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On transverse invariants from Khovanov homology
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Abstract. In [31], O. Plamenevskaya associated to each transverse knot K an element of

the Khovanov homology of K. In this paper, we give two re�nements of Plamenevskaya’s

invariant, one valued in Bar-Natan’s deformation (from [2]) of the Khovanov complex and

another as a cohomotopy element of the Khovanov spectrum (from [20]). We show that

the �rst of these re�nements is invariant under negative �ypes and SZ moves; this implies

that Plamenevskaya’s class is also invariant under these moves. We go on to show that

for small-crossing transverse knots K, both re�nements are determined by the classical

invariants of K.
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1. Introduction

Transverse links have emerged as central objects of study in three-dimensional
contact geometry. We will restrict our attention to transverse links in standard
contact R3: by a transverse link, we mean a knot or link in R3 that is everywhere
transverse to the 2-plane �eld ker.dz � y dx/. One typically studies transverse
links up to transverse isotopy, or isotopy through a one-parameter family of trans-
verse links.

Up to transverse isotopy, transverse links have two classical invariants: the
underlying topological link type and the self-linking number sl 2 Z. (Strictly
speaking, for a multi-component link, each component has a self-linking num-
ber; see Remark 2.1.) A natural question is whether there are transverse links that
have the same classical invariants but are not transversely isotopic. �e answer is
yes, with the earliest examples given by Etnyre and Honda [12] and Birman and
Menasco [6], but the question is surprisingly subtle. By contrast, the correspond-
ing question for Legendrian links, which are also central to contact geometry, was
answered considerably earlier by Chekanov [7].

One approach to distinguishing transverse links with the same classical in-
variants is to introduce further, more re�ned invariants of transverse links. �e
�rst candidate for such an invariant was introduced by Plamenevskaya [31]: to
a transverse link of topological type K, this associates a distinguished class in
the Khovanov homology of K. Since Plamenevskaya’s groundbreaking work,
transverse invariants of a similar �avor have been discovered by Wu [36] in sln

Khovanov–Rozansky homology, and by Ozsváth, Szabó, and �urston [30] and
Lisca, Ozsváth, Stipsicz, and Szabó [23] in knot Floer homology. (Knot contact
homology produces a transverse invariant of a somewhat di�erent �avor, called
transverse homology [9, 25].)

A priori, it might be the case that some of these invariants are determined by
the smooth link type and self-linking number. An invariant of transverse links is
called e�ective if it achieves di�erent values for some pair of transverse links with
the same classical invariants. It is known that the invariant in knot Floer homology
is e�ective [27], as is transverse homology [25].

It has long been an open question whether Plamenevskaya’s original invariant
in Khovanov homology is e�ective. One goal of this paper is to shed some light
on this question, although we do not resolve it. To produce candidates for distinct
transverse links with the same classical invariants, two techniques are commonly
considered: negative braid �ypes on braids and SZ moves on Legendrian links.
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(�ere are other techniques as well, but these two seem to be the most successful
for small-crossing knots.) In fact, we will show that negative braid �ypes and SZ

moves are equivalent for transverse knots; see Proposition 2.8.

In �eorem 4.15, we show that the Plamenevskaya invariant is unchanged by
negative braid �ypes, and thus by SZ moves as well. Our result can be seen as
evidence that the Plamenevskaya invariant may not be e�ective; by contrast, both
the HFK transverse invariant and transverse homology can distinguish transverse
knots related by these moves. �ere are transverse links that are known not to be
related by these moves, but the simplest one known to the authors is topologically
a certain cable of the trefoil knot [13] and (we believe) outside the reach of current
technology for computing the Plamenevskaya invariant.

In a di�erent direction, we give three re�nements of the Plamenevskaya in-
variant, which could be e�ective even if the original invariant is not. �e �rst of
these is a �ltered version of the Plamenevskaya invariant, living in Bar-Natan’s
(or, if one prefers, Lee’s) deformation of the Khovanov complex [2, 19]; see �e-
orem 4.2. In fact, this �ltered invariant comes in two versions, and subtracting
the two versions gives another transverse invariant, a priori incomparable to the
�ltered or original Plamenevskaya invariants; see �eorem 4.5. Finally, a space-
level version XKh.K/ of Khovanov homology was recently constructed [20], and
the (original) Plamenevskaya invariant admits a re�nement as an element of the
stable cohomotopy (rather than cohomology) groups of XKh.K/; see �eorem 5.1.
�is leads to a number of computable auxiliary invariants; see Section 5.3.

Unfortunately, we have also been unable to show that any of these re�nements
is e�ective. In particular, the �ltered invariants are unchanged by negative �y-
pes and SZ moves. �ere are also simpler structural results that mean that for
small-crossing knots, the re�nements have no non-classical information; see Sec-
tions 4.5 and 5.3.

However, there are some indications that some of the re�nements may stand
a better chance of being e�ective than the original Plamenevskaya invariant by
itself. For instance, over a ring where 2 is invertible, the original invariant agrees
for any two transverse knots that become the same after one stabilization (see
Proposition 4.13 for the exact result), while we do not know if this is true for
the �ltered invariant. We know even less about the behavior of the cohomotopy
invariant; it might even be able to distinguish transverse knots related by negative
�ypes.

We remain optimistic that, with more work on computational tools, for more
complicated knots, both the �ltered Plamenevskaya invariant and the cohomotopy
Plamenevskaya invariant will turn out to be e�ective. For the latter, we include
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some discussion in Section 5.3 of some possible ways that e�ectiveness might be
tested.

Acknowledgments. We thank Olga Plamenevskaya and Jacob Rasmussen for
useful conversations. We also thank the referees for their helpful suggestions.

2. Some constructions in contact geometry

Here we review some well-known facts involving transverse knots and links, re-
ferring the reader to the survey paper [11] for general background on transverse
knots and links, and to [28, 16] for further background on some of the speci�cs
that we give here. By a transverse link (respectively, Legendrian link) we mean
a knot or a link in R3 that is everywhere transverse (respectively, tangent) to
the standard contact structure ker.dz � y dx/; by a transverse knot (respectively,
Legendrian knot) we mean a transverse link (respectively, Lendendrian link) of
one component. �ere are two well-known correspondences, one between trans-
verse links and equivalence classes of braids, and another between transverse links
and equivalence classes of Legendrian links. We describe each of these in turn,
and then present a result linking them.

2.1. Transverse links and braids. By work of Bennequin [3], any braid can be
naturally viewed as a transverse link (whose topological link type is the closure of
the braid), and every transverse link arises in this way (up to transverse isotopy)
from some braid. �e transverse Markov �eorem [29, 35] states that under this
correspondence, transverse links up to transverse isotopy can be identi�ed with
braids up to conjugation and positive braid stabilization and destabilization,

B  ! B�m;

where B is an element of the braid group Bm and B�m 2 BmC1. We refer to
conjugation and positive (de)stabilization as transverse Markov moves. �e self-
linking number of a transverse link T can be expressed in terms of a corresponding
braid B as sl.T / D w �m, where w is the writhe of B (the sum of the exponents
of the braid word) and m is the braid index of B .

Remark 2.1. For a transverse link T D T1[ � � �[ Tr with r � 2 components, the
self-linking number of T is related to the self-linking number of its components
as follows:

sl.T / D
X

i

sl.Ti/C 2
X

i<j

lk.Ti ; Tj /;
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where lk represents the (topological) linking number. �is follows from the for-
mula sl.T / D w�m above, or from any of the standard de�nitions of self-linking
number in contact geometry (cf. Section 2.2). �e r-tuple .sl.T1/; : : : ; sl.Tr// 2

Zr is invariant under transverse isotopy, and in some sense should be considered
the true “self-linking number” associated to T . However, for consistency we will
refer to the single integer sl.T / as the self-linking number.

�ere is also a notion of negative braid stabilization and destabilization,

B  ! B��1
m ;

for B 2 Bm. �is descends to a well-de�ned operation on transverse links called
transverse stabilization, which decreases self-linking number by 2. Given any
two transverse links representing the same topological link type, one can perform
some number of transverse stabilizations to each to obtain transversely isotopic
links.

Birman and Menasco introduced a class of �ype operations on certain braids
that preserves the braid index as well as the topological link type of the braid
closure; see [4] for 3-braids, generalized in [5] for arbitrary braid index. In this
paper, we will use “�ype” to mean the following.

De�nition 2.2. Let A;B 2 Bm be braids and k 2 Z. We say that the braids

A�k
mB�m; A�mB�

k
m;

which are elements in BmC1, are related by a positive �ype. Similarly, we say that

A�k
mB�

�1
m ; A��1

m B�k
m

are related by a negative �ype. See Figure 1.

Figure 1. Negative �ype. Pictured here: the closures of braids A�3

3
B�3�

�1

3
(left) and

A��1

3
B�3

3
(right), for A;B 2 B3. Note that the diagrams are related by a standard topo-

logical �ype in the shaded regions.
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(Note that Birman and Menasco’s original de�nition of �ypes in [5] is actually a
more general, weighted version of the �ypes that we consider here.) In addition
to link type and braid index, both �ypes preserve the self-linking number of the
corresponding transverse link.

