of the modular group
Sp2g.Z/. There is a notion of dual basis of holomorphic forms .daj /j , character-
ized by I

Aj 0

daj D ıj;j 0 ; j 2 ¹1; : : : ; gº:
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Then, the period matrix is defined asI
Bj 0

daj D �j;j 0 ;

and a classical result states that it is symmetric with positive definite imaginary
part. We choose an arbitrary base point o, for example o D pc , and introduce the
Abel map

a W C0 �! J D Cg=.Zg ˚ �Zg/;

p 7�!
� pZ

o

da1; : : : ;

pZ
o

dag

�
mod Zg ˚ �Zg :

When g D 1, C0 is an elliptic curve and a is an isomorphism. When g � 2, this
is only an immersion.

Theta functions and characteristics. For any g�gmatrix � which is symmetric
with positive definite imaginary part, we can define the theta function

�.wj�/ D
X

p2Zg

ei�p�
 �pC2i�w�p; for all w 2 Cg :

Where there is no confusion, we omit to write the dependence in � . � is an even,
quasi periodic function with respect to the lattice Zg ˚ �Zg :

�.w C m C � � n/ D e�i�.2n�wCn�
 �n/ �.w/: (15)

We define a gradient r acting implicitly on the variable w, and a gradientD acting
on the variable � :

r� D
� @�
@w1

; : : : ;
@�

@wg

�
; D� D

�
4i�

@�

@�i;j

�
1	i;j 	g

:

The theta function is solution to the heat equation

4i�@
j;j 0 � D @wj
@wj 0�

i.e.

D# D r˝2#:
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Throughout the article, we are going to use tensor notations, and indicate with
a “�” the contraction of indices. We consider r� and D� , and more generally
r˝l� (resp. D˝l�) as a l-linear form (resp. a 2l-linear form), i.e. a Œ0; l� tensor.
For example, if T is a Œl; 0� tensor, we may write

r˝l� � T D
gX

j1D1

� � �
gX

jl D1

@l�

@wj1
� � � @wjl

Tj1;:::;jl
:

A half-characteristics is a vector

c D 1

2
.n C � � m/ where n;m 2 Zg .

It is said odd or even depending on the parity of the scalar product n � m. equa-
tion (15) implies that �.cj�/ and its even-order derivatives vanish at odd half-
characteristics, while the odd-order derivatives of �.w/ei���w vanish at even half-
characteristics of the form 1

2
.n C � � m/. There is a notation for theta functions

whose argument is shifted by a half-characteristics c D 	 C � � �,

#
�

�
�

�
.w/ D

X
p2Zg

ei�.pC�/�
 �.pC�/C2i�.wC�/�.pC�/

D ei���
 ��C2i����C2i�w�� �.w C 	 C � � �/:
Note that we still have

r˝2#
�

�
�

� D D#
�

�
�

�
:

Bergman kernel. For us, a Bergman kernel is a symmetric .1; 1/ form B.p1; p2/

on C0 �C0 which has no residues and has no singularities except for a double pole
with leading coefficient 1 on the diagonal, i.e., in a local coordinate �,

B.p1; p2/ D
p1!p2

d�.p1/˝ d�.p2/

.�.p1/ � �.p2//2
CO.1/:

If we pick up a symplectic basis of homology .A;B/, there is a unique Bergman
kernel B.p1; p2/ which is normalized on the A-cycles,I

Aj

B.p1; �/ D 0 for all j 2 ¹1; : : : ; gº: (16)

Moreover, B is symmetric in p1 and p2 and the basis of holomorphic form is
retrieved by I

Bj

B.p1; �/ D 2i� daj for all j 2 ¹1; : : : ; gº: (17)
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Any other Bergman kernel takes the form

B�.p1; p2/ D B.p1; p2/C 2i� da.p1/ � � � dat .p2/;

where � is a symmetric g�g matrix of complex numbers and t denotes the trans-
position. As a matter of fact, B� satisfies the relations (16) and (17) if we replace
.A;B/ by a symplectic basis of generalized cycles .A�;B�/ defined by

A� D A � �B� ; B� D B � �A:

In this formula, A and B should be interpreted as column vectors with g rows.
The Bergman kernel normalized of the A-cycles can always be expressed in

terms of theta functions

B0.p1; p2/ D dp1
dp2

ln �.a.p1/ � a.p2/C cj�/;

where c is any non singular odd half-characteristics. Non-singular means that the
right hand does not vanish identically when p1; p2 2 C0, and such characteristics
exist [70]. Yet, this formula is not very useful for computations when g � 2. In
practice, one may start from the equation A.m2; l/ D 0 defining C and C0, and
find “by hand” a Bergman kernel and a basis of holomorphic forms expressed
as rational expressions in m2 and l with rational coefficients. Both methods are
illustrated for genus 1 curves in Section 6.2.

Prime form. Let c be a non singular odd half-characteristics. We introduce a
holomorphic 1-form

dhc.p/ D r�.c/ � da.p/:

It is such that its 2g � 2 zeroes are all double. Then, the prime form E.p1; p2/,
cf. [70], is a .�1=2;�1=2/ form defined on the universal cover of C0 � C0,

E.p1; p2/ D �.a.p1/ � a.p2/C c/p
dhc.p1/˝p

dhc.p2/
:

It is antisymmetric in p1 and p2, it has a zero if and only if p1 D p2 in C0, and in
a local coordinate �,

E.p1; p2/ D
p1!p2

�.p1/ � �.p2/p
d�.p1/˝p

d�.p2/
CO..�.p1/ � �.p2//

3/:
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The prime form appears in this article through the formulae

exp
�
1

2

p1Z
p2

p1Z
p2

.B0.p; p
0/ � du.p/ du.p0/

.u.p/ � u.p0//2
/

	
D u.p2/ � u.p1/

E.p1; p2/
p

du.p1/ du.p2/
;

exp
� p1Z

p2

p3Z
p4

B0.p; p
0/
	

D E.p1; p3/ E.p2; p4/

E.p1; p4/ E.p2; p3/
:

Modular transformations. The group Sp2g.Z/ acts on those objects by trans-
formation of the symplectic basis of homology cycles. Let � be an element of
Sp2g.Z/.

� The cycles A and B, interpreted as column vectors with g rows, transform by
definition as �

	A
	B

�
D M	 �

�
A

B

�
; M	 D

�
d c

b a

�
;

where a; b; c; d are g � g integer matrices. The new basis .	A; 	B/ is sym-
plectic (see equation (14)) if and only if tb d and tc a are symmetric and
ta d � tc b D 1. These are indeed the condition under which M	 belongs to
Sp2g.Z/. The dual basis of holomorphic forms, interpreted as a row vector
with g columns, transforms as a modular weight �1 vector:

	 da.p/ D t .c� C d/�1 da.p/:

� The matrix of periods transforms as

	� D .a� C b/.c� C d/�1:

Using the relations defining Sp2g , one can check

.c� C d/t .a� C b/.c� C d/�1 D .a� C b/t ; (18)

so that 	� is indeed symmetric. We have denoted M t , the transposed of a
matrix M .

� The Bergman kernel B� I 
 defined from the chosen basis of cycles (we have
stressed the dependence in �), transforms as

	 .B� I 
 /.p1; p2/ D B� � I � 
 .p1; p2/;

	� D c.c� C d/t C .c� C d/�.c� C d/t :
(19)
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� The generalized cycles .A�;B�/ on which B� is normalized are modular ex-
pression of weight 1:

	A� D .c� C d/A�; 	B� D Œ.c� C d/�1�t B� :

We have used the relation

Œa � .a� C b/.c� C d/�1c� D Œ.c� C d/�1�t

which can be deduced from equation (18).

� The theta function transforms as

�.w C�	 j	�/ D „	

p
det.c� C d/ e�w�
 �w �..c� C d/wj�/; (20)

where �	 is the half-characteristics

�	 D 1

2
.diag.abt /C diag.cd t /�/

and „	 a eighth root of unity.

2.10. Baker–Akhiezer spinors. Given a 1-form ! on C0, a complex number
H 2 C�, and vectors �; 	 2 Cg=Zg , we set

 BA.p1; p2/ D
exp

�
1

H

p1Z
p2

!

�

E.p1; p2/

#
��

�

�
.a.p1/ � a.p2/C 
H/

#
��

�

�
.
H/

D
p

r�.c/ � da.p1/˝
p

r�.c/ � da.p2/

exp
� p1Z

p2

.H�1! C 2i�� � da/

�

�.a.p1/ � a.p2/C 
 C 	 C � � �/
�.a.p1/ � a.p2/C c/ �.
H C 	 C � � �/;

with


H D frac
�

1

2i�H

I
B

!

	
� � � frac

�
1

2i�H

I
A

!

	
:
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For a vector w 2 Cg , we have denoted fracŒw� the vector of Œ0; 1Œg which is equal
to w modulo Zg .  BA is called a Baker–Akhiezer spinor, it is a .1=2; 1=2/-form
defined a priori on the universal cover of C0 � C0, since we have

 BA.p1 C mA C nB; p2/

 BA.p1; p2/

D exp
��
2i��C H�1

I
A

!

�
� m C

�

 C 2i�.	 � c/C H�1

I
B

!

�
� n

�
:

It is regular apart from a simple pole when p1 D p2:

 BA.p1; p2/ 	
p1!p2

p
d�.p1/˝p

d�.p2/

�.p1/ � �.p2/
;

and has an essential singularity when p1 or p2 reach a singularity of !, of the
form

 BA.p1; p2/ / exp
�
1

H

p1Z
p2

!

�
:

Baker–Akhiezer functions have been introduced in [60] to write down some ex-
plicit solutions of the KP hierarchy. They can be obtained from the Baker–Akhiezer
spinor when ! is a meromorphic 1-form, and by sending p2 to a pole of ! with
an appropriate regularization (see for instance [13]). Modular transformations act
on  BA only by a change of the vectors �; 	. We have introduced a normalization
constant H 2 C�, to be adjusted later. In general, the ratio involving #

��
�

�
does not

have a limit, neither has a power series expansion when H ! 0.
But we can say more if we assume the Boutroux and the quantization condition,

i.e. that there exists & 2 N� such that, for all closed cycles �,�
Im

I
�

!

�
D 0 and

�
Re

I
�

!

�
2 2�2

&
� Z:

Let us denote sA and sB integer vectors such thatI
A

! D 2�2

&
sA and

I
B

! D 2�2

&
sB :

It is then natural to consider values of H�1 belonging to arithmetic subsequences
on the imaginary axis:

H D i�
k
; k 2 & � Z C r:
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Indeed, we find

 D frac

hrsB

&

i
� � � frac

hrsA

&

i
;

so that the argument of the theta functions only depend on r D k mod & . We have

2�

k
ln j BA.p1; p2/j 	

k!1
k2& �ZCr

Im
� p1Z

p2

2!

�
;

and the Boutroux condition also ensure that

Im
� p1Z

p2

!
�

does not depend on the path of integration between p1 and p2. For a hyperbolic
3-manifold, if we choose ! D v du, the right hand side is Vola.p1/ � Vola.p2/

and this asymptotics is exactly the one involved in the generalized the volume
conjecture (see §5.2)

2.11. Branchpoints and local involution. In this article, we reserve the name
ramification points to points in C0 which are zeroes of du D d lnm. The value
of m at a ramification point is called a branchpoint. We use generically the letter
a to denote a ramification point. Since C is defined by a polynomial equation
A.eu; ev/ D 0, we must havem.a/ ¤ 0;1. When a is a simple zero of d lnm, we
call it a simple ramification point, and we can define at least in a neighborhood
Ua � C0 of a the local involution p 7! Np,

p; Np 2 Ua; m.p/ D m. Np/ and p ¤ Np:

Since A is quasi-reciprocal and has real coefficients, the involution

� W .l; m/ 7�!
� 1
m
;
1

l

�
and the complex conjugation 
 act on the set of coordinates .m.a/; l.a// of the
ramification points, and decompose it into orbits with 2 elements (for an a such
that .l.a/; m.a// is real or unitary) or 4 elements (in general). Amphichiral knot
complements admit an orientation reversing automorphism, so that �m.m; l/ D
.1=m; l/ by �l.m; l/ D .m; 1=l/ are separately symmetries of their A-polynomial.
Then at the level of spectral curves, the set of ramification points can be decom-
posed further into orbits of 2, 4 or 8 elements.
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3. Topological recursion

The topological recursion associates, to any spectral curve .C0; u; v/, a family
of symmetric .1; : : : ; 1/ forms !h

n.p1; : : : ; pn/ on Cn
0 (n 2 N�, h 2 N) and a

family of numbers Fh (h 2 N). These objects have many properties, we shall only
mention those we use without proofs. We refer to [40] for a detailed review of the
topological recursion. The fact that, here or in topological strings, one encounters
spectral curves of the form Pol.eu; ev/ D 0 rather than Pol.u; v/ D 0, does not
make a big difference in the formalism.

We assume that all ramification points are simple. This is satisfied for most of
the A-polynomials we have studied (see the tables in §B.3). The topological re-
cursion can also be defined when some ramification points are not simple [81, 14],
but we do not address this issue here.

3.1. Definitions. Let .C0; u; v/ be a spectral curve endowed with a basis of cycles
.A;B/. Hence, there is a privileged Bergman kernel B.p1; p2/. T. To shorten
notations, we write

dz1 � � � dzn

instead of
dz1 ˝ � � � ˝ dzn;

for a .1; : : : ; 1/-form.

Recursion kernel. We introduce the recursion kernel

K.p0; p/ D
�1
2

pZ
Np
B.�; p0/

.v.p/� v. Np//du.p/: (21)

K.p0; p/ is a 1-form with respect to p0 globally defined on C0, and a .�1/-form
with respect to p which is defined locally around each ramification point.

Differential forms. We define

!0
1.p/ D v.p/du.p/;

!0
2.p1; p2/ D B.p1; p2/;
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and recursively

!h
n.p0; pI /

D
X

a

Res
p!a

K.p0; p/
h
!h�1

nC1.p; Np; pI /C
0X

h0;J

!h0

jJ jC1.p; pJ /!
h�h0

n�jJ j. Np; pInJ /
i
:

(22)

In the left hand side, I D ¹1; : : : ; n� 1º and pI in a .n � 1/-uple of points of C0.
For any J � I , pJ is the uple of points indexed by the subset J . In the right hand
side, we take the residues at all ramification points, and the

P0 in the right hand
side ranges over h0 2 ¹0; : : : ; hº and all splitting of variables J � I , excluding
.J; h0/ D .;; 0/ and .I; h/. The formula above is a recursion on the level

� D 2h � 2C n:

!h
n has a diagrammatic interpretation (Figure 1), it can be written as a sum over

graphs with n external legs, h handles, and thus Euler characteristics ��. How-
ever, the weights of the graphs are non local, they involve stacks of 2g C 2 � n

residues where the ordering matters.

D C

Figure 1. Diagrammatic representation of the topological recursion which defines !h
n . Each

!h
n is represented as a “surface” with h handles and n punctures, i.e. with Euler character-

istics � D 2�2h�n. The diagrammatic representation of the topological recursion, is that
one can compute!h

n with Euler characteristics� in terms of !h0

n0 with �0 D 2�2h0�n0 > �,
by “removing a pair of pants” from the corresponding surface.
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Although equation (22) seems to give a special role to the variable p0, one can
prove (for instance from the diagrammatic representation) that !h

n.p0; : : : ; pn�1/

is symmetric in p0; : : : ; pn�1. Except maybe !0
1 , the !h

n are all meromorphic
.1; : : : ; 1/-forms on Cn

0 , which have no residues and have poles only at the ramifi-
cation points.

We illustrate the computation at level 1. To write down the residues it is con-
venient to choose a local coordinate at each ramification point, for instance

�a.p/ D
p
m.p/ �m.a/ D

p
eu.p/ � eu.a/;

which has the advantage that

�a. Np/ D ��a.p/:

If r is a function or R is a 1-form, we denote

@j r.a/ D @j r.p/

@�a.p/
j

ˇ̌̌
pDa

and @jR.a/ D
@j
� R.p/

d�a.p/

�
@�a.p/

j

ˇ̌̌
ˇ̌̌
ˇ̌
pDa

:

Then, we find

!0
3.p0; p1; p2/ D

X
a

Res
z!a

K.p0; p/ŒB.p; p1/ B.p2; Np/C B. Np; p1/ B.p; p2/�

D
X

a

B.p0; a/B.p1; a/B.p2; a/

2 v0.a/
:

(23)

To write down !1
1 , we need to expand

B.p; Np/
.d�a.p//2

D
p!a

� 1

4�2
a.p/

C SB.a/C o.1/:

Then, we have

!1
1.p0/ D

X
a

Res
p!a

K.p0; p/B.p; Np/

D
X

a

SB.a/

2
B.p0; a/C 1

48
.v000.a/ B.p0; a/ � v0.a/ @2

2B.p0; a//:
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Stable free energies. We have already met the abelian function

ˆ.p/ D
pZ

o

!0
1 D

pZ
o

v du:

For h � 2, we define

Fh D 1

2h � 2
X

a

Res
p!a

ˆ.p/ !h
1 .p/:

Since !h
1 has no residues, Fh does not depend on the basepoint o. The numbers

Fh are called the stable free energies of the spectral curve. We are not going to
give an explicit definition of the unstable free energies F0 and F1. Actually, for
the computation of the BA kernels and later the asymptotics of the colored Jones
polynomial, it is not necessary to know how to compute the free energies, we only
need one of their key property called special geometry (see equation (24)). So, we
just state that there exists F0 and F1 satisfying equation (24), it is in fact a way to
define them.

