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Lagrangian concordance is not a symmetric relation

Baptiste Chantraine

Abstract. We provide an explicit example of a non trivial Legendrian knot ƒ such that

there exists a Lagrangian concordance from ƒ0 to ƒ where ƒ0 is the trivial Legendrian

knot with maximal �urston–Bennequin number. We then use the map induced in Leg-

endrian contact homology by a concordance and the augmentation category of ƒ to show

that no Lagrangian concordance exists in the other direction. �is proves that the relation

of Lagrangian concordance is not symmetric.
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1. Introduction

In this paper we will only consider the standard contact R3 with the contact struc-

ture � D ker ˛ with ˛ D dz � ydx. A Legendrian knot is an embedding

i W S1 ,�! R
3

such that

i�˛ D 0:

�e symplectisation of .R3; �/ is the symplectic manifold .R � R
3; d.et˛//.

In [3] we introduced the notion of Lagrangian concordances and cobordisms

between Legendrian knots and proved the basic properties of those relations.

Roughly speaking a Lagrangian cobordism † from a knot ƒ� to a knot ƒC is a

Lagrangian submanifold of the symplectisation which coincides at �1 with ƒ�

and at C1 with ƒC. When † is topologically a cylinder we say that ƒ� is

Lagrangian concordant to ƒC (a relation we denote by ƒ� � ƒC). Among the

basic properties of oriented Lagrangian cobordisms we proved that

tb.ƒC/ � tb.ƒ�/ D 2g.†/
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where tb.ƒ/ is the �urston–Bennequin number of ƒ. �is immediately implies

that when a Lagrangian cobordism is not a cylinder then such a cobordism cannot

be reversed. However we cannot apply such an argument to explicitly prove that

the relation of concordance is not symmetric. In this paper we use more involved

techniques, in particular recent results of T. Ekholm, K. Honda and T. Kálmán in

[9] using pseudo-holomorphic curves and Legendrian contact homology, to give

an example of a non reversible Lagrangian concordance. Namely we prove the

following result.

�eorem 1.1. Let ƒ0 be the Legendrian unknot with �1 �urston–Bennequin in-

variant. �ere exists a Legendrian representative ƒ of the knot m.946/ of Rolfsen

table of knots (see [17]) such that

� ƒ0 � ƒ;

� ƒ 6� ƒ0.

�e front and Lagrangian projections of ƒ in the previous theorem are shown

on Figure 1 (note that this Legendrian knot also appears in the end of [18] as an

example of Lagrangian slice knot).

Figure 1. Front and Lagrangian projections of a Legendrian representative of m.946/.
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�is example con�rms the analogy of this relation with a partial order. Whether

or not it is a genuine partial order (meaning that ƒ � ƒ0 and ƒ0 � ƒ would imply

that ƒ is Legendrian isotopic to ƒ0) is neither proved nor disproved; the author

is unaware of any conjecture on how di�erent the equivalence relation given by

ƒ � ƒ0 and ƒ0 � ƒ is from the Legendrian isotopy relation.

�e knot ƒ is the “smallest” Lagrangianly slice Legendrian knot (as it is clear

from the Legendrian knot atlas of [6]); it is therefore the �rst natural candidate

fo an example a non-reversible concordance. Using connected sums it is possible

to construct more examples of this kind. Another class of examples in dimension

3 will appear in forthcoming work by J. Baldwin and S. Sivek in [1] where they

construct concordances where the negative ends are stabilisations and the positive

ones have non-vanishing Legendrian contact homology. In higher dimensions re-

cent results of Y. Eliashberg and E. Murphy [11] imply that if the negative end

is loose (in the sense of [15]) then the Lagrangian concordance problem satis-

�es the h-principle. �is can be used to prove further non reversible examples of

Lagrangian concordances. Note that in both of those cases we still need pseudo-

holomorphic curves techniques and the existence of maps in Legendrian contact

homology to prove that the involved Lagrangian concordances cannot be reversed.

In order to prove the existence of the Lagrangian concordance claimed in �e-

orem 1.1 we use elementary Lagrangian cobordisms from [4] which we recall in

Section 3. We also describe those elementary cobordisms in terms of Lagrangian

projections as we will use those in Section 5 to compute maps between Legendrian

contact homology algebras (LCH for short). As the negative end of the concor-

dance is ƒ0 which has non-vanishing LCH the actual argument not only relies on

the functoriality of Legendrian contact homology (as it is the case for the exam-

ple of [11] and [1]) but also on a unknottedness result of Lagrangian concordances

from ƒ0 to itself which follows from work of Y. Eliashberg and L. Polterovitch

in [12] which we state in the following:

�eorem 1.2. Consider the standard contact S3 (seen as the compacti�cation

of the standard contact R3) and denote by K0 the Legendrian unknot with �1

�urston–Bennequin invariant (which corresponds to ƒ0 in R
3).