One can express a negative �ype as a composition of conjugation, one nega-
tive braid stabilization, and one negative braid destabilization. Since this will be
important to us, we write down a precise sequence of braid moves here, labeled
by the relevant braid operations as well as the corresponding Reidemeister moves
on the diagram for the closed braid (cf. [5, Figure 5]):

A�k
mB�

�1
m �! A��1

m �kC1
m B��1

m (Reidemeister II)

�! A��1
m ��1

mC1�
kC1
m B��1

m (negative braid stabilization;
Reidemeister I)

�! A�kC1
mC1�

�1
m ��1

mC1B�
�1
m (braid relation; Reidemeister III)

�! �kC1
mC1A�

�1
m B��1

mC1�
�1
m (braid relation – far commutativity)

�! A��1
m B��1

mC1�
�1
m �kC1

mC1 (braid conjugation)

�! A��1
m B�kC1

m ��1
mC1�

�1
m (braid relation; Reidemeister III)

�! A��1
m B�kC1

m ��1
m (negative braid destabilization;

Reidemeister I)

�! A��1
m B�k

m (Reidemeister II):
(2.1)

Since these moves involve negative braid (de)stabilization, they do not yield a
transverse isotopy, and indeed there are many examples of negative �ypes pro-
ducing distinct transverse links; see e.g. [6, 16].

In a completely analogous way, one can express a positive �ype as a composi-
tion of braid conjugation, one positive braid stabilization, and one positive braid
destabilization. In this case it follows from the transverse Markov theorem that
positive �ypes preserve transverse type.

De�nition 2.3. Two transverse links T; T 0 are �ype-equivalent if there are trans-
verse links T0 D T; T1; : : : ; Tk D T 0 such that for each i D 1; : : : ; k, Ti�1 and Ti

can be represented by braids that di�er by a �ype.
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Equivalently, transverse links are �ype-equivalent if they have braid represen-
tatives that are related by a sequence of the following braid moves: braid conju-
gation, positive braid (de)stabilization, and negative �ypes. (Note in particular
that since positive �ypes can be expressed in terms of conjugation and positive
(de)stabilization, they can be omitted here and in De�nition 2.3 if desired.)

IfB1; B2 are braids related by a negative �ype and T1; T2 are the corresponding
transverse links, then by (2.1), S.T1/ and S.T2/ are transversely isotopic, where
S represents transverse stabilization. �us we have the following result.

Proposition 2.4. Let T; T 0 be transverse links. �en the following properties sat-

isfy .1/ H) .2/ H) .3/:

(1) T; T 0 are �ype-equivalent;

(2) S.T / and S.T 0/ are transversely isotopic;

(3) sl.T / D sl.T 0/ and T; T 0 are topologically isotopic.

It is known that (3) does not necessarily imply (2): by [13], there are transverse
knots representing certain cables of torus knots that have the same self-linking
number but require an arbitrarily large number of stabilizations to become trans-
versely isotopic. We do not know if (2) necessarily implies (1), although it seems
unlikely.

2.2. Transverse and Legendrian links. Another approach to transverse links
is through Legendrian links. Any (oriented) Legendrian link can be C 0 perturbed
to a well-de�ned transverse link, its (positive) transverse pusho�, and Legendrian
links that are Legendrian isotopic have transverse pusho�s that are transversely
isotopic. Conversely, any transverse link can be C 0 perturbed to a Legendrian
link called a Legendrian approximation, though the Legendrian approximation is
only well-de�ned up to negative Legendrian stabilizations. (Recall that there are
two stabilization operations on Legendrian links, positive and negative Legendrian
stabilization L 7! S˙.L/, that are well-de�ned on Legendrian isotopy classes:
in the front projection to the xz plane, each stabilization replaces a piece of the
Legendrian link by a two-cusped zigzag, where the cusps are oriented downwards
(respectively, upwards) for positive (respectively, negative) stabilization.)

�us there is a many-to-one correspondence between Legendrian links and
transverse links, under which transverse links up to transverse isotopy correspond
to Legendrian links up to Legendrian isotopy and negative Legendrian stabiliza-
tion and destabilization. If L is a Legendrian link and T is its transverse pusho�,
then the classical invariants of L and T , the �urston–Bennequin and rotation
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numbers tb.L/; rot.L/ and the self-linking number sl.T /, are related by sl.T / D

tb.L/ � rot.L/. Furthermore, the transverse stabilization S.T / is the transverse
pusho� of SC.L/.

(a)

(b)

Figure 2. An SZ� move (left) and an SZC move (right) on Legendrian links.

De�nition 2.5. Two Legendrian links L;L0 are SZ-equivalent if there are Legen-
drian links L0 D L;L1; : : : ; Lk D L0 such that for each i D 1; : : : ; k, Li�1 and
Li are Legendrian isotopic to Legendrian links whose xz projections are identi-
cal except for one of the tangle replacements shown in Figure 2. Similarly de�ne
SZ�-equivalent (respectively, SZC-equivalent) if we restrict to only the tangle re-
placement on the left (respectively, right) of Figure 2.

Two transverse links are SZ-equivalent if they are the transverse pusho�s of
SZ-equivalent Legendrian links.

Note that SZ-equivalent Legendrian links are topologically isotopic and have
the same �urston–Bennequin and rotation numbers. (One can generalize the
move shown in Figure 2 to arbitrary orientations, in which case tb is preserved
but rot is not necessarily preserved.) Indeed, the tangle replacements in Figure 2,
which have previously appeared in the literature (e.g., [14]) though without the
name “SZ moves”, are a key tool in constructing Legendrian links with the same
topological type and classical invariants that are not necessarily Legendrian iso-
topic. �e Chekanov 52 knots [7] are SZ-equivalent; SZ moves also appear in
some guise in [10, 27, 15], among other papers.
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Accordingly, SZ-equivalent transverse links are topologically isotopic and have
the same self-linking number, and so they provide good candidates for possibly
distinct transverse links that share the same classical invariants. An observation
of [10], in our language, states that if L;L0 are SZC-equivalent (respectively,
SZ�-equivalent), then SC.L/ and SC.L0/ (respectively, S�.L/ and S�.L0/) are
Legendrian isotopic. �us we have the following result.

Proposition 2.6. Let L;L0 be Legendrian links, with transverse pusho�s T; T 0.

If L;L0 are SZ�-equivalent, then T; T 0 are transversely isotopic. Furthermore,

the following properties satisfy .1/ H) .2/ H) .3/ H) .4/:

(1) L;L0 are SZ-equivalent;

(2) T; T 0 are SZ-equivalent;

(3) S.T /; S.T 0/ are transversely isotopic (recall S denotes transverse stabiliza-

tion);

(4) sl.T / D sl.T 0/ and T; T 0 are topologically isotopic.

Remark 2.7. Note that a negative stabilization of a braid results in a transverse
stabilization of the corresponding transverse link, while a positive stabilization of
a Legendrian link produces a transverse stabilization for the transverse pusho�.

2.3. Relation between equivalences. We have discussed two techniques to pro-
duce candidates for transverse links that are topologically equivalent and have the
same self-linking number but may not be transversely isotopic: negative �ypes for
braids (Section 2.1) and SZC moves for Legendrian links (Section 2.2). Here we
show that these two techniques are identical.

Proposition 2.8. Transverse links are �ype-equivalent if and only if they are

SZ-equivalent.

Note that since positive �ypes and SZ� moves do not change transverse type,
one can replace “SZ-equivalent” by “SZC-equivalent”, and similarly restrict to
negative �ypes, in the statement of Proposition 2.8.

Proof of Proposition 2.8. We use grid diagrams as an intermediary between
braids, Legendrian links, and transverse links; see [28] for the necessary back-
ground. For our purposes, a grid diagram is a link diagram consisting entirely of
non-collinear horizontal and vertical line segments, with vertical segments cross-
ing over horizontal segments wherever they intersect.
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Figure 3. Changing two fronts related by an SZC move. Each is changed by a Legendrian
isotopy.

Figure 4. Fronts related by an improved SZC move. �e diagrams are assumed to coin-
cide inside the dashed boxes.

Figure 5. Grid and braid diagrams for an improved SZC move. Left: grid diagrams
related by an improved SZC move; right: the braids obtained from these diagrams.
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First suppose that two transverse links are the pusho�s of Legendrian links
whose front projections are related by an SZC move. By applying the Legendrian
isotopies shown in Figure 3, we may assume that the fronts of the Legendrian
links are related by the “improved” SZC move shown in Figure 4. Now repre-
sent these fronts by grid diagrams as in the left-hand diagrams in Figure 5, which
agree within the dashed boxes. (Here we use that grid diagrams can be viewed as
fronts for Legendrian links by rotating them 45ı counterclockwise and smoothing
corners.)

Given a grid diagram G representing a Legendrian link L, we can produce a
braid representing the transverse pusho� of L, as follows. Replace any vertical
segment oriented downwards (from point p to point q, say) by two half-in�nite
vertical segments, one pointing upwards from p, and the other pointing upwards
to q, and again impose the condition that vertical segments pass over horizontal
segments. �e result is the braid, read bottom to top; in the language of [28],
this is B".G/. When we apply this procedure to the grid diagrams on the left of
Figure 5, we obtain the braids on the right of Figure 5. (Strictly speaking, some of
the vertical segments in the right diagrams should be perturbed slightly to avoid
collinearity.) �ese braids are of the form A�2

mB�
�1
m and �mA�

�1
m B�m for some

A;B 2 Bm, and are thus related by a negative �ype (along with conjugation).

B
A

B
A

Figure 6. Braid and grid diagrams for a negative �ype. As usual, the diagrams coincide
within corresponding dashed boxes.

