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1. Introduction

In [9], D. Maulik and A. Okounkov develop a general theory connecting quantum
groups and equivariant quantum cohomology of Nakajima quiver varieties, see
[12], [13]. In this paper, we consider the constructions and results of that general
theory applied to the cotangent bundles of GL,, partial flag varieties. We identify
the objects and results from [9] with known objects and results associated with
the Yangian Y (gly), see [19], [20], [21], [22], [10], [5].

More precisely, we consider the cotangent bundle 7*F, of a GL,, partial flag
variety, A = (A1,...,An),|A| = Y_; A; = n, and the torus T = (C*)"*! equi-
variant cohomology H7(T*J3). In [9], a Yangian module structure was intro-
duced on P, H7(T*F2). We identify this Yangian module structure with the
Yangian module structure introduced in [5]. This identifies the operators of quan-
tum multiplication by divisors on H;(T*J}), described in [9], with the action of
the dynamical Hamiltonians from [20], [10], [5]. To construct these identifications
we provide a formula for the stable envelope maps, associated with the partial flag
varieties and introduced in [9]. The formula is in terms of the Yangian weight
functions introduced in [19], c.f. [21], [22], in order to construct g-hypergeometric
solutions of gKZ equations.

In Section 2, we follow [9] and define the stable envelope maps associated with
partial flag varieties, Stabg : (CV)®" @ C[zy,....zp:h] = HF(T*F2), 0 € Sp.
In Section 3, we introduce weight functions and the cohomological weight func-
tion maps [W,]: (CY)®" @ C[z1,...,zp;h] = HF(T*F2), 0 € Su. In Section 4
we prove our main result, Theorem 4.1, which relates the stable envelope maps and
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the cohomological weight function maps,
[Ws] = ca o Stabg,

where ¢, is the operator of multiplication by an element ¢ (@) € Hy(T*Fy)
defined in (15). The element c, (®) is not a zero-divisor. The inverse maps to the
stable envelope maps for GL,, partial flag varieties were considered in [5, Formu-
las (5.9) and (5.10)]. One of those maps v was reintroduced in Section 6.6 where
we prove that

v o Stab;g = Id,

here id € §,, is the identity.

In Section 5, we describe the orthogonality relations for the stable envelope
maps Stabiq and Stabg,,, where op € S, is the longest permutation. The orthog-
onality relations are analogues of the orthogonality relations for Schubert cycles
corresponding to dual Young diagrams.

In Section 6, our Theorem 6.3 and Corollary 6.4 say that the Yangian mod-
ule structure on @ =, H;(T*JFy), introduced in [9], coincides with the Yangian
structure introduced in [5] and Section 6.4. We introduce the dynamical Hamil-
tonians and trigonometric dynamical connection in Section 7. In Corollary 7.6,
we identify the operators of quantum multiplication by divisors D;,i = 1,..., N,
on Hy(T*J)) with the action of the dynamical Hamiltonian X g pi=1L...N.
This 1dent1ﬁes the quantum connection on H7(T*JF,) with the trlgonometrlc dy-
namical connection. In Section 7, we discuss also the gKZ difference connec-
tion, compatible with the trigonometric dynamical connection, see [20]. The gKZ
difference connection on H;(T*JF)) corresponds to the shift operator difference
connection introduced in [9].

This paper is motivated by two goals. The first is to relate the stable enve-
lope maps and the cohomological weight function maps. The second goal is to
identifies the quantum connection on H7 (7 *J) ) with the trigonometric dynam-
ical connection. The flat sections of the trigonometric dynamical connection and
the associated qKZ difference connection were constructed in [17], [11], [20] in
the form of multidimensional hypergeometric integrals. The results of this pa-
per allow us to construct flat sections of the quantum connection and the shift
operator difference connection on H7(7*3)) in the form of multidimensional
hypergeometric integrals, see [23]. Such a presentation of flat sections manifests
the Landau-Ginzburg mirror symmetry for the cotangent bundles of partial flag
varieties.

The authors thank D. Maulik and A. Okounkov for answering questions on [9].
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2. Stable envelopes

In this section we follow [9] and define stable envelopes associated with partial
flag varieties.

2.1. Partial flag varieties. Fix natural numbers N,n. Let A € Z%,, |A| =
A1+ ---+ Axy = n. Consider the partial flag variety J, parametrizing chains of
subspaces

0=FyCF C---CFy=C"

with dim F;/F;—1 = A;, i = 1,..., N. Denote by T*5, the cotangent bundle
of F,,andlet w: T*F, — F, be the projection of the bundle. Denote

X, = |J T*%a.
[Al|=n

Example 2.1. If n = 1, then A = (0,...,0,1;,0,...,0), T*F, is a point and X;
is the union of N points.

If n = 2 theneitherA =(0,...,0,1;,0,...,0,1;,0,...,0)orA =(0,...,0,2;,
0,...,0). In the first case T*F, is the cotangent bundle of projective line, in the
second case T*F), is a point. Thus X is the union of N points and N(N — 1)/2
copies of the cotangent bundle of projective line.

Letl =(/4,...,Iy)beapartitionof {1, ..., n}into disjoint subsets /1, ..., In.
Denote J, the set of all partitions I with |I;| =A;, j =1,...N.

Letuy,...,u, be the standard basis of C". For any I € J,, let x; € & be the
point corresponding to the coordinate flag F; C --- C Fy, where F; is the span
of the standard basis vectors u; € C" with j € I; U...U I;. We embed J, in
T*JF, as the zero section and consider the points x; as points of 7*F}.

2.2. Schubert cells. For any o € S,,, we consider the coordinate flag in C",
Ve:o=VocCcViCc---CV,=0C"
where V; is the span of ug (1), ..., us(). For I € Jp we define the Schubert cell

Qog ={F eFp | dm(F, NV))=#iclhU...UL, |o7'(i) <q)
forall p < N,q < n}.
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Lemma 2.2. The Schubert cell Q4,1 is an affine space of dimension
log =#{(, j)e{l,....n}* | o(i) € I5,0(j) € Ip,a <b,i > j}.
For a fixed o the flag manifold is the disjoint union of the cells Q4,1. We have

X1 € Qo’,l.

