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Computations in formal symplectic geometry
and characteristic classes of moduli spaces
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Abstract. We make explicit computations in the formal symplectic geometry of Kontsevich
and determine the Euler characteristics of the three cases, namely commutative, Lie and
associative ones, up to certain weights. From these, we obtain some non-triviality results
in each case. In particular, we determine the integral Euler characteristics of the outer
automorphism groups OutFn of free groups for all n � 10 and prove the existence of
plenty of rational cohomology classes of odd degrees. We also clarify the relationship
of the commutative graph homology with finite type invariants of homology 3-spheres as
well as the leaf cohomology classes for transversely symplectic foliations. Furthermore we
prove the existence of several new non-trivalent graph homology classes of odd degrees.
Based on these computations, we propose a few conjectures and problems on the graph
homology and the characteristic classes of the moduli spaces of graphs as well as curves.
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1. Introduction and statements of the main results

In celebrated papers [38, 39], Kontsevich considered three infinite dimensional
Lie algebras, namely commutative, Lie and associative ones. He proved that the
stable homology group of each of these Lie algebras is isomorphic to a free graded
commutative algebra generated by the stable homology group of sp.2g;Q/ as g
tends to infinity together with certain set of generators which he described explic-
itly. It is the totality of the graph homologies for the commutative case, the totality
of the cohomology groups of the outer automorphism groups of free groups, de-
noted by OutFn, for the Lie case, and the totality of the cohomology groups of
the moduli spaces of curves with unlabeled marked points, denoted by Mm

g =Sm,
for the associative case.

As for the commutative (resp. associative) case, Kontsevich described a gen-
eral method of constructing cycles of the corresponding graph complex by making
use of finite dimensional Lie (resp. A1) algebras with non-degenerate invariant
scalar products. In the Lie case, however, he mentioned that no non-trivial class
was obtained by similar construction. In the associative case, he also introduced
a dual construction of producing cocycles starting from a differential associative
algebra with non-degenerate odd scalar product and trivial cohomology. Certain
detailed description and generalizations of these methods have been given by sev-
eral authors including Hamilton, Lazarev (see e.g. [33, 32]) and others.
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However there have been known only a few results which deduce new infor-
mation about the graph homology and cohomology groups of OutFn or Mm

g =Sm

by making a direct use of the above theorem of Kontsevich. First, as for the Lie
case, in [50] the first named author defined a series of certain unstable homology
classes of OutFn by using his trace maps introduced in [48]. Only the first three
classes are known to be non-trivial (see Conant and Vogtmann [12] and Gray [31]).
Second, recently Conant, Kassabov, and Vogtmann [11] made a remarkable new
development in this direction and defined many more classes. Thirdly, in the com-
mutative case, the existence of two graph homology classes of odd degrees was
proved, one in Gerlits [25] and the other in Conant, Gerlits, and Vogtmann [10].
Fourthly, as for the associative case, in [52] a series of certain unstable homology
classes for genus 1 moduli spaces was introduced, all of which have been proved
to be non-trivial by Conant [9]. Finally, in our recent paper [54] we determined the
stable abelianization of the Lie algebra in the associative case. As an application
of this result, we obtained a new proof of an unpublished result of Harer. Church,
Farb, and Putman [7] gave a different proof.

The purpose of this paper is to continue these lines of investigations. We obtain
new results in each of the three cases.

To be more precise, let †g;1 be a compact oriented surface of genus g � 1

with one boundary component and we denote its first rational homology group
H1.†g;1IQ/ simply by HQ. It can be regarded as the standard symplectic vector
space of dimension 2g induced from the intersection pairing on it. Let cg de-
note the graded Lie algebra consisting of Hamiltonian polynomial vector fields,
without constant terms, on HQ ˝R Š R2g with rational coefficients. The homo-
geneous degree k part, denoted by cg.k/, can be naturally identified with SkC2HQ

where SkHQ denotes the k-th symmetric power of HQ. Let cC
g be the ideal of cg

consisting of Hamiltonian polynomial vector fields without linear terms. Next,
we denote by LHQ

the free Lie algebra generated by HQ. Let hg;1 be the graded
Lie algebra consisting of symplectic derivations of LHQ

and let hC
g;1 be the ideal

consisting of derivations with positive degrees. This Lie algebra was introduced in
the theory of Johnson homomorphisms before the work of Kontsevich (see [47])
and has been investigated extensively. We use our notation for this Lie algebra.
The notation hg is reserved for the case of a closed surface (see Remark 9.1) while
hg;1 corresponds to genus g compact surface with one boundary component.

Finally, let T0HQ denote the free associative algebra without unit generated
by HQ. Let ag be the graded Lie algebra consisting of symplectic derivations of
T0HQ and let aC

g be the ideal consisting of derivations with positive degrees.
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We denote by Sp.2g;Q/ the symplectic group which we sometimes denote
simply by Sp. If we fix a symplectic basis of HQ, then the space HQ can be
regarded as the standard representation of Sp.2g;Q/. Each piece cg.k/, hg;1.k/,
ag .k/, of the three graded Lie algebras, is naturally an Sp-module so that it has an
irreducible decomposition. It is known that this decomposition stabilizes when g
is sufficiently large.

Now we describe our main results. We determine the dimensions of the chain
complexes which compute the Sp-invariant stable homology of the three Lie al-
gebras cC

g ; h
C
g;1; a

C
g up to certain weights (see Tables 1, 3 and 6). From this, we

determine the Euler characteristic of each weight summand and the result is given
as follows. For the definition of weight, see Section 2.

Theorem 1.1. The Euler characteristics� of the Sp-invariant stable homologies of
the three Lie algebras cC

g ; h
C
g;1; a

C
g up to weight 20, 18 or 16 are given as follows:

�.H�.cC1/
Sp
w / D 1; 2; 3; 6; 8; 14; 20; 32; 44; 68 .w D 2; 4; : : : ; 20/;(i)

�.H�.hC
1;1/

Sp
w / D 1; 2; 4; 6; 10; 16; 23; 13;�96 .w D 2; 4; : : : ; 18/;(ii)

�.H�.aC1/
Sp
w / D 2; 5; 12; 24; 50; 100; 188; 347 .w D 2; 4; : : : ; 16/:(iii)

By combining Theorem 1.1 above with the description of the generators of the
stable homologies due to Kontsevich, we obtain the following result. Part .ii/
proves, in particular, the existence of odd dimensional rational homology classes
of the outer automorphism groups of free groups for the first time.

Theorem 1.2. The integral Euler characteristics e of the primitive part of Sp-in-
variant stable homologies of the three Lie algebras cC

g ; h
C
g;1; a

C
g , up to weight 20,

18 or 16, are given as follows:

e.G.n/� / D 1; 1; 1; 2; 1; 2; 2; 2; 1; 3(i)

for n D 2; 3; : : : ; 11 and w D 2n� 2,
e.OutFn/ D 1; 1; 2; 1; 2; 1; 1;�21;�124(ii)

for n D 2; 3; : : : ; 10 and w D 2n� 2,X
2g�2CmDn

m>0

e.Mm
g =Sm/ D 2; 2; 4; 2; 6; 6; 6; 1(iii)

for n D 1; 2; : : : ; 8 and w D 2n.
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Here G.n/� denotes the graph complex due to Kontsevich which is defined in terms
of graphs with the Euler characteristic .1 � n/, OutFn denotes the outer auto-
morphism group of the free group Fn of rank n, Mm

g denotes the moduli space of
curves of genus g with labeled m marked points and Sm denotes the m-th sym-
metric group.

The commutative case of the graph homology has deep connections with two
important subjects in topology. One is the theory of finite type invariants for ho-
mology 3-spheres initiated by Ohtsuki [59]. The other is the theory of characteris-
tic classes of transversely symplectic foliations going back to Gelfand, Kalinin and
Fuks [24] and more recently developed by Kontsevich [40] and further in [45, 41].
On the other hand, a beautiful connection between these two theories was found
by Garoufalidis and Nakamura [22].

Let A.;/ denote the commutative algebra generated by vertex oriented con-
nected trivalent graphs modulo the two relations, one is the .AS/ relation and the
other is the .IHX/ relation. This algebra plays a fundamental role in the former
theory above. In fact, Le [42] and Garoufalidis and Ohtsuki [23] proved that the
graded algebra associated with the Ohtsuki filtration on the space of all the ho-
mology 3-spheres is isomorphic to A.;/ which is a polynomial algebra generated
by the subspaces A.2n�2/

conn .n D 2; 3; : : :/ corresponding to connected graphs with
.2n � 2/ vertices. Furthermore the completion yA.;/ of A.;/ with respect to its
gradings serves as the target of the LMO invariant introduced in [43].

As is well-known, the top homology groupH2n�2.G
.n/� / ofG.n/� is canonically

isomorphic to A
.2n�2/
conn because it can be seen that the top coboundary operator in

the dual of the graph complex corresponds to the .IHX/ relation (see Proposi-
tion 5.3). We can deduce from this fact that A.;/ can be embedded intoH�.cC1/Sp

as a bigraded subalgebra. We define E to be the complementary bigraded algebra
(see Definition 5.4 for details) so that we have an isomorphism

H�.cC1/Sp Š A.;/˝ E

of bigraded algebras. This bigraded algebra E can be interpreted as the space of all
the graph homology classes represented by non-trivalent graphs. In the context of
the theory of stable leaf cohomology classes for transversely symplectic foliations,
it can also be interpreted as the dual space of all the exotic characteristic classes.
Here by exotic we mean that the class depends on higher jets than the connection
as well as the curvature forms by which the usual secondary characteristic classes
are defined. See Section 5 for details.

