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1. Introduction

�e equation d2 D 0, together with the related notion of a chain complex and

its (co)homology, plays a fundamental role in modern mathematics and physics.

Shortly after the discovery of simplicial homology, Mayer [33, 34] suggested to

remove the minus signs in the de�nition of the di�erential in the chain complex

of a simplicial complex while working in characteristic p. �e Mayer di�eren-

tial satis�es dp D 0 and gives rise to Mayer homology groups. Spanier [44]

showed that the Mayer homology of a topological space can be expressed via the

usual homology groups. Spanier’s result closed the topic for almost half a century.

�e subject was brought back to life by Kapranov [15], Sarkaria [42, 43], Dubois-

Violette [6, 7, 8], Kerner [9] and others, also see [1, 4, 14, 16, 46] and the references

therein. �ese papers study a characteristic zero analogue of Mayer’s general-

ized complexes, called N -complexes, with the generalized di�erential satisfying

dN D 0. De�ning such di�erentials often requires the use of a primitive N th root

of unity q to twist classical constructions of the homological algebra. �e subject

is sometimes referred to as q-homological algebra.

Complexes of vector spaces constitute a symmetric monoidal category. A com-

plex of vector spaces can be thought of as a graded module over the exterior alge-

bra on one generator. �e existence of a natural tensor product on complexes can

be explained by the Hopf algebra structure of the exterior algebra, when viewed as

an algebra in the category of super-vector spaces. Algebraic structures in the su-

per world can be thickened using Majid’s bosonisation procedure [30] to produce

corresponding structures in the category of vector spaces. Grading (ubiquitous in

homological algebra) can be interpreted in the language of comodules: a comod-

ule over the group ring kŒG� is the same as a G-graded k-vector space.

Furthermore, as originally observed by Pareigis [38], the category of com-

plexes is equivalent to the category of comodules over a suitable Hopf algebra,

equipped with a cotriangular structure. �is approach explains the symmetric

monoidal tensor product of complexes via the Hopf algebra framework. Bichon [3]

characterized N -complexes as comodules over a suitable Hopf algebra (the Borel

subalgebra of the small quantum sl2 at an N -th root of unity), generalizing the

work of Pareigis.

Given a Frobenius algebraH over a �eld k, its stable categoryH -mod is trian-

gulated [13] (a morphism of H -modules is zero in the stable category if it factors

through a projective module). Any �nite-dimensional Hopf algebra is a Frobenius

algebra, and its stable category is triangulated monoidal. Several years ago one

of us suggested [18] to study module-categories over H -mod for suitable �nite-

dimensional Hopf algebras H . �is was motivated by the observation that the
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Grothendieck ring of the stable category of �nite-dimensional graded modules

over the Hopf algebra H D kŒx�=.xp/ with �.x/ D x ˝ 1C 1˝ x, deg.x/ D 1

for a �eld k of characteristic p is naturally isomorphic to the ring of integers Op

in the cyclotomic �eld QŒ�p � for the p-th primitive root of unity �p D e
2�i

p :

K0.H -mod/ Š Op Š ZŒq�=.1C q C � � � C qp�1/; (1)

where q is a formal variable (the ring of integers ON in QŒ�N � is generated by

�N D e
2�i
N over Z). Witten-Reshetikhin–Turaev invariants of 3-manifolds take

values in the ring of cyclotomic integers ON (in favorable cases; in general one

needs to extend the ring to ON Œ
1
N
�). Categori�ed WRT invariants, if exist, might

take values in a tensor triangulated category with the Grothendieck ring ON or,

even better, ON Œ
1
N
�:

We do not know any instances of monoidal triangulated categories whose

Grothendieck ring contains ZŒ 1
N
� as a subring (it is an exciting problem to �nd

such examples), and so should restrict to a simpler problem of categorifying ON .

�e ring ON is isomorphic to ZŒq�=.‰N .q//, where q is a formal variable and

‰N the N -th cyclotomic polynomial. It seems that examples of monoidal trian-

gulated categories with Grothendieck ring isomorphic to ON are only known for

N a prime power pr or 2pr . �e cyclotomic polynomials for these N are

‰pr .q/ D 1C qpr�1 C q2pr�1 C � � � C q.p�1/pr�1

; (2)

and, for odd p,

‰2pr .q/ D ‰pr .�q/ D 1C .�q/pr�1 C .�q/2pr�1 C � � � C .�q/.p�1/pr�1

: (3)

�e �elds QŒ�pr � and QŒ�2pr � coincide, for odd p, and thus share the same ring of

integers. �e above example of categori�cation of Op via the Hopf algebraH can

be easily modi�ed, by changing the grading of generator x from 1 to pr�1, to a

categori�cation of Opr .

It would be thrilling to lift this example to characteristic 0 and to get rid of the

pr restriction. �ere is a problem with doing it via N -complexes - for N > 2 the

base category ofN -complexes modulo chain homotopies is neither symmetric nor

braided, and its Grothendieck ring is isomorphic toZŒq�=.1CqC� � �CqN �1/ rather

than ZŒq�=.‰N .q//. We do not know how to circumvent these di�culties and con-

struct a triangulated monoidal category with Grothendieck ring ZŒq�=.‰N .q//.

For this reason we work in characteristic p, with Mayer’s p-complexes, and so

restrict our categori�cation attempts to p-th and 2p-th roots of unity.
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To do this p-homological algebra, we need a supply of module-categories over

the base symmetric triangulated category H -mod. Given a graded k-algebra A

with a degree one derivation @ (so that @.ab/ D @.a/bCa@.b/) subject to the con-

dition @p D 0, one can form the category .A; @/-mod of p-DG modules over A,

by analogy with the category of DG-modules over a DG-algebra, then pass to

the homotopy category and, �nally, localize by quasi-isomorphisms to get the

analogue D.A; @/ of the derived category. To have an interesting Grothendieck

group, one can restrict to the subcategory Dc.A; @/ of compact modules. For sev-

eral reasons (mostly compatibility with prior work on categori�cation of quantum

groups at generic q) we make our derivations have degree two. �is results in the

Grothendieck group of Dc.A; @/ being a module over the ground ring

Op D ZŒq�=.‰p.q
2//; (4)

the Grothendieck ring of the stable category of �nitely-dimensional H -modules.

We denote the Grothendieck group by K0.A; @/ or simply by K0.A/. Derivation

being of degree two translates into having q2 in the formula. �is polynomial is

reducible,‰p.q
2/ D ‰p.q/‰2p.q/, so that Op is not an integral domain, although

it is a subring of the product Op � O2p of two integral domains.

Categori�cation of tensor products of quantum group representations was ob-

tained geometrically by Zheng [49], utilizing earlier ideas and constructions of

Nakajima [36, 37] and Malkin [31], and by Webster [47, 48] in an algebro-combi-

natorial fashion, who also extended it to a categori�cation of Reshetikhin–Turaev

link and tangle invariants [40]. One of the inputs in Webster’s construction is a cat-

egori�cation of positive halves of quantum groups via diagrammatically described

KLR rings [20, 21, 41]. To test whether p-complexes are relevant to categori�ca-

tion at prime roots of unity, we can try to integrate them with the categori�cation

of quantum groups and their representations. A �rst step would be to look for

nilpotent (@p D 0) derivations with interesting properties on KLR rings R.�/.

We start with the sl2 case, when the KLR rings R.�/ specialize to nilHecke

algebras NHn. Categori�cation of multiplication and comultiplication of the pos-

itive half of quantum sl2 at generic q is achieved via induction and restriction

functors for inclusions of algebras NHn˝NHm � NHnCm, see [20, 25]. �e nil-

Hecke algebra NHn is isomorphic to the matrix algebra of size nŠwith coe�cients

in the ring of symmetric functions Symn in n variables, and the n-th divided power

E.n/ D En

Œn�Š
is categori�ed by the symbol of an indecomposable projective module

Pn over NHn. �e latter comes from realizing NHn as the endomorphism ring of

the space Poln of polynomials in n variables over the subring Symn of symmetric

polynomials, and Pn is identi�ed with Poln, up to a grading shift.
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Working over a �eld k of characteristic p, we construct a family of derivations

@a, parametrized by a 2 Fp, i.e., by residues modulo p. �ese satisfy @
p
a D 0 and

have a local description, given on generators by

@a

 !
D 2

;

@a

 !
D a � .aC 1/ C .a � 1/ :

�e derivation @a on NHn comes from a suitable derivation @˛ on the polyno-

mial space Poln. Inclusions

NHn˝NHm � NHnCm (5)

commute with @a and give induction and restriction functors between categories

of p-DG modules over these algebras and corresponding derived categories.

�e positive half of the small quantum sl2 has one generatorE and one de�ning

relationEp D 0. In our categori�cationE becomes the image in the Grothendieck

group of an object P, and the hom spaces HOM.P˝n;P˝m/ D 0 for n 6D m, while

HOM.P˝n;P˝n/ D END.P˝n/ D NHn; equipped with derivation @a. We show

that when n D p and a 6D 0, the endomorphism algebra END.P˝p/ D NHp

is acyclic, as an H -module, and its derived category is trivial, implying that the

object P˝p is isomorphic to the zero object in the derived category. We view this

result as a categori�cation of the de�ning relation Ep D 0 in the small quantum

group. When a D 0, the p-DG algebra NHp is not acyclic, preventing the derived

category from being trivial and leading us to exclude this case by restricting to

a 2 F�
p.

A twisted version of the restriction functor for the inclusion (5) of p-DG alge-

bras induces a homomorphism of Grothendieck groups

K0.NHnCm/ �! K0.NHn˝NHm/ (6)

(we writeK0.NHnCm/ instead ofK0.NHnCm; @a/, etc.) For this map to categorify

the comultiplication in a bialgebra requires an isomorphism

K0.NHn˝NHm/ Š K0.NHn/˝Op
K0.NHm/; (7)

where Op is the ground ring (the Grothendieck ring of the stable category of �nite-

dimensional H -modules).
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Only for a D ˙1 are we able to establish this isomorphism as well as to show

that the Grothendieck group of the p-DG algebra NHn (for n < p) equipped

with derivation @a is a free rank one Op-module. �is Op-module is generated

by the symbol ŒPn.˛/� of the indecomposable projective NHn-module carrying

a derivation @˛ . �e p-DG-module Pn.˛/ categori�es the n-th divided power

E.n/ D En

Œn�Š
of the generator E. We do not know the structure of K0.NHn; @a/ for

other values of a.

For a D ˙1 induction and twisted restriction functors lead to a q-bialgebra

(or twisted bialgebra) structure on the direct sum of Grothendieck groups

K0.NHn; @a/. We identify this q-bialgebra with an integral form of the positive

half of the small quantum sl2 at a 2p-th root of unity (�eorem 3.35):

K0.NH; @˙1/ Š uC
Op
.sl2/:

�e integral form is a free Op-module with basis elements E.n/ for 0 � n �
p � 1 and the usual multiplication and comultiplication rules, see Section 3.3.

To an oriented graph � there is assigned [20, 21, 41] a family of graded

k-algebrasR.�/, over positive integral weights �. �e direct sum of Grothendieck

groups of �nitely-generated projective graded R.�/-modules, over all �, can be

canonically identi�ed [20, 21, 45] with an integral form of the positive half of the

quantum group associated to �:

UC
q;Z.�/ Š

M

�2NI

K0.R.�//:

In particular, Serre relations hold on the categorical level, lifting to isomorphisms

between certain direct sums of projective R.�/-modules.

Each vertex i of � generates nilHecke algebras R.ni/ Š NHn as R.�/ for

� D ni . Assigning ai 2 F�
p to a vertex i gives us derivations @ai

on R.ni/.

�ese derivations extend in a multi-parameter way, written down in Section 4,

to derivations @ on R.�/ for all weights �. We show in Section 4 that having

Serre relations on the categorical level requires ai D aj for i; j in the same con-

nected component of � and ai 2 ¹1;�1º for each i . Assuming � is connected,

this forces all ai to be equal 1 or �1. We can restrict to ai D 1; for all i ; the

opposite case follows by applying an automorphism to rings R.�/. Furthermore,

having Serre relations on the Grothendieck group level requires a unique choice

for all other parameters as well, once one of the two cases (1 or �1) is chosen

for the ai ’s. We work with the case ai D 1; i 2 I , and obtain a canonical

derivation @1 on all R.�/, given in De�nition 4.13 and extending derivation @1

of NHn D R.ni/. Our results on categori�cation of the Serre relations are summa-

rized in �eorem 4.14. Conjecture 4.18 conveys our hopes that p-DG rings R.�/,
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over all weights �, categorify a positive half of the small quantum group associated

with the graph �.

Other algebraic objects that appear in categori�cation also carry p-nilpotent

derivations and have a potential to categorify corresponding quantum structures

at prime roots of unity. For instance, in [10], it is shown that Lauda’s two-category

U admits a p-nilpotent derivation leading to a categori�cation of an integral form

of the small dotted quantum group Pu�2p
.sl2/. For another example, Webster’s

algebras [47], which categorify tensor products of simple modules over quantum

Kac-Moody algebras, carry a multi-parameter family of nilpotent derivations; the

sl2 case is brie�y discussed at the end of this paper. �ick calculus of [22] coupled

with suitable derivations promises a categori�cation of the big quantum sl2 at a

prime root of unity [11].

In 1994 Louis Crane and Igor Frenkel conjectured [5] that there exists a cate-

gori�cation of the small quantum group sl2 at roots of unity and that a categorical

lift of Kuperberg’s 3-manifold invariant [24] should give a quantum invariant of

four-manifolds. Igor Frenkel developed the ideas of categori�cation much fur-

ther, in unpublished notes on structural constraints in categori�ed quantum sl2,

in many of his follow-up joint papers on categori�cation and geometrization of

representation theory, and while advising several graduate students who went on

to further grow the categori�cation program, including the senior author of the

present paper. �e junior author is a second-generation student of Igor Frenkel.

We are delighted to dedicate this work to Igor Frenkel, on the occasion of his

sixtieth birthday.

Acknowledgments. We are grateful to Ben Elias, Alexander Ellis, Aaron Lauda,

Joshua Sussan and the anonymous referees for carefully reading early drafts of the

paper and suggesting many corrections. Krzysztof Putyra wrote a latex package

which allowed us to produce all diagrams in Sections 3 and 4.

2. Homological algebra of p-derivations

2.1. �e base category

�e Hopf algebra H and its category of modules. We work over a �eld k of

prime characteristic p, so that there is a natural inclusion of �elds Fp D Z=.p/ �
k. �e algebra H D kŒ@�=.@p/ is a Hopf algebra, with comultiplication

�.@/ D 1˝ @C @˝ 1;
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antipode

S.@/ D �@;
and counit

�.@i/ D ı0;i :

We make H into a Z-graded Hopf algebra via

deg.@/ D 2:

Let H -mod be the category of graded H -modules (morphisms are grading-pre-

serving module maps) andH -fmod the subcategory of �nite-dimensional graded

H -modules. We also call objects of H -mod p-complexes and denote the vector

space of (grading-preserving) homomorphisms between p-complexes U and W

by HomH .U;W /.

Any indecomposable object ofH -mod is isomorphic, up to a grading shift, to

Vi
defD H=.@iC1/

for some 0 � i � p � 1. De�ne the balanced indecomposable by

zVi D Vi¹�iº:

It has a copy of the ground �eld in degrees �i;�i C 2; : : : ; i , and we denote the

basis elements by Qvk . so that

zVi D
iM

kD0

k Qvk ;

with

@. Qvk/ D QvkC1; for k < i ,

and

@. Qvi / D 0:

�e categories H -mod and H -fmod have the Krull–Schmidt unique decom-

position property. �e cocommutative Hopf algebra structure of H turns H -mod

and H -fmod into symmetric monoidal categories, with @ acting on U ˝W via

@.u˝ w/ D @.u/˝ w C u˝ @.w/:
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�e tensor product of indecomposable objects is given by

zVi ˝ zVj Š
�M

m2I

zVm

�
˚ zV Œmax.0;iCj C2�p/�

p�1 ; (8)

where

I D ¹ji � j j; ji � j j C 2; : : : ;min.i C j; 2p � i � j � 4/º
and

Œn� D qn�1 C qn�3 C � � � C q1�n 2 NŒq; q�1� for n D max.0; i C j C 2 � p/

is the multiplicity, with grading shifts, of the free module zVp�1 in the tensor prod-

uct. Note that I is the empty set if i D p�1 or j D p�1, since the tensor product

of a free module over a Hopf algebra with any module is free. We have

Vi ˝ Vp�1 Š Vp�1 ˚ Vp�1¹2º ˚ � � � ˚ Vp�1¹2iº:

�e antipode S gives us a contravariant functor on H -mod taking U to

U � D
M

i2Z

Homk.U
i ;k/

with

.@f /.u/ D �f .@.u//;

where U i stands for the homogeneous degree i part of U . �is functor restricts to

a contravariant involutive self-equivalence on H -fmod. Internal homs in H -mod

are given by

HOMk.U;W /
defD
M

i;j 2Z

Homk.U
i ; W j /; .@f /.u/ D @.f .u// � f .@.u//:

Internal homs are graded whose homogeneous terms are given by

HOMk
k.U;W /

defD
M

j �iDk

Homk.U
i ; W j /

for any k 2 Z. In the smaller category H -fmod the above direct sum coincides

with
L

i2Z Homk.U ¹iº; W /. We also de�ne

HOMH .U;W /
defD
M

i2Z

HomH .U ¹iº; W /:

Balanced modules are self-dual: zVi Š HOMk. zVi ;k/.
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�e Grothendieck ring K0.H -fmod/ of the symmetric monoidal abelian cate-

goryH -fmod is naturally isomorphic to the ring of Laurent polynomialsZŒq; q�1�,

with 1 D ŒV0�, grading shift corresponding to multiplication by q:

ŒU ¹mº� D qmŒU �;

and the symbol ŒU � of any p-complex U given by its graded dimension. In par-

ticular,

ŒVi � D 1C q2 C � � � C q2.i�1/;

Œ zVi � D Œi � defD qi�1 C qi�3 C � � � C q1�i :

Stable category and triangular structure. Any graded projective H -module

is a free gradedH -module, isomorphic to a direct sum of copies ofH with shifts.

Taking the graded dual

zV �
p�1 Š zVp�1;

we see that projective modules are also injective and vice versa. �erefore the

category H -mod is Frobenius ([13]). De�ne the stable category H -mod to have

the same objects as H -mod and morphisms HomH -mod.U;W / to be the quotient

of the space of morphisms Hom.U;W / in H -mod by the subspace of morphisms

that factor through a projective object. De�ne H -fmod and HOMH -fmod.U;W /

likewise.

A morphism f W U ! W factors through a projective object if and only if it

factors through the canonicalH -module map

�U W U�!H ¹2� 2pº ˝ U; �U .u/ D @p�1 ˝ u; (9)

see [18, Lemma 1]. A map

g W H ¹2� 2pº ˝ U �! W

is determined by

h W U ¹2� 2pº �! W;

where

h.u/
defD g.1˝ u/:

De�ne

gi .u/
defD g.@i ˝ u/:
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�en

h.u/ D g0.u/

and

giC1.u/ D @.gi .u// � gi .@.u//;

implying1

gi D
iX

j D0

.�1/j
�
i

j

�
@i�j ı g0 ı @j :

In particular,

gp�1 D
p�1X

j D0

@p�1�j ı h ı @j ;

since

.�1/j
�
p � 1
j

�
� 1 .mod p/:

�erefore, f W U ! W factors through a projective p-complex if and only if there

is k-linear map h W U ! W of degree 2� 2p such that

f D
p�1X

j D0

@
p�1�j
W ı h ı @j

U : (10)

Here “ı” denotes composition of k-linear maps. �e following diagram illustrates

an f and h of the formula. One should compare this with the usual notion of a

null-homotopic map between complexes:

: : :
@U // U i�2.p�1/ @U //

f
��

U i�2.p�2/

f
��

@U // : : :
@U // U i

h
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣

ss❣❣❣❣❣
❣❣❣❣

❣ f
��

@U // U iC2

h
✐✐✐

✐✐✐
✐✐✐

✐

tt✐✐✐✐✐
✐✐✐ f

��

@U // : : :
@U // U iC2.p�1/

h
❤❤❤❤

❤❤❤❤
❤❤

tt❤❤❤❤❤
❤❤❤❤

❤❤❤ f
��

@U // : : :

: : :
@W

// W i�2.p�1/

@W

// W i�2.p�2/

@W

// : : :
@W

// W i

@W

// W iC2

@W

// : : :
@W

// W iC2.p�1/

@W

// : : : :

De�nition 2.1. We call a p-complex U contractible if it is isomorphic to the zero

complex in H -mod.

Equivalently, from the discussion above, U is contractible if and only if the

identity morphism IdU W U ! U factors through the canonical injection (9).

We summarize the de�nition and the above equational characterization into the

following proposition.

1 Here we use “ı” to denote the composition of maps. In what follows, to avoid potential

confusion, we will use “�” to denote the H -action on Hom-spaces when necessary.
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Proposition 2.2. �e following conditions on a p-complex U are equivalent:

i) U is contractible;

ii) U is a graded projective H -module;

iii) U is a graded injective H -module;

iv) U is isomorphic to a direct sum of graded shifts Vp�1¹iº of the free rank one
module Vp�1;

v) for any x 2 U with @.x/ D 0 there exists an y 2 U such that

@p�1.y/ D xI

vi) there exists a linear endomorphism h of U of degree 2� 2p such that

IdU D
p�1X

j D0

@p�1�j ı h ı @j :

Proof. Obvious from the de�nition and discussion above.

Once and for all, we �x an inclusion of balanced indecomposable modules

Q� W zV0 �! zVp�2 ˝ zVp�2; Q�. Qv0/
defD

p�2X

j D0

.�1/j Qvj ˝ Qvp�2�j : (11)

�e decomposition (8) shows that Q� induces an isomorphism in the stable category

H -mod.

We de�ne the shift functor Œ1� on H -mod and its full subcategory H -fmod as

follows. For any U 2 H -mod, let

U Œ1�
defD .H ˝ U/¹2� 2pº=.Im�U / D zVp�2¹�pº ˝ U: (12)

�en Œ1� is invertible and its inverse functor is given by

Œ�1� W U 7�! zVp�2¹pº ˝ U D Vp�2¹2º ˝ U: (13)

�e map Q� �xes functor isomorphisms

Id Š Œ�1�Œ1� and ¹�2pº Š Œ2�:

�e class of exact triangles in H -mod (resp. H -fmod) is constructed as fol-

lows. Let
x
f W U ! V be a morphism inH -mod and let f be a lift of

x
f inH -mod.
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Consider the push-out of �U and f , which �ts into the following commutative di-

agram:

0 //

��

U
�U //

f

��

H ˝ U �U //

��

U Œ1� // 0

��
0 // V

g // Cf
h // U Œ1� // 0:

�en we declare the sextuple

U x
f

// V x
g

// Cf x
h

// U Œ1�

to be a standard exact triangle, where
x
g and

x
h denotes, respectively, the image of

g and h in H -mod. Moreover, any sextuple

U x
f

// V x
g

// W x
h

// U Œ1�

that is isomorphic inH -mod to a standard exact triangle is called an exact triangle.

�e notation
x
f , �U , etc. is taken from Happel [13].

Proposition 2.3. �e category of p-complexesH -mod (resp. H -fmod) equipped
with the shift functor Œ1� and the class of exact triangles as above is triangulated.

Proof. Omitted. �is is a special case of �eorem 2.6 in [13, Section 1.2]

�e shift U Œ1� of an object U can be computed more economically by em-

bedding U into a contractible complex and taking the quotient. �e balanced

indecomposable zVi is a submodule of the contractible module zVp�1¹i C 1 � pº,
and

zVi Œ1� Š zVp�1¹i C 1� pº= zVi Š zVp�2�i ¹�pº:

�e picture below illustrates this for p D 5 and i D 2. Each one-dimensional

weight space of is denoted by a dot and the @ action by horizontal arrows. �e

degree zero spaces are labeled by black dots.

zVi W

��

ı //

��

� //

��

ı

��zVp�1¹i C 1 � pº W

��

ı //

��

ı //

��

ı // � // ı

zVi Œ1� W ı // ı :
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Reading these diagrams bottom-up with an appropriate grading shift is a conve-

nient way to realize the functor Œ�1� on balanced indecomposableH -modules.

We also record the following useful result on how short exact sequences of

H -modules give rise to exact triangles in H -mod. Suppose

0 �! U
f�! V

g�! W �! 0

is a short exact sequence of H -modules. Consider the diagram

0

��

0

��
0 // U

�U //

f

��

H ˝ U //

Nf

��

U Œ1� // 0

0 // V
h //

g

��

Cf
e //

Ng

��

U Œ1� // 0

W

��

W

��
0 0 :

Here Cf is the push-out of f and �U , and the rest of the diagram is completed by

the push-out property. We claim that Ng W Cf ! W is an isomorphism in H -mod.

In fact, the submodule H ˝ U is injective, and thus the middle vertical exact

sequence splits and gives us Cf Š .H ˝ U/˚W . �e claim follows.

Lemma 2.4. In the above notation,

U x
f

// V x
h // W x

e� Ng�1

// U Œ1�

is an exact triangle. Conversely any exact triangle inH -mod is isomorphic to one
of this form.

Proof. By the remarks made before the lemma, this sextuple is isomorphic to the

standard one

U x
f

// V x
h

// Cf x
e

// U Œ1� :

�e result follows.
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�e Grothendieck ring of the stable category. Since the tensor product of any

p-complex with a contractible p-complex is contractible, the tensor product bi-

functor˝W H -mod�H -mod! H -mod descends to the stable categoriesH -mod

and H -fmod and turns them into symmetric monoidal categories.

�e tensor product of balanced indecomposables in the stable category is de-

scribed by
zVi ˝ zVj Š

M

m2I

zVm

where I D ¹ji � j j; ji � j j C 2; : : : ;min.i C j; 2p � i � j � 4/º, as see earlier.

Note that U ˝W Š 0 in H -mod if and only if either U Š 0 or W Š 0.

Lemma 2.5. �e symmetric monoidal structure˝W H -mod�H -mod! H -mod

is compatible with the triangulated structure on H -mod, in the sense that for any
U; W 2 H -mod,

.U ˝W /Œ1� Š U Œ1�˝W Š U ˝ .W Œ1�/:

Proof. Immediate, since U Œ1� D zVp�2¹�pº ˝ U and H is cocommutative.

Later we will see that the natural inclusion H -fmod � H -mod induces an

equivalence ofH -fmod with the subcategoryH -modc consisting of compact ob-

jects.

De�nition 2.6. �e Grothendieck groupK0.H -fmod/ is the abelian group gener-

ated by the symbols ŒU � of isomorphism classes of objects U 2 H -fmod, subject

to the relations

ŒV � D ŒU �C ŒW �;
whenever U ! V ! W ! U Œ1� is an exact triangle.

�e exact triangle U ! 0! U Œ1�
�IdU Œ1������! U Œ1� gives the relation

ŒU Œ1�� D �ŒU � in K0.H -fmod/.