Proof. 'The structure of Schubert cells is well known, see e.g. [4, Section2.2]. [

2.3. Equivariant cohomology. Denote G = GL,(C) x C*. Let A C GL,(C)
be the torus of diagonal matrices. Denote 7 = A x C* the subgroup of G.

The groups A C GL, act on C” and hence on T*F,. Let the group C* act
on T*F, by multiplication in each fiber. We denote by —# its C*-weight.

We consider the equivariant cohomology algebras H7.(7T*J: C) and
HF (Xn) = €D HF(T*F2:0).
|A|=n

Denote by I'; = {yi,1...., i, the set of the Chern roots of the bundle over F,
with fiber F;/F;—;. Let ' = (I'y;...; ). Denoteby z = {z, ..., z,} the Chern
roots corresponding to the factors of the torus 7. Then

HF(T*F,)
N A; n
= Sy g el @ il /(T @ - = [Tw-z0).

i=1j=1 a=1

where u is a formal variable. The cohomology H7(T*J),) is a module over

Hy(pt:C) = C[z] ® Clh].

Example 2.3. If n = 1, then

HF (X)) = &L HF(T*Fo....0,1,.0....0)
is naturally isomorphic to eV ® Clzy; k] with basis v; = (0,...,0,1;,0,...,0),
i=1,...,N.

Fori =1,...,N,denote A) = }; 4 .- 4+ ;. Denote ®; = {6; .. e 0500}
the Chern roots of the bundle over F, with fiber F;. Let @ = (0q,...,0xy). The
relations

A0 i

Aj
[Ta-6p=T][]@-».,. i=1....N,
j=1

t=1j=1
define the homomorphism

C[@]SA(UX'"XSA(N) ® C[Z] ® C[h] N H;(T*EF),).
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2.4. Fixed point sets. The set (7*F; )4 of fixed points of the torus A action is
(x1)reg, - We have

(XA = X1 x - x Xy
The cohomology algebra H ;((DC,,)A) is naturally isomorphic to
(C")®" @ C[z; ).
This isomorphism sends the identity element 1; € H7(x7) to the vector
vy =V Q- Q Vi, (D
where i; = mif j € I,,.

2.5. Chamber decomposition. Let a be the Lie algebra of A. The cocharacters
n: C* — A form a lattice of rank n. We define

ar = Cochar(4) ®z R C a.

Each weight of A defines a hyperplane in ag.

Let zy,..., z, be the standard basis of the dual space a*, as in Section 2.3.
Then the forus roots are the A-weights o; ; = z; — zj for alli # j. The root
hyperplanes partition a into open chambers

aR—Ua,-J:,- = U Co.

geSy

The chamber &, consists of points p € apr such that z5(1)(p) > --- > zom) (p).

2.6. Stable leaves. Let € be a chamber. We say that x € X, is €-stable if the
limit lim, ¢ 7(z) - x € (X,)* exists for one (equivalently, all) cocharacters 1 € €.
This limit is independent of the choice of n € € and will be denoted by lim¢ x.

Given a point x; € (DC,,)A, we denote by Leafe; = {x | lime x = x7} the
stable leaf of x;. Foro € S, I € I, we denote by C Q4,1 C T*F) the conormal
bundle of the Schubert cell Q4 7.

Lemma 2.4. We have Leafe, 1 = CQy. 1.

Proof. Consider the natural A-invariant identification of 7~ !(Q,,7) with the
direct sum Cto./ @ CY%™72 mapping x; to the origin. The weights on the first
component Cto-7 are

Zo(j) — ZoG) Toro(i) € I5,0(j) € Ip,a <b,i > j, (2)
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and the weights on the second component C4™ 72 are
Zo() — Zo(;) foro(i) € Ig,0(j) € Ip,a <b. 3)
Consider the splitting

CZ(;J D Cdim?A — CZ(,_I D Tl* @T*,
———
CQs. 1

where T} is the sum of weight subspaces with weights

Zo() — Zo(j) Toro(i) € Ig,0(j) € lp,a <b,i <j, 4
and 77 is the sum of weight subspaces with weights

ZoG) — Zo(j) foro(i) € Ig,0(j) € Ip,a <b,i > |. &)

For a cocharacter n € €, the weights in (2) and (4) are all positive and the weights
in (5) are all negative.

Therefore, a point in n_l(Qg, 1) has lime x = xy if it belongs to C Q4,7 and
is not €-stable if it does not belong to C Q2,,7. Applying the same argument for
all other J € J,, we see that Leaf¢, ;1 C Jr_l(Qg, 1), and moreover, Leaf¢, ; =
CQo.1. O

For 0 € S,, we define the geometric partial ordering on the set J. For
1,J €7,,wesay that J <, I if xj lies in the closure of Leaf, ;.
We also define the combinatorial partial ordering. For I, J € J,, let

k
-1 k k
o (U 14) ={ay <. <y}
{=1

k
o (U Je) = bk <+ < b))
{=1

fork =1,...,N — 1. We say that J <, Iifbf‘ $al’.‘ fork =1,...,N —1,
i=1,...,A%,

Lemma 2.5. The geometric and combinatorial partial orderings are the same.

Proof. 'This is the so-called “Tableau Criterion” for the Bruhat (i.e. geometric)
order, see e.g. [1, Thm. 2.6.3]. |

In what follows we will denote both partial orderings by <,.
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Lemma 2.6. For 1,J €3,, 1 # J, there exists 0 € S, such that J €4 1

Proof. 'The group S, has an obvious action on J, as well. Observe that J <, [
is equivalent to 0~!(J) <iq o~ '(I). Hence the requirement of the Lemma is
achieved by choosing o such that =1 (1) is the <jg-smallest element of J; , namely
(1., A0y O 1 A®y ). O

Foro € S, I € J,, we define Slopeg,, = Uyg,1 Leafs 7. The Slopea’l isa
closed subset of 7*JF by [9, Lemma 3.2.7].

