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via the Brauer–Picard groupoid

Pinhas Grossman, David Jordan, and Noah Snyder

Abstract. We construct a long exact sequence computing the obstruction space,

�1BrPic.C0/, to G-graded extensions of a fusion category C0. �e other terms in the

sequence can be computed directly from the fusion ring of C0. We apply our result to

several examples coming from small index subfactors, thereby constructing several new

fusion categories asG-extensions. �e most striking of these is a Z=2Z-extension of one of

the Asaeda–Haagerup fusion categories, which is one of only two known 3-supertransitive

fusion categories outside the ADE series.

In another direction, we show that our long exact sequence appears in exactly the way

one expects: it is part of a long exact sequence of homotopy groups associated to a naturally

occuring �bration. �is motivates our constructions, and gives another example of the

increasing interplay between fusion categories and algebraic topology.
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1. Introduction

In this paper we construct several new fusion categories related to the Asaeda–

Haagerup subfactor [2] and the related AH C 1 and AH C 2 subfactors [1, 8].

�ese constructions require the calculation of certain obstruction groups which

appear in the theory ofG-extensions of fusion categories, and we construct a long

exact sequence which allows us to do this calculation. �is long exact sequence

is in turn a consequence of a certain homotopy �bration of higher groups, as we

explain.

Let us begin by specifying more precisely the concrete problem we wish to

solve. Consider a �nite index, �nite depth subfactor pair N � M , which is self-
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dual, i.e. is equipped with an equivalence of fusion categories between the prin-
cipal even part C0 D hNMN i � N -mod-N and its dual .C0/

�
C1

with respect to the

C0-module category C1 D hNMM i � N -mod-M . Examples include the Izumi-

Xu and AH C 2 subfactors. In this situation C1 is a C0-bimodule category, and it

is natural to ask whether we can combine the common even part and the odd part

to form a new fusion category C D C0 ˚ C1.

�e theory of G-graded extensions of a fusion category, introduced in [6] and

developed in [5], provides answers to precisely such questions. A fusion category

C is graded by G if we have a decomposition C D ˚g2GCg , compatible with ten-

sor product. �us the categories considered above are instances of Z=2Z-graded

extensions of the even part C0.

�e paper [5] constructs an equivalence between G-graded extensions of a

�xed category C0, and homomorphisms � W G ! BrPic.C0/ to the categorical

2-group BrPic.C0/ of C0-bimodule categories. Standard arguments in algebraic

topology then reduce the existence of such extensions to vanishing of obstruc-

tion classes ok 2 H k.G; �k�2BrPic.C0//, for k D 3; 4. When G D Z=2Z, or

more generally when G is cyclic, o4 is automatically trivial, so that we need only

contend with o3 2 H 3.G; �1BrPic.C0//.

�e main technical tool we develop in this paper is an exact sequence,

� ! Hom.U.C0/;C
�/ ! �1BrPic.C0/ ! Inv.C0/; (1)

which realizes �1BrPic.C0/ as an extension of a subgroup of the group Inv.C0/

of invertible objects of C0, by the group Hom.U.C0/;C
�/ of characters of the

universal grading group of C0 . �e virtue of (1) is the other two groups can

be read o� directly from the fusion data of C0; we leverage this to show that

H 3.Z=2Z; �1BrPic.C0// is trivial in our examples, so that the obstruction o3 van-

ishes automatically.

In Section 3, we give an ad hoc construction of the sequence (1), which relies

on an identi�cation �1BrPic.C0/ Š Inv.Z.C0//, from [5]. However, (1) may be

more properly understood a consequence of the following:

�eorem 3.4. We have a homotopy �ber sequence,

Inv.C0/
F���! Eq.C0/

M���! Out.C0/:

Here Inv and Eq denote categorical 1-groups of invertible objects and tensor

automorphisms, respectively, and Out is a certain full subgroup of BrPic with the
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same �1 and �2. In Corollary 3.7, we deduce the sequence (1) as a fragment of

the long exact sequence in homotopy groups induced by �eorem 3.4. �e proof

of �eorem 3.4 is delayed until Section 5.

In Section 4.1, we turn to applications of the sequence (1) to subfactors. Our

primary application is the construction of a new fusion category AH C 2, built

from the even and odd parts of the self-dual subfactorAHC2. �is new fusion cat-

egory AHC2 is particularly notable because it is, along with Morrison-Penneys’s

4442 fusion category [13], one of the �rst 3-supertransitive fusion category outside

of the ADE families. It is generated by an object of dimension 1C
p

17
2

.