Let C be an oriented Lagrangian cobordism from K0 to itself. �en there is a

compactly supported symplectomorphism of R � S3 such that �.C / D R � K0.

�eorem 1.2 is proven in Section 6. Assuming then that a concordance C 0

from ƒ to ƒ0 exists we could glue C to C 0 to get a concordance from ƒ0 to ƒ0

and applying �eorem 1.2 we deduce that the map induced in Legendrian contact

homology is the identity (as stated in �eorem 6.1). We conclude the proof of �e-
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orem 1.1 in Section 7. In order to do so, we use the augmentation categories of ƒ

and ƒ0 as de�ned in [2] and the functor between them induced by the concordance

to �nd a contradiction to the existence of a concordance from ƒ to ƒ0.

Remark 1.3. �e main result was announced in the addendum in the introduction

of [3]. When it was written bilinearised LCH was not known to the author. �e

original proof of the non-symmetry followed however similar lines. �e idea is

to construct several other concordances Ci from ƒ0 to ƒ (every dashed line in

Figure 1 is a chord where we can apply move number 4 of Figure 2 to get such a

concordance). For each of those we computed the associated map similarly to what

is done in Section 5. We then used �eorem 6.1 to prove that for each of them the

composite map in Legendrian contact homology is the identity and deduce after

some e�ort a contradiction. �e existence of the augmentation category allows us

to give a more direct �nal argument and use only one explicit concordance from

ƒ0 to ƒ.

Acknowledgements. Most of this work was done while the author was sup-

ported �rst by a post-doctoral fellowship and after by a Mandat Chargé de

Recherche from the Fonds de la Recherche Scienti�que (FRS-FNRS), Belgium.

I wish to thank both the FNRS and the mathematics department of the Univer-

sité Libre de Bruxelles for the wonderful work environment they provided. I also

thank two anonymous referees whose comments and suggestions improved the

exposition of the paper.

2. Lagrangian concordances and Legendrian contact homology

We recall in this section the main de�nition from [3].

De�nition 2.1. Let ƒ� W S1 ,! R
3 and ƒC W S1 ,! R

3 be two Legendrian knots

inR
3. We say that ƒ� is Lagrangian concordant to ƒC if there exists a Lagrangian

embedding C W R � ƒ ,! R � R
3 such that

(1) C j.�1;�T /�ƒ D Id �ƒ�,

(2) C j.T;1/�ƒ D Id �ƒC.

In this situation C is called a Lagrangian concordance from ƒ� to ƒC.

It was proven in [10] that two Legendrian isotopic Legendrian knots are indeed

Lagrangian concordant. Another proof is given in [3] where we also proved that

under Lagrangian concordances the classical invariants tb and r are preserved.
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A Lagrangian concordance C is always an exact Lagrangian submanifold of

R � R
3 in the sense of [9] and thus following [9] it de�nes a DGA-map

'C W A.ƒC/ �! A.ƒ�/;

where A.ƒ˙/ denote the Chekanov algebras of the Legendrian submanifolds ƒ˙.

�e homology of A.ƒ/ (denoted by LCH.ƒ/) is called the Legendrian contact

homology of ƒ (see [5] and [8]). �is map is de�ned by a count of pseudo-

holomorphic curves with boundary on C .

If C1 is a Lagrangian concordance from ƒ0 to ƒ1 and C2 a Lagrangian concor-

dance from ƒ1 to ƒ2. We denote by C1#T C2 the Lagrangian concordance from

ƒ0 to ƒ2 which is equal to a translation of C1 for t < �T and a translation of C2

for t > T . �en [9, �eorem 1.2] implies that there exists a su�ciently big T such

that 'C1#T C2
D 'C1

ı 'C2
, in particular the association C ! 'C is functorial on

LCH.

3. Elementary Lagrangian cobordisms and their Lagrangian projections

For a Legendrian knot ƒ in R
3 we call the projection of ƒ on the xz-plane along

the y direction the front projection of ƒ. �e projection on the xy plane along the

z direction is called the Lagrangian projection of ƒ.