�e grading on H -fmod makes K0.H -fmod/ into a ZŒq; q�1�-module by setting

qŒU �
defD ŒU ¹1º�;

while the exact symmetric monoidal structure on H -fmod equips K0.H -fmod/

with a commutative ring structure,

1
defD ŒV0�

being the multiplicative unit.
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Clearly, K0.H -fmod/ is generated as a ZŒq; q�1�-module by the symbol ŒV0�,

subject to the only relation

.1C q2 C � � � C q2.p�1//ŒV0� D 0:

�us, we identify it with the ring ZŒq�=.1C q2C � � �C q2.p�1//, also denoted Op:

Op
defD ZŒq�=.1C q2 C � � � C q2.p�1// Š K0.H -fmod/: (14)

For p ¤ 2, the polynomial 1C q2C � � �C q2.p�1/ decomposes into the product of

the p-th and 2p-th cyclotomic polynomials:

1C q2 C � � � C q2.p�1/ D ‰p.q/‰2p.q/: (15)

�is is readily seen from the relation

.1 � q2/‰p.q/‰2p.q/ D 1 � q2p;

which in turn also shows that

‰2p.q/ D
p�1X

iD0

.�q/i D ‰p.�q/: (16)

It follows that

ZŒq�=.‰p.q// Š ZŒq�=.‰2p.q//:

�ese rings, which are also known as the rings of the p-th and 2p-th cyclotomic
integers, are isomorphic to each other and usually denoted by Op and O2p :

Op
defD ZŒq�=.‰p.q//; O2p

defD ZŒq�=.‰2p.q//; Op Š O2p: (17)

By mapping q to a primitive p-th root of unity �p 2 C (resp. a primitive 2p-th

root of unity �2p 2 C), we identify Op Š ZŒ�p� (resp. O2p Š ZŒ�2p�), and the

corresponding �elds of fractions QŒq�=.‰p.q// Š QŒ�p � (resp. QŒq�=.‰2p.q// Š
QŒ�2p �). Equation (15) induces quotient maps

Op D ZŒq�=.‰p.q
2//

uuuu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥

** **❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯

Op D ZŒq�=.‰p.q// O2p D ZŒq�=.‰2p.q//;

with the injective product map Op ! Op�O2p . Inverting 2 2 Z, the product map

induces an isomorphism

Op

h1
2

i
Š Op

h1
2

i
� O2p

h1
2

i
:
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We have

Op ˝ZŒq;q�1� Op Š Op and Op ˝ZŒq;q�1� O2p Š O2p:

Likewise,

Op ˝ZŒq;q�1� Fp Š Fp ;

via the homomorphism ZŒq; q�1�! Fp taking q to 1.

Notation 2.7. In what follows, we will refer to the symbol

ŒU � 2 K0.H -fmod/ Š Op

of an object U 2 H -fmod as the Op-dimension of U , while

ŒU �p
defD ŒU � .mod p/ 2 Fp

as its Fp-dimension.

Our choice of having deg.@/ D 2 rather than 1 is mainly due to the standard

grading of the KLR algebras R.�/ (see Section 4) and other objects that cate-

gorify quantum groups and their representations. �is results in a slight annoyance

that K0.H -fmod/ is no longer an integral domain, as shown by equation (15) (c.f.

[18, Section 3]). However, this choice of degree has an additional, if rather mod-

est, merit, as we will see shortly that the existence of balanced indecomposable

H -modules makes the cohomology theories more symmetric with respect to du-

ality.

Cohomology of a p-complex. When p D 2, a graded H -module U is just

a complex of k-vector spaces with a degree two di�erential, and has associated

cohomology groups H.U / D ker@=im@.

One possible analogue of these groups for larger p’s is given by the following

construction. For each 0 � k � p � 2 form the graded vector space

H=k.U / D Ker.@kC1/=.Im.@p�k�1/CKer.@k//:

�e original Z-grading of U gives a decomposition

H=k.U / D
M

i2Z

Hi
=k.U /:

�e di�erential @ induces a map H=k ! H=k�1, also denoted @, which takes

Hi
=k.U / to HiC2

=k�1
.U /. De�ne the slash cohomology of U as

H=.U / D
p�2M

kD0

H=k.U /: (18)
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Let also

Hi
=.U /

defD
p�2M

kD0

Hi
k.U /:

We have the decompositions

H=.U / D
M

i2Z

Hi
=.U / D

p�2M

kD0

H=k.U / D
M

i2Z

p�2M

kD0

Hi
=k.U /: (19)

H=.U / is a bigraded k-vector space, equipped with an operator @ of bidegree

.2;�1/, @ W Hi
=k ! HiC2

=k�1
. �e =-grading (slash-grading) is nontrivial only in

degrees between 0 and p � 2. Necessarily @p�1 D 0.
Forgetting about the =-grading gives us a graded vector space H=.U / with the

di�erential @, which we can view as a gradedH -module. H=.U / is isomorphic to

U in the stable categoryH -mod, and we can decompose

U Š H=.U /˚ P.U / (20)

in the abelian category ofH -modules, where P.U / is a maximal projective direct

summand of U . �e cohomology group H=.U /, viewed as anH -module, does not

contain any direct summand isomorphic to a free H -module.

�is assignment U 7! H=.U / is functorial in U and can be viewed as a func-

tor H -mod ! H -mod or as a functor H -mod ! H -mod; the latter functor is

isomorphic to the identity functor.

Example 2.8. When p D 3,

H.U / D .Ker.@2/=.Im @CKer @//˚Ker.@/= Im.@2/;

with the di�erential going from the �rst summand to the second.

�e following way to think about these cohomology groups is helpful. Since

a p-complex splits into a direct sum of indecomposable p-complexes Vi¹j º, we

can reduce our consideration to the cohomology of these complexes. We depict Vi

by an oriented chain with i C 1 vertices and i oriented edges; each vertex denotes

a basis vector in the corresponding weight space of Vi and oriented edges – the

action of @.
0ı �! 1ı�!ı :::�! ı �! iı :

For an even simpler picture, keep vertices only and switch to balanced inde-

composables. Assemble diagrams for zVp�1; zVp�2; : : : ; zV0 into a column to form a

triangle with p points on each side, and let zV D zVp�1 ˚ zVp�2 ˚ � � � ˚ zV0.
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We think of points in the triangle diagram as basis elements of zV , with the

di�erential acting one step to the right. �e k-th slash cohomology groups H=k. zV /
for 0 � k � p � 2 pick out the terms in the k-th diagonal in the triangle, except

for the vertex in the top row (the top row corresponds to the unique projective

indecomposable module in the direct sum), for the total of p � 1� k vertices.

0

1

k

p−1

�e zeroth cohomology H=0. zV / collects vertices on the southwest-northeast

edge of the triangle save for the rightmost top one. �e last nonzero term H=p�2. zV /
picks out only one vertex, below and to the right of the upper left one.

H=0. zV /

H=p�2. zV /

Our diagram of dots in a triangle has a y-axis symmetry, and it is natural to

introduce a second family of cohomology groups, obtained by “re�ecting” the
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original groups about the symmetry axis. We call these the backslash cohomology
and de�ne them by

Hnk D .Im.@k/ \Ker.@p�k�1//= Im.@kC1/: (21)

�e dotted curve below surrounds basis elements of Hnk. zV /.

0

 1

k

p−1

We have

H=k.U /
� Š Hnk.U

�/; Hnk.U /
� Š H=k.U

�/;

where “�” denotes the graded dual H -module.

In comparison, the original cohomology groups of Mayer [33, 34] assigned

to a p-complex and generalized by Kapranov [15] and Sarkaria [42, 43], see also

Dubois-Violette [7], are

k H D Ker @k= Im @p�k (22)

for 1 � k � p � 1.
Of course 1 H.U / D H=0.U / for any p-complexU , but the two types of groups

are otherwise di�erent. Diagrammatically, the k-th Mayer cohomology k H picks

out a parallelogram with k vertices in the northwest direction and p � k in the

northeast direction:

0

 1

k−1

p−1
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�us, H=k�1 is the cokernel of the natural homomorphism k�1 H! k H, while

the kernel is precisely the backslash cohomology group Hnp�k . See the picture

below.

1

0 0

1

p−1

k−1 p−k

 p−1

Overall, the various cohomology groups �t into exact sequences

0 �! Hnp�k.U / �! k�1 H.U / �! k H.U / �! H=k�1.U / �! 0 (23)

functorially in U .

�e two types of groups together with connecting homomorphisms carry the

same amount of information; either one determines the isomorphism type of the

p-complex in the stable category. �ey di�er only by packaging. �e new packag-

ing via (back)slash cohomology describes a minimal (unique up to isomorphism)

representative of a p-complexU in the stable category as H=.U /. Jonsson’s “train

cohomology” groups [14] pick out single vertices on the longest anti-diagonal

(northwest-southeast direction) in the triangle diagram.

2.2. p-DG algebras and p-DG modules

p-DG algebras. By analogy with DG algebras and DG modules [2, Section

10.1], we now de�ne their counterparts: p-DG algebras andp-DG modules. Recall

that k is a �eld of characteristic p > 0.

De�nition 2.9. A p-DG algebraA is graded k-algebraA equipped with a k-linear

derivation (also called a di�erential) @A W A! A of degree 2 (i.e. @A W Ak ! AkC2

for all k 2 Z), which satis�es the p-nilpotency condition

@
p
A D 0 (24)

and the Leibniz rule

@A.ab/ D @A.a/b C a@A.b/; (25)

for any elements a; b 2 A .
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When the algebra A is generated by a set of elements ¹ai ji 2 I º, to check that

@p D 0 on the whole algebra, it is enough to check that @p.ai / D 0 for all i 2 I ,

since @p.ab/ D @p.a/b C a@p.b/ (in characteristic p, @p is a derivation if @ is).

A @-stable graded two-sided ideal I of A gives rise to a p-DG algebra A=I . �e

direct product A�B and the tensor product A˝B of p-DG algebras A and B are

again p-DG algebras with the obvious gradings and di�erentials.

De�nition 2.10. A left p-DG module .M; @M / over a p-DG algebra A is a graded

left A-moduleM with a k-linear endomorphism @M of degree 2 (i.e. a morphism

@M W M k !M kC2 for all k 2 Z) such that it is p-nilpotent:

@
p
M D 0; (26)

and for any a 2 A, m 2M

@M .am/ D @A.a/mC a@M .m/: (27)

A morphism of (left) p-DG-modules is a morphism of (left) A-modules of degree

zero which commutes with the di�erentials. We will denote the category of left

p-DG modules by A@-mod, or, alternatively, by .A; @/-mod. Likewise, a right
p-DG module N over A consists of a right A-module N equipped with a k-linear

endomorphism @N of degree 2 such that

@
p
N D 0; (28)

and for any a 2 A, n 2 N

@N .na/ D @N .n/aC n@A.a/: (29)

We will omit the subscripts in @A, @M , @N whenever no confusion can arise.

Remark 2.11 (p-DG algebra asH -module algebra). A p-DG algebra is a graded

H -module algebra and can also be described as H 0-comodule algebra, for a suit-

able in�nite-dimensional Hopf algebraH 0 related to the dual ofH . �e p-deriva-

tion on A allows us to de�ne the smash product ring A@ as follows. As a k-vector

space,

A@ Š A˝H;
and the multiplication on A@ is given by

.a1 ˝ 1/ � .a2 ˝ 1/ D .a1a2/˝ 1;

.1˝ h1/ � .1˝ h2/ D 1˝ .h1h2/;

.a1 ˝ 1/.1˝ h1/ D a1 ˝ h1
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for any a1; a2 2 A, h1; h2 2 H , and by the rule for commuting elements of the

form a˝ 1, 1˝ @:

.1˝ @/.a˝ 1/ D .a˝ 1/.1˝ @/C @.a/˝ 1:

Note that 1 ˝ H � A@ is a subalgebra. Moreover, since A, H are compatibly

graded, i.e. deg.@.a// D deg.a/ C 2 for any homogeneous a 2 A, the commu-

tator equation is homogeneous so that A@ is graded. �e category of left (resp.

right) p-DG modules is equivalent to the category of graded left (resp. right)

A@-modules. �is explains our choice of notation for the category of left (resp.

right) p-DG modules above and shows that it is an abelian category with arbitrary

coproducts.

�e algebras A@ are examples of smash product algebras, see [35, 39] for in-

stance.

If A D k is the ground �eld, a p-DG module over A is just a p-complex of

k-vector spaces. A 2-DG algebra is the same as a di�erential graded algebra over

a �eld of characteristic two, with the di�erential of degree two rather than one.

�e homotopy category

De�nition 2.12. Two morphisms of p-DG modules f; g W M ! N in A@-mod are

said to be homotopic if there exists a morphism h of A-modules of degree 2� 2p
such that

f � g D
p�1X

iD0

@
p�1�i
N ı h ı @i

M : (30)

It is readily seen that the collection of all morphisms that are homotopic to zero

(null-homotopic morphisms) forms an ideal in A@-mod. A p-DG module M is

called contractible if IdM is null-homotopic. �e homotopy category C.A; @/

of p-DG complexes is the categorical quotient of A@-mod by the ideal of null-

homotopic morphisms.

We often abbreviate C.A; @/ to C.A/ when the context is clear.

�e tensor product of a p-complex V and p-DG module M is naturally a

p-DG module. �e A action on M is extended to the whole of V ˝ M by let-

ting it act trivially on V , and @ acts by

@.x ˝m/ defD @.x/˝mC x ˝ @.m/

for any x 2 V and m 2M . �is gives a bifunctor

˝W H -mod � A@-mod �! A@-mod; .V; M/ 7! V ˝M:
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�e tensor product descends to homotopy categories:

˝W H -mod � C.A/ �! C.A/

and equips C.A/ with a “triangulated module-category” structure over H -mod.

�e shift functor on C.A/ is inherited from H -mod.

De�nition 2.13. �e shift endo-functor Œ1� on C.A/ is de�ned by

M 7! zVp�2¹�pº ˝M:

�e inverse of Œ1� is Œ�1� W M 7! zVp�2¹pº ˝M , and moreover

Œ2�
defD Œ1� ı Œ1� Š ¹�2pº;

with the isomorphisms coming from the map Q� of (11).

De�nition 2.14. Let
x
u W M ! N be a morphism in C.A/, and u W M ! N be a lift

of
x
u in A@-mod. Let Cu be the push-out of u W M ! N and �M W M ! H ˝M ,

so that it �ts into the following commutative diagram:

0 //

��

M
�M //

u

��

H ˝M �M //

Nu

��

MŒ1� // 0

��
0 // N

v // Cu
w // MŒ1� // 0:

�e standard exact triangle associated with
x
u in C.A/ is the sextuple

M x
u // N x

v // Cu x
w // MŒ1�

where the underlined morphisms denote the image of the corresponding un-un-

derlined ones in C.A/. We say that a sextuple

M
u // N

v // W
w // MŒ1�

is an exact triangle in C.A/ if it is isomorphic to a standard one in C.A/.

Proposition 2.15. �e homotopy category C.A/ together with the shift functor Œ1�
and the class of exact triangles described above is triangulated.

Proof. See [18, �eorem 1].

�e class of exact triangles in C.A/ can also be characterized as consisting of

the images of some short exact sequences of A@-modules.
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Lemma 2.16. Let 0 ! M
u�! N

v�! W ! 0 be a short exact sequence of
A@-modules which splits as a sequence of A-modules. �en associated with it
there is an exact triangle

M x
u // N x

v // W x
w // MŒ1�

in the homotopy category.

Proof. See [39, Lemma 4.3].

�e derived category. Since A@ containsH as a subalgebra, the natural forget-

ful functor from the category of p-DG modules to the base category of

p-complexes allows us to de�ne the cohomologies Hn.M/, H=.M/ of a p-DG

moduleM to be the cohomologies of the p-complexM . A morphism u W M ! N

of p-DG modules naturally induces a morphism of the underlying p-complexes,

and gives rise to morphisms on cohomologies:

un W Hn.M/ �! Hn.N /; u= W H=.M/ �! H=.N /:

�is allows us to de�ne the notion of quasi-isomorphisms.

De�nition 2.17. A morphism of p-DG modules u W M ! N is called a quasi-
isomorphism if it induces an isomorphism of the underlying p-complexes up to

homotopy. �is is equivalent to either of the following conditions on cohomology:

a) un W Hn.M/ Š Hn.N /;

b) u= W H=.M/ Š H=.N /.

A p-DG module M is called acyclic if 0 ! M , or equivalently M ! 0, is a

quasi-isomorphism.

Note that a contractible p-DG module is automatically acyclic but not vice

versa. However, these notions coincide for the ground �eld k viewed as a p-DG

algebra.

It follows from the de�nition that a morphism of p-DG modules which is ho-

motopic to a quasi-isomorphism is also a quasi-isomorphism, leading to a well-

de�ned notion of quasi-isomorphism in the homotopy category C.A/.

Proposition 2.18. Quasi-isomorphisms in C.A/ constitute a localizing class.

Proof. �is is Proposition 4 of [18, Section 1]. We also refer the reader to [12, Sec-

tion III.2] for the standard notion of a localizing class and de�nition of localization

with respect to a localizing class.
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De�nition 2.19. LetA be ap-DG algebra. We de�ne the derived categoryD.A; @/

of p-DG modules overA to be the localization of C.A; @/with respect to the class

of quasi-isomorphisms. When no confusion can arise, we will write D.A/ for

short.

D.A/ inherits a natural triangulated structure from that of C.A/. �e class of

exact triangles in D.A/ consists of sextuplesM
u�! N

v�! W
w�!MŒ1� that are

isomorphic to the images of exact triangles in C.A/. Moreover, it also inherits a

triangulated module-category structure overH -fmod from that of C.A/.

Lemma 2.20. Let 0 ! M
u�! N

v�! W ! 0 be a short exact sequence of
A@-modules. �en associated with it there is an exact triangle

M x
u // N x

v // W x
w // MŒ1�

in the derived category.

Proof. Omitted. �is together with the explicit construction of
x
w is Lemma 4.4

of [39, Section 4].

In one very particular situation the derived category is easy to determine,

namely when it is equivalent to the zero category.

Proposition 2.21. Let A be a p-DG algebra. �e following statements are equiv-
alent:

i) D.A/ Š 0;

ii) A is acyclic;

iii) there exists an element a 2 A such that @p�1.a/ D 1;

iv) there exists an element b 2 A such that @.b/ D 1.
Furthermore, if b is central in A, then

C.A/ Š 0:

Proof. i) H) ii). A Š 0.
ii) H) iii). Since @.1/ D 0 and A is acyclic, Proposition 2.2 v/ implies that

there is an element a with @p�1.a/ D 1.
iii) H) iv). Take b D @p�2.a/.
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iv) H) i). To do this we use the following elementary identity: ifD and L are

k-linear maps on a vector space satisfying ŒD; L� D Id, then

p�1X

iD0

Dp�1�iLp�1Di D �Id:

If this is proven, let L D Lb be the left multiplication on any p-DG moduleM by

the element b. �en

Œ@M ; Lb� D @.b/ D IdM

and i) follows by taking the homotopy to be�.Lb/
p�1. Now we prove the identity.

Let

adD.L/
defD ŒD; L�;

and note that adD is a derivation on the space of all linear operators. On one hand,

.adD/
p�1.Lp�1/ D .adD/

p�2..p � 1/Lp�2adD.L//

D .adD/
p�2..p � 1/Lp�2 � Id/

D ad
p�3
D ..p � 1/.p � 2/Lp�3adD.L// : : :

D .p � 1/ŠId

� �Id .mod p/:

On the other hand, expanding the iterated commutators directly results in

ad
p�1
D .Lp�1/ D ŒD; ŒD; : : : ; ŒD; Lp�1� : : : ��

D
p�1X

iD0

.�1/i
�
p � 1
i

�
DiLp�1Dp�1�i

D
p�1X

iD0

DiLp�1Dp�1�i :

�e claimed identity follows.

For the last statement, note that the proof of iv) H) i) says that �.Lb/
p�1

on any p-DG module M is a homotopy between IdM and 0M , and thus any M

is acyclic. If b is moreover central, then L
p�1

b
is an A-module map. �e result

follows.

Morphism spaces as cohomology. Similar to the usual DG case, the morphism

space in the homotopy category C.A/ is the degree zero part of a certain cohomol-

ogy p-complex RHOM.



212 M. Khovanov and Y. Qi

First o�, recall that in the abelian category A@-mod, the morphism space be-

tween two p-DG modules M , N can be computed as

HomA@
.M;N/ Š ¹u 2 HomA.M;N/j@ ı u � u ı @ D 0º

Š ¹u 2 HomA.M;N/j@ � u D 0º

Š Ker.@ W HOM0
A.M;N/ �! HOM2

A.M;N//;

where “�” denotes theH -action on HOMA, and HOM2
A.M;N/ stands for the space

ofA-module maps homogeneousof degree two. Similarly by De�nition 2.12, there

are canonical isomorphisms of k-vector spaces

HomC.A/.M;N/ Š
HomA@

.M;N/

@p�1 � Hom
2�2p
A .M;N/

Š Ker.@ W HOM0
A.M;N/! HOM2

A.M;N//

Im.@p�1 W HOM
2�2p
A .M;N/! HOM0

A.M;N//

Š H0
=0.HOMA.M;N//;

(31)

i.e. this is just the degree zero part of the slash (or backslash) cohomology of the

p-complex HOMA.M;N/. It forgets a lot of information about the totalp-complex

HOMA.M;N/ even if A@-module maps of all degrees are taken into account:

HOMC.A/.M;N/
defD
M

i2Z

HomC.A/.M;N ¹iº/

D H=0.HOMA.M;N//:

We summarize the above discussion in the following proposition, whose proof

in the more general case of module-algebras over any �nite dimensional Hopf

algebras can be found in [39, Section 5].

Proposition 2.22. �e following diagram commutes

A@-mod � A@-mod
HOMA.�;�/ //

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲

HomC.A/.�;�/

66

H -mod

Q

��

.Ker@/0

��

✞✞✞✞�� �

H -mod
H0

=0 // k-mod:
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Here Q is the natural quotient functor which is the identity on objects2 from the
abelian category of p-complexes to its homotopy category, and � is the natural
transformation which on a p-complex V is given by

�.V / W .Ker@/0.V /
defD Ker.@jV 0/ �! H0

=0.V /:

Co�brant modules and bar resolution. In the DG case, morphism spaces be-

tween “nice enough” objects in the derived category coincide with the morphism

spaces of the same objects in the homotopy category. �e analogous result also

holds in the p-DG case, which we now make precise.

Following Keller [17], we make the following de�nitions.

De�nition 2.23. Let A be a p-DG algebra and P a p-DG module over A.

i) We say that P is co�brant if for any surjective quasi-isomorphism of p-DG

modules M � N , the induced map of graded k-vector spaces

HOMA@
.P;M/ �! HOMA@

.P;N /

is surjective.

ii) We say that P satis�es property (P) if the following two conditions holds.

(P1) �ere is an exhaustive (possibly in�nite) �ltration of P by A@-submod-

ules:

0 D F�1 � F0 � F1 � � � � � Fr � FrC1 � � � � � P;

Here being exhaustive means that P D
S1

rD0 Fr .

(P2) �e associated graded modules of the �ltration FrC1=Fr for all r 2 N

are isomorphic to (possibly in�nite) direct sums of free A-modules of

the form A¹sº, s 2 Z.

�e co�brance property is equivalent to requiring that the induced map on

the homogeneous degree zero part of HOMA@
, which is just the morphism

HomA@
.P;M/ ! HomA@

.P;N /; be surjective, since M � N is a surjective

quasi-isomorphism if and only if M ¹rº� N ¹rº for any r 2 Z is.

We list the main properties of these two types of modules without proof. �e

reader can �nd the proofs in the more general framework of hopfological algebra

in [39, Section 6].

2 We usually just omit writing it when the context is clear.
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Proposition 2.24. LetA be a p-DG algebra. Co�brant and property (P) modules
over A enjoy the following properties:

i) property (P); modules are co�brant;

ii) if P is co�brant and M is acyclic, then HOMA.P;M/ is a contractible
p-complex. In particular HomC.A/.P;M/ D 0;

iii) a p-DG module P is co�brant if and only if P is projective as an A-module,
and for any acyclic p-DG A-moduleM , HOMA.P;M/ is an acyclic p-com-
plex;

iv) if P is co�brant and M is any p-DG module, then there is an isomorphism
of k-vector spaces

HomC.A/.P;M/ Š HomD.A/.P;M/;

v) a p-DG module is co�brant if and only if it is a direct summand of a prop-
erty (P) module in the abelian category A@-mod.

Proof. Omitted. See the results 6.4–6.10 of [39].

�e following theorem states that there are always “enough” property (P) mod-

ules.

�eorem 2.25 (Bar resolution). Let A be a p-DG algebra. For any p-DG mod-
ule M , there is a surjective quasi-isomorphism of p-DG modules

p.M/ �� M;

where p.M/ satis�es property (P). Moreover, the assignmentM 7! p.M/ is func-
torial in M .

Proof. See �eorem 6.6 and Corollary 6.7 of [39].

We will refer to the functorial co�brant module p.M/ as the bar resolution
of M .

Corollary 2.26. Let CF.A/ (resp. P.A/) denote the full-subcategory of C.A/ con-
sisting of co�brant (resp. property (P)) modules. �en the composition of functors

CF.A/ � C.A/
Q�! D.A/;

.resp. P.A/ � C.A/
Q�! D.A//;

where Q is the localization functor, is an equivalence of categories.
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Compact modules and Grothendieck groups. When working with the abelian

or derived category of modules over some ring, allowing in�nitely generated mod-

ules makes the Grothendieck group of the module category zero. One needs to

restrict the size of (projective) modules to de�ne the Grothendieck group. Similar

consideration applies in the p-DG context, and an appropriate size restriction on

p-DG modules is the compactness condition.

De�nition 2.27. Let A be a p-DG algebra. An object M 2 D.A/ is called com-
pact if the functor HomD.A/.M;�/ W D.A/ ! k-mod commutes with arbitrary

direct sums.

For instance, the module A¹rº is compact for any r 2 Z.

Proposition 2.28. Let A be a p-DG algebra. �e derived category D.A/ is gen-
erated by the set of compact objects ¹A¹rºjr 2 Zº, in the sense that if M 2 D.A/

satis�es
HomD.A/.A¹rºŒs�;M/ D 0

for all r , s 2 Z, then M Š 0 in D.A/.

Proof. Omitted. See [39, Proposition 7.6].

�e general machinery of Ravenel-Neeman can be applied to the compactly

generated category D.A/ to characterize the class of compact objects in it.

De�nition 2.29. A p-DG module M 2 A@-mod is called a �nite cell module if

there is a �nite exhaustive �ltration of A@-modules

0 D F�1 � F0 � � � � � Fr�1 � Fr � � � � � FN DM

such that the associated graded modules Fr=Fr�1 for all 0 � r � N are isomor-

phic, as A-modules, to �nite direct sums of the free A-modules A¹sº for various

s 2 Z.