In fact, AH C 2 is just one of eighteen new examples of fusion categories

we build as Z=2Z-extensions of Asaeda–Haagerup type categotries. By [8], the

principal even parts AH1, AH2, AH3 ofAH;AHC1; AHC2, respectively, each

have three non-trivial bimodule categories up to equivalence. We have:

�eorem 4.4. Each of the three non-trivial bimodule categories over each AHi ,
i D 1; 2; 3, is the odd component of exactly two Z=2Z-graded extensions of AHi .

�ese techniques work well more generally when applied to any fusion cate-

gory coming from a 2-supertransitive subfactor. In Section 4.2, we give one other

source of such examples, the near group categories Cp associated to Z=pZ. �ese

are fusion categories of the form Vec.Z=pZ/ ˚ Vec, which are not necessarily

Z=2Z-graded. �e group algebra CŒZ=pZ� is an algebra in Cp, and we we let

Mp denote its category of modules. We say that Cp is self-dual if Cp Š .Cp/
�
Mp

.

We have:

�eorem 4.9. Suppose that p > 2, that Cp is a self-dual Z=pZ near-group cate-
gory with trivial outer automorphism group. �en there exist exactly two Z=2Z-
extensions of Cp by Mp.

Applying �eorem 4.9 and Han’s thesis [10], we give a third proof of a result

�rst proved by Ostrik [4, Appendix] and second by Morrison-Penneys [13], estab-

lishing the existence of a certainZ=2Z-graded extension of the Izumi-Xu category

IX. It is our hope that �eorem 4.9 will �nd application in more near-group ex-

amples; however this will require developing techniques to establish self-duality

and to calculate outer automorphism groups.
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2. Preliminaries

2.1. Categorical n-groups. In order to state the results of [5] on extensions of

fusion categories we will need to use the notions of higher groupoids and higher

categorical groups. We will need only the notion of a categorical 0-group (i.e. a

group), 1-group, and 2-group in this paper.

By an n-groupoid, we will mean an n-categoryC, all of whose morphisms at all

levels are invertible. Recall from [5] that a categorical n-group G is a monoidal n-

groupoid, in which all objects are invertible, or equivalently, an .nC 1/-groupoid

with a single object. A homomorphism of categorical n-groups is a monoidal

functor of n-groupoids or a functor of connected .nC1/-groupoids in that formu-

lation.

For m > k, we can regard any categorical k-group as a categorical m-group,

with trivial morphisms in degree k C 1; : : : ; m. �us we will often speak of a

homorphism from, say, a categorical 0-group to a categorical 2-group, and that

will mean a homomorphism regarding both as categorical 2-groups.

Remark 2.1. �e classifying space construction C 7! BC de�nes an equivalence

between the category of n-groupoids and homotopy n-types; for this reason (more

precisely, invertibility of morphisms at all levels), the well-known subtleties in

the foundations of higher categories are largely absent from the theory of higher

groupoids and higher categorical groups. In particular, a categorical n-group may

be regarded as a connected homotopy nC1-type, just as a group may be identi�ed

with the connected homotopy 1-type of its classifying space. �is identi�cation

shifts dimensions: we have �kC D �kC1BC, canonically.

Remark 2.2. Categorical n-groups are often called .nC1/-groups in the literature

(e.g. [3]). Both indexings are reasonable, depending on whether you think of a

group as a set with an operation or as a 1-category with only one object.

2.2. Fusion categories and their extensions. In this subsection we recall the

extension theory of fusion categories developed in [5].
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De�nition 2.3. [6] A fusion category over C is a �nite C-linear semisimple rigid

monoidal category with simple identity object.

For de�nitions of module categories, bimodule categories, tensor products of

bimodule categories, and invertibility, see [5]; in this paper we assume all module

categories are semisimple.

De�nition 2.4. [5] �e Brauer–Picard groupoid of a fusion category C is a 3-

groupoid whose:

� objects are fusion categories which are Morita equivalent to C;

� 1-morphisms are invertible bimodule categories between such fusion; cate-

gories

� 2-morphisms are equivalences of such bimodule categories;

� 3-morphisms are isomorphisms of such equivalences.

�e Brauer–Picard categorical 2-group BrPic.C/ is the full subgroupoid of the

Brauer–Picard groupoid whose only object is C.

An extension of a fusion category C by a �nite group G is a G-graded fu-

sion category whose 0-graded part is equivalent to C. �ere is a natural notion of

equivalence of G-extensions.

�eorem 2.5 ([5]). (a) Equivalence classes of G-extensions of C are given by
categorical 2-group homomorphisms from G to BrPic.C/.