In order to produce an example of a non-trivial Lagrangian concordance we

will use a sequence of elementary cobordisms as de�ned in [4] and [9]. A com-

bination of results from [3], [4] and [9] implies that the local moves of Figure 2

can be realised by Lagrangian cobordisms (the arrows indicate the increasing R

direction in R � R
3).

�e �rst three moves are Legendrian Reidemeister moves arising along generic

Legendrian isotopies, in each case the associated cobordism is a concordance. �e

fourth move is a saddle cobordism which corresponds to a 1-handle attachment.

�e cobordism corresponding to the �fth move is a disk.

In Section 5 we will compute the induced map in Legendrian contact homology

by a concordance. It will then be convenient to have a description of this concor-

dance in terms of the Lagrangian projection. As it is easier in general to draw

isotopy of front projections, we will use procedure of [16] to draw Lagrangian

projections from front projections.

�e idea is to write front projections in piecewise linear forms where the slope

of a strand is always bigger than the one under it except before a crossing or a

cusp. Such front diagrams are then easily translated into Lagrangian projections.
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2 20

3

4

5
;

Figure 2. Local bifurcations of fronts along elementary Lagrangian cobordisms.

In Figure 3 we provide, on the left, the elementary moves in front diagrams

of this form associated to elementary cobordisms which we translate then, on the

right, in terms of Lagrangian projections. As in Figure 2 the arrows represent the

increasing time direction.

We label an arrow according to the corresponding bifurcation of the Lagrangian

projection where II, III and III0 correspond to the notation of [14]. However, as

a cobordism from ƒ� to ƒC induce a map from A.ƒC/ to A.ƒ�/ (i.e. following

the decreasing time direction) we labelled a move in Figure 3 by the correspond-

ing move from [14] following the arrow backward. As an example, if ƒ� di�ers

from ƒC by a move number II from [14] we will label the arrow by a II�1 as it

is this move we will use to compute the map from A.ƒC/ to A.ƒ�/. We denote

by IV the saddle cobordism denoted Lsa in [9] and by V the Lagrangian �lling

of ƒ0 denoted by Lmi in [9]. In move number 4, we also provide an intermediate

step which corresponds to the creation of two Reeb chords one of which being

then resolved by the cobordism (this procedure guaranties that the smallest newly

created chord is contractible).

�is language being understood we will be able to translate any bifurcation

of fronts as a bifurcation of Lagrangian projections and we will keep drawing

qualitative Lagrangian projections.
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II�1

II

II�1

II

II�1

II

II�1 ı III0

III0 ı II

III0

III0

II�1 ı IV

V
;;

Figure 3. Lagrangian projections of elementary cobordisms.

4. Example of a non-trivial concordance

Using the moves of Figure 2 we are able to provide a non trivial Lagrangian con-

cordance from ƒ0 to ƒ. Note that the knot m.946/ is the �rst Legendrian knot in

the Legendrian knot atlas of [6] with

gs.K/ D 0 and max¹tb.ƒ/jƒ Legendrian representative of Kº D �1;

thus, following [3, �eorem 1.4], it is the simplest candidate for such an exam-

ple. �e bifurcations of the fronts along the non trivial concordance is given on

Figure 4.

One can see that it is indeed a concordance either by using [3, �eorem 1.3]

and deduce from tb.ƒ/ � tb.ƒ0/ D 0 that the genus of the cobordism is 0 or by

explictly seeing that the projection to R of C has only two critical points, one of

index 1 and one of index 0 which implies that C is a cylinder.
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4

2 ı 20 ı 20

1 ı 1

20

5

Figure 4. A non trivial Lagrangian concordance.

5. Legendrian contact homology of ƒ and some geometrical maps

We compute now the boundary operator on the Chekanov algebra of ƒ (see [5]).

As r.ƒ/ D 0 it is a di�erential Z-graded algebra over Z2 freely generated by

the double points of the Lagrangian projection of ƒ. �e generators of A.ƒ/ are

represented on Figure 5 where each ai has degree 1, each bi degree 0 and each ci

degree �1.

a1

a2

a3
b6

a4

b5

b3

b4

c1

c2

a5

b1

b2

Figure 5. Generators of A.ƒ/.
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�e boundary operator on generators counts degree one immersed polygons

with one positive corner and several negative corners and in our situation gives

@a1 D 1 C a5c2b2 C b1b6 C b2;

@a2 D 1 C b2c2a4b2 C b2c2b3a5 C b6b4b2 C b6c1a5 C b6 C b2;

@a3 D 1 C a4b2c2 C b3a5c2 C b3 C b2b5;

@a4 D 1 C b3b1 C b2b4;

@a5 D b1b2;

@b1 D @b2 D 0;

@b3 D b2c1;

@b4 D c1b1;

@b5 D b4b2c2 C c1a5c2 C c2 C c1;

@b6 D b2c2b2;

@c1 D @c2 D 0:

It is then extended to the whole algebra by Leibniz’ rule: @.ab/ D @.a/b C

a@.b/.