= = =

Figure 7. An SZ� move followed by Legendrian isotopy.
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Conversely, suppose that two transverse links are represented by braids di�er-
ing by a negative �ype A�k

mB�
�1
m  ! A��1

m B�k
m; in the �gures, we assume that

k D 3, but the case of general k is nearly identical. Draw the braids as in Figure 6.
Reversing the procedure from above yields the grid diagrams shown in Figure 6.
�ese grid diagrams, in turn, correspond to Legendrian links that are related by
an SZC move and Legendrian isotopy. See Figure 7.

3. Some constructions from Khovanov homology

In this section, we collect some standard constructions from Khovanov homology.
Speci�cally, in Section 3.1 we recall the Bar-Natan deformation of the Khovanov
complex, and in Section 3.2 we recall the homotopy equivalences of Bar-Natan
complexes induced by Reidemeister moves.

3.1. �e Bar-Natan deformation of Khovanov homology. �e Bar-Natan de-
formation of the Khovanov complex (from [2]) comes from a 2-dimensional Frobe-
nius algebra V D Zhx�; xCi, with multiplication m given by

xC ˝ xC 7! xC; xC ˝ x� 7! x�; x� ˝ xC 7! x�; x� ˝ x� 7! x�;

and comultiplication � by

x� 7! x� ˝ x�; xC 7! xC ˝ x� C x� ˝ xC�xC ˝ xC:

Without the terms in gray this is H�.S2/, which underlies Khovanov homology.
It is also useful to introduce the variable x � D x� � xC;1 with respect to the basis
¹x�; x �º the multiplication and comultiplication diagonalize to

x � ˝ x �

m
�! �x �; x � ˝ x�

m
�! 0; x� ˝ x �

m
�! 0; x� ˝ x�

m
�! x�;

x �

�
�! x � ˝ x �; x�

�
�! x� ˝ x�:

(3.1)

0 1

Figure 8. Resolutions of a crossing.

1 �is de�nition of x

�

is the negative of the one used in [21].
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LetK be an oriented link diagram with n crossings. Ordering the crossings of
K induces an identi�cation of the set of complete resolutions of K with ¹0; 1ºn.
(Our convention for which is the 0-resolution and which is the 1-resolution is
given in Figure 8.) Let C.K/ be the chain complex generated by pairs .v; x/where
v 2 ¹0; 1ºn and x is a labeling of each circle in the complete resolution Kv cor-
responding to v by xC or x�. (�at is, as a vector space, C.K/ is isomorphic
to the Khovanov complex CKh.K/.) �e di�erential is de�ned exactly as for the
Khovanov complex, except that we use Bar-Natan’s Frobenius algebra (above) in
place of Khovanov’s Frobenius algebra.

Gradings will be of some importance. Let n� (respectively, nC) be the number
of negative (respectively, positive) crossings in K. Given v 2 ¹0; 1ºn let jvj DP
vi denote the weight of v. �en the homological grading on C.K/ (or CKh.K/)

is given by

grh.v; x/ D �n� C jvj: (3.2)

�e di�erential on C.K/ (obviously) increases grh by 1.

�e quantum grading on the Khovanov complex becomes a quantum �ltration

(or q-�ltration) on the complex C.K/; it is given by

grq.v; x/ D nC�2n�CjvjC#¹Z 2 Kv j x.Z/ D xCº�#¹Z 2 Kv j x.Z/ D x�º:

(3.3)

�at is, up to the normalization nC � 2n�, grq.v; x/ is given by the weight of v
plus the number of xC’s in x minus the number of x�’s in x. �e di�erential on
C.K/ satis�es

grq.ı.v; x// � grq.v; x/:

Let FmC.K/ denote the part of C.K/ in �ltration � m, i.e.,

FmC.K/ D span¹.v; x/ j grq.v; x/ � mº:

Let Cn.K/ be the part of C.K/ in homological grading n, i.e.,

C
n.K/ D span¹.v; x/ j grh.v; x/ D nº:
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Figure 9. Canonical generators of the Bar-Natan complex. Left: an oriented link. Right:
the corresponding oriented resolution with the associated Bar-Natan-Lee-Rasmussen-
Turner generator. (�e points qC and arcs A are indicated in gray.)

Following Lee [19] (cf. [32]), Turner showed that the homology of C.K/ is
.Z˚Z/˝jKj (where jKj denotes the number of components ofK) [34]. Moreover,
the generators of H�.C.K// correspond to orientations of K, as follows. Given
an orientation o of K, there is a corresponding complete resolution Ko of K, the
oriented resolution. Each circle C in Ko inherits an orientation from K. Fix a
point pC on C and let qC be the result of pushing pC slightly to the left of C
(with respect to the orientation of C ). Let A be an arc from qC to1, transverse
to all of the circles in Ko. If A crosses an even number of circles then label C
by x�; if A crosses an odd number of circles, label C by x �. See Figure 9. �is
labeling is the cycle  .o/ of C.K/ corresponding to o. Note that this depended
on an arbitrary universal choice: we could equally well exchange x� and x � in the
de�nition.

Remark 3.1. Lee [19] considered another deformation of the Khovanov complex,
corresponding to the Frobenius structure

xC ˝ xC
m
7�! xC; xC ˝ x�

m
7�! x�; x� ˝ xC

m
7�! x�; x� ˝ x�

m
7�! xC;

x�
�
7�! x� ˝ x� C xC ˝ xC; xC

�
7�! xC ˝ x� C x� ˝ xC:

Mackaay, Turner, and Vaz showed that over a ring R in which 2 is invertible,
the Lee deformation is twist-equivalent (in the sense of [18]) to the Bar-Natan de-
formation [24]. In particular, the results below apply to the Lee deformation as
well, if we work over a ring in which 2 is invertible. �is gives no (obvious) ad-
ditional transverse information, but can be useful for studying the Plamenevskaya
invariant; see Proposition 4.13.
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3.2. �e maps induced by Reidemeister moves. For us, a �ltered chain com-

plex with distinguished generators is a chain complex generated freely over Z by
a generating set, where each element of the generating set carries a homologi-
cal grading grh and a �ltration grading grq, such that the di�erential ı increases
the homological grading by 1 and does not decrease the �ltration grading. �e
Bar-Natan chain complex C.K/ (see Section 3.1) is an example of a �ltered chain
complex with distinguished generators: the generators in which each circle is la-
beled by either xC or x�.

�e following is a standard cancellation lemma about �ltered chain complexes
with distinguished generators. Since we make repeated use of it for writing down
the Reidemeister maps and for proving locality properties, we give a proof of it.

Lemma 3.2. Let .C; ıC / be a �ltered chain complex with distinguished gener-

ators. Let ˛ and ˇ be two of the generators such that Zh˛; ˇi is a subcom-

plex (respectively, a quotient complex) of C , where the coe�cient hıC˛; ˇi of

ˇ in ıC .˛/ is ˙1, and grq.˛/ D grq.ˇ/. Let .D; ıD/ be the quotient complex

(respectively, the subcomplex) of C generated by the remaining generators, with

ıD given by applying ıC and then setting to 0 any generators not in D (respec-

tively restricting ıC to D). �en the quotient map f W C ! D (respectively, the

inclusion map g W D ! C ) induces a �ltered chain homotopy equivalence; that is,

there is a �ltered chain map g W D ! C (respectively, f W C ! D) and �ltered

homotopies h W C ! C , k W D ! D, such that h ı ıC C ıC ı h D IdC �g ı f and

k ı ıD C ıD ı k D IdD �f ı g; and in fact one can take k D 0.

Proof. Assume, after replacing ˇ by �ˇ if necessary, that hıC˛; ˇi D 1. In the
�rst case, when Zh˛; ˇi is a subcomplex of C , de�ne g W D ! C as

g.x/ D x � hıCx; ˇi˛;

and in the second case, when Zh˛; ˇi is a quotient complex of C , de�ne

f W C �! D

as

f .x/ D

8
ˆ̂<
ˆ̂:

0 if x D ˛,

�
P

yhıC˛; yiy if x D ˇ,

x otherwise.

In either case, de�ne k D 0 and h W C ! C as

h.x/ D

´
˛ if x D ˇ,

0 otherwise.
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It is straightforward to verify that these maps have the desired properties.

Remark 3.3. Lemma 3.2 fails (even in the non-�ltered case) if one does not work

with distinguished generators: the two step chain complex Z
2
! Z admits a quo-

tient map to Z=2Z which does not induce a chain homotopy equivalence.

Now, let K and K 0 be two link diagrams representing isotopic links. �en
K and K 0 can be related by a sequence of Reidemeister moves (Figure 10); and
a sequence of Reidemeister moves connecting K to K 0 induces a �ltered chain
homotopy equivalence between C.K/ and C.K 0/. We discuss these �ltered chain
homotopy equivalences next.

3.2.1. Negative stabilization and destabilization. Consider the negative sta-
bilization shown in Figure 10a. Let c denote the new crossing in the stabilized
diagram K 0, and let .K 0/0 (respectively, .K 0/1) denote the result of replacing c
by its 0-resolution (respectively, 1-resolution). �en .K 0/0 is isomorphic to the
unstabilized diagram K, while .K 0/1 is isomorphic to the disjoint union of K
and an unknot U0. �ere is a subcomplex D of C.K 0/ spanned by the genera-
tors in C..K 0/1/ in which U0 is labeled by xC; D can be identi�ed, preserving
the bigrading, with C.K/ by forgetting the component U0. �e map associated to
stabilization is the inclusion map

C.K/ Š D �! C.K 0/:

�e generators of C.K 0/ not inD cancel in pairs, via the arrows x 7! x˝x�. Since
D is obtained from C.K 0/ by cancellations of the form described in Lemma 3.2,
the destabilization map is given by its homotopy inverse.