2.7. Stable envelopes. Given a closed T-invariant subset Y C 7T*F), and a class
E € H7(T*Jy), we say that E is supported in Y if E|7+5, _y = 0.
For given / and o, we define the following classes in H (pt)

i =11 TI TIGet)—zo0):

a<b o(i)el, i>j
a()elp

et =11 1 T1Get)—ze0):

a<b o(i)el, i<j
a(H)elp

ol + = H 1_[ l_[(za(i) — Zg(j) — M),

a<b o(i)el, i<j
a(j)elp

ei- =11 TI T1Gew —ze) =M.

a<bo(i)el, i>j
a(j)Elp

These are the products of the positive (“+”) and negative (“—") T-weights (with
respect to to €4 ) at x7 in the tangent to &) direction (“hor”) and fiber direction
(“Ver”)'

Let
ot = e e
and
_ codim(R24 7 CF, hor
sghg; = (—)IM @ s TR = deg(el
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Theorem 2.7. For any o € Sy, there exists a unique map of H7.(pt)-modules
Stabg : HF (X)) —> H7(Xn)
such that for any A with |A| = n and any 1 € J,, the stable envelope
Es1 = Stabs(17)
satisfies:
(i) supp Es1 C Slope, ;,
(i) Eg1lx; = sghy g €01,
(iil) deg, Eo,1lx, <dimTFy =3 ;- j<n AiAj forany J € Iy with J < 1.
This is Theorem 3.3.4 in [9] applied to GL,, partial flag varieties. The choice

of sign in (ii) is called a polarization in [9]. We will fix the polarization sgn,, ; in
the whole paper.

2.8. Geometric R-matrices. The maps Stab, become isomorphisms after
inverting the elements (eq,7,—)7e7, . For o/, o € S,, we define the R-matrix

R, = Stab ! o Stab, € End(Hr((Xx)*4)) ® C(z:h)
= End((C™)®") ® C(z: h),

where C(z; k) is the algebra of rational functions in z, A.

(6)

Example ([9, Example 4.1.2]). Letn = 2. The group S, consists of two elements:
id and the transposition s. After the identification H (X)) = (CV)®2RC[z; A,
the R-matrix is given by

Rgia = R(z1 — z2), @)
where we define
Id-hP
Rewy — AP
u—nh

and P € End(C"Y ® CV) is the permutation of tensor factors.

For the convenience of the reader we show the calculation leading to (7). The
space X, is the union of N(N — 1)/2 copies of T*P! and N points. The space X'
thus has N(N — 1) points in the N(N — 1)/2 copies of T*P! together with the
N isolated points of X,. On H7 of the isolated points of X, both sides of (7)
act as identity. Leti < j. Consider the 7*P! component corresponding to
A=(0,...,0,1;,0,...,0,1;,0,...,0). Then

HE (TP
= Clyi,1. vj.1] ® Clz1. z2:h]/ {(w — yi,) (e — yi1) = (u — z1) (u — 22)).
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The two fixed points x; and x; in this 7*P! component are indexed by
I = (I1,....Iy) such that I; = {1} and I; = {2} and [,, = & for all other
indices,and J = (Iy,...,In) suchthat I; = {2} and I; = {1} and /,, = @ for all
other indices. Let F; and F; denote the fibers over x; and x; in T*P!. We have
Stabig: 17 +— —[F] = Yi1 — Z2,
1y — [P+ [F] =yi1—z1—h,

Stabs: 17 +—> [P+ [Fs] = yi1 — 22— h,
1y — —[Fy] = Yin — 71
Here the geometric statements (e.g. Stab;q(17) = —[F7]) can be checked by veri-

fying the conditions of Theorem 2.7, and the calculation (e.g. —[F] = yi,1 — 22)
can be verified by equivariant localization. Therefore we have

Stab; ! o Stab;g(17)
= Stab ' (yi,1 — 22)

Z1 — Zp —h
e i )

®)

Stab; ! (

Z1 — Zp —h
=— .1 _ - 1y.
Zl—Zz—h I+Zl—22—l’l g
This, together with a similar calculation for 1; proves the claim (7) for the fixed
points in T*P1,

It is enough to consider R-matrices corresponding to pairs of chambers sep-
arated by a wall. Such a pair has the following form. Fori = 1,...,n — 1, let
s; € S, be the transposition (i,7 + 1). Any chamber

€ ={pcar|zZoy(p) > > Zom(P)}
is separated by a wall from exactly n — 1 chambers. They are

Cos; =P € ar | Zoy(P) > +++ > Zo(i-1)
> Zo(i+1) = Zo@i) = Zo(i+2)
> >Zemy(p)), i=1,...,n—1

Theorem 2.8 (Section 4.1.6 in [9]).
Rog 0 = RODOETD (70— z0641)) € End((CY)®") ® C(z; h), )

where the superscript means that the R-matrix of formula (7) operates in the
o(i)-th and o (i + 1)-th tensor factors.
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3. Weight functions

3.1. Weight functions Wj;. We define the weight functions W;(t;z; h), for
I €7J,,c.f.[19] and [22].
Recall A = (A1,...,An). Denote

2@ =A1+ ...+ A

and
N—-1 _ N—-1
A =3"A0 =3 (N-i) k.
i=1 i=1

Recall I = (I1,...,1y). Set

Consider the variables

(V. j=1,....N,a=1,....A9,

where
téN) =z4, a=1,...,n.
Denote
1) — (fij))ksw
and

t =W, ... (N,
The weight functions are

Wi(e:z:h) = (=)™ Sym )

..... tk(l) yuees

where
N—1 A()

Ur(t;zh) = [ [] (G @) ta(f, ) Y, ),

j=1 a=1
with
AG+D
.= J] @=Z*=n,

(D )
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AU +D
; ' +1
h(j,a) = l_[ (tzgj)_ta(l] ),
d=1

PG5 )

A 1) _ tlgj) s
oo = [] DD
b=a+1 a b
In these formulas for a function f(¢1, ..., fx) of some variables we denote
Symtl ..... tx f(tl’ "tk) = Z f(talv -atak)-
O'ESk

Example 3.1. LetN =2,n =2, A = (1,1), I = ({1}, {2}),J = ({2}, {1}). Then
Wi(t:z:h) = —h (1" — z,),
Wi(t:z:h) = —h (10— z; — h).
Example 3.2. Let N =2, n =3,A = (1,2), I = ({2},{1, 3}). Then
Wit:z:h) = —h 10— z; — )V — z3).