In other words, �nite cell modules are just property (P) modules that are �nitely

generated as A-modules.

�eorem 2.30 (Characterization of compact modules). �e compact objects in
D.A/ are those which are isomorphic in the derived category to a direct summand
of a �nite cell module.

Proof. Omitted. See �eorem 7.14 and Corollary 7.15 of [39].
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Informally, we think of the notions introduced in this section as analogues

of the usual ring theoretic concepts below. In the comparison table, R stands for

some ring, “f.g.” is short for “�nitely generated”, and the arrows indicate inclusion

relations. Dotted line surrounds types of objects in the abelian category A@-mod,

while the bottom right arrow indicates that any �nite cell module is a compact

object in the derived category D.A/.

f.g. free

free

f.g. projective

projective

finite cell

property (P) cofibrant

compact

R-mod A@-mod

Denote by Dc.A/ the strictly full subcategory of D.A/ consisting of compact

objects. �e above theorem implies that Dc.A/ is Karoubian, or equivalently

idempotent complete. In the simplest case A Š k there is an equivalence of cate-

gories H -fmod Š Dc.k/.

De�nition 2.31. �e Grothendieck group K0.D
c.A// of a p-DG algebra A

(orK0.A/ if no confusion can arise) is the abelian group generated by the symbols

of the isomorphism classes of objects in Dc.A/, subject to the relations that

ŒM� D ŒL�C ŒN �

whenever there is an exact triangle L!M ! N ! LŒ1� in Dc.A/.

�e exact tensor bi-functor ˝W H -mod � D.A/ ! D.A/ restricts to an exact

bi-functor

˝W H -fmod �D
c.A/ �! D

c.A/;

which in turn equips K0.A/ with a module structure over the ring

Op Š K0.H -fmod/:

Derived hom and tensor product. Observe that if A is a p-DG algebra, its

opposite algebraAop equipped with the same di�erential @ is also a p-DG algebra,

called the opposite p-DG algebra ofA. �e category of right p-DG modules over

A can be identi�ed with that of left modules over Aop.
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�e category of p-DG algebras has a natural monoidal structure as follows.

If A and B are two p-DG algebras, then the tensor product p-DG algebra A˝B
is the usual tensor product algebra equipped with the di�erential

@.a˝ b/ defD @.a/˝ b C a˝ @.b/:

One readily checks that this di�erential is compatible with the algebra structure,

and furthermore A Š A ˝ k, B Š k ˝ B sit inside A ˝ B naturally as p-DG

subalgebras.

Now ifA,B are p-DG algebras, a p-DG .A; B/-bimodule AXB is a left module

X over the p-DG algebraA˝Bop. p-DG bimodules naturally give rise to functors

on p-DG module categories via the hom and tensor functors

HOMA.AXB ;�/ W A@-mod �! B@-mod;

AM 7�! HOMA.AXB ;AM/;

and

AXB ˝B .�/ W B@-mod �! A@-mod;

BN 7�! AXB ˝B N:

De�nition 2.32. LetA, B be p-DG algebras, and AXB be a p-DG .A; B/-bimod-

ule.

i) �e derived tensor product AX˝L
B W D.B/ ! D.A/ is the composition of

functors

D.B/
p
�! P.B/

AX˝B .�/�������! C.A/
Q�! D.A/;

where Q is the natural localization functor.

ii) �e derived hom functor R HOM.AXB ;�/ is the composition of functors

D.A/
HOMA.pA.X/;�/
�����������! C.B/

Q�! D.B/;

where pA.X/ denotes the bar resolution of X as a left p-DG A-module.3

�e tensor product and hom functors satisfy the following adjunction property.

Proposition 2.33. A p-DG .A; B/-bimodule X gives an adjunction of functors in
the derived category:

HomD.A/.X ˝L
B N;M/ Š HomD.B/.N;R HOMA.X;M//;

for any M 2 D.A/ and N 2 D.B/.

3 By the construction of the bar resolution in [39, �eorem 6.6], pA.X/ has a natural right

p-DG B-module structure.
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Proof. �is is a special case of Proposition 8.13 in [39].

A morphism � W X ! Y of p-DG .A; B/-bimodules descends to a natural

transformation between the derived tensor product functors

�L W X ˝L
B .�/ H) Y ˝L

B .�/ W D.B/ �! D.A/:

�e following proposition gives a criterion on when a derived tensor functor in-

duces an equivalence of derived categories, and when such a natural transforma-

tion is an isomorphism of functors.

Proposition 2.34. i) LetX be a p-DG .A; B/-bimodule and suppose it is co�-
brant as a p-DG A-module. �en

X ˝L
B .�/ W D.B/ �! D.A/

is an equivalence of triangulated categories if and only if the following two
conditions hold:

1) the natural map B ! HOMA.X;X/ is a quasi-isomorphism;

2) X , when regarded as a p-DG A-module, is a compact generator of
D.A/.

ii) Let� W X ! Y be a morphism of p-DG .A; B/-bimodules. �e natural trans-
formation

�L W X ˝L
B .�/ H) Y ˝L

B .�/

is an isomorphism of functors if and only if � W X ! Y is a quasi-isomor-
phism of p-DG bimodules.

Proof. Omitted. See Proposition 8.8 of [39].

Example 2.35. We give an example of the above proposition related to the clas-

sical Morita equivalence. Let A be a p-DG algebra and U a �nite dimensional

p-complex. �en A˝ U is a p-DG A-module which satis�es property (P) (De�-

nition 2.23). Form the algebra

B
defD ENDA.A˝ U/op:

B has a natural p-DG algebra structure where for any f 2 B and x 2 A˝ U ,

@.f /.x/ D @.f .x// � f .@.x//:
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Moreover, A˝ U is a p-DG .A; B/-bimodule, and we de�ne

.A˝ U/_ defD HOMA.A˝ U;A/ Š A˝ U �;

which is a p-DG .B; A/-bimodule. It is easy to see that

.A˝ U/_ ˝A .A˝ U/ Š B; .A˝ U/˝B .A˝ U/_ Š A;

as p-DG bimodules. �erefore, the functors between abelian categories

.A˝ U/˝B .�/ W B@-mod �! A@-mod;

.A˝ U/_ ˝A .�/ W A@-mod �! B@-mod;

which are mutually inverse of each other descend to equivalences of homotopy

categories

.A˝ U/˝B .�/ W C.B/ �! C.A/;

.A˝ U/_ ˝A .�/ W C.A/ �! C.B/:

It is a natural question to ask whether these functors further pass to derived equiva-

lences. Proposition 2.34 i) says that if U is not a contractible p-complex, in which

case A˝ U is a compact generator of D.A/, then

.A˝ U/˝L
B .�/ W D.B/ �! D.A/

is an equivalence of derived categories. On the other hand, .A˝ U/_ Š A˝ U �

is not a co�brant B-module if U is contractible. It is co�brant if and only if U is

not acyclic. When the co�brance condition is satis�ed,

.A˝ U/_ ˝L
A .�/ W D.A/ �! D.B/

is then an equivalence by Proposition 2.34 i) again.

Induction and restriction functors. A very special case of the previous dis-

cussion is when we have a map of p-DG algebras � W B ! A, and the bimodule

is given by AXB D AAB . We will allow maps � W B ! A with @B ı � D � ı @A
which are non-unital, with �.1B/ only an idempotent in A.

De�nition 2.36. Let � W B ! A be a map of p-DG algebras.

i) �e (derived) induction functor �� D IndA
B is the derived tensor functor

associated with the bimodule AAB :

�� D IndA
B D A˝L

B .�/ W D.B/ �! D.A/:
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ii) �e restriction functor �� D ResA
B is the forgetful functor via the morphism �,

i.e. it takes a p-DG A-module M to a p-DG B module �.1B/ �M by letting

B act through �. It is an exact functor on A@-mod, and therefore it descends

to an exact functor

�� D ResA
B W D.A/ �! D.B/

�e restriction functor coincides with the (derived) functor R HOMA.AB ;�/,
since as a left A@-module, A satis�es property (P), and thus for any graded

A-module AM ,

R HOMA.AB ;M/ D HOMA.AB ;M/ D BM:

Hence by Proposition 2.33, there is an adjunction

HomD.A/.�
�.N /;M/ Š HomD.B/.N; ��.M//

for any N 2 D.B/ and M 2 D.A/. It follows that ��.Dc.A// � Dc.B/ since ��

obviously commutes with taking arbitrary direct sums and direct summands. Al-

ternatively, this can be directly seen from the characterization of compact modules

as �nite cell modules (�eorem 2.30). In this language, Proposition 2.34 translates

into the following important special case, which is the p-DG analogue of �eo-

rem 10.12.5.1 of [2]. Functor �� does not necessarily preserve compact objects.

It does, for instance, when A has a �nite p-DG resolution as a .B; B/-bimodule,

or when A has �nite dimensional cohomology.

�eorem 2.37. Let � W B ! A be a morphism of p-DG algebras that is a quasi-
isomorphism. �en the induction and restriction functors

�� W D.B/ �! D.A/ and �� W D.A/ �! D.B/

are mutually inverse equivalence of categories.

Proof. �at �� is an equivalence follows from Proposition 2.34, while that of ��

follows by adjunction 2.33. For details see the proof in [39, Corollary 8.17].

Corollary 2.38. If � W B ! A is a quasi-isomorphism of p-DG algebras, then
Œ��� W K0.A/! K0.B/ is an isomorphism of Op-modules.

Proof. Since being compact is a categorical concept, an equivalence of categories

preserves compactness property. �e result follows readily from this and �eo-

rem 2.37.
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2.3. Special cases

Smooth artinian algebras. A graded k-algebra A is naturally a p-DG algebra

with the trivial di�erential (@ D 0). An algebra A is smooth if it has a �nite

projective resolution as an .A; A/-bimodules.

For the moment denote by K 0
0.A/ the usual Grothendieck group of A, which

is a ZŒq; q�1�-module, generated by symbols ŒP � of �nitely generated graded pro-

jective A-modules.

Proposition 2.39. �e Grothendieck group of a smooth artinian algebra A, re-
garded as a p-DG algebra with the trivial di�erential, is related to the usual
Grothendieck group K 0

0.A/ by

K0.A; @/ Š K 0
0.A/˝ZŒq;q�1� Op:

Proof. Omitted. See [39, Proposition 9.10].

Derivations on matrix algebras. It is well known that the space of derivations

on an associative algebra A modulo inner derivations, i.e. those of the form

@.a/
defD Œx; a� D xa � ax;

for any a 2 A and a �xed element x 2 A, is classi�ed by the �rst Hochschild

cohomology group HH1.A/, and this cohomology group is preserved by Morita

equivalences. �us if A D M.n;k/ is the n � n matrix algebra over the ground

�eld k,

Der.A/=Inn.A/ Š HH1.A/

Š HH1.k/

D 0;

since on the ground �eld, there are no non-zero derivations. In particular this says

that any derivation on the matrix algebra M.n;k/ arises as taking commutator

with some �xed element.

Now we specialize to matrix algebras over �elds of positive characteristic p.

We assume that k is algebraically closed until the end of this paragraph. Let

@J .M/
defD adJ .M/ D JM �MJ ; for all M 2 M.n;k/



222 M. Khovanov and Y. Qi

while J is �xed. �en we have

.adJ /
p.M/ D ŒJ; : : : ; ŒJ;M� : : : �

D
pX

kD0

.�1/k
�
p

k

�
J p�kMJ k

D J pM �MJ p

D adJ p.M/:

To have @
p
J D 0 on M.n;k/, one needs to require J p 2 Z.M.n;k// Š k �In�n, say

J p D � � In�n. Since k is algebraically closed, � has a p-th root � 2 k. �en we

have .J ��In�n/
p D 0. �ere exists g 2 GL.n;k/ such that g.J ��In�n/g

�1 D
Diag.Ji1 ; : : : ; Jim/, where i1 C � � � C im D n and each Jir .1 � r � m/ is the

standard ir � ir Jordan matrix with Ei;iC1 D 1 and 0 everywhere else. �us

J D g�1.Diag.Ji1 ; : : : ; Jim/ C �In�n/g D g�1.Diag.Ji1 ; : : : ; Jim//g C �In�n,

and adJ D ad.g�1.Diag.Ji1 ; : : : ; Jim//g/ allows us to get rid of � and �. Hence

we can assume from the beginning that J p D 0. Such matrices are classi�ed up

to conjugation by partitions .i1; : : : ; im/ ` n with ir � p for all 1 � r � m, with

each ir corresponding to a Jordan block Jir as above. In particular, p-nilpotent

derivations on M.n;k/ are classi�ed by such partitions, and the classi�cations

holds over any k, no necessarily algebraically closed, so this restriction can be

relaxed.

Next, we observe that M.n;k/ has an obvious Z grading. Indeed, the multipli-

cation rule Ei;jEk;l D ıj;kEi;l gives us a Z-grading deg.Ei;j / D j � i . �e space

of degree r homogeneous elements consists of matrices whose non-zero entries

are concentrated on the shifted r-th diagonal, i.e. the span ofEi;j , j � i D r . �us

the space of homogeneous derivations on M.n;k/ of degree one with respect to

this grading coincide with the shifted �rst diagonal
L

0�i�n�1 kEi;iC1.

A toy model. We examine the graded matrix algebra M.n;k/ as above, with the

derivation of the simplest Jordan type: for any M 2M.n;k/,

@n.M/
defD ŒJn;M�;

where Jn D
Pn�1

iD1 Ei;iC1 has only one Jordan block. Necessarily n � p. It is

easy to see that @n.Ek;n/ D Ek�1;n D Ek�1;nEn;n, for 1 � k � n. To make the

degrees match our conventions, set deg.Ei;j / D 2.j � i/ so that deg.@n/ D 2.
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Lemma 2.40. Let R be a ring and e 2 R an idempotent such that

R D ReR defD
°X

r;r 0

rer 0 W r; r 0 2 R
±
:

�en R is Morita equivalent to the ring eRe:

Proof. �e functors

.Re/˝eRe .�/ W eRe-mod �! R-mod

and

.eR/˝R .�/ W R-mod �! eRe-mod

are readily seen to be mutually inverse functors between the two categories.

We will apply this lemma in the situation when R D M.n;k/@n
is the smash

product algebra (2.11).

Proposition 2.41. When 1 � n � p, the algebra M.n;k/@n
is Morita equivalent

to H .

Proof. M.n;k/@n
has a basis ¹Ei;j@

r
n W 1 � i; j � n; 0 � r � p � 1º. �us

M.n;k/@n
�En;n �M.n;k/@n

�
°X

i;j

Ei;nEn;nEn;j @
r
n W 1 � i; j � n; 0 � r � p � 1

±

D
°X

i;j

Ei;j@
r
n W 1 � i; j � n; 0 � r � p � 1

±

D M.n;k/@n
;

and the above lemma applies. We conclude that M.n;k/@n
is Morita equivalent

to the subring En;n �M.n;k/@n
�En;n. �is subring is spanned by elements of the

form ¹En;i@
r
nEn;n W 1 � i � n; 0 � r � p � 1º. We claim that in fact it has as a

basis ¹En;n@
r
nEn;n W 0 � r � p�1º. �is is readily checked using the commutator

relation

Œ@k
n; En;n� D

kX

lD1

�
k

l

�
En�l;n@

k�l
n ;

where we set Es;n D 0 if s � 0. �e formula follows by an easy induction and the

@n action on Ek;n above. Finally, the same commutator relation also implies that,

for any 0 � r; s � p � 1,

.En;n@
r
nEn;n/.En;n@

s
nEn;n/ D En;n@

rCs
n En;n;
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which in turn shows that En;n �M.n;k/@n
�En;n has the same ring structure asH .

�e proposition follows.

�e abelian category of graded M.n;k/@n
-modules is Krull–Schmidt. As an

immediate application of the previous result, the indecomposable modules are

classi�ed as follows.

Corollary 2.42. When 1 � n � p, any indecomposable graded M.n;k/@n
-mod-

ule is isomorphic to precisely one of the form zVi¹mº ˝ kn for i 2 ¹0; 1; : : : p � 1º
and m 2 Z, where kn D

Ln
j D1 kEj;n is the column p-DG module and the di�er-

ential acts by @n.Ej;n/ D Ej �1;n.

Proof. Follows directly from the proof of Lemma 2.40 and the previous proposi-

tion.

In particular, if n D p, the column module is acyclic, and the corollary implies

that all p-DG modules over M.p;k/ are acyclic. �usD.M.p;k/; @p/ Š 0. In fact

an easy computation shows that

@p

 
p�1X

iD1

iEiC1;i

!
D

2
664

0
B@

0 1
0 1

0 1

:::
:::
0 1

0

1
CA ;

0
BB@

0
1 0

2 0

:::
:::

p�2 0
p�1 0

1
CCA

3
775 D Ip;

so that Proposition 2.21 iii) applies.

Proposition 2.43. If 1 � n � p� 1, the column p-DG module kn over the p-DG
algebra .M.n;k/; @n/ is a compact co�brant generator of D.M.n;k//.

Proof. Let K be any indecomposable acyclic p-DG module over .M.n;k/; @J /.

By our classi�cation of indecomposable modules, K Š kn ˝ Vp�1¹mº for some

m 2 Z. �us HOMM.n;k/.k
n; K/ D HOMM.n;k/.k

n;kn/˝ Vp�1¹mº Š Vp�1¹mº,
which is a contractible p-complex. �erefore Proposition 2.24 iii) implies that kn

is co�brant. �e compactness of kn is clear since it is �nite dimensional. Finally, it

is a generator since the free left p-DG module M.n;k/ has a �ltration by column

submodules F1 � F2 � F3 � � � � � Fn�1 � Fn D M.n;k/, such that the

quotients Fr=Fr�1 Š kn¹2.r � 1/º. �e result follows.
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Remark 2.44. When 1 � n � p � 1, the iterated extension of M.n;k/ in the

abelian category M.n;k/@n
-mod gives rise to a convolution diagram inD.M.n;k//,

using Lemma 2.20,

F1
// F2

//

~~⑦⑦
⑦⑦
⑦⑦
⑦

F3
//

~~⑦⑦
⑦⑦
⑦⑦
⑦

� � � // Fn�1
// Fn

zz✉✉
✉✉
✉✉
✉✉
✉

kn¹2º

Œ1�
``❅❅❅❅❅❅❅

kn¹4º

Œ1�
``❅❅❅❅❅❅❅

kn¹2.n� 1/º

Œ1�
ee❑❑❑❑❑❑❑❑❑

where F1 Š kn and Fn Š M.n;k/. Since D.M.n;k// is generated by M.n;k/

(see Proposition 2.28), it follows from this diagram that kn is a generator of

D.M.n;k//, and ŒM.n;k/� D .1C q2 C � � � C q2.n�1//Œkn� in K0.M.n;k//.

Corollary 2.45. If 1 � n � p � 1, the functor

kn ˝k .�/ W D.k/ �! D.M.n;k//

is an equivalence of triangulated categories. Consequently,K0.M.n;k// Š Op:

Proof. �e co�brance of kn allows us to pass from derived tensor product to un-

derived tensor product. �e result follows directly from the previous result and

Proposition 2.34.

�e method generalizes with essentially no change to the case when the dif-

ferential on M.n;k/ has more than one Jordan block. �e above Proposition 2.43

and Corollary 2.45 hold as long as all Jordan blocks are of size less or equal to

p and there is at least one Jordan block of size strictly less than p. If all Jordan

blocks are of size p, the algebra is acyclic and the derived category collapses to

zero.

3. �e p-DG nilHecke algebra

3.1. p-derivations on the nilHecke algebra

A p-derivation on the polynomial ring. De�ne the derivation @ on the ring of

polynomials kŒx�, deg.x/ D 2, by @.x/ D x2: �is implies @.xm/ D mxmC1, and

thus @p.x/ D 0, therefore making kŒx� into an H -module algebra. �e inclusion

k � kŒx� is an isomorphism in the stable categoryH -mod, since under the action

of @ the algebra of polynomials decomposes into the trivial representation k ofH

and free modules H ¹2C 2pkº spanned by x1Cpk ; x2Cpk ; : : : ; xp.kC1/ for k 2 N

(recall that we adopt the convention N D ¹0; 1; 2; : : :º).
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Let Poln D kŒx1; : : : ; xn� be the ring of polynomials in n variables, with

deg.xi / D 2. De�ne the derivation @ on Poln by @.xi / D x2
i . Viewed as a graded

H -module, Poln is the tensor product of n copies of the module kŒx�. Since the

latter is isomorphic to V0 in H -mod, the inclusion V0 � Poln taking V0 to k � 1 is

an isomorphism in H -mod.

We denote by Pn the space Poln with the grading shifted down by n.n�1/
2

,

viewed as a graded left Poln-module,

Pn
defD Poln

°n.1 � n/
2

±
:

�e generator 1 of Pn lives in degree n.1�n/
2

, and Pn D Poln �1. We call graded

module Pn the balanced free Poln-module, and sometimes denote its elements

f � 1 instead of just f .

A p-DG module structure on the balanced module Pn is determined by

@.1/ D g˛ � 1;

where ˛ D .˛1; : : : ; ˛n/ 2 kn, g˛ D
P
˛ixi is a linear function in xi ’s, viewed as

an element of Pn. �en for any f 2 Poln,

@.f � 1/ D @.f / � 1C f � @.1/ D .@.f /C fg˛/ � 1: (32)

�e condition @p D 0 translates into ˛i 2 Fp , i.e. the coe�cients being residues

mod p. We denote this p-DG module structure on Pn by Pn.˛/ and its generator

1 by 1˛ to stress their dependence on ˛ D .˛1; : : : ; ˛n/ 2 Fn
p. In what follows,

to each ˛t 2 Fp we assign the corresponding element of N, via the inclusion

¹0; 1; : : : ; p � 1º � N, and denote it by ˛t (as long as no confusion is possible).

Up to an overall grading shift, Pn.˛/ is isomorphic (as a p-DG Poln-module)

to the ideal inside the p-DG algebra Poln generated by the element x
˛1

1 : : : x
˛n
n .

As an H -module, Pn.˛/ decomposes into the tensor product of modules P1.˛t /

over kŒxt � for t ranging from 1 to n. �e H -module P1.˛/; ˛ 2 Fp contains the

submodule spanned by 1˛; x11˛; : : : ; x
p�˛
1 1˛ for ˛ 2 F�

p and by 1˛ for ˛ D 0,

and the inclusion of this submodule into P1.˛/ is a quasi-isomorphism. �us,

P1.0/ Š V0, and P1.˛/ Š Vp�˛ for ˛ ¤ 0. �e module P1.˛/ is contractible if

and only if ˛ D 1, and, more generally, Pn.˛/ is a contractible H -module if and

only if at least one of the coe�cients ˛t of the linear function g˛ is 1.

�e induced action on symmetric functions. �e symmetric group Sn acts on

Poln by permuting the variables. Denote by Symn the subalgebra of Poln consist-

ing of Sn-invariant functions, Symn D PolSn
n . �e derivation @ commutes with
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the action of Sn and restricts to a derivation on Symn. �is subalgebra of sym-

metric functions is free with generators being elementary symmetric polynomials

e1; e2; : : : ; en, where em is the sum of xi1 : : : xim over all subsets ¹i1; : : : ; imº of

¹1; 2; : : : ; nº of cardinality m:

em D
X

1�i1<���<im�n

xi1 : : : xim :

Later, when varying the number n of variables, we will denote em by e
.n/
m to stress

the dependence on n. For instance e
.1/
1 D x1, and e

.3/
2 D x1x2 C x1x3 C x2x3.

We have the following explicit formula describing the di�erential on the ele-

mentary symmetric functions.

Lemma 3.1. �e derivation @ acts on the elementary symmetric functions as fol-
lows:

@.em/ D e1em � .mC 1/emC1 .m < n/;

@.en/ D e1en:

Proof. Consider the following generating function over ZŒt � for the elementary

symmetric functions (we set e0
defD 1)

nY

iD1

.1C xi t / D
nX

mD0

emt
m;

and let @ act on it as a ZŒt �-linear derivation which is determined by @.xi / D x2
i .

�en di�erentiating both sides gives us

nX

mD0

@.em/t
m D

nX

iD1

�
x2

i t �
Y

j ¤i

.1C xj t /
�

D
nX

iD1

�
.x2

i t C xi / �
Y

j ¤i

.1C xj t / � xi �
Y

j ¤i

.1C xj t /
�

D
nX

iD1

�
xi

mY

j D1

.1C xj t /
�
� @

@t

nY

j D1

.1C xj t /

D e1 �
nY

j D1

.1C xj t / �
@

@t

nY

j D1

.1C xj t /

D e1 �
nX

mD0

emt
m �

n�1X

mD�1

.mC 1/emC1t
m:

Comparing coe�cients of t on both sides gives the claimed formula.
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As a graded Symn-module, Poln is free of rank nŠ with a basis

¹xb1

1 x
b2

2 : : : x
bn�1

n�1 W 0 � bi � n � iº:

More generally, for any �xed permutation s of ¹0; 1; : : : ; n� 1º, the set

¹xb1

1 x
b2

2 : : : xbn
n W 0 � ai � s.i � 1/º

is a basis of the module.

When n < p, the group algebra kŒSn� is semisimple, and the Sn-representation

Poln decomposes into a direct sum of its isotypic components Poln;�, over all par-

titions � of n, corresponding to irreducible representations L� of Sn. �e algebra

of invariants Symn D PolSn
n D Poln;.n/ is identi�ed with the summand corre-

sponding to the trivial representation L.n/. �ere is only one possibility for the

corresponding direct sum decomposition of the trivial representation V0 in the

stable category (V0 Š Poln in H -mod).

Corollary 3.2. When n < p, the natural inclusion V0 � Symn is an equiva-
lence in the stable categoryH -mod, while Poln;� is contractible for any partition
� 6D .n/.

When n D p, the elementary symmetric function ep D x1x2 : : : xp has the

property that e
p
p is in the kernel but not in the image of @, as easily seen from

Lemma 3.1. �e inclusion V0¹2p2º � Poln taking a basis vector of V0 to e
p
p

realizes V0¹2p2º as a direct summand of the H -module Polp : More generally,

for any a1; : : : ; ap � 0 the inclusion V0¹2p.a1 C � � � C ap/º � Polp taking a basis

vector to x
pa1

1 x
pa2

2 : : : x
pap
p realizes the former as a direct summand of Polp.