Now we can deduce the following result from Theorem 1.2 (i).
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Theorem 1.3. There exists an isomorphism

H�.cC1/Sp Š A.;/˝ E

of bigraded algebras. If we denote by PE the primitive part of E, then the Euler
characteristic of its weight w-part PEw is given by

e.PEw/ D 0; 0; 0; 0;�1;�1;�2;�3;�5;�5 .w D 2; 4; : : : ; 20/:

It follows that there exist several odd dimensional non-trivalent graph homology
classes, as well as exotic stable leaf cohomology classes for transversely symplec-
tic foliations, in each of the weights w D 10; 12; : : : ; 20.

The above theorem in the range w � 10 is essentially due to Gerlits [25],
Theorem 4.1, and the case w D 12 is due to Conant, Gerlits and Vogtmann [10],
Theorem 5.1. In fact, in the former paper the author computed, among other things,
H�.G.n/� / for all n � 6 and the case n D 7 was treated in the latter paper. If we
combine the former result with the above connection with the theory of foliations,
we can conclude the existence of a certain exotic stable leaf cohomology class
of transversely symplectic foliations of degree 7 and weight 10. This is the first
appearance of such classes.

Next we consider Theorem 1.2 .ii/. As is well-known, there is a beautiful for-
mula for the rational Euler characteristics of the mapping class groups due to
Harer and Zagier [34] and Penner [62]. In the case of OutFn, Smillie and Vogt-
mann [65] obtained a generating function for the rational Euler characteristics
�.OutFn/ and computed them for all n � 100. They are all negative and they
conjecture that they are always negative. However, compared to the case of the
mapping class groups, there still remain many open problems. For example, the
relation between the rational and the integral Euler characteristics seems to be not
very well understood. We will compare our computation above with the result of
Smillie and Vogtmann cited above in Table 5 and we observe a very interesting
behavior of the two numbers for the first time. See Section 6 for details of this as
well as other discussions of our results.

Finally we consider the case of ag . In this case, Kontsevich proved that the
primitive part of H�.aC1/Sp corresponds to the totality of the Sm-invariant ra-
tional cohomology groups H�.Mm

g IQ/Sm of the moduli spaces Mm
g of genus

g curves with m marked points for all g;m with 2g � 2 C m > 0;m � 1.
There have been known many results concerning the cohomology of these moduli
spaces for the cases of low genera g D 0; 1; 2; 3; 4 due to Getzler and Kapra-
nov [28], Getzler [26, 27], Looijenga [44], Tommasi [67, 68], Gorsky [29, 30],
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Bergström [1], and others. In Section 7, we will check that our computation of the
Euler characteristics is consistent with these known results or deduced from them
by explicit computations, in the range 2g � 2Cm � 8.

In our forthcoming paper [56], which is a sequel to this paper, we will extend
both of Theorem 1.1 .iii/ and Theorem 1.2 .iii/ from w D 16 to 500 by adopting
a completely different method. More precisely, we use a formula of Gorsky [30]
for the equivariant Euler characteristics of the moduli space of curves to obtain
certain closed formulas which enable us to determine the above values. However,
in this paper we only describe the values which we deduced from Table 6 in order
to compare with the other two cases. See Section 7 for more details about this
point.

To compute the graph homologies directly, we have to enumerate certain types
of graphs. However, according to the number of vertices increases, the difficulty
of the problem of deciding whether two given graphs are isomorphic to each
other grows very rapidly. In view of this, we adopted a method in a pure frame-
work of symplectic representation theory. This has a disadvantage that the dimen-
sions which we have to compute are considerably larger than the graph theoretical
method, because there is no effective way to distinguish between connected and
disconnected graphs in the framework of representation theory. In order to over-
come this difficulty, we made various devices to lighten the burden imposed on
computers. More precisely, our task is to determine the dimensions of the Sp-in-
variant subspaces of various Sp-modules. Theoretically there is no problem here
because we know the characters of these modules completely. However, the prob-
lem lies in the huge size of the data as well as the time which computers need.
We have developed several our own programs on the computer software Mathe-
matica which realize theoretical considerations in the representation theory. See
Section 4 for details. We have also made an extensive use of the computer program
LiE to obtain irreducible decompositions of various Sp-modules.

2. Preliminaries

In this section, we prepare a few facts about the (co)homology of graded Lie al-
gebras which will be needed in our later considerations.

Let

g D
1M

kD0

g.k/
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be a graded Lie algebra over Q and let

gC D
1M

kD1

g.k/

be its ideal consisting of all the elements of g with positive gradings. We assume
that each piece g.k/ is finite dimensional for all k. Then the chain complex C�.g/
of g splits into the direct sum

C�.g/ D
1M

wD0

C .w/� .g/

of finite dimensional subcomplexes

C .w/� .g/ D
wM

iD0

C
.w/
i .g/;

where

C
.w/
i .g/ D

M
i0Ci1C���CiwDi

i1C2i2C���CwiwDw

i0̂

.g.0//˝
i1̂

.g.1//˝ � � � ˝
iŵ

.g.w//;

so that
C

.w/
i .g/ D 0 for i > w C 1

2
d.d � 1/ .d D dim g.0//.

This induces a bigraded structure on the homology group H�.g/ described as

Hi .g/ D
1M

wD0

Hi .g/w

where
Hi .g/w D Hi.C

.w/� .g//:

We call Hi.g/w the weight w-part of Hi .g/. Let Og be the completion of g with
respect to the grading and let H�

c .Og/ be the continuous cohomology. Then we
have

H k
c .Og/ Š

1M
wD0

.Hk.g/w/
� :

Now suppose that g is an Sp-graded Lie algebra by which we mean that each
piece g.k/ is a finite dimensional representation of Sp.2g;Q/ for some fixed g
such that the bracket operation

g.i/˝ g.j / �! g.i C j /
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is a morphism of Sp-modules for any i; j . We further assume that

g.0/ D sp.2g;Q/ Š S2HQ:

Then we have a split extension

0 �! gC �! g �! sp.2g;Q/ �! 0

of Lie algebras. The E2-term of the Hochschild-Serre spectral sequence for the
homology of g is given by

E2
p;q D Hp.sp.2g;Q/IHq.g

C//:

By the assumption, the chain complex C�.gC/ decomposes into the direct sum
of subcomplexes corresponding to Sp-irreducible components. It follows that the
homology groupHq.g

C/ also decomposes into the Sp-irreducible components. In
particular, we have the Sp-invariant part which we denote by Hq.g

C/Sp. Here we
can apply the well-known vanishing theorem (see Chevalley and Eilenberg [6])
to conclude that Hp.sp.2g;Q/IHq.g

C/�/ D 0 for any p � 0 and for any Sp-irre-
ducible component � different from the trivial representation. It follows that the
spectral sequence collapses at the E2-term and we have an isomorphism

H�.g/ Š H�.sp.2gIQ//˝H�.gC/Sp:

This argument can be applied in the case of three Lie algebras treated in this pa-
per. More precisely, we set gg to be one of cg ; hg;1 or ag . Then we have natural
embeddings gg � ggC1, so that we can consider the union (or equivalently the
direct limit)

g1 D lim
g!1 gg :

Also we have its ideal gC1: The homology groups of them are given by

H�.g1/ D lim
g!1H�.gg /; H�.gC1/ D lim

g!1H�.gC
g /:

Since it is well known that the Sp-irreducible decompositions of gg.k/ stabilizes
as g goes to1, we can apply the preceding argument to conclude that

H�.g1/ Š H�.sp.1;Q//˝H�.gC1/Sp; H�.gC1/Sp D
1M

wD1

H�.gC1/
Sp
w :

Similar formulas are also valid for the continuous cohomology, although we have
to be careful here because the projective limit arises rather than the direct limit.
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Since H�.gC1/
Sp
w is finite dimensional by the assumption, we have its Euler

characteristic �.H�.gC1/
Sp
w /. We call

g.t/ D 1C
1X

wD1

�.H�.gC1/
Sp
w / t

w 2 Z�t�

the weight generating function for the Sp-invariant stable homology group of the
Sp-Lie algebra gC. Observe here that if we replace gC with g here, then we obtain
the trivial function 1 because �.H�.sp.2g;Q/// D 0.

Remark 2.1. We mention that such a kind of generating function was first consid-
ered by Perchik [62] in the context of the unstable Gelfand–Fuks cohomology of
the Lie algebra of formal Hamiltonian vector fields (ham2g in the notation of [40]
and Section 5 below) and later in [41] in the context of the stable Gelfand–Fuks
cohomology of lim

g!1 ham0
2g D Oc1 ˝R.

In the case where gg is one of the three Lie algebras considered in this paper,
we can consider the weight generating function for the Sp-invariant homology
group of the limit Lie algebra gC1.

For later use, we generalize the definition of the weight generating function in
a broader context as follows.