For a subset A C {l,...,n}, denote z4 = (245)qea. For I € T, denote
z;r = (z1,.....215). For f(l(l),...,.l(N)) € C[l‘(l),...,t(N)]SA“)X"'XSA(N)’ we
define f(zs) by replacing 1/ with | J{ _, z7,. Denote

N-1
ae) =[] JI G@-z-m. (11
a=1 i,jEUZ=llb

Lemma 3.3. (i) For 1, J € J,, the polynomial Wi (z y; z; h) is divisible by c) (z y).
(ii) For I € J,,

Wi(zr;z;h) = calzr) l_[ 1_[ (H(Zi—zj)l_[(Zi—Zj—h))-

a<b iel, i<j i>j
JE€Ip

(iii) For I,J €7, J <ijq 1,
deg, Wr(zy;z;h) < deg, Wr(zr;z; h; z1).
@iv) For 1,J € 3J,, we have Wi(zy;z;h) = O unless J <iq 1.

Lemma 3.3 is proved in Section 8.
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3.2. Weight functions W, ;. Foro € S, and I € J,, we define
Woi(t;z; h) = Wa—l(I)(t;Zo—(l), s Zam)s h),
where 071 (1) = (671 (1y),...,07 (IN)).
Example 34. Let N =2, n =2, A = (1,1), I = ({1},{2}),J = ({2}, {1}). Then
Wiq,1(t;z;h) = —h (ffl)— Z2),

Wia, s (t;z;h) = —h ([1(1)_ 71 —h),

Wer(t:z:h) = —h (1 — 2 — h),
Wes(t:zih) = —h ¢V — zy).

Lemma 3.5. For any o € S,, we have the following statements:
(i) for 1,J € J,, the polynomial W 1(zj; z; h) is divisible by c;,(z 1);
(ii) for I € Iy,

Wo,1(z152: h)

=ae) [] 1 (l_[(zo(i) —Zo(i) [ [Gow) = 200 — h))i

a<b o(i)el, i<j i>j
o(j)elp

@) forl,J €3;,J <5 1,
deg, Wo.1(zy;2;h) < deg, Wo.1(z1;2; h);
@) for 1,J €I, we have Ws 1(z5;z;h) = O unless J <5 1.

Lemma 3.5 follows from Lemma 3.3.

Lemma 3.6. Foranyo € S,, I €J,,i =1,...,n—1, we have
W = Zo@i) — ZoGi+1) L+ h W o
AT 2oy = Zean H T Ze) — Zopry Hh OO0 HDEY

(12)
where s; j € Sy is the transposition of i and j.

Lemma 3.6 is proved in Section 8.
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Letop € S, be the longest permutation, thatis,co: i —>n+1—i,i = 1,...,n.

Lemma 3.7. For J, K € J,, we have

Z Wid,g (z1:2; h)Woo k(21522 h)

RGD OGN Ge - 0k

1€7)

where

Rz = ] TITI1G -2

1<a<b<N i€l, jelp

ozn= [ J]]]G-z-m

1<a<b<N i€l, jel,

Lemma 3.7 is proved in Section 8.

3.3. R-matrices. Consider C[t; z; h]®c(z;4 C(z; h) as a C(z; h)-module. Denote
by M), the C(z; h)-submodule generated by the polynomials (W (z;h;t))jeg,
Denote M,, = @m:n M,;.

Lemma 3.8. The module M, is free of rank |J | with the basis (Wy)res, -
Proof. The lemma follows from parts (ii) and (iv) of Lemma 3.3. O
Lemma 3.9. For any o € S, the polynomials (Wg,1)1e3, form a basis of M.

Proof. The fact that W, 1 belongs to M follows from Lemma 3.6 by induction on
the length of 0. The independence of (W, 1)1eg, follows from parts (ii) and (iv) of
Lemma 3.5. Alternatively, the independence of (W, 1)1eg, follows by induction
from Lemma 3.6 with o replaced by os; (this is equivalent to inverting the formula
in Lemma 3.6). O

For o € S, we define the algebraic weight function map

Wy (CM)®" @ C(z; h) — M,

v V—> W r(t;z; h).
For o/, 0 € S,,, we define the R-matrix

Ry o = W' o Wy € End((CV)®") @ C(z: h).



Partial flag varieties, stable envelopes, and weight functions 347
Theorem 3.10 ([22]). Foranyo € S, andi = 1,...,n— 1, we have
Ros;.0 = ROV (z5:) — 25(141)) € End((CV)®") @ C(zih).  (13)

where the superscript means that the R-matrix of formula (7) operates in the
o(i)-th and o (i + 1)-th tensor factors.

Proof. The theorem follows from Lemma 3.6. O

For o € §,,, we define the cohomological weight function map
[Wol: H7((Xn)™) = (CV)®" ® Clzih] — HF (Xn).  vr = [Wo,1(@:2:h)],

where Wy 1(0;z;h) is the polynomial W 1 (¢;z; h) in which variables ti(j ) are
replaced with 6;; and [W; 1(®;z; h)] is the cohomology class represented by
Wo,1(©;z; h).

Let

Loc: HF(X,) — HF (X))
be the localization map

w > (w|x1)x1 e(Xy)4-

According to Lemma 3.5, the composition Loc o[W;] is upper triangular with re-
spect to the order <. Therefore — after tensoring with C(z; /) —the map Loc o[ W]
is invertible. We obtain that for ', o € S,, we can define the R-matrix

Ry 5 = [Wor]™! o [Wy] € End((CM)®") @ C(z: h),

and that

E(rs,- o = ﬁasi,o-
Corollary 3.11. Foranyo € S, andi = 1,...,n — 1, we have
Rosjo = ROV (204 — 256.41)) € End(CV)®") @ C(z;h),  (14)

where the superscript means that the R-matrix of formula (7) operates in the
o(i)-th and o (i + 1)-th tensor factors.

Remark 3.12. The maps W, : (CV)®" ® C(z;:h) — M,, o0 € S,, form what
are called in [24] local tensor coordinates on M,,. 'The stable envelope maps as
well as cohomological weight function maps are basically other examples of that
structure.



348 R. Rimdnyi, V. Tarasov, and A.Varchenko
4. Stable envelope maps and weight function maps

4.1. Main theorem. Denote

N—1 A@ p(@

c2(©) = [ [] [[Cui —bas —h) € HE(T*F). (15)

a=1 i=1 j=1

Observe that ¢y, (®) is the equivariant Euler class of the bundle @2’;11 Hom(F,,F,)
if we make C* act on it with weight —4. Here, by a slight abuse of notation, we
wrote F, for the bundle over F, with fiber F,.