3.2.2. Positive stabilization and destabilization. Next, consider the positive
stabilization shown in Figure 10b. Once again, let c denote the new crossing in
the stabilized diagram K 0, and let .K 0/0 (respectively, .K 0/1) denote the result
of replacing c by its 0-resolution (respectively, 1-resolution). �is time, .K 0/1
is isomorphic to the unstabilized diagram K, while .K 0/0 is isomorphic to the
disjoint union ofK and an unknot U0. �ere is a subcomplexE of C.K 0/ spanned
by the generators in C..K 0/1/ and the generators in C..K 0/0/ in whichU0 is labeled
by xC; and C.K 0/=E is identi�ed with C.K/ by forgetting the component U0. �e
map associated to destabilization is the projection

C.K 0/ �! C.K 0/=E Š C.K/:
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Figure 10. �e four Reidemeister moves. (a) is the Reidemeister I negative stabilization,
(b) is the Reidemeister I positive stabilization, (c) is the Reidemeister II move, and (d) is
the braid-like Reidemeister III move. Among these four, (b), (c), and (d) may be viewed as
the transverse Markov-Reidemeister moves.

Since E can be contracted by cancellations of the form described in Lemma 3.2,
the stabilization map is given by the homotopy inverse to the destabilization map.

3.2.3. Reidemeister II. �e maps giving Reidemeister II invariance can be de-
scribed quite explicitly. Assume K 0 is obtained from K by the move from Fig-
ure 10c. Order the two new crossing inK 0 and for any v 2 ¹0; 1º2, let .K 0/v denote
the partial resolution of K 0 at the two new crossings corresponding to v. Choose
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the ordering of the new crossings so that .K 0/10 D K. �en .K 0/01 has an unknot
component, say U0, contained in the isotopy region. Let E be the subcomplex
of C.K 0/ spanned by the generators in C..K 0/11/ and the generators in C..K 0/01/

where U0 is labeled by xC; therefore, C..K 0/10/ is a subcomplex of C.K 0/=E and
we have the following projection and inclusion maps:

C.K 0/
�
�� C.K 0/=E

�
 �- C..K 0/10/ Š C.K/:

Both the complexes E and .C.K 0/=E/=C..K 0/10/ can be contracted by cancella-
tions of the form described in Lemma 3.2, and therefore both � and � have �ltered
homotopy inverses, say ��1 and ��1. �e map from C.K 0/ to C.K/ is ��1 ı � and
the map from C.K/ to C.K 0/ is ��1 ı �.

3.2.4. Reidemeister III. �e maps giving the usual Reidemeister III invariance
can also be written explicitly, but doing so is somewhat tedious. Instead, we
adopt the following indirect argument, which is similar in spirit to the previous
argument. As in [1, Section 7.3], since we have already proved Reidemeister II
invariance, it su�ces to prove invariance under the braid-like Reidemeister III
move of Figure 10d. So, suppose K and K 0 di�er by a braid-like Reidemeis-
ter III move, where K 0 has 6 more crossings than K. Order the six new cross-
ings of K 0, and for any v 2 ¹0; 1º6, let .K 0/v denote the resolution at the new
crossings corresponding to v. Choose the ordering of the new crossings in K 0

so that .K 0/111000 D K. It is shown in the proof of [20, Proposition 6.4] that
there is a contractible subcomplex E of C.K 0/ so that C..K 0/111000/ is a subcom-
plex of C.K 0/=E and .C.K 0/=E/=C..K 0/111000/ is contractible. (Actually, in [20,
Proposition 6.4], the corresponding statement for the Khovanov chain complex
.CKh; ıKh/, which is the associated graded object of the �ltered Bar-Natan chain
complex .C; ı/, is proved; however, by looking at the homological gradings, we
see that the subcomplexes and quotient complexes for CKh remain subcomplexes
and quotient complexes for C as well, and therefore, the statement for the asso-
ciated graded object implies the statement for the �ltered complex.) �is gives a
diagram

C.K 0/
�
�� C.K 0/=E

�
 �- C..K 0/111000/ Š C.K/:

Furthermore, it is shown in the proof of [20, Proposition 6.4] that both the acyclic
complexes E and .C.K 0/=E/=C..K 0/111000/ can be contracted by sequences of
elementary cancellations of the form described in Lemma 3.2. �erefore, both �
and � are �ltered homotopy equivalences, and the homotopy equivalences f and
g are gotten by inverting (up to �ltered homotopy) either � or � .
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3.2.5. Locality of the invariance maps. We conclude this subsection with the
observation that the Reidemeister maps are local in a particular sense, a fact that
we will need in Section 4.4. (�is is well-known. Other versions of locality are
exploited, for instance, in [2] and [17].)

Proposition 3.4. Suppose that K1 is a link diagram and T1 � K1 is a tangle.

Let T2 be a tangle diagram representing a tangle isotopic to T1, and let K2 D

.K1 nT1/[T2 be the result of replacing T1 with T2 inK1. Let f W C.K1/! C.K2/

and g W C.K2/! C.K1/ be the �ltered maps induced by an isotopy from T1 to T2,

as above, and let h and g denote the �ltered homotopies, so that Id�g ı f D
ı ı hC h ı ı and Id�f ı g D ı ı k C k ı ı.

Order the crossings ofKi (i D 1; 2) so that the crossings inKi nTi come before

the crossings in Ti ; and so that the orderings of the crossings inK1nT1 D K2nT2

agree. Suppose that there are n crossings in Ki n Ti , and ni crossings in Ti .

�en:

� Given a generator ..u; v/; x/ 2 CKh.K1/, with .u; v/ 2 ¹0; 1ºn � ¹0; 1ºn1 Š

¹0; 1ºnCn1, f ..u; v/; x/ lies over the sub-cube ¹uº � ¹0; 1ºn2 of ¹0; 1ºnCn2;

and h..u; v/; x/ lies over the sub-cube ¹uº � ¹0; 1ºn1 of ¹0; 1ºnCn1 .

Moreover, if C is a circle in the resolution .K1/.u;v/ disjoint from T1, and

C 0 is the corresponding circle in some resolution .K2/.u;w/, then the label

f ..u; v/; x/.C 0/ of C 0 in f ..u; v/; x/ and the label h..u; v/; x/.C / of C in

h..u; v/; x/ are the same as the label x.C / of C in x.

� Given a generator ..u; w/; y/ 2 CKh.K2/, with .u; w/ 2 ¹0; 1ºn � ¹0; 1ºn2 Š

¹0; 1ºnCn2, g..u; w/; y/ lies over the sub-cube ¹uº � ¹0; 1ºn1 of ¹0; 1ºnCn2;

and k..u; w/; y/ lies over the sub-cube ¹uº � ¹0; 1ºn2 of ¹0; 1ºnCn2.

Moreover, if C is a circle in the resolution .K2/.u;w/ disjoint from T2, and

C 0 is the corresponding circle in some resolution .K2/.u;w/, then the label

g..u; w/; y/.C 0/ of C 0 in g..u; w/; y/ and the label k..u; w/; y/.C / of C in

k..u; w/; y/ are the same as the label y.C / of C in y.

Proof. �is is immediate from the form of the maps given in Sections 3.2.1–3.2.4;
the key point is that the subcomplexes and quotient complexes, and the arrows one
cancels (Lemma 3.2) to prove that the inclusion and projection maps are �ltered
homotopy equivalences, are all given locally.



494 R. Lipshitz, L. Ng, and S. Sarkar

4. �e �ltered Plamenevskaya invariant

In this section we de�ne the (�ltered extension of the) Plamenevskaya invariant
(Section 4.1) and prove it is invariant under transverse isotopies (Section 4.2). We
then make some observations on its behavior under negative stabilization (Sec-
tion 4.3) before proving our main theorem, invariance under �ypes and SZ moves
(Section 4.4). After this, we make a few further observations guaranteeing that
the �ltered Plamenevskaya invariant does no better than the classical invariants at
distinguishing transverse representatives of low-crossing knots (Section 4.5).

4.1. �e de�nition of the invariant. Let K be a transverse link in S3 (with re-
spect to the standard contact structure �std), presented as the closure of an (ori-
ented) braid. Abusing notation slightly, we will also use K to denote the corre-
sponding link diagram.

De�nition 4.1. Recall from Section 3.1 that associated to each orientation o ofK is
a cycle .o/ in C.K/. �e positive (respectively, negative) �ltered Plamenevskaya

invariant of K is the generator  C.K/ WD  .o/ (respectively,  �.K/ WD  .�o/)
corresponding to the usual orientation of K as a transverse link (respectively, the
opposite orientation to the usual one). Since most of the results in this paper will
apply to both  C.K/ and  �.K/, we will use  .K/ to denote either  C.K/ or
 �.K/. �e invariant  .K/ lies in homological grading

grh. .K// D �n� C n� D 0:

With respect to the q-�ltration, the lowest �ltered part of  .˙o/ is when each
circle is labeled by x�; this lies in �ltration

grq. .K// D nC � n� �m D sl.K/:

(Here m is the braid index.) We thus regard  .K/ as an element of Fsl.K/C
0.K/:

�e sense in which  .K/ is an invariant of the transverse isotopy class of K
is made precise in �eorem 4.2. Note that it follows from (the argument in) [19]
that  .K/ 2 C

0.K/ is a cycle; this can also be seen directly from the fact that the
only di�erentials from the oriented resolution correspond to merge cobordisms,
and m.x � ˝ x�/ D m.x� ˝ x �/ D 0, cf. Formula (3.1).