�e nilHecke algebra. �e nilHecke algebra NHn on n strands over the �eld

k, see [23, 25], has generators x1; : : : ; xn and ı1; : : : ; ın�1, subject to de�ning

relations

ı2
i D 0; ıiıiC1ıi D ıiC1ıiıiC1; ıiıj D ıj ıi if ji � j j > 1; (33)

xiıj D ıjxi if j 6D i; i C 1; xixj D xjxi ; (34)

xiıi � ıixiC1 D 1; ıixi � xiC1ıi D 1: (35)
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We often use a graphical presentation for monomials in the generators of NHn,

with xi , respectively ıi depicted as a dot on the i-th strand and the crossing of the

i th and .i C 1/-st strands:

xi
defD

1 i n

: : : : : : ; ıi
defD

1 i C 1i n

: : : : : : :

�e enumerating labels on the strands will be omitted when they are clear from

the context. Multiplication in NHn is given by vertical concatenations of diagrams,

with the product xy represented by the picture

x

: : :

: : :

: � y

: : :

: : :

D
y

x
: : :

: : :

: : :

�e nilHecke algebra with zero strands NH0 Š k is one-dimensional and

spanned by the empty diagram ¿. �e de�ning relations say that far away gener-

ators commute and the following diagrammatic equalities hold:

D 0; D ;

� D D � :

For any permutation w we de�ne

ıw
defD ıi1 : : : ıir ;

where w D si1 : : : sir is some reduced decomposition of w into the product of

elementary transpositions si D .i; i C 1/. �e nilHecke algebra has a basis with

elements given by

x
b1

1 : : : xbn
n ıw

over all b1; : : : ; bn 2 N and w 2 Sn. �e element xb
i for some b 2 N is denoted

by a dot with a label b next to it on the i-th strand. Each basis element can then be
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represented by a diagram of the composition of crossings describing permutation

w composed with dots on the strands above the permutation diagram,

b2b1 b4 b5b3

:

Diagrams without dots span a subalgebra of NHn called the nilCoxeter algebra.

�is subalgebra, denoted NCn, has a basis ¹ıwjw 2 Snº.
�e algebra NHn possesses the following symmetries which are naturally de-

scribed using its diagrammatic presentation. Re�ecting a diagram about a hori-

zontal axis is an algebra anti-automorphism of NHn, which we will denote by  ,

 

0
BBB@

1
CCCA D : (36)

Re�ecting a diagram about a vertical axis and simultaneously multiplying it by

.�1/s, where s is the number of crossings in the diagram, is an algebra automor-

phism of NHn, which will be denoted by � ,

�

0
BBB@

1
CCCA D .�1/

2 D : (37)

More intrinsically, the nilHecke algebra can be de�ned as the algebra of endo-

morphisms of Pn as a Symn-module:

NHn D ENDSymn
.Pn/: (38)

�e generator xt of NHn acts as multiplication by xt 2 Poln on Pn (the same

notation is used here for an element of Poln and the corresponding endomorphism

of Pn). �e generator ıi act as the divided di�erence operator

ıt .f / D
f � tf

xt � xtC1

;

where tf is the polynomial f 2 Pn with xt ; xtC1 transposed. Divided di�erence

operators commute with multiplications by symmetric functions. It is easy to
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check that relations (33)–(35) hold on these endomorphisms, resulting in a homo-

morphism from the algebra with these generators and relations to ENDSymn
.Pn/.

�is homomorphism can be shown to be an isomorphism. We refer to Pn as the

(left) balanced polynomial representation of NHn.

It is well known that Pn is a free graded module over Symn of rank nŠ and

graded rank Œn�Š (due to balancing, the graded rank is invariant under q $ q�1

symmetry). For a sequenceˇ D .b1; : : : ; bn/with bk 2 N let xˇ D xb1

1 x
b2

2 : : : x
bn
n .

�e set

Bn D ¹xˇ W 0 � bt � n � t; t D 1; : : : ; nº (39)

is a homogeneous basis of graded free Symn-module Pn. Necessarily bn D 0 for

such ˇ. Let Un D k¹Bnº be the k-vector subspace of Pn with basis Bn. �ere is

a canonical isomorphism

Un ˝k Symn

Š�! Pn (40)

taking xˇ ˝ f to f xˇ and, via equation (38), producing an isomorphism

NHn Š ENDk.Un/˝k Symn Š Un ˝ U �
n ˝ Symn : (41)

Upon ordering elements of Bn, we get an isomorphism

NHn Š M.nŠ; Symn/; (42)

which identi�es NHn with the matrix algebra of size nŠ with coe�cients in the

ring of symmetric functions in x1; : : : ; xn.

More generally, for any permutation s 2 Sn, let

Bn;s
defD ¹xˇ W 0 � bs.t/ � n � t; t D 1; : : : ; nº: (43)

�en Bn;s is a homogeneous basis of graded free Symn-module Pn. Denoting

by Un;s D khBn;si the k-vector subspace of Pn with basis Bn, there is a natural

isomorphism of Symn-modules

Un;s ˝k Symn

Š�! Pn (44)

taking xˇ ˝ f to f xˇ and giving an isomorphism

NHn Š ENDk.Un;s/˝k Symn Š Un;s ˝ U �
n;s ˝ Symn : (45)

If s D .1/ 2 Sn is the identity element, we also write BC
n instead of Bn D Bn;.1/

and UC
n instead of Un D Un;.1/. When s is the maximal length permutation w0 D

.1; n/.2; n� 1/ : : : , we denote Bn;w0
and Un;w0

by B�
n and U�

n , correspondingly.
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Let xUn D Pn=Pn � Sym0
n; where Sym0

n is the codimension one ideal of Symn

consisting of symmetric functions with zero constant term. Isomorphisms (40)

and (44), upon modding out by Sym0
n, induce natural isomorphisms of graded

k-vector spaces

Un Š xUn; Un;s Š xUn: (46)

Any Symn-linear endomorphism ofPn preserves the subspacePn �Sym0
n. Con-

sequently, an element of NHn induces an endomorphism of xUn, and we get a sur-

jective homomorphism

NHn D ENDSymn
.Pn/

�! ENDk.Pn=.Pn � Sym0
n// D ENDk. xUn/

Š NHn =NHn � Sym0
n :

(47)

Denote this homomorphism

�n W NHn �! ENDk. xUn/: (48)

�e quotient map Pn ! xUn admits many sections xUn ! Pn: Any such section

determines an injective homomorphism

| 0
n W ENDk. xUn/ �! NHn

such that �n ı | 0
n D Id: We now choose a particular section. �e quotient map

takes Un � Pn bijectively onto xUn, which we use to identify Un and xUn, obtaining

an injective homomorphism

|n W ENDk. xUn/ �! NHn (49)

as the composition

ENDk. xUn/ Š ENDk.Un/

,�! ENDk.Un/˝ ENDSymn
.Symn/ Š ENDSymn

.Un ˝ Symn/

Š ENDSymn
.Pn/

D NHn :

We have �n ı |n D Id. Likewise, for any permutation s 2 Sn, the quotient map

Pn ! xUn induces an isomorphism between vector spaces Un;s and xUn, leading to

a section |n;s W ENDk. xUn/! NHn with �n ı |n;s D Id.
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Let

P
_
n D HOMSymn

.Pn; Symn/ (50)

be the dual of Pn viewed as a (graded) Symn-module. P_
n is naturally a right

graded NHn-module and a graded Symn-module of graded dimension Œn�Š. Iso-

morphism (40) induces an isomorphism

P
_
n Š U �

n ˝k Symn (51)

of Symn-modules. �ere is a canonical algebra isomorphism

�0 W Pn ˝Symn
P

_
n

Š�! NHn : (52)

coming from the de�nition of NHn as the algebra of all Symn-linear endomor-

phisms of Pn.

Let ı.n/ D ıw0
be the element of NHn corresponding to the maximal length

permutation in Sn,

ı.n/
defD

„ ƒ‚ …
n strands

D ı.n/ : (53)

�e element ı.n/ spans the one-dimensional subspace of NHn of lowest degree

(degree n.1�n/). �e operator ı.n/ on Pn takes any polynomial f to a symmetric

polynomial.

�e symmetric Symn-bilinear pairing

.�;�/ W Pn ˝Symn
Pn �! Symn (54)

taking f ˝g to ı.n/.fg/ is nondegenerate [32, Section 2.5] and has the invariance

property

.yf; g/ D .f;  .y/g/; y 2 NHn; f; g 2 Poln :

It induces an isomorphism

�ı W Pn
Š�! P

_
n (55)

of free graded Poln-modules taking 1 2 Pn to the Symn-linear map

1_ W Pn �! Symn
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which sends g 2 Pn to ı.n/.g/. In general, under �ı, f 2 Pn goes to the Symn-

linear map

f 1_ W Pn �! Symn; g 7�! f 1_.g/
defD ı.n/.fg/:

�e map �ı can also be viewed as an isomorphism of graded right NHn-modules,

where we turn Pn from a left to a right NHn-module via  .

Let �n D �0 ı .Id˝ �ı/ be the composition map

Pn ˝Symn
Pn

Id˝�ı

����! Pn ˝Symn
P

_
n

�0

�! NHn : (56)

�is map

�n W Pn ˝Symn
Pn �! NHn (57)

is an isomorphism of graded NHn-bimodules which takes f ˝ g to f ı.n/g.

Let

�n
defD .�1/

n.n�1/
2 ı.n/x2x

2
3 : : : x

n�1
n 2 NHn :

It is not hard to check that

ı.n/.x2x
2
3 : : : x

n�1
n / D .�1/

n.n�1/
2 ;

so that �n.f / D f for any f 2 Symn. Moreover, the image of �n acting on Pn

is exactly Symn. �is implies that �n is a primitive idempotent in NHn. In our

graphical notation, it is depicted as follows:

�n D .�1/
n.n�1/

2

1 2 n�1: : :

:

�e element �n is homogeneous of degree 0, and ıt�n D 0 for any 1 � t � n � 1.
Up to a degree shift, the graded projective left NHn-module NHn �n is naturally

isomorphic to the polynomial module Pn,

Pn Š NHn �n

°n.1 � n/
2

±
: (58)

�e isomorphism, unique up to a nonzero constant, takes the generator 1 of Pn

to �n. �e modules in (58) are also isomorphic to the module induced from the

one-dimensional representation placed in degree n.1�n/=2 of the nilCoxeter sub-

algebra NCn � NHn.
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Consider the idempotent

��
n D  �.�n/ D xn�1

1 xn�2
2 : : : xn�1ı.n/: (59)

Diagrammatically,

��
n

defD  �.�n/ D

: : :1n�2n�1

:

�e projective right NHn-module ��
n NHn generated by this idempotent is isomor-

phic, up to grading shift, to P_
n ,

��
n NHn

°n.1 � n/
2

±
Š P

_
n ; (60)

via the isomorphism which takes ��
n to the functional f 7! ı.n/.f /; f 2 Pn.

�e left regular representation of NHn decomposes into nŠ copies of the polyno-

mial representation Pn with grading shifts, while the right regular representation

decomposes into the same number of copies of P_
n .

We recall an explicit basis of NHn over its center Symn as given in [22, Sec-

tion 2.5]. De�ne

Sq.n/
defD ¹˛ D .˛1; : : : ; ˛n�1/ W 0 � ˛t � t; t D 1; : : : ; n � 1º:

For any ˛ 2 Sq.n/, set

j˛j D
n�1X

tD1

˛t

and

Ǫ D . Ǫ1; Ǫ2; : : : ; Ǫn�1/
defD .1� ˛1; 2� ˛2; : : : ; n� 1 � ˛n�1/:

De�ne for each ˛ 2 Sq.n/,

e˛
defD e.1/

˛1
e.2/

˛2
: : : e.n�1/

˛n�1
; x Ǫ defD x Ǫ1

2 x
Ǫ2

3 : : : x Ǫn�1
n :

See the beginning of Section 3.1 for the notation of symmetric functions adopted

here.
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Proposition 3.3. NHn is isomorphic to the nŠ � nŠ matrix algebra M.nŠ; Symn/

over its center Symn. A particular homogeneous matrix basis of NHn can be given
by

¹E˛;ˇ D .�1/j
Ǒ je˛ı.n/x

Ǒ W ˛; ˇ 2 Seq.n/º:

Proof. �is is true because ¹e˛º, ¹x Ǫ º for ˛ 2 Sq.n/ form dual bases under the

Symn- bilinear pairing .�;�/. See [22, Proposition 2.16].

�is basis will be depicted diagrammatically as follows. Abbreviating the poly-

nomials e˛, x
Ǒ

by coupons labeled by the same symbols, the basis elements look

like

E˛;ˇ D .�1/j
Ǒ j

x
Ǒ

e˛

D .�1/j Ǒ j

x
Ǒ

ı.n/

e˛

:

Example 3.4. NH2 provides the simplest non-trivial example for the above propo-

sition, with basis elements given by the four diagrams below:
0
BBBBB@

�

�

1
CCCCCA
:

Local p-di�erentials on nilHecke algebras. We now look for p-di�erentials

on nilHecke algebras compatible with the di�erential @ on the subalgebra Poln

and local, in the sense of being compatible with inclusions NHn � NHk1CnCk2
,

where we add k1, respectively k2, vertical strands on the sides of a diagram in

NHn. �e nilHecke algebra is the Symn-endomorphism algebra of the module Pn,

and Pn has a family of p-di�erentials @˛ parametrized by g˛ D
P
˛ixi , ˛i 2 Fp,

see (32). �e corresponding p-DG Poln-module was denoted Pn.˛/, where ˛ D
.˛1; : : : ; ˛n/.

Before we move on to study .NHn; @a/ as a p-DG algebra, we investigate

how the di�erential structure of the polynomial module changes under the du-

ality Pn.˛/
_. Recall that @˛ on Pn.˛/ induces on Pn.˛/

_ the di�erential @_
˛ such
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that, for any z 2 Pn.˛/
_ and f 2 Pn.˛/,

@_
˛ .z/.f / D @.z.f // � z.@˛.f //; (61)

where the undecorated operator @ is the natural di�erential on the ring of sym-

metric polynomials (Lemma 3.1). In this way Pn.˛/
_ is naturally a p-DG .Symn;

Poln/-bimodule since Pn.˛/ is a p-DG bimodule over .Poln; Symn/. Recall from

equation (55) that, under �ı, the generator 1˛ 2 Pn.˛/ is sent to the Symn-linear

functional 1_
˛ which acts on any element f of Pn.˛/ as

1_
˛ .f / D �ı.1˛/.f / D ı.n/.f /:

In what follows, for any ˛ D .˛1; : : : ; ˛n/ 2 kn, we let

˛_ defD .˛_
1 ; : : : ; ˛

_
n / 2 kn

and

˛_
t

defD 1 � n � ˛t for any 1 � t � n.

Lemma 3.5. �e di�erential @_
˛ acts on the generator 1_

˛ by

@_
˛ .1

_
˛ / D

nX

tD1

˛_
t xt1

_
˛ : (62)

Equivalently, the dual polynomial module Pn.˛/
_ with the induced di�erential @_

˛

is isomorphic to Pn.˛
_/ with the di�erential @˛_ under the homomorphism �ı.

Proof. Since both sides of equation (62) are Symn-linear, it su�ces to check

this formula on a set of Symn-basis elements for Pn.˛/, for instance, the set Bn

from (39).

�e left hand side of equation (62), applied to any basis element

xˇ defD xb1

1 : : : xbn
n ;

where 0 � bt � n� t , gives via equation (61)

@_
˛ .1

_
˛ /.x

ˇ / D @.ı.n/.xˇ // � ı.n/.@˛.x
ˇ //

D �
nX

tD1

ı.n/..bt C ˛t /x
b1

1 : : : x
bt C1
t : : : xbn

n /:

On the other hand,

.

nX

tD1

˛_
t xt1

_
˛ /.x

ˇ / D
nX

tD1

˛_
t ı.n/.xt � xˇ /

D
nX

tD1

.1 � n � ˛t /ı.n/.x
b1

1 : : : x
bt C1
t : : : xbn

n /:
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Observe that ı.n/.x
b1

1 : : : x
bt C1
t : : : x

bn
n / can be non-zero only in the following two

cases:

(i) each bl D n � l and t D 1;

(ii) exactly one of, say bl D n� l�1 (1 � l � n�1), while the other bl 0 D n� l 0
for l 0 ¤ l , and either t D l or t D l C 1.

In case (i) the right hand sides of both equations are equal to .1�n�˛1/e1, while

in case (ii) both sides are equal to ˛lC1 � ˛l . �e lemma follows.

�is p-DG structure induces a di�erential on NHn D ENDSymn
.Pn.˛//, via

@˛.�/.f /
defD @.�.f // � �.@.f //;

for � 2 ENDSymn
.Pn.˛// and f 2 Pn.˛/.

Let us compute this di�erential on generators of NHn. On the subalgebra Poln

the di�erential will restrict to the original di�erential @, with @.xi / D x2
i .

Due to the local nature of generators ıi , to compute @˛.ıi/ we can reduce to

n D 2 case. �en g D ˛1x1 C ˛2x2, and a short computation yields

@˛.ı1/ D a1 � .a1 C 1/x1ı1 C .a1 � 1/x2ı1; (63)

where a1 D ˛2 � ˛1. In general,

@˛.ıi / D ai Id � .ai C 1/xiıi C .ai � 1/xiC1ıi ; (64)

where ai D ˛iC1 � ˛i . We would like @˛ to be local, in the sense that the co-

e�cients for its action on generators should not depend on i . �is is equivalent

to a1 D a2 D � � � D an�1. Let a D a1. �en ˛2 D ˛1 C a and, in general,

˛kC1 D ˛1 C ka and

g D g.˛1; a/ D ˛1x1 C .˛1 C a/x2 C � � � C .˛1 C .n� 1/a/xn:

We denote the corresponding p-DG module structure on Pn by Pn.˛1; a/, pre-

viously denoted Pn.˛/ for ˛ D .˛1; ˛1 C a; : : : ; ˛1 C .n � 1/a/. �e induced

di�erential on NHn depends only on a 2 Fp , not on ˛1, and will be denoted @a.

It is given on generators by

@a.xi / D x2
i ;

@a.ıi / D a � .aC 1/xiıi C .a � 1/xiC1ıi :
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Diagrammatically,

@a

 !
D D 2; (65)

@a

 !
D a � .aC 1/ C .a � 1/ : (66)

�us, the p-DG Poln-module Pn.˛1; a/ for ˛1; a 2 Fp induces a local di�er-

ential @a on NHn, turning it into a p-DG algebra. �e di�erential extends to the

entire NHn via the Leibniz rule @.xy/ D @.x/y C x@.y/. Clearly, @
p
a D 0, since

this is true for the di�erential @˛ on Pn.˛1; a/.

�e di�erential @a takes a “one-strand” generator xi to a one-strand diagram

x2
i and a “two-strand” generator ıi to a linear combination of two-strand diagrams.

It commutes with the obvious inclusions NHn � NHk1CnCk2
given by adding k1

vertical lines to the left and k2 vertical lines to the right of a diagram in NHn.

We say that @a is a local di�erential on the family of algebras NHn. Note that the

de�ning equations (65), (66) make sense for any a 2 k.

Lemma 3.6. Under any parameter a 2 k, the equation @p
a D 0 holds on NHn if

and only if a 2 Fp .

Proof. �e “if” part follows at once from the corresponding property (@
p
g D 0) of

the di�erential @g.˛1;a/ on Pn. Clearly, @
p
a .xi / D 0 for any a 2 k. It su�ces to

show that @
p
a .ı1/ D 0 precisely when a 2 Fp .

By a direct computation we have

@2
a.ı1/ D @a.a � .aC 1/x1ı1 C .a � 1/x2ı1/

D .aC 1/ax2
1ı1

� 2.aC 1/.a � 1/x1x2ı1

C .a � 1/ax2
2ı1

� .aC 1/ax1 C a.a � 1/x2:

�us when p D 2, @2
a.ı1/ D 0 if and only if a 2 F2.

Applying @a once more, we obtain

@3
a.ı1/ D .aC 1/a.a � 1/..x1 � x2/

3ı1 C .x1 � x2/
2/:

An induction shows that for any k � 3,

@k
a.ı1/ D .aC 1/a.a � 1/.x2 � x1/

3 � .Sı1/C .aC 1/a.a � 1/.x2 � x1/
2 �S;
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where

S D
k�3X

iD0

.�1/i
�
k � 3
i

� k�4�iY

j D0

.aC 2C j /
i�1Y

lD0

.a � 2 � l/xi
1x

k�3�i
2 :

�e coe�cient in front of each term, for a �xed i , is
�

k�3
i

�
times the product of

sums of a with some consecutive integers:

.aC 1/a.a � 1/
k�4�iY

j D0

.aC 2C j /
i�1Y

lD0

.a � 2 � l/ D
k�2�iY

mD�i�1

.aCm/:

When k D p � 3, the p consecutive residues range over all elements of Fp.

It follows that

.aC 1/a.a � 1/
p�2�iY

j D0

.aC 2C j /
i�1Y

lD0

.a � 2 � l/ D ap � a;

and thus

@p
a .ı1/ D .ap � a/.x2 � x1/

2

p�3X

iD0

�
.�1/i

�
p � 3
i

�
xi

1x
p�3�i
2 ..x2 � x1/ı1 C 1/

�
;

which is zero if and only if a 2 Fp. �e lemma follows.

Remark 3.7. When p D 2, the di�erential @1 preserves the nilCoxeter subalgebra

NCn of NHn and acts on a crossing by

@1

 !
D :

.NCn; @1/ is a di�erential graded algebra, and appears in knot Floer homology

(cf. [26, 27]) and in categori�cation of quantum superalgebras [19].

Remark 3.8. Any degree -2 p-nilpotent local di�erential @0 acting on NHn has

the form

@0

 !
D � ; @0

 !
D 0;

for some � 2 k. If � ¤ 0, @0.x1

�
/ D 1, so that NHn is acyclic for any n � 1, and

its Grothendieck group vanishes. For this reason, these di�erentials do not appear

interesting and we will not consider them.
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By Lemma 3.6, @a is a local degree two p-nilpotent di�erential on the family of

algebras NHn. It is easy to check that any local degree two p-nilpotent di�erential

on the family NHn is given by �@a for some � 2 k and a 2 Fp. Moreover, @a and

@�a are related to each other by the symmetries  , � of the nilHecke algebra.

Proposition 3.9. �e following equalities hold:

 @a D @�a; �@a� D @�a: (67)

Proof. �e symmetry � of NHn is induced by the involution on the algebra Poln

(also denoted �) transposing xt and xn�t , 1 � t � n � 1. �is involution takes

linear function g.˛1; a/ to g.˛1C.n�1/a;�a/, which implies the second relation

in (67).

It su�ces to check the �rst relation on generators xt and ıt , since both sides

are derivations. On xt , we have

 @a 

 !
D  @a

 !
D  

 
2

!
D 2 D @�a

 !
;

while on ıt

 @a 

 !

D  @a

 !

D  
 
a � .aC 1/ C .a � 1/

!

D a � .aC 1/ C .a � 1/

D a � .aC 1/
 

C
!
C .a � 1/

 
�

!

D .�a/ � .�aC 1/ C .�a � 1/ D @�a

 !
:

�e result follows.

Proposition 3.10. For any n 2 N and a 2 Fp, the graded H -module NHn is a
compact object of H -mod.
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Proof. We must show that NHn is quasi-isomorphic to a �nite dimensional

H -module. To do this, �x a reduced expression st1 : : : str for each elementw 2 Sn,

where st D .t; tC1/, and let ıw
defD ıt1 : : : ıtr (the element ıw of NHn depends only

on w and not on a reduced expression). Equation (66) and the nilHecke relations

imply that

@a.ıw/ D
nX

tD1

btxtıw C
X

w 0

fw 0ıw 0 ; (68)

where bk 2 Fp, permutations w0 2 Sn appearing in the second summand have

strictly fewer crossings than w, and fw 0 are polynomials in xi ’s (both bk and fw 0

depend onw). �e nilHecke algebra NHn is a free left Poln-module with a basis of

elements ıw , over all w 2 Sn. Choose a total ordering � on Sn which re�nes the

partial orderw1 < w2 wheneverw1 has fewer crossings thanw2. Let �1; �2; : : : ; �nŠ

be the list of permutations in this order. Consider the �ltration

0 D N0 � N1 � N2 � � � � � NnŠ D NHn

where Nj is the free left Poln-submodule of NHn spanned by ı�1
; ı�2

; : : : ; ı�j
.

Equations (68) show that the derivation @a preserves this �ltration, @a.Nj / �
Nj , and that each subquotient Nj =Nj �1 is isomorphic to the p-DG Poln-module

Pn.˛/¹mº for ˛ D .˛1; : : : ; ˛n/ 2 Fn
p and some m 2 Z.

From the earlier discussion of rank one Poln p-DG modules we know that

Pn.˛/ is quasi-isomorphic to a �nite-dimensional H -module for any ˛ (equiv-

alently, the graded H -module Pn.˛/ is isomorphic to a direct sum of a �nite-

dimensional H -module and a free H -module). �erefore, NHn has the same

property.

Lemma 3.11. �e di�erential @0 acts on the element ı.n/ 2 NHn by

@0.ı.n// D �.n � 1/e.n/
1 ı.n/;

which is depicted diagrammatically by

@0

0
B@ ı.n/

1
CA D �.n � 1/

ı.n/

e1

:

Proof. Here we give a relatively detailed proof of the formula as the same method

can be used in similar situations later on. �e lemma is proven by induction. �e

n D 1 case is clear. Suppose we have shown the formula when n � k � 1. When
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n D k, we have

@0

0
B@ ı.k/

1
CA

D @0

0
B@

ı.k � 1/
1
CA

D �.k � 2/ ı.k � 1/
e1

�
ı.k � 1/

�
ı.k � 1/

�
ı.k � 1/

�
ı.k � 1/

� � � � �
ı.k � 1/

�
ı.k � 1/

D �.k � 2/ ı.k � 1/
e1

�

0
B@

ı.k � 1/
C

ı.k � 1/
C : : :

ı.k � 1/
1
CA

�

0
BBB@

ı.k � 1/
C

ı.k � 1/
C � � � C

ı.k � 1/

1
CCCA

D �.k � 2/ ı.k � 1/
e1

� e1

ı.k � 1/
� .k � 1/ ı.k � 1/

D �.k � 1/ ı.k � 1/
e1

D �.k � 1/
ı.k/

e1

;

where in the fourth equality, all dots on the last strand in the second parenthesized

expression can slide up without obstruction essentially because ı2
i D 0, while in

the �fth equality we used that elements of Symk�1 commute with ı.k � 1/.
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Lemma 3.12. �e di�erential @1 acts on ı.n/ 2 NHn as follows:

@1.ı.n// D �
nX

tD1

.n � t /xtı.n/ �
nX

tD1

.t � 1/ı.n/xt ;

which has the diagrammatic presentation

@1

0
B@ ı.n/

1
CA D �.n� 1/ ı.n/ � .n� 2/ ı.n/ � � � � � ı.n/

� ı.n/ � � � � � .n� 2/ ı.n/ � .n� 1/ ı.n/ :

Proof. �e proof is by an induction argument analogous to the one we used in the

proof of the previous lemma. We leave it as an exercise.

Corollary 3.13. �e di�erential @a acts on ı.n/ 2 NHn by

@a.ı.n// D
� nX

tD1

.t � 1/axt

�
ı.n/ � ı.n/

� nX

tD1

..t � 1/aC n � 1/xt

�
:

Proof. �e result follows from the previous two lemmas together with the formula

@a D @0 C a.@1 � @0/.

We summarize the main results of this subsection in the following proposition.