Let

K D
1M

d;wD0

Kd;w

be a bigraded algebra over Q such that the multiplication

Kd;w ˝Kd 0;w 0 �! KdCd 0;wCw 0

is graded commutative with respect to d (called the degree) and the weight w part

Kw D
M

d

Kd;w

is finite dimensional for any w. We define the Euler characteristic �.Kw/ by

�.Kw/ D
X

d

.�1/d dimKd;w :

We also assume that K0;0 D Q. Hereafter we always assume the above conditions
whenever we mention weight generating functions of bigraded algebras. It is easy
to see that if there are given two bigraded algebras K;K0 which satisfy the above
conditions, then the tensor product K˝K0 also satisfies them with respect to the
induced bigradings on it.
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Definition 2.2. We define the weight generating function k.t/ for a bigraded al-
gebra K as above to be

k.t/ D 1C
1X

wD1

�.Kw/ t
w :

Example 2.3. Let P D QŒx1; x2; : : :� be the polynomial algebra on given vari-
ables xi with degree 2di . If we set the weight to be equal to the degree, then the
weight generating function for P is given by

p.t/ D
Y

i

.1C t2di C t4di C : : :/ D
Y

i

.1 � t2di /�1:

Let E DV�
Œy1; y2; : : :� be the exterior algebra on given variables yi with degree

2si � 1. If we set the weight to be equal to the degree, then the weight generating
function for E is given by

e.t/ D
Y

i

.1� t2si �1/:

Proposition 2.4. Let K be a bigraded algebra and assume that it is a free graded
commutative algebra with respect to the grading by degrees. Let PK be the sub-
space consisting of primitive elements. For each d; w, set

PKd;w D PK \Kd;w

and define
�

pr
w.K/ D

X
d

.�1/d dim PKd;w :

Then we have

k.t/ D
1Y

wD1

.1� tw/��
pr
w.K/:

Proof. It is easy to see that the weight generating function of the tensor product
of two graded commutative bialgebras is the product of those of each bigraded
algebra. Since K is free by the assumption, it is the tensor product of subalgebras
generated by PK. Consider the product of weight generating functions of two
graded commutative algebras each of which is generated by an element whose
weight is the same whereas the degree is complementary, namely one is even and
the other is odd. Then by Example 2.3, we see that this product is the constant
function 1. Hence the weight generating function of K depends only on �pr

w.K/

and the claim follows.
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Remark 2.5. The number �pr
w.K/ can be interpreted as the Euler characteristic of

the space of primitive elements of weightw, or equivalently as the number of new
generators of weight w with even degrees minus that of new generators of weight
w with odd degrees.

Proposition 2.6. Let K be a bigraded algebra and assume that it is a free graded
commutative algebra with respect to the grading by degrees. Assume that the
weight generating function k.t/ is determined up to weight w0. Then we can de-
termine the numbers �pr

w.K/ .w D 1; 2; : : : ; w0/ inductively by the following re-
cursive formula

�
pr
w.K/ D Œk.t/�tw �

h w�1Y
iD1

.1� t i /��
pr
i

.K/
i

tw
.w D 1; 2; : : : ; w0/

where Œf .t/�tw denotes the coefficient of tw in a given formal power series f .t/ 2
Z�t�.

Proof. This follows from Proposition 2.4.

3. Computation of the irreducible decompositions

In this section we describe our explicit determination of the stable irreducible
decompositions of hg;1.k/; ag.k/ up to certain degrees. At present, we have de-
termined them for all k � 20. As already mentioned in the introduction, in the
commutative case, we have an isomorphism cg .k/ Š SkC2HQ which is known to
be an irreducible representation for any k.

To describe our result, we fix our notations. Any Young diagram� D Œ�1 � � ��h�

with k boxes defines an irreducible representation of the symmetric group Sk

which we denote by �Sk
or sometimes simply by the same symbol �. Thus Œk�

corresponds to the trivial representation and Œ1k� the alternating representation.
Here we use a simplified notation to express Young diagrams. For example Œ422�
will be denoted by Œ422�. For any Young diagram � D Œ�1 � � ��h� as above and for
any n � h, let �GL be the corresponding irreducible representation of GL.n;Q/.
Similarly for any g � h, let �Sp be the corresponding irreducible representation
of Sp.2g;Q/.

Our method of computing the stable irreducible decompositions for the Lie
case hg;1 as well as the associative case ag can be described as follows. For the
former case, we use the following result of Kontsevich.
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Theorem 3.1 (Kontsevich [38, 39]). Let Wk be the SkC2-module with character

�k.1
kC2/ D kŠ;

�k.1
1ab/ D .b � 1/Šab�1�.a/;

�k.a
b/ D �.b � 1/Šab�1�.a/;

and �k vanishes on all the other conjugacy classes, where � denotes the Möbius
function. Then there exists an isomorphism

hg;1.k/ Š H˝.kC2/
Q ˝AkC2

Wk

of Sp.2g;Q/-modules, whereAkC2 D QSkC2 denotes the group algebra ofSkC2.

We have given in [55] a simple proof of this result using only the standard
representation theory (see also [16]). As an immediate corollary to this theorem,
we obtain the following.

Corollary 3.2. Let � D Œ�1 � � ��h� be a Young diagram with .kC 2/ boxes and let
�SkC2

be the corresponding irreducible representation of the symmetric group
SkC2. Then the multiplicity m� of V� D H

˝.kC2/
Q ˝AkC2

�SkC2
in hg;1.k/ is

expressed as

m� D 1

.k C 2/Š
X

�2SkC2

�k.�/��.�/

where �� denotes the character of �SkC2
.

For the case of ag.k/, we have the following result.

Proposition 3.3. Let � D Œ�1 � � ��h� be a Young diagram with .k C 2/ boxes
and let �SkC2

be the corresponding irreducible representation of the symmetric
group SkC2. Then the multiplicity n� of V� D H˝.kC2/

Q ˝AkC2
�SkC2

in ag.k/ is
expressed as

n� D 1

k C 2
kC2X
iD1

��.�
i
kC2/

where �kC2 2 SkC2 denotes the cyclic permutation .12 � � � .kC2// of order kC2.
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Proof. As is well known, for any k we have an isomorphism

H
˝.kC2/
Q Š

M
j�jDkC2

.dim�SkC2
/V�

as GL.2g;Q/-modules, where j�j denotes the number of the boxes of the Young
diagram �. On the other hand, we have an isomorphism

ag .k/ D .H˝.kC2/
Q /Z=.kC2/

where the cyclic group Z=.k C 2/ of order k C 2 acts on H˝.kC2/
Q by cyclic per-

mutations. Then the claim follows by considering the restriction to the subgroup
Z=.k C 2/ � SkC2 and applying the standard argument.

Our explicit irreducible decompositions of hg;1.k/ and ag.k/ as Sp.2g;Q/-
modules are done as follows. First we determine the irreducible decompositions of
these modules as GL.2g;Q/-modules. For this, we use Corollary 3.2 and Proposi-
tion 3.3, respectively, to compute the multiplicitiesm�; n� by applying the formula
of Frobenius which expresses the value ��.�/ for any given element � 2 SkC2 as
the coefficient of a certain polynomial f� with respect to a certain monomial x�

(see e.g. [19], Frobenius Formula 4.10). We made a systematic computer compu-
tation by using this formula. Recall here that we must take the number of variables
for the polynomial f� at least as large as the number h.�/ of rows of the Young
diagram �. Hence, the necessary data will get larger and larger as the number h.�/
increases. To overcome this difficulty, we adopted the following simple argument.
Let �0 denote the conjugate Young diagram of any given one �. Then, as is well
known, we have an isomorphism

�0
SkC2

Š �SkC2
˝ Œ1kC2�

where Œ1kC2� denotes the 1-dimensional alternating representation. Since, for any
given SkC2-moduleW , its multiplicity of an irreducible representation � is equal
to that of �0 in the conjugate representation

W 0 D W ˝ Œ1kC2�;

we can easily deduce the following result.
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Proposition 3.4. In the same situation as in Corollary 3.2 and Proposition 3.3,
we have

m� D 1

.k C 2/Š
X

�2SkC2

.sgn �/�k.�/��0.�/

and

n� D 1

k C 2
kC2X
iD1

.sgn � i
kC2/��0.� i

kC2/

where sgn � denotes the sign of � .

Since the two numbers h.�0/ and h.�/ are so to speak complementary to each
other (e.g. h.Œ1k�0/ D 1 while h.Œ1k�/ D k), we can make computer computations
roughly twice as much compared to the situation where we do not use this method.
Also certain symmetries in the structure of hg;1 as well as ag which we found
in [55] decrease necessary computations considerably.

Next we use the known formula of decomposing a given irreducible GL.2g;Q/-
module �GL into Sp.2g;Q/-irreducible components (see, e.g., eq. (25.39) in [19]).
We made a computer program of this formula and by using it we made a database
which contains the Sp.2g;Q/-irreducible decomposition of all the GL.2g;Q/-
modules �GL with the number j�j of boxes of the Young diagram � less than or
equal to 30 (there are 28628 such Young diagrams).

As mentioned already, we have so far determined the Sp.2g;Q/-irreducible
decompositions of hg;1.k/ and ag.k/ for all k � 20 by making use of the above
method. Although here we omit the description of the results, see Tables 8 and 9
in which we express the dimensions of the Sp-invariant subspaces hg;1.k/

Sp for
all k � 20. These tables contain more precise information on these subspaces.
Namely they contain a complete description how these subspaces degenerate ac-
cording as the genus g decreases from the stable range one by one to the final case
g D 1.

4. Computation of the dimensions
of the Sp-invariant subspaces of various Sp-modules

In this section, we describe several methods which we developed in our computer
computations. We have to determine the dimensions of the subspaces consisting
of the Sp-invariant elements of various Sp-modules such as

� d1̂

cg .i1/
�
˝ � � � ˝

� dŝ

cg .is/
�
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or the corresponding modules where we replace cg by hg;1 or ag . We mention
that the character of any of these modules is known so that theoretically there is
no problem. More precisely, we can adopt the method given in [41], which treated
the case of cg by extending the original one due to Perchik [62], to the other two
case as well to obtain closed formulas for the above dimensions of Sp-invariants.
Unfortunately however, these formulas are too complicated so that when we use
computers to obtain explicit values, the memory problem arises in a very early
stage. We have developed other methods described as follows.

Method I (GL-decomposition of tensor products). There is a formula, called the
Littlewood–Richardson rule, which gives the irreducible decomposition of the
tensor product of any two GL-modules and a similar formula is known for the case
of Sp-modules (see e.g. [19]). However, the latter formula is considerably more
complicated than the former one. In view of this, we postpone the Sp-irreducible
decomposition as late as possible and we make the GL-irreducible decomposition
as far as possible. We made a computer program for the Littlewood–Richardson
rule and apply it in various stages in our computation.