We will now compute the map between Chekanov algebras associated to the

concordance C of Figure 4. At each step we use the results of [9] which give a

combinatorial description of the map associated to each elementary cobordism.

On Figure 6 we see the bifurcations of the Lagrangian projections along C us-

ing the correspondence between front moves and Lagrangian moves of Figure 3,

for convenience we split the �rst two steps in two steps each. For a cobordism

Ci we denote the di�erential of the DGA associated to the upper level by @C

Ci
and

the one corresponding to the lower level by @�
Ci

(of course @C

CiC1
D @�

Ci
). At each

step we compute the map associated to these moves between the corresponding

Chekanov algebras heavily using the results of [9, Section 6]. We provide the

precise section of this paper we use for each of the corresponding move. We dec-

orate the labels of the bifurcations of the Lagrangian projections with subscripts

precising the chords involved by each move.

5.1. Map associated to C1. �e bifurcation associated to the cobordism C1 is

IIab as in Figure 7. �e computation of the map associated to this move is the

most involved of all the DGA maps described in [14] and [9].



460 B. Chantraine

C1

C2

C3

C4

C5

C6

C7

Figure 6. Bifurcations of Lagrangian projections along the non-trivial concordance.

Figure 7. IIab.



Lagrangian concordance is not a symmetric relation 461

Following [9, Section 6.3.4], in order to compute 'C1
we need �rst to know

@�
C1

. We have

@�
C1

a1 D 1 C a5c2b C b1b6 C b;

@�
C1

a2 D 1 C b2c2a4b2 C b2c2b3a5 C b6b4b2 C b6c1a5 C b6c2a;

C b6 C b2;

@�
C1

a3 D 1 C a4b2c2 C b3a5c2 C b3 C bb5 C ac2;

@�
C1

a4 D 1 C b3b1 C bb4;

@�
C1

a5 D b1b2;

@�
C1

b1 D @�
C1

b2 D 0;

@�
C1

b3 D bc1;

@�
C1

b4 D c1b1;

@�
C1

b5 D b4b2c2 C c1a5c2 C c2 C c1;

@�
C1

b6 D b2c2b

@�
C1

c1 D @�
C1

c2 D 0;

@�
C1

a D b C b2;

@�
C1

b D 0:

Which we compare to @C

C1
computed above which gave

@C

C1
a1 D 1 C a5c2b2 C b1b6 C b2;

@C

C1
a2 D 1 C b2c2a4b2 C b2c2b3a5 C b6b4b2 C b6c1a5 C b6 C b2;

@C

C1
a3 D 1 C a4b2c2 C b3a5c2 C b3 C b2b5;

@C

C1
a4 D 1 C b3b1 C b2b4;

@C

C1
a5 D b1b2;

@C

C1
b1 D @C

C1
b2 D 0;

@C

C1
b3 D b2c1;

@C

C1
b4 D c1b1;

@C

C1
b5 D b4b2c2 C c1a5c2 C c2 C c1;

@C

C1
b6 D b2c2b2;

@C

C1
c1 D @C

C1
c2 D 0:
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A priori, in order to compute the associated map 'C1
we need to order the

Reeb chord according to the length �ltration (see [14, Section 3.1] and [9, Section

6.3.4]). �is ensure that when computing 'C1
.a/ we already know the image by

'C1
of any letter appearing in @�

C1
.a/. But we actually do not need to understand

the whole �ltration in a concrete example. For this note that for any generator d

of A.ƒC/ if b is not a letter appearing in @�
C1

.d/ then 'C1
.d/ D d regardless of

its action. �us in the end we need to understand the �ltration on a1, a3, a4, b3

and b6. One easily see that the action of a1 can be made as big as we want without

changing any other action. �en from the fact that @˙ decreases the action one get

that h.a1/ > h.a3/ > h.a4/ > h.b3/ and that h.a1/ > h.b6/. �is is enough to

proceed with inductive process (as b6 only appears in @.a1/ we treat it as having

action greater than a3).