�e �ltered Plamenevskaya invariant induces a number of auxiliary invariants.
For any p � 0 < q, let

 p;q.K/ 2 Fsl.K/C2pC
0.K/=Fsl.K/C2qC

0.K/
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denote the image of  .K/ under the obvious chain map

Fsl.K/C �! Fsl.K/C2pC=Fsl.K/C2qC;

and let
Œ p;q.K/� 2 H

0.Fsl.K/C2pC.K/=Fsl.K/C2qC.K//

denote the image of p;q in the homology. Note:  0;1.K/ D  .K/; Œ C�1;1� and
Œ ��1;1� are two of the generators of H�.C/ corresponding to the orientations o
and �o respectively; and the element

 0;1.K/ 2 Fsl.K/C
0.K/=Fsl.K/C2C

0.K/ D C
0;sl.K/

Kh .K/

is the transverse invariant de�ned by Plamenevskaya [31]. In particular,  C0;1.K/ D

 �0;1.K/. Indeed, since the lowest-�ltration parts of  C.K/ and  �.K/ are the
same (every circle decorated by x�), the di�erence element

 di� .K/ WD  C.K/ �  �.K/

is (a cycle) in Fsl.K/C2C.K/. For p � 1 < q, let  di�
p;q .K/ denote the image

of  di� .K/ 2 Fsl.K/C2C.K/ in the subquotient Fsl.K/C2pC=Fsl.K/C2qC. �en

we have  di�
1;1.K/ D  di� .K/ 2 Fsl.K/C2C.K/, while  di�

0;1.K/ D  C.K/ �

 �.K/ 2 Fsl.K/C.K/ is determined by the invariants  C.K/ and  �.K/.
As an aside, note that the Rasmussen invariant s.K/ has the following descrip-

tion:
s.K/ D sl.K/ � 1C 2.min¹q j Œ �1;q.K/� ¤ 0º/:

In particular, this implies the upper bound on the self-linking number �rst ob-
served by Plamenevskaya [31, Section 7]:

s.K/ � sl.K/ � 1C 2 D sl.K/C 1:

4.2. Invariance under transverse isotopies. In this subsection we prove trans-
verse invariance of  .K/ and  di� .K/. We start with  .K/:

�eorem 4.2. Suppose that K and K 0 are diagrams for closed braids, and that

the corresponding transverse links are transversely isotopic. �en the �ltered ho-

motopy equivalence f W C.K/! C.K 0/, induced by some sequence of transverse

Markov moves connecting K to K 0, satis�es

f . .K// D ˙ .K 0/C ı�

(for one choice of C or �), where � 2 Fsl.K/C
�1.K 0/. Moreover, the �ltered

homotopy equivalence f and the element � can be chosen to be local in the sense

of Proposition 3.4.
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Corollary 4.3. �e image Œ p;q � of  p;q in homology

H 0.Fsl.K/C2pC.K/=Fsl.K/C2qC.K//

is an invariant of the transverse link K.

�e case p D 0; q D 1 is [31, �eorem 2]. �e general case is not signi�cantly
di�erent, but we spell out the proof.

Proof of �eorem 4.2. By the transverse Markov theorem [35, 29], it su�ces to
prove that  .K/ is invariant under (braid-like) Reidemeister II and III moves and
positive stabilizations and destabilizations (see Figures 10b–10d). �e relevant
maps are described in Section 3.2.2–3.2.4. We discuss each move brie�y in turn.

For positive destabilization, with notation as in Section 3.2.2, note that  .K/
lies in C..K 0/0/, and has U0 labeled by either x� or x � (and the other compo-
nents of the oriented resolution labeled alternately by x � and x�). In either case,
 .K 0/ survives to C.K 0/=D and is identi�ed with  .K 0/ under the identi�ca-
tion C.K 0/=D Š C.K/. Positive stabilization is the homotopy inverse to positive
destabilization, and hence also preserves  (up to the boundary of an element of
Fsl.K/C.K/).

Reidemeister II and III are easier. For Reidemeister II, with notation as in
Section 3.2.3,  .K 0/ lies in C..K 0/10/, and so �. .K 0// is exactly �. .K//. Since
the two �ltered homotopy equivalences are obtained by inverting either � or � (up
to homotopy), they respect  . Similarly, for Reidemeister III, with notation as in
Section 3.2.4,  .K 0/ lies in C..K 0/111000/, so again �. .K 0// D �. .K//, and
hence the �ltered homotopy equivalences respect  .

�e fact that the map f and element � can be chosen to be local follows from
Proposition 3.4.

Remark 4.4. �e above proof of �eorem 4.2 actually shows more generally that
maps induced by transverse isotopy preserve any linear combination ˛ CCˇ �

(not just  C and  �), up to a boundary in Fsl.K/C and an overall sign.

Now we turn to the invariant  di� .K/. By Remark 4.4,

 C.K/ �  �.K/ D  
di�
0;1.K/

is an invariant in Fsl.K/C.K/; but in fact more is true:
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�eorem 4.5. �e element  di� .K/ 2 Fsl.K/C2C.K/ is an invariant of the trans-

verse link K; more precisely, if f W C.K/! C.K 0/ is the �ltered homotopy equiv-

alence induced by some sequence of transverse Markov moves connecting closed

braids K and K 0, then

f . di� .K// D ˙ di� .K 0/C ı�

for some � 2 Fsl.K/C2C
�1.K 0/.

Proof. As in the proof of �eorem 4.2, we check invariance under positive
(de)stabilization and braid-like Reidemeister II and III moves. For positive desta-
bilization, we veri�ed in the proof of �eorem 4.2 that  C.K 0/ (respectively,
 �.K 0/) maps to  C.K/ (respectively,  �.K/) on the nose. It follows that the
destabilization map takes their di�erence  di� .K 0/ to  di� .K/. �e stabilization
map is a �ltered homotopy inverse to the destabilization map, and hence takes
 di� .K/ to  di� .K 0/ up to the boundary of an element of Fsl.K/C2C.K/. �is
proves invariance under positive (de)stabilization. �e proof of Reidemeister II
and III invariance is exactly as in �eorem 4.2 (with  di� in place  ).

Remark 4.6. �e reason for the ˙ signs in �eorems 4.2 and 4.5 is perhaps not
obvious: the Reidemeister maps we wrote down respect  (respectively,  di� )
exactly, not just up to sign. �e ˙ signs arise because the maps on Khovanov
homology (and indeed, the Khovanov homology groups themselves) are only well-
de�ned up to an overall sign.

4.3. Behavior under negative stabilization

Proposition 4.7. Let K be a closed braid in S3 and let K 0 be the result of neg-

atively stabilizing K once, so sl.K 0/ D sl.K/ � 2. Let  .K/ 2 Fsl.K/C.K/

and  .K 0/ 2 Fsl.K0/C.K
0/ be the corresponding �ltered Plamenevskaya invari-

ants and let f W C.K/ ! C.K 0/ and g W C.K 0/ ! C.K/ be the �ltered chain

maps giving Reidemeister I invariance (cf. Section 3.2.1). �en there are elements

� 2 Fsl.K0/C
�1.K/ and � 0 2 Fsl.K0/C

�1.K 0/, local in the sense of Proposition 3.4,

such that

g. .K 0// D ˙ .K/C ı� in Fsl.K0/C.K/

and

f . .K// D ˙ .K 0/C ı� 0 in Fsl.K0/C.K
0/:
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x�x �x�x �x �x�x �

Figure 11. Invariance under negative stabilization. �e generator � 0 is shown on the left,
and  .K0/ on the right, both in the case that x D x�.

Proof. With notation as in Section 3.2.1,  .K 0/ lies in C..K 0/1/ but not in the sub-
complexD. Let x 2 ¹x�; x �º denote the label ofU0 in .K 0/, and let � 0 2 C..K 0/0/

be the element which labels the circles alternately by x� and x �, starting by label-
ing the inner-most circle oppositely from x. (So, � 0 and x give the same labels to
circles occurring both in .K 0/0 and .K 0/1; see Figure 11.) Assume the crossings in
K 0 are ordered so that the new crossing c is the �rst, and the other crossings are or-
dered as inK. �en .K 0/�ı� 0 lies inD; and under the identi�cationD Š C.K/,
it is identi�ed with  .K/ (respectively, � .K/) if x equals x� (respectively, x �).
�e element � 0 lies in �ltration sl.K 0/, verifying that f has the speci�ed form.
(Note that � 0 is local in the sense of Proposition 3.4.) It follows that the �ltered
homotopy inverse g to f also respects  , as an element of Fsl.K0/C; the fact that
the cancellations are local implies that we can take � to be local, as well.

Remark 4.8. In a similar vein to Remark 4.4, observe that (up to an overall sign,
and relative boundary in Fsl.K0/C) the negative stabilization map sends the lin-
ear combination ˛ C.K/ C ˇ �.K/ to ˛ C.K 0/ � ˇ �.K 0/, and the nega-
tive destabilization map sends the linear combination ˛ C.K 0/ C ˇ �.K 0/ to
˛ C.K/ � ˇ �.K/.

Corollary 4.9. If transverse links K and K 0 become transversely isotopic after

performing k transverse (negative) stabilizations then p;1.K/ D ˙ p;1.K
0/ for

anyp � �k. �at is, if f W C.K/! C.K 0/ is the map associated to an isotopy from

K to K 0 corresponding to k transverse stabilizations, then a transverse isotopy,

and then k transverse destabilizations, then f . .K// D ˙ .K 0/C ı� for some

� 2 Fsl.K/�2kC
�1.K 0/.
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Proof. �is is immediate from �eorem 4.2 (which covers transverse isotopies)
and Proposition 4.7 (which covers negative stabilizations and destabilizations).