Let

n(©) = (ca(©))ja=n € HT(Xn).

Note that ¢, (@) is not a zero-divisor in H(X,), because none of its fixed point
restrictions is zero.

Theorem 4.1. For any o € S,, the maps

Staby : H:((Xn)?) — HF(Xy)
and
[Wol: HF((Xn)*) — HF(Xn)

are related.:
[Ws] = ¢, o Stabg, (16)

where c;, denotes the operator of multiplication by c, (©).
Theorem 4.1 is proved in Section 4.2.

Remark 4.2. In [15] we defined cohomology classes k7 and «; in the cohomology
ring of the cotangent bundle of a Grassmannian. The classes were suggested as
candidates for the equivariant fundamental cohomology class of the cotangent
bundle of the Schubert variety S_Zid, 1, which is singular in general. Theorem 4.1
implies that the classes k7, «; defined in [15] are supported on Slope;y ;.

4.2. Triangularity. The C(z;/)-module H7(X,) ® C(z: h) has a basis

(wr(T:z:h))1eg, al=n

where

w@zn= [T T [TT] 2=

Zr —Zg
1<i<j<N xe€l; kel; tel; k ¢
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We have
wr(zy;z;h) =615, 1,J €7,.

Thus we have the distinguished basis (wy(I'; z; 1)) 1eg, |a|=n Of the C(z: h)-module
H7.(X,)®C(z; h) and the distinguished basis (17)7¢7, ,|a|=n 0of the C(z; #)-module
HE (X)),

We denote the matrices of the C(z; #)-module isomorphisms Stab, and [W;]
with respect to these bases by A, and B, respectively.

Lemma 4.3. The matrix Ay is upper-triangular with respect to the partial order-
ing <q, thatis, if (Ag)s1 # 0, then J <, 1.

Proof. 'The lemma follows from part (i) of Theorem 2.7. ]

Lemma 4.4. The matrix B, is upper-triangular with respect to the partial order-
ing <o, that is, if (Bg) s 1 # 0, then J <, 1.

Proof. 'The lemma follows from part (iv) of Lemma 3.5. ]
Define the C(z; h)-module isomorphism
fo = [Ws] o (Stabs) ™" HF(Xn) ® C(z;h) —> Hp(Xn) ® C(z; h).

Corollary 4.5. Forany o € Sy, the matrix of fs is upper-triangular with respect
to the partial ordering <.

Lemma 4.6. The operator f, does not depend on o € S,.

Proof. Foro’,o € S, we have
Ror o = [Wor] ™" o [Wy] = Staby! o (f;' o f) o Staby,
Ry o = Stab ! o Stab,
Hence f 6‘,1 o fo = land f = f,; does not depend on o. O

Lemma 4.7. The matrix of the operator f is diagonal.

Proof. For any 0 € S, the matrix of f is upper-triangular by Corollary 4.5.
Lemma 2.6 implies that the matrix is diagonal. O
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To prove Theorem 4.1 it is enough to evaluate the diagonal entries of the ma-
trix of f and of the matrices Ay, B, and then check that the diagonal entries
satisfy (16). The diagonal entries of A, are given by part (ii) of Theorem 2.7 and
the diagonal entries of B, are given by part (ii) of Lemma 3.5. Observing that
¢ (@) restricted to the fixed point xy is cj (z7), and that

IT I1 (H(Za(i) —2e6) [ [Gow) = 200 — h)) = (58051 €0, ) o]

a<b o()ely i<j i>j
o(j)elp

we obtain that the diagonal entries indeed satisfy (16). Theorem 4.1 is proved.

5. Orthogonality

5.1. Orthogonality on F,. Consider the bilinear form on H (3} ) defined by
(.8, = fﬂ fg, where the equivariant integral on F, can be expressed via
localization by

a(zr;z)
I';z) = .
/fﬁ “(:2) Z [la<s Hiela,jelb (zj — zi)

1€T;

Note that the denominator is the equivariant Euler class of the tangent space to F,
at the fixed point x;.

Let o¢ be the longest permutation in S,, thatis, og: i > n + 1 —i. It is well
known in Schubert calculus that

(Qias]. [,k 7, = 7.k,

where E_ZU, 1 is the closure of the Schubert cell 24, 7. In Theorem 5.1 below we will
show the T*F), version of this orthogonality statement.

5.2. Orthogonality on T*3F,. Consider the bilinear form on Hy;(T*J)) de-
fined by

(f.8)r*5, = / 18
T*F,
where the equivariant integral on 7*F), is defined via localization by

a(zr;z;h)
a(l;z;h) = .
/T*fﬁ 2 [la<s [liera,jer, (zi —zi)(zi —z; — h)

1€T;

Note that the denominator is the equivariant Euler class of the tangent space to
T*F), at the fixed point x;. This bilinear form takes values in C(z; /).
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Theorem 5.1. We have
(Stabig(17). Staboy (1K) 75, = 7.5 - (=12,

Proof. We have

id(17)Stabg, (1x))|x,

(Staba(1). Staboy (1)), = (-1 3 CERCIEE R

1€7d,

i Wia,s (21523 h)Woo,kx (2152, h)
— (_1)(21111’13:)u > >
IEZJA R(zr) Q(zr)ealzr)?
=8k - (=1)ImT2,

where the first equality is by definition, the second by Theorem 4.1 and the third
by Lemma 3.7. O

Theorem 5.1 is a special case of Theorem 4.4.1 from [9], proven by different
means. We thank the referee for pointing to us this fact.

6. Yangian actions

6.1. Yangian Y (gly). The Yangian Y (gly) is the unital associative algebra with

generators Tls]} fori,j =1,...,N, s € Zsy, subject to relations

U=0) [Ty, @), T (0)] = Ti,j ) Tog ) =T, j ) Ty ). i jok I = 1,... N,
(17)

where

o
T; j(u) =6;j + Z Tl{sl} u=s.

s=1

The Yangian Y (gly) is a Hopf algebra with the coproduct

A:Y(gly) — Y(gly) ® Y(gly)

given by

N
ATy j) =Y Tiej) @ Tr(w) i.j=1.....N.
k=1
The Yangian Y (gl ) contains, as a Hopf subalgebra, the universal enveloping al-
gebra U(gly) of the Lie algebra gly. The embedding is given by e; ; +— T{,l.}
where ¢; ; are standard standard generators of gly.
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Note that [T, 7)) = 8, T} — 8, T fori. j.k. I = 1.....N. 5 € Zo,,
which implies that the Yangian Y (gly ) is generated by the elements T i

i,i+1° "i+1,i°
i=1,....N—1Land T, s>o0.