Method II (Sp-decomposition of GL-modules). There is a combinatorial formula
which gives the Sp-irreducible decomposition of any irreducible GL-module �GL,
namely the restriction law corresponding to the pair

Sp.2g;Q/ � GL.2g;Q/

(see [19]). We made a computer program for this procedure and apply it in various
stages in our work.

Method III (Counting the number of Young diagrams with multiple double floors).
Let us call a Young diagram � with multiple double floors if it has the form

� D Œ�1�1 : : : �s�s �:

It is easy to see that � is such a Young diagram if and only if its conjugate Young
diagram �0 is of even type in the sense that all the numbers appearing in it are
even integers. Now at the final stage of counting the dimension of the Sp-invari-
ant subspace of a GL-module V , we can determine the required number without
performing the Sp-decomposition of V by adopting the following method.
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Proposition 4.1. Let V be a GL.2g;Q/-module and let V Sp denote the subspace
consisting of Sp.2g;Q/-invariant elements of V considered as an Sp.2g;Q/-mod-
ule. Also let

V D
M

�

m�.V / �Sp

be the Sp-irreducible decomposition of V . Then we have the equality

dimV Sp D
X

� W multiple double floors

m�.V /:

Proof. This follows from the fact that

dim .�GL/
Sp D

8<
:
1 .�: multiple double floors/;

0 .otherwise/;

which follows from the restriction law corresponding to the pair Sp.2g;Q/ �
GL.2g;Q/.

We made a computer program which counts the number of Young diagrams
with multiple double floors in any linear combination of Young diagrams.

Method IV (Counting pairs of Young diagrams with the same shape). The diffi-
culty in applying our program of performing the Littlewood–Richardson rule for
the tensor product V1 ˝ V2 increases according to the numbers of boxes of the
Young diagrams appearing in the irreducible decompositions of Vi get larger and
larger. In case we cannot obtain the result within an appropriate time, we adopt
this method which depends on the following fact.

Proposition 4.2. Let V1; V2 be two GL.2g;Q/-modules and let

Vi D
M

�

m�.Vi / �Sp .i D 1; 2/

be the Sp-irreducible decompositions of Vi . Then we have the equality

dim .V1 ˝ V2/
Sp D

X
�

m�.V1/m�.V2/:

Proof. This follows from the well known fact that

dim .�Sp ˝ �Sp/
Sp D

´
1 .� D �/;
0 .otherwise/:
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Here is another similar formula.

Proposition 4.3. Let V be an Sp.2g;Q/-module and let

V D
M

�

m�.V / �Sp

be its Sp-irreducible decomposition. Then we have the equality

dim
� 2̂

V
�Sp D 1

2

� X
j�j: odd

m�.V /.m�.V /C 1/C
X

j�j: even

.m�.V / � 1/m�.V /
�
:

Proof. This follows from the well known fact that

dim
� 2̂

�Sp
�Sp D

8<
:
1 .j�j: odd/;

0 .j�j: even/:

We made a computer program which counts the number of pairs with the same
Young diagrams in any two linear combination of Young diagrams. We can use
this method to check the accuracy of our computations by applying it to plural
expressions

V D V1 ˝ V2 D V 0
1 ˝ V 0

2

as tensor products of the same GL.2g;Q/-module V .

Method V (Adams operations). The most difficult part in our computation is the
determination of the GL as well as Sp irreducible decomposition of the exterior
powers

Vk
Œ13�GL of hg;1.1/ D Œ13�GL.

As is well known, the character of
Vk

Œ1�GL D Œ1k�GL is given by

ch.Œ1k �GL/ D Ek.x1; :::; xN /

whereEk denotes the k-th elementary symmetric polynomial andN denotes some
fixed large number. In particular ch.Œ13�GL/ D E3. Then the character of

Vk
Œ13�GL

can be written as

ch
� k̂

Œ13�GL
�
D Ek.E3/

where Ek.E3/ denotes the k-th elementary symmetric polynomial with respect to
the new variables ¹xixjxkºi<j <k. Here we apply the well-known classical combi-
natorial algorithm to express any symmetric polynomial as a polynomial on the el-
ementary symmetric polynomial to obtain a formula for the character of

Vk
Œ13�GL.
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For example ch
� V2

Œ13�GL
� D E6 C E2E4 � E1E5. Then we apply Method I to

obtain the GL-irreducible decomposition and further apply Method II to obtain
the Sp-irreducible decomposition. For example we have

2̂

Œ13�GL D Œ16�GL C Œ2212�GL

D Œ16�Sp C Œ2212�Sp C 2Œ14�Sp C Œ212�Sp C Œ22�Sp C 3Œ12�Sp C 2Œ0�Sp

where Œ0�Sp denotes the trivial representation. For large k, we used the computer
software LiE to obtain the irreducible decompositions. However, because of the
memory problem we could obtain the GL-irreducible decomposition of

Vk
Œ13�GL

only up to k D 6 or so. To overcome this difficulty, we used the Adams operations
 k .k D 1; 2; : : :/ which satisfy the identity

k̂

V D 1

k

� k�1̂

V ˝ V �
k�2̂

V ˝  2.V /C � � � C .�1/k�1 k.V /
�

on any representation V . It turns out that the computer computation of the Adams
operation is much easier than that of the exterior powers. By utilizing this merit
of the Adams operations, we have determined so far the GL-irreducible decompo-
sition of

Vk
Œ13�GL for k � 10 and the Sp-irreducible decomposition of

Vk
Œ13�GL

for k � 9. As for the computation of the dimensions of the Sp-invariant sub-
spaces of GL-modules with the form

Vk
Œ13�GL ˝ V for certain V , we can go

further up to k D 16 or so. Here we express
Vk

Œ13�GL.k D 10; 11; : : :/ in terms
of

Vk
Œ13�GL.k D 1; 2; : : : ; 9/ and  kŒ13�GL.k D 1; 2; : : :/ and apply the preced-

ing methods. The coefficients of this expression are complicated rational numbers
rather than the integers. From this fact, we obtain an extra merit of this method.
Namely, we can check the accuracy of the computation just by confirming the
answer to be an integer because it is most likely that any small mistake in the
computation would force that the output is not an integer.

Method VI (Counting the number of graphs with a prescribed type). In [49], a
certain linear mapping

Qh isomorphism class of trivalent graph with 2k-verticies i !
� 2k̂

Œ13�GL
�Sp

was introduced by making use of a classical result of Weyl, which is an isomor-
phism in the stable range. Here the left hand side denotes the vector space gen-
erated by the isomorphism classes of trivalent graphs with 2k vertices where we
allow a trivalent graph to have multi-edges and/or loops. In the theory of enumer-
ation of graphs, the numbers of such trivalent graphs are known for k � 16 by
making use of the result of Read [63].
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Method VII (Checking the accuracy of computations). We have adopted a few
checking procedure to confirm the accuracy of our computations. As for the ir-
reducible decompositions, we have checked that the dimension of the resulting
decomposition coincides with that of the original module by applying the Weyl
character formula. As for the dimension counting of various Sp-invariant sub-
spaces, we carried out multiple different ways of computations and checked that
the answers coincide with each other.

In short, our strategy is a mixture of theoretical considerations and computer
computations. By combining the above Methods I–VII in various ways, we made
explicit computer computations the results of which will be given in the following
three sections.

5. The case of cg and the graph homology
as well as transversely symplectic foliations

First we consider the commutative case. From the point of view of explicit com-
putations, this case of cg is the simplest among the three Lie algebras because
each piece cg.k/ Š SkC2HQ is a single irreducible Sp.2g;Q/-module. However,
its stable (co)homology is far from being well understood and there are big mys-
teries here. Before describing them, the result of our computation for this case is
depicted in Table 1.

Here Ck of the weight w part denotes

lim
g!1 dim

� M
i1Ci2C���CiwDk

i1C2i2C���CwiwDw

i1̂

.S3HQ/˝
i2̂

.S4HQ/˝ � � � ˝
iŵ

.SwC2HQ/
�Sp

so that we have a finite dimensional chain complex 0 ! Cw ! � � � ! C1 ! 0.
Also � denotes the Euler characteristic of this chain complex, namely the weight
w part of the Sp-invariant stable homology H�.cC1/

Sp
w :

Proof of Theorem 1.1 .i/. This follows from Table 1.

LetG.n/� .n � 2/ be the graph complex defined by Kontsevich, which is a chain
complex of dimension 2n� 2.

Theorem 5.1 (Kontsevich [38, 39]). For any k � 1 and n � 1, there exists an
isomorphism

PHk.c
C1/

Sp
2n Š Hk.G

.nC1/� /:
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Table 1. Case of cg .

w 2 4 6 8 10 12 14 16 18 20

C1 0 0 0 0 0 0 0 0 0 0

C2 1 0 1 0 1 0 1 0 1 0

C3 1 1 4 3 8 6 12 10 17

C4 3 0 16 20 63 78 164 205 355

C5 4 20 112 271 748 1484 3103 5447

C6 7 15 269 1013 3964 11047 29423 67611

C7 25 310 2784 14034 59153 200982 613281

C8 24 223 4690 36530 220693 1023318 4068707

C9 166 4683 68504 592111 3862954 20226716

C10 86 2963 87552 1167459 10828229 76399055

C11 1395 73358 1682134 22709573 220634704

C12 426 39797 1727415 35748802 488935936

C13 13984 1221607 41935536 832479480

C14 2732 570419 35952084 1085617203

C15 164365 21796235 1073488879

C16 23701 8867266 789223120

C17 2199842 417233525

C18 258951 149905889

C19 32900910

C20 3365151

total 1 4 13 104 1190 18296 341288 7441764 185416514 5195165986

� 1 2 3 6 8 14 20 32 44 68

Proposition 5.2. The weight generating function, denoted by c.t/, for the Sp-in-
variant stable homology groupH�.cC1/Sp is given by

c.t/ D
1Y

nD2

.1� t2n�2/�e.G
.n/
� /

where e.G.n/� / denotes the Euler characteristic of H�.G.n/� /.