3.2. Deformation of spectral curves. By abuse of notations, we write

Fh D !h
nD0;

i.e. we consider !h
n for all n; h 2 N. Unless specified, the properties mentioned

below also hold for the unstable free energies. Special geometry expresses the
variation of !h

n when � D v du is deformed by addition of a meromorphic 1-form
�. By form-cycle duality on C0, to any meromorphic 1–form � we can associate
a cycle �� and a germ of holomorphic function on �� denoted ƒ�, such that

�.p/ D
Z

��

ƒ�.�/ B.�; p/:

Then, for a smooth family of spectral curves S˛ D .C0; u˛; v˛/ such that

.v˛ � v/du� .u˛ � u/dv 	
˛!0

˛�:

we have
@

@˛

!h
n ŒS˛�.pI /

ˇ̌̌
ˇ
˛D0

D
Z

��

ƒ�.�/ !h
nC1ŒS˛D0�.�; pI /: (24)

Note that from the expression of !0
3 in equation (23), one retrieves as a special

case the analog of Rauch variational formula [82] for the variation of the Bergman
kernel !0

2 D B along any meromorphic deformation.
In this article, deformations by holomorphic 1-forms and by 1-forms with sim-

ple poles will play a special role.
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Variations of filling fractions. The filling fractions are defined by

�j D 1

2i�

I
Aj

v du:

Performing a variation of filling fractions amounts to add to v du a holomorphic
1-form, i.e. use the deformation

�.p/ D 2i� daj .p/ D
Z
Bj

B.�; p/: (25)

We denote !h;.l/
n the Œ0; l�-tensor of l th derivatives of !h

n with respect to the filling
fractions, and, according to equation (24),

!h;.l/
n .pI / D

I
B

� � �
I
B„ ƒ‚ …

l times

!h
nCl .� � � ; pI /:

In particular, the tensor of second derivatives of F0 D !0
0 is the matrix of periods

F 00
0 D

I
B

I
B

B D 2i� �:

Deformation by simple poles. Given a couple of distinct points .p1; p2/, we
denote

dS
p2;p1

.p/ D
p1Z

p2

B.�; p/: (26)

This 1-form is characterized by a simple pole at p D p1 (resp. p D p2) with
residue 1 (resp. �1), no other singularities, and vanishing A-cycle integrals. If we
perform an infinitesimal deformation with�.p/ D dSp2;p1

.p/, we obtain accord-
ing to equation (24)

ı!h
n.pI / D

p1Z
p2

!h
nC1.�; pI /:

3.3. Symplectic invariance. The topological recursion also has nice properties
under global transformations of the spectral curve .C0; u; v/. To simplify, we con-
sider in this paragraph .n; h/ ¤ .0; 0/; .0; 1/; .1; 0/, and just mention that the prop-
erties below are slightly modified for those cases.

It is very easy to prove from the definitions the following properties.
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Property 3.1. If v du is replaced by ˛ v du for some ˛ 2 C�, !h
n is replaced by

˛2�2h�n !h
n . In particular, the stable free energies Fh are unchanged when .u; v/

is replaced by .�u; v/ or .u;�v/.

Property 3.2. If .u; v/ is replaced by .u; v C f .u// with f at least a germ of
holomorphic function in the neighborhood of the values u.a/, !h

n are unchanged.

According to the first property, replacing m D eu and l D ev by some of their
powers i.e. use .˙ma;˙lb/ instead of .m; l/, only affect the !h

n by a scaling factor.
The second property tells us that the !h

n are the same if we change the signs of m
and l , or even replace8 l by lma for some power a. There is conjecturally a third
property concerning the exchange of u and v.

Property 3.3. If .u; v/ is replaced by .v;�u/, the Fh are unchanged, and for
n � 1, the cohomology class of !h

n is multiplied by the sign .�1/n.

This has only been proved [39] when u and v are meromorphic function on the
curve C0, that is for spectral curves defined by an equation Pol.u; v/ D 0. This
invariance of the free energies under this exchange has meaningful consequences
in random matrix theory and enumerative geometry (see [38, §10.4.1] for an exam-
ple). Here and in topological strings, we rather have to consider spectral curves
of the form Pol.eu; ev/ D 0. We believe that Property 3.3 survives in this context
with a few extra assumptions, although this has not been established yet. For ex-
ample, within “remodeling the B-model,” it implies the framing independence of
the closed topological string sector.

In other words, if Property 3.3 holds, the Fg , and cohomology classes of the !h
n

up to a sign, are invariant under all the transformations which preserve the symbol
du ^ dv. This suggests to consider the Fh and the !h

n up to a sign as “symplectic
invariants” of the function field K D C.C0/. We have seen in §2.5 that the real
part of the primitive of !0

1 essentially coincide with the Bloch regulator of the
symbol ¹m; lº. It would be interesting to investigate the possible meaning of the
topological recursion in terms of K-theory of K.

8 This last operation is very useful to lower the degree of m in A-polynomials. For instance,
the A-polynomial of the Pretzel.�2; 3; 7/

A.l; m/ D m110l6 �m90.m2 �1/2l5 �m72.2m2 C1/l8 Cm36.m2 C2/l4 Cm16.m2 �1/2l �1

looks simpler if we use the variable ` D lm8:

A.l; m/ D m14`6 � m10.m2 � 1/`5 � m8.2m2 C 1/`4 C m4.m2 C 2/`2 C .m2 � 1/2` � 1
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3.4. Deformation of the Bergman kernel. Instead of B.p1; p2/, we could have
used in the definitions (21) and (22) another Bergman kernel,

B�.p1; p2/ D B.p1; p2/C 2i� a.p1/ � � � dat.p2/:

We denote !h
nj� the corresponding objects. We note that they are polynomials of

degree 3h � 3C n in �, and it is not difficult to prove

@!h
nj�.pI /

@�

1

2

1

2i�

�I
B�

I
B�

!h�1
nC2j�.�; �; pI /

C
X
J �I

0	h0	h

I
B�

!h
jJ jC1j�.�; pJ /

I
B�

!h�h0

n�jJ jC1j�.�; pInJ /

�
:

(27)

The special geometry (equation (24)) for meromorphic deformations normalized
on the A-cycles still holds for !h

nj� at any fixed �. However, variations of � and
filling fractions are mixed, since the holomorphic forms daj in equation (25) are
defined fromB D B�D0 and notB� . The appropriate formula can be found in [38],
it is closely related to “holomorphic anomaly equations” [7], but it will not be used
in this article.

3.5. Effect of an involution. The A-polynomial comes with an involution

� W .m; l/ D .1=m; 1=l/:

It induces an involutive linear map �� on the space of holomorphic 1-forms on C0.
The g eigenvalues of �� are thus ˙1. By integration, it induces an involutive iso-
morphism of the Jacobian of the curve, that we denote ��. The number of C1
eigenvalues is the genus of the quotient curve C0=�.

The case �� D " id is of particular interest. When " D 1, �� is a translation by
a half-period, and when " D �1, �� is a central symmetry. In these two situations,
all admissible Bergman kernels

B�.z1; z2/ D dz1
dz2

ln �.a.z1/ � a.z2/C c/C 2i� da.z1/ � � � da.z2/

are invariant under �, and so is the recursion kernel K�.z0; z/. Since the set of
ramification points is stable under �, we can recast the residue formula by choosing
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a representative a0 in each pair ¹a; �.a/º of ramification points

!h
nj�.p0; pI / D

X
a0

Res
p!a0

K�.p0; p/E
h
nj�.p; zI /C Res

p!�.a0/
K�.p0; p/E

h
nj�.p; pI /

D
X
a0

Res
p!a0

ŒK�.p0; p/E
h
nj�.p; pI /CK�.p0; �.p//E

h
nj�.�.p/; pI /�

D
X
a0

Res
p!a0

ŒK�.p0; p/E
h
nj�.p; pI /CK�.�.p0/; p/E

h
nj�.�.p/; pI /�:

By recursion on 2g � 2C n � 0, we infer that

Eh
nj�.�.p/; pI / D Eh

nj�.p; �.pI //

and
!nj�.p0; pI / D !h

nj�.�.p0/; �.pI //:

This result has an interesting corollary when �� D �id: by duality,

��B� D �B� :

Hence we get the property below.

Property 3.4. If �� D �id, thenI
B�

� � �
I
B�„ ƒ‚ …

d times

!h
nj�.p1; : : : ; pn�d ; �/ D 0 when d is odd:

In the case .n; h/ D .1; 0/, since ln d lnm is always invariant under �, we have
the next property.

Property 3.5. If �� D �id, for any closed cycle � � C0, thenI
�

v du D 0

As one can see in see the tables in §B.3, �� D �id is neither rare nor the rule
for complement of hyperbolic knots. We observe however that the genus of the
quotient C0=� is low compared to the genus of C0: the “simplest” knot we found for
which the quotient has not genus 0 is 821. The geometrical significance of these
observations from the point of view of knot theory is unclear.
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4. Non-perturbative topological recursion

The perturbative partition function is usually defined as

Zpert;H D exp
�X

h�0

H2h�2Fh

�
;

where Fh are the free energies. However, the genuine partition function of a
quantum field theory (like the Chern–Simons theory or topological string the-
ory) should have properties that Zpert;H does not satisfy. For instance, it should be
independent of the classical solution chosen to quantize the theory (background
independence), and it should have modular properties (e.g. S-duality) whenever
this makes sense.

From the topological recursion applied to a spectral curve .C0; u; v/, and theta
functions, we are going to define a non-perturbative partition function TH which
implements such properties. Modular transformations correspond here to change
of symplectic basis of cycles on C0. Then, one can define non-perturbative “wave
functions.” To keep a precise vocabulary, we shall introduce quantities

 
Œnjn
H .p1; p2I : : : Ip2n�1; p2n/;

that we call njn-kernels, which depend on 2n points on the curve. In particular, the
leading order of  Œ1j1

H .p1; p2/ when H ! 0 will be given by the Baker–Akhiezer
spinor. We prefer to use a new letter „ for the formal parameter. We shall find later
that in the application we consider, it must be identified to „ defined in terms of the
parameter q D e2„ in which the colored Jones polynomial is a Laurent polynomial,
but this identification might be different when considering other problems.

4.1. Definitions. We use the notations of §2.9. We take as data a spectral curve
.C0; u; v/ endowed with a basis of cycles, we choose two vectors �; 	 2 Cg and
we set

� D F 00
0

2i�
;

and


 D frac
�

1

2i�H

I
A

v du
	

� � � frac
�

1

2i�H

I
B

v du
	
: (28)

We give the definitions, which we comment in §4.2.
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Partition function. The non-perturbative partition function is by definition

TH D exp
�X

h�0

H2h�2 Fh

�
SH#

�
�
�

�
.
Hj�/; (29)

where

SH D
X
r�0

1

rŠ

X
hj �0; dj �1

2hj �2Cdj >0

H
P

j 2hj �2Cdj

rO
j D1

F
.dj /

hj
� r˝dj

.2i�/dj dj Š
:

We may isolate its leading behavior by writing

TH D eH�2F0CF1 #
�

�
�

�
.
Hj�/ yTH;

where now limH!0
yTH D 1. We consider this expression as a formal asymptotic

series with parameter H ! 0. The coefficient of H� in general depend on H, but
does not have a power series expansion in H. Thus, it is meaningful to speak of
the �th-order term in the expansion, keeping in mind that this coefficient may also
depend on H.

(1j1)-Kernel. In integrable systems, the Sato formula expresses the wave func-
tion as Schlesinger transforms of the tau function, which in our language corre-
spond to adding a 1-form with simple poles to � D v du. Actually, we prefer to
work with the kernel  H.p1; p2/ which is a function on C0 � C0, defined as

 H.p1; p2/ D THŒvdu �! v duC H dSp2;p1
�

THŒv du�
; (30)

where dS was defined in equation (26). We introduce shortcut notations

# D #
�

�
�

�
.
Hj�/; #� D #

�
�
�

�
.
H C a.p1/ � a.p2/j�/:

 H.p1; p2/ can be computed thanks to special geometry:

 H.p1; p2/ D
exp

�
1

H

p1Z
p2

v du
�

E.p1; p2/.du.p1/ du.p2//
1=2

NH;p1;p2

DH
: (31)

where

NH;p1;p2
D
�X

r�0

1

rŠ

X
hj ;nj �0; dj �1

2hj �2Cdj Cnj >0

H
P

j 2hj �2Cdj Cnj

rO
j D1

nj;p1;p2

.2i�/dj dj Š nj Š

�
#�;
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nj;p1;p2
D

p1Z
p2

� � �
p1Z

p2

!
hj ;.dj /
nj

� r˝dj ;

and

DH D
�X

r�0

1

rŠ

X
hj �0; dj �1

2hj �2Cdj >0

H
P

j 2hj �2Cdj

rO
j D1

F
.dj /

hj
� r˝dj

.2i�/dj dj Š

�
#:

In the second line of equation (31), all the nj variables in!hj ;.dj /
nj

are integrated

over
p1R

p2

, and recall from special geometry that

p1Z
p2

� � �
p1Z

p2

!h;.d/
n D

p1Z
p2

� � �
p1Z

p2

I
B

� � �
I
B„ ƒ‚ …

d times

!h
nCd :

Again, equation (31) should be understood as a formal asymptotic series with
parameter H ! 0. It can be shown [13] that  H.p1; p2/ does not change when
p1 or p2 goes around an A or a B cycle. Since  is the ratio of two partition
function, the exponential involving the free energies Fh in the numerator of the
first line of equation (31) cancels with the same factor present in the denominator.
As we claimed earlier, only the expression of !h

n is needed to compute the kernel,
not the expression of the free energies. We may isolate its leading behavior:

 H.p1; p2/ D  BA.p1; p2/

.du.p1/ du.p2//1=2
O H.p1; p2/;

where now limH!0
O H.p1; p2/ D 1.

njn-kernels. If we perform n successive Schlesinger transformations, we are led
to define the njn- kernels

 
Œnjn
H .p1; o1 I � � � I pn; on/ D

TH

h
v du �! v duC

nX
kD1

H dSok ;pk

i
TH

�
v du

� ; (32)
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which are functions on C2n
0 . Equation (31) has a straightforward generalization:

 
Œnjn
H .p1; o1 I : : : I pn; on/

D
Y

1	k<k0	n

E.pk ; pk0/ E.ok ; ok0/

E.pk ; ok0/ E.ok ; pk0/

exp
�1

H

Z
�
v du

�
nY

kD1

E.pk ; ok/.du.pk/ du.ok//
1=2

D
Œnjn
H

DH
;

(33)

where

N
Œnjn
H D N

Œnjn
H .p1; o1 I : : : I pn; on/

D
�X

r�0

1

rŠ

X
hj ;nj �0; dj �1

2hj �2Cdj Cnj >0

H
P

j 2hj �2Cdj Cnj

rO
j D1

nŒnjn
H

.2i�/dj dj Š nj Š

�
#�;

and
n

Œnjn
H D

Z
�

� � �
Z

�
!

hj ;.dj /
nj

� r˝dj :

In this context, Z
�

D
nX

iD1

piZ
oi

;

and #� stands for

#� D #
�

�
�

�
.
H C

nX
kD1

a.pk/ � a.ok/j�/:

Diagrammatic representation. In Appendix A, we explain that the formulae for
the non perturbative partition function (equation (29)) and the njn kernels (equa-
tion (33)) can be represented as a sum over (maybe disconnected) diagrams. To a
given order in H, there is only a finite sum of allowed diagrams. With this formal-
ism, it is easy to re-exponentiate the series above, i.e. to compute the asymptotic
series for lnTH or ln O H: they can be written as sum over connected diagrams.

Special properties for A-spectral curves. When the symbol ¹eu; evº is 2& -tor-
sion in K2.C.C//, the spectral curve satisfies the Boutroux condition and the quan-
tization condition. So, when k is an integer going to infinity along arithmetic
subsequences of step & and

H D i�
k
;
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the non-perturbative partition function and the njn-kernels do have an expansion
in powers of H, and besides, the factors

exp.
1

H

pZ
o

v du/

do not depend on the path from o to p. This follows from the discussion of §2.10,
and especially from the fact that the argument of the theta functions are indepen-
dent of H along such subsequences. If one consider H ! 0 in a generic way, or if
the symbol ¹eu; evº is not torsion and 
H is not zero for other reasons, the asymp-
totic expansion features fast oscillations at all orders in H arising from the theta
functions and their derivatives.

4.2. Remarks. Equation (29) for the non-perturbative partition function was first
derived in [35] as a heuristic formula to compute the asymptotics of matrix inte-
grals,N D H�1 playing the role of the matrix size. In [37] it was proved that it has
order by order in powers of H�1 a property of background independence, and that
it transform like a theta function of characteristics Œ�; 	� under modular transfor-
mation. Actually, equation (29) is the result of summing all perturbative partition
functions over filling fractions shifted by integer multiples of H. This operation
looks very much like the Whitham averaging in integrable systems, and we con-
jectured (and checked to the first non trivial order) in [13] that TH is indeed a formal
tau function of an integrable system whose times are moduli of the spectral curves.
In that article, we also introduced a spinor version of the kernel  H.p1; p2/ (equa-
tion (30)), in order to build a wave function in the language of integrable systems.
“Wave function” is a generic name for any complex-valued solution of a linear
ODE’s or difference equation. ‰˛.m/ �  H.p

˛.m/; p0/ should be considered as
the asymptotic series of a wave function, where p0 is a point hold fixed in C0.
Different branches p˛.m/ give rise to wave functions with dominant asymptotic
behavior in different sectors. Typically, a wave function is a linear combination of
‰˛.m/, and thus its asymptotics is subject to the Stokes phenomenon when one
goes from one sector to the other. The advantage of introducing the kernels is that
the Stokes phenomenon is described by a single object  H.p; p0/ with p 2 C0,
through the branching structure of the covering m W C0 ! yC.