6.2. Algebra f(g[ ~). In this section we follow [5, Section 3.3]. In formulas of
that Section 3.3 we replace h with —h.
Let ¥ (gl ) be the subalgebra of Y (gly) ® C[h] generated over C by C[k] and
the elements
(=hy ' T i =1 N> 0.
Equivalently, the subalgebra ¥ (gl ) is generated over C by C[A] and the elements

' i =1 N~ Land (=hy* ' T, s > 0.

Forp=1,...,N,
i ={1<ij<---<ip <N},
J={<j1<--<jp<N}

define
M; j(u) = Z =D°Ti1jocy @) - Tipjoy @ — p + 1).

0€Sp

Introduce the series
Ai1(u),...,Axy(w), Ei(),...,En—1(u), Fi(u),..., FN—1(u)

as follows:

Ap(u) = M; i (—u/h) =14 (=)’ Apsu™, (18)

s=1

Ey(u) = —h"'Mj ; (—u/h) (M; i (—u/h)™" = Z (=h)* YE,su™*,  (19)

s=1
Fp(u) = —h™ (My i (—u/ D)™ M j (—u/h) = > (=h)* ™ Fpsu™,
s=1

where in formulas (18) and (19) we have

i={l,...,p},

j={l,....,p—1p+1}.
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Observe that £, = T;i}l’p, Fp1 = T;}I})H and A, 5 = Tl{fl}, so the coefficients

of the series E, (), F,(u) and h~' (A4, (u)—1) together with C[h] generate ¥ (gly).
In what follows we will describe actions of the algebra ¥ (gly) by using the series
defined in (18) and (19).

6.3. The Y(g[N)-action on (CN)®" ® C[z;h]. Let C[z;h] act on the space
(CN)®" ® C|z; h] by multiplication. Set

Lu)=w—z,—hPOM) . (u—z; —hPOD), (20)

where the factors of CV® (CV)®” are labeled by 0, 1,. .., n. L(u) is a polynomial
inu, z, h with values in End(CY ® (CY)®"). We consider L (1) as an N x N matrix
with End(V) ® Clu; z; h]-valued entries L; ; (u).

Proposition 6.1 (Proposition 4.11in [5]). The assignment
¢(Tij(—u/h) = Lij@) [] =z 1)
a=1

defines the action of the algebra Y (gly) on (CN¥)®" ® C[z;h]. Here the right-
hand side of (21) is a series in u™' with coefficients in End((CV)®") ® C[z; h]).

Under this action, the subalgebra U(gly) C f(g[N) acts on (CV)®" @ C[z; h]
in the standard way: any element x € gly acts as x(V 4 ... 4 x@®,

The action ¢ was denoted in [5] by ¢+. After the identification H;((DC,,)A) =
(CN)®"®C|z; h], the action ¢ defines the ¥ (gl)-module structure on H((X,)4).
This ¥ (gl N )-module structure on H;((DC,,)A) coincides with the Yangian module
structure on Hy. ((X,)4) introduced in [9, Section 5.2.6].

6.4. H;(X,)asa Y (gl ~)-module according to [5]. We define the ¥ (gl )-mod-
ule structure p on H7(Xy) by (22), (24), and (25). Note that this f(g[ n)-module
structure was denoted in [5] by p~ and 4 in [5] is replaced with —h. We define

p(Ap()): Hi(T*F) — HF(T*Fy)

by
V4 AP h

pp): 1= [fszm [TTT (- =-)] @

a=1 i=1

for p =1,..., N. In particular,

p(X2°): [f1+ [(vin +-+via,) f@Tizh)], i=1,...,N. (23)
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Letay,...,any—1 be simple roots, ap = (0,...,0,1,—1,0,...,0), with p —1 first
zeros. We define

p(Ep(u)): Hp (T*Fp—q,) —> HF(T*F2),

by
Ap 11 AP-H
'":z;h
f]H[Z s )1'[ H(ypl—ypﬂk—h)] (24)
il YT Vb D,J —Vplk 1
/791
and
p(Fp(u)): Hr(T*Fa1q,) = H7(T*F2),
by
Ap+i ’ Apti Ap
f(l"’, i h) 1
[f]+— Vpk —Vp+1i—h) |, (25)
[Z U—=Vp+1,i .ljl)’p+1z—l/p+1/,}_[1 P Pl ]
‘Hél
where

T = (T Dot T = {ypidi Tpn Udyp,i}i T2 i Tw),
TV =TT Ty Udypani i Togt — {Vpani b Togai s T).

Theorem 6.2 (Theorem 5.10 in [5]). These formulas define a Y (g! N )-module struc-
ture on Hp(X,).
The topological interpretation of this action see in [5, Theorem 5.16].

The Y (gl )-module structure pon H 7(X,) is a Yangian version of representa-

tions of the quantum affine algebra U, (gﬁ;) considered in [6], [26], [27], a similar
Yangian module structure on H(X,) was considered in [25].

6.5. Stable envelopes and Yangian actions. As we know, formula (21) defines
the Y (gly)-module structure ¢ on H((X,)4) = (C¥)®" ® C(z; h), and formu-
las (22), (24), and (25) define the Y (gl )-module structure p on H(X;).

Theorem 6.3. For the identity element id € S, the map
Stabig: H7 ((Xa)*) — HF(Xy)

is a homomorphism of ?(g[ N )-modules.
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Corollary 6.4. The Y(g[N)—module structure p on Hp(X,) coincides with the
Yangian module structure on H7.(X,) introduced in [9).

