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Equivariant Khovanov-Rozansky homology
and Lee—Gornik spectral sequence

Hao Wul

Abstract. Lobb observed in [8] that each equivariant s{(N) Khovanov—Rozansky homol-
ogy over C[a] admits a standard decomposition of a simple form.

In the present paper, we derive a formula for the corresponding Lee—Gornik spectral se-
quence in terms of this decomposition. Based on this formula, we give a simple alternative
definition of the Lee—Gornik spectral sequence using exact couples. We also demonstrate
that an equivariant s[(N ) Khovanov—Rozansky homology over C[a] can be recovered from
the corresponding Lee—Gornik spectral sequence via this formula. Therefore, these two
algebraic invariants are equivalent and contain the same information about the link.

As a byproduct of the exact couple construction, we generalize Lee’s endomorphism
on the rational Khovanov homology to a natural A™ €V ~!-action on the s[(N ) Khovanov—
Rozansky homology.

A numerical link invariant called torsion width comes up naturally in our work. It de-
termines when the corresponding Lee—Gornik spectral sequence collapses and is bounded
from above by the homological thickness of the s{(~ ) Khovanov—Rozansky homology. We
use the torsion width to explain why the Lee spectral sequences of certain H-thick links col-
lapse so fast.
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1. Introduction

Our goal is to understand the equivariant sI(N) Khovanov—Rozansky homology
defined by Krasner in [6] and its relations to other versions of the Khovanov—
Rozansky homology. Since the algebra is much easier over a principal ideal do-
main, we focus on equivariant s{(N) Khovanov—Rozansky homologies over C[a].

Lobb observed in [8] that each such homology admits a standard decompo-
sition of a simple form. The first result of the present paper is a decomposi-
tion formula for the corresponding Lee—Gornik spectral sequence in terms of
Lobb’s decomposition. Based on this formula, we define a simple exact couple
whose spectral sequence is isomorphic to the corresponding Lee—Gornik spectral
sequence minus some repeated pages.

We also explain how to recover the Z®2-graded C[a]-module structure of the
equivariant s[(N) Khovanov—Rozansky homology from the corresponding Lee—
Gornik spectral sequence. Therefore, an equivariant s[(N) Khovanov—Rozansky
homology over C[a] and the corresponding Lee—Gornik spectral sequence deter-
mine each other and encode the same information of the link. When recovering
the equivariant s[(N) Khovanov—Rozansky homology, a numerical link invariant,
the torsion width, shows up naturally. It determines exactly when the Lee—Gornik
spectral sequence collapses and is bounded from above by the homological thick-
ness of the sI(N) Khovanov—Rozansky homology. It also allows us to explain the
fast collapsing of the Lee spectral sequences of certain H-thick links.

The aforementioned exact couples equip the sl(N) Khovanov—Rozansky
homology with extra differentials. Using these differentials, we define a natural
/\* €N~ action on the s[(N) Khovanov-Rozansky homology, which generalizes
Lee’s endomorphism & on the rational Khovanov homology defined in [7, Sec-
tion 4]. In the process of this construction, we prove the non-existence of “small”
torsion components in certain equivariant s[(N ) Khovanov—Rozansky homologies
over Cla].

In the remainder of this section, we briefly review the background of this work
and state our results. All links and link cobordisms in this paper are oriented.

While all the results in this paper are stated over the base field C, these results
and their proofs remain true over any field of characteristic 0.
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1.1. Equivariant s((/V) Khovanov—-Rozansky homology over C[a]. Following
the grading convention in [5], let x be a homogeneous variable of degree 2 and a
a homogeneous variable of degree 2k, where k is a positive integer. We consider
the following homogeneous polynomial of degree 2(N + 1) in C[x, a]:

L %)
P(x,a) = xNT1 4 Y7 Ajal xNTITk (1.1)
=1

>z

J

whereAl,...,AL%J e C.

For any oriented link diagram D, one can use P (x, a) to specialize Krasner’s
construction in [6] to give a bounded chain complex Cp (D) of graded matrix
factorizations over C[a]. We will review the construction of Cp (D) in more details
in Section 2. For now, recall that Cp (D) comes with

e two Z-gradings: the homological grading and the polynomial grading;
e a filtration: the x-filtration &Fy;

e two differential maps: d,, s from the underlying matrix factorizations and d,,
from crossing information.

The homology H(Cp(D), dpy) is a finitely generated free Cla]-module that in-
herits both Z-gradings and the x-filtration. The equivariant sl{(N) Khovanov—
Rozansky homology of D over C[a] with potential P(x,a) is defined to be the
homology

Hp(D) = H(H(Cp (D). dyy). dy). (12)

which, again, inherits both Z-gradings and the x-filtration.
As a special case of Krasner’s work in [6], we have the following theorem.

Theorem 1.1. [6] Every Reidemeister move of D induces a homotopy equiva-
lence of Cp (D) that preserves both Z.-gradings and the x-filtration. Consequently,
Hp (D), with its two Z-gradings and x-filtration, is invariant under Reidemeister
moves.

Remark 1.2. Strictly speaking, Krasner only proved the invariance under braid-
like Reidemeister moves. But the proof of the invariance under Reidemeister move
II, is very similar and given in [15, Theorem 8.2].

Also, the x-filtration is not mentioned in [6]. But, from its definition in Sec-
tion 2 below, one can see that the homotopy equivalence associated to Reidemeis-
ter moves given in [6, 15] preserve the x-filtration.
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Define
Cn(D) = Cp(D)/aCp(D).