Proof. This follows from Theorem 5.1 and Proposition 2.4.

Proof of Theorem 1.2 .i/. By Theorem 1.1 (i), we see that the weight generating
function

c.t/ D
1X

wD0

�.H�.cC1/
Sp
w /t

w

for H�.cC1/Sp, up to weight 20, is given by

c.t/ D 1Ct2C2t4C3t6C6t8C8t10C14t12C20t14C32t16C44t18C68t20C: : : :
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By applying Proposition 2.6, we can inductively determine the integral Euler char-
acteristics of the primitive parts, namely e.G.n/� /. If we put

Nc.t/ D .1� t2/�1.1 � t4/�1.1� t6/�1.1� t8/�2

.1� t10/�1.1 � t12/�2.1� t14/�2.1 � t16/�2.1� t18/�1.1 � t20/�3;

then we see that
c.t/� Nc.t/ � 0 mod t21:

By Proposition 5.2, we can now conclude that

e.G.n/� / D 1; 1; 1; 2; 1; 2; 2; 2; 1; 3 for n D 2; 3; : : : ; 11.

The result is depicted in the fourth row of Table 2.

Table 2. Numbers of new generators for H�.c
C
1/

Sp
w .

w 2 4 6 8 10 12 14 16 18 20

� 1 2 3 6 8 14 20 32 44 68

� of lower terms 0 1 2 4 7 12 18 30 43 65

� of primitive part 1 1 1 2 1 2 2 2 1 3

dimA.;/.w/ 1 2 3 6 9 16 25 42 65 105

generators for A.;/ 1 1 1 2 2 3 4 5 6 8

� of primitive part of E 0 0 0 0 �1 �1 �2 �3 �5 �5

As was already mentioned in the introduction, there are deep connections of
this case with two important subjects in topology. Namely the theory of finite
type invariants of homology 3-spheres as well as 3-manifolds and the theory of
characteristic classes of transversely symplectic foliations.

In [22] (Theorem 2), Garoufalidis and Nakamura proved the following beauti-
ful result. Stably there exists an isomorphism

A.;/ Š
� �̂

.S3HQ/=.Œ4�Sp/
�Sp

of graded algebras. Here Œ4�Sp D S4HQ � V2
.S3HQ/ denotes a certain sum-

mand and .Œ4�Sp/ denotes the ideal of
V�

.S3HQ/ generated by it. This result is
closely related to the following well-known fact which shows that the top homol-
ogy groups of the graph complexes correspond to the finite type invariants of
3-manifolds.
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Proposition 5.3. There exists an isomorphism

H2n�2.G
.n/� / Š A.;/.2n�2/

conn :

Here we derive this fact from the above theorem of Garoufalidis and Naka-
mura, in the framework of this paper, just for completeness. In the chain com-
plex computingH�.cC

g /2 (the weight 2 part), the boundary operator is the Poisson
bracket

2̂

.S3HQ/
@�! S4HQ

which is easily seen to be surjective. By passing to the dual, the cochain complex
computing H�

c .OcC
g /2 is

S4HQ

ı�!
2̂

.S3HQ/

which is easily seen to be injective. Here recall that any finite dimensional Sp-mod-
ule is canonically isomorphic to its dual module. Since the multiplicity of S4HQ

in
V2
.S3HQ/ is one as already pointed out in [22], this is the same summand as

above. By the definition of the Lie algebra cohomology, we can now conclude
that the final part of the cochain complex computing H�

c .OcC
g /

Sp
2k

is

� � � �! .S4HQ ˝
2k�2̂

.S3HQ//
Sp

V
.ı˝id/������! .

2k̂

.S3HQ//
Sp �! 0

where the last non-trivial homomorphism can be identified with ı ˝ id followed
by the wedge product ^. This is because ı.˛^ˇ/ D .ı˛/^ˇC .�1/deg ˛˛ ^ .ıˇ/
in general and ıˇ D 0 for any ˇ 2 S3HQ in the present case. Now the top
cohomology group H 2k

c .OcC
g /

Sp
2k

is the cokernel of the above homomorphism and
clearly the image of

V
.ı ˝ id/ coincides with the ideal .S4HQ/. One can now

apply the result of Garoufalidis and Nakamura above to obtain an isomorphism

H 2k
c .OcC

g /
Sp
2k
Š A.;/.2k/:

Passing to the dual, this yields an isomorphism

H2k.c
C
g /

Sp
2k
Š A.;/.2k/

of the top homology group. Proposition 5.3 follows from this by restricting to the
primitive part.

We can now conclude that there exists an injective homomorphism

A.;/ �! H�.cC1/Sp

and let us consider A.;/ as a subalgebra of H�.cC1/Sp.
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Definition 5.4. Let AC.;/ denote the subalgebra of A.;/ consisting of all the
elements with positive degrees and let I.AC.;// denote the ideal of H�.cC1/Sp

generated by AC.;/. Now set

E D H�.cC1/Sp=I.AC.;//

which is a free graded commutative algebra with respect to the degree. It is also
equipped with the second grading induced by the weights.

By the definition, clearly we have an isomorphism

H�.cC1/Sp Š A.;/˝ E

of bigraded algebras.

Proof of Theorem 1.3. Although the structure of the polynomial algebra A.;/ is
far from being understood, it is known that the numbers of generators for this
algebra are 1; 1; 1; 2; 2; 3; 4; 5; 6; 8; 9, for degrees w D 2; 4; : : : ; 22 (see [60]) and
the generating function of this algebra is

�.t/ D 1C t2 C 2t4 C 3t6 C 6t8 C 9t10 C 16t12 C 25t14

C 42t16 C 65t18 C 105t20 C 161t22 C : : : :
We write these values in the fifth and the sixth rows of Table 2. Then by subtracting
the sixth row from the fourth row of Table 2, we can determine the first several
terms of the weight generating function for the bigraded algebra E to be

e.t/ D 1 � t10 � t12 � 2t14 � 3t16 � 5t18 � 5t20 C : : : :

Of course we should have the identity c.t/ D �.t/e.t/ which is easy to check.
This completes the proof.

In the framework of our bigraded algebra E, the results of Gerlits [25] (The-
orem 4.1.) as well as Conant, Gerlits, and Vogtmann [10] (Theorem 5.1.) can be
described as follows. Namely, Ew D 0 for allw D 2; : : : ; 8 and E10 Š Q;E12 Š Q

are spanned by certain elements in PH7.c
C1/

Sp
10 and PH9.c

C1/
Sp
12, respectively.

Conjecture 5.5. The free graded algebra E is infinitely generated. Furthermore
there exist infinitely many generators with odd degrees.

Problem 5.6. Construct explicit cycles lying in PE.
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Next we describe the connection of the commutative case with the theory of
characteristic classes of transversely symplectic foliations. Let ham2g denote the
Lie algebra consisting of all the formal Hamiltonian vector fields on R2g with
respect to the standard symplectic form. In [40], Kontsevich considered two Lie
subalgebras

ham1
2g � ham0

2g � ham2g

where ham0
2g and ham1

2g denote the Lie subalgebra consisting of formal Hamil-
tonian vector fields without constant terms and without constant as well as linear
terms, respectively. He gave a geometric meaning to the Gelfand–Fuks cohomol-
ogy

H�
GF .ham

0
2g ; Sp.2g;R// Š H�

GF .ham
1
2g /

Sp

as follows. Let F be a transversely symplectic foliation on a smooth manifold M
of codimension 2g and let H�

F.M/ be the associated foliated cohomology group.
Then he constructed a homomorphism

H�
GF .ham

1
2g/

Sp �! H�
F.M/:

Now it is easy to see that the Lie algebras ham0
2g ; ham

1
2g are nothing other than

the completions of cg ˝R; cC
g ˝R with respect to the natural gradings so that we

can write
ham0

2g D Ocg ˝R; ham1
2g D OcC

g ˝ R:

It follows that we have a homomorphism

H�
c .OcC

g /
Sp ˝R Š H�

GF .ham
1
2g/

Sp �! H�
F.M/

for any transversely symplectic foliation .M;F/. Let cC
g ! cg .1/ D S3HQ be the

projection. Then the composition

H�.S3HQ/
Sp �! H�

c .OcC
g /

Sp ˝R �! H�
F.M/

produces the usual leaf cohomology classes in the sense that they are expressed
by differential forms involving only the connection form and the curvature form
including the Pontrjagin forms. It follows that our bigraded algebra E can be in-
terpreted as the dual of the space of all the exotic stable leaf cohomology classes,
as already mentioned in the introduction.

Problem 5.7. Study the geometric meaning of the classes in E in the context of
universal characteristic classes for odd dimensional manifold bundles as well as
characteristic classes for transversely symplectic foliations.
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6. The case of hg;1 and the outer automorphism groups of free groups

Next we consider the Lie case. The result of our computation for this case is
depicted in Table 3.