One can in principle derive the difference equation satisfied by H.p; p0/ order
by order in H, and we expect it to have an expansion in powers of H, no matter if
the spectral curve satisfy the Boutroux and the quantization condition. However,
a general expression for the resummed difference operator annihilating the wave
function (and its njn counterpart) just from the data of the spectral curve is not
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available. Recently, Gukov and Sułkowski [53] have pointed out that, adding some
assumption on the form of the answer, allows to reconstruct the full ODE or differ-
ence operator from the knowledge of the first orders. In particular in the context
of hyperbolic geometry, the A-hat polynomial [45] is expected to appear as one of
those operators (cf. §5.3). The A-hat polynomial is known in closed form for many
knots, and Dimofte [28] has discussed a procedure to construct the yA-polynomial
from the A-polynomial. Those observations might give hints towards a general
theory for the reconstruction of an exact integrable system whose tau function has
precisely an asymptotic given to all order by equation (29) in the limit H ! 0.

4.3. Rewriting in terms of modular quantities. It was proved in [37] that TH

has modular properties. Since the Bergman kernel B0 is not modular invariant,
the !h

n are not either modular. Similarly, although the theta function is modular,
its derivative are not. So, the modular properties in the expression (29) are not
manifest.

From equation (19), one sees that the deformed Bergman kernelB� is modular
invariant if we have chosen � D �.�/ as a function of � which is quasimodular of
weight 2, namely

�..a� C b/.c� C d/�1/ D c.c� C d/t C .c� C d/ � �.�/ � .c� C d/t :

If this is the case, it is straightforward to deduce from the topological recursions
formula that !h

nj�.
/
is modular invariant when 2h � 2 C n � 0. It is often eas-

ier to compute modular objects than non-modular ones, so imagine that we have
computed the !h

nj�.
/
. We would like to write TH only in terms of !h

nj�.
/
. This can

be done using equation (27) to express !h
n � !h

nj�D0
in terms of !h

nj� . The result
(valid for any �) is

TH D exp
�X

h�0

H2h�2 Fhj�
�
#
�X

r�0

1

rŠ

X
hj �0; dj �1

2hj �2Cdj >0

rY
j D1

F
.dj /

hj j� � Tdj j�
.2i�/dj dj Š

�
;

where
F

.d/

hj� D
I
B�

� � �
I
B�

!h
d j�;

and

Td j� D
bd=2cX
d 0D0

dŠ.�1/d 0
.2i�/d 0

2d 0
d 0Š

�˝d 0 ˝ r˝.d�2d 0/#

#
: (34)
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Certain linear combinations of derivatives of theta are modular, and the Td j�.
/

precisely provide such combinations. In fact, the proof that TH is modular given
in [37] amounts to prove that Td j�.
/ are modular. In the context of elliptic curves,
we shall see in §6.1 that it is natural to choose �.�/ proportional to E2.�/.

4.4. Effect of an involution. When the genus of the quotient C0=� is zero, only
the terms with even dj remain in the partition function (equation (29)) and the
kernel (equation (31)). In this paragraph, we assume it is the case. The conclu-
sion of §3.5 was that only even order derivatives of theta functions appear in the
formulae, since the odd order derivatives are contracted with zero. Then, we may
trade r˝2 for a derivative with respect to the period matrix:

r˝2 D 4i�@
 D D:

Besides, from Property 3.5 we learn that 
H D 0 for any H. Then, the non-
perturbative partition function and the non-perturbative njn kernels happen to be
formal power series in H. And, in order to compute them, we only have to compute
derivatives of Thetanullwerten with respect to the matrix of periods. For instance,
the partition function reads

TH D exp
�X

h�0

H2h�2 Fh

��X
r�0

1

rŠ

X
hj �0; d 0

j
�1

2hj �2C2d 0
j

>0

H
P

j 2hj �2C2d 0
j

rO
j D1

F
.2d 0

j
/

hj
�D˝d 0

j

.2i�/2d 0
j .2d 0

j /Š

�
#

On the other hand, if we compute the perturbative partition function with the
Bergman kernel B� , we find, with help of equation (27),

Zpert;Hj�

� exp
�X

h�0

H2h�2 Fhj�
�

D exp
�X

h�0

H2h�2 Fh

��X
r�0

1

rŠ

X
hj �0; d 0

j
�1

2hj �2C2d 0
j

>0

H
P

j 2hj �2C2d 0
j

rY
j D1

F
.2d 0

j
/

hj
� �˝d 0

j

d 0
j Š 2

d 0
j

�
:

This expression is very similar to the non-perturbative partition function computed
with the Bergman kernel B0. More precisely,

TH D Zpert;Hj�; (35)
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where
�˝d 0

2d 0
.2i�/d 0

d 0Š
7�! 1

.2i�/2d 0
.2d 0/Š

D˝d 0
#

#
:

The analogy carries at the level of the kernels. For instance, the perturbative kernel
computed with B� is defined as

 pert;Hj�.p1; p2/ D exp
�X

n�1

1

nŠ

X
h�0

H2h�2Cn

p1Z
p2

� � �
p1Z

p2

!h
nj�
�
;

and we observe that

 H.p1; p2/ D #�
#
 pert;Hj�.p1; p2/; (36)

where
�˝d 0

2d 0
.2i�/d 0

d 0Š
7�! 1

.2i�/2d 0
.2d 0/Š

D˝d 0
#

#
:

Examples of knots for which �� D �id can be read off the tables in §B.3.
For instance, it happens for the figure eight-knot and the manifold L2R. These
two examples have be studied in [27], where it was proposed that asymptotics of
the colored Jones polynomial could be computed from  pert;Hj� , at the price of
ad hoc renormalizations of �˝d 0 to all orders. This phenomenon is explained by
equations (35) and (36), and this explanation is verified on examples in Section 6.

5. Application to knot invariants

Our main conjecture is formulated in §5.4. We first explain the background of
Chern–Simons theory and facts about volume conjectures, which allow a better
understanding of the identification of parameters and of the complicated Stokes
phenomenon when we consider functions in the variable u.

5.1. Generalities on Chern–Simons theory

With compact gauge group. The partition function of Chern–Simons theory of
compact gauge group G (and corresponding Lie algebra g) in a closed 3-manifold
SM is formally the path integral over g-connections A on SM, of the Chern–Simons
action,

ZCS I G.SM/ D
Z
ŒDA� e� 1

„
SCSŒA; SCSŒA� D

Z
SM
1

4
.A ^ dA C 2

3
A ^ A ^ A/:

It depends on the Planck constant „.
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A way to define properly this integral is to choose a saddle point Acl of the
action SCS, and perform an expansion aroundAcl as usual in perturbative quantum
field theory. By construction of Chern–Simons theory, the saddle points (also
called “classical solutions”) are flat connections on SM, i.e. those satisfying

dAcl C Acl ^ Acl D 0:

However, there are in general many equivalence classes of flat connections, and
one wishes the genuine partition function to be a sum over all classes of the per-
turbative partition functions, with some coefficients ˛cl

ZCS I G.SM/ D
X

cl
˛clZ

cl
G.

SM/:

This sum is finite when „ assumes a value9 of the form

„ D i�
K CH_ ;

whereK is an integer called level andH_ is the dual Coxeter number ofG. There
is actually a rigorous definition of the expectation values of Wilson loops for these
values: the so-called Witten–Reshetikhin–Turaev invariants [83, 85].

With complex gauge group. The complexification comes in two steps. We shall
be sketchy here and refer to [33] for details. Firstly, one considers a Chern–Simons
theory with complex gauge group GC, whose Lie algebra is obtained from g by
Weyl’s unitary trick, and with the new action SCSŒA� C SCSŒA

��. The partition
function then admits a decomposition in perturbative blocks, defined by expansion
around a gC-valued flat connexion,

ZGC
D
X

cl
˛clZ

cl
GC

D
X

cl
˛clZ

cl
G .Z

cl
G/ (37)

The partition function is real when „� and A� are the complex conjugates of „ and
A. Secondly, at the level of the perturbative blocks, one consider a complexified
version of the theory by assuming A and A� independent gC-valued connections.
The blocks then have a factorizationZcl

GC
D ˆcl

Gˆ
�;cl
G . Theˆcl

G are called holomor-
phic blocks, and they will play an important rôle in the following. By construction,
they have an expansion in power series of „, whose coefficients can be computed
as well-defined sums over Feynman diagrams.

9 There exists two conventions for the Planck constant in Chern–Simons theory: either one
puts „ [28] in the denominator in the exponential, or 2„ [30], [27]. We adopt the second conven-
tion, where „ D 2i�=integer.
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Wilson loops and colored Jones polynomial. The most important observables
in Chern–Simons theory are the expectation values of Wilson loops: given an
oriented loop K in SM, and a representation R of G, they are defined as

WG;R.K; „/ D


TrR P exp

�I
K

A

��
;

where P is the ordering operation along the loop. L can be considered as a knot
drawn in SM, and in fact the expectation value of the Wilson loops is a partition
function for the knot complement SMnK, where the classical solutions are now flat
connections on SMnKwith a meridian holonomy prescribed byR. To be precise, if
� D 1

2

P
˛>0 ˛ is the vector of Weyl’s constants,ƒR D .�j /j is the highest weight

associated to R, we must identify the holonomy eigenvalues to e„.�j C�j / D euj .
A foundational result is that the expectation values of Wilson loops define knot

invariants. When G D SU.2/ and R is the spin N �2
2

representation, which has
dimension N and is represented by the Young diagram

�N �1 D � � �„ ƒ‚ …
N �1 boxes

;

the expectation value of the Wilson loop is related to the colored Jones polynomial
JN .K; q/, with identifications

q D e2„; N„ D u; JN .K; q/ D WSU.2/;�N�1
.K; „/

WSU.2/;�N�1
.�; „/: (38)

The denominator accounts for the normalization of the Jones polynomial, which
is 1 for the unknot in S3, denoted �. The expectation value of the Wilson loop of
the unknot is itself given by

WSU.2/;�N�1
.�; „/ D qN=2 � q�N=2

q1=2 � q�1=2
D shu

sh „ :

5.2. The volume conjectures. Initially, the Jones polynomial J2.K; q/ has been
defined in [55] and its colored version JN .K; q/ in [83, 85], in the context of quan-
tum groups. JN is a Laurent polynomial in q with integer coefficients. The number
JN .K; q D e2i�=N / is usually called the Kashaev invariant, and the original vol-
ume conjecture is

Conjecture 5.1 ([58]). For any hyperbolic knot K in S3,

lim
N !1

2�

N
ln jJN .K; q D e2i�=N /j D Vol.S3 n K/:
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It was later enhanced by Gukov [51] to include hyperbolic deformations of
S3 n K, and subleading terms.

Conjecture 5.2 ([52]). For any knot K in S3, and u in an open domains U.˛/ � C,
in the regime N ! 1, k ! 1 and i�N=k D u kept fixed, the colored Jones has
an asymptotic expansion of the form

JN .q D e2„;K/ 	 „ı.˛/=2 exp
� X

���1

„�| .˛/
� .u/

�
„ D i�=k (39)

� The leading order is a complexified volume

|
.˛/
�1 .u/ D

Z p
.˛/
u

ln l d lnm;

where p.˛/
u is a point in some component of the A-polynomial such that

m.p.˛/
u / D eu

(see Remark 2.1 when K is not hyperbolic),

� ı.˛/ is an integer computed from cohomology, and | .˛/
0 .u/ is related to the

Ray-Singer torsion.

� |�.u/ for � � 1 are the coefficients in the „-expansion of a certain holomor-
phic block ˆ.˛/.u/ for SL2.C/ Chern–Simons theory on M with boundary
condition specified by u.

The statement about the leading order is called the generalized volume con-
jecture (GVC). The range of validity in u in not obvious, because of resonances
and Stokes phenomena, that we attempt to describe in the next paragraph. The
Kashaev invariant is retrieved for u D i� . We first recall two rigorous results
about the leading order of the GVC. The first one is due to Garoufalidis and Lê.

Theorem 5.3. [47] For any knot K, if u is nonnegative and small enough, then

lim
N !1
uDN „

ln JN .K; q D e2„/ D 0;

i.e. the GVC holds with the choice of the abelian component.

The second is due to Murakami, who studied the figure-eight knot starting from
a closed formula available in this case.
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Theorem 5.4 ([71]). For the figure-eight knot, the expression „ ln JN .41; q D e2„/
has the following behavior in the regime N ! 1, „ ! 0 while N„ D u.

� When u is real and juj � 1
2

ln
�

3Cp
5

2


, or u 2 Œ0; i�

6
Œ, the lim is 0 (GVC for

the abelian component).

� When u D i� or u 2 �
5i�
6
; 7i�

6

� … i�Q, the lim is given by the GVC for the
geometric component.

� When u D i�P
Q

with P;Q coprime integers and P=Q 2 �
5
6
; 7

6
Œ, the lim is 0

whenN ! 1 along multiples ofQ, whereas the lim is given by the GVC for
the geometric component if N ! 1 avoiding multiples of Q.

We recall that the A-polynomial of the figure-eight knot has two components,
one abelian .l�1/ and one geometric, which intersect atm2 D �1 andm2 D 3˙p

5
2

.
One recognizes in the latter a value of u at which a transition between components
occur for the GVC to be valid according to Theorem 5.4. The example of the figure-
eight is special in two ways. Firstly, its branchpoints are located at m2 D e˙2i�=3

and m2 D 3˙p
5

2
, so two of them coincide with the intersection points. So, we

do not see a change of branch within a single component at
q

3Cp
5

2
but actually

a transition to the abelian component, and the behavior around the other branch-
points is beyond the range of validity of Theorem 5.4. Secondly, CSa.p/ vanishes
along the path from pc to p in the geometric component such that

m2.p/ 2
h3� p

5

2
;
3C p

5

2

i
[
°
ei' W � 2

h
� 2i�

3
;
2i�
3

i±
:

so that Theorem 5.4 is only sensitive to the volume, not to the Chern–Simons part.

5.3. yA-polynomial, AJ conjecture and Stokes phenomenon. Garoufalidis and
Lê [46] showed that JN .K; q/ always satisfy some recurrence relation on N (this
was also anticipated in [42]). At the level of the analytic continuation, this turns
into the existence of an operator yAK 2 ZŒe

„
2

@u; eu; e„� so that

yAK � Ju=„.K; q D e2„/ D 0: (40)

The AJ conjecture [45] states that the limit „ ! 0 of yA coincides with the A-
polynomial of K up to a factor which is a polynomial in eu, i.e. the A-polynomial
is the semiclassical spectral curve associated to the difference equation equa-
tion (40). It has been proved recently in [63] for hyperbolic knots satisfying
some technical assumptions and for which the A-polynomial has only a single
irreducible factor apart from .l � 1/.
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If we treated equation (40) like an ODE, the leading asymptotic of the colored
Jones when „ ! 0 would be given naively by a WKB analysis, namely,

Ju=„.K; q D e2„/ 	 exp
�1

„
Z pu

ln l d lnm
�
;

where l and m satisfies lim„!0
yA„.m; l/ D 0, and pu is a point on this curve

such that lnm.pu/ D u. At the heuristic level, it explains the appearance of
the complexified volume in the leading asymptotics of the colored Jones poly-
nomial, by combining the AJ conjecture and Neumann–Zagier results reviewed
in §2.4. Going a step further, we could imagine to introduce a infinite set of times
and embed equation (40) (at least perturbatively in the new times) in a system
of compatible ODE’s, for which we know how to associate quantities satisfy-
ing loop equations [6, 12, 5]. Those loop equations have many solutions, and the
non-perturbative topological recursion applied to the semiclassical spectral curve
provide distinguished solutions as formal asymptotic series in „ [13]. This naive
approach can be seen as a vague intuition why it is sensible to compare objects
computed from the topological recursion to the asymptotics of solutions of the yA
recursion relation, which we attempt to do in §5.4.

Difference equation are of discrete nature, and if we treat it like an ODE we
may miss resonance phenomena, which here occur when q is a root of unity. On
top of that, we have to take into account the usual Stokes phenomenon, hidden in
the specification of the point pu on the semiclassical spectral curve which projects
to lnm.pu/ D u. This choice comes in three part:

� to which component C.˛/
0 of the A-polynomial should pu belong?

� in which sheet of the covering m2 W C.˛/
0 ! C should pu belong?

� which determination of the logarithms in |�1.u/ should be chosen?

We call the data of such a triple

T.˛/ D .C
.˛/
0 ; p.˛/; ln/

a determination. Although we can consider the right-hand side intrinsically as a
function of a point p in the universal covering of

S
˛ C

.˛/
0 , it is a non trivial is-

sue to predict for which determination it can be matched to the asymptotics of the
left-hand side which is a function of u. The transition between different determina-
tions occurs across Stokes curves in the u-complex plane. Although the values of
u at which several components intersect, and branchcut structures of the coverings
m2 W C0 ! C represented in the u-plane obviously play a role, we do not know
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of a unambiguous algorithm which would give, for any knot, the determination
corresponding to each domain and the correct pattern of Stokes curves which sep-
arate them. For second order differential equation (i.e. for semiclassical spectral
curves having a single component, the form y2 D Pol.x/), the algorithm yielding
the Stokes curves is known [8], but it is not obvious to generalize this construction
to curves of the form Pol.ex; ey/ D 0 and having several components. The only
reliable facts are that, for hyperbolic knots, one has to choose:

� for u close to i�: the determination corresponding to the geometric branch of
the geometric component (see §2.3). We call it the geometric determination;

� and for u nonnegative and close to 0, the determination corresponding to the
abelian component, so that |�1.u/ � 0.