(b) Such homomorphisms (and hence, G-extensions) are parameterized by
triples .c;M; ˛/, where c is a group homomorphism

c W G ! BrPic.C/;

M belongs to a certainH 2.G; �1BrPic.C//-torsor T 2
c , and ˛ belongs to a certain

H 3.G; �1BrPic.C//-torsor T 3
c;M .

(c) Certain obstruction classes o3.c/ 2 H 3.G; �1BrPic.C// and o4.c;M/ 2
H 4.G; �2BrPic.C// must vanish for .c;M; ˛/ to determine an extension.

2.3. Subfactors. A subfactor is a unital inclusion N � M of II1 factors. A sub-

factor N � M has �nite index if M is a �nitely-generated projective module

over N , cf. [12, 16]. In this case, the N � N bimodule NMN tensor generates a
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semisimple unitary rigid monoidal category ofN �N bimodules, called the prin-
cipal even part of the subfactor. �e N �M bimodule NMM generates a module

category over the principal even part; the dual category of this module category,

which is the category ofM �M bimodules tensor generated by MMN ˝N NMM ,

is called the dual even part. �e subfactor is said to have �nite depth if the even

parts are fusion categories, i.e. if they each have �nitely many simple objects, up

to isomorphism.

If a subfactor has the same principal and dual principal parts, it is natural to

ask whether there is a Z=2Z-extension whose 0-graded part is the even part of the

subfactor, and whose 1-graded part is the odd part of this subfactor. In particularly

nice situations (where the generator of the odd part C1 becomes self-dual in C) this

can be understood directly in terms of subfactors or planar algebras. In terms of

the factors, you get such an extension when you can realize N � M as coming

from a self-dual bimodule over N . In terms of planar algebras, such an extension

tells you that the shaded planar algebra comes from an unshaded planar algebra.

Note that although we are studying examples coming from subfactors, we do

not explicitly address unitarity of the extension here. In particular, the Z=2Z-ex-

tensions come in pairs, and it does not seem reasonable to expect that they would

both be unitary.

3. Computing �1 of the Brauer–Picard group

�e group �1BrPic.C/ Š Inv.Z.C// houses the primary obstruction in the exten-

sion theory of C. In this section, we use techniques from elementary homotopy

theory to compute this group. In addition to the categorical 2-group BrPic.C/, the

main examples we consider are as follows.

De�nition 3.1. �e categorical 2-group Out.C/, of outer equivalences of C, is the

full 2-subgroup of invertible bi-module categories that are equivalent to C as left

C-module categories.

De�nition 3.2. �e categorical 1-group Inv.C/ is the subcategory of invertible

objects in C and their isomorphisms:

� objects are the invertible objects .g; h; : : :/ in C;

� Hom.g; h/ are the isomorphisms (�;  ,. . . ) of such.
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De�nition 3.3. �e categorical 1-group Eq.C/ is the category of tensor auto-

equivalences of C:

� Objects are tensor auto-equivalences (F;G; : : :) of C,

� Hom.F; G/ are monoidal natural isomorphisms of such.

�e assignments F� W Inv.C/ ! Eq.C/, sending g to the functor,

Fg .X/ WD g ˝X ˝ g�;

and M� W Eq.C/ ! Out.C/, sending F to the outer bimodule category MF WD C,

with tensor product de�ned, for X; Y 2 C, and m 2 MF , by

X ˝MF
m˝MF

Y WD X ˝m˝ F.Y /:

can each be upgraded to functors of categorical 2-groups (see §5). Our main result

follows; its proof is deferred until the �nal section.

�eorem 3.4. We have a homotopy �ber sequence,

Inv.C/
F���! Eq.C/

M���! Out.C/:

Corollary 3.5. We have the long exact sequence of homotopy groups,

0 // �2Out.C/ =<BC
F���⑧⑧⑧
// �1Inv.C/ // �1Eq.C/ // �1Out.C/ =<BC
F���⑧⑧⑧
// �0Inv.C/ // �0Eq.C/ // �0Out.C/ // 0:

Proposition 3.6. We have the following isomorphisms:

� �2Out.C/ Š �1Inv.C/ Š C
�;

� �1Eq.C/ Š Aut.idC/ Š Hom.U.C/;C�/;

� �1Out.C/ Š �1.BrPic.C// Š Inv.Z.C//; the group of iso-classes of invert-

ible objects in Z.C/;

� �0Inv.C/ Š Inv.C/; the group of iso-classes of invertible objects in C;

� �0Eq.C/ Š Eq.C/; the group of tensor auto-equivalences of C;

� �0Out.C/ Š Out.C/, the group of tensor auto-equivalences, modulo inner

equivalences.
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Combining these identities with �eorem 3.4, and computing the connecting

homomorphisms, yields:

Corollary 3.7. We have a long exact sequence:

� ! Hom.U.C/;C�/ ! �1BrPic.C/
ı�! Inv.C/

F���! Eq.C/
M���! Out.C/ ! �:

�e corollary allows us to compute �1BrPic.C/ Š Inv.Z.C// in terms of its

neighbors Inv.C/ and Hom.U.C/;C�/, which may be read from the fusion rules

of C, and do not require us to comprehend the entire center Z.C/.