Table 3. Case of hg;1.

w 2 4 6 8 10 12 14 16 18

C1 1 0 5 3 108 650 8817 111148 1729657

C2 2 0 10 66 580 6621 84756 1281253 21671535

C3 6 7 239 1928 29219 424358 7286710 137344661

C4 8 16 342 4946 78443 1400274 27097563 575398310

C5 41 293 8375 152310 3289532 73457788 1766236662

C6 31 287 8887 227058 5780112 152604335 4190265424

C7 294 6536 254063 7885801 249166200 7923956179

C8 140 4175 206753 8491679 324662115 12158481555

C9 2353 123990 7160718 340745360 15284159637

C10 722 58302 4634679 288478215 15809478819

C11 21368 2269538 195270880 13456339409

C12 4439 836620 103755671 7824793027

C13 221987 42207231 5290518430

C14 32654 12701040 2368530727

C15 2624381 816469677

C16 289519 206593733

C17 34966981

C18 3054067

total 3 14 110 1664 38610 1163216 42521525 1821739409 89423442490

� 1 2 4 6 10 16 23 13 �96

Proof of Theorem 1.1 .ii/. This follows from Table 3.

Theorem 6.1 (Kontsevich [38, 39]). For any k � 1 and n � 1, there exists an
isomorphism

PHk.h
C
1;1/

Sp
2n Š H 2n�k.OutFnC1IQ/:

Proposition 6.2. The weight generating function, denoted by h.t/, for the Sp-in-
variant stable homology groupH�.hC

1;1/
Sp is given by

h.t/ D
1Y

nD2

.1 � t2n�2/�e.Out Fn/

where e.OutFn/ denotes the integral Euler characteristic of OutFn.

Proof. This follows from Theorem 6.1 and Proposition 2.4.
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Proof of Theorem 1.2 .ii/. By Theorem 1.1 (ii), we see that the weight generating
function

h.t/ D
1X

wD0

�.H�.hC
1;1/

Sp
w /t

w

for H�.hC
1;1/

Sp, up to weight 18, is given by

h.t/ D 1C t2C 2t4C 4t6C 6t8C 10t10C 16t12C 23t14C 13t16 � 96t18C : : : :
By applying Proposition 2.6, we can inductively determine the Euler characteris-
tics of the primitive parts, namely e.OutFn/. If we put

Nh.t/ D .1� t2/�1.1� t4/�1.1 � t6/�2.1� t8/�1

.1� t10/�2.1� t12/�1.1 � t14/�1.1� t16/21.1 � t18/124;

then we see that
h.t/ � Nh.t/ � 0 mod t19:

By Proposition 6.2, we can now conclude that

e.OutFn/ D 1; 1; 2; 1; 2; 1; 1;�21;�124 for n D 2; 3; : : : ; 10:
The result is depicted in the fourth row of Table 4.

Table 4. Numbers of new generators for H�.h
C

1;1
/
Sp
w .

w 2 4 6 8 10 12 14 16 18

� 1 2 4 6 10 16 23 13 �96
� of lower terms 0 1 2 5 8 15 22 34 28

� of primitive part 1 1 2 1 2 1 1 �21 �124

Thus we see that there are many odd dimensional non-trivial rational coho-
mology classes of OutF9 as well as OutF10. Before this result, very few results
have been known about the rational cohomology group of OutFn. As for the cases
n � 6, by the works of Hatcher and Vogtmann [35] as well as Ohashi [58], the only
non-trivial cohomology groups areH 4.OutF4IQ/ Š Q andH 8.OutF6IQ/ Š Q.
On the other hand, by making use of the trace maps introduced in [48] which give
a large abelian quotient of hC

g;1, the first named author defined many rational ho-
mology classes of OutFn in [50, 51], the most important classes being a series of
homology classes

�k 2 H4k.OutF2kC2IQ/ .k D 1; 2; : : :/:
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It was conjectured in [50] that these will be all non-trivial. However, at present
only the first three classes are known to be non-trivial, �1 in [50], �2 by Conant
and Vogtmann [12] and �3 by Gray [31]. Conant and Vogtmann also gave a geo-
metric construction of many homology classes in the framework of the Outer
Space of Culler and Vogtmann [14].

As already mentioned in the introduction, recently, Conant, Kassabov, and
Vogtmann [11] proved a remarkable result about the structure of hg;1. They found a
deep connection with the theory of elliptic modular forms by which they show the
existence of a large new abelianization beyond the trace maps. In particular, they
defined many new cohomology classes in H 2

c .
OhC

1;1/
Sp
2w whenever the dimension

of the cusp forms of some weight w is larger than 1, the first one being w D 24.
These classes then produce, by Theorem 6.1, rational homology classes of OutFn

the first of which lies in H46.OutF25IQ/.
Now we go back to the case of OutF7 which is the unknown case with the

smallest rank. By our result Theorem 1.2 .ii/, the Euler characteristic of this group
is 1 and it is an interesting problem to determine whether the rational cohomology
group of this group is trivial or not. See Problem 9.4 for this. Next we consider
OutF8. Again by Theorem 1.2 .ii/, e.OutF8/ D 1. On the other hand, Gray [31]
proved that �3 6D 0 2 H12.OutF8IQ/. It follows that there exists at least one
odd dimensional rational homology class. Here we propose a candidate of such
a class in the following proposition (�1 2 H11.OutF8IQ/ is our candidate). For
this, we use the summandsH1.h

C
1;1/2kC4 � Œ2kC1; 1�Sp .k D 1; 2; : : :/which are

part of the new abelianizations found by Conant, Kassabov, and Vogtmann cited
above. By an explicit computation motivated by their result, we have proved that
H1.h

C
g;1/6 Š Œ31�Sp.

Proposition 6.3. For any k � 1, we have an isomorphism

.Œ31�Sp ˝ Œ2k C 1�Sp ˝ Œ2k C 3�Sp/
Sp Š Q

so that we obtain a series of (co)homology classes

�k 2 PH 3
c .
Oh1;1/

Sp
4kC10

KontsevichŠ H4kC7.OutF2kC6IQ/ .k D 1; 2; : : :/:

Proof. By the Littlewood–Richardson rule, it is easy to see that

Œ2kC 1�Sp˝ Œ2kC 3�Sp Š Œ4kC 4�GL˚ Œ4kC 3; 1�GL˚ � � � ˚ Œ2kC 3; 2kC 1�GL:

On the other hand, among the Sp-irreducible decompositions of the GL-irreducible
summands on the right hand side, only the last one Œ2k C 3; 2k C 1�GL contains
Œ31�Sp and the multiplicity is 1. The claim follows.
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Conjecture 6.4. These classes are all non-trivial. In particular, H3.h1;1/ is in-
finite dimensional.

Also if we combine the trace components Œ2kC1�Sp with the new components
Œ2`C 1; 1�Sp,. . . , we obtain huge amount of (co)homology classes of h1;1.

Next we consider the problem of comparison between the rational and the
integral Euler characteristics of OutFn. The second row of Table 5 is taken from
Smillie and Vogtmann [65] where we write the values to the second decimal places
and the third row is our Theorem 1.2 .ii/.

Table 5. � versus e for OutFn.

n 2 3 4 5 6

� �0:04 �0:02 �0:02 �0:06 �0:20
e 1 1 2 1 2

n 7 8 9 10

� �0:87 �4:58 �28:52 �205:83
e 1 1 �21 �124

Problem 6.5. Study the relation between �.OutFn/ and e.OutFn/.

We refer to the book [17] edited by Farb, in particular Bridson and Vogt-
mann [5], as well as Farb [18] for various problems concerning OutFn, mapping
class groups, GL.n;Z/ and other related groups.

7. The case of ag and the moduli spaces of curves

Finally we consider the case of ag . From the point of view of computations, this
case is the most heavy one among the three Lie algebras as can be seen by com-
paring the size of the numbers in the former two tables Tables 1 and 3 with the
present one depicted in Table 6.

As was already mentioned in the introduction, in [56] we determine the values
�.H�.aC1/

Sp
w / for allw � 500 by a completely different argument which makes use

of a formula of Gorsky [30] for the equivariant Euler characteristics of the moduli
spaces of curves Mm

g . We confirm that the two values for w � 16 are the same.
We think that this coincidence serves as a strong evidence for the accuracy of our
computations in the other two cases c1; h1;1. We mention that the existence of the
formula of Gorsky depends heavily on the fact that the totality of Mm

g for various
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g and m makes a beautiful unified world. It seems unlikely that similar formulas
will be found in the other two cases, at least in a near future.

Table 6. Case of ag.

w 2 4 6 8 10 12 14 16

C1 1 2 17 88 897 9562 127071 1912970

C2 3 8 111 1146 14735 212965 3483545 63522967

C3 18 289 5561 99285 1918401 39558275 880137499

C4 17 403 13653 366878 9590016 253890290 6966037951

C5 320 19138 827528 30225682 1047033554 35904134757

C6 124 15860 1193367 63894814 2967604968 129283963277

C7 7466 1111456 93211250 6001387476 339000966002

C8 1618 651577 94398768 8825700683 663520078156

C9 220905 65356859 9484791225 982320832329

C10 33564 29594121 7384704777 1104356533575

C11 7925093 4061192184 938047301852

C12 956263 1497800877 592700462357

C13 332831365 270228006160

C14 33736198 84077896041

C15 15987868100

C16 1402665692

total 4 45 1264 64530 4520192 397293794 41933842488 5164742319685

� 2 5 12 24 50 100 188 347

Proof of Theorem 1.1 .iii/. This follows from Table 6.