Proposition 3.14. Let ˛ D .˛1; : : : ; ˛n/ be an n-tuple of numbers in Fp with the
property that ˛t � ˛t�1 D a for all 2 � t � n. Set

˛_ D .1� n� ˛1; : : : ; 1� n � ˛n/:

(i) �ere is a @-invariant, non-degenerate Symn-bilinear form

.�;�/ W Pn.˛/˝ Pn.˛
_/ �! Symn; f ˝ g 7�! ı.n/.fg/;

which is also compatible with the left and right p-DG .NHn; @a/-module
structures. Here being @-invariant means that

@.f; g/ D .@˛.f /; g/C .f; @˛_.g//:

�e compatibility condition states that .�.f /; g/ D .f;  .�/.g// and the
Leibniz rule

@.�.f /; g/ D .@a.�/.f /; g/C .�.@˛.f //; g/C .�.f /; @˛_.g//

holds for any � 2 NHn.
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(ii) �ere is an isomorphism �ı of right .NHn; @a/-modules

�ı W .Pn.˛
_/; @˛_/ �! .Pn.˛/

_; @_
˛ /;

where �ı takes the generator 1˛_ 2 Pn.˛
_/ to the Symn-linear map

1_
˛ W f 7�! ı.n/.f /:

(iii) �ere is an isomorphism of graded p-DG .NHn; @a/-bimodules

�n W Pn.˛/˝Symn
Pn.˛

_/ �! NHn; f ˝ g 7�! f ı.n/g;

which equals the composition

Pn.˛/˝Symn
Pn.˛

_/
Id˝�ı

����! Pn.˛/˝Symn
Pn.˛/

_ �0

�! NHn :

Proof. Follows from Lemma 3.5, Proposition 3.9 and the explicit form of @a.ı.n//

in Corollary 3.13.

3.2. Specializations of a. �e di�erential @a turns NHn into a p-DG algebra.

Proposition 3.15. �e p-DG algebra .NHn; @a/ is acyclic for any n � p and
a 2 F�

p.

Proof. It su�ces to check the result for n D p. Indeed if NHp is acyclic, by

Proposition 2.21, there exists an element yp such that @a.yp/ D 1NHp
. �en the

element yp˝1NHn�p
2 NHp˝NHn�p � NHn satis�es @a.yp˝1NHn�p

/ D 1NHn
,

and NHn is acyclic by Proposition 2.21.

When n D p, pick any ˛1 2 Fp. �e residues ˛1; ˛1 C a; : : : ; ˛1 C .p � 1/a
run over all elements in Fp . Let s 2 Sp be the permutation such that

s.k/ D p � ˛1 � .k � 1/a .modp/ for 1 � k � p.

�en

@˛.x
s.1/
1 x

s.2/
2 : : : xs.p/

p / D 0;
where we view the argument as an element of Pp.˛/ for ˛ D .˛1; ˛1 C a; : : : ;
˛1 C .p � 1/a/. Consequently, the subspace Up;s is @˛-stable and map (44) is an

isomorphism of .Symp; @a/-modules.

As anH -module, Up;s Š V0˝V1˝� � �˝Vp�1:�eH -module Vp�1 is free, and

Up;s is a free module as well. Hence, the p-DG algebra ENDk.Up;s/ is acyclic,

and

NHp Š ENDSymp
.Pp.˛// Š ENDSymp

.Up;s ˝ Symp/ Š ENDk.Up;s/˝ Symp

(69)

is acyclic as well.
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Example 3.16. When char.k/ D 3, and a D 1 one computes that

@2
1

 !
D :

Conjugating by � ,

@2
�1

 !
D :

�is proves acyclicity of .NH3; @˙1/ via Proposition 2.21.

An argument similar to the one in Proposition 3.15 shows that, for n D p � 1
and a 2 F�

p , the subspace Up�1;s is @˛-stable for a unique pair of ˛1 and s. As a

p-DG algebra,

NHp�1 Š ENDk.Up�1;s/˝ Symp�1 : (70)

Since Symp�1 is quasi-isomorphic to the ground �eld k, we deduce that the in-

clusion ENDk.Up�1;s/ � NHp�1 is a quasi-isomorphism of p-DG algebras. For

n < p � 1, in general, there are no permutations s such that Un;s is @˛-stable un-

less a D ˙1, singling out these values of a, as discussed below after the proof of

Proposition 3.18.

Proposition 3.15 yields the following corollary.

Corollary 3.17. For any a 2 F�
p and n � p, D.NHn; @a/ Š 0, and consequently

K0.NHn; @a/ D 0.

Proof. Combine Proposition 3.15 with Proposition 2.21.

When a D 0, the derived category D.NHn; @0/ does not vanish for any n � 0.
�is is the reason why we will disregard this case in what follows when categori-

fying the small quantum group uC
O2p

.sl2/.

Proposition 3.18. For any n 2 N, D.NHn; @0/ © 0.

Proof. By Proposition 2.21 we need to show that NHn is not acyclic. Acyclicity

of NHn implies acyclicity of NHm for any m > n. If n D kp C 1 where k 2 N,

Lemma 3.11 shows that @0.ı.n// D 0. Being of the lowest degree in NHn, the

element ı.n/ is not in the image of @0. Hence kı.n/ Š V0 spans a non-trivial

summand in H=0.NHn/, and NHn is not acyclic for n D kpC 1 and, therefore, for

any n.
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Why specialize. �e main point of this subsection is that, under the specializa-

tion a D ˙1, the p-DG algebras NHn behave extremely well: they are quasi-

isomorphic to matrix algebras (see Proposition 3.22 and Corollary 3.25), and the

column modules are compact co�brant (Proposition 3.26), which allows one to

compute the Grothendieck groupK0.D.NHn; @˙1//, see Corollary 3.27. Another

reason will become clear upon generalizing from sl2 to arbitrary simply-laced

simple Lie algebras, see �eorem 4.14.

Recall from the beginning of Section 3.1 that the .Pol2; @/-module .P2.˛/; @˛/

has a generator 1˛ on which @˛ acts by

@˛.1˛/ D .˛1x1 C ˛2x2/1˛;

where ˛2�˛1 D a is non-zero in Fp. We would like to determine for which values

of a does there exist a two-step �ltration on P2.˛/ whose subquotients are rank

one .Sym2; @/-modules. �is amounts to asking an equivalent question: when

does .ˇ1x1 C ˇ2x2/1˛ generate a .Sym2; @/-stable submodule, where ˇ1; ˇ2 2 k

are constants that are not both zero?

Proposition 3.19. �e Sym2-module Sym2 �.ˇ1x1 C ˇ2x2/1˛ is @˛-stable only
when a D ˙1 (among a in F�

p). Furthermore,

� if a D 1, then ˇ2 D 0 and ˇ1 ¤ 0;

� if a D �1, then ˇ1 D 0 and ˇ2 ¤ 0.

Proof. Exercise.

We see that such a �ltration on P2.˛/ exists for a 2 F�
p if and only if a D ˙1.

If a D 0, there is a unique submodule as above, generated by .x1 � x2/1˛ .

Recall that NH2 is isomorphic to the matrix algebra M.2; Sym2/ (see Propo-

sition 3.3 and Example 3.4). Such an identi�cation is not unique. Indeed, as a

Sym2-module,

P2 D kŒx1; x2� Š Sym2¹2º ˚ Sym2 Š Sym2 v1.b/˚ Sym2 v2; (71)

where the second summand is canonically generated by the degree zero element

v2 D 1 2 Pol2, while there is a 1-parameter family of choices for the degree two

generator

v1.b/ D x1 C b.x1 C x2/; b 2 k:
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Let us also set v2.b/ D v2 for b 2 k. Under the identi�cation NH2 Š EndSym2
.P2/,

we obtain two primitive homogeneous idempotents of NH2 depending on the pa-

rameter b:

�11.b/
defD C b

 
C

!
;

�22.b/
defD � � b

 
C

!
;

such that �i i .b/vj .b/ D ıij vj .b/, i; j 2 ¹1; 2º. �us, �11.b/ is a projection from

Pol2 onto a summand isomorphic to Sym2¹2º, while �22.b/ is the projection onto

the unique summand isomorphic to Sym2. When b D 0, we recover the idem-

potents of Example 3.4. �e elements �11.b/; �22.b/ over b 2 k are the only

homogeneous minimal idempotents in NH2.

We next check for what values of a there is an idempotent �i i .b/ (i D 1; 2)

which generates a @a-stable left submodule of NH2. �is property is related to the

categori�cation of the second divided power E.2/, see the next subsection.

Proposition 3.20. �e NH2-module NH2 ��i i .b/ is @a-stable, where i 2 ¹1; 2º,
b 2 k and a 2 F�

p if and only if either i D 2, a D 1 and b D �1, in which case

�22.�1/ D ; @�1

 !
D � ;

or i D 2, a D �1 and b D 0, in which case

�22.0/ D � ; @1

 
�

!
D :

Proof. Exercise.

Note that Propositions 3.19 and 3.20 both single out values 1;�1 for a 2 F�
p.

�e two propositions are closely related. Given a two-step @a-stable �ltration

0 � L � P2, the left ideal of ENDSym2
.P2/ consisting of maps that annihilate

L is @a-stable.

A matrix presentation. Recall that Sym0
n is the maximal ideal of Symn consist-

ing of all symmetric polynomials without the constant term. �en Symn =Sym0
n Š

k, and moreover Sym0
n �NHn is a two-sided ideal of NHn whose quotient ring is

a matrix ring:

NHn =Sym0
n �NHn D END. xUn/ Š M.nŠ;k/: (72)
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�is ideal is stable under the @a action: for any e 2 Sym0
n and x 2 NHn,

@a.e � x/ D @a.e/ � x C e � @a.x/ 2 Sym0
n �NHn;

promoting the map (48) to a homomorphism of p-DG algebras.

Notation 3.21. In what follows, we set

.M.nŠ;k/; @a/
defD .NHn =.Sym0

n �NHn/; @a/

to be the quotient matrix algebra over k with the induced di�erential, and denote

by �n W .NHn; @a/ ! .M.nŠ;k/; @a/ the canonical surjective homomorphism of

p-DG algebras.

It is obvious that �1 W NH1 ! NH1 =.Sym0
1/ D k and |1 W k ,! NH1 are

mutually inverse quasi-isomorphisms of p-DG algebras. Similar properties hold

for NHn (n � 2) under the @˙1-action. We start with the �rst non-trivial case. �e

@1 action on the basis elements of NH2 from Example 3.4 is given by

1 // �

1 //

�1

OO

�

�1

OO

As a .Sym2; @1/-module, the @1-stable ideal Sym0
2 �NH2 admits an increasing

�ltration by .Sym2; @1/-submodules:

Sym0
2 � Sym0

2 C Sym0
2

� Sym0
2 C Sym0

2 C Sym0
2

� Sym0
2 C Sym0

2 C Sym0
2 C Sym0

2

D Sym0
2 �NH2 :

�e subquotients of this �ltration, as .Sym2; @1/-modules, are all isomorphic to

Sym0
2, and hence contractible. �erefore, Sym0

2 �NH2 is a contractible ideal of

NH2, and NH2 � NH2 =Sym0
2 �NH2 Š M.2;k/ is a quasi-isomorphism of

p-DG algebras. �e same result holds for @�1 by conjugation by � .
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Proposition 3.22. �e canonical projection

�2 W NH2 �! NH2 =Sym0
2 �NH2 Š M.2;k/

is a quasi-isomorphism if and only if a D ˙1.

Proof. �e “if” part follows from the discussion before the proposition and the

symmetry between @1 and @�1 (Proposition 3.9). We now prove the converse. As

a @a-module, NH2 �ts into the short exact sequence

0 �!
*

k1 k2

ˇ̌
ˇ̌ k1; k2 2 N

+
�! NH2 �!

*
k2k1

ˇ̌
ˇ̌ k1; k2 2 N

+
�! 0:

Here and in what follows, we use obtuse-angle brackets “h i” to stand for the k-

linear span of the enclosed elements. �e @a-submodule
*

k1 k2

ˇ̌
ˇ̌ k1; k2 2 N

+
Š Pol2 Š V0 ˚ F;

decomposes into a direct sum of the trivial module V0 and a free graded @a-

module F . On the quotient module @a acts by

@a

 
k2k1

!
D .k1 � a � 1/

k2k1C1

C .k2 C a � 1/
k2C1k1

:

Hence, *
k2k1

ˇ̌
ˇ̌ k1 � aC 1 ; k2 � p C 1� a

+

is a @a-submodule of the quotient, and the quotient module decomposes
*

k2k1

ˇ̌
ˇ̌ k1 ; k2 2 N

+
Š
*

k2k1

ˇ̌
ˇ̌ k1 � aC 1 ; k2 � p C 1 � a

+
˚ F 0;

where F 0 is a free @a-module. It follows that in the stable category H -mod there

is an exact triangle

V0 �! NH2 �! VaC1 ˝ VpC1�a¹�2º �! V0Œ1�:

�erefore, the Op-dimension (see Notation 2.7) of .NH2; @a/ equals

ŒNH2� D 1C q�2
� aC1X

iD0

q2i
�� pC1�aX

j D0

q2j
�
:

Reduction modp gives theFp-dimension ŒNH2�p D 1C.aC2/.pC2�a/ � 5�a2,

which equals dim.M.2;k// D 4modulo p if and only if a D ˙1. �e proposition

follows.
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�e general case of .NHn; @˙1/ for n � 3 is similar, namely the p-DG algebras

are all quasi-isomorphic to some .nŠ/ � .nŠ/-matrix p-DG algebras. �is will be

shown using the p-DG polynomial representations of NHn. We �rst make some

simpli�cation of notations.

Notation 3.23. When a D 1, let

P
C
n

defD Pn.˛
C/;

where ˛C is the n-tuple ˛C D .1 � n; 2 � n; : : : ; 0/ 2 Fn
p . Likewise for a D �1,

de�ne

P
�
n

defD Pn.˛
�/;

where ˛� D .0;�1; : : : ; 1� n/.

Observe that PC
n is a left p-DG .NHn; @1/-module while P�

n is a left module

over .NHn; @�1/. By applying  (Proposition 3.9), P�
n becomes a right p-DG

module over .NHn; @1/. By Lemma 3.12, one can easily show that NHn �n, resp.

��
n NHn, is a left, resp. right, p-DG ideal in .NHn; @1/, and the isomorphism (58)

(resp. (60)) gives rise to an isomorphism of left, resp. right, p-DG modules:

.PC
n ; @˛C/ Š

�
NHn �n

°n.1� n/
2

±
; @1

�
;

resp.

.P�
n ; @˛�/ Š

�
��

n NHn

°n.1 � n/
2

±
; @1

�
:

�is follows from a straightforward computation that

@1.�n/ D �
nX

tD1

.n � t /xt�n; resp. @1.�
�
n/ D �

nX

tD1

.t � 1/��
nxt ; (73)

which in turn is a direct consequence of Lemma 3.12.

From now on till the end of this section, we will state the main results for

a D ˙1 while only giving the proof for a D 1. �e a D �1 case follows by

applying the symmetry � (Proposition 3.9). By Proposition 3.14, there is a homo-

geneous .NHn; @1/-bimodule map

�n W PC
n ˝Symn

P
�
n �! NHn; (74)

which is an isomorphism. Note that as p-DG modules over .Symn; @1/, P
C
n and

P�
n have respectively as bases

BC
n

defD ¹xˇ defD xb1

1 x
b2

2 : : : xbn
n W ˇ D .b1; b2; : : : ; bn/; 0 � bt � n� t; t D 1; : : : ; nº;

(75)
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and

B�
n

defD ¹xˇ defD xb1

1 x
b2

2 : : : xbn
n W ˇ D .b1; b2; : : : ; bn/; 0 � bt � t � 1; t D 1; : : : ; nº:

(76)

�e k-vector subspace of PC
n (resp. P�

n ) spanned by BC
n (resp. B�

n ) is stable

under @1. �erefore BC
n , resp.B�, is also a basis for the @1-module UC

n D khBC
n i,

resp. U�
n D khB�

n i. Furthermore, there are isomorphisms of p-DG modules over

Symn

UC
n ˝ Symn �! P

C
n ; U�

n ˝ Symn �! P
�
n ;

lifting the isomorphism (44). �e image of the product of these basis elements

under �n consists of

8
ˆ̂̂
<
ˆ̂̂
: c1

b1

c2

b2

c3: : :

b3: : :

cn

bn

ı.n/ W bt � n � t; ct � t � 1; t D 1; : : : ; n

9
>>>=
>>>;
:

�e matrix basis of NHn given in Proposition 3.3 is obviously contained in the

k-span of the above set. Since both sets have the same cardinality .nŠ/2, we con-

clude that they span the same subalgebra of NHn isomorphic to the matrix algebra

M.nŠ;k/. �is gives rise to a p-DG lifting of the homomorphism (49)

|n W .M.nŠ;k/; @1/ ,�! .NHn; @1/

as the composition

.END.UC
n /; @1/ ,�! .ENDSymn

.UC
n ˝ Symn/; @1/ Š .END.PC

n /; @1/:

Similar results hold for the di�erential @�1 as well.

Proposition 3.24. When a D ˙1, the canonical surjection of p-DG algebras

�n W NHn �! NHn =.Sym0
n �NHn/ Š M.nŠ;k/

is a quasi-isomorphism. Furthermore, under @1, a quasi-inverse of �n is given by
the inclusion |n W M.nŠ;k/! NHn.

Proof. We only prove the a D 1 case. As a p-DG Symn-module,

P
C
n Š Symn˝UC

n :

Introduce an increasing �ltration on UC
n in the order of descending degrees of

elements in BC
n . �e subquotients of this �ltration on UC

n are all isomorphic to
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degree shifted copies of zV0. �erefore PC
n inherits a �ltration whose subquotients

are rank one free p-DG Symn-modules. It follows that the map of p-DG algebras

�n factorizes as

�n W .END.PC
n /; @1/ Š .END.UC

n /˝ Symn; @1/

�� .END.UC
n /; @1/ Š .M.nŠ;k/; @1/

with |n as a section. Here the middle arrow comes from the reduction of coe�cient

Symn � k. Now if n � p, both sides are acyclic and the proposition is true

vacuously. On the other hand, when 0 � n < p, Symn is a quasi-isomorphic to k

and the result follows.

Corollary 3.25. For any n 2 N, the functors

|�
n Š �n� W D.NHn; @1/ �! D.M.nŠ;k/; @1/;

��
n Š |n� W D.M.nŠ;k/; @1/ �! D.NHn; @1/

are quasi-inverse equivalences of triangulated categories.

Proof. �is is an easy consequence of the previous Proposition 3.24 and �eo-

rem 2.37.

Under the di�erential @1, the isomorphism �n of Proposition 3.14 restricts to an

isomorphism .UC
n /

� Š U�
n . Combined with the above Proposition we summarize

this subsection by exhibiting the following commutative diagram

UC
n ˝ U�

n

�n //

��

END.UC
n /

Š //

��

M.nŠ;k/

��
Symn˝UC

n ˝ U�
n

Š //

Š

��

OO

Symn˝END.UC
n /

//

Š

��

OO

M.nŠ; Symn/

Š

��

OO

PC
n ˝Symn

P�
n

�n // ENDSymn
.PC

n /
Š // NHn :

(77)

�e vertical arrows in the upper half part of the diagram, given by base change

with the maps of p-DG algebras k ,! Symn and Symn � k, are all quasi-

isomorphisms; while the rest of the diagram is described by Proposition 3.14.

Compactness of the column module. Corollary 3.25 allows us to compute the

Grothendieck group K0.NHn; @˙1/ in the same way as for the toy model of ma-

trix algebras (Corollary 2.45). However, we will show that the column module
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over NHn is compact by exhibiting it as a direct summand of a �nite cell module,

which in turn leads to a more explicit classi�cation of indecomposable modules

in Dc.NHn; @˙1/. Again, the symmetries  and � allow one to focus on the dif-

ferential @1.

We start with the �rst non-trivial case n D 2 as an example. Assume without

loss of generality that p � 3. �e center Sym2 of NH2 is a p-DG subalgebra. As

a left p-DG module over this subalgebra, NH2 admits the following �ltration by

p-DG submodules

0 � Sym2 � ˚ Sym2 � � NH2;

where the di�erential @1 acts on the basis elements by

@1

 !
D � ; @1

 !
D 0:

Denote the middle term by P�
2 ¹1º. �en

P
�
2 Š Res

NH2

Sym2
.P�

2 /;

and the �ltration gives rise to a short exact sequence of p-DG modules over

.Sym2; @1/:

0 �! P
�
2 ¹1º �! Sym2

NH2 �! P
�
2 ¹�1º �! 0: (78)

�e short exact sequence (78) comes from restricting to Sym2 the two-step �l-

tration of NH2 as a right p-DG module over itself by submodules isomorphic to

degree-shifts ofP�
2 . Furthermore, the left p-DG module Sym2

NH2 over .Sym2; @1/

decomposes into a direct sum (since p � 3)

Sym2
NH2 Š Sym2 � ˚

�
Sym2

NH0
2

�
; (79)

where Sym2
NH0

2 is the rank three p-DG Sym2-submodule

Sym2 � ˚ Sym2 �
 

C
!
˚ Sym2 � :

Recall that .NH2; @1/ has the polynomial representation P
C
2 . Applying P

C
2 ˝Sym2

.�/ to the short exact sequence (78) gives the short exact sequence of p-DG mod-

ules

0 �! P
C
2 ˝Sym2

P
�
2 ¹1º �! P

C
2 ˝Sym2

NH2 �! P
C
2 ˝Sym2

P
�
2 ¹�1º �! 0: (80)
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We identify the terms in this short exact sequence. First o�, PC
2 ˝Sym2

P�
2 Š NH2

as a left p-DG module over .NH2; @1/ by Proposition 3.14. �us the two end terms

of the sequence (80) are respectively NH2¹1º and NH2¹�1º. Next, the direct sum

decomposition (79) gives rise to a direct sum decomposition of NH2-modules

P
C
2 ˝Sym2

NH2 Š P
C
2 ˚ .PC

2 ˝Sym2
NH0

2/;

which contains P
C
2 as a p-DG direct summand. Using the characterization of

compact modules (�eorem 2.30), we conclude that the module P
C
2 is compact

co�brant. �e general situation is proven in a similar way.

Proposition 3.26. When 0 � n � p�1, the left p-DG module PC
n over .NHn; @1/

is compact co�brant.

Proof. We claim that the module in the proposition is a direct summand of a �nite

cell module. �e isomorphism (77) gives rise to

Symn
.NHn/

Š�! Symn˝UC
n ˝ U�

n

Š�! UC
n ˝ P

�
n ;

as left p-DG modules over Symn. Applying PC
n ˝Symn

.�/ to both sides, we have

P
C
n ˝Symn

NHn
Š�! UC

n ˝ P
C
n ˝ P

�
n : (81)

From a �nite step �ltration of UC
n whose associated graded modules are isomor-

phic to degree-shifted copies of V0, the term on the right hand side inherits a �nite

step �ltration whose subquotients are isomorphic to PC
n ˝V0¹rº˝P�

n Š NHn¹rº
by Proposition 3.14. Hence the right hand side is a �nite cell module. On the other

hand, when 0 � n � p � 1, nŠ is coprime to p and NHn splits as a direct sum of

p-DG .Symn; @1/-modules:

Symn
NHn Š Symn �InŠ ˚NH0

n;

where NH0
n denotes the space of traceless nŠ � nŠ-matrices over Symn, which is

the kernel of the canonical projection

NHn �! NHn =ŒNHn;NHn� Š Symn :

�erefore the left hand side of (81) decomposes as

P
C
n ˝Symn

NHn Š P
C
n ˚ .PC

n ˝Symn
NH0

n/;

from which the claim follows.
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Corollary 3.25 implies thatK0.NHn; @1/ Š K0.M.nŠ;k/; @1/. Moreover, since

@1 acts by taking the commutator with a �xed matrix in M.nŠ;k/, one can di-

rectly show that K0.M.nŠ;k/; @1/ Š O2p by the same argument as in Section 2.3.

We will now give a direct proof of this using that PC
n is a compact generator of

D.NHn; @1/, which is similar to the one used in Corollary 2.45.

�e isomorphism (77) gives rise to an isomorphism of left p-DG modules over

.NHn; @1/:

P
C
n ˝ U�

n Š NHn
NHn:

�erefore, NHn has a �ltration whose subquotients are grading-shifted copies of

PC
n . It follows that PC

n is a compact generator of Dc.NHn; @1/. Now, since NHn Š
M.nŠ; Symn/, the natural map Symn ! ENDNHn

.PC
n / is an isomorphism of p-

DG algebras.

Corollary 3.27. Let 0 � n � p � 1. �en the (underived) tensor functor

P
C
n ˝Symn

.�/ W D.Symn; @/ �! D.NHn; @1/

is an equivalence of triangulated categories whose quasi-inverse is given by

HOMNHn
.PC

n ;�/ W D.NHn; @1/ �! D.Symn; @/:

Consequently, the Grothendieck group K0.NHn; @˙1/ Š Op.

Proof. Proposition 2.34 implies that PC
n ˝L

Symn
.�/ is an equivalence of triangu-

lated categories. Since PC
n is co�brant, the derived tensor product functor coin-

cides with the underived one

P
C
n ˝L

Symn
.�/ Š P

C
n ˝Symn

.�/;

and likewise for the hom functor. �e second claim follows from the adjunction

in Proposition 2.33. Lastly, the inclusion k ! Symn is a quasi-isomorphism of

p-DG algebras when 0 � n � p � 1. �e result follows from Corollary 2.38.

�e proof of Proposition 3.26 together with Corollary 3.27 actually gives us

more information about the idempotent complete triangulated categoryDc.NHn; @˙1/.

For instance, the free module NHn �ts into a convolution diagram built out of

shifted copies of the polynomial representation PC
n , similar to the toy model case

(see Remark 2.44). Modules of the form PC
n ˝ zVi for all 0 � i � p � 2 and their

grading shifts form a complete list of isomorphism classes of indecomposables in

Dc.NHn; @1/.
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3.3. Grothendieck ring as uC

Op
.sl2/

�e small quantum group uC

�2l
.sl2/. Let l � 1 be 2 or an odd integer. Let

�2l be a �xed primitive 2l-th root of unity in C. �en �l
defD �2

2l
is a primitive l-th

root of unity. Following Lusztig [28, Section 5], [29, Chapter 36] (see also [5,

Section V]), we de�ne the small quantum group uC
�2l
.sl2/ (uC

�2l
for short) to be

the QŒ�2l �-algebra with one generator E subject to the relation El D 0. Equipped

with the comultiplication

�.E/ D E ˝ 1C 1˝E;

uC
�2l

becomes a twisted bialgebra in the category of Z=l-graded vector spaces.