Since Corollary 3.7 is what we will use in applications, we give an independent,

and elementary proof of it below. While �eorem 3.4 gives a more conceptual

explanation, it is not strictly necessary for applications, and so we postpone its

proof, and the consequent derivation of Corollary 3.7.

3.1. Independent proof of Corollary 3.7. �e homomorphism M� assigns to

a tensor automorphism � of C the bimodule M� D C, with regular left action,

and with right action twisted by � (see Section 5 for a precise de�nition). �e

homomorphism F� assigns to an invertible object g 2 C the tensor automorphism

Fg W X 7! g ˝X ˝ g�:

�e homomorphism ı is induced by the forgetful functor Z.C/ ! C.

Exactness at Out.C/ and Eq.C/ are the facts that all outer bimodules come from

equivalences and that such a bimodule is trivial if, and only if, the equivalence is

inner [5, §4.3]. Exactness at Inv.C/ is the fact that an isomorphism Fg Š idC

yields a half-braiding on g.

�us it remains only to identify Hom.U.C/;C�// with the kernel of ı. �us,

we consider half-braidings �1;� of the tensor unit. Since we have canonical iso-

morphisms 1 ˝ X Š X Š X ˝ 1, the data of such a half-braiding is a scalar

cX 2 C
� for each simple object X 2 C. �e Yang–Baxter equation and naturality

condition for �1;� imply that, for every simple object Z in the decomposition of

X ˝ Y , we have cZ D cXcY . �us the level sets of c determine a grading of C by

a subgroup of C�, yielding the required element of Hom.U.C/;C�/ via the uni-

versal property of U.C/. Finally, only a trivial such homomorphism can give rise

to the trivial half-braiding.
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4. Applications to subfactors

�e results of the last section, combined with the obstruction theory of [5], allow

us to construct several new fusion categories, starting with a fusion category and

its invertible bimodule category.

A �nite-index subfactor N � M is called 2-supertransitive if M Š 1 C X as

N � N bimodules, where 1 is the trivial N � N bimodule (N itself) and X is a

simple object in the principal even part of N � M .

Lemma 4.1. Let N � M be a 2-supertransitive �nite depth subfactor. �en the
grading group of each of the even parts of N � M is trivial.

Proof. Let A D 1CX be the algebra object in the principal even partN ofN � M .

Since the subfactor is 2-supertransitive, X is simple. Since 1 C X is an algebra,

we have that X Š X� and that X � X ˝ X Š X ˝ X�. �us X lies in the 0-graded

part of the principal even part N for any grading of N; since X tensor generates

the principal even part this means that the even principal part has no non-trivial

gradings. Applying the same argument to the dual subfactor yields that the dual

principal part has trivial grading group as well.

Corollary 4.2. LetN � M be a 2-supertransitive �nite depth subfactor such that
the principal even part N has no invertible objects except for 1. �en

�1.BrPic.C// Š Inv.Z.C//

is trivial.

4.1. �e Asaeda–Haagerup categories. We now turn to our main application,

constructing several fusion categories which are extensions of fusion categories

related to the Asaeda–Haagerup subfactor [2].

�e Asaeda–Haagerup subfactor, which we will call AH, is a �nite depth sub-

factor with index 5C
p

17
2

. �e subfactors AH+1 and AH+2, constructed in [1, 8],

have indices 7C
p

17
2

and 9C
p

17
2

, respectively. �e three subfactors AH, AH+1,

and AH+2 all have the same dual even part but the principal even parts are three

distinct fusion categories, which we call AH1 , AH2, and AH3, respectively.

�e subfactors AH, AH+1, and AH+2 are all 2-supertransitive. �e categories

AH2 and AH3 have non-trivial invertible objects but AH1 does not. �erefore

by Corollary 4.2 we have that Inv.Z.AHi // is trivial for i D 1; 2; 3 (since the

Drinfeld center is a Morita invariant [15, Cor. 2.1]).
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We recall the following result from [8]:

�eorem 4.3. �e Brauer–Picard group of each of the Asaeda–Haagerup fusion
categories is Z=2Z ˚ Z=2Z.