Theorem 7.1 (Kontsevich [38, 39]). For any k � 1 and n � 1, there exists an
isomorphism

PHk.a
C1/

Sp
2n Š

M
2g�2CmDn

m>0

H 2n�k.Mm
g IQ/Sm:

Proposition 7.2. The weight generating function, denoted by a.t/, for the Sp-in-
variant stable homology groupH�.aC1/Sp is given by

a.t/ D
1Y

nD1

.1� t2n/�a
pr
2n

where
a

pr
2n D

X
2g�2CmDn

m>0

e.Mm
g =Sm/:

Proof. Note that H�.Mm
g IQ/Sm Š H�.Mm

g =SmIQ/. Our claim follows from
Theorem 7.1 and Proposition 2.4.
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Proof of Theorem 1.2 .iii/. By Theorem 1.1 (iii), we see that the weight generating
function

a.t/ D
1X

wD0

�.H�.aC1/
Sp
w /t

w

for H�.aC1/Sp, up to weight 16, is given by

a.t/ D 1C 2t2C 5t4C 12t6C 24t8C 50t10C 100t12C 188t14C 347t16C : : : :
By applying Proposition 2.6, we can inductively determine the Euler characteris-
tics of the primitive parts, namely e.Mm

g =Sm/. If we put

Na.t/ D .1� t2/�2.1 � t4/�2.1� t6/�4.1 � t8/�2

.1� t10/�6.1� t12/�6.1� t14/�6.1� t16/�1;

then we see that
a.t/ � Na.t/ � 0 mod t17:

By Proposition 7.2, we can now conclude that

a
pr
2n D 2; 2; 4; 2; 6; 6; 6; 1 for n D 1; 2; : : : ; 8.

The result is depicted in the fourth row of Table 7 as well as the following propo-
sition 7.3.

Table 7. Numbers of new generators for H�.a
C
1/Sp.

w 2 4 6 8 10 12 14 16

� 2 5 12 24 50 100 188 347

� of lower terms 0 3 8 22 44 94 182 346

� of primitive part 2 2 4 2 6 6 6 1

Proposition 7.3. We have the following equalities:
(1) e.M3

0=S3/C e.M1
1/ D 2,

(2) e.M4
0=S4/C e.M2

1=S2/ D 2,
(3) e.M5

0=S5/C e.M3
1=S3/C e.M1

2/ D 4,
(4) e.M6

0=S6/C e.M4
1=S4/C e.M2

2=S2/ D 2,
(5) e.M7

0=S7/C e.M5
1=S5/C e.M3

2=S3/C e.M1
3/ D 6,

(6) e.M8
0=S8/C e.M6

1=S6/C e.M4
2=S4/C e.M2

3=S2/ D 6,
(7) e.M9

0=S9/C e.M7
1=S7/C e.M5

2=S5/C e.M3
3=S3/C e.M1

4/ D 6,
(8) e.M10

0 =S10/C e.M8
1=S8/C e.M6

2=S6/C e.M4
3=S4/C e.M2

4=S2/ D 1.
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Now we check that our result above is consistent with the known results. By
Getzler [27], e.Mm

0 =Sm/ D 1 for all m � 3. Also he determined the Sm-equi-
variant Serre polynomial of Mm

1 . In particular, he obtained the formula

1X
mD1

e.Mm
1 =Sm/x

m

D .x C x2 C x3/
.1� x4 � 2x8 � x12 C x16/

.1� x8/.1� x12/

D x C x2 C x3 � x5 � x6 � x7 � x9 � x10 � x11 � x13 � x14 � : : : ;

so that e.Mm
1 =Sm/ D 1; 1; 1; 0;�1;�1;�1; 0;�1 for m D 1; : : : ; 9. It is well

known that e.M1
2/ D 2 and Getzler proved e.M2

2/ D 1. The fifth equality .5/
(case of w D 10) was first proved by Getzler and Kapranov [28], and then in [26]
it was shown that e.M3

2=S3/ D 0 by using the result of Looijenga [44] determining
H�.M3IQ/;H�.M1

3IQ/, especially e.M1
3/ D 6. Tommasi [66] (see also [67, 68])

determined H�.M4;Q/ as well as the equivariant Hodge Euler characteristics of
M4

2 and M2
3 and in particular e.M4

2=S4/ D 1 and e.M2
3=S2/ D 5. The sixth

equality .6/ is consistent with these results. Next we consider the seventh equal-
ity. By Harer and Zagier [34], e.M1

4/ D 2. Gorsky [29] (Theorem 2) extended
the work of Getzler and obtained a formula for the Sm-equivariant Euler charac-
teristic for Mm

2 . More precisely he obtained a formula for the generating functionP1
mD0 e

Sm.Mm
2 /t

m in terms of Newton’s power sum polynomials. He then made
a computer computation and determined eSm.Mm

2 / explicitly for allm � 4 which
coincide with the former results of Getzler and Tommasi cited above. By making
use of our Method I and Method V described in Section 4, we extended Gorsky’s
computation to obtain closed formulas for the cases 5 � m � 35. Here we describe
the results for m D 5; 6; 7; 8.

eS5.M5
2/ D 2Œ5�� 2Œ32�C 2Œ41�

eS6.M6
2/ D �2Œ32�C 2Œ51� � 3Œ23� � 2Œ321�C 2Œ412�C Œ2212� � Œ214� � Œ16�

eS7.M7
2/ D �2Œ7�� 2Œ43�C 2Œ52�� 2Œ61� � 4Œ322� � 2Œ321�

C 4Œ421�C 2Œ512� � 2Œ231�C 4Œ3212�C 2Œ413�� 2Œ215�� 2Œ17�

eS8.M8
2/ D �Œ8�� 3Œ42� � 4Œ53�C 2Œ62�� 3Œ71� � 7Œ322�C 4Œ422�

� 7Œ431�C 2Œ521� � 7Œ612� � 4Œ24� � 3Œ3221� � 2Œ3212� � Œ4212�

� 3Œ513� � 7Œ2312�C 2Œ414�� 3Œ2214� � 5Œ216� � 3Œ18�:
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It is amusing to calculate the dimensions of the above expression which give the
integral Euler characteristics of Mm

2 . The results are 0;�24 for m D 5; 6 and
.�1/mC1.mC 1/Š=240 for m � 7 which coincide with the known values obtained
by Harer and Zagier [34]. On the other hand, as for the coefficients of the trivial
representation Œm�, it can be shown that Gorsky’s formula implies

1X
mD0

e.Mm
2 =Sm/x

m

D � 1

240
.1C x/�2 � 1

240
.1C x/6.1C x2/�4 C 1

12
.1C x/2.1C x2/�2

� 1

12
.1C x/4.1C x3/�2 � 1

8
.1C x/2.1C x2/2.1C x4/�2

C 2

5
.1C x/3.1C x5/�1 � 1

12
.1C x2/2.1C x3/2.1C x6/�2

C 1

6
.1C x/2.1C x2/.1C x6/�1 C 1

4
.1C x/2.1C x4/.1C x8/�1

C 2

5
.1C x/.1C x2/.1C x5/.1C x10/�1

D 1C 2x C x2 C x4 C 2x5 � 2x7 � x8 � x10 C 2x12 C 2x13 � 3x14 C : : : ;

so that we find

e.Mm
2 =Sm/ D 2; 0;�2;�1; 0;�1; 0; 2; 2;�3; : : : for m D 5; 6; : : : ; 14; : : :.

By substituting these known values in the seventh equality .7/, we obtain

e.M3
3=S3/ D 2:

This should be consistent with the work of Bergström [1] determiningH�.SMm
3 IQ/

as well as H�.Mm
3 IQ/ as an Sm-module for all m � 5, although the latter is not

described explicitly. From the eighth equality .8/ together with the above results,
we conclude

e.M4
3=S4/C e.M2

4=S2/ D 0:
Now Gorsky [30] (Theorem 3) extended his own result cited above to obtain a
formula for the equivariant Euler characteristics of all the moduli spaces Mm

g again
in terms of Newton power sum polynomials. It is an extensive generalization of the
results of Getzler cited above as well as the formula of Harer and Zagier [34] for
the integral Euler characteristics of the moduli space of curves. By using Gorsky’s
formula, we obtain explicit closed formulas for the equivariant Euler characteristic



172 S. Morita, T. Sakasai, and M. Suzuki

eSm.Mm
g / as well as the generating functions

1X
mD0

e.Mm
g =Sm/x

m

for g � 125. Here we describe the values for g D 3; 4Im � 10:

e.Mm
3 =Sm/ D 3; 6; 5; 2; 0; 0; 1; 0;�1; 2; 2 .m D 0; 1; : : : ; 10/;

e.Mm
4 =Sm/ D 2; 2; 0; 2; 0; 2; 10; 6;�19;�12; 34 .m D 0; 1; : : : ; 10/:

In particular
e.M4

3=S4/ D e.M2
4=S2/ D 0:

Thus we find that our results are completely consistent with known results in al-
gebraic geometry, or can be deduced from them by explicit computations. In our
forthcoming paper [56], we will further discuss these formulas.

We mention that the integral Euler characteristic of the moduli space Mm
g ,

rather than its quotient Mm
g =Sm, is known by Harer and Zagier [34] as well as

Bini and Harer [2] up to certain values of g;m. In particular,

e.M4
3/ D 4; e.M2

4/ D �2:

In our paper [54], we proved that the stable abelianization of ag is trivial,
namely

H1.a
C1/Sp D 0

and deduced from it the vanishing result, H 4g�5.Mg IQ/ D 0, of the top rational
cohomology group of the mapping class group Mg of a closed oriented surface
of genus g for all g � 2. See also Church, Farb and Putman [7].