Here being twisted means that the multiplication in uC
�2l
˝ uC

�2l
is given by

.En ˝ 1/.1˝Em/ D En ˝Em;

.1˝En/.Em ˝ 1/ D �nm
2l E

m ˝En:

For n � l � 1, the n-th divided power of E is by de�nition

E.n/ defD En

Œn�Š
.E.0/ defD 1/;

where

Œn�
defD
�n

2l
� ��n

2l

�2l � ��1
2l

D
nX

iD1

�nC1�2i
2l

;

and

Œn�Š
defD

nY

iD1

Œi �:

In what follows we also denote by
�

m
n

�
the quantum binomial coe�cient de�ned

as �
m

n

�
defD Œm�Š

Œn�ŠŒm � n�Š

whenever n � m, 0 � n;m � n � l � 1. Since Œm�Š D 0 if m � l ,
�

l
n

�
D 0. �e

set ¹E.r/ W r D 0; 1; : : : ; l � 1º forms an integral basis of uC
�2l

over the ring of the

2l-th cyclotomic integers O2l D ZŒ�2l � Š ZŒq�=.‰2l .q//, with the relation

E.n/ �E.m/ D

8
ˆ̂<
ˆ̂:

�
nCm
n

�
E.nCm/ if nCm � l � 1,

0 otherwise:
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�is integral form will be denoted by uC
O2l

. �e comultiplication acts on on the

divided power elements by

�.E.n// D
nX

tD0

�
�t.n�t/

2l
E.t/ ˝E.n�t/ 2 uC

O2l
˝ uC

O2l
: (82)

We now specialize to l D p. To do this we also de�ne an Op-integral small

quantum group uC
Op
.sl2/ (uC

Op
for short). �e following elementary lemma guar-

antees that the divided powers E.n/ for 0 � n � p � 1 can be de�ned over Op.

Lemma 3.28. In the ring Op D ZŒq�=.‰p.q
2//, the element

Œn�O
defD qn � q�n

q � q�1
D

nX

tD1

qnC1�2t

is a unit if 1 � n � p � 1.

Proof. It su�ces to show that .1� q2n/=.1� q2/ is invertible. Since q2 generates

multiplicatively a cyclic group of order p, q2n is another generator of the group if

1 � n � p � 1. Hence q2 D .q2n/v for some v 2 N and

1� q2

1� q2n
D 1� q2nv

1 � q2n
2 Op:

�e result follows.

�e lemma implies that

�
m

n

�

O

defD Œm�OŠ

Œn�OŠŒm� n�OŠ

is zero if 0 � n;m� n � p � 1 and m � p. Indeed by de�nition

�
m

n

�

O

Œn�OŠŒm� n�OŠ D Œm�OŠ;

and the last term vanishes.

�e Op-integral form uC
Op

is de�ned similar to uC
O2p

: one simply replaces all

the quantum integers Œn� in the de�nition of uC
O2p

by Œn�O. Recall that there is a

surjective map of rings

Op Š ZŒq�=.1C q2 C � � � C q2.p�1// � O2p D ZŒ�2p�
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by sending q to �2p. Base changing by this ring map gives rise to an isomorphism

of twisted bialgebras

uC
Op
˝Op

O2p Š uC
�2p
:

In the following diagram we summarize the relations between various forms

of the small quantum sl2 introduced above and their base rings:

uC
Op

˝OpO2p // // uC
O2p

�

�

˝O2p
QŒ�2p �

// uC
�2p

Op

OO

˝OpO2p // // O2p

OO

�

�

˝O2p
QŒ�2p �

// QŒ�2p�:

OO

�e main goal of this section is to categorify the small quantum group uC
Op

.

Induction and restriction functors. �ere is an obvious inclusion of algebras

�n;m W NHn˝NHm �! NHnCm (83)

coming from putting diagrams sideways next to each other: for any x 2 NHn,

y 2 NHm,

1 n

x

: : :

: : :

˝

1 m

y

: : :

: : :

7�!

1 n nC 1 nCm
: : :

: : :

x

: : :

: : :

y :

Recall from the discussion before De�nition 2.32 that the tensor product p-DG

algebra NHn˝NHm has the di�erential @a.x ˝ y/ D @a.x/˝ y C x ˝ @a.y/ for

any x 2 NHn and y 2 NHm. �e locality of the di�erentials @a implies that �n;m

is an inclusion of p-DG algebras.

�e map �n;m gives rise to induction and restriction functors (De�nition 2.36)

Indn;m
defD ��n;m W D.NHn˝NHm; @a/ �! D.NHnCm; @a/;

Resn;m
defD �n;m� W D.NHnCm; @a/ �! D.NHn˝NHm; @a/:

�e functor Indn;m preserves the subcategories of compact modules:

Indn;m
defD ��n;m W Dc.NHn˝NHm; @a/ �! D

c.NHnCm; @a/:

Likewise, there are inclusions of p-DG algebras under the @a-action

�n1;n2;:::;nk
W NHn1

˝NHn2
˝ � � � ˝NHnk

�! NHn1Cn2C���Cnk
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for any sequence of ni 2 N. �e induction functor generalizes in an obvious way.

However, it is not clear at the moment whether the restriction functor

Resn1;:::;nk

defD �n1;:::;nk � W D.NHn1C���Cnk
; @a/ �! D.NHn1

˝ � � � ˝ NHnk
; @a/

preserves the subcategories of compact objects for arbitrary a 2 F�
p.

From now on, we will focus on the special values a D ˙1 while only giving

the proof for the a D 1 case. �e @�1 case follows by applying the symmetry  

(Proposition 3.9). Form the direct sum of p-DG algebras

.NH; @˙1/
defD
M

n2N

.NHn; @˙1/

which is no longer a unital p-DG algebra. Note that, the inclusion of the unital

p-DG subalgebra
L

0�n�p�1.NHn; @˙1/ into .NH; @˙1/ is a quasi-isomorphism

by Proposition 3.15. By a compact module over NH we mean a �nite direct sum

of compact modules over .NHn; @˙1/ for various4 n, so that

D
c.NH; @˙1/

defD
M

n2N

D
c.NHn; @˙1/:

On the level of Grothendieck groups, we have

K0.NH; @˙1/ D
M

n2N

K0.NHn; @˙1/:

Summing over all n;m 2 N, �n;m gives rise to to an induction functor between the

compact derived categories

Ind
defD

X

n;m2N

Indn;m W
M

n;m2N

D
c.NHn˝NHm; @˙1/ �!

M

r2N

D
c.NHr ; @˙1/:

(84)

Lemma 3.29. �e exterior tensor product

� W NHn -mod �NHm -mod �! .NHn˝NHm/-mod;

.N;M/ 7�! N �M;

induces an isomorphism of Grothendieck groups

K0.NHn; @˙1/˝Op
K0.NHm; @˙1/ Š K0.NHn˝NHm; @˙1/

Š

8
<
:
Op if n � p � 1 and m � p � 1,

0 otherwise.

4 Following Keller [17], one can say that .NH; @˙1/ is a p-DG category, while objects in

D
c.NH; @˙1/ are compact modules over this category.
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Proof. We show the @1 case. If n � p, both NHn and NHn˝NHm are acyclic and

the result follows, likewise for m � p. Otherwise, we use the derived equivalence

of Proposition 3.24

|�
n W D.NHn; @1/ Š D.M.nŠ;k/; @1/;

which takes the polynomial representation PC
n to the column module knŠ with the

induced di�erential. It follows that

D.NHn˝NHm; @1/ Š D.M.nŠ;k/˝M.mŠ;k/; @1/ Š D.M.nŠ �mŠ;k/; @1/;

and similarly for the subcategory of compact modules. SinceK0.NHn; @1/ is gen-

erated as an Op-module by the symbol ŒPC
n �, using the above derived equivalence,

we have

K0.NHn˝NHm; @1/ Š K0.M.nŠ;k/˝M.mŠ;k/; @1/ Š K0.M.nŠ �mŠ;k/; @1/;

and, under this isomorphism, the exterior tensor product of polynomial represen-

tations is sent to

ŒPC
n � P

C
m� 7�! ŒknŠ

� kmŠ� 7�! ŒknŠ�mŠ�;

which is the rank one free Op-module generator of K0.M.nŠ � mŠ;k/; @1/. Hence

K0.NHn˝NHm; @1/ is of rank one and generated by ŒPC
n �PC

m�. Since the groups

K0.NHn; @1/, K0.NHm; @1/ are also of rank one, the lemma follows.

Although one can see that the restriction functor

Res
defD

X

n;m2N

Resn;m W
M

r2N

D.NHr ; @˙1/ �!
M

n;m2N

D.NHn˝NHm; @˙1/ (85)

sends compact objects to compact objects, an easy computation on the Grothen-

dieck level shows that, unlike the abelian case in [20, Proposition 2.18], the symbol

of the restriction functor ŒRes� can not categorify the coproduct structure of uC
Op

.

Indeed, by the adjunction between induction and restriction (Proposition 2.33),

one has

NHnCm Š RHOMNHnCm
.NHnCm;NHnCm/

Š RHOMNHnCm
.Indn;m.NHn � NHm/;NHnCm/

Š RHOMNHn ˝ NHm
.NHn � NHm;Resn;m.NHnCm//:



262 M. Khovanov and Y. Qi

In particular, when nCm < p, we have the equality in the Grothendieck group

.ŒnCm�Š/2 D ŒNHnCm�

D ŒRHOMNHn ˝ NHm
.NHn � NHm;Resn;m.NHnCm//�;

(86)

which in turn gives rise to

ŒResn;m.P
C
nCm/� D

�
mC n
n

�

O

ŒPC
n � P

C
m�: (87)

Here we used that

ŒNHn� D ŒPC
n ˝ U�

n � D Œn�OŠŒPC
n � D .Œn�OŠ/2ŒSymn� D .Œn�OŠ/2

in K0.H -mod/ D Op (see equation (77)). �is mismatches with the comultipli-

cation action given by equation (82).

A twisted restriction functor. To categorify the comultiplication of uC
O , we

introduce a twisted version of the restriction functor.

De�nition 3.30. Let n;m 2 N. We de�ne the twisted p-DG bimodule X
n;m NHnCm

over .NHn˝NHm;NHnCm/ as follows. As an .NHn˝NHm;NHnCm/-bimodule,

it is isomorphic to NHnCm, with the bimodule generator X1nCm sitting in degree

zero. It is twisted in the sense that the di�erential acts on the bimodule generator
X1nCm 2 X

n;m NHnCm by

@.X1nCm/ D m
nX

tD1

xt � X1nCm D me.n/
1 � X1nCm:

Remark 3.31. It is not hard to see that the twisted bimodule
X

n;m NHnCm is isomor-

phic, up to a grading shift and as a p-DG bimodule, to the submodule .e
.n/
n /m �

NHnCm � NHnCm, where .e
.n/
n /m D xm

1 : : : x
m
n , with the inherited di�erential.

Note that .e
.n/
n /m is a central element in NHn˝NHm.

More generally, if AMB is a p-DG bimodule over .A; B/ and z is a central

element of A that is a non-zero-divisor on M , then

zM
defD z �M

is again a bimodule with the same underlying .A; B/-bimodule structure, but with

the induced di�erential action from the inclusion zM � M . We say that zM is

obtained as a p-DG bimodule from M by twisting the di�erential.
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For any element y 2 NHnCm, we will denote by Xy 2 X
n;m NHnCm the cor-

responding element in the twisted bimodule. Consider the element Xı.nCm/ 2
X

n;m NHnCm arising from the longest length element ofSnCm. From the di�erential

formula on ı.nCm/ (Lemma 3.12), one computes that

@.Xı.nCm// D �
nX

tD1

.n � t /xt � Xı.nCm/

�
mX

tD1

.m � t /xnCt � Xı.nCm/

�
nCmX

tD1

.t � 1/Xı.nCm/ � xt :

(88)

It follows from this equation that the right PolnCm-span of the elements in the set

¹xb1

1 : : : xbn
n x

c1

nC1 : : : x
cm

nCm
Xı.nCm/º;

where 0 � bt � n�t; t D 1; : : : ; n, and 0 � cv � m�v; v D 1; : : : ; m, constitutes

a right p-DG module over NHnCm which will be denoted XNnCm. Using the

structure of P�
nCm (see Notation 2.7 and the isomorphism (77)), one readily sees

that XNnCm is co�brant as a right p-DG module whenever 0 � nCm � p� 1: it

has an nŠmŠ-step �ltration whose subquotients are isomorphic to grading shifted

copies of P�
nCm.

Lemma 3.32. Let n;m be natural numbers with nCm � p � 1.
(i) �e inclusion of XNnCm into X

n;m NHnCm is a quasi-isomorphism of right
p-DG modules over NHnCm.

(ii) �e module X
n;m NHnCm is co�brant as a left p-DG module over NHn˝NHm.

Proof. To prove the �rst statement, we compute the cohomology of both modules.

Abbreviating the element xn�1
1 xn�2

2 : : : xn�1x
m�1
nC1 x

m�2
nC2 : : : xnCm�1

Xı.nCm/ by
XDnCm, we see from equation (88) that

@.XDnCm/ D �
nCmX

tD1

.t � 1/XDnCm � xt 2 XDnCm � PolnCm

�en it is easy to identify the cohomology of XNnCm with the �nite dimensional

@-stable space

khxb1

1 : : : xbn
n x

c1

nC1 : : : x
cm

nCm
Xı.nCm/xd1

1 : : : x
dnCm

nCm i; (89)
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where 0 � bt � n � t; t D 1; : : : ; n, 0 � ct � m � t; t D 1; : : : ; m, and

0 � dt � t�1; 1 � t � nCm. On the other hand, regarded as a left p-DG module

over NHn˝NHm,
X

n;m NHnCm has an .nCm/Š-step �ltration whose subquotients

are all isomorphic to graded shifts of the module PolnCm �XınCmx
0
1x

1
2 : : : x

nCm�1
nCm ,

which is isomorphic to the co�brant NHn˝NHm module PC
n � PC

m. �erefore,

the cohomology of
X

n;m NHnCm is also isomorphic to the above �nite dimensional

p-complex (89). �e �rst result follows.

�e second claim follows from the proof of the �rst, since as a left p-DG mod-

ule over NHn˝NHm, the subquotients of the �ltration on
X

n;m NHnCm, isomorphic

to PC
n � PC

m, are co�brant when nCm < p (Proposition 3.26).

De�nition 3.33. �e (derived) twisted restriction XResn;m is the functor

XResn;m W D.NHnCm; @1/ �! D.NHn˝NHm; @1/;

M 7�! X
n;m NHnCm˝L

NHnCm
M:

Note that by Lemma 3.32, there is a functorial isomorphism of p-complexes

XResn;m.M/ Š XNnCm ˝NHnCm
M:

In what follows, we will abbreviate the p-DG algebra NHn˝NHm by NHn;m,
X

n;m NHnCm by XNHnCm if no confusion can be made. When we have three inte-

gers k; n;m such that 0 � k C nCm � p � 1, there are two ways of composing

functors, namely

.XResk;n ˝ Idm/ ı .XReskCn;m/ or .Idk ˝ XResn;m/ ı .XResk;nCm/;

which are both isomorphic to derived tensoring with the .NHk;n;m;NHkCnCm/-

bimodule

..e
.k/

k
/n.e

.kCn/

kCn
/m/ � NHkCnCm D .x1 : : : xk/

nCm.xkC1 : : : xkCn/
m �NHkCnCm :

To see this one uses Lemma 3.32 to identify the composition functor, for instance,

as

XResk;n ˝ Idm.
XReskCn;m.M//

Š ..XNHkCn ˝NHm/˝NHkCn;m
.XNHkCnCm//˝L .M/;

where the co�brance of X NHkCnCm as a left p-DG module over NHkCn;m allows

us to replace the middle derived tensor by the usual one.
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Lemma 3.34. Let n;m be natural numbers with nCm � p � 1. �en

(i) the twisted restriction functor acts on the co�brant module P
C
nCm by

XResn;m.P
C
nCm/ Š P

C
n � P

C
m¹�mnº;

(ii) the twisted restriction functor sends compact modules to compact modules.

Proof. When acting on a co�brant module, the twisted restriction functor need

not be derived:

XResn;m.P
C
nCm/ Š .e.n/

n /m � PC
nCm D .x1 : : : xn/

m � PC
nCm:

�e di�erential acts on the twisted module generator X1˛C , which is identi�ed

with .x1 : : : xn/
m � 1˛C under the above isomorphism, by

@.X1˛C/ D �
nX

tD1

.n � t /xt � X1˛C �
mX

tD1

.m � t /xnCm�t � X1˛C :

�e �rst statement follows by comparing with the di�erentials on PC
n , PC

m (Nota-

tion 3.23).

�e second statement follows from the classi�cation of compact modules (see

the discussion after Corollary 3.27) in D.NHnCm; @˙1/.

Categori�cation. As for the induction functor, we sum XResn;m over all n;m 2
N and obtain the twisted restriction functor between the derived categories

XRes
defD

X

n;m2N

XResn;m W
M

r2N

D.NHr ; @˙1/ �!
M

n;m2N

D.NHn˝NHm; @˙1/:

(90)

Together with earlier discussion, Lemma 3.34 allows us to pass from the

induction and twisted restriction functors on the derived category of compact

NH-modules to maps of Grothendieck groups, as Op-modules,

ŒInd� W K0.NH; @˙1/˝Op
K0.NH; @˙1/ �! K0.NH; @˙1/; (91)

ŒXRes� W K0.NH; @˙1/ �! K0.NH; @˙1/˝Op
K0.NH; @˙1/: (92)
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On Grothendieck groups, it follows from the associativity of Ind that ŒInd�

equips K0.NH; @˙1/ with the structure of an Op-algebra whose unit is given by

the symbol of Œk� over .NH0; @˙1/ Š .k; @˙1/. Likewise, ŒXRes� gives rise to a

coassociative coalgebra structure on K0.NH; @˙1/, whose counit is given by pro-

jection onto the p-DG subalgebra NH0 � NH. Furthermore, a direct computation

shows that

ŒXRes� W K0.NH; @˙1/ �! K0.NH; @˙1/˝Op
K0.NH; @˙1/

is a map of algebras, where the algebra structure onK0.NH; @˙1/˝Op
K0.NH; @˙1/

is twisted in the sense that for homogeneous elements x1; x2; y1; y2 2 K0.NH; @˙1/,

.x1 ˝ x2/ � .y1 ˝ y2/ D qjx2jjy1jx1y1 ˝ x2y2:

�eorem 3.35. �ere is an isomorphism of twisted bialgebras

K0.NH; @˙1/ Š uC
Op
;

under which the symbols ŒInd�, ŒXRes� of the functors Ind, XRes are identi�ed
with the multiplication and comultiplication in uC

Op
.sl2/, and the symbol of the

polynomial representation ŒPC
n � is identi�ed with the n-th divided power E.n/.

Remark 3.36 (Degree one and zero di�erentials). Base changing Op to O2p in

�eorem 3.35 gives rise to an isomorphism of twisted O2p-bialgebras

K0.NH; @˙1/˝Op
O2p Š uC

O2p
;

Here we sketch how one can categorify uC
O2p

directly by rescaling the gradings

involved.

Since the nilHecke algebra is concentrated in even degrees, one may restrict the

category of modules we considered before to the full subcategory of NH-modules

which are only concentrated in even degrees. Alternatively, rescale the gradings

of xi and ıi to be 1 and �1 respectively, and make the di�erential @a to be of

degree one. All the earlier results are valid except that we do not have balanced

indecomposable H -modules fVk any more. �e stable Grothendieck ring of the

Hopf algebraH D kŒ@�=.@p/ is isomorphic to the ring of p-th cyclotomic integers

Op Š O2p , and the construction of this section goes through without essential

change, leading to a categori�cation of the integral form uC
O2p

over O2p.

Suppose that, instead, we forget about all the gradings involved. �e stable

category of �nite dimensional ungraded H -modules has its Grothendieck ring

isomorphic to Fp . In parallel with the above story, the ungraded compact module

category over the ungraded p-DG algebra .NH; @˙1/ categori�es the restricted

universal enveloping algebra uC.sl2/ Š FpŒE�=.E
p/.
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4. �e p-DG KLR algebra

4.1. p-derivations on the KLR algebra

�e KLR algebras. �e KLR algebras associated with any Cartan datum were

introduced in [20, 21, 41] as a generalization of nilHecke algebras to categorify

one-half of the corresponding quantum group.

Let � be an oriented simply-laced quiver whose vertices are indexed by I (I

is also referred to as the set of colors). Such a quiver determines a Cartan inner

product � W ZI � ZI ! Z de�ned by i � i D 2 for all i 2 I , i � j D �1 if i and

j are connected by one edge, and i � j D 0 otherwise. �e KLR k-algebra R.�/

associated to � has the following local diagrammatic presentation. It is generated

by braid-like planar diagrams with strands colored by I and carrying dots, subject

to the following list of local relations.

� �e usual nilHecke relations among same-color crossings and dots.

� Dots slide through crossings of di�erent colors, i. e. for i; j 2 I with i ¤ j ,

i j

D
i j

;

i j

D
i j

:

� Reidemeister II type relations between strands,

i j

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 if i D j ,

i j

if i � j D 0,

i j

�
i j

if i �! j ,

i j

�
i j

if i  � j .
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� Reidemeister III type relations

i kj

�

i kj

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

0 if i ¤ k or i � j ¤ �1,

i ij

if i D k and i �! j ,

�

i ij

if i D k and i  � j .

R.�/ naturally decomposes into blocks

R.�/ D
M

�2NŒI �

R.�/;

where

� D
X

i2I

�i i

are called weights. Each R.�/ is spanned by diagrams consisting of

j�j defD
X

i2I

�i

strands, �i of which are colored by i . For each weight � D
P

i2I �i i 2 NŒI �,

let Seq.�/ be the set of sequences of colors i 2 Im, where m D j�j. �ere are

idempotents 1i 2 R.�/ for each i D .i1; i2; : : : ; im/ 2 Seq.�/, depicted by

1i
defD
i1 i2 im

: : :
;

and, as a graded vector space,

R.�/ D
M

i;j2Seq.�/

iR.�/j;

where

iR.�/j
defD 1iR.�/1j:
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For more details about these rings, see [20, 21, 41]. Note that in the previous

section we labelled strands by numbers 1; 2; : : : starting from top left of a diagram.

Now we suppress this notation and only keep track of the strands’ colors, elements

of I , written at the bottom endpoints of strands.

�e algebra R.�/ has the following symmetries extending those of nilHecke

subalgebras. Re�ecting a diagram about a horizontal axis induces an algebra anti-

involution of R.�/, denoted  :

 

0
BBB@
j k i

1
CCCA D

i j k

: (93)

Re�ecting a diagram about a vertical axis and simultaneously multiplying it by

.�1/ for each same-color crossing induces an algebra involution of R.�/, de-

noted � :

�

0
BBB@
j i i

1
CCCA D �

i i j

: (94)

�e KLR algebra R.�/ acts faithfully on a direct sum of polynomial spaces,

see [20, Section 2.3] for more details. �e symmetric group Sm acts on Im by

permutations of sequences. De�ne a vector space

P�
defD

M

i2Seq.�/

Pi; Pi
defD kŒx1.i/; : : : ; xm.i/� � 1i:

P� inherits an action of Sm by setting

w.xt.i// D xw.t/.w.i// for any 1 � t � m.

�e algebra R.�/ acts on P� as follows. First o�, jR.�/i acts on Pk by zero unless

i D k and takes Pk to Pj when i D k D .i1; : : : ; it ; itC1; : : : ; im/. �e local

generators of R.�/

xt .i/
defD
i1 it im

: : : : : :
; ıt .i/

defD
i1 it itC1 im

: : : : : :
;
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act respectively on f 2 Pi by multiplying f by xt .i/ and

ıt .i/.f /
defD

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

tf if it � itC1 D 0;

f � tf

xt .i/ � xtC1.i/
if it D itC1;

.xtC1.sk.i// � xt .sk.i/// � .tf / if it ! itC1;

tf if it ! itC1;

where tf denotes f with the t -th and .t C 1/-st colored-variables switched. One

should not confuse the polynomial representation with the polynomial subalgebra

sitting naturally insideR.�/. In particular, the lowest degree element of Pi, unique

up to a non-zero constant and denoted by 1i, should not be confused with the

idempotent 1i 2 iR.�/i.

Example 4.1 (A2). For the quiver

�
i

// �
j
;

the R.�/-relations translate into

� �e usual nilHecke relations among strands and dots of the same color.

� Dots slide through i � j or j � i crossings:

i j

D
i j

;

j i

D
j i

;

j i

D
j i

;

i j

D
i j

:

� Two additional Reidemeister II type relations for the new crossings:

i j

D

i j

�

i j

;

j i

D

j i

�

j i

:
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� Two special Reidemeister III type relations:

i ij

�

i ij

D

i ij

;

j ji

�

j ji

D �

j ji

;

and the other Reidemeister III type relations:

j ij

D

j ij

;

j ii

D

j ii

;

i jj

D

i jj

;

i ji

D

i ji

:

Example 4.2 (A1 �A1). �is corresponds to the quiver with two vertices and no

arrows:

�
i

�
k
:

Such pairs of vertices in a Dynkin diagram are referred to as distant vertices. �e

relations for this case are listed below.

� �e usual nilHecke relations among strands and dots of the same color.

� Dots slide through i � k and k � i crossings:

i k

D
i k

;

k i

D
k i

;

k i

D
k i

;

i k

D
i k

:
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� Two additional Reidemeister II type relations for the new crossings:

i k

D

i k

;

k i

D

k i

:

� Reidemeister III type relations:

i ik

D

i ik

;

k ki

D

k ki

;

i ki

D

i ki

;

k ik

D

k ik

;

k ii

D

k ii

;

i kk

D

i kk

:

Di�erentials on KLR algebras. �e polynomial representation P� of R.�/ has

a p-DG module structure speci�ed as follows. Firstly, let

Pol�
defD P�

with the obvious algebra structure together with with the p-di�erential de�ned by

@.xt .i// D x2
t .i/ for all i 2 Seq.�/ and 1 � t � j�j.

.Pol� ; @/ is then a p-DG algebra. Choose a family of linear polynomials

g˛.i/
defD

mX

tD1

˛t .i/xt .i/;

one for each i 2 Seq.�/, where ˛t .i/ 2 Fp . Let @˛ act on an element f 1i 2 Pi by

@˛.f 1i/
defD @.f /1i C fg˛.i/1i:
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We denote this p-DG Pol�-module by P�.˛/. Unlike in the A1 case, we do not

make a particular (balanced) choice of the degree to assign to 1i 2 P�.˛/. �is

degree will depend on i, and will be uniquely determined by the choice of degree

for any single sequence of labels in Seq.�/.

As in the A1 case, a p-di�erential on P� induces a natural p-di�erential on

the endomorphism algebra R.�/. We �rst investigate these di�erentials on KLR

algebras associated to the only two simply-laced rank-two Cartan data: A2 and

A1 � A1, starting with the A2 case.