�e following was proved by Rasmussen [32] in the case of the Lee deforma-
tion; we will use it in Section 4.4:

Corollary 4.10. Reidemeister moves preserve �ltered Plamenevskaya generators

up to homotopy. �at is, let K and K 0 be diagrams for isotopic links and let

f W C.K/ ! C.K 0/ be the map of Bar-Natan complexes induced by a sequence

of Reidemeister moves connectingK and K 0. �en f . .K// D ˙ .K 0/C ı� for

some � 2 C�1.K 0/.

Proof. �is follows immediately from Corollary 4.9. Note that in general we do
not have any control over the �ltration level in which � lies.

Corollary 4.11. If a transverse linkK can be negatively destabilized k times, then

Œ 0;k.K/� D 0.

Proof. LetK 0 be a transverse link so that Sk.K 0/ D K. Let f W C.K 0/! C.K/ be
the �ltered chain map corresponding to k negative stabilizations. Proposition 4.7
ensures the existence of some � 2 Fsl.K/C.K/ so that

f . .K 0// D ˙ .K/C ı�:

However, since f is �ltered, f . .K 0// lies in Fsl.K0/C.K/ D Fsl.K/C2kC.K/.
�erefore, letting �0;k denote the image of � in Fsl.K/C.K/=Fsl.K/C2kC.K/,
we have

 0;k.K/ D �ı.�0;k/

and hence Œ 0;k.K/� D 0.

Remark 4.12. Note that, by the s-invariant upper bound on self-linking num-
ber [31], we get

sl.K 0/ D sl.K/C 2k � s.K/ � 1 D sl.K/ � 2C 2.min¹q j Œ �1;q.K/� ¤ 0º/;

or
min¹q j Œ �1;q.K/� ¤ 0º � k C 1:

Corollary 4.11 furnishes a (possibly) stronger inequality:

min¹q j Œ 0;q.K/� ¤ 0º � k C 1:



500 R. Lipshitz, L. Ng, and S. Sarkar

We conclude this subsection with an observation regarding the original
Plamenevskaya invariant  0;1 and the property (2) from Proposition 2.4.

Proposition 4.13. Let K and K 0 be transverse links so that S.K/ D S.K 0/. Fix

a ring R in which 2 is invertible. Let f W CKh.KIR/ ! CKh.K
0IR/ be the chain

map on the Khovanov chain complexes over R associated to an isotopy fromK to

K 0 corresponding to a single negative stabilization, then a transverse isotopy, and

then a single negative destabilization. �en f . 0;1.K// D ˛ 0;1.K
0/ C ıKh.�/

for some � 2 C
�1;sl.K/

Kh
.K 0IR/ and some unit ˛ in R.

Proof. Consider the Lee �ltered chain complex .CLee; ıLee/ from [19]. Let Lee.K/

be the Lee generator corresponding the usual orientation of K; it is a cycle lying
in �ltration Fsl.K/CLee.K/, and its lowest �ltration term is also  0;1.K/.

However, by [24, Proposition 2.2], over the ring R, the Bar-Natan �ltered
complex .C; ı/ is twist equivalent to the Lee �ltered complex .CLee; ıLee/ (see Re-
mark 3.1). �erefore, over the ringR, Corollary 4.9 also holds for the Lee complex.
�at is, we have

f . Lee.K// D ˛ Lee.K
0/C ıLee.�/

for some � 2 Fsl.K/�2CLee.K
0/ and some unit ˛ 2 R.

Since ıLee preserves the quantum grading mod 4, there is a quotient map

Fsl.K/�2CLee � Kh�;sl.K/:

Letting � 2 Kh�1;sl.K/ denote the image of � under this quotient map, we get the
desired identity:

f . 0;1.K// D ˛ 0;1.K
0/C ıKh.�/:

Remark 4.14. Although both the original Plamenevskaya invariant  0;1 and the
�ltered version  are invariant under negative �ypes (see �eorem 4.15 below),
Proposition 4.13 suggests one way in which we might be hopeful that the �ltered
invariant could be e�ective even if the original invariant were not. To our knowl-
edge, it is conceivable that there could be transverse knots that become the same
after one stabilization, but are not related by a sequence of negative �ypes; com-
pare conditions (1) and (2) in Proposition 2.4. Such knots are indistinguishable
using  0;1 by Proposition 4.13, but could possibly be distinguished using the �l-
tered invariant  .

4.4. Invariance under negative �ypes. In this subsection we prove that the �l-
tered Plamenevskaya invariant is unchanged by negative �ypes (�eorem 4.15),
and that the di�erence invariant  di� is unchanged by a subclass of negative �y-
pes (�eorem 4.19).
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�eorem 4.15. �e �ltered Plamenevskaya invariant is invariant under negative

�ypes. �at is, ifK andK 0 are related by a negative �ype and f W C.K/! C.K 0/ is

the map associated to the sequence of Reidemeister moves (2.1) then f . .K// D

˙ .K 0/C ı� (for one choice of C or �), where � 2 Fsl.K/C.K
0/.

Corollary 4.16. �e �ltered Plamenevskaya invariant is invariant under �ype and

SZ equivalence.

Before proving �eorem 4.15, we �x some notation. For the rest of the sub-
section, �x braids A and B as in De�nition 2.2 and let K (respectively,K 0) be the
braid closure of A�k

mB�
�1
m (respectively, A��1

m B�k
m).

Let nCjkjC 1 be the number of crossings ofK. Order the crossings ofK and
K 0 so that the �rst n crossings lie in A [ B and the .nC 1/

st
crossing is ��1

m . Let
u 2 ¹0; 1ºn correspond to the oriented resolution of A [ B; that is, u is 0 at each
�i and 1 at each ��1

i .
Let f W C.K/! C.K 0/ be the �ltered chain homotopy equivalence induced by

the sequence of moves (2.1). By Corollary 4.10,

f . .K// D ˙ .K 0/C ı�

for some � 2 C
�1.K 0/. We want to show that � 2 Fsl.K/C.K

0/.

Lemma 4.17. With the notations from above, the following statements hold.

(1) If k � 0, the elements .K/ and .K 0/ lie over the vertexu�.1; 0; 0; : : : ; 0/ 2

¹0; 1ºnCjkjC1; otherwise, they lie over the vertex u � .1; 1; 1; : : : ; 1/

2 ¹0; 1ºnCjkjC1.

(2) If k � 0, the element f . .K// lies over the vertices u�.�1; : : : ; �jkjC1/where

exactly one of the �i is 1 (and the rest are 0); otherwise, it lies over the vertex

u � .1; : : : ; 1/.

(3) If k � 0, the element � lies over the vertex u�.0; 0; 0; : : : ; 0/ 2 ¹0; 1ºnCjkjC1;

otherwise, it lies over the vertices u � .�1; : : : ; �jkjC1/ where exactly one of

the �i is 0 (and the rest are 1).

Proof. �e �rst part of the statement is immediate from the de�nitions: the ori-
ented resolution corresponds to taking the 1-resolution at each �i and the 0-reso-
lution at each ��1

i . �e second follows from the �rst part, locality of the map f
(Proposition 3.4) and the fact that f respects the homological grading. �e third
part follows from locality (Proposition 3.4) and the fact that � lies in homological
grading 1 lower than  .K 0/.
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Lemma 4.18. If k � 0, then over the vertex u � .0; 0; : : : ; 0/, Fsl.K/C is all of C;

that is, if .v; x/ 2 Cwith v D u�.0; 0; 0; : : : ; 0/, then grq.v; x/ � sl.K/. Similarly,

if k < 0, and if .v; x/ 2 C with v D u � .�1; : : : ; �jkjC1/ where exactly one of the

�i is 0, then grq.v; x/ � sl.K/.

Proof. �e minimal quantum grading occurs when all of the circles are decorated
by x�. In each of the above cases, there are m circles in Kv (here .mC 1/ is the
braid index). �e weight jvj is n� � 1, so Formula (3.3) gives

grq.v; .x�; : : : ; x�// D nC � 2n� C n� � 1 �m

D nC � n� � .mC 1/

D sl.K/;

as claimed.

Proof of �eorem 4.15. As noted earlier, the element � is given by Corollary 4.10;
we must show that � 2 Fsl.K/C.K

0/. But this follows from the third part of
Lemma 4.17 in conjunction with Lemma 4.18.

�e story for the invariant  di� is slightly subtler. �e �ype isotopy from For-
mula (2.1) involves a single negative stabilization followed by a transverse isotopy
followed by a single negative destabilization. Up to an overall sign, and relative
boundary, the negative stabilization sends  C �  � to  C C  � (Remark 4.8),
the transverse isotopy preserves  C C  � (Remark 4.4), and the negative desta-
bilization sends  C C  � to  C �  �. �erefore,

f . di� .K// D ˙ di� .K 0/C ı�

for some � 2 C
�1.K 0/. Furthermore, as in the proof of �eorem 4.15, the homo-

logical grading and locality of � force � to lie in �ltration level Fsl.K/C.K
0/. �is

shows that the invariant  di�
0;1 is preserved under a general �ype. However, for

special types of �ypes, more can be said.

�eorem 4.19. With braidsA andB as in De�nition 2.2, consider the �ype isotopy

between the braid closures K and K 0 of A�k
mB�

�1
m and A��1

m B�k
m.