5.4. Main conjectures. Let M is a hyperbolic 3-manifold with 1-cusp, and let
us consider an A-spectral curve .C0; u; v/ coming from an irreducible component
of the A-polynomial of M. We would like to consider the asymptotics series con-
structed from the 2j2-kernel introduced in §4.1,

J
n:p:TR
„ .p/ D . 

Œ2j2

„ .p; oI �.p/; �.o///1=2;

depending on a choice of basepoint o and a characteristics �; 	 2 Cg . We identi-
fied the formal parameter H to „. We recall that � is the involution

.m; l/ �!
� 1
m
;
1

l

�
defined on C0. Let us recapitulate its properties.

� J
n:p:TR
„ .p/ is defined as a formal asymptotic series

J
n:p:TR
„ .p/ D exp

� X
���1

„� Q|�.p/
�
:

� The leading order is the complexified volume up to a constant

Qj�1.p/ D 1

2

p;�.p/Z
o;�.o/

v du D
pZ

o

v du D i

2
.Vola.p/C iCSa.p//:

� For any � � 1, Q|�.p/ is a meromorphic function of p 2 C0, which is either
independent of „, or is a function of „ which does not have a power series
expansion when „ ! 0. We give in §5.5 its expression up to � D 3.
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� If 2& is the order of torsion of the symbol ¹m; lº in K2.C.C0//, for any � � 1,
Q|�.p/, seen as a function of „, assumes a constant value on the subsequences
„ D i�

k
where k is a integer with fixed congruence modulo & .

� When �� D �id, for any � � 1, Q|�.p/ is independent of „.

Conjecture 5.5. There exists a choice of o and �; 	 such that Jn:p:TR
„ .p/ is anni-

hilated by the yA-operator.

We also attempt to formulate a stronger version of the conjecture to identify
this series with the all-order asymptotics of the colored Jones polynomial.

Conjecture 5.6. If M is the complement of a hyperbolic knot, with a choice of
determination as in the GVC (Conjecture 5.2) and keeping the same notations, we
have the all-order asymptotic expansion

JN .K; q D e2„/ 	 C„ B.u/ J
n:p:TR
„ .p.˛/

u /

for a constant C„ independent of u, and a prefactor B.u/ independent of „. In
other words, for any � � 1, the | .˛/

� .u/ of equation (39) coincide with Q|�.p
.˛/.u//

up to a constant independent of „ and u.

5.5. First few terms. In the comparison to the colored Jones polynomial, there
is always an issue of normalization, which is reflected in the prefactors C„ and
B.u/ that we do not attempt to predict. Thus, the definition of Q|0 is irrelevant
here, and we refer to [26] for some discussion on the computation of the constant
term |0.u/ in the GVC in terms of algebraic geometry on the A-polynomial.

We now write down the general expression for Q|�.p/ for � D 1; 2; 3, in terms
of modular quantities (see Section 4 and in particular §4.3). We first introduce the
Œl; 0� tensors

G
h;.d/

nj� .p/ D 1

nŠ

1

.2i�/d dŠ

p;�.p/Z
o;�.o/

� � �
p;�.p/Z

o;�.o/„ ƒ‚ …
n times

I
B�

� � �
I
B�„ ƒ‚ …

d times

!h
nCd j� :

and Gh
nj�.p/ � G

h;.0/

nj� .p/. Then, we have

2 Q|1.p/ D G
1;.0/

1j�.
/
.p/CG

0;.0/

3j�.
/
.p/CT1;�j�.
/G

0;.1/

2j�.
/
.p/

C T2;�j�.
/G
0;.2/

1j�.
/
.p/C.T3;�j�.
/ � T3j�.
//G

0;.3/

0j�.
/
;
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2 Q|2.p/ D G
1;.0/

2j�.
/
.p/CT1;�j�.
/G

1;.1/

1j�.
/
.p/C .T2;�j�.
/ � T2j�.
//G

1;.2/

0j�.
/

CG
0;.0/

4j�.
/
.p/CT1;�j�.
/G

0;.1/

3j�.
/
.p/C T2;�j�.
/G

0;.2/

2j�.
/
.p/

CT3;�j�.
/G
0;.3/

1j�.
/
.p/C.T4;�j�.
/ � T4j�.
//G

0;.4/

0j�.
/

C1

2
.V

.1;1/

�j�.
/
� T 2

1j�.
//.G
1;.1/

0j�.
/
/2CV .1;1/

�j�.
/
G

0;.1/

0j�.
/
G

0;.1/

2j�.
/
.p/

CV .1;2/

�j�.
/
G

0;.1/

0j�.
/
G

0;.2/

1j�.
/
.p/C.V .1;3/

�j�.
/
� T1j�.
/T3j�.
//G

1;.1/

0j�.
/
G

0;.3/

0j�.
/

C1

2
V

.1;1/

�j�.
/
.G

0;.1/

2j�.
/
.p//2CV .1;2/

�j�.
/
G

0;.1/

2j�.
/
.p/G

0;.2/

1j�.
/
.p/

CV .1;3/

�j�.
/
G

0;.1/

2j�.
/
.p/G

0;.3/

0j�.
/
C 1

2
V

.2;2/

�j�.
/
.G

0;.2/

1j�.
/
.p//2

CV .2;3/

�j�.
/
G

0;.2/

1j�.
/
.p/G

0;.3/

0j�.
/
C1

2
.V

.3;3/

�j�.
/
� T 2

3j�.
//.G
0;.3/

0j�.
/
/2;

2 Q|3.p/ D G
2;.0/

1j�.
/
.p/C.T1;�j�.
/ � T1j�.
//G

2;.1/

0j�.
/
CG

1;.0/

3j�.
/
.p/

CT1;�j�.
/G
1;.1/

2j�.
/
.p/C T2;�j�.
/G

1;.2/

1j�.
/
.p/C.T3;�j�.
/ � T3j�.
//G

1;.3/

0j�.
/

CG
0;.0/

5j�.
/
.p/CT1;�j�.
/G

0;.1/

4j�.
/
C T2;�j�.
/G

0;.2/

3j�.
/
.p/

CT3;�j�.
/G
0;.3/

2j�.
/
.p/C T4;�j�.
/G

0;.4/

1j�.
/
.p/

C.T5;�j�.
/ � T5j�.
//G
0;.5/

0j�.
/
CV .1;1/

�j�.
/
G

1;.1/

0j�.
/
G

1;.1/

1j�.
/
.p/

CV .1;2/

�j�.
/
G

1;.1/

0j�.
/
G

1;.2/

0j�.
/
C V

.1;2/

�j�.
/
G

1;.1/

0j�.
/
G

0;.1/

3j�.
/
.p/

CV .1;2/

�j�.
/
G

1;.1/

0j�.
/
G

0;.2/

2j�.
/
.p/C V

.1;3/

�j�.
/
G

1;.1/

0j�.
/
G

0;.3/

1j�.
/
.p/

C.V .1;4/

�j�.
/
� T1j�.
/T4j�.
//G

1;.1/

0j�.
/
G

0;.4/

0j�.
/
C V

.1;1/

�j�.
/
G

0;.1/

2j�.
/
.p/G

1;.1/

1j�.
/
.p/

CV .1;1/

�j�.
/
G

0;.1/

2j�.
/
.p/G

1;.2/

0j�.
/
C V

.1;1/

�j�.
/
G

0;.1/

2j�.
/
.p/G

0;.1/

3j�.
/
.p/

CV .1;2/

�j�.
/
G

0;.1/

2j�.
/
G

0;.2/

2j�.
/
.p/C V

.1;3/

�j�.
/
G

0;.1/

2j�.
/
.p/G

0;.3/

1j�.
/
.p/

C.V .1;4/

�j�.
/
� T1j�.
/T4j�.
//G

0;.1/

2j�.
/
.p/G

0;.4/

0j�.
/

CV .2;1/

�j�.
/
G

0;.2/

1j�.
/
.p/G

1;.1/

1j�.
/
.p/C V

.2;2/

�j�.
/
G

0;.2/

1j�.
/
.p/G

1;.2/

0j�.
/

CV .2;1/

�j�.
/
G

0;.2/

1j�.
/
.p/G

0;.1/

3j�.
/
.p/C V

.2;2/

�j�.
/
G

0;.2/

1j�.
/
.p/G

0;.2/

2j�.
/
.p/
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CV .2;3/

�j�.
/
G

0;.2/

1j�.
/
.p/G

0;.3/

1j�.
/
.p/C V

.2;4/

�j�.
/
G

0;.2/

1j�.
/
.p/G

0;.4/

0j�.
/

CV .3;1/

�j�.
/
G

0;.3/

0j�.
/
G

1;.1/

1j�.
/
.p/C.V .3;2/

�j�.
/
� T3j�.
/T2j�.
//G

0;.3/

0j�.
/
G

1;.2/

0j�.
/

CV .3;1/

�j�.
/
G

0;.3/

0j�.
/
G

0;.1/

3j�.
/
.p/CV .3;2/

�j�.
/
G

0;.3/

0j�.
/
G

0;.2/

2j�.
/
.p/

CV .3;3/

�j�.
/
G

0;.3/

0j�.
/
G

0;.3/

1j�.
/
.p/C.V .3;4/

�j�.
/
� T3j�.
/T4j�.
//G

0;.3/

0j�.
/
G

0;.4/

0j�.
/

C1

6
.V

.1;1;1/

�j�.
/
� T 3

1j�.
//.G
1;.1/

0j�.
/
/3C1

2
V

.1;1;2/

�j�.
/
.G

1;.1/

0j�.
/
/2G

0;.1/

2j�.
/
.p/

C1

2
V

.1;1;2/

�j�.
/
.G

1;.1/

0j�.
/
/2G

0;.2/

1j�.
/
.p/

C1

2
.V

.1;1;3/

�j�.
/
� T 2

1j�.
/T3j�.
//.G
1;.1/

0j�.
/
/2G

0;.3/

0j�.
/

CV .1;1;2/

�j�.
/
G

1;.1/

0j�.
/
G

0;.1/

2j�.
/
.p/G

0;.2/

1j�.
/
.p/

CV .1;1;3/

�j�.
/
G

1;.1/

0j�.
/
G

0;.1/

2j�.
/
.p/G

0;.3/

0j�.
/
C 1

2
V

.1;2;2/

�j�.
/
G

1;.1/

0j�.
/
.G

0;.2/

1j�.
/
.p//2

CV .1;2;3/

�j�.
/
G

1;.1/

0j�.
/
G

0;.2/

1j�.
/
.p/G

0;.3/

0j�.
/

C1

2
.V

.1;3;3/

�j�.
/
� T1j�.
/T

2
3j�.
//G

1;.1/

0j�.
/
.G

0;.3/

0j�.
/
/2

C1

6
V

.1;1;1/

�j�.
/
.G

0;.1/

2j�.
/
.p//3 C 1

2
V

.1;1;2/

�j�.
/
.G

0;.1/

2j�.
/
.p//2G

0;.2/

1j�.
/
.p/

C1

2
V

.1;1;3/

�j�.
/
.G

0;.1/

2j�.
/
.p//2G

0;.3/

0j�.
/
C 1

2
V

.1;2;2/

�j�.
/
G

0;.1/

2j�.
/
.p/.G

0;.2/

1j�.
/
.p//2

CV .1;2;3/

�j�.
/
G

0;.1/

2j�.
/
.p/G

0;.2/

1j�.
/
.p/G

0;.3/

0j�.
/

C1

2
V

.1;3;3/

�j�.
/
G

0;.1/

2j�.
/
.p/.G

0;.3/

0j�.
/
/2

C 1

6
V

.2;2;2/

�j�.
/
.G

0;.2/

1j�.
/
.p//3C1

6
V

.2;3;3/

�j�.
/
.G

0;.2/

1j�.
/
.p//2G

0;.3/

0j�.
/

C1

2
V

.2;3;3/

�j�.
/
G

0;.2/

1j�.
/
.p/ .G

0;.3/

0j�.
/
/2 C 1

6
.V

.3;3;3/

�j�.
/
� T 3

3j�.
//.G
0;.3/

0j�.
/
/3:

In the formulae above, the Gh;.d/

l j�.
/
are contracted (from left to right) with the ten-

sors Td;�j�.
/ which were defined in equations (34) and their combinations:

V
.d1;d2/

2;�j�.
/
D Td1Cd2;�j�.
/ � Td1;�j�.
/Td2;�j�.
/
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and

V
.d1;d2;d3/

2;�j�.
/
D Td1Cd2Cd3;�j�.
/

� .Td1;�j�.
/Td2Cd3;�j�.
/ C Td2;�j�.
/Td1Cd3;�j�.
/

C Td3;�j�.
/Td1Cd2;�j�.
//

C 2Td1;�j�.
/Td2;�j�.
/Td3;�j�.
/:

They are combination of derivatives of theta functions evaluated at

w� D a.p/� a.o/C a.�.p//� a.�.o//C 
„;

and the constant 
 is defined in equation (28). When �� D �id, several simplifica-
tions occur: the gray terms vanish; a.p/�a.o/Ca.�.p//�a.�.o//D 0 and 
„ D 0,
the argument of the # and #� is always zero, i.e. w� D w D 0. In particular, this
implies that, for any � � 1, Q|�.p/ is independent of „.

5.6. Comments. We check that Conjecture 5.6 holds for the figure-eight knot
in §6.4 up to o.„3/, with o chosen (in a certain sense, as explained later) at a
branchpoint, Œ�; 	� the unique half-integer characteristics with reality properties,
and C„ � 1 C o.„3/. This very natural choice of the normalization allows to
retrieve the asymptotic expansion of the Kashaev invariant JN .41; q D e2i�=N /

whenN ! 1, by specializing to u D i� and taking the geometric determination.
For the once punctured torus bundle L2R (a knot complement in lens space),

we check in §6.5 up to o.„2/ that

JH
„ .u/ 	 C„B.u/ J

n:p:TR
„ .p.˛/.u//;

where JH
„ .u/ is a Hikami-type integral associated to L2R, and for the RHS, o

is chosen at a branchpoint, Œ�; 	� is the unique half-integer characteristics with
reality properties, and we choose the geometric determination. However, the nor-
malization is now

C„ D 1C „2

32
C o.„2/:

The free parameters in our conjecture are the basepoint o for computing prim-
itives, and the characteristics Œ�; 	� of the theta functions. Note that different
choices of o affects Q|�.p/ in a non trivial way, since it contains products of prim-
itives. We have not found a general rule to specify neither o, nor �; 	, and the
choices might be also subjected to Stokes jumps regarding the identification to
asymptotics of the Jones polynomial. In the examples treated in Section 6, the
curve has g D 1 and we find natural choices for them. In general, we think that
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it must chosen among even half-integer characteristics, so
�

2gC1
g


possibilities are

left. Recall that, for hyperelliptic curves, they are in bijection with partitions of
the 2gC 2 Weierstraß points in two sets of gC 1 elements. For A-spectral curves
of §B.1 that we found to be hyperelliptic,10 it turned out that they can be repre-
sented after birational transformations with rational coefficients .m; l/ 7! .X; Y /,
in the form

Y 2 D S1.X/S2.X/;

where S1 and S2 are polynomials with integer coefficients and of the same de-
gree g C 1, hence providing a canonical choice of even half-characteristics, for
which .#

��
�

�
.0//8 computed by Thomae’s formula is an integer. This suggests that

a deeper study of the SL2.C/ character variety could entirely fix the appropriate
choice of �; 	.

In such a conjecture, it is natural to identify the Planck constant „ of Chern–
Simons theory with the parameter H of the non-perturbative partition functions
of Section 4, since special properties arise on each side when H and „ assume
values of the form i�=integer. In the framework of Chern–Simons theory, the
expectation value of Wilson loop can be thought as a wave function, hence it is
natural to compare them to kernels. The 2-kernel  Œ2j2

H .p1; p
0
1Ip2; p

0
2/ is sym-

metric by exchange of .p1; p
0
1/ with .p2; p

0
2/, so the right hand side is invariant

under the involution �, which is also a property of the holomorphic blocks. We
attempt to motivate11 further the precise form of the conjecture in Section 7. We
shall see that, for torus knots,  Œ2j2

„ without the power 1=2 appears heuristically
in the computation of the colored Jones polynomial. For torus knots, it is known
[51, Appendix B] that the Chern–Simons partition function ZSL2.C/ coincide with
ZSU.2/ up to a simple factor. For hyperbolic knots, we rather have equation (37),
which incite to identify the holomorphic block with the analytic continuation ofp
ZSL2.C/. This may account for the power 1=2 in Conjecture 5.6.

6. Examples

From the point of view adopted in this article, the complexity of hyperbolic 3-man-
ifolds with 1-cusp is measured by the complexity of the algebraic curve defined

10 On top of curves of genus g D 1; 2 which are necessarily hyperelliptic, we found that all
genus 3 curves of §B.1 are hyperelliptic, as well as 72; 9

.1/
10 ; 10

.2/
146 (genus 4), 81 (genus 5) and 92

(genus 7). This list is not exhaustive within §B.1, because we could not obtain an answer from
maple in reasonable time for curves of high degree.

11 Dijkgraaf, Fuji and Manabe [26] also provided topological string arguments for the identi-
fication of parameters in equation (38) and the role of �.
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by the geometric component Cgeom
0 of its A-polynomial: to compute J

n:p:TR
„ .p/,

we need to compute explicitly meromorphic forms (and their primitives) on the
curve, as well as values of theta functions and their derivatives. From the tables
of A-polynomials of Culler [24, 25], we collected the genus of the A-polynomial
components of various knots in §B.1.