Proof of Corollary 6.4. As we know, the Yangian module structure on H. (X)),
introduced in [9], coincides with the Y (gl )-module structure ¢. In [9], the Yan-
gian module structure on H7.(X,) is induced from the Yangian module structure
on H;((I)C,,)A) by the map Stabq: H;((I)C,,)A) — HJ7(X,), see [9, Sections 4
and 5]. Now Theorem 6.3 implies the corollary. O

6.6. Proof of Theorem 6.3. Define operators 51, . . ., 5,_; acting on (CV)®"-val-
ued functions of z, i by

(zi —zig1) PGIFD 4

Si f(z1,...,zn, h) = f(z1s. s Zit1s Zin e s Znn ) .
Zi —Ziy1+ h
Lemma 6.5 (Lemma 2.3 in [5]). The assignment s; — 5;, i = 1,...,n—1,
defines an action of S,. U

For I € J,, introduce & € (CV)®" ® C(z; h) by the formula

& = Z Woo,0(z1:2: h) 26)

5 0Gnae)

where oy € S, is the longest permutation and vy is defined in (1). Note that
Woo.s (21525h)

oG isa polynomial for every J, by Lemma 3.5. Let

D= [] G-z—h.
1<i<j<n

Define 1™ ¢ J, by

I™ = ({1 A A+ L A A=Ay + 1. n)).

Lemma 6.6 (C.f. Proposition 2.14 in [5]). The elements &7,1 € J,, are unique
elements of (CN)®" ® C[z; h; D™ such that & pmn = vymn and &,y = 5i &1 for
every 1 €J) andi=1,...,n—1.

Proof. 'The fact that £y min = v;min follows from Lemma 3.5. The property &, (1) =
i &1 follows from Lemma 3.6. Ol

By comparing Lemma 6.6 and [5, Proposition 2.14] we conclude that the ele-
ments &7, I € J,, coincide with the elements EIJ“, I € J,, of Proposition 2.14 in
which 4 is replaced with —h.
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Consider the map

v= P w: @ HFX2) ® Clz:h) — (CV)®" ® C(z: h).
|A]=n |A]=n

where v, is defined by the formula

fzriz:h)
@) 3 ==t
1€,
see [5, Formula (5.9)].
Lemma 6.7. We have v o Stab;g = 1d.
Proof. We have
(Wi, 1(©;z; h)]
Vo Stabld(ll) = V(W)
-y Wia,1(zy;z:h) .
io, R@seazy)
) Wia,1(zs;2:h) Woo k(27325 h) ok
sko, RENQGE)?
= ’UI
=1y,
where the next to the last equality follows from Lemma 3.7. O

Theorem 5.10 in [5] says that v is a homomorphism of the Y (gl n)-module
structure p on H7(X,) ® C(z: h) to the Y (gly)-module structure ¢ on the space
(CN)®" @ C(z; h). This proves Theorem 6.3.

7. Dynamical Hamiltonians and quantum multiplication

7.1. Dynamical Hamiltonians. Assume that ¢;,...,gxn are distinct numbers.
Define the elements X7,..., X% € Y(gly) by the rule

_ @2 b a_
X! = —hTy; +§T,. (T;;

z],

J#l
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where

W ) _ gl
Gy =1 -1 =i

Note that
(y _ _ _
T, =eii, Gij=eijeji—eii=ejiejj—e;j;.

By taking the limit ¢;+1/¢; — Oforalli = 1,..., N — 1, we define the elements
X, ... X e Y(gly),

h
X = —hT + Seni(eni =1 +h(Gia+ oo+ Gii).

see [5]. We call the elements X, X°, i = 1,..., N, the dynamical Hamiltoni-
ans. Observe that

l] - h Z Gt E
j= t+1
Given A = (A1,...,Apn), set
Gar,i,j =ejieij for A; = )&j 27
and
G),,,"j = €j,j€ji for )L,' < )Lj. (28)
Define the elements X7 | ..., XJ € Y(aly),
Xg,i_ i hz G/ll] hZ Glz,j-
j= t+1 q]
Let « € C*. The formal differential operators
Vq’K’i=KQia_qi_Xiq’ i=1,...,N, (29)

pairwise commute and, hence, define a flat connection for any f(g[N)-module,
see [5].

Lemma 7.1 (Lemma 3.5 in [5]). The connection V) 4 defined by

0
Vg = KQia_qi - X;[f,,- )

i=1,...,N,isflat for any k.
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Proof. The connection V), 4 ,,; is gauge equivalent to connection (29),

Vaigwi = (YD) ' Voui Yoo Ta= [[ (—gj/qnteriilx,

1<i<j<n

where ENi,j = €j,j for A; = )kj, and EA,i,j = € for A; < lj. O

Connection (29) was introduced in [20], see also Appendix B in [10], and is
called the trigonometric dynamical connection. Later the definition was extended
from sl to other simple Lie algebras in [18] under the name of the trigonometric
Casimir connection.

The trigonometric dynamical connection is defined over CV with coordinates
q1....,qn,ithas singularities at the union of the diagonals ¢; = ¢, . In the case of
a tensor product of evaluation Y (gl n)-modules, the trigonometric dynamical con-
nection commutes with the associated qKZ difference connection, see [20]. Under
the (gly, gl,) duality, the trigonometric dynamical connection and the associated
gKZ difference connection are respectively identified with the trigonometric KZ
connection and the dynamical difference connection, see [20].

7.2. qKZ difference connection. Recall the Y(g[N)—action ¢ on the space
(CN)®" @ C|z; h] introduced in Section 6.3. Let

g j=1,....n, i#]
For k € C*, define operators K1, ..., K, € End((CY)®") ® C|z: h],

Ki(g:k) = RV (z; —z_1) ... ROV (z; — z1)

et

0
e . .
xq,"" .. .qNN'NR(”")(Zi —Zp—k)...REHV(z i — k).
Consider the difference operators qu,,c,l, e qu,,c,n acting on (CN )®"_valued

functions of z, ¢, A,
fq,,c,i fzi,... zn b)) = Ki(q:k) f(Z1, .. Zic1,Zi — Ky Zid 1y v+ o5 Zn)-
Theorem 7.2 ([3]). The operators
Kgits - Kgsm

pairwise commute.
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Theorem 7.3 ([20]). The operators

A~

Kq,/c,ls cees Kq,/c,ny d’(vl,q,x,i)s cee ¢(vl,q,/c,i)

pairwise commute.

The commuting difference operators I?,M,l, e I?,M,,, define the rational
qKZ difference connection. Theorem 7.3 says that the rational qKZ difference
connection commutes with the trigonometric dynamical connection.