�erefore we have three order 2 invertible bimodule categories over eachAHi ,

for i D 1; 2; 3. Full fusion rules for each of these bimodule categories were given

in the ArXiv data supplement to [8]. We now show that each of these 9 bimodule

categories admits two fusion category structures.

�eorem 4.4. Each of the three non-trivial bimodule categories over each AHi ,
i D 1; 2; 3, is the odd component of exactly two Z=2Z-graded extensions of AHi .

Proof. Each non-trivial bimodule overAHi gives a map fromZ=2Z to the Brauer–

Picard group of AHi . We want to show that this extends to a map of categorical

2-groups; that is, we want to show that the obstructions o3 and o4 from 2.5 van-

ish. It is enough to show that the groups that these obstructions lie in, namely

H 3.Z=2Z; Inv.Z.C/// andH 4.Z=2Z;C�/, vanish. As seen above, Inv.Z.AHi //

is trivial, so the �rst obstruction group vanishes. Finally H 4.Z=2Z;C�/ vanishes

since Z=2Z is cyclic. �ere are two categories extending each bimodule, owing

to the choice of ˛ in �eorem 2.5.

Among these new fusion categories, there is one with an object of dimension
q

9C
p

17
2

. �e fusion graph of this small object is (cf. [8])

 
  

:

�is graph is 3-supertransitive (that is, it begins with a string of three edges).

Outside the ADE series this is one of only two known fusion categories which

is more than 2-supertransitive. �e current record is the 4-supertransitive fusion

category 4442 announced in [13].

Remark 4.5. It is easy to see that the Grothendieck ring of a Z=2Z-extension of a

fusion category is determined by the following data: (a) �e Grothendieck ring of

the 0-graded part; (b) the bimodule fusion rules for the 1-graded part considered

as a bimodule category over the 0-graded part; (c) the dual data of the 1-graded

part.
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�e full multiplication rules for each of the three non-trivial bimodule cate-

gories over each AHi , i D 1; 2; 3 were given in the data supplement to [8], avail-

able on the arxiv, so (a) and (b) are known for all of the corresponding extensions.

�us the only unknown information in the Grothendieck rings are the dual data

of the 1-graded parts, which is given by an involution on the set of simple objects

in the bimodule category which preserves Frobenius-Perron dimension. �ere are

not very many possibilities, but we do not know how to compute these involutions

at this time.

Remark 4.6. It is natural to wonder what extensions there are of AHi by the

Klein 4-group. �is is somewhat more subtle as the obstruction group containing

o4 does not vanish.

4.2. �e Izumi 2
p

1 subfactors. Let p be a prime, and let Rp be the fusion ring

generated by g and X with the relations gX D X D Xg, gp D 1, and X2 D
P

i g
i C pX (all sums here go from 0 to p � 1). �ere is a left fusion module for

Rp, which we will call M left
p , with basis a; b; gb; g2b; : : : ; gp�1b where ga D a,

Xa D
P

i g
ib, and Xgib D aC

P

i g
ib. Since Rp is commutative, there is also a

right fusion module M
right

p with the analogous fusion rules, and an Rp bimodule

M bim
p .

We will call Ip a Z=pZ Izumi near-group category if its fusion ring is Rp. �e

study of these fusion categories was initiated by Izumi [11] and has been continued

recently by Evans and Gannon [7].

Since giX Š X , the subcategory of Ip generated by g has Vec as a module

category, so this subcategory is Vec.Z=pZ/. In particular, there is an algebra

object CŒZ=pZ� in Ip.

�e category of left modules for this algebra is a right module category over Ip

which we will call M
right
p . It is easy to see that the fusion rules for M

right
p give the

fusion module M
right

p . Similarly we have a left module category Mleft
p . Further-

more, any (left or right) module category with fusion rulesMp must be equivalent

to Mp, because the internal endomorphisms of a must be CŒZ=pZ�.

Picking an object in a module category gives a subfactor. �e subfactor cor-

responding to gib has principal and dual-principal graphs which are 2p1 spoke

graphs (that is, they have p spokes of length 2 and one spoke of length 1). Using

[8, §3.3] it is not di�cult to see that the resulting subfactor is independent of i ,

since the objects agree up to tensoring with an invertible in the dual graph. For

general p, these 2p1 subfactors were �rst studied by Izumi. When p D 2 this is

just theE6 subfactor, and when p D 3 there’s an independent unpublished confor-

mal inclusion construction due to Xu. We will call this series the 2p1 subfactors,



324 P. Grossman, D. Jordan, and N. Snyder

rather than Izumi subfactors, to avoid confusion with another series of subfactors

generalizing the Haagerup subfactor also constructed by Izumi in the same paper

(sometimes called Izumi-Haagerup subfactors).