Furthermore, assume k � 0. If f W C.K/ ! C.K 0/ is the map associated to such

a �ype, then f . di� .K// D ˙ di� .K 0/C ı� (for one choice of C or �), where

� 2 Fsl.K/C2C.K
0/.
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Proof. From the discussion above, we see that f . di� .K// D ˙ di� .K 0/ C ı�

for some � 2 Fsl.K/C
�1.K 0/. Indeed, reusing earlier notations and proofs, we

see that the homological grading and locality of � forces it to lie over the vertex
v D u � .0; 0; : : : ; 0/. Let x be the labeling that labels each of the m circles in
.K 0/v by x�. �en �0 D .v; x/ is the unique generator over v that lies in quantum
grading sl.K/. �erefore, � can be written as ˛�0C �1 for some ˛ 2 Z and some
�1 2 Fsl.K/C2C

�1.K 0/. It follows that

˛ı.�0/ D f . 
di� .K//�  di� .K 0/ � ı.�1/: (4.1)

If  0;1.K
0/ denotes the original Plamenevskaya generator (which lies over the

oriented resolution and labels all the circles by x�), then hı�0;  0;1i D ˙1. How-
ever, all the terms of the right side of the Equation (4.1) lie in �ltration level
Fsl.K/C2C.K

0/. Since  0;1.K
0/ is a homogeneous element in quantum grading

sl.K/, this forces ˛ D 0. Hence, � D �1 2 Fsl.K/C2C
�1.K 0/.

Remark 4.20. We do not know if �eorem 4.19 holds generally without the as-
sumption k � 0. However, for all of the examples we know where negative �ypes
produce putatively distinct transverse knots, k is at least 2.

4.5. Triviality for simple links. In Section 4.4, we saw that the �ltered Pla-
manevskaya invariant  remains invariant under negative �ypes. In this subsec-
tion, we will see that  cannot distinguish di�erent transverse representatives of
any link with particularly simple Khovanov homology.

Proposition 4.21. LetK andK 0 be transverse links with the same topological link

type and with sl.K/ D sl.K 0/. Further assume H�1.C.K/=Fsl.K/C.K// D 0. If

f W C.K 0/ ! C.K/ is the �ltered chain map corresponding to some sequence of

Reidemeister moves connectingK 0 toK, then there exists some � 2 Fsl.K/C
�1.K/

so that

f . .K 0// D ˙ .K/C ı�:

Proof. Consider the following short exact sequence:

0 // Fsl.K/C
�1.K/

� //

ı

��

C
�1.K/

� //

ı

��

C
�1.K/=Fsl.K/C

�1.K/ //

ı

��

0

0 // Fsl.K/C
0.K/

� // C
0.K/

� // C
0.K/=Fsl.K/C

0.K/ // 0:
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Since f is a �ltered map, f . .K 0//�  .K/ 2 Fsl.K/C
0.K/. By Corollary 4.10,

there exists � 2 C
�1.K/, so that

ı� D �.f . .K 0//�  .K//:

�erefore,

ı.�.�// D �.ı�/ D �.�.f . .K 0//�  .K/// D 0;

and hence Œ�.�/� 2 H�1.C.K/=Fsl.K/C.K// represents some homology element.
Furthermore, the connecting homomorphism

H�1.C.K/=Fsl.K/C.K// �! H 0.Fsl.K/C.K//

maps Œ�.�/� to Œf . .K 0//� .K/�. SinceH�1.C.K/=Fsl.K/C.K// D 0, Œ�.�/� D
0 and hence Œf . .K 0//�  .K/� D 0 in H 0.Fsl.K/C.K//. �erefore, there exists
some � 2 Fsl.K/C

�1.K/ so that

f . .K 0//�  .K/ D ı�:

Corollary 4.22. Let K be a topological link, and let sl.K/ be the maximal self-

linking number among all transverse representatives of K. If Kh�1;j .KIZ/ D 0

for all j < sl.K/, then the �ltered Plamenevskaya invariant does not distinguish

transverse representatives of K with the same self-linking number.

Proof. �is follows immediately from Proposition 4.21. Since the Khovanov chain
complex is the associated graded object of the Bar-Natan chain complex,

M

j <q

Kh�1;j .K/ D 0

implies H�1.C.K/=FqC.K// D 0.

�e maximal self-linking number is known for all knots through 11 cross-
ings [26], and Corollary 4.22 holds for all topological knot types up to 11 crossings
except the ones in the following list (with m.K/ denoting the topological mirror
of K):

m.820/; m.10125/; m.10126/; m.10130/; m.10141/;

m.10143/; m.10148/; 10155; m.10159/; 11n22;

11n26; 11n40; 11n46; m.11n50/; 11n51;

11n54; m.11n65/; 11n71; m.11n75/; m.11n87/;

m.11n127/; m.11n132/; m.11n138/; 11n146; m.11n159/;

m.11n172/; m.11n176/; 11n178; 11n184:
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We currently do not know of any distinct transverse representatives with the same
self-linking number, �ype-equivalent or otherwise, of any of the above knot types.

5. A cohomotopy re�nement of the graded Plamenevskaya invariant

In [20] a space-level re�nement of Khovanov homology was given. �at is, let
K be a link diagram. For each j there is a (formal desuspension of a) suspension
spectrum of a CW complex X

j
Kh.K/ so that eH i .X

j
Kh.K// Š Khi;j .K/ and the

homotopy type of Xj

Kh.K/ is a link invariant.
In this section we give a space-level re�nement of the Plamenevskaya invariant.

�at is:

�eorem 5.1. Associated to a braid diagram K is a map

‰.K/ W X
sl.K/

Kh
.K/ �! S;

where S is the sphere spectrum. �e induced map on cohomology

‰.K/� W Z D eH 0.S/ �! eH 0.X
sl.K/

Kh .K// Š Kh0;sl.K/.K/

sends a generator of Z to the graded Plamenevskaya invariant Œ 0;1.K/�.

If K 0 is another braid diagram representing the same transverse link type then

there is a commutative diagram

X
sl.K/

Kh .K/
‰.K/

//

ˆ '

��

S

'

��

X
sl.K/

Kh .K 0/
‰.K0/

// S:

(Here,ˆ is the homotopy equivalence induced by a sequence of transverse Markov

moves connecting K and K 0, and the map S! S is a self-homotopy equivalence

of the sphere spectrum.)

In other words, there is a transverse invariant ‰.K/ 2 �0
s .X

sl.K/

Kh .K//, well

de�ned up to sign and automorphisms of X
sl.K/

Kh .K/.

5.1. �e de�nition of the invariant. Recall that the space Xj

Kh.L/ is de�ned by

feeding a framed �ow category C
j

Kh
.L/ into the Cohen–Jones–Segal machine [8]

(see also [20, De�nition 3.23]). We use jC j for the result of applying the Cohen–
Jones–Segal construction to a framed �ow category; note that this is not the same
as taking the geometric realization of the category (even after viewing it as a topo-
logical category). We will need the following properties of this construction:
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(1) �e space jC j has one cell for each object of C (in addition to a basepoint).

(2) If C
0 is a full, upwards-closed sub-category of C then there is a quotient map

jC j ! jC 0j (gotten by collapsing the cells corresponding to objects not in C
0

to the basepoint).

(3) �e category C
j

Kh.L/ has one object for each generator .v; x/ of CKh.L/ with
quantum grading j .

(4) �e space Hom..v; x/; .w; y// is non-empty if and only if .v; x/ and .w; y/
can be connected by a sequence of di�erentials in CKh.L/.

Consider the graded Plamenevskaya generator .v; x/. �at is, v corresponds
to the oriented resolution and x labels each circle in v by x�. By Property (3),
this generator corresponds to an object .v; x/ of C

sl
Kh.L/. �e generator .v; x/

is a cycle, and hence by Property (4) the object .v; x/ by itself is an upwards-
closed subcategory of C

sl
Kh.L/. By Property (1), the realization j¹.v; x/ºj of the

subcategory ¹.v; x/º is a sphere SN . By Property (2), there is a quotient map
jC sl

Kh.L/j ! j¹.v; x/ºj D S
N . Formally desuspendingN times gives the cohomo-

topy Plamenevskaya invariant ‰.K/ W X
sl.K/

Kh .K/! S.

5.2. Invariance under transverse isotopies. We turn now to invariance of the
cohomotopy Plamenevskaya invariant, i.e., the proof of �eorem 5.1. First, one
more piece of notation: the map ‰.K/ is induced by a particular cell e.K/ 2
jCKh.K/j, with the property that no higher-dimensional cells are attached to e.K/.
�e map ‰.K/ is an Umkehr (wrong way) map associated to e.K/, gotten by
collapsing jCKh.K/j n interior.e.K// to a point.

Proof of �eorem 5.1. We have already de�ned the mapˆ, and it is obvious from
the construction that the induced map on cohomology is the graded Plamenevskaya
invariant. It remains to prove invariance. As in the proof of �eorem 4.2, we will
check invariance under Reidemeister II, braid-like Reidemeister III, and positive
stabilization. But �rst we need to verify independence of the auxiliary data used
to construct XKh.K/.

Fix a braid closure K. Recall that XKh.K/ depends on the following auxiliary
choices:

� An ordering of the crossings of L.

� A sign assignment s for the cube C.n/.

� A neat embedding � and a framing ' for the cube �ow category CC .n/ relative
to s.
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� A framed neat embedding of the Khovanov �ow category CKh.L/ relative to
some d. �is framed neat embedding is a perturbation of .�; '/.