Consider the polynomial module

PiCj Š kŒx1; x2�1ij ˚ kŒx1; x2�1j i

(we use the shorthand notation x1 for x1.ij / and x1.j i/ etc.). Let

@˛.1ij / D ˛1.ij /x11ij C ˛2.ij /x21ij ; (95a)

@˛.1j i / D ˛1.j i/x11j i C ˛2.j i/x21j i : (95b)

An easy computation shows that, diagrammatically, the induced di�erential on

R.i C j / is given on the i � j and j � i crossings by

@˛

0
B@
i j

1
CA D .1C ˛1.j i/� ˛2.ij //

i j

C .1C ˛2.j i/� ˛1.ij //

i j

;

@˛

0
B@
j i

1
CA D .˛1.ij / � ˛2.j i//

j i

C .˛2.ij / � ˛1.j i//

j i

:

We would like the di�erential to be local, as in Section 3 and in the sense explained

earlier. Let

rij
defD 1C ˛1.j i/ � ˛2.ij /

rj i
defD ˛1.ij / � ˛2.j i/:

De�ne a four-parameter family of di�erentials

@ D @.ai ; aj ; rij ; rj i/

on R.�
i
! �

j
/ as follows:
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@

0
B@
i

1
CA D

i

2

; @

0
BB@
j

1
CCA D

j

2

; (96)

@

0
B@
i i

1
CA D ai

i i

� .ai C 1/
i i

C .ai � 1/
i i

; (97)

@

0
BB@
j j

1
CCA D aj

j j

� .aj C 1/
j j

C .aj � 1/
j j

; (98)

@

0
BB@
i j

1
CCA D rij

i j

C .1� rj i /

i j

; (99)

@

0
BB@
j i

1
CCA D rj i

j i

C .1 � rij /
j i

: (100)

In this de�nition we allow the parameters ai ; aj ; rij ; rj i 2 k.

Lemma 4.3. �e above di�erential @ D @.ai ; aj ; rij ; rj i / satis�es @p D 0 on
R.�

i
! �

j
/ if and only if ai ; aj ; rij ; rj i 2 Fp . Any homogeneousdegree two p-nilpo-

tent local derivation onR.�
i
! �

j
/ is of the form � �@.ai ; aj ; rij ; rj i / for some � 2 k

and ai ; aj ; rij ; rj i 2 Fp.

Sketch of proof. When ai ; aj ; rij ; rj i 2 Fp , @p D 0 on R.�
i
! �

j
/ since @ was

induced from a p-DG module. Conversely, Lemma 3.6 shows that @p D 0 on the

nilHecke algebra generators of the same color i or j if and only if ai ; aj 2 Fp.

A similar computation for @p as used in that lemma applied to the new generators

j i

and
i j

restricts rij , rj i to be in Fp . �e classi�cation of all possible

derivations follows by an easy but lengthy computation.
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�e second case is that of the quiver with two distant vertices (A1 � A1).

�
i

�
k
:

On the polynomial module

PiCk Š kŒx1; x2�1ik ˚ kŒx1; x2�1ki ;

set

@˛.1ik/ D ˛1.ik/x11ik C ˛2.ik/x21ik ; (101a)

@˛.1ki / D ˛1.ki/x11ki C ˛2.ki/x21ki : (101b)

�e induced di�erential on R.i C k/ is given on the i � k, k � i crossings by

@

0
B@
i k

1
CA D .˛1.ki/ � ˛2.ik//

i k

C .˛2.ki/ � ˛1.ik//

i k

;

@

0
B@
k i

1
CA D .˛1.ik/ � ˛2.ki//

k i

C .˛2.ik/ � ˛1.ki//

k i

:

We denote

uik
defD ˛1.ki/ � ˛2.ik/

and

uki
defD ˛1.ik/ � ˛2.ki/;

and require that the di�erential is independent of the position of the crossings.

�is results in a six-parameter family (�i ; �k; ai ; ak; uik; uki 2 k) of local di�er-

entials:

@

0
B@
i

1
CA D �i

i

2

; @

0
B@
k

1
CA D �k

k

2

;

@

0
B@
i i

1
CA D �i

0
B@ai

i i

� .ai C 1/
i i

C .ai � 1/
i i

1
CA ;
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@

0
B@
k k

1
CA D �k

0
B@ak

k k

� .ak C 1/
k k

C .ak � 1/
k k

1
CA ;

@

0
B@
i k

1
CA D uik

i k

� uki

i k

;

@

0
B@
k i

1
CA D uki

k i

� uik

k i

:

�e proof of the following lemma is entirely analogous to those of Lemmata 3.6

and 4.3.

Lemma 4.4. �e above di�erential @ D @.ai ; ak; uik; uki ; �i ; �k/ satis�es @p D 0
on R.�

i
�
k
/ if and only if ai ; ak; uik ; uki 2 Fp while �i ; �k 2 k. Any homoge-

neous degree two p-nilpotent local derivation on R.�
i
�
k
/ arises in this way.

Remark 4.5. By rescaling the di�erential on the nilHecke algebra, one could have

speci�ed that @.x.i// D �ix
2.i/ by any �i 2 k for each color i 2 I , and @.ı.i//

would then be modi�ed accordingly (as above, for the i � i and k � k crossings).

Inside the KLR algebra, one might attempt to rescale the nilHecke di�erentials for

each color separately. �is can be accomplished when the colors are distant, but

for adjacent colors the A2 relations force the scalings to be the same. �erefore, in

a connected simply-laced quiver, we may and will always assume that the scaling

factor �i D 1 for each color i 2 I .

In a similar way as in Proposition 3.9, one shows that the symmetries  , � of

R.�/ intertwine di�erentials.

Proposition 4.6. �e following relations on the di�erentials hold.

(i) On R.�
i
! �

j
/,

 ı @.ai ; aj ; rij ; rj i/ ı  D @.�ai ;�aj ; 1� rij ; 1� rj i /;

� ı @.ai ; aj ; rij ; rj i/ ı � D @.�ai ;�aj ; 1� rij ; 1� rj i /:
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(ii) On R.�
i
�
k
/,

 ı @.ai ; ak; uik; uki ; �i ; �k/ ı  D @.�ai ;�ak;�uik;�uki ; �i ; �k/;

� ı @.ai ; ak ; uik; uki ; �i ; �k/ ı � D @.�ai ;�ak;�uik;�uki ; �i ; �k/:

Sketch of proof. To show these relations, it su�ces to check them on the algebra

generators. �e proof is entirely similar to the argument in the proof of Propo-

sition 3.9. �at ai ; aj ; ak are replaced respectively by �ai ;�aj ;�ak under con-

jugation is implied by the proposition. For rij ; rj i ; uik; uki it su�ces to compute

both sides on two-color crossings. For instance, denoting @.ai ; aj ; rij ; rj i/ by @r;s

for short, where r D rj i and s D rij , we have

 ı @r;s ı  

0
BB@
j i

1
CCA D  ı @r;s

0
BB@
i j

1
CCA

D  

0
BB@s
i j

C .1� r/
i j

1
CCA

D .1� r/
j i

C s
j i

D @1�r;1�s

0
BB@
j i

1
CCA :

�e rest of the proof follows similarly.

�e proof of the following result is similar to that of the nilHecke case (Propo-

sition 3.10).

Proposition 4.7. Let � be the quiver �
i
! �

j
(resp. �

i
�
k
), and @ be the di�erential

@.ai ; aj ; rij ; rj i/ (resp. @.ai ; ak ; uik; uki ; �i ; �k/ with �i ; �k ¤ 0). �en for each
weight � 2 NŒI �, where I D ¹i; j º (resp. I D ¹i; kº), the p-complex .R.�/; @/ is
quasi-isomorphic to a �nite dimensional p-complex.
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Sketch of proof. Since the di�erentials either preserve or decrease the number the

crossings in a diagram, one can �lter the p-complexR.�/ by the number of cross-

ings in the diagrams of a basis, so that each subquotient is isomorphic to a rank-one

polynomial module over the p-DG algebra kŒx1; : : : ; xm� with @.xi / D x2
i . Such

polynomial modules are quasi-isomorphic to �nite dimensional p-complexes by

the discussion in Section 3.1 (after equation (32)).

Extension to any simply-laced Cartan datum. Now let � be a connected,

simply-laced Cartan datum with vertex set I . Such data are classi�ed by �nite

graphs without loops at vertices or multiple edges. Fix an arbitrary orientation

for �. De�ne a multi-parameter family of di�erentials

@
defD @.ai ; rij ; rj i ; uik; uki /;

where i; j; k 2 I , on R.�/ as follows.

(i) For each vertex i 2 I choose ai 2 Fp and de�ne

@

0
B@
i

1
CA D

i

2

; (102)

@

0
B@
i i

1
CA D ai

i i

� .ai C 1/
i i

C .ai � 1/
i i

: (103)

(ii) For each pair of vertices i; j 2 I in � connected by an oriented edge i ! j

choose rij ; rj i 2 Fp and de�ne

@

0
B@
i j

1
CA D rij

i j

C .1 � rj i /

i j

; (104)

@

0
B@
j i

1
CA D rj i

j i

C .1� rij /
j i

: (105)

(iii) For each unordered pair of disconnected vertices i; k 2 I choose uik ; uki 2
Fp and de�ne

@

0
B@
i k

1
CA D uik

i k

� uki

i k

; (106)
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@

0
B@
k i

1
CA D uki

k i

� uik

k i

: (107)

�is assignment gives rises to a di�erential onR.�/. We have already checked

that the de�ning relations in R.�/ involving strands of at most two colors are re-

spected by these di�erentials. It is immediate to see that the only missing relations

i kj

D

i kj

;

where i; j; k are pairwise distinct vertices, are preserved under the di�erential. In

these relations, the types of distinct-color crossings involved do not change–only

their orders do; hence the di�erential is well-de�ned.

4.2. Quantum Serre relations. Given any simply-laced Cartan datum � with

vertex set I , there is an associated (half) quantum Kac-Moody algebra f� [29,

Section 1], built as follows. One starts with a free NŒI �-graded associative algebra
0f� over the �eld Q.q/ with generators Ei for all i 2 I , where deg.Ei / D i as an

element of NŒI �. �en f� is de�ned to be 0f� quotiented by the two-sided ideal

generated by the following relations, known as the quantum Serre relations:

EiEk D EkEi ; (108)

if i; k are distant vertices, while
8
<
:
Œ2�EiEjEi D EiEiEj CEjEiEi ;

Œ2�EjEiEj D EjEjEi CEiEjEj ;
(109)

if i; j are connected by one edge. �e divided powersE
.n/
i

defD En
i =Œn�Š for all i 2 I

and n 2 N generate an ZŒq; q�1� integral subalgebra f�;Z of f� such that

f�;Z ˝ZŒq;q�1� Q.q/ D f� : (110)

�e relations (109) acquire the divided power form
8
<
:
EiEjEi D Ei.2/Ej CEjEi.2/ ;

EjEiEj D Ej .2/Ei CEiEj .2/ :
(111)

We will abbreviate EiEjEi by Eij i , Ei.2/Ej by Ei.2/j etc. in what follows.
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�e main goal of this section is to show that requiring these relations on the

Grothendieck groups of the derived categories of p-DG algebras .R.�/; @/

severely restricts possible choices of parameters in @ (parameters ai ; rij ; rj i ; uik,

uki 2 Fp). We will show at the end that for such special parameter values the

quantum Serre relations hold on the level of K0, interpreting these relations on

the categorical level as well. �e local nature of the di�erentials allows us to con-

sider the two special cases A1 �A1 and A2 separately (see Examples 4.1 and 4.2).

Below we will use that if the equality
P

˛2J ŒM˛� D
P

ˇ2K ŒNˇ � holds in the

Grothendieck groupK0.R.�/; @/, whereM˛ , Nˇ and P are compact p-DG mod-

ules over .R.�/; @/ and J;K are some �nite index sets, then
X

˛2J

ŒRHOMR.�/.P;M˛/� D
X

ˇ2K

ŒRHOMR.�/.P;Nˇ /� (112)

in K0.H -mod/ Š Op. �is follows since

RHOMR.�/.�;�/ W Dc.R.�/; @/�D
c.R.�/; @/ �! H -fmod

is an exact bi-functor, and R.�/ has �nite dimensional cohomology (Proposi-

tion 4.7) under the di�erentials de�ned by equations (102)–(107). When the con-

text is clear, we will just write RHOM.�;�/ for short.

�e A1 � A1 case. Consider the p-DG algebra .R.i C k/; @.ai ; ak; uik; uki //.

De�ne the p-DG modules

Pik
defD R.i C k/1ik D

i k

R.i C k/
D

8
ˆ̂̂
<
ˆ̂̂
:

i k

x

W x 2 R.i C k/

9
>>>=
>>>;
;

Pki
defD R.i C k/1ki D

k i

R.i C k/
D

8
ˆ̂̂
<
ˆ̂̂
:

k i

x

W x 2 R.i C k/

9
>>>=
>>>;
:

Both modules are co�brant since they are p-DG direct summands of the free mod-

ule R.i C k/ (Proposition 2.24). When the parameters uik D uki D 0 in the

de�nition of the di�erential, there are isomorphisms of p-DG modules

i k

R.i C k/

�ik

gg

�ki

''

k i

R.i C k/
;
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where �ki is given by post-composing any diagram in Pik with the crossing
k i

,

since @

 

k i

!
D 0 so that multiplication by this element commutes with the

di�erential. Likewise �ik is given by attaching the crossing
i k

to the bottom

of any diagram of Pki . �erefore, in K0.R.i C k/; @.ai ; ak; 0; 0//, ŒPik� D ŒPki �.

We interpret the p-DG isomorphism Pik Š Pki as a categorical lift of the relation

EiEk D EkEi . �e next result shows that such a categorical interpretation only

exists when uik D uki D 0.

Proposition 4.8. In the Grothendieck groupK0.R.iCk/; @.ai ; ak; uik; uki //, the
relation ŒPik� D ŒPki � holds if and only if uik D uki D 0. Furthermore, when
uik D uki D 0, there is isomorphisms of R.i C k/@-module

�ki W Pik �! Pki

whose inverse is �ik.

Proof. For the ease of notation, we will let u D uki and v D uik in the proof.

If ŒPik� D ŒPki �, using the RHOM pairing with the co�brant modules Pik and

Pki , cf. equation (112), we have

ŒRHOMR.iCk/.Pik; Pik/� D ŒRHOMR.iCk/.Pik; Pki /�; (113)

ŒRHOMR.iCk/.Pki ; Pik/� D ŒRHOMR.iCk/.Pki ; Pki /�: (114)

�e co�brance condition implies that the derived hom is isomorphic to the

usual hom as H -modules. On one hand, the left hand side of the equation (113)

equals the Op-dimension of the H -module

RHOM.Pik; Pik/ Š HOMR.iCk/.Pik; Pik/ Š k

*

i

n1

k

n2

W n1; n2 2 N

+
;

which is quasi-isomorphic to the trivial H -module V0 Š k whose Op-dimension

(see Notation 2.7) is 1. On the other hand,

RHOM.Pik; Pki / Š HOMR.iCk/.Pik; Pki/ Š k

*

k

n2

i

n1

W n1; n2 2 N

+
;
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and the di�erential @ D @.ai ; ak; u; v; �i ; �k/ acts on any basis element by

@

0
B@

k

n2

i

n1

1
CA D .n1 C u/

k

n2

i

n1C1

C .n2 � v/
k

n2C1

i

n1

;

so that as an H -module, RHOM.Pik; Pki / is quasi-isomorphic to Vp�u ˝ Vv,

whose Op-dimension is

ŒRHOM.Pik ; Pki/� D .1C q2 C � � � C q2.p�u//.1C q2 C � � � C q2v/:

�erefore we obtain the constraint equation in Op

.1C q2 C � � � C q2.p�u//.1C q2 C � � � C q2v/ D 1: (115)

Likewise, computing the Op-dimension of both sides of equation (114) gives us

.1C q2 C � � � C q2.p�v//.1C q2 C � � � C q2u/ D 1: (116)

Mod p reduction of the equations (115), (116) results in

.1 � u/.1C v/ � 1; .1� v/.1C u/ � 1 .mod p/:

Solving these last two equations together gives u D v D 0, as claimed. �e last

statement follows from the discussion before the proposition.

�e A2 case. We �rst review brie�y the proof of the quantum Serre relations

in the Grothendieck group K0.R.�
i
! �

j
//, as done in [20, Section 2.5]. As an

R.2i C j /-module,

Pij i
defD R.2i C j /1ij i D

8
<̂

:̂ i j i

x

W x 2 R.2i C j /

9
>=
>;

decomposes into a direct sum of projective modules

Pij i Š Pi.2/j

M
Pj i.2/ ;

where

Pi.2/j

defD

i i j

R.2i C j /

D

8
ˆ̂̂
<
ˆ̂̂
:
i i j

x

W x 2 R.2i C j /

9
>>>=
>>>;
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and

Pj i.2/

defD

i ij

R.2i C j /

D

8
ˆ̂̂
<
ˆ̂̂
:

i ij

x

W x 2 R.2i C j /

9
>>>=
>>>;
:

�e isomorphism is realized via the four maps

Pij i

�
i.2/j

||①①
①①
①①
①① �

ji.2/

##❋
❋❋

❋❋
❋❋

❋❋

Pi.2/j

#
i.2/j ""❋

❋❋
❋❋

❋❋
❋

Pj i.2/ ;

#
ji.2/{{①①

①①
①①
①①

Pij i

where �i.2/j is the left R.2i C j /-module map given by right multiplying any

element of Pij i by

i i j

. We will simply refer to this map as

�i.2/j D
i i j

: (117)

Likewise, the other maps in the above diagram are given by

#i.2/j D
i j i

; #j i.2/ D
i j i

; �j i.2/ D �
j i i

: (118)

Under this decomposition, there are isomorphisms of projective R.2i C j /-mod-

ules

i i j

R.2i C j /

�
i.2/j

ee

#
i.2/j

%%

i ij

R.2i C j /

(119)
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and

i ij

R.2i C j /

�
ji.2/

ee

#
ji.2/

%%

i ij

R.2i C j /

: (120)

Hence in the usual Grothendieck group ofR.2iCj / spanned by symbols of �nitely

generated graded projective modules, we have

ŒPij i � D ŒPi.2/j �C ŒPj i.2/ �:

�is is precisely the divided power form of the quantum Serre relation

Eij i D Ei.2/j CEj i.2/ :

Now consider R.2i C j / as a p-DG algebra equipped with the di�erential

@ D @.ai ; aj ; rij ; rj i/

(see Lemma 4.3). A categorical lifting of the quantum Serre relation to the cate-

gory of p-DG modules over .R.2i C j /; @/ necessarily means that the following

equality of symbols

Œ2�ŒPij i � D ŒPi ij �C ŒPj i i �

holds in K0.R.2i C j /; @/. �e modules Pij i , Pi ij , Pj i i are compact co�brant,

and we compute the following Cartan matrix with entries in K0.H -mod/ Š Op:

0
B@
ŒRHOM.Pi ij ; Pi ij /� ŒRHOM.Pi ij ; Pij i /� ŒRHOM.Pi ij ; Pj i i/�

ŒRHOM.Pij i ; Pi ij /� ŒRHOM.Pij i ; Pij i/� ŒRHOM.Pij i ; Pj i i/�

ŒRHOM.Pj i i ; Pi ij /� ŒRHOM.Pj i i ; Pij i/� ŒRHOM.Pj i i ; Pj i i /�

1
CA :

We give one example to show how these entries are computed.

Until the end of this case (A2), we will write

a
defD ai ; b

defD aj ; r
defD rj i ; s

defD rij

for convenience.
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Example 4.9. Consider the .2; 2/-entry ŒRHOM.Pij i ; Pij i/�. Since Pij i is co�-

brant, the p-complex RHOM.Pij i ; Pij i/ is isomorphic to

HOM.Pij i ; Pij i/ Š 1ij iR.2i C j /1ij i

with the induced di�erential from the algebra R.2i C j /, cf. Proposition 2.24.

Diagrammatically,

HOM.Pij i ; Pij i/ D k

*

i

k1

j

k2

i

k3

;

i

k3

j

k2

i

k1

ˇ̌
ˇ̌
ˇ k1; k2; k3 2 N

+

Š kŒx1.i/; x2.j /; x3.i/�

*

i j i

;

i j i

+
:

�e di�erential @ D @.a; b; s; r/ acts on the polynomial algebra

Polij i
defD kŒx1.i/; x2.j /; x3.i/�

by

@.x1.i// D x2
1.i/; @.x2.j // D x2

2.j /; @.x3.i// D x2
3.i/;

while on the module basis elements it has the e�ect

@

0
BBB@
i j i

1
CCCA D 0;

@

0
BBB@
i j i

1
CCCA D .r � 1 � a/

i j i

C

i j i

C .a � r/

i j i

C .aC 1 � r/

0
BBB@
i j i

�

i j i

1
CCCA :
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�erefore, as a p-DG module over .Polij i ; @/, HOM.Pij i ; Pij i/ �ts into the short

exact sequence,

0 �!

i j i

Polij i

�! HOM.Pij i ; Pij i/ �!

i j i

Polij i

�! 0;

where the two end terms are respectively isomorphic to the p-DG Polij i -modules

(ideals) Polij i �1 and Polij i �.xr�1�a
1 .i/x2.j /x

a�r
3 .i//. It is easy to see that the for-

mer is quasi-isomorphic to k, while the latter module is acyclic. InD.Polij i ; @/, we

have a corresponding distinguished triangle (Lemma 2.20), so that the

Op-dimension of RHOM.Pij i ; Pij i/ satis�es

ŒRHOM.Pij i ; Pij i/� D

2
666664
i j i

Polij i

3
777775
C

2
666664
i j i

Polij i

3
777775
D 1C 0 D 1:

By similar computations as in the above example, one calculates each of the

Cartan matrix entries to be

ŒRHOM.Pi ij ; Pi ij /� D 1C q�2.aC 2/q2.2 � a/q2 ;

ŒRHOM.Pij i ; Pi ij /�

D q.1C p � s/q2.r/q2 C q�1.aC 2/q2.1C p � s/q2.1C r � a/q2 ;

ŒRHOM.Pj i i ; Pi ij /�

D q2.1C p � 2s/q2.r/2
q2 C .1C p � 2s/q2.1C r C a/q2.1C r � a/q2 ;

ŒRHOM.Pi ij ; Pij i/�

D q.1C p � r/q2.s/q2 C q�1.aC 2� r/q2.2� a/q2.s/q2 ;

ŒRHOM.Pij i ; Pij i/� D 1;

ŒRHOM.Pj i i ; Pij i/�

D q.1C p � s/q2.r/q2 C q�1.1C p � s/q2.aC 2/q2.1C r � a/q2 ;

ŒRHOM.Pi ij ; Pj i i /�

D q2.1C p � r/2
q2.2s � 1/q2 C .aC 2 � r/q2.2� a � r/q2.2s � 1/q2 ;
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ŒRHOM.Pij i ; Pj i i/�

D q.1C p � r/q2.s/q2 C q�1.aC 2� r/q2.s/q2.2� a/q2 ;

ŒRHOM.Pj i i ; Pj i i /� D 1C q�2.aC 2/q2.2 � a/q2 ;

where .n/q2 denotes the unbalanced quantum integer

.n/q2

defD 1C q2 C � � � C q2.n�1/ 2 Op:

Equation (112) yields the following Op-vector form of the quantum Serre relation:

Œ2� � .the second row/ D .the �rst row/C .the third row/: (121)

When reduced mod p, these equations give rise to the system of equations

8
ˆ̂̂
<
ˆ̂̂
:

2.1� s/.3r � aC 2� a2 C ar/ D .5� a2/C .1� 2s/.2r2C 2r C 1� a2/;

2 D s.5 � 3r � a2 C ar/C .1� s/.ar � a2 C 3r � aC 2/;

2s.5 � 3r � a2 C ar/ D .2s � 1/.5� 6r C 2r2 � a2/C .5 � a2/:

(122)

Transposing i and j above, the quantum Serre relation

Œ2�Ej ij D Ejj i CEijj

gives the equations

8
ˆ̂̂
<
ˆ̂̂
:

2.1� r/.3s � b C 2� b2 C bs/ D .5� b2/C .1 � 2r/.2s2 C 2s C 1� b2/;

2 D r.5� 3s � b2 C bs/C .1 � r/.bs � b2 C 3s � b C 2/;

2r.5� 3s � b2 C bs/ D .2r � 1/.5 � 6s C 2s2 � b2/C .5� b2/:

(123)

Solving equations (122) and (123), one obtains the following two solutions:

8
<
:
a D b D 1;

r D s D 1;

8
<
:
a D b D �1;

r D s D 0:
(124)

Note that the two systems of parameters give rise to the di�erentials @.1; 1; 1; 1/,

@.�1;�1; 0; 0/which are conjugate to each other under the (anti-)automorphisms

 and � (Proposition 4.6).
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�e above discussion shows that these two groups of special parameters are

necessary for the quantum Serre relations to hold in K0.R.�
i
! �

j
/; @.a; b; r; s//.

Next we show that under these special parameters, we do have the equality of

symbols

Œ2�ŒPij i � D ŒPi ij �C ŒPj i i �;

Œ2�ŒPj ij � D ŒPjj i �C ŒPijj �;

in the Grothendieck group. In fact, we will prove that the following divided power

form of the quantum Serre relations

ŒPij i � D ŒPi.2/j �C ŒPj i.2/ �;

ŒPj ij � D ŒPj .2/i �C ŒPij .2/ �;

holds in K0.R.�
i
! �

j
// under the di�erentials @.1; 1; 1; 1/ or @.�1;�1; 0; 0/.

Since these two di�erentials are conjugate to each other, it su�ces to do this for

@.1; 1; 1; 1/.

Lemma 4.10. Equipped with the di�erential @.1; 1; 1; 1/, the module

Pi.2/j

defD

i i j

R.2i C j /

D

8
ˆ̂̂
<
ˆ̂̂
:
i i j

x

W x 2 R.2i C j /

9
>>>=
>>>;
;

is compact co�brant, and likewise for the module Pj i.2/ .