The simplest non trivial class of manifolds correspond to those for which C
geom
0

is a genus 1 curve, i.e. an elliptic curve. This happens for the geometric compo-
nents of the figure 8-knot and the manifold L2R. The theta and theta derivatives
values can be computed in a simple and efficient way thanks to the theory of mod-
ular forms (Section 6.1).

The next simplest class corresponds to manifolds for which C
geom
0 is hyperel-

liptic. In this case there are uniform expressions for a Bergman kernel in terms
of the coordinates m2 and l , and the theta values are well-known in terms of the
coordinates of Weierstrass points. For curves of genus g � 2, in principle, the
values of theta derivatives can be related to the theta values via the theory of
Siegel modular forms and the work of [10]. The 52 knot and the Pretzel.�2; 3; 7/
give rise to A-polynomial with a single component, of genus 2 thus hyperelliptic.
We leave to a future work explicit computations for A-spectral curves of genus 2
and comparison to the perturbative invariants obtained by other methods.

We observe many times that some components of the A-polynomial of differ-
ent knots are either the same, or birationally equivalent. For instance, the A-poly-
nomial of the 52 and the Pretzel.�2; 3; 7/ are birationally equivalent, and one of
the two factors of the A-polynomial of the 74 coincides with the A-polynomial of
the 41. This remark has some interest because values of theta derivatives, which
provide the corrective terms to be added to the topological recursion for compar-
ison with the asymptotics of the colored Jones polynomial, only depend on the
isomorphism class of C0 as a Riemann surface, i.e. only depend on A.m; l/ up to
birational equivalence.

Since C is a singular curve, we do not expect a naive inequality between the
degree of A or of the invariant trace field (which contains the cusp field), and the
genus g. We observe that

� g looks experimentally much lower than the genus of a generic smooth curve
of the same degree as the A polynomial and

� the genus of the quotient C=� also drops compared to the genus of C.

It would be interesting to have a interpretation of g as well as those two observa-
tions from the point of view of representation theory. In the same vein, we can
ask other open questions, here focused on geometric components.
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Problem 6.1. Describe the set of elliptic curves over Q which are obtained as
geometric components of hyperbolic 3-manifolds. Do all elliptic curves arise in
that way?

Problem 6.2. Characterize the hyperbolic 3-manifolds so that the quotientCgeom=�

has genus 0.

Problem 6.3. For a given genus g, do an infinite number of non-isomorphic
curves of genus g arise as geometric components of a hyperbolic 3-manifold?

These problems are already interesting in one replaces “geometric component”
by the class of “A-spectral curves” defined in equation (2.8).

6.1. Thetanullwerten for elliptic curves. In this section, we give a self-con-
tained presentation to compute the theta functions and their derivatives appearing
in Section 4 and the computation of Jn:p:TR

„ .p/ for a genus 1 spectral curve. For
more details about elliptic modular forms, the reader may consult the recent text-
book [18, Chapter 1].

6.1.1. Modular forms and their derivatives. Elliptic curves are characterized
by the orbit of their period � in the upper-half plane H under the modular group
SL2.Z/. A modular form of weight k for a subgroup� � SL2.Z/ is a by definition
a holomorphic function f W H ! C such that f .�/ D O.1/ when q D e2i�
 ! 0,
and satisfying

f
�a� C b

c� C d

�
D .c� C d/kf .�/ for all

�
a b

c d

�
2 �: (41)

When the subgroup is not precised, it is understood that equation (41) holds for
the full modular group. Obviously, modular forms are 1-periodic functions, so
have a Fourier expansion

f .�/ D
X
n�0

an q
n; q D e2i�
 ;

where only nonnegative indices appear owing to the growth condition when q ! 0.
The Eisenstein series

E2l .�/ D 1

2
.2l/

X
.n;m/2Z2n¹.0;0/º

1

.nCm�/2l
; for all l � 1;
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provide important examples of modular forms of weight 2l when l � 2. The zeta
value in the denominator enforces the normalization E2l .�/ D 1 C O.q/ when
q ! 0. We find convenient to absorb a factor of � per unit weight, and introduce
non standard notations

zE2l D �2lE2l :

It is well known that the ring of modular forms is generated by zE4 and zE6. Thus,
identities between modular forms of a given weight can be proved by checking that
only a finite number of their Fourier coefficients match. zE2 fails to be modular,
indeed one can show

zE2

�a� C b

c� C d

�
D .c� C d/2 zE2.�/ � 6i� c.c� C d/ for all

�
a b

c d

�
2 SL2.Z/:

(42)
Let us define a differentiation operator with an accurate normalization for our
purposes:

D D 4i�@
 D 2.2i�/2q@q:

Obviously, derivatives of modular forms are not modular forms. If f is a modular
form of weight k for some subgroup �, then, for all

�
a b
c d

 2 �, we rather have

.Df /
�a� C b

c� C d

�
D .c� C d/kC2.Df /.�/C 4i� k c.c� C d/kC1f .�/:

This behavior is captured by the notion of “quasi-modular forms” and its relation
with “non-holomorphic modular forms” [18, Chapter 1]. We adopt however a more
pedestrian way. It is easy to check that the combination dkf D Df C 2

3
k zE2f

is modular of weight k C 2. Consequently, the differential closure of the ring of
modular forms is generated by E2, E4 and E6. The basic relations in the new ring
are

D zE2 D 2

3
. zE4 � zE2

2 /; (43)

D zE4 D 8

3
. zE6 � zE2

zE4/;

D zE6 D 4. zE2
4 � zE2

zE6/: (44)

Since the vector spaces of modular forms of weight 4, 6 and 8 are 1-dimensional,
these relations can be proved by checking from equation (42) that d1

zE2 is modular
of weight 4, hence of the form c4

zE4, and similarly d4
zE4 D c4

zE6 and d6
zE6 D

c6
zE6. Then, one finds c2l by matching the constant Fourier coefficients of the two

sides.
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6.1.2. Theta functions and their derivatives. In genus 1 there are 3 even char-
acteristics 1

2
, 0 and 


2
. The corresponding theta values are

#2.�/ D
X
n2Z

.�1/n qn2=2;

#3.�/ D
X
n2Z

qn2=2;

#4.�/ D
X

n2ZC1=2

qn2=2;

and they satisfy the relation
#4

2 C #4
4 D #4

3 :

The #i are modular forms of weight 1=2, but only for a congruence subgroup �.2/
of SL2.Z/ (this is related to the shift of argument and the eight root of unity in
equation (20)). Their fourth powers build a vector modular form of weight 2,

�!
#4.� C 1/ D

0
@�1 0 0

0 0 1

0 1 0

1
A � �!

#4.�/;
�!
#4.�1=�/ D �2

0
@ 0 0 �1
0 1 0

�1 0 0

1
A � �!

#4.�/:

(45)
It is possible to build out of #4

i expressions which are modular forms, resulting in
relations to Eisenstein series upon checking a few Fourier coefficients. As before,
we prefer to work with Q#i D �1=2#i , and we obtain

zE4 D Q#8
2 C Q#8

4 C Q#4
2

Q#4
4 ; (46)

zE6 D � Q#12
2 � 3

2
Q#8

2
Q#4

2 C 3

2
Q#4

2
Q#8

4 C Q#12
4 : (47)

Combining equations (46) and (47) with equations (43) and (44), we obtain after
some algebra the basic relations in the differential ring generated by the Q#i ,

D Q#2

Q#2

D 1

3
.� Q#4

2 � 2 Q#4
4 � zE2/; (48)

D Q#3

Q#3

D 1

3
.� Q#4

2 C Q#4
4 � zE2/;

D Q#4

Q#4

D 1

3
.2 Q#4

2 C Q#4
4 � zE2/: (49)
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From there follows the computation of the d -th derivative of Q#i to all orders,
and we observe especially that

Dd Q#i= Q#i D 3�dPd . Q#4
2 ;

Q#4
4 ;

zE2/;

where Pd is a polynomial with integer coefficients. But we explained in §4.3 how
the kernels could be computed in terms of combinations of derivatives which were
modular. We immediately see that the appropriate combination must be equal to
3�d Pd . Q#4

2 ;
Q#4

4 ; 0/. We are led to define

T2d Ii D 3�d Pd . Q#4
2 ;

Q#4
4 ; 0/:

and we now focus on the computation of those numbers.

6.1.3. Application to elliptic curves. In this paragraph we consider a curve C

defined by an equation Pol.m2; l/ D 0 with integer coefficients, whose smooth
model C0 is a Riemann surface of genus 1. Alternatively, there exists x; y 2
Q.m2; l/ such that the defining equation of C0 can be brought in Weierstraß form

y2 D 4x3 � g2x � g3; g2; g3 2 Q; (50)

and g2; g3 are called elliptic invariants. Up to a multiplicative constant, the unique
holomorphic 1-form on C0 is

z D dx
y
:

We assume we have chosen A and B cycles on the curve, it is not necessary to be
precise about this choice as we will see in a moment. If we denote

2$A D
I
A

dz and 2$B D
I
B

dz;

then the holomorphic 1-form normalized on the A-cycle is

da D dz
2$A

and the period is

� D $B

$A

:
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The curve C0 is isomorphic to C=.Z˚ �Z/, and we can uniformize equations (50)
by

x D }
� z

2$A

j�
�

and y D }0� z

2$A

j�
�
;

where } is the Weierstraß function

}.wj�/ D 1

w2
C

X
.n;m/2Z2n¹.0;0/º

1

.w C nCm�/2
� 1

.nCm�/2
:

Let us recall the main properties of }.wj�/. It is an even periodic function with
periods 1 and � , which has a double pole with coefficient 1 and first subleading
order O.w2/. Its full asymptotic expansion when w ! 0 is

}.wj�/ D 1

w2
C
X
j �1

22j C2

.2j /Š

.�1/jB2j C2

2j C 2
zE2j C2.�/ w

2j ;

where B2j are the Bernoulli numbers. The values of the Eisenstein series for C0

can be expressed in terms of g2 and g3, by a comparison of the expansion of the
left and right hand side of equation (50) when z ! 0:

zE4.�/ D .2$A/
4 3g2

4
; zE6.�/ D .2$A/

6 27g3

8
: (51)

Equations (46)-(47) allow in principle the

.t2; t3 D t2 C t4; t4/ D .#4
2 ; #

4
3 ; #

4
4 /:

Yet, the precise choice of the solution depends on the choice of the basis of cycles,
i.e. of a representative in the SL2.Z/-orbit of � . The modular group acts on equa-
tions (46) and (47) and their solution set according to equation (45). We remind
that zE4 and zE6 are modular forms, but since we are dividing by the right power
of .2$A/ at the end which is also modular, the point in the SL2.Z/-orbit can be
chosen arbitrarily as regards zE4 and zE6. We will actually take the natural value of
zE4 and zE6 coming from an equation of the elliptic curve, see equation (51). Those
values are preserved by the subgroup �C of upper triangular matrices with 1’s on
the diagonal. Actually, �C is the subgroup preserving the A-cycle (see §2.9), so
$A is also invariant. �C acts transitively on the set of solutions of equations (46)
and (47): if .t2; t3; t4/ is a solution, the others are

.�t4;�t3;�t2/; .�t2; t4; t3/; .�t3;�t4; t2/; .t4;�t2;�t3/; .t3; t2;�t4/:
(52)
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To summarize, any solution of equations (46) and (47) – with zE4 and zE6 values
deduced from an equation of the elliptic curve by equation (51) – will give us the
fourth powers of the theta values, maybe in the wrong order and with the wrong
sign. But the sign does not matter to computeDd Q#i= Q#i from equations (48)–(49),
so the choice of another solution just results in a permutation of i D 2; 3; 4, i.e. of
the label of the even characteristics.

6.1.4. Arithmetic aspects. The modular discriminant

�.�/ D e2i�


1Y
nD1

.1� e2i�n
/24

is another important modular form, of weight 12. In terms of Eisenstein series

�.�/ D E3
4 .�/ �E2

6 .�/

1728
:

Equivalently, we find its value from equations (46) and (47) or equation (51),

�.�/ D .2$A/
12

.2�/12
.g3

2 � 27g2
3/ D 1

�12

Q#8
2

Q#8
3

Q#8
4

256
:

If we assume g2 and g3 rational (and this is so when C0 comes from an A-polyno-
mial), we learn from equations (46) and (47) and equation (51) that, for i D 2; 3; 4,
Q#4

i =.2$A/
2 are algebraic numbers. Even more, the reality of g2 and g3 imply that

the complex conjugates .t�2 ; t�3 ; t�4 / must be in the list of solutions (52), and look-
ing case by case we infer that one of the numbers Q#4

i =.2$A/
4 is real (if � > 0)

or pure imaginary (if � < 0), while the two others are complex conjugates up to
a sign. When � < 0, we also have a privileged choice of even characteristics,
namely the one for which Q#4

i0
=2$2

A is purely imaginary. This would remain true if
� was slightly changed by addition of an imaginary part (the zE2j .�/would remain
real). We deduce that T2d Ii0=.2$A/

2d are real, algebraic numbers. This last state-
ment is also true for all T2d Ii=.2$A/

2d when � > 0, because the three numbers
Q#4

i

.2$A/2 are real and we can apply directly the formulae (48)–(49).

6.1.5. Examples of A-spectral curves. Among the knots we investigated, we
have found five non isomorphic elliptic curves arising as components of A-poly-
nomials. They turn out to have a minimal model with coefficients 0;˙1. We label
them by their name in Cremona classification, the equation of their minimal model
(l andm2 are obtained by a birational transformation from x and y), and the knot
for which they arise as geometric component.
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15A8: y2 C xy C y D x3 C y2 (figure-eight knot). A set of elliptic invariants
is g2 D � 1

12
and g3 D 161

216
, and the discriminant is � D �15. We find that T2d Ii0

are rational numbers.

Q#4
i =.2$A/

2 7Ci
p

15
8

7�i
p

15
8

� i
p

15
4

T2Ii=.2$A/
2 �7C3i

p
15

24
�7�3i

p
15

24
7

12

T4Ii=.2$A/
4 47C21i

p
15

96
47�21i

p
15

96
�47

48

T6Ii=.2$A/
6 �665C9i

p
15

1152
�665�9i

p
15

1152
�301

576

T8Ii=.2$A/
8 28375�12999i

p
15

13824
28375C12999i

p
15

13824
�28285

6912

This curve also arises as non-geometric component in 7
.1/
4 , 8

.1/
18 , 8

.2/
18 , 9

.1/
24 , 9

.1/
37 ,

9
.1/
49 , 10

.1/
142, 10

.1/
145, 10

.1/
146, 10

.1/
147, 10

.1/
155.

14A4: y2 C xy C y D x3 � x (L2R). A set of elliptic invariants is g2 D �25
12

and g3 D 253
216

, and the discriminant is � D �28. We find again that T2d Ii0 are
rational numbers.

Q#4
i =.2$A/

2 11�i
p

7
8

11Ci
p

7
8

i
p

7
4

T2Ii=.2$A/
2 �11�3i

p
7

24
�11C3i

p
7

24
11
12

T4Ii=.2$A/
4 71�33i

p
7

96
71C33i

p
7

96
�71

48

T6Ii=.2$A/
6 �1837�225i

p
7

1152
�1837C225i

p
7

1152
319
576

T8Ii=.2$A/
8 72583C37509i

p
7

13824
72583�37509i

p
7

13824
�16333

6912

19A3: y2 C y D x3 C x2 C x (935). A set of elliptic invariant is g2 D 8
3

and
g3 D � 1

27
, and the discriminant is � D �19. We find that T2d Ii0 2 Q.˛/ with

Q#4
i0
=.2$A/

2 D 2ip
6
.˛1=2 C ˛�1=2/; ˛ D

�257C 3
p
57

4

�1=3

:

11A3: y2 C y D x3 � x2 (948). A set of elliptic invariants is g2 D �4
3

and
g3 D 19

27
, and the discriminant is � D �11. We find that T2d Ii0 2 Q.˛/ with

Q#4
i0
=.2$A/

2 D ip
3
.˛1=2 � ˛�1=2/; ˛ D

�329C 57
p
33

2

�1=3

:
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43A1: y2 C y D x3 C x2 (10139). A set of elliptic invariants is g2 D �4
3

and
g3 D 35

27
, and the discriminant is � D �43. We find that T2d Ii0 2 Q.˛/, with

Q#4
i0
=.2$A/

2 D ip
3
.˛1=2 � ˛�1=2/; ˛ D

�1193C 105
p
129

2

�1=3

:

In the two first examples (figure-eight knot and L2R, the fact that T2d Ii0 are
rational numbers imply that the coefficients Q|�.p/ (for the choice of the charac-
teristics associated to i0) for � � 1 sit in the same function field as the amplitudes
of the topological recursion. On the contrary, for the three last examples, they
will sit a priori in an extension by the element ˛ of the function field where the
amplitudes of the topological recursion live.

Remark 6.4. The two first elliptic curves do not have complex multiplication,
whereas the three last do. We thank Farshid Hajir for pointing us this property.