7.3. Dynamical Hamiltonians X, 7 ;on Hy(T*F,). Recall the Y (gl N )-module
structure p defined on H7(X,) = @Ill —n H7(T*F3) in Section 6.4. For any

= (U1,..., UN) € Z;o’ || = n, the action of the dynamical Hamiltonians
X‘q”. preserve each of HA(T*Fy).

Lemma 7.4. Forany A andi = 1,...,n, the restriction of Xg,l. to Hp.(T*3Fy)
has the form

P(X3) = in+--+via)

/—1

—h Z 7 P(Gri)
j= t+1
(30)
=(yi1+---+Vm-)
—h Z 2 Perici)
—h Z pei,jeji) +C,
j= l+1 4j

where (yi,1 +- -+ Vi.a;) denotes the operator of multiplication by the cohomology
class yi,1 + -+ Vi, the operator C is a scalar operator on Hy.(T*JFy), and for
anyi # j the element p(Gy, i, ;) annihilates the identity element 1; € H7(T*J)).

Proof. 'The first equality in (30) follows from (23). The operator C is scalar since
ejieij — G, and e; jej; — Gy ; ; lie in the Cartan subalgebra and act on
H7(T*JF)) as scalars. By Theorem 6.3, in order to show that p(G,; ;) anni-
hilates the identity element 1, it is enough to show that ¢ (G, ;, ;) annihilates the
element v(13) = D ;g N ﬁl)él and that is the statement of [5, Lemma 2.20],
see also [16]. O
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7.4. Quantum multiplication by divisors on H7 (T*3}). In [9], the quantum
multiplication by divisors on H.(T*J,) is described. The fundamental equivari-
ant cohomology classes of divisors on 7*F, are linear combinations of D; =
Yii ++via.i =1,...,N. The quantum multiplication D; x5 by D; depends
on parameters § = (¢1,...,4nN)-

Theorem 7.5 (Theorem 10.2.1in [9]). Fori = 1,..., N, the quantum multiplica-
tion by Dj is given by the formula

Di*g = (yin+ -+ Vi)
i-1

Z i/

* 1—4;/qi plejici.i) 31)
%/CI]

—h E =3,/ pleijeji) + C,

j=i+1

where C is a scalar operator on Hp.(T*J}) fixed by the requirement that the
purely quantum part of D; x5 annihilates the identity 1,.

Corollary 7.6. Fori = 1,..., N, the operator D; x5 of quantum multiplication
by D; on H;.(T*3F}) equals the action p(Xfu.) on H7.(T*3F3) of the dynamical
Hamiltonian ngi if we put (q1,....qn) = (7 ", o dy b,

The quantum connection Vgyani,a,g.« On H7(T*J}) is defined by the formula

unant,l,&,xt kGi— — D; *g» i=1,...,N, (32)

0qi

where k € C* is a parameter of the connection, see [2]. By Corollary 7.6, we have

unant,).,(},/c,i = :O(V),,ql—l q;l,_,{), i=1,...,N. (33)

.....

By Theorem 7.3, the difference operators

Stab;q o qul_l ov, ..., Stabjgo KAql—l ~—1 ov

B P sl L=k

and pairwise commute. The difference operators form the rational gKZ difference
connection on Hy(T*J}). This difference connection is discussed in [9] under
the name of the shift operators.
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8. Proofs of lemmas on weight functions

8.1. Proof of Lemma 3.3. Parts (ii-iv) of Lemma 3.3 are proved by inspection
of the definition of weight functions.

For N = 2, part (i) of Lemma 3.3 is proved in [15], see Lemma 3.6 and Theo-
rem 4.2 in [15]. The general case N > 2 is proved as follows.

Let Uy 4 (t; z; h) be the term in the symmetrization in (10) obtained by permut-
ing the variables 1 by an element o € S; 1) x -+ X Syv—n. Set

Urjo(zih) = Upg(zy;2;h).

We show that each term Uy, s 4 (z; h) is divisible by ¢ (z 7).
Recall that

a

ta= 19 = 9 <<y
b=1
Similarly, let
U J, = J(a) { (a) /{8)}
(N-1)

The substitution ¢ = z; implies ¢, = Z;N-D. Denote by o the component
of ¢ in the last factor S;v—1). Consider the factor

=z.n-1) —Z.N—1) — h
fc,d h{ ) Jc(l )

incy(zy)forc #d.

Leta = o7 !(c). If ja(,N_l) < zaN D ,then f, 4 divides Uy, j 4 due to the factor
(N=-1)
a(a)

Leth = o7'(d). If iV < ;O = ;™ < iV thena < b,
because z(N 1) (N D and a # b. Then f. 4 divides U;,j,, due to the factor

(N-1) (N— 1) :
vy o) hanI,‘,.

Ifl(N 1) j(N—l)

t —Zj(N—l) —hinUrg.

,then Uy, 7, = 0due to the factort(l(v;l) —Zj(N—l) inUrg.

Once the substitution t(N D _ Z,(N=D) is done, the consideration of the factors

Zj(N=2) = Z;N=2) = hincy(zy)is s1m11ar

8.2. Proof of Lemma 3.6. Itisenoughtoprovethatfor/ €J,,i =1,...,n—1,
we have

—Zj h
Wy a(t:z;h) = L Wid,l(t;Z:h)-i-— Wias; () (t:z: h).

Z—Zz+1+h i—Zi+1+h
(34)
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It is straightforward to see from (10) that it suffices to prove relations (34) forn = 2,

i = 1, and the following two cases for /. The firstcaseis I = (/y, ..., Iy), where
I, = {1,2}, and I,,..., Iy are empty. The second case is I = (I1,...,In),
where 11 = {1}, I = {2}, and I3, ..., I 5 are empty. In each of the two cases, for-

mula (34) is proved by straightforward verification. All other cases of formula (34)
can be deduced from these two by picking up a suitable subexpression and an ap-
propriate change of notation.

8.3. Proof of Lemma 3.7. In addition to vectors &7, I € J,, defined in (26), we
introduce the vectors

_ Wia,s (z1:2: )
Foo.l = ,ezh 0Gn e 53

Let 8 be the C(z; h)-bilinear form on (CY)®" ® C(z; h) such that the basis (vy) is
orthonormal. Then the statement of the lemma is equivalent to the statement

s R(zy)

0@’

which is the statement of [5, Theorem 2.18].

8(&1.600,) = 01
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