Also note that @�
C1

.a/ D b D b C 0 which give v D 0 (following the notation

from [9]).

We start with b3 following the notation of [9, Section 6.3.4] we need to write

@�
C1

b3 D
P

B1bB2b : : : BkbA where all B 0s are words with letters in the generator

of A.ƒC/ (with lower action than b3) and where every occurence of b in A follows

an occurence of a. In our situation we have @�
C1

b3 D bc1 D bA with A D c1 (and

we have no word of type Bi ). �us b3 is mapped to b3 C aA D b3 C ac1.

We then proceed for a4, we get @�
C1

a4 D 1Cb3b1 Cbb4 D A1 CA2 CbA3 with

A1 D 1, A2 D b3b1 and A3 D b4 (again no B’s). Only A3 is of interest here (as it

belongs to a monomial containing b) and implies that a4 is mapped to a4 C ab4.

For a3 we have @�
C1

a3 D 1 C a4b2c2 C b3a5c2 C b3 C bb5 C ac2. �e only

relevant monomial is bb5 implying that a3 is mapped to a3 C ab5.

As for b6 we have @�
C1

b6 D b2c2b D Bb. �is implies that b6 is mapped to

b6 C 'C1
.B/a D b6 C b2c2a.

Finally for a1 we have @�
C1

a1 D 1Ca5c2b Cb1b6 Cb D A1 CA2b CA3 CA4b

with the only relevant Ai being A2 D a5c2 and A4 D 1 giving that a1 is mapped

to a1 C a5c2a C a.

In summary we have that 'C1
does the following:

a1 ! a1 C a C a5c2a;

a3 ! a3 C ab5;

a4 ! a4 C ab4;

b3 ! b3 C ac1;

b6 ! b6 C b2c2a;

and all other generators are mapped to themselves.
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5.2. Map associated to C2. �e bifurcation associated to C2 is of type IVb using

the notations of Figure 8.

Figure 8. Saddle cobordism IVb.

An easy veri�cation shows that the contractible Reeb chord b is simple (in

the sense of [9]). We can thus apply [9, Proposition 6.17] and count immersed

polygons with two positive corners (one on b). We get only three of those (the ˙

superscripts design postive and negative corners of the polygons):

aC
2 b�

6 bCa�;

bC
4 bC;

bC
5 bCa�c�

2 :

Which gives that the map 'C2
does the following:

a2 ! a2 C b6a;

b4 ! b4 C 1;

b5 ! b5 C ac2;

b ! 1;

all other generators being mapped to themselves.
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�is changes the di�erential as follows:

@�
C2

a1 D a5c2 C b1b6;

@�
C2

a2 D 1 C b2c2a4b2 C b2c2b3a5 C b6b4b2 C b6c1a5 C b2;

@�
C2

a3 D 1 C a4b2c2 C b3a5c2 C b3 C b5;

@�
C2

a4 D b3b1 C b4;

@�
C2

a5 D b1b2;

@�
C2

b1 D @�
C2

b2 D 0;

@�
C2

b3 D c1;

@�
C2

b4 D c1b1;

@�
C2

b5 D b4b2c2 C c1a5c2 C c1;

@�
C2

b6 D b2c2;

@�
C2

c1 D @�
C2

c2 D 0;

@�
C2

a D 1 C b2;

@�
C2

b D 0:

5.3. Map associated to C3. Using the notation of Figure 9, the bifurcations

associated to C3 are given by �rst II�1
b3c1

then II�1
a4b4

(going in the decreasing t

direction).

From @C

C3
.b3/ D c1 D c1 C v with v D 0 we deduce (following [9, Section

6.3.3]) that at the �rst bifurcation b3 maps to 0 and c1 maps to v thus to 0. �is

implies that in the middle of the cobordism one has @.a4/ D b4 implying that a4

and b4 maps to 0. �us 'C3
does the following:

b3 ! 0;

c1 ! 0;

a4 ! 0;

b4 ! 0;

all other generators being mapped to themselves.

5.4. Map associated to C4. Following the notation of Figure 10, the bifurcations

associated to the cobordism C4 are, again following the decreasing t direction, �rst

III0

b1a5a
then II�1

a5b1
.
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Figure 9. II�1
b3c1

ı II�1
a4b4

.