6.2. Bergman kernel for elliptic curves. In genus 1, there is only one odd char-
acteristics, and the corresponding theta function is

#1.wj�/ D i
X
n2Z

ei�
.nC1=2/2C2i�wn:

It satisfies

#1.w C 1j�/ D �#1.wj�/
and

#1.w C �/ D �e�i�.2wC
/ #1.wj�/:

The Bergman kernel normalized on the A-cycle is

B0.z1; z2/ D �.ln#1/
00� z

2$A

j�
� dz1

2$A

˝ dz2

2$A

:

On the other hand, the Weierstraß function provides another natural Bergman ker-
nel

B�.
/.z1; z2/ D }
�z1 � z2

2$A

j�
� dz1

2$A

˝ dz2

2$A

:

By “natural,” we mean that it can be written in terms of the coordinates x and y
(see equation (50)) thanks to the addition relation for }. The result is

B�.
/.z1; z2/ D
h1
4
.
y.z1/C y.z2/

x.z1/ � x.z2/
/2 � x.z1/ � x.z2/

i dz1

2$A

˝ dz2

2$A

: (53)
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There is a well-known relation between } and #1:

}.wj�/ D �.ln#1/
00.wj�/�

zE2.�/

3
:

In other words, equation (53) is the expression for a Bergman kernel normalized
on the A�.
/-cycle, with the value

�.�/ D � 1

2i�
zE2.�/

3
:

6.3. Application to some degree 2, elliptic A-spectral curves. We assume in
this paragraph that the spectral curve .C; ln l; lnm/ has a defining equation

l D P1.m
2/C P2.m

2/
p
S.m2/

R.m2/
: (54)

where P1; P2; R are polynomials and S is a polynomial of degree 4 with simple
roots and leading coefficient 1. Also, it admits a smooth model C0 of the equation

Ql D
p
S.m2/:

We also assume that ¹m; lº is 2-torsion (i.e. & D 1) and that �� D �id. The
spectral curve for the figure-eight knot and L2R takes this form. Then, many
simplifications occur.

6.3.1. Writing the n-forms. First, the ramification points ai of the spectral curve
coincide with the Weierstraß points of C0, i.e. with the roots of S . Besides, the
local involution correspond to changing the sign of the squarerootp

S.X/ 7�! �
p
S.X/;

and is in fact defined globally on C0. We define a variable z by integration of the
holomorphic 1-form

dz D dXp
S.X/

:

One can check

}
�z1 � z2

2$A

�
D 1

4

.
p
S.X1/Cp

S.X2//
2

.X1 �X2/2
� S 0.X1/ � S 0.X2/

12.X1 �X2/
C .X1 �X2/

2

12
:

by matching the behavior of the two sides at their double pole z1 D z2 up to
O.z1 � z2/. In particular, we find

}
�z � Nz
2$A

�
D .S 0.X//2

16S.X/
� S 00.X/

12
:
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which intervenes in the computation of !1
1 . We also compute

}
�z � ai

2$A

�
D S 0.ai /

4.X � ai /
C S 00.ai /

24

and Z X

}
�z0 � ai

2$A

�
dz0 D �

p
S.X/

2.X � ai /
C 1

24

Z X dX S 00.X/p
S.X/

: (55)

To avoid cumbersome notations, we use the same letter ai to denote the image
of the ramification point ai in the Jacobian of C0 (on the left hand side) and the
value of the X-coordinate at the same ramification point. The second term in
equations (55) is odd when we change the sign of the squareroot, so disappear
when we integrate from z to Nz:

zZ
Nz
}
�z0 � ai

2$A

�
dz0 D

p
S.X/.1=ai � ai /

2.X � ai /.X � 1=ai /
: (56)

Besides, one can check by differentiating the two sides of the equality

z;�.z/Z
o;�.o/

}
�z � ai

2$A

�
dz D

p
S.X/.1=ai � ai /

2.X � ai /.X � 1=ai /
C Ci ;

where Ci only depends on the basepoint o. This can be checked by differentiation
and the fact that both sides of the equality are invariant under �. If one denotes
¹ai ; �.ai /; aN{; �.aN{/º the set of ramification points, one finds that Ci D 0 when the
basepoint o is chosen as aN{ or �.aN{/. These formulae allow to complete the compu-
tation of the !h

nj�.
/
, i.e. the topological recursion with the Bergman kernel B�.
/

defined in equation (53). We just need to compute expansion of the quantities in
equation (56) at the branchpointsX ! aj , and then take residues. The coordinate
z is convenient for these computations, because Taylor expanding then amounts
to differentiating the Weierstraß function with respect its argument. This method
yields !h

nj�.
/
as a linear combination with rational coefficients of elementary n-

forms of the type
nO

j D1

}.pj /
�zj � aij

2$A

� dzj
.2$A/

pj C1
; (57)
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where pj are even integers. It is easy to integrate !h
nj�.
/

over cycles with such
a representation (we have to use equation (56) for terms with some pj D 0). In
particular, integrating zj over

1

2i�

I
B�.�/

in equation (57) gives 0 if pj > 0, and replaces the j th-factor by .2$A/
�1 if

pj D 0.
The map �� has a single eigenvalue, which we assumed to be �1. The discussion

of §4.4 applies and can be explicitly checked: we find that the amplitudes

G
h;.d/

nj�.
/
D 1

nŠ

1

.2i�/d dŠ

p;�.p/Z
o;�.o/

� � �
p;�.p/Z

o;�.o/„ ƒ‚ …
n times

I
B�.�/

� � �
I
B�.�/„ ƒ‚ …

d times

!h
nCd j�.
/

vanish if d is odd. Then, the computation of T2d Ii for d integer as detailed in §6.1
is all we need to evaluate J

n:p:TR
„ .p/.

6.3.2. Arithmetic aspects. Since S is palindromic, we can write the results in
a more compact form with a variable

w D m2 Cm�2

2
:

We also denote
S.m2/

m4
D �.w/:

Note that w is a uniformization variable for the quotient C0=� which has genus 0
by assumption. The amplitudes Gh;.d/

nj�.
/
are rational functions in w and �.w/, with

coefficients in QŒCi �. For positive levels, let Ph
n the set of n-uples .p1; : : : ; pn/

such that the monomial
nO

j D1

}
�zj � aij

2$A

� dzj
2$A

appears in !h
n.z1; : : : ; zn/. At level 1, we have

P0
3 D ¹.2; 2; 2/º; P1

1 D ¹.4/º:

It is easy to construct recursively a set Qh
n � Ph

n from the residue formula equa-
tion (22). At level one, we define Q1

1 D P1
1 and Q0

3 D P0
3, and if we know all Qh

n at
level �, we use the following rules to define Qh

n at level �C 1.
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� If
.p; p0; p2; : : : ; pn/ 2 Qh�1

nC1;

then
.p C p0 C 2; p2; : : : ; pn/ 2 Qh

n:

� For all .n0; h0/ ¤ .1; 0/; .nC 1; h/ such that 0 � h0 � h and 0 � n0 � n, if

.p; p2; : : : ; pn0C1/ 2 Qh0

n0C1 and .p0; pn0C2; : : : ; pn/ 2 Qh�h0

n�n0 ;

then
.p C p0 C 2; p2; : : : ; pn/ 2 Qh

n:

� If
.p1; : : : ; pn/ 2 Qh

n

and � is a permutation of n, then

.p�.1/; : : : ; p�.n// 2 Qh
n:

We have an inclusion Ph
n � Qh

n, and not an equality, because a monomial with
indices .p1; : : : ; pn/ may come from several terms in the residue formula, and
there might exist coincidences leading to cancellations. As a consequence

G
h;.d/

nj�.
/
2 .�.w//�3r

h;.d/
n =2 � QŒw; Ci �;

where

rh;.d/
n D max

° n�dX
iD1

.pji
C 1/ W .p1; : : : ; pn/ 2 Qh

n; j1; : : : ; jn�d 2 ¹1; : : : ; nº
±
:

We already know r
0;.0/
3 D 3, r0;.2/

3 D 1, and r1;.0/
1 D 3, and by recursion one can

show
rh;.d/

n D 3.2h � 2C n/C d:

Thus, our construction naturally entails

Q|�.w/ 2 .�.w//�3�=2 � QŒw�; for all � � 1: (58)

At the points such that m2 D 1 (in particular the reference point where the hyper-
bolic metric is complete), we have w D 1. From the definition, we see that the
cusp field is F D QŒ

p
�.1/�, and our construction naturally entails

Q|�.w D 1/ 2 .�.1//�3�=2 � QŒCi � � FŒCi �; for all � � 1: (59)

In the examples below, we needCi � 0, so one can forget aboutCi in equation (58)
and equation (59). In this case, our Conjecture 5.6 predicts that the coefficients of
the asymptotic expansion of the Kashaev invariant belong to the cusp field F.
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6.4. 41 (figure-eight knot). Apart from the abelian factor .l � 1/, the A-polyno-
mial has a unique factor (necessarily the geometric one)

A.m; l/ D l2m4 C l.�m8 Cm6 C 2m4 Cm2 � 1/Cm4

It defines a curve C0 of genus 1. The symbol ¹m; lº is 2-torsion, and �� D �id.
The spectral curve can be put in the form of equation (54),

l D m8 �m6 � 2m4 �m2 C 1C .m4 � 1/
p
S.m2/

2m4

and

S.X/ D X4 � 2X3 �X2 � 2X C 1;

so the results of §6.3 can be applied, and we introduce

w D m2 Cm�2

2
D ch.2u/;

so
S.m2/

m4
D �.w/ D 4w2 � 4w � 3:

The curve has 4 ramification points, of coordinates

.m2; l/ D
�3˙ p

5

2
; 1
�

and
��1˙ i

p
3

2
;�1

�
:

The local involution

z 7�! Nz

is defined globally on C0, and it corresponds to

.m; l/ 7�! .m; 1=l/:

Incidentally, this involution coincides with the amphichiral symmetry. The cusp
field is QŒ

p�3�. It is known [66] that the hyperbolic volume of Mu D S3 n 41

with cusp angle 2 Imu and Reu D 0, is

Vol.Mu/ D 2
h
ƒ
�

� iuC ˇ.u/

2

�
�ƒ

�
� iu � ˇ.u/

2

�i
;

where
ˇ.u/ D arccos

�
ch.2u/ � 1

2

�
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and ƒ is the Lobachevsky function

ƒ.x/ D �
xZ

0

j ln.2 sinx0/jdx0:

In particular, it vanishes when u D ˙2i�=3, and this value coincide with the u-
projection of two of the four branchpoints. Hence, it we denote by a0 any of these
points, we find that

Im
pZ

a0

ln l d lnm D 0

is half of the hyperbolic volume with the correct additive constant.

Figure 2. The figure-eight knot.

Amplitudes. We now derive the three first terms of Jn:p:TR
„ . We choose to com-

pute the primitive with Ci � 0. We computed the !h
n up to level 3 (i.e. in the case

2h � 2C n � 3). We just present here the expression for the non-vanishing am-
plitudes Gh;.d/

nj�.
/
up to level 3. The values of Gh;.dD0/

nj�.
/
for level 1 and 2 coincide12

with the amplitudes computed in [27, §3.3]:

12 More precisely, since [27] uses the spectral curve 2v du (instead of v du here), we retrieve
their amplitudes F.h;n/ by multiplying our results by .1=2/�.
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G
0;.0/

3j�.
/
D 1

6�3=2.w/
.�12w2 C 12w � 7/;

G
0;.2/

1j�.
/
D 2.2$A/

�2

15�1=2.w/
.�4w C 3/;

G
1;.0/

1j�.
/
D 1

90�3=2.w/
.�8w3 C 44w2 � 30w � 87/;

G
0;.0/

4j�.
/
D 1

3�3.w/
.16w5 � 32w4 C 24w3 C 44w2 � 67w C 25/;

G
0;.2/

2j�.
/
D 2.2$A/

�2

135�2.w/
.64w4 � 232w3 C 156w2 C 378w � 243/;

G
0;.4/

0j�.
/
D �256.2$A/

�4

10125
;

G
1;.0/

2j�.
/
D 1

1620�3.w/

�
1280w6 � 9088w5 C 13136w4 C 22176w3

�17928w2 � 26352w C 23193

�
;

G
1;.2/

0j�.
/
D �368.2$A/

�2

10125
;

G
0;.0/

5j�.
/
D 1

60�9=2.w/

��640w8 C 1600w7 � 1440w6 � 9520w5 C 18184w4

�3988w3 � 18542w2 C 19071w � 5644
�
;

G
0;.2/

3j�.
/
D 2.2$A/

�2

30375�7=2.w/

��37888w7 C 283424w6 � 471088w5 � 636000w4

C1368360w3 C 174906w2 � 1767663w C 883791

�
;

G
0;.4/

1j�.
/
D 4.2$A/

�4

455625�5=2.w/

�
94208w5 � 287512w4 C 76748w3

370230w2 � 112527w � 219564

�
;

G
1;.0/

3j�.
/
D 1

109350�9=2.w/
G1;

G
1;.2/

1j�.
/
D 8.2$A/

�2

455625�7=2.w/
G2;

G
2;.0/

1j�.
/
D 1

2733750�9=2.w/

0
BBB@

13238272w9 � 70087552w8 C 94437312w7

C49067168w6 � 177750608w5 C 952056w4

�78657516w3 C 179205966w2 C 191047329w

�219603474

1
CCCA :
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where

G1 D
0
@�249856w9 C 2901504w8 � 6701952w7 � 8240960w6

C8573472w5 C 30776112w4 � 55663848w3

�12104316w2 C 71667990w � 34229709

1
A

and

G2 D
�
353792w7 � 1479360w6 C 1280256w5 C 1398544w4

�1258392w3 � 1990008w2 � 10098w C 1832382

�

First orders of Jn:p:TR
„ /comparison to colored Jones. We choose the even-half

characteristics Œ�; 	� leading to real-valued theta derivatives (the last column of the
table for the curve labeled 15A8 in §6.1.5 is selected). The reader may recognize in
those values the ad hoc renormalizations of the constantsGk found by the authors
of [27]. We use the general expressions given in §5.5 to compute

Q|1 D �1
12�3=2.w/

.8w3 � 4w2 � 10w C 17/

D �1
12S3=2.m2/

.m12 �m10 � 2m8 C 15m6 � 2m4 �m2 C 1/;

Q|2 D 2

�3.w/
.8w3 � 4w2 � 10w C 7/

D 2m6

S3.m2/
.m12 �m10 � 2m8 C 5m6 � 2m4 �m2 C 1/;

and

Q|3 D 1

90�9=2.w/

�
256w8 � 512w7 � 8704w6 C 2048w5 C 29792w4

�46928w3 C 1272w2 C 49164w � 27469
�

D m2

90S9=2.m2/
G3;

where

G3 D
0
@ m32 � 4m30 � 128m28 C 36m26 C 1074m24 � 5630m22

C5782m20 C 7484m18 � 18311m16 C 7484m14 C 5782m12

�5630m10 C 1074m8 C 36m6 � 128m4 � 4m2 C 1

1
A ;

These coefficients are exactly those found in [30, Section 4.2.1] for a power
series solution of the A-hat recursion relation of the figure-eight knot, so we have
checked our Conjecture 5.5 up to o.„3/, with

C„ D 1C o.„3/:



Knot invariants and non-perturbative topological recursion 109

These authors as well as [27] also find the same coefficients in the asymptotic
expansion of a Hikami-type integral JH

„ .u/ associated to the figure-eight knot. This
is believed to be the correct asymptotic expansion for the colored Jones polynomial
in the GVC near i� .

Specialization to u D i�/comparison to Kashaev invariant. We recall that the
complete hyperbolic point correspond to w D 1. The coefficients |�.w D 1/

belong to QŒ
p�3�. We find for the first orders

Q|1.w D 1/ D �11
12
.�3/�3=2;

Q|2.w D 1/ D 2 .�3/�3;

Q|3.w D 1/ D �1081
90

.�3/�9=2:

This is in agreement with the asymptotic expansion of the Kashaev invariant,
proved in [30] with help of numerics of numerical computations to be

JN .K; q D e2i�=N /

D
N !1

N 3=2

31=4
exp

�NVol.41/

2�
C 11�N

12
C 2�2

N � 1081�3
N

90
CO.�4

N /
�
;

where
�N D i�

.�3/3=2N
:

6.5. Once-punctured torus bundle L2R. If t D .R2=Z2/ n ¹0º denotes the
once-punctured torus, the 3-manifold L2R is defined as t � Œ0; 1�= 	 where the
equivalence relation is generated by

.x; 0/ 	 .L ıL ıR.x/; 1/; L.x/ D x C 1; R.x/ D x

x C 1
:

This manifold is hyperbolic [50, 80], . Apart from the abelian factor .l � 1/, the
A-polynomial has a unique factor (necessarily the geometric one)

A.m; l/ D l2m4 C l.�m6 C 2m4 C 2m2 � 1/Cm2:

It defines a curve of genus 1. The symbol ¹m; lº is 2-torsion, and �� D �id. The
spectral curve can be put in the form equation (54):

l D m6 � 2m4 � 2m2 C 1C .m2 � 1/pS.m2/

2m4
;

S.X/ D X4 � 2X3 � 5X2 � 2X C 1:
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so the results of §6.3 can be applied, and we introduce

w D m2 Cm�2

2
D ch.2u/;

S.m2/

m4
D �.w/ D 4w2 � 4w � 7:

The curve has 4 ramification points, of coordinates

.m2; l/ D
�1C 2

p
2˙

p
5C 4

p
2

2
;
1C p

2˙ .
p
2 � 1/

p
5C 4

p
2

2

�
and

�1� 2
p
2˙ i

p
4
p
2 � 5

2
;
1 � p

2˙ i.
p
2C 1/

p
4
p
2� 5

2

�
:

The local involution z 7! Nz is defined globally of C0. The cusp field is QŒ
p�7 �.