Problem 7.4. For each k � 2, determine whether the Sp-invariant stable homol-
ogy group Hk.a

C1/Sp is finite dimensional or not, especially for the low values
k D 2; 3; : : : :

Remark 7.5. Kontsevich made a conjecture in [38] that the stable homology of
each of the infinite dimensional Lie algebras he considered is finite dimensional in
each degree. We would like to mention the following implication of this conjecture
in the case of ag . Namely, if Hk.a

C1/Sp is finite dimensional, then

H4g�4�k.Mg IQ/ D 0 for all g but finitely many possible exceptions.
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This is because, if the assumption is valid, then PH k
c is also finite dimensional so

that H4g�4C2m�k.M
m
g IQ/Sm D 0 for all g and m > 0 except for finitely many

values. If we put m D 1 here, we see that H4g�2�k.M
1
g IQ/ D 0 for all g but

finitely many exceptions. Now if H4g�4�k.Mg IQ/ 6D 0 for some g � 2, then as
was proved in [46] that the homomorphism

H�.Mg IQ/ p�

��! H�.M1
g IQ/

S
e��! H�C2.M1

g IQ/

is injective for any g � 2where e 2 H 2.M1
g IQ/ denotes the Euler class. It follows

that H4g�2�k.M
1
g IQ/ 6D 0 for such g. The claim follows.

Looijenga [44] determined the rational homology groups of both of M3;M
1
3

and in particular he found an unstable cohomology class in H 6.M3IQ/ which is
the first known unstable class of the moduli spaces without punctures. He also
showed that H 8.M1

3IQ/ Š Q; H 6.M1
3IQ/ Š Q. It follows PH2.a

C1/
Sp
10 Š Q and

PH4.a
C1/

Sp
10 � Q. It is a very important problem to determine whetherH2.a

C1/Sp

is finite dimensional or not.
Recently Church, Farb and Putman [8] proposed a new stability conjecture

about the unstable cohomology of SL.n;Z/;AutFn and the mapping class groups.
In the case of the mapping class groups, our argument above implies the following.
Namely, if the above conjecture of Kontsevich is true, then their conjecture also
holds in the form that all the groups are trivial.

8. Dimensions of the Sp-invariant subspaces hg;1.2k/Sp

As an application of our consideration, we obtain a complete description of how
the Sp-invariant subspaces hg;1.k/

Sp degenerate with respect to g. It turns out that
this degeneration is perfectly compatible with the orthogonal direct sum decom-
position of hg;1.k/

Sp with respect to the canonical metric on it introduced in [53].
The results for all k � 20 are depicted in Tables 8 and 9. In the tables, the sym-
bol 	 denotes that the dimension of the Sp-invariant subspaces stabilizes there
with respect to the genus g. In general, we can show that the stable range is given
by

dim hk;1.2k/
Sp D dim hkC1;1.2k/

Sp D : : : .k odd/;

dim hk�1;1.2k/
Sp D dim hk;1.2k/

Sp D : : : .k even/:
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Table 8. Dimensions of hg;1.2k/
Sp .i/.

g D 1 g D 2 g D 3 g D 4 g D 5
hg;1.2/

Sp 1	 1 1 1 1

hg;1.4/
Sp 0	 0 0 0 0

hg;1.6/
Sp 1 4 5	 5 5

hg;1.8/
Sp 0 2 3	 3 3

hg;1.10/
Sp 3 51 97 107 108	

hg;1.12/
Sp 0 190 544 643 650	

hg;1.14/
Sp 11 1691 6471 8505 8795

hg;1.16/
Sp 10 11842 69544 104190 110610

hg;1.18/
Sp 57 100908 888099 1548984 1710798

hg;1.20/
Sp 108 869798 12057806 25062360 29129790

Table 9. Dimensions of hg;1.2k/
Sp .ii/.

g D 6 g D 7 g D 8 g D 9
hg;1.14/

Sp 8816 8817	 8817 8817

hg;1.16/
Sp 111131 111148	 111148 111148

hg;1.18/
Sp 1728591 1729620 1729656 1729657	

hg;1.20/
Sp 29688027 29728348 29729957 29729988	

Details will be given in our forthcoming paper [57] where we will discuss
how the Lie bracket operation on h

Sp
g;1 is related to the above description of the

orthogonal direct sum decomposition as well as the degeneration. This should be
important in the investigation of the arithmetic mapping class group.

9. Concluding remarks and problems

In this section, we discuss differences between the three cases g1 D c1; h1;1; a1.

Remark 9.1. First we consider the lowest weight part of the continuous cohomol-
ogy by which we mean the image of the homomorphism

H�
c .Og1.1//Sp �! H�

c .g
C1/Sp

which is induced by the Lie algebra homomorphism g1 ! g1.1/. In the com-
mutative case, this lowest weight cohomology is precisely the dual of A.;/ �
H�.cC1/Sp so that it is still mysterious. On the other hand, in the other two cases, it
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is completely understood because the lowest weight cohomology is precisely the
totality of H0.OutFnIQ/ .n � 2/ for the Lie case and the totality of H0.M

m
g IQ/

.2g� 2Cm > 0;m � 1/ for the associative case. We mention here that the lowest
weight cohomology of the Lie algebras hC

g;� and hC
g surject onto the tautological

algebras R�.M1
g/ and R�.Mg/, respectively, by the results of [49, 37]. Further, it

was conjectured in [51] that these homomorphisms are isomorphisms.

Remark 9.2. In the commutative case, it is easy to see that the homomorphism

cC
g �! cg.1/ D S3HQ

is nothing other than the abelianization of the Lie algebra cC
g because it is fairy

easy to see that the Poisson bracket

cg.k/˝ cg.1/ �! cg.k C 1/
is surjective for any k � 1. Hence the lowest weight cohomology in this case is
the same as those classes which are induced from the abelianization, namely the
image of the homomorphism

H�
c .
yH1.c

C1//Sp �! H�
c .OcC1/Sp:

Theorem 1.3 shows that this homomorphism is not surjective and furthermore we
conjecture that the cokernel is infinitely generated (see Conjecture 5.5). In the
associative case, in our former paper [54] we have determined the stable abelian-
ization of a1 which turned out to be very small. Also the associative version of
the above homomorphism is far from being surjective. In the Lie case, the known
abelianization of hC

1;1 turns out to be already very large by [48, 11] (although the
final answer is not yet known) and many cohomology classes have been defined
by making use of it. On the other hand, we proved that e.OutF10/ D �124 (The-
orem 1.2 .ii/) and it seems that this number is too large to be covered by the above
construction. Because of this, we propose the following problem.

Problem 9.3. Prove that the natural homomorphism

H�
c .
yH1.h

C
1;1//

Sp �! H�
c .
OhC

1;1/
Sp

is not surjective.

In view of the fact that a single irreducible piece hg.1/ D Œ13�Sp gives rise
to the whole tautological algebra R�.Mg/ as already mentioned in the preceding
remark, it seems worthwhile to consider the following problem.
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Problem 9.4. Let
Tr.2k C 1/ W hC

g;1 �! S2kC1HQ

be the .2k C 1/-st trace map defined in [48] and let

lim �
g!1

PH 2n.S2kC1HQ/
Sp
2n.2kC1/

�! PH 2n
c .OhC

1;1/
Sp
2n.2kC1/

Š H4nk.OutF2nkCnC1IQ/
be the homomorphism induced from the above single trace homomorphism. It is
easy to see that the left hand side is non-trivial for any n � 1 and k � 1. Determine
whether the classes in the image of this homomorphism are non-trivial or not.

The case n D 1 corresponds to the original conjecture proposed in [50] expect-
ing the non-triviality of the classes �k. In view of our result that e.OutF7/ D 1,
the case n D 2; k D 1 which asks whether the homomorphism

lim �
g!1

PH 4.S3HQ/
Sp
12 Š Q2 �! PH 4

c .
OhC

1;1/
Sp
12 Š H8.OutF7IQ/

is non-trivial or not, should be an important test case.

Remark 9.5. In this paper, we consider only the Euler characteristics of various
chain complexes. However we are planning to study the boundary operators as
well. In fact, we already have a proof of the non-triviality �2 6D 0, which was first
proved by Conant and Vogtmann [12], in our context. Also it will be nice if one
could construct cycles corresponding to the unstable cohomology classes found
by Looijenga and/or Tommasi.

Remark 9.6. We expect that there should be a close relation between the co-
homology of OutFn and that of GL.n;Z/. For example, Elbaz-Vincent, Gangl,
and Soulé [15] recently calculated the rational cohomology of GL.n;Z/ for n D
5; 6; 7 and it will be a very interesting problem to compare these results with
the known results about H�.OutF6IQ/. Also we have a conjectural geomet-
ric meaning of the classes �k 2 H4k.OutF2kC2IQ/. More precisely, we ex-
pect that these classes can be interpreted as certain secondary classes associ-
ated with the difference between two reasons for the Borel regulator classes ˇk 2
H 4kC1.GL.N;Z/IR/ (see Borel [4]) to vanish first in H 4kC1.OutFN IR/ by the
vanishing theorem of Igusa [36] (see also Galatius [20]) and secondly vanish in
H 4kC1.GL.N �

k
;Z/IR/ for certain unknown critical rank N �

k
depending on k (we

conjecture thatN �
k
D 2kC2). We mention that Bismut and Lott [3] proved that ˇk
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vanishes in H 4kC1.GL.2k C 1;Z/IR/ (we thank Christophe Soulé for this infor-
mation) and the above value for N �

k
is the next one after 2k C 1. This expectation

is consistent with the result of Conant and Vogtmann [13] where they proved that
�k vanishes after one stabilization.

Remark 9.7. Our ultimate goal is to enhance our study of the cohomology of
the Lie algebra hg;1 to those of the groups Hsmooth

g;1 ;H
top
g;1 of homology cobordism

classes of homology cylinders over the surfaces, both in the smooth as well as the
topological categories and also the group Aut0F acy

2g which was introduced by the
second named author in [64]. The group Hsmooth

g;1 was introduced by Garoufalidis
and Levine [21] as an enlargement of the mapping class group Mg;1. For basic
facts as well as various problems about this group, we refer to their paper cited
above. We would like to clarify the difference between the above three groups by
investigating suitable characteristic classes.
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