Figure 10. III0
b1a5a

ı II�1
a5b1

.
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To compute the map associated to III0

b1a5a
we apply [9, Section 6.3.2] and get

that a5 maps to a5 C b1a and all other generators are mapped to themselves.

One computes that in the middle

@.a5/ D @C

C4
.a5/ C @.b1a/ D b1b2 C b1 C b1b2 D b1:

Applying again [9, Section 6.3.3] we deduce that the bifurcation II�1
a5b1

maps a5

and b1 to 0. �is implies that 'C4
does the following:

a5 ! 0;

b1 ! 0;

a ! a

all other generator being mapped to themselves.

�e di�erential at this step is

@�
C4

a1 D 0;

@�
C4

a2 D 1 C b2;

@�
C4

a D 1 C b2;

@�
C4

b2 D 0;

@�
C4

b6 D b2c2;

@�
C4

a3 D 1 C b5;

@�
C4

b5 D 0:

5.5. Map associated to C5. Using the notation of Figure 11, the bifurcations

corresponding to C5 are II�1
a3b5

and II�1
ab2

(these are commutative).

One easily see that 'C5
does the following:

a ! 0;

b2 ! 1;

a3 ! 0;

b5 ! 1;

and all other generators are mapped to themselves.

�e di�erential becomes

@�
C5

a1 D 0;

@�
C5

a2 D 0;

@�
C5

b6 D c2;

@�
C5

c2 D 0:
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Figure 11. II�1
a3b5

ı II�1
ab2

.

5.6. Map associated to C6. �e bifurcation corresponding to C6 is II�1
b6c2

.

Figure 12. II�1
b6c2

.
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We have that 'C6
does

a1 ! a1;

a2 ! a2;

b6 ! 0;

c2 ! 0:

5.7. Map associated to C7 and the composition ’C. �e last part of C is �lling

one of the components of the link on Figure 12 with a Lagrangian disk (lets say the

one with Reeb chord a1). �is has the e�ect of mapping the corresponding chord

to 0, thus 'C7
.a1/ D 0 and 'C7

.a2/ D a0 where a0 is the unique Reeb chords

of ƒ0.

Combining this to the previous paragraphs we get that the map

'C D 'C7
ı 'C6

ı 'C5
ı 'C4

ı 'C3
ı 'C2

ı 'C1
;

associated to the concordance of Figure 4 is

a2 ! a0;

a1; a3; a4; a5; b1; b3; b6; c1; c2 ! 0;

b2; b4; b5 ! 1:

6. Lagrangian concordances from ƒ0 to itself

�e aim of this section is to prove the following:

�eorem 6.1. Let C be a Lagrangian concordance from ƒ0 to ƒ0 then the map

'c W A.ƒ0/ ! A.ƒ0/ induced by C is the identity.

�is follows from �eorem 1.2 of which we give a proof now.

Proof of �eorem 1.2. �is is actually a corollary of the main result of [12].

Let C � R� S3 be an oriented Lagrangian cobordism from K0 to itself. First

note that since tb.K0/ � tb.K0/ D 0 it follows from [3] that C is topologically a

cylinder.

�e symplectisation of S3 is symplectomorphic to C
2n0 with its standard sym-

plectic form. Under this symplectomorphism the t -direction becomes the radial

direction. A parametrisation of K0 in S3 is given by

¹.cos.�/; sin.�//j� 2 Œ0; 2�/º � C
2
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i.e.

ƒ0 D R
2 \ S3 � C

2;

where R
2 D ¹.x; y/jx; y 2 Rº � C

2. �us C is a Lagrangian cylinder which

coincides near 0 and outside a compact ball with the trivial Lagrangian plane,

i.e. C1 D C [ ¹0º is local Lagrangian knot (following the terminology of [12]).

It follows from the main result of [12] that there exist a compactly supported

Hamiltonian di�eomorphism �H such that �H .C1/ D R
2 � C

2.

For � > 0 we denote by D� the ball of radius � in C2. Take � su�ciently small

so that C� WD C1\D� D R
2\D�. Since �H maps C1 toR

2 then �H .C�/ � R
2 and

there exists a compactly supported di�eomorphism isotopic to the identity f of

R
2 such that f .�H .C�// D C� . Using standard construction one can extend f to a

compactly supported Hamiltonian di�eomorphism Qf of C2 (which by assumption

preserves R2). �us �1 D Qf ı �H is a compactly supported Hamiltonian di�eo-

morphism mapping C1 to R
2 such that �1jC�

D Id. Now standard application of

Moser’s path method leads to an Hamiltonian di�eomorphism �0 supported in D�

such that �0 preserves R2 and �0 ı �1jD�0 D Id for �0 << �. Restricting �0 ı �1 to

C
2 n ¹0º proves the theorem.