From looking at the dual graph of the 2p1 subfactor, we see that the dual cate-

gory to Ip over Mp is another Z=pZ near-group category I0
p. �e fusion rules for

Mp as a Ip–I0
p bimodule are M bim

p .

It is natural to wonder whether Ip Š I0
p, and if so whether there’s a Z=2Z-ex-

tension of Ip by Mp. To that end, we call Ip self-dual if the dual even part is

equivalent to the principal even part. In such a circumstance, choosing an isomor-

phism between the two even parts endows Mp with the structure of a bimodule

over Ip. In general there may be several such choices, and there is no guarantee

that any of them have order 2 in the Brauer–Picard group of Ip. However, we have

the following lemma.

Lemma 4.7. Suppose that Ip is self-dual and that its outer automorphism group
is trivial. �en the unique Ip bimodule structure on Mp has order 2 in the Brauer–
Picard group.

Proof. Consider M�1
p as a Ip-bimodule. Since this has fusion rules Mp , it must

be equivalent to Mp as a left (or as a right) module category. Since both bimod-

ules are invertible, this implies that Mp Š M�1
p �Ip

F as bimodules where F is

an outer automorphism. Since the outer automorphism group is trivial, we have

M2
p Š id.

Remark 4.8. In general, this argument shows that for any choice of identi�cation

of Ip with I0
p the resulting bimodule Mp squares to an outer automorphism.

�eorem 4.9. Suppose that p > 2 and that Ip is a self-dual Z=pZ near-group
category with trivial outer automorphism group. �en there exist exactly two
Z=2Z-extensions of Ip by Mp.

Proof. We have only to show that the homomorphism, c W Z=2Z ! BrPic.Ip/;

corresponding to Mp is unobstructed, i.e. that o3 and o4 in �eorem 2.5 vanish.

�e obstruction o4 vanishes becauseH 4.G;C�/ D 0 whenever G is cyclic.

By Corollary 3.7, we have the exact sequence:

� ! Hom.U.Ip/;C
�/ ! Inv.Z.Ip// ! Inv.Ip/:

However, the categories Ip admit no non-trivial gradings, as is evident from the

fusion rules. So we have that Inv.Z.Ip// includes into Inv.Ip/ D Z=pZ. �us
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the only remaining obstruction o3 lies in H 3.Z=2Z; Inv.Z.Ip//. �is obstruction

group vanishes since Inv.Z.I// is either Z=pZ or trivial (here we use that p is

odd, since H 3.Z=2Z;Z=2Z/ is nontrivial). �us there exists a Z=2Z-extension

of Ip by Mp .

�ere are exactly two distinct such extensions, owing to the choice of ˛ in

�eorem 2.5.

Remark 4.10. It is not di�cult to work out the fusion rules for this extension of

Ip . Since p is odd, at least one of the gib is self-dual, so without loss of generality

b is self-dual. �e rest is easy to work out.

�e simplest near group categories with p odd are the Izumi-Xu examples

where p D 3; there are two inequivalent such fusion categories corresponding

to a choice of complex conjugation in the structure constants for the monoidal

structure. In the following we will �x a choice of conjugation and refer to “the”

Izumi-Xu category for p D 3, but everything holds equally true for either choice.

In this case there are already two constructions of Z=2Z-extensions, �rst by

Ostrik in the appendix to [4], using constructions from a�ne Lie algebras and

conformal embeddings, and second by Morrison and Penneys [13] using planar

algebras. In order to recover their results we need to know that the Izumi-Xu

category is self-dual and has no outer automorphisms. Both of these facts follow

from Han’s thesis [10]. Self-duality follows from uniqueness of the 2221 subfactor

up to complex conjugacy, and no outer automorphisms follows from the explicit

quadratic relations satis�ed by Han’s generators (as in [9, Lemma 5.3] and [8,

�m. 4.9]).

Remark 4.11. In fact, the Brauer–Picard 1-groupoid of the Izumi-Xu fusion cate-

gory I3 is a single point with automorphism group Z=2Z. Following the approach

in [9], the only possible minimal algebra objects in the Izumi-Xu fusion category

are 1 and 1 C g C g2, and those each have unique algebra structures. �us, the

only simple module categories are I3 and M3. Since I3 is self-dual and has no

outer automorphisms, the only nontrivial I3–D bimodule is M3 where D Š I3.