Proof. As we have seen in Section 2, when a D 1, the polynomial module

P2;i
defD

i i

R.2i/

with the di�erential @1 is compact co�brant (Proposition 3.26), and likewise for

P1;j Š kŒx.j /�. �e module in the statement of the lemma is easily seen to be no

other than Ind
R.2iCj /

R.2i/�R.j /
.P2;i �P1;j /. Hence the claim follows since Ind preserves

compactness and co�brance.
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Under @.1; 1; 1; 1/, one computes easily that

@

0
BBB@
i ij

1
CCCA D

i ij

�

i ij

; (125a)

@

0
BBB@
i ij

1
CCCA D

i ij

�

i ij

: (125b)

�erefore Pij i �ts into the short exact sequence of p-DG modules

0 �!

i ij

R.2i C j /

�!

i ij

R.2i C j /

�!

i ij

R.2i C j /

�! 0: (126)

Here the di�erential acts on the generator of the quotient module trivially:

@

0
BB@
i ij

1
CCA � 0

0
BBBBB@

mod

i ij

R.2i C j /
1
CCCCCA
:

Now we claim that the isomorphisms of projectiveR.2iCj /-modules de�ned

in equations (119), (120) lift to isomorphisms of p-DG modules. Here the module

S
defD

i ij

R.2i C j /

; resp. Q
defD

i ij

R.2i C j /

;
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is equipped with the p-DG submodule structure, resp. quotient module structure,

of Pij i . �e di�erential acts on the module generator

i ij

of S by the �rst equation of (125), while @ acts as zero on

i ij

of Q. We will prove the claim by exhibiting the intertwining relations

�i.2/j ı @S D @P
i.2/j
ı �i.2/j

on S , and

�j i.2/ ı @Q D @P
ji.2/
ı �j i.2/

on the quotient moduleQ. (See equations (117) and (118) for the maps �i.2/j , �j i.2/ ,

#i.2/j and #j i.2/ .) Equivalently

#i.2/j ı @P
i.2/j
ı �i.2/j D @S

and

#j i.2/ ı @P
ji.2/
ı �j i.2/ D @Q:

Given any element x of R.2i C j /,

#i.2/j ı @P
i.2/j
ı �i.2/j

0
BBBB@
i ij

x
1
CCCCA

D #i.2/j ı @P
i.2/j

0
BBBB@
�

i i j

x
1
CCCCA

D �#i.2/j

0
BBBB@
i i j

@.x/

C

i i j

x

C

i i j

x

� 2

i i j

x

C

i i

2

j

x
1
CCCCA
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D �#i.2/j

0
BBBB@
i i j

@.x/

C

i i j

x

�

i i j

x
1
CCCCA

D

i ij

@.x/

�

i ij

x

C

i ij

x

:

Comparing this with the �rst equation of (125) one obtains the claimed intertwin-

ing relation. Likewise, on the quotient module,

#j i.2/ ı @P
ji.2/
ı �j i.2/

0
BBBB@
i ij

x
1
CCCCA

D #j i.2/ ı @P
ji.2/

0
BBBB@
�

i ij

x
1
CCCCA

D �#j i.2/

0
BBBB@

i ij

@.x/

C

i ij

x

�

i ij

x

�

i i

2

j

x

C

i i

2

j

x
1
CCCCA

D �#j i.2/

0
BBBB@

i ij

@.x/
1
CCCCA

D

i ij

@.x/

:
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�e case when i , j are transposed is entirely similar and left to the reader. We

summarize the above discussion into the following result.

Proposition 4.11. �e following equalities of symbols

8
<
:
Œ2�ŒPij i � D ŒPi ij �C ŒPj i i �;

Œ2�ŒPj ij � D ŒPjj i �C ŒPijj �;

hold in the Grothendieck group K0.R.�
i
! �

j
/; @.ai ; aj ; rij ; rj i// if and only if the

parameters .ai ; aj ; rij ; rj i/ are given by either

8
<
:
ai D aj D 1;

rij D rj i D 1;
or

8
<
:
ai D aj D �1;

rij D rj i D 0:

�e discussion of this subsection gives in fact more than just the relations of

symbols in the Grothendieck group. If @ is parameterized by the �rst system of

coe�cients, then there are short exact sequences of R.2i C j /@-modules, resp.

R.2j C i/@-modules,

0 �!

i i j

R.2i C j /
#

i.2/j����!

i ij

R.2i C j /
�

ji.2/

����!

i ij

R.2i C j /

�! 0; (127)

resp.

0 �!

j j i

R.2j C i/
#

j .2/i����!

j ji

R.2j C i/
�

ij .2/

����!

j ji

R.2j C i/

�! 0: (128)

Likewise if @ is parameterized by the second system of equations, one obtains

similar short exact sequences by applying the symmetry � (Proposition 4.6) to the

above ones. �e short exact sequences (127) and (128) give rise to exact triangles
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in the homotopy category and derived category (Lemmata 2.16 and 2.20):

i i j

R.2i C j /
#

i.2/j����!

i ij

R.2i C j /
�

ji.2/

����!

i ij

R.2i C j /

�!

0
BBBBB@

i i j

R.2i C j /
1
CCCCCA
Œ1�;

(129)

resp.

j j i

R.2j C i/
#

j .2/i����!

j ji

R.2j C i/
�

ij .2/

����!

j ji

R.2j C i/

�!

0
BBBBB@
j j i

R.2j C i/
1
CCCCCA
Œ1�:

(130)

We regard the exact triangles (129) and (130) as categorical liftings of the divided

power form of the quantum Serre relations

Eij i D Ei.2/j CEj i.2/ ; resp. Ej ij D Ej .2/i CEij .2/ :

We extend the results to general simply-laced Cartan data in what follows.

Remark 4.12 (sl3 at
p
�1). At a fourth root of unity �4 D ˙

p
�1, the quantum

Serre relations Œ2�Eij i D Ei ij CEj i i , Œ2�Ej ij D Ejj iCEijj for the small quantum

group uC
�4
.sl3/ are redundant, since in this case Œ2� D 0, E2

i D 0, and E2
j D 0.

By computing the endomorphism algebras of the p-DG modules as we did in

Example 4.9, one �nds that Pi ij , Pj i i , Pjj i and Pijj are all contractible, while

Pij i , Pj ij are not. Furthermore, one can also show that the symbols of Pj ij i ,

Pij ij , Pij ij i etc. are not zero in the Grothendieck group of .R.A2/; @.1; 1; 1; 1//.

Idempotents and p-DG �ltrations. Some of the manipulations on the previous

few pages can be restated more intrinsically as follows. LetR be a ring and x; y 2
R be two elements satisfying

xyx D x; yxy D y: (131)

�en xy and yx are idempotents in R and the projective left R-modules Rxy and

Ryx are isomorphic via the maps that take zxy 2 Rxy to zxyx D zx 2 Ryx and

zyx 2 Ryx to zyxy D zy 2 Rxy, respectively:

Rxy Ryx:
�y

jj

�x **
(132)
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Assume now that R carries a p-nilpotent derivation @. �e projective modules

Rxy and Ryx are @-closed if and only if

@.xy/ 2 Rxy; @.yx/ 2 Ryx: (133)

�e maps in (132) will commute with @ if and only if

@.xy/x D @.xyx/; @.yx/y D @.yxy/: (134)

Expanding via the Leibniz rule, (134) is equivalent to

xy@.x/ D 0; yx@.y/ D 0: (135)

�e following conditions are equivalent to (133) and (135):

x@.y/ D 0; y@.x/ D 0: (136)

Indeed, to see that (136) implies (133), one computes

@.xy/ D @.x/y C x@.y/ D @.x/y D @.x/yxy 2 Rxy:

Likewise, (136) gives @.yx/ 2 Ryx.

Suppose that R has, in addition, elements x0, y0 such that

x0y0x0 D x0; y0x0y0 D y0 (137)

and

y0x D 0; yx0 D 0: (138)

�en x0y0, y0x0 are also idempotents in R, and the projective R-modules Rx0y0

and Ry0x0 are isomorphic. Furthermore, xy and x0y0 are mutually orthogonal,

e
defD xy C x0y0

is an idempotent, and there is an isomorphism of projective left R-modules

Re Š Rxy ˚Rx0y0 Š Ryx ˚Ry0x0;

which can be presented via the diagram
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Re

�x

||②②
②②
②②
②②
②

�x0

##●
●●

●●
●●

●●

Ryx

�y ""❊
❊❊

❊❊
❊❊

❊
Ry0x0;

�y0
{{✇✇
✇✇
✇✇
✇✇

Re

with �x given by right multiplication by x which takes ze to zex 2 Ryx, etc.

It is, in general, too much to hope that @ would respect this direct sum de-

composition of Re. Instead, we would like Rxy � Re to be a p-DG submodule

isomorphic to Ryx, and the quotient Re=Rxy to be p-DG isomorphic to Ry0x0.

�erefore, in addition to (133), we want the maps

Re=Rxy Ry0x0:

�y0
ll

�x0
++

(139)

to commute with the p-di�erentials. �is is equivalent to the condition thatRy0x0

is @-closed

@.y0x0/ 2 Ry0x0; (140)

and that

@.e/x0 D @.ex0/; @.y0x0/y0 � @.y0x0y0/ .mod Rxy/: (141)

A simple computation shows that condition (140) is implied by (141), the latter in

turn being equivalent to the conditions

y0@.x0/ D 0; x0@.y0/ 2 Rxy: (142)

Furthermore, Re is @-closed when (142) is satis�ed. �en, there is an exact se-

quence of R@-modules

0 // Rxy �

� // Re // Re=Rxy // 0:

Ryx

Š

OO

�e surjective map Re ! Ry0x0 given by right multiplication by x0 has Rxy as

its kernel and commutes with @ since y0@.x0/ D 0. Consequently, there is a short

exact sequence of .R; @/-modules (equivalently, a p-DG �ltration on Re)

0 // Ryx
�y // Re

�x0
// Ry0x0 // 0: (143)
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If Ryx and Ry0x0 are compact, then so is Re and this �ltration leads to a relation

in K0.R; @/

ŒRe� D ŒRyx�C ŒRy0x0�: (144)

In the case of R D R.2i C j / with the di�erential @.1; 1; 1; 1/, let

x D
i i j

; y D
i j i

; x0 D �
j i i

; y0 D
i j i

: (145)

An easy computation shows that conditions (131), (136)–(138), and (142) hold.

Idempotents yx; y0x0; and e give rise to compact R.2i C j /@-modules Pi.2/j ,

Pj i.2/ (Lemma 4.10), and Pij i respectively, resulting in the short exact sequence

0 �! Pi.2/j �! Pij i �! Pj i.2/ �! 0 (146)

and in the relation in the Grothendieck group

ŒPij i � D ŒPi.2/j �C ŒPj i.2/ �: (147)

�e general case. In general, let � be a connected simply-laced Cartan datum

with vertex set I and an arbitrary orientation. De�ne .R.�/; @/ to be the asso-

ciated p-DG algebra with the di�erential parameter chosen as in equations (102)

through (107). For any sequence of colors i D i1i2 : : : in 2 I n such that

nX

tD1

it D � 2 NŒI �;

de�ne the compact co�brant p-DG module over .R.�/; @/ by

Pi
defD R.�/1i D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:
i1 i2 in

: : :

x

W x 2 R.�/

9
>>>>>=
>>>>>;

:

�e local nature of the p-DG algebra together with the rank-two cases (Proposi-

tions 4.8 and 4.11) applied to each pair of vertices in � leads to the following.
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(I) If i , k are distant vertices in �, and uik D uki D 0, then there is an isomor-

phism of left .R.�/; @/-modules

�ki W P:::ik::: �! P:::ki:::;

where �ki is given by post-composing any element in P:::ik::: with

i1 k i in

: : : : : :
:

�e inverse map �ik of �ki is given by attaching to any element of P:::ki:::

from below the element

i1 i k in

: : : : : :
:

(II) If i , j are vertices in � connected by the oriented edge i ! j , and the

parameters satisfy

ai D aj D rij D rj i D 1;

then there are short exact sequences of left R.�/@-modules

0 �! P:::i.2/j :::

#
i.2/j����! P:::ij i:::

�
ji.2/

����! P:::j i.2/::: �! 0

and

0 �! P:::j .2/i :::

#
j .2/i����! P:::j ij :::

�
ij .2/

����! P:::ij .2/::: �! 0:

Here #i.2/j , �j i.2/ , #j .2/i and �ij .2/ are respectively right multiplication by

the elements

i1 i j i in

: : : : : :
;

i1 j i i in

: : : : : :
;

i1 j i j in

: : : : : :
;

i1 i j j in

: : : : : :
:
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(II� ) If i , j are vertices in � connected by the oriented edge i ! j , and the

parameters satisfy

1C ai D 1C aj D rij D rj i D 0;

then there are short exact sequences of left R.�/@-modules

0 �! P:::j i.2/:::

#
ji.2/

����! P:::ij i:::

�
i.2/j����! P:::i.2/j ::: �! 0;

0 �! P:::ij .2/:::

#
ij .2/

����! P:::j ij :::

�
j .2/i����! P:::j .2/i ::: �! 0;

where #j i.2/ , �i.2/j , #ij .2/ and �j .2/i are respectively given by right multipli-

cation with the elements

i1 i j i in

: : : : : :
;

i1 i i j in

: : : : : :
;

i1 j i j in

: : : : : :
;

i1 j j i in

: : : : : :
:

(II� ) follows from (II) by applying the symmetry � , see equation (94), and using

Proposition 4.6. We leave the veri�cation of these statements to the reader. �e

following de�nition summarizes the two parameters of di�erentials for which the

categorical quantum Serre relations hold.

De�nition 4.13. Let � be a connected simply-laced Cartan datum with the set of

vertices I and an arbitrary orientation, and R.�/ be its associated KLR algebra.

DC �ep-nilpotent local di�erential @1 onR.�/ acts on the one-strand generators

by

@1

0
B@
i

1
CA D

i

2

;
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while on the two-strand generators,

@1

0
BB@
i1 i2

1
CCA

D ıi1;i2

i1 i2

� i1 � i2

i1 i2

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

i1 i2

� 2
i1 i2

D �
i1 i2

�
i1 i2

if i1 D i2,

0 if i1; i2 are distant,

i1 i2

if i1; i2 are connected.

Here i; i1; i2 2 I are vertices of �, and i1 � i2 is the Cartan pairing between

i1; i2.

D� �e p-nilpotent local di�erential @�1 on R.�/ acts on the one-strand genera-

tors by

@�1

0
B@
i

1
CA D

i

2

;

while on the two-strand generators,

@�1

0
BB@
i1 i2

1
CCA

D �ıi1;i2

i1 i2

� i1 � i2

i1 i2
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D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�
i1 i2

� 2
i1 i2

D �
i1 i2

�
i1 i2

if i1 D i2,

0 if i1; i2 are distant,

i1 i2

if i1; i2 are connected.

�e next theorem summarizes the discussion in the subsection.

�eorem 4.14. �e relations

ŒP:::ik:::� D ŒP:::ki:::�;

where i; k are distant vertices, and

Œ2�ŒP:::ij i:::� D ŒP:::i ij :::�C ŒP:::j i i :::�;

where i; j are vertices connected by one edge in � with any orientation, hold in
the Grothendieck group K0.R.�/; @/ if and only if @ D @˙1. �e di�erentials
@˙1 are conjugate to each other by the (anti-)automorphisms  and � of R.�/.
Furthermore, the following statements hold.

(i) In the derived category D.R.�/; @1/, there is an isomorphism of p-DG mod-
ules

P:::ik::: Š P:::ki:::;

if i , k are distant vertices. �ere is an exact triangle if i and j are vertices
connected by one edge

P:::i.2/j ::: �! P:::ij i::: �! P:::j i.2/::: �! P:::i.2/j :::Œ1�:

(ii) In the derived category D.R.�/; @�1/, there is an isomorphism of p-DG
modules

P:::ik::: Š P:::ki:::;

if i , k are distant vertices, while there is an exact triangle

P:::j i.2/::: �! P:::ij i::: �! P:::i.2/j ::: �! P:::j i.2/:::Œ1�

if i and j are connected by one edge.
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4.3. Grothendieck groups for small weights. In this subsection we compute

Grothendieck groups of p-DG module categories over .R.�/; @/ for certain small

weights � in rank two. From now on we will specialize the de�nition of @ to the

�rst system of parameters (DC) in De�nition 4.13.

Example 4.15. Let i; k be distant vertices. �e p-DG algebraR.iCk/ has a basis

consisting of elements
8
<̂

:̂
i

n1

k

n2

;

k

n1

i

n2

;

i

n2

k

n1

;

k

n2

i

n1

W n1; n2 2 N

9
>=
>;
;

and the di�erential @ acts trivially on diagrams without dots. �e inclusion of the

2 � 2 matrix algebra with trivial di�erential
0
BBBBBBBBB@

i k i k

k i k i

1
CCCCCCCCCA

into R.i C k/ is a quasi-isomorphism of p-DG algebras. By �eorem 2.37, this

inclusion induces an equivalence of derived categories, and hence Grothendieck

groups. From the toy matrix model in Section 2.3, one concludes that

K0.R.i C k// Š Op :

�is example generalizes to any weight space of A1�A1, using �eorem 3.35.

One concludes that the Grothendieck group of the p-DG algebra .R.�
i
�
k
/; @/ can

be identi�ed with the twisted bialgebra

K0.R.�
i
�
k
/; @/ Š uC

Op
.sl2 � sl2/:

In what follows we will focus on the A2 case �
i
! �

j
.

Example 4.16. �e k-algebra R.i C j / has a basis
8
<̂

:̂
i

n1

j

n2

;

j

n1

i

n2

;

i

n2

j

n1

;

j

n2

i

n1

W n1; n2 2 N

9
>=
>;
;



302 M. Khovanov and Y. Qi

and the di�erential @ acts on the generators by

@

0
B@
i j

1
CA D 0; @

0
B@
j i

1
CA D 0;

@

0
B@
i j

1
CA D

i j

; @

0
B@
j i

1
CA D

j i

:

Consider the two-sided ideal

J
defD k

*

i

n1

j

n2

;

j

n1

i

n2

W n1 C n2 � 1
+

˚ k

*

i

n2

j

n1

;

j

n2

i

n1

W n1; n2 2 N

+
:

It is preserved by the di�erential and forms a contractible p-complex. �erefore,

the quotient p-DG algebra .R.i C j /=J; @/ is isomorphic to

k

i j

� k

j i

Š k � k;

with trivial di�erential, and the natural projection � W R.i C j / ! R.i C j /=J
is a quasi-isomorphism. Alternatively, the inclusion of the algebras k � k ,!
R.i C j / is a quasi-isomorphism of p-DG algebras. By �eorem 2.37, there is an

equivalence of triangulated categories D.R.i C j // Š D.k � k/, implying that

K0.R.i C j // Š Op ˚Op .

To compute the next example we will use the following observation. Let .R; @/

be a p-DG algebra and �1; �2 2 R be idempotents such that R�t is a p-DG sub-

module of R for t D 1; 2. Necessarily @.�t / D rt�t for some rt 2 R. �en under

the isomorphism of k-spaces HOMR.R�1; R�2/ Š �1R�2, the natural @-action on

the HOM-space translates into an action on �1R�2, denoted by “˘”, as follows.

For any x 2 R,

@ ˘ .�1x�2/ D �1 � @.x�2/:
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Indeed, if f 2 HOMR.R�1; R�2/, then @.f /.y�1/ D @.f .y�1// � f .@.y�1// for

any y 2 R. Now if f is a morphism de�ned by an element �1x�2, f .y�1/ D
y�1x�2, then @.f /.y�1/ D @.y�1x�2/ � @.y�1/�1x�2/ D y�1.@.x�2// and the

claim follows.

Example 4.17. We now compute the Grothendieck group of the p-DG algebra

.R.2i C j /; @/, assuming char.k/ � 3. By Proposition 2.28, the triangulated

category D.R.2i C j // is generated by the p-DG module R.2i C j /, which is

isomorphic to the direct sum of three compact co�brant modules Pi ij , Pij i and

Pj i i . Furthermore, Pi ij has a two step �ltration induced from the �ltration (78)

of NH2 by its polynomial representation. �e subquotients of the �ltration are

isomorphic to grading shifts ofPi.2/j . LikewisePj i i is �ltered by grading shifts of

Pj i.2/ . �e short exact sequence (126) and the p-DG enhanced isomorphisms (119)

and (120) show that Pij i �ts into an exact triangle

Pi.2/j �! Pij i �! Pj i.2/ �! Pi.2/j Œ1�:

Hence we deduce that the modules Pi.2/j , Pj i.2/ are compact co�brant generators

of D.R.2iCj //, and Proposition 2.34 shows that there is an equivalence between

D.R.2iCj // andD..ENDR.2iCj /.Pi.2/j˚Pj i.2//op/. We compute the di�erential

on this endomorphism algebra using the remarks made before this example.

First o�, since

HOM.Pi ij ; Pi ij / D k

"
i

n1

i

n2

j

n3

;

i

n2

i

n1

j

n3

W n1; n2; n3 2 N

#
;

the endomorphism space of Pi.2/j is spanned by

HOM.Pi.2/j ; Pi.2/j / Š k

�
i

n2

i

n1

j

n3

;

i

n1

i

n2

j

n3

W n1; n2; n3 2 N

�
:

Terms in the second diagram vanish because there is a double crossing between the

i � i strands. To simplify terms in of the �rst diagram, one uses that two-variable
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polynomials form a rank-two module over Sym2:

k

*

i

n1

i

n2

+
Š k

*

i i

s1
;

i i

s1
W s1 2 Sym2

+
;

and therefore

HOM.Pi.2/j ; Pi.2/j /

Š k

�
i i j

n3s1
;

i i j

n3s1
W s1 2 Sym2; n3 2 N

�
:

Using that symmetric polynomials can slide through crossings without obstruc-

tion, the HOM-space simpli�es to be

HOM.Pi.2/j ; Pi.2/j /

Š k

˝
k1s1

W s1 2 Sym2Œx1.i/; x2.i/�; k1 2 N̨

Š Sym2Œx1.i/; x2.i/�˝ kŒx3.j /� �

i i j

:

On the module generator @ acts by

@ ˘

0
BBBBBBBB@
i i j

1
CCCCCCCCA

D �

i i j

D 0:
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Hence the p-DG endomorphism algebra HOM.Pi.2/j ; Pi.2/j / is isomorphic to the

p-DG algebra Sym2Œx1.i/; x2.i/�˝ kŒx3.j /� with the usual di�erential, which in

turn is quasi-isomorphic to the ground �eld k. Likewise, a similar computation

shows that HOM.Pj i.2/ ; Pj i.2// is also quasi-isomorphic to the ground �eld as a

p-DG algebra.

Next, we compute the @ action on the space HOM.Pj i.2/ ; Pi.2/j /. As in the

previous case, one shows that the HOM-space is spanned by

HOM.Pj i.2/ ; Pi.2/j /

Š k

˝
n3s1

W s1 2 Sym2Œx1.i/; x2.i/�; n3 2 N̨

Š Sym2Œx1.i/; x2.i/�˝ kŒx3.j /� �

i i j

;

and @ acts on the generator by

@ ˘

0
BBBBBBBB@
i i j

1
CCCCCCCCA

D 2

i i j

:

�us, as a p-DG module over Sym2Œx1.i/; x2.i/�˝ kŒx3.i/�, HOM.Pj i.2/ ; Pi.2/j /

is isomorphic to the left submodule (ideal) generated by 1˝ x2
3.j / inside

Sym2Œx1.i/; x2.i/�˝ kŒx3.i/�:

�erefore it is quasi-isomorphic to the p-complex

k˝ .x2
3.j / �! x3

3.j / �! : : : �! x
p
3 .j // Š V2¹2º;

since Sym2 is quasi-isomorphic to k.
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Lastly, we compute the space HOM.Pi.2/j ; Pj i.2// with the induced @-action.

HOM.Pi.2/j ; Pj i.2//

Š k

˝
k1 s1

W s1 2 Sym2Œx2.i/; x3.i/�; k1 2 N̨

Š kŒx1.j /�˝ Sym2Œx2.i/; x3.i/� �

j i i

;

while @ acts on the module generator by

@ ˘

0
BBBBBBBB@
j i i

1
CCCCCCCCA

D

j i i

�

0
BBBBBBBB@
j i i

C

j i i

1
CCCCCCCCA

:

As a p-DG module over kŒx1.j /� ˝ Sym2Œx2.i/; x3.i/�, HOM.Pi.2/j ; Pj i.2// is

isomorphic to the left submodule in kŒx1.j /�˝Sym2Œx2.i/; x3.i/� generated by the

element 1˝e2.x2.i/; x3.i// D 1˝.x2.i/x3.i//. We now show that this submodule

is contractible. Indeed it su�ces to check that, under the usual di�erential on

Sym2, e2 D x1x2 2 Sym2 generates a contractible submodule. Note that e2 Sym2

�ts into a short exact sequence

0 �! e2 Sym2 �! Sym2 �! Sym1 �! 0;

where Sym1 Š kŒe1� has the quotient di�erential structure @.e1/ D e2
1 . �erefore

the surjection Sym2 � Sym1 of p-DG algebras, both quasi-isomorphic to the

ground �eld, is a quasi-isomorphism. �e contractibility of the kernel follows.
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Given the above computation, it is more convenient to study the endomorphism

algebra of the co�brant module .Pi.2/j ˝ zVp�2¹�pº/˚Pj i.2/ Š Pi.2/j Œ1�˚Pj i.2/ ,

which after all is also a compact generator. Combining the previous observations,

we see that the endomorphism algebra is quasi-isomorphic to the quiver algebra

with the trivial di�erential

HOM.Pi.2/j Œ1�˚ Pj i.2/ ; Pi.2/j Œ1�˚ Pj i.2// Š k.� �! �/:

Here the arrow has degree one and the dots stands for the (quasi-isomorphic) one-

dimensional endomorphism spaces spanned by IdP
i.2/j

Œ1� and IdP
ji.2/

respectively.

By Proposition 2.34, we conclude that D.R.2i C j // Š D.k.� ! �//. It follows

from Proposition 2.39 that K0.R.2i C j // Š Op ˚Op .

Further remarks. Let � be a connected simply-laced Cartan datum. So far we

have seen that, under the di�erentials given by the special parameters of De�ni-

tion 4.13, shadows of the small quantum groups appear on the categori�ed level:

relations E
p
i D 0 are categori�ed into the triviality of the derived categories at

weights pi (Proposition 3.15), quantum Serre relations hold (�eorem 4.14), and

some direct comparison with the weight spaces in the simplest cases is shown in

the above examples. We are tempted to propose the following conjecture.

Conjecture 4.18. Let � be a Cartan datum of ADE type. With the parameters
of the di�erential @ speci�ed as in De�nition 4.13, the p-DG algebra .R.�/; @/
categori�es an Op-integral form of the positive half of the small quantum group
associated with �.

�is conjecture is vague, as we do not describe a particular integral form of the

quantum group over the ring Op which .R.�/; @/ is expected to categorify. One

part of the conjecture states that the natural map

K0.R.�/; @/˝Op
K0.R.�

0/; @/ �! K0.R.�/˝k R.�
0/; @/

is an isomorphism for any weights �; �0.

It is unclear how to extend the di�erentials to nonsimply-laced KLR algebras,

since dots there have varying degrees depending on colors.

�e Webster algebras [47] have a diagrammatic description analogous to that

of the KLR algebras and their cyclotomic quotients. �e diagrams are generated

by red and black strands, such that red strands are labeled by positive weights and

never cross each other, while black strands can carry dots and satisfy relations
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similar to nilHecke algebras. For instance, in the A1 case, there are the following

red-black crossings for the weight k 2 N:

k

;

k

:

subject to some local relations, for instance:

k

D k

k

;

k

D

k

k

We refer the reader to ([47, Section 2]) for the details.

One readily sees that, for any � 2 Fp, the following di�erential on the new gen-

erators, together with the di�erential @1 on the nilHecke algebra (equations (65)

and (66)) de�nes a p-nilpotent local derivation on the Webster algebra.

@

0
@

k

1
A D k�

k

; @

0
@

k

1
A D k.1� �/

k

:
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