We are now able to prove �eorem 6.1.

Proof of �eorem 6.1. Take a contact embedding of .R3; �0/ ! .S3; �0/ as in [13,

Proposition 2.1.8] such that ƒ0 is mapped to K0. �is embedding induces a sym-

plectic embedding of R � R
3 in R � S3 ' C

2 n ¹0º. Under this identi�cation the

concordance C maps to a concordance from K0 to itself. �eorem 1.2 implies that

there exist a compactly supported symplectomorphism � mapping C to the trivial

cylinder of K0.

Since � is the identity near ˙1, for any cylindrical almost complex structure

J on R�S3 admissible (in the sense of [7]) for the trivial concordance we get that

.��1/�J is admissible for the original concordance C . �is implies the induced

map by C is the same map as the one induced by R � K0 which is the identity

(because the only degree 0 pseudo-holomorphic curve on the trivial concordance

is the trivial one). Since H.A.ƒ0// D A.ƒ0/ and the induced map in homology

by 'C do not depends on auxiliary choices, we get that the map do not depend on

the choice of the almost complex structure cylindrical at in�nities. �is conclude

the proof.
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7. Non symmetry of Lagrangian concordances

In order to prove �eorem 1.1 we use the augmentation category of ƒ denoted

by Aug.ƒ/. �is is an A1-category de�ned in [2] whose objects are augmenta-

tions of the Chekanov algebra and morphisms in the homological category are

bilinearised Legendrian contact cohomology groups.

Recall that an augmentation " of a DGA .A; @/ over Z2 is simply a DGA map

from .A; @/ to .Z2; 0/.

Bilinearised cohomology groups are generalisations of linearised Legendrian

contact cohomology groups (as de�ned in [5]) introduced in [2] using two aug-

mentations instead of one and keeping track of the non-commutativity of A.ƒ/.

Basically for two augmentations "1 and "2 and a word b1 : : : bk in @a the expression
X

j

"1.b1/"1.b2/ : : : "1.bj �1/ � bj � "2.bj C1/ : : : "2.bk/

contributes to d "1;"2a.

Dualising d "1;"2 leads to bilinearised Legendrian contact cohomology di�er-

ential

�1
"1;"2

W C"1;"2
.ƒ/ �! C"1;"2

.ƒ/

(where C"1;"2
.ƒ/ is the vector space generated by Reeb chords of ƒ) whose ho-

mology forms morphisms space in the homological category of the augmentation

category. Higher order compositions are de�ned using similar considerations with

more than 2 augmentations. For instance the composition of morphisms �2
"1;"2;"3

is de�ned as the dual of the map d
"3;"2;"1

2 which to a word b1 : : : bk in @a associates

X

i;j

"3.b1/ : : : "3.bi�1/ � bi � "2.biC1/ : : : "2.bj �1/ � bj � "1.bj C1/ : : : "1.bk/:

We are now ready to prove �eorem 1.1.

Proof of �eorem 1.1. �e �rst part on the existence of the concordance has been

proved in Section 4. It remains to prove that no concordance from ƒ to ƒ0 exists.

Assume that such a concordance C 0 exists and denote by

'C 0 W A.ƒ0/ �! A.ƒ/

the induced map. Let C be the concordance of Section 5 which induced the

map 'C .

�e concatenation of C 0 with C leads to a concordance from ƒ0 to itself. �e-

orem 6.1 implies that the map induced by this concatenation is

Id W A.ƒ0/ �! A.ƒ0/:
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Hence by [9, �eorem 1.2] we get that 'C ı 'C 0 D Id.

Now following [2, Section 2.4] we get that 'C 0 induces an A1-functor

FC 0 W Aug.ƒ/ �! Aug.ƒ0/

(obtained by dualising the components of the map 'C 0). Similarly 'C induces an

A1-functor

FC W Aug.ƒ0/ �! Aug.ƒ/:

From 'C ı 'C 0 D Id we get that

FC 0 ı FC D Id :

Note that A.ƒ0/ has only one augmentation "0 (which maps a0 to 0). By

de�nition of FC its action on the object of the augmentation category is given

by " ! " ı 'C , thus the explicit computation of Section 5 shows that FC ."0/ D

'C ı "0 D "1 where "1 is the �rst augmentation of Table 1. Table 1 also shows

another augmentation of A.ƒ/ we will use to compute bilinearised cohomology

groups.