We are optimistic that the other near group categories coming from Izumi and

Evans-Gannon also giveZ=2Z-extensions. In theory, it should be possible to work

out whether these categories are self-dual and what their outer automorphism

groups are from the detailed descriptions given by Izumi and Evans-Gannon, but

in practice this may be somewhat di�cult to extract.
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5. �e homotopy �ber sequence

We begin by recalling the de�nitions of tensor functor and natural transformation

of tensor functors, primarily to �x notation.

A tensor functor .F; JF / W C ! D is a functor F of abelian categories, together

with a natural isomorphism,

JF W F ı ˝C

��! ˝D ı F � F;

satisfying a certain cocycle condition1. More precisely, JF consists of a family of

isomorphisms,

JF W F.X ˝ Y /
��! F.X/˝ F.Y /;

natural in X; Y 2 C, and such that the following diagram commutes:

F..X ˝ Y /˝Z/
F .˛C/

//

JF

��

F.X ˝ .Y ˝Z//

JF

��

F.X ˝ Y /˝ F.Z/

JF

��

F.X/˝ F.Y ˝Z/

JF

��

.F.X/˝ F.Y //˝ F.Z/
˛D

// F.X/˝ .F.Y /˝ F.Z//

where ˛C and ˛D are the associators of C and D respectively. In particular, we

note that the tensor structure JF is additional data packaged with F .

A tensor functor .F; JF / is an equivalence if F is an equivalence of abelian

categories.

De�nition 5.1. A natural transformation � W F ! G between tensor functors

F;G W C ! D is monoidal if for all X; Y 2 C, the following diagram commutes:

F.X ˝ Y /
�X˝Y

//

JF

��

G.X ˝ Y /

JG

��

F.X/˝ F.Y /
�X ˝�Y

// G.X/˝G.Y /

1 To ease notation, we adopt the usual convention of refering to tuples .F; � � � /, consisting

of a functor with structural isomorphisms (such as tensor or module functor structure) simply by

“F ”.
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Morphisms between module categories and bimodule categories are de�ned

in an analagous way; namely, they are functors of abelian categories along with

certain natural transformations making certain diagrams commute. An equiva-

lence of module categories is a module functor whose underlying functor is an

equivalence of abelian categories. See [14] for details.

We now construct the functors F� and M� from Section 3. For clarity of

exposition, we suppress associators for the remainder of this section.

5.1. Construction of F
�

. Given g 2 Inv.C/, we de�ne Fg 2 Eq.C/ as follows.

For X; Y 2 C, and � W X ! Y , we set

Fg .X/ WD g ˝X ˝ g�1; Fg.�/ WD idg ˝�˝ idg�1 :

We equip Fg with the tensor structure:

Fg .X/˝Fg.Y / D g˝X˝g�1˝g˝Y˝g�1 ���!
evg

g˝X˝Y˝g�1 D Fg .X˝Y /:

�e assignment g 7! Fg , extends to a functor,

F� W Inv.C/ ! Eq.C/;

by assigning to any � W g ��! h the natural isomorphism,

Fg D g ˝ � ˝ g�1 ����������!
�˝id ˝.��1/�

h˝ � ˝ h�1 D Fh:

�e obvious natural isomorphisms,Fg˝h ŠFgıFh, endowF� with a monoidal

structure.

5.2. Construction of M
�

. For every F 2 Eq.C/, we de�ne an invertible

C-C-bimodule category M D MF , by letting M D C as an abelian category,

and de�ning, for X; Y 2 C, m 2 M :

X ˝MF
m˝MF

Y WD X ˝m˝ F.Y /:

Here, unadorned tensor products denote the tensor product in C. For every natural

isomorphism � W F ! G, we have a C-C-bimodule auto-equivalence

.idC; J�/ W MF ! MG ;

which is the identity functor of C, and where J� W F.Y / ! G.Y / is applied before

tensoring on the right.
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�is gives a functor,

M� W Eq.C/ ! Out.C/;

F 7! MF ;

of 2-categories, where we regard Eq.C/ as a categorical 2-group with strict asso-

ciativity of 1-morphisms.