Amplitudes. We again choose to compute all primitives with Ci � 0:

G
0;.0/

3j�.
/
D � 1

24�3=2.w/
.8w3 C 36w2 C 6w C 19/

G
0;.2/

1j�.
/
D .2$A/

�2

14�1=2.w/
.�6w C 7/;

G
1;.0/

1j�.
/
D 1

168�3=2.w/
.40w3 � 12w2 � 210w � 217/;

G
0;.0/

4j�.
/
D 1

192�3.w/

�
64w6 C 832w5 � 144w4 C 3168w3

C1532w2 � 2060w C 1257

�
;

G
0;.2/

2j�.
/
D .2$A/

�2

294�2.w/
.144w4 � 816w3 C 952w2 C 1988w � 931/;

G
0;.4/

0j�.
/
D �27.2$A/

�4

1372
;

G
1;.0/

2j�.
/
D 1

28224�3.w/

�
7872w6 � 116544w5 C 341968w4 C 841120w3

�443884w2 � 350644w C 556003

�
;

G
1;.2/

0j�.
/
D �57.2$A/

�2

2744
:
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First orders of Jn:p:TR
„ /comparison to colored Jones. We choose the even-half

characteristics Œ�; 	� leading to real-valued theta derivatives (the last column of
the table for the curve labeled 14A4 in §6.1.5 is selected):

Q|1.w/ D 1

24�3=2.w/
.�40w3 C 44w2 � 14w � 127/;

Q|2.w/ D 1

128�3.w/

��64w6 C 192w5 C 1168w4 C 3488w3

�2300w2 � 2996w C 2071

�
:

This is in agreement with the results of [27], and we recognize again their
ad hoc renormalizations in the values of theta derivatives. These authors have
computed the asymptotic expansion of a Hikami type integral JH

„ .u/ associated
to L2R:

J
H;˙
„ .u/ D „ı=2 exp

� X
���1

|H;.˙/
� .u/

�
;

where ˙ indicates the dependence of the integration contour. We have

Q|1.wu̇ / D |
H;˙
1 .u/; Q|2.wu̇ /C 1

128
D |

H;˙
2 .u/

Hence, a version of Conjecture 5.6 holds up to o.„2/, if the colored Jones on the
LHS is replaced by J

H;˙
„ .u/ holds. The appropriate normalization constant is

C„ D 1C „2

128
C o.„2/:

7. Heuristics imported from torus knots

Let .P;Q/ be coprime integers. The A-polynomial of the torus knotKP;Q contains
a non-abelian component of the form A.m; l/ D lmPQ C1. Since the correspond-
ing spectral curve does not have branchpoints, its partition function and kernels
are ill–defined, so our conjecture for the Jones polynomial cannot be correct as
such for torus knots for the non-abelian branch. Nevertheless, we shall see heuris-
tically how the shape of our conjecture for any expectation value of Wilson loops
arises in the case of torus knots. It is only at the end of this derivation, when
we specialize to the Jones polynomial, that one discovers that the A-polynomial
should be replaced by the germ of one of its deformation for the conjecture to be
meaningful.
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7.1. Matrix model for torus knots

7.1.1. General case Thanks to toric symmetry, the red expectation values of Wil-
son loops of KP;Q can be computed by localization [4, 56, 61, 86], and the sum
over flat connections on S3 n KP;Q can be written as a matrix-like integral

WG;R.KP;Q; „/ D 1

ZP;Q

Z
dX e� 1

„
X2

4PQ

Y
˛>0

4 sh
�˛ � X

2P

�
sh
�˛ � X

2Q

�
�R.e

X /;

(60)
where ˛ > 0 are the positive roots ofG, �R is the character of the representationR,
and the normalization constant ZP;Q is

ZP;Q D
Z
Rn

dX e� 1
„

X2

4PQ

Y
˛>0

4 sh
�˛ � X

2P

�
sh
�˛ � X

2Q

�
: (61)

This can be written even more explicitly, using Weyl’s formula for the characters

�R.e
X / D

X
w2Weyl.G/

�.w/ew.�CƒR/�X

Y
˛>0

2 sh
�˛ � X

2

� ;

where
� D 1

2

X
˛>0

˛

is the vector of Weyl’s constants, ƒR is the highest weight associated to R.

7.1.2. SU.n/ case. For SU.n/, the positive roots are

˛i;j D ei � ej ; i < j;

where ei D .0; : : : ; 0; 1; 0; : : : ; 0/ with 1 in the i th position, and

� D
nX

iD1

�n C 1

2
� i

�
ei :

The Weyl group is the symmetric group Sn. Irreducible representations R are in
correspondence with Young diagrams with n rows, or partitions

� D .�1 � �2 � � � � � �n � 0/;

and we have
ƒR D .�1; : : : ; �n/:
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The character associated to the representation indexed by � is the Schur polyno-
mial

s�.e
X/ D

X
�2Sn

�.�/

nY
iD1

eX�.i/.�i �iC nC1
2

/

Y
1	i<j 	n

2 sh
�Xi � Xj

2

�

D det.eHi Xj /Q
1	i<j 	n 2 sh

�
Xi �Xj

2

� nY
iD1

e. nC1
2

�c/Xi ;

where
Hi D �i � i C c

and c is an arbitrary constant. From Harish–Chandra formula,

s�.e
X / D

�.H /�.X /

nY
iD1

e. nC1
2

�c/Xi

Y
1	i<j 	n

2 sh
�Xi �Xj

2

�
Z

U.n/

dU eTr H U XU �

;

where dU is the Haar measure on U.n/ with total mass 1,

H D diag.H1; : : : ; Hn/; X D diag.X1; : : : ; Xn/;

and
�.X / D

Y
1	i<j 	n

.Xi �Xj /

is the Vandermonde determinant. Thus, equation (60) gives

WSU.n/;R.KP;Q; „/

D �.H /

.PQ/n.n�1/=2ZP;Q

Z
Rn�U.n/

dX dU .�.X //2

e� 1
„

Tr X2

4PQ
C. nC1

2
�c/Tr XCTr H U XU �

eV.X=P /CV.X=Q/�V.X/;

(62)

where we have defined the potential V.X / as

eV.X/ D

Y
1	i<j 	n

2 sh
�Xi �Xj

2

�

�.X /
:
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Note that V.X / is invariant under translation of X by a matrix proportional to the
identity matrix 1n. We may include the factors i D j since they are equal to 1,
and rewrite

V.X / D Tr ln
h2 sh.1n ˝ X � X ˝ 1n/

1n ˝ X � X ˝ 1n

i

D 1

2

X
l;m�1

.�1/m BlCm

l Cm

Tr X l

lŠ

Tr Xm

mŠ
;

(63)

where Bl the l th Bernoulli number. To get rid of the linear term in the exponential
in equation (62), we shift

X 7�! X C „PQ
�n C 1

2
� c

�
1n:

The contour of integration Rn is shifted to Cn
R;H accordingly:

CR;H D R C „PQ
�n C 1

2
� c

�
:

We define the normal matrixM D UXU �, and the invariant measure on the space
Hn.C„;R/ of normal matrices with eigenvalues on the contour CR;„ is

dM D VolŒU.n/�
.2�/n nŠ

.�.X //2 dX dU:

Therefore,

WSU.n/;R.KP;Q; „/

D VolŒU.n/�
.2�/n nŠ

e„ PQ n..nC1/=2�c/2=2

.PQ/n.n�1/ZP;Q

�.H / e2PQ„..nC1/=2�c/ Tr H ;

Z
Hn.CR;„/

dM e� 1
„

Tr M 2

4PQ eV.M=P /CV.M=Q/�V.M /:

(64)

The Vandermonde of the H ’s is related to the dimension of the representation

dimR D �.H /Qn
iD1.Hi C n � c/Š ;

and the trace of H is related to the number of boxes in �,

Tr H D j�j C n
�
c � n C 1

2

�
:
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So far, the constant c was arbitrary, in particular it can depend on �. The choice

c D �j�j
n

C n C 1

2

allows to have Tr H D 0, and we now stick to it. The normalization constantZP;Q

is computed with the same steps for the trivial representation R; of SU.n/.

�;
i D 0 H;

i D �i C n C 1

2
for all i 2 ¹1; : : : ; nº:

Thus,

WSU.n/;R.KP;Q; „/

D DR

Z
Hn.CR;„/

dM e� 1
„

Tr M 2

4PQ eV.M=P /CV.M=Q/�V.M / eTr H M

Z
Hn.R/

dM e� 1
„

Tr M 2

4PQ eV.M=P /CV.M=Q/�V.M / eTr H ;M

;
(65)

where the multiplicative constant is given by

DR D e
„ PQ j�j2

n

nY
j D1

�
Hj C n � 1

2
C j�j

n

�
Š

n�1Y
j D1

j Š

dimR:

The integral in the numerator is similar to that in the denominator, except for the
external field H (resp. H ;) encoding the highest weight associated to R (resp. to
the trivial representation). We also shifted the contour from R to

CR;„ D R C 2„PQ
n

j�j:

Since the discussion to come remains at a formal level, we shall move it back to R,
and assume the range of integration to be the space of Hermitian matrices Hn.R/

in equation (65).

7.2. Computation from the topological recursion

7.2.1. Principle. For matrix integrals (with or without external potential) of the
form equation (64), we have [38]

Z D T„.Sn;„/; (66)
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where
Sn;„ D .C; x; y/

is the spectral curve of the matrix integral, which in general depend on „ and the
size of the matrix n, and T„ is the non-perturbative partition function defined in
Section 4. We have define somewhat arbitrarily13 equation (66) means that the
asymptotic expansion of the left hand side is given by the right hand side (which
we defined as a formal asymptotic series). Adding an external field in the form
eTr H M amounts (see for instance [79]) to modify the spectral curve by addition
of simple poles p1; : : : ; pn 2 C to x with residue H with respect to dy, and such
that

y.pj / D „Hj ;

and some other simple poles o1; : : : ; on 2 C with residue �H,

.C; x; y/ 7�!
�
C; x C H

nX
j D1

dSoj ;pj

dy
; y
�
:

Similarly, we denote p;
j the poles associated to the external field H ;, i.e.

y.p;
j / D „

�
� i C n C 1

2

�
:

We thus find

WSU.n/;R.KP;Q; „/ D DR

TH

�
C; x C „

nX
j D1

dSoj ;pj
=dy; y

�

TH

�
C; x C „

nX
j D1

dSoj ;p;
j
=dy; y

� :

Then, the symplectic invariance (see §3.3) allows to exchange14 the role of x and y:

WSU.n/;R.KP;Q; „/ D DR

TH

�
C; y; x C „

nX
j D1

dSoj ;pj
=dy

�

TH

�
C; y; x C „

nX
j D1

dSoj ;p;
j
=dy

� :

13 This line of reasoning does not tell us the scale of „, because changing H to ˛H amounts
to rescaling y dx to ˛ ydx, and we are not precise enough to identify y and x to (some multi-
ple of) the meridian and longitude eigenvalues m and l of knot theory. Outside Section 7, the
quantization condition satisfied by A-spectral curves provided a good argument in favor of this
choice.

14 This exchange is possible when the set of zeroes of dy is not empty, i.e. when the spectral
curve .C; y; x/ has at least one ramification point.
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Now, the simple poles are added to the second function in the spectral curve, and
we recognize the njn-kernel described in §4.1, for the spectral curve

ySn;„ D .C; y; x/

for some basepoint o:

WSU.n/;R.KP;Q; „/ D DR

 
Œnjn

„ .p1; o1I : : : Ipn; on/

 
Œnjn

„ .p;
1 ; o1I : : : Ip;

n ; on/
: (67)

7.2.2. SU.2/ case: Jones polynomial. For SU.n D 2/ and the representation
R associated to .�1; �2/ D .N � 1; 0/, we retrieve the colored Jones polynomial
(see equation (38)). It is thus computed from the 2-kernel with points p1 and p2

of projections,

y.p1/ D 2„H1 D N„; y.p2/ D 2„H2 D �N„; (68)

and, for the trivial representation,

y.p;
1 / D „; y.p;

2 / D �„:
This leads to

JN .KP;Q; q D e2„/ D N e„ PQ .N �1/2 sh „
shN„

 
Œ2j2

„ .p1; p2/

 
Œ2j2

„ .p;
1 ; p

;
2 /
:

and we insist that the kernels are computed for the spectral curve of the matrix
integral after exchange of x and y.

7.2.3. Spectral curve for the torus knots. Let P 0; Q0 be integers such that
P 0Q � Q0P D 1. The spectral curve Sn;„ D .C; x; y/ of the matrix integral in
equation (61) was derived in [17], in the regime when n„ is of order 1,

S W e�.P CQ/y � e�nH e�.P 0xCQy/ � e�.Q0xCPy/ C enH e�.P 0CQ0/x D 0: (69)

This curve can be uniformized with a variable z 2 C � C:

ex D e.P �Q/nH e�P z
�e2n„ � ez

1 � ez

�Q

ey D e.P 0�Q0�1=Q/n„ e�P 0z
�e2n„ � ez

1 � ez

�Q0

:

hence its genus is 0, and there is no theta function in the definition of its partition
function and kernels. It was argued in [17] that the topological recursion for this
curve reproduces the torus knots invariants.
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Here, we are interested in the regime where „ is small and n is fixed (and in
particular n D 2). If we keep x and y of order 1, the curve is trivial:

ePy D eP 0x:

in the sense that it does not have ramification points. So, the partition function
T„ of this spectral curve is ill-defined. Actually, when the limit spectral curve is
ill-defined, the information about the unstable terms (i.e. the terms decaying with
„ ! 0) are actually obtained contained in the blow-up of Sn;„ at its basepoint o.
It is realized by setting

x D
p
2n„ Qx and y D

p
2n„ Qy;

with Qx and Qy of order 1, and retaining the first non trivial order in equation (69)
when n „ ! 0, we find

PQ Qy2 � .P 0Q C PQ0/ Qx Qy C P 0Q0 Qx2 C 1 D 0: (70)

The formulae (66) and (67) are expected to be correct if applied to the spectral
curve of equation (70) at least for the terms of order o.1/ when „ ! 0. The non
decaying terms are rather given by the limit spectral curve itself, and thus are
trivial. This is in agreement with the fact [59] that there is no exponential growth
of the Jones polynomial of torus knots (they are not hyperbolic), in other words
Q|�1 � 0.

7.3. General mechanism. We expect that the mechanism described for torus
knots complements is general (see for instance the conjecture in [61, Section 6]),
and our proposal should essentially compute expectation values of Wilson loops
for more general 3-manifold M, provided the spectral curve is well-chosen. A sce-
nario would be that

WG;R.@M; „/ D

Z
dV �R.V / e

S.V /Z
dV eS.V /

; (71)

where V consists of eigenvalues of the holonomy operator

P exp
I

@M

A;

and S.V / the effective action for V after integrating out the other degrees of free-
dom against the Chern–Simons action. If a formula like (71) holds, the steps
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of §7.1.2 can be repeated to find

WSU.n/.@M; „=2/ /

Z
dM eS.M / eTr H MZ

dM eS.M /

;

where
M D UXU �; U 2 SU.n/;

and
Hi D �i � i C c;

for some constant c. Then, if the integralZ
dM eS.M /

is a Tau function with spectral curve Sn;H D .C; x; y/, we would find again

WSU.n/.@M; „/ /
T„
�
C; y; x C „

nX
iD1

dSo;pi
=dy

�

T„
�
C; y; x C „

nX
iD1

dSo;p;
i
=dy

� /  
Œnjn

„ .p1; : : : ; pn/

 
Œnjn

„ .p;
1 ; : : : ; p

;
n /
;

where the njn-kernel is computed for the spectral curve ySn;„ D .C; y; x/ after the
exchange x $ y. For hyperbolic manifolds, one expects to find as spectral curve
a deformation of the A-polynomial (or at least of subcomponents of it), which
reduces to the A-polynomial in the SU.n D 2/ case, i.e. to m / e2y , l / ex and
A.m; l/ D 0. This is plausible because it is known that the A-polynomial can be
obtained as the saddle point equation obtained by elimination from the Neumann–
Zagier potential [54]. In our argument, we see then from equation (68) that the
points p1 and p2 needed to compute the Jones polynomial have m-projection

lnm.p1/ D N„ C cte; lnm.p2/ D �N„ C cte;

and one recognizes15 (up to constant shift) the identification between the hyper-
bolic structure parameter m D eu and the quantum group parameter q D e2„ and
N appearing in equation (38).

15 Again, the argument for the overall scaling of „ does not come from the discussion of this
Section.
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8. Perspectives

We have constructed a formal asymptotic series Jn:p:TR
„ .p/ depending on a point

on the A-polynomial curve of a hyperbolic 3-manifold with 1-cusp, which has
interesting properties per se. It depends on a choice of characteristics �; 	 2 Cg

(which might be restricted to even-half characteristics) and basepoint o for the
computation of iterated primitives. Provided a accurate choice is made for those
data, we have conjectured that it computes the asymptotic expansion of the colored
Jones polynomial, discarding roots of unity. We have made a non-trivial check to
first orders for the figure-eight knot. A weaker conjecture is that our series is a
formal solution of the A-hat recursion relation. We made a closely related check
to first orders for the L2R. We think that working on the A-hat recursion relation
satisfied by the colored Jones polynomial is a good approach in an attempt to prove
our conjecture (or a slight modification of it).

The intuition behind our construction comes from the theory of integrable sys-
tems and its relations to loop equations. J

n:p:TR
„ .p/ was defined formally by in-

troducing an infinite number of infinitesimal deformations of the A-polynomial
curve, and one may wonder if this can be interpreted as an integrable perturbation
of the Wess–Zumino–Witten CFT.

The main interest of our proposal is rather structural than computational. Al-
though we do have an algorithm, it requires the use of a basis of meromorphic
forms which behaves well under integration, and the computation of theta func-
tions and derivatives, so is less efficient than other methods. Yet, the expression in
terms of the topological recursion suggest possible connections between knot the-
ory and respectively integrable systems [13, 40], intersection theory on the moduli
space [36] and enumerative geometry, which deserve further investigation.