Table 1. Two augmentations of A.ƒ/.

b1 b2 b3 b4 b5 b6

"1 0 1 0 1 1 0

"2 1 0 1 0 0 1

We will now show that the two augmentations "1 and "2 are not equivalent.

Table 2 gives the bilinearised di�erential for all possible pairs out of those two

augmentations (as b1 and b2 are always mapped to 0 we omit them from the table).

Table 2. Bilinearised di�erentials for ƒ.

a1 a2 a3 a4 a5

d "1;"1 b2 b2 b3 C b2 C b5 b2 C b4 b1

d "2;"2 b1 C b2 C b6 b2 C b6 b3 b3 C b1 b2

d "1;"2 b1 C b2 b6 C b2 b3 C b5 b3 C b4 0

d "2;"1 b6 C b2 b6 C b4 b3 C b2 b1 C b2 b1 C b2

b3 b4 b5 b6

d "1;"1 c1 0 c1 c2

d "2;"2 0 c1 c2 C c1 0

d "1;"2 0 c1 c1 c1

d "2;"1 0 0 c2 C c1 0



472 B. Chantraine

Notice that for linearised LCH (the �rst two lines) there are no non-trivial

homology in degree �1 whereas for the mixed augmentation there is always a

generator of degree �1. It follows then from [2, �eorem 1.4] that the two aug-

mentations "1 and "2 are not equivalent.

In order to conclude, one must study the compositions in the augmentation

category and its homological category, thus we need to consider the bilinearised

cohomology groups. From Table 2 we get that the bilinearised di�erentials in

cohomology are those given in Table 3.

Table 3. �1
"i ;"j

on ƒ.

b1 b2 b3 b4 b5 b6

�1
"1;"1

a5 a1 C a2 C a3 C a4 a3 a4 a3 0

�1
"2;"2

a1 C a4 a1 C a2 C a5 a3 C a4 0 0 a1 C a2

�1
"1;"2

a4 C a5 a1 C a3 C a4 C a5 a3 a2 0 a1 C a2

�1
"2;"1

a1 a1 C a2 a3 C a4 a4 a3 0

c1 c2

�1
"1;"1

b3 C b5 b6

�1
"2;"2

b4 C b5 b5

�1
"1;"2

b5 b5

�1
"2;"1

b3 C b4 C b5 0

From Table 3 we can see that LCH1
"1

has one generator Œa1� D Œa2� (since

a1Ca2 D �1
"1

.b2Cb3Cb4/) and that LCH0
"1

has dimension 0 (since b6 D �1
"1

.c2/).

As FC 0 ı FC is the identity we get that

H.F1
C 0/ ı H.F1

C / W LCH"0
.ƒ0/ �! LCH"0

.ƒ0/

is the identity. �is implies that in the homological category

H.F1
C / W LCH"1

.ƒ/ �! LCH"0
.ƒ0/

is surjective in particular the only generator Œa2� of LCH1
"1

.ƒ/ is mapped to Œa0�

the generator LCH1
"0

.ƒ0/.

In order to understand the compositions in the category, we need to compute
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@
"1;"2;"1

2 which gives

a1 ! b1b6;

a2 ! c2a4 C c2a5 C b6b4; (1)

a3 ! b2b5;

a4 ! b3b1 C b2b4;

a5 ! b1b2;

b3 ! b2c1;

b4 ! c1b1;

b6 ! c2b2 C b2c2:

From the second line (1) of the preceding formula we see that �2
"1;"2;"1

.a5; c2/ D

a2 2 C"1;"1
.ƒ/. As the composition Œx� ı Œy� in the homological category is

given by Œ�2.x; y/� we get that Œa5� ı Œc2� D Œa2�. Since FC 0 is an A1-functor

we get that H.FC0
1/ preserves this composition (see [2, Section 2.3]) thus we

have that 0 6D Œa0� D H.F1
C 0/.Œa2�/ D H.F1

C 0/.Œa5�/ ı H.F1
C 0/.Œc2�/. However

H.F1
C 0/.Œc2�/ 2 LCH�1

"0
.ƒ0/ ' ¹0º. �us Œa0� D H.F1

C 0/.Œa5�/ ı 0 D 0, this

contradicts the existence of FC 0 and hence the existence of C 0. �us ƒ 6� ƒ0.
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