We have a bi-additive functor of C-C-bimodules,

Ő W MF �MG ! MF ıG ;

m� n 7! m˝ F.n/;

and isomorhpisms,

M Ő .A˝N/ D M ˝ �.A˝N/
JF��! M ˝ �.A/˝ �.N/ D .M ˝ A/ Ő N:

natural in M;A and N . �us Ő de�nes a functor,

�F;G W MF ˝C MG ! MF ıG ;

of abelian categories, which is clearly an equivalence. Moreover, we have an iso-

morphism of functors,

JF;G W ˝MF ıG
ı�F;G ! �F;G ı ˝MF ˝CMG

;

X ˝m˝ F.n/˝ F.G.Y //
J �1

F���! X ˝m˝ F.n˝ G.Y //:

�us, M� induces a homomorphism of categorical 2-groups, which we also de-

note M�.

5.3. �e homotopy �ber of M . Let p W G ! H be a homomorphism of cate-

gorical n-groups. �e homotopy �ber, p�1.X/, of X 2 H has as its objects pairs

.Y 2 G; � W X ��! p.Y //. Morphisms are those inherited from H, that is

Homp�1.X/..Y1; �1/; .Y2; �2/ WD HomH.�1; �2/:

Because all objects and morphisms in H are invertible, Quillen’s �eorem B [17]

asserts p�1.X/ ! G ! H is a homotopy �ber sequence, for any object X 2 H.

In this section, we construct an equivalence between the full subcategory

Inv.C/ of invertible objects in C, and the homotopy �ber M�1.C/ over the triv-

ial C-C-bimodule C.
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We have equivalences of bimodule categories,

ˆg W C ! MFg

X 7! X ˝ g�1;

equipped with tensor structure,

X ˝ˆg .Y /˝ Fg .Z/ D X ˝ Y ˝ g�1 ˝ g ˝Z ˝ g�1

���!
evg

X ˝ Y ˝Z ˝ g�1 D ˆg.X ˝ Y ˝Z/:

We thus construct a functor

MF�
W Inv.C/ ! M�1.C/:

MF�
.g/ WD .MFg

; ˆg/:

�eorem 5.2. �e functor MF�
is an equivalence.

Proof. Let .F; JF / 2 Eq.C/, and suppose we have an equivalence,

.�; J�/ W C ! MF ;

of bimodule categories. Clearly, � induces an auto-equivalence of C as a left-

module category (recall that MF D C canonically, as a left C-module category).

It is then routine to see that � D � ˝ g�1, where g�1 D �.1/ 2 Inv.C/.

�e tensor data J� therefore consists of a family of isomorphisms,

X ˝Y ˝Z˝g D �.X ˝Y ˝Z/
���!
J�

X ˝�.Y /˝F.Z/ D X ˝Y ˝g˝F.Z/;

which is natural inX; Y;Z 2 C. In particular, takingX; Y D 1, we obtain a natural

isomorphism,

F Š g ˝ � ˝ g�1 D Fg :

We thus have a canonical isomorphism .MF ; �/ Š .MFg
; ˆg/ in the homotopy

�ber, so that the induced functor F� W Inv.C/ ! MC is essentially surjective. It

remains to show that it is fully faithful. We need to show that every equivalence,

� W MFg

��! MFh
, of bimodule categories making the diagram

MFg

ˆ�1
g !!❇

❇❇
❇❇

❇❇
❇

�
// MFh

ˆ�1
h}}⑤⑤

⑤⑤
⑤⑤
⑤⑤

C
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commutative is in fact induced by a unique isomorphism g Š h. �e isomorphism

required for fullness is

g D Fg .1/
�1�! Fh.1/ D h:

�e bimodule compatibility condition for � implies that all the �X are determined

by �1, thus implying faithfulness.

�eorem 5.2 now implies 3.4, as it allows us to identify Inv.C/with a homotopy

�ber of the functor M�. Corollary 3.5 follows from the long exact sequence in

homotopy groups for a �bration.

Proof of Corollary 3.7. All that remains is to compute the connecting homomor-

phisms ı2 W �2Out.C/ ! �1Inv.C/, and ı1 W �1Out.C/ ! �0Inv.C/:

To this end, we identify �1Out.C/ with the automorphisms of the unit object

of Out.C/, namely the C-C-bimodule auto-equivalences of the regular bimodule

C. Every such auto-equivalence, �, is isomorphic to the functor of tensoring by a

central object g. �us in Eq.C/, we have an isomorphism � Š � ˝ g, and thus

the connecting homomorphism ı1 W �1Out.C/ ! �0Inv.C/ is simply the forgetful

functor For W Inv.Z.C// ! Inv.C/. Similarly, ı2 is the induced homomorphism

For W AutZ.C/.1; 1/ ! Aut.1; 1/. In particular, ı2 is an isomorphism, so that the

�rst two terms of the sequence split o�, yielding Corollary 3.7.
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