� IntegersA;B and real numbers �; R used in the construction of the CW com-
plex.

It is shown in [20, Proposition 6.1] that up to homotopy equivalence, the space
XKh.K/ is independent of these auxiliary choices. �e maps coming from chang-
ing � andR take each cell homeomorphically to the corresponding cell, and hence
commute with the maps e and, hence, ˆ (see [20, Lemma 3.25]). �e maps for
changing A, B and d again take each cell by a degree 1 map to the corresponding
cell (see [20, Lemma 3.26]) so again commute with e and so ˆ. Any two per-
turbations of � can be connected by a 1-parameter family. �e corresponding map
again is a homeomorphism taking cells to corresponding cells (this again comes
from Lemma [20, Lemma 3.25]), so again commutes with e and ˆ. �e same
applies to changing �.

�e proof of independence of the sign assignment goes as follows. Let K 0

be the disjoint union of K with a 1-crossing unknot U , so that the 0-resolution
of U has two components (say). �e cube of resolutions of K 0 has the cube of
resolutions of K as two faces, say f0 and f1, corresponding to taking the 0 and
1 resolution at U , respectively. Given sign assignments s0 and s1 for K there is
a sign assignment s for K 0 such that sjfi

D si . Consider the subcomplex Y of
jCKh.K

0I s/j in which the circle(s) corresponding to U are labeled by xC. �e
subcomplex Y is contractible (because eH�.Y / D 0), and there is a co�bration
sequence

jCKh.KI s0/j �! Y �! jCKh.KI s1/j:

�e Puppe construction then gives the desired homotopy equivalence. Now, there
is a map „ W Y ! DNC1 (for an appropriate N ) so that the following diagram
commutes:

jCKh.KI s0/j //

‰.KIs0/
��

Y //

„
��

jCKh.KI s1/j

‰.KIs1/
��

SN // SN [ DNC1 D DNC1 // SNC1 D DNC1=@DNC1:

Speci�cally, the map „ is given by sending the cell in f0 corresponding to e.K/
to SN and the cell in f1 corresponding to e.K/ to DNC1. It follows that the Puppe
map jCKh.KI s1/j ! †jCKh.KI s0/j commutes with ‰.

Finally, changing the ordering of the crossings has the same e�ect as a particu-
lar change of sign assignment, giving invariance under this as well. �is completes
the proof of invariance under the auxiliary choices.
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Next, we turn to Reidemeister invariance. It is convenient in all cases to use
the “sub-complex of quotient complex” trick that we used in �eorem 4.2 (where
the complexes are, in fact, drawn from Sections 3.2.2–3.2.4).

We start with Reidemeister II. SupposeK 0 is obtained fromK by a Reidemeis-
ter II move introducing two new crossings. Let n be the number of crossings inK.
In [20, Proposition 6.3], the �rst and third authors constructed an upwards-closed
subcategory C1 of CKh.K

0/ so that jC1j is contractible. Let C2 denote the com-
plementary, downwards-closed subcategory of CKh.K

0/. A further downwards-
closed subcategory C3 of C2 was constructed so that jC3j is contractible and so that
the complement C4 of C3 is exactly CKh.K/. Indeed, there is a vertex u 2 ¹0; 1º2

so that resolving the two new crossings of K 0 according to u gives K; and C4 is
the sub-cube ¹0; 1ºn � ¹uº � ¹0; 1ºnC2. In particular, after making compatible
choices of framed embeddings for the �ow categories, there is a map Dn ! jC2j

making the following diagram commute (on the nose):

DN

e.K0/

yytt
tt
tt
tt
tt

e.K/

%%❏
❏❏

❏❏
❏❏

❏❏
❏

��

jCKh.K
0/j jC2j
 -jC2j

'oo
=jC3j

' // jCKh.K/j:

Reidemeister II invariance of ‰ follows by replacing e.K/ and e.K 0/ by the
Umkehr maps‰.K/ W jCKh.K/j ! DN=@DN and‰.K 0/ W jCKh.K

0/j ! DN=@DN .
�e proof of braid-like Reidemeister III invariance is essentially the same; only

the de�nitions of the Ci change (see [20, Proposition 6.4]).
Finally, stabilization invariance is slightly easier. Suppose that K 0 is obtained

from K by a positive stabilization. �e proof of [20, Proposition 6.2] gives an
upwards-closed subcategory C1 of CKh.K

0/ so that jC1j is contractible, and
the complementary downwards-closed subcategory C2 of CKh.K

0/ is identi�ed
with CKh.K/. It is immediate from the de�nition of C1 that the image of
e.K 0/ W DN ! jCKh.K

0/j lies inside jC2j; and agrees with e.K/ W DN ! jCKh.K/j.
So, again, ‰ is invariant. �is concludes the proof.

Remark 5.2. A careful reader will observe that in the construction of XKh.K/,
one also made a global choice of ladybug matching (see [20, De�nition 5.6]).
For each of the two choices of ladybug matchings m1 and m2, one gets spectra
X

j

Kh.KImi/ and a transverse invariant ‰.KImi / 2 �
0
s .X

sl.K/

Kh .KImi//. Although

we show in [20, Proposition 6.5] that the spectra Xj

Kh.KIm1/ and X
j

Kh.KIm2/ are
(stably) homotopy equivalent, we do not know if these homotopy equivalences
carry ‰.KIm1/ to ‰.KIm2/. So, whenever we talk about ‰.K/ without refer-
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encing the choice of ladybug matching, it is implicit that we have already made
some (global) choice of ladybug matching.

On the other hand, let T be a transverse link and B D �
�1

i1
�

�2

i2
� � ��

�`

i`
a braid

representing T . �en B� D � �`

i`
� � ��

�2

i2
�

�1

i1
represents a potentially di�erent trans-

verse link T �, called the transverse mirror of T [28]. �e proof of [20, Propo-
sition 6.5] does show that there is a homotopy equivalence between XKh.KIm1/

and XKh.K
�Im2/ that carries ‰.KIm1/ to ‰.K�Im2/.

5.3. Consequences and computable invariants. We conclude by stating some
immediate properties of the cohomotopy re�nement of the Plemenevskaya invari-
ant, and suggesting some further (computable) auxiliary invariants.

Corollary 5.3. �e graded Plamenevskaya invariant Œ 0;1.K/� lies in the im-

age of the co-Hurewicz map �0
s .X

sl.K/

Kh .K// ! eH 0
s .X

sl.K/

Kh .K//. In particular,

if �0
s .X

sl.K/

Kh .K// D 0 then Œ 0;1.K/� D 0.

Corollary 5.4. If the co-Hurewicz map �0
s .X

sl.K/
Kh .K// ! eH 0

s .X
sl.K/
Kh .K// is in-

jective then the cohomotopy Plamenevskaya invariant ‰.K/ is determined by the

graded Plamenevskaya invariant Œ 0;1.K/�. In particular, if Khi;sl.K/.KIZ/ D 0

for all i > 0 then ‰.K/ is determined by Œ 0;1.K/�.

Proof. �e �rst part is immediate since ‰.K/ maps to Œ 0;1.K/� under the co-
Hurewicz map. �e second part follows from the �rst part and the Hopf classi�-
cation theorem (which is dual to Hurewicz theorem; see [33]) which asserts that
if Khi;sl.K/.KIZ/ D eH i .X

sl.K/

Kh
.K/IZ/ D 0 for all i > 0, then the co-Hurewicz

map �0
s .X

sl.K/

Kh
.K//! eH 0

s .X
sl.K/

Kh
.K// is an isomorphism.

It can be checked that Corollary 5.4 applies to all topological knot types up to
11 crossings, and all 12-crossing knots except for 12n749. �at is, for these knots,
Khi;j .KIZ/ D 0 for all i > 0 and all j � sl.K/ (recall sl denotes the maximal
self-linking number). �erefore, for any transverse representative of any of these
knot types, ‰ will be determined by Œ 0;1�. To date, we have not been able to use
the cohomotopy Plamenevskaya invariant ‰ to distinguish transverse links with
the same self-linking number.

We conclude by mentioning two strategies for using the cohomotopy invariant
or the Khovanov homotopy type that could conceivably be useful. Suppose that
K1 and K2 are transverse representatives for the same topological link type.
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Idea 1. �e spectrum XKh.K/ induces stable cohomology operations like the
Steenrod squares Sqk W eH i .X

j
Kh.K/IF2/! eH iCk.X

j
Kh.K/IF2/. Perhaps for some

choice of k, we have Œ 0;1.K1/� 2 im.Sqk/ and Œ 0;1.K2/� 62 im.Sqk/. Or, per-
haps for some choice of k, Œ 0;1.K1/� 2 ker.Sqk/ and Œ 0;1.K2/� 62 ker.Sqk/.
Since the Reidemeister isomorphisms commute with the action of Sqk , either of
these phenomena would distinguish K1 and K2.

In general, computing the Steenrod squares for an arbitrary CW complex (with
exponentially many cells) is not so easy. In [22], it is explained how to compute
the operation Sq2, and this would be a reasonable place to start exploring Idea 1.

Idea 2. Let Cone.‰/ denote the mapping cone of ‰. �en the stable homotopy
type of Cone.‰.K// is a transverse invariant. So, perhaps for some choices ofK1

and K2, the mapping cones of ‰.Ki / distinguish the Ki .

For example, one could try to use the action of Steenrod squares to distin-
guish Cone.‰.K1// and Cone.‰.K2//. In particular, it should be reasonably
straightforward to extend techniques from [22] to compute the operation Sq2 on
Cone.‰.K//.
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