This conjecture gives also a framework for the study of the arithmetic proper-
ties of perturbative knot invariants. It would particularly interesting to compare
our predictions for the expansion of the Kashaev invariant (i.e. at the complete
hyperbolic point) to those of [29] obtained by a gluing procedure.

When the quotient of (a component of) the A-polynomial curve by the involu-
tion

�.m; l/ D
� 1
m
;
1

l

�
is a genus g� D 0 curve, Jn:p:TR

„ is a formal power series, although it takes into
account non-perturbative effects. When this property does not hold, it is rather an
asymptotic series which contains fast oscillations to all orders when „ ! 0. How-
ever, the K-theoretical properties of the A-polynomial imply that, if we specialize
„ to sequences i�=k with k an integer of fixed congruence, we retrieve a formal
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power series. It would be interesting to know if this wild behavior can be seen
in the asymptotics of the colored Jones polynomial for knots such that g� ¤ 0.
The simplest examples of this kind we know are 821 and the Pretzel.�2; 3; 9/, and
are currently under investigation. Actually, earlier experiments on the asymptotics
of the colored Jones have been performed to our knowledge only for knots with
g� D 0. If Conjecture 5.6 contains some part of truth, new phenomena may be dis-
covered. Else, one would need to understand how it should be modify to preserve
the matching for 41 and L2R.

Our conjectures could be generalized in several directions.

� One may wonder if the njn kernels can be identified to asymptotics of other
relevant knot invariants. Note also that Hirota equations imply determinantal
formulae [13]

 
Œnjn

„ .p1; q1I : : : Ipn; qn/ / deti;j Œ1j1

„ .pi ; qj /;

where / means equality up to a factor involving prime forms. A naive guess,
inspired by Section 7, would be to compare  Œnjn

„ to expectation values of
Wilson loops in a Chern–Simons theory with SU.njn/ gauge group in the
limit of large representations. The rescaled size of the representation would
be in correspondence (see §5.1) in the case of SU.n/ with points p1; : : : ; p2n
on the A-polynomial curve.

� One may wish to study the asymptotics of the colored Jones when q ! 
d

(a root of unity, instead of q ! 1 here). It is natural to propose a conjec-
ture similar to 5.6, with the curve of equation lim

q!�d

yA.eu; ev; q/ replacing the
A-polynomial.

� One may wish to study the a- (orQ-)deformation of the knot invariants, con-
sidered recently in [2]. In the regime when q ! 1 but keeping a finite, this
amounts to study asymptotics for gauge groups of large rank. We guess that
the non-topological recursion for the a-deformed A-polynomial will come
into play.

� And, at the top of the hierarchy, one may consider the categorified knot in-
variants, which results from another deformation with a variable t [32]. These
knot invariants can be seen as generating series of BPS invariants. They
are conjectured to be annihilated by an operator A.eu; e„@u; a; q; t /, called
the super-A-hat polynomial, which is explicitly known in a few examples
[43, 44]. In this case, although a t -deformed spectral curve can be defined,
we think that a “deformed topological recursion” should be used in order
to compute something meaningful about their asymptotics. This intuition
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is based on the fact that Schur polynomial have to be replaced by Macdon-
ald polynomials under this deformation, and ongoing work suggests that the
analysis of the matrix model of equation (60) requires a deformation of the
topological recursion.

Although the identification for the colored Jones polynomial (N„ D lnm.pu/)
was rather simple, appropriate and non-trivial “mirror maps” (like in topological
strings [1, 15]) could be necessary to make any of those generalizations effective.

In yet another direction, the (generalized) volume conjecture can also be for-
mulated for links with L components. The SLn.C/ character variety has local
complex dimension .n�1/L at a generic point [67]. It is a challenging problem to
reduce – if only possible – the asymptotics of quantum invariants of 3-manifolds
with L cusps to algebraic geometry on this variety.

Appendixes

A. Diagrammatic representation
for the non-perturbative topological recursion

A.1. Non-perturbative partition function. The non-perturbative Tau function
TH was defined in equation (29). We had

TH D eH�2F0CF1 #
�

�
�

�
.
j�/ yTH;

with

yTH D exp
�X

h�2

H2h�2 Fh

� 1

#
��

�

�
.
j�/

°
1C

X
r�1

1

rŠ

X
hj �0; dj �1

2hj �2Cdj >0

H
P

j 2hj �2Cdj

rO
j D1

F
.dj /

hj
� r˝dj

.2i�/dj dj Š

±
#
�

�
�

�
.
j�/:

(72)

We also recall that, owing to special geometry, the kth derivative of!h
n with respect

to filling fractions is

!h;.k/
n D

k integrals‚ …„ ƒI
B

: : :

I
B

!h
nCk:

For 2 � 2h � n < 0, we represent !h
n by a surface with h handles and n legs, and

we represent r˝k#=# by a black vertex with k legs.
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Then, with those diagrammatic notations, equation (72) is represented as a sum
of graphs. Each graph has exactly one black vertex, whose legs are attached to the
legs of a product of !h

n’s, such that all legs are paired,

yTH D 1C
X H��Euler

# Aut
weight

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

where �Euler is sum of the Euler characteristics of all punctured surfaces of the
graph (each of them having a negative Euler characteristics), and # Aut 2 N� is
the symmetry factor of the graph.

A.2. Logarithm of the non-perturbative partition function. Note that the gen-
erating function for the derivatives of ln# , is related to the generating function for
the derivatives of # , by keeping the cumulants. If we represent r˝k ln# by a
white vertex with k legs, we have that the black vertex is the sum of all possible
products of white vertices having the same legs.

r˝k#
��

�

�
#
��

�

� D k edges, r˝k ln#
�

�
�

� D k edges.

and

D

D

D

DD

D

etc.



124 G. Borot and B. Eynard

This means that the diagrammatic representation of yTH, in terms of white vertices
is a sum of all graphs, not necessarily connected, whose vertices are either sur-
faces with handles and punctures, or white vertices, and whose edges connect the
punctures to white vertices. Then the logarithm of yTH has the same diagrammatic
representation, but keeping only connected graphs,

ln yTH D
X H��Euler

# Aut
weight

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

where �Euler is the sum of the Euler characteristics of the punctured surfaces ap-
pearing in the graph.

A.3. njn kernels. We take the example of the 2j2 kernel since it is the one which
can be compared to the Jones polynomial. It was defined in equation (32) by

 
Œ2j2
H .p1; o1 I p2; o2/ D THŒv du �! v duC H dSo1;p1

C H dSo2;p2
�

THŒv du�
:

Note that, when we add in the numerator simple poles p1; o1, p2; o2 to the spectral
curve, we obtain

!h
n !

1X
rD0

Hr

rŠ

r times‚ …„ ƒ
p1;p2Z

o1;o2

: : :

p1;p2Z
o1;o2

!h
nCr ; (73)

and thus

!h;.d/
n !

1X
rD0

Hr

rŠ

d times‚ …„ ƒI
B

: : :

I
B

r times‚ …„ ƒ
p1;p2Z

o1;o2

: : :

p1;p2Z
o1;o2

!h
nCrCd : (74)
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Note that the formula for TH involves only

F
.d/

h
D !

h;.d/
0 ; with 2 � 2h � d < 0.

In particular, equations (73) and (74) do not yield the terms with h D 0 and
d D 1; 2, but they produce all the other terms. Besides, the argument of the
theta function and its matrix of periods is also shifted by the addition of simple
poles in the spectral curve. We obtain

#
�

�
�

�
.wj�/ �! #

�
�
�

�
.w0j� 0/;

w0 D w C a.p1/ � a.o1/C a.p2/ � a.o2/C
X
r�2

Hr�1

rŠ

I
B

r times‚ …„ ƒ
p1;p2Z

o1;o2

: : :

p1;p2Z
o1;o2

!0
rC1;

and

� 0 D � C
X
r�1

Hr

rŠ

I
B

I
B

r times‚ …„ ƒ
p1;p2Z

o1;o2

: : :

p1;p2Z
o1;o2

!0
rC2/:

and its Taylor expansion in H generates the terms with h D 0, d D 1; 2 which
were missing in the expansion of !h;.d/

0 . Eventually, taking into account the finite
shift appearing in equation (75), the vertices are now associated with derivatives
of theta functions evaluated at

w� D a.p1/ � a.o1/C a.p2/ � a.o2/C 
;

namely

r˝k#�
��

�

�
#�
��

�

� D k edges, r˝k ln#�
�
�
�

� D k edges.

Thus, the result can be represented diagrammatically as follows:

 
Œ2j2
H .p1; o1Ip2; o2/

D eeE.p1; p2/ E.o1; o2/

E.p1; o1/ E.p2; o2/ E.p1; o2/ E.o1; p2/

#�
��

�

�
#
��

�

� O Œ2j2
H .p1; o1 I p2; o2/

yTH

;



126 G. Borot and B. Eynard

where

e D 1

H

� p1Z
o1

v duC
p2Z

o2

v du
�

with

ln O Œ2j2
H .p1; o1 I p2; o2/

D
X H��Euler

# Aut
weight

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

(76)

where now some legs attached to surfaces are not contracted with legs of white
vertices. Those open legs are associated to

p1;p2Z
o1;o2

D
p1Z

o1

C
p2Z

o2

;

or, more generally,
p1Z

o1

C � � � C
pnZ

on

;

if we wanted to compute the njn kernels. At each order �, the sum consists of a
finite number of connected graphs whose sum of Euler characteristics of surfaces
is �Euler. Note that a surface with n punctures and h handles is associated to an !h

n ,
which can itself be expressed as a sum over pants decomposition (or equivalently
skeleton graphs) of that surface (see Figure 1 and for a more detailed description
[40, Section 3]).

A.4. Perturbative knot invariants to first orders. The central object in our
conjecture concerning the asymptotics of the colored Jones was

ln O Œ2j2
H .p; o I �.p/; �.o// D 2

X
��0

H�� Q|�.p/;
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and from equation (76) they acquire a diagrammatic representation. When �� D
�id, !h;.d/

n vanish whenever d is odd, so the only graphs with non-zero weight
are those where each surface is contracted with an even number of legs incident
to a white vertex. We give below the two first orders in diagrams in this case:

2 Q|1.p/ D C1

6
C1

2
C1

2
;

2 Q|2.p/ D 1

24
C1

2
C1

4
C1

2

C 1

24
C1

8
C1

2
C

C1

6
C1

8
C1

2
C1

2

C1

4
C1

2
C 1

24
;

and we can compare this diagrammatic representation to the (black terms in) the
expressions given in §5.4.

B. Some A-spectral curves

B.1. In Rolfsen classification. We present list of hyperbolic knot complement
sorted by genus of their components, which is exhaustive up to 8 crossings (knots
which do not appear have components of higher genus). Some knots with 9 and
10 crossings knots and once-punctured torus bundle (knot complement in lens
spaces) were included. We also addedm129.3; 0/, which is studied in [16], and is
the orbifold obtained by .0; 3/ Dehn filling on the first cusp of m129. When the
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A-polynomial have several components which are not of the form .lma C b/, we
indicate their label .˛/ in exponent.

genus knot complements
0 10

.1/
152

1 41 7
.1/
4 8

.1/
18 8

.2/
18 8

.3/
18 9

.1/
24 9

.1/
35 9

.1/
37 9

.1/
48 9

.1/
49

10139 10
.1/
142 10

.1/
145 10

.1/
146 10

.1/
147 10

.1/
155 L2R m129.0; 3/

2 52 Pretzel.�2; 3; 7/ 7
.2/
4 7

.1/
7 8

.1/
5 9

.2/
37 10

.1/
136 10

.1/
154

10
.1/
160 10

.1/
163

3 61 7
.2/
7 8

.2/
5 9

.2/
35 9

.1/
47 9

.2/
48 LR3

4 72 821 9
.1/
10 9

.1/
23 946 9

.2/
49 10

.1/
61 10

.2/
145 10

.2/
146

5 81 820 9
.2/
10 9

.1/
17 9

.1/
41 9

.2/
47 10

.2/
142 10

.1/
144

6 8
.1/
16 9

.2/
17 9

.1/
31 10

.2/
136 10

.2/
152

7 63 82 92 9
.1/
16 9

.2/
41

8 9
.3/
37 942 101 10

.2/
61 10

.1/
138 10

.2/
138 10140 10

.2/
141

9 75 83 84 8
.2/
16 93 9

.1/
10 9

.2/
16 9

.1/
28 10

.1/
62 10

.2/
154 10

.2/
155

10 102 10125 10132

11 94 9
.11/
23

12 76 815 9
.1/
38

13 73 811 943 10
.2/
144

14 87 95

15 89 810 96 103 10
.2/
62 10128 10

.3/
146 10161 10162

16 86 9
.16/
28 9

.1/
29 104

17 9
.2/
31 108

18 10126 10143

19 88 944

20 99 105 10
.2/
160

21 812 97 9
.2/
29

22 10153

23 74 813 10
.2/
147

24 98

25 911 10133

26 814 9
.2/
38 946

28 912
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B.2. In tetrahedron census. We present an exhaustive list of hyperbolic 3-mani-
folds triangulated with atmost 6 tetrahedra. Those which are complement of a knot
with atmost ten crossings were rather included in Figure B.1. For all the knots in
this table, we observe that the A-polynomial has a single component.

genus knot complements
2 k31

5 k43 k44 k511

6 k51

7 k632

8 k55 k510 k514 k515 k516 k62 k633

9 k54 k56 k642

10 k57 k619

11 k518 k65 k639

12 k513 k517

13 k63 k622 k631 k638

14 k610 k611 k614 k629

15 k64 k66

16 k616

17 k615 k617 k625 k627

18 k67 k618

20 k613 k637

21 k68 k612

22 k69 k630

24 k621 k635

B.3. Properties. We present properties of spectral curves for various knots. Each
block collect equivalent curves modulo birational transformations. Note that the
transformation l 7! C l˙ma implies!h

n 7! .˙/n!h
n . The column g gives the genus

of the curve, and the column g� gives the genus of the quotient curve C=�, i.e. the
number of C1 eigenvalues of ��. In the column H, we indicate if � coincide or not
with the hyperelliptic involution. If this is the case, we necessarily have �� D �id.
j¹aºj indicates the number of ramification points. They are all simple, except when
we indicate with a superscript C1 the presence of one extra ramification point of
order 3 at .m; l/ D .�1; 1/. We then indicate the minimal positive integer & such
that 2& � ¹m; lº D 0 2 in K2.C/. When the knot is amphichiral and when the
component is stable under ˛.m; l/ D .1=m; l/, we indicate the number of C1
eigenvalues of the induced map ˛� in homology. We put question marks when we
could not obtain the answer in a reasonable time with maple.
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knot g g� H j¹aºj & amphicheiral ˛�

41 1 0 yes 4 1 yes 0

7
.1/
4 deduced from 41 by l ! lm4 1 no

8
.1/
18 1 0 no 4 2 yes

8
.2/
18 deduced from 8

.1/
18 by l ! l�1 2 yes

9
.1/
24 idem 41 1 no

9
.1/
37 idem 41 1 no

9
.1/
49 idem 41 with l ! lm8 1 no

10
.1/
142 idem 41 with l ! lm12 1 no

10
.1/
145 idem 41 with l ! �lm�2 2 no

10
.1/
146 idem 41 with l ! �lm�6 2 no

10
.1/
147 idem 41 with l ! �l�1m2 2 no

10
.1/
155 idem 8

.1/
18 with l ! l�1m�4 2 no

8
.3/
18 1 0 ? 6 1 yes 0

9
.1/
35 1 0 yes 4C1 2 no

9
.1/
48 1 0 no 2C1 1 no

10139 1 0 yes 6 2 no

L2R 1 0 yes 4 1 no

52 2 0 yes 8 2 no
7

.1/
7 idem 52 with l ! lm�4 2 no

8
.1/
5 idem 52 with l ! l�1m�12 2 no

10
.1/
154 2 0 yes 8 2 no

10
.1/
160 idem 52 with l ! lm8 2 no

10
.1/
163 idem 52 with l ! lm�8 2 no

P.�2; 3; 7/ idem 10
.1/
154 with l ! l�1m�26 2 no

k31 idem 10
.1/
154 with l ! �lm�26 2 no

7
.2/
4 2 0 yes 6 2 no

9
.2/
37 idem 7

.2/
4 with l ! l�1m�4 2 no

10
.1/
136 2 0 yes 6 2 no
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knot g g� j¹aºj & amphicheiral ˛�
61 3 0 12 1 no
9

.2/
35 idem 61 with l ! lm4 1 no

9
.1/
47 idem 61 with l ! lm8 1 no

9
.2/
48 idem 61 with l ! l�1m�4 1 no

7
.2/
7 3 0 8 2 no

8
.2/
5 3 0 14 2 no

LR3 3 0 10 1 no

72 4 0 16 2 no

821 4 1 12 2 no

910 4 0 12 2 no

9
.1/
23 4 0 12 2 no

946 4 1 10 1 no

9
.2/
49 4 1 2 2 no

10
.1/
61 4 0 16 2 no

10
.2/
146 idem 10

.2/
61 with l ! lm�8 2 no

10
.2/
145 4 1 14 2 no

81 5 0 20 1 no

820 5 1 12 2 no

9
.1/
17 5 0 18 2 no

10
.1/
144 idem 9

.2/
17 with l ! l�1m8 1 no

10
.2/
142 5 1 18 2 no

k43 5 0 16 2 no

k44 5 0 18 2 no

k511 5 0 14 1 no

10
.2/
136 6 2 16 2 no

63 7 1 12 2 yes 3
9

.1/
16 idem 63 with l ! lm12 1 no

92 7 0 24 2 no
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