Then Cy (D) is isomorphic to the s[(N ) Khovanov—Rozansky chain complex in [5].
It inherits from Cp(D):

e the homological grading and the polynomial grading,’

e both differential maps, d,,,y and d,.
The homology

Hy(D) = H(H(CN(D).dpy). dy), (1.3)

is the sl(N) Khovanov—Rozansky homology defined in [5]. The invariance of
Hy (D) was established by Khovanov and Rozansky in [5] but can now be viewed
as a corollary of Theorem 1.1.

Corollary 1.3. [5] Every Reidemeister move of D induces a homotopy equiva-
lence of Cy (D) that preserves both the homological grading and the polynomial
grading. Consequently, Hy (D), with its homological grading and polynomial
grading, is invariant under Reidemeister moves.

Proof. 'The standard quotient map Cp (D) — Cy (D) preserves homotopy equiv-
alence. So Corollary 1.3 follows from Theorem 1.1. U

Define
Cp(D) = Cp(D)/(a — )Cp(D).

Then Cp (D) is a bounded chain complex of filtered matrix factorizations over C.
It inherits from Cp(D):

o the homological grading,

o the x-filtration F,

e both differential maps, d,,,y and d,.
We call the homology

Hp(D) = H(H(Cp(D), dpy), dy). (1.4)

the deformed sI(NV) Khovanov—Rozansky homology with potential P (x, 1). This
version of the Khovanov—Rozansky homology was originally introduced by Lee [7]
in the s[(2) case and then by Gornik [3] in the general sI(/N) case. Its invariance
was first established by the author in [13] but can now be viewed as a corollary of
Theorem 1.1.

!'The increasing filtration induced by this polynomial grading is the same as the x-filtration
that Cy (D) inherits from Cp (D).
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Corollary 1.4. [13] Every Reidemeister move of D induces a homotopy equiva-
lence of Cp (D) that preserves both the homological grading and the x-filtration.
Consequently, Hp (D), with its homological grading and x-filtration, is invariant
under Reidemeister moves.

Proof. The standard quotient map Cp (D) — Cp(D) preserves homotopy equiv-
alence. So Corollary 1.4 follows from Theorem 1.1. O

1.2. The Lee-Gornik spectral sequences.

Theorem 1.5. [3, 7] Let D be a diagram of an oriented link L. Then

o The x-filtration F, on the chain complex (H(@p (D),dmy),dy) induces a
spectral sequence {E +(L)} converging to Hp (L) with

Ei(L) =~ Hy(L);

e the x-filtration F on the chain complex (H(Cp(D),d,,r),dy) induces a
spectral sequence {E, (L)} converging to Hp (L) with

Ei(L) = Hy(L) ®c Cla].

Remark 1.6. Only the Ey-pages of {E,(L)} and {E, (L)} depend on the choice
of the diagram D. By Theorem 1.1 and Corollary 1.4, for r > 1, E, (L) and E, (L)
are link invariants.

The spectral sequence {E,(L)} was first observed by Lee [7] in the s[(2) case
and then generalized to the sl(N) case by Gornik [3]. A complete construction
of {E, (L)} can be found in [13]. The construction of { £, (L)} is very similar and
given in Section 3 below2. We call {FZ, (L)} the Lee—Gornik spectral sequence
over C and {E, (L)} the Lee—Gornik spectral sequence over C|a].

1.3. Lobb’s decomposition theorem. Asshown in Section 3 below, the complex
(H(Cp(D),dyyr).dy) is a bounded chain complex of finitely generated graded
free C[a]-module. Lobb [8] observed that this implies (H(Cp(D), d,,r). dy) de-
composes into a direct sum of simple graded chain complexes of the forms

Fig = 0 — Clalli |{s} — 0, (15)

Tims = 0 —> Cla]lli — 1[l{s + 2km} “> Cla]lli |{s} —> 0, (1.6)

2In fact, we construct a somewhat more general spectral sequence. See Theorem 3.5 below.
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where ||i || indicates that the component is at homological degree i and, follow-
ing [5], {s} means shifting the polynomial grading up by s. Therefore, Hp (D) is
the direct sum of a free graded C[a]-module and torsion components of the form
Cla]/(a™). The torsion part of Hp (D) is not yet well understood. But the free part
of Hp (D) is relatively simple and can be explicitly described using the deformed
s[(N) Khovanov—Rozansky homology Hp(D). Theorem 1.7 below is a more pre-
cise formulation of the decomposition of Hp (L) observed by Lobb in [8].

For any oriented link L, denote by H I’; (L) the component of Hp (L) of
homological grading i and by f(} (L) the graded C-linear space associated to the
filtered space (Hh (L), Fy). That is,

Fo(L) = P I (L),
JEZ
where

F (L) = FLHH(L) /T HL(L).

Theorem 1.7. [8] Given an oriented link L and a homological degree i, there is
a (possibly empty) finite sequence

{(mi,17 Si,l)s ceey (mi,n,- ’ Si,ni)} C Z>0 X Z

such that, as graded Cla]-modules,

Hp(L) = (H}p(L) ®c Cla)) & @D(Cla)/ (@™ ) si}. (1.7)
=1

where H }; (L) is component of Hp (L) of homological grading i. Moreover, the
sequence
{(mi,17 si,l)’ LR ] (mi,n,- ’ Si,n,-)}

is unique up to permutation.

A complete proof of Theorem 1.7 is given in Subsection 4.2 below. A byproduct
of this theorem is a decomposition of Hy (L), which we formulate in the following
corollary. See Subsection 4.2 below for its proof.

Corollary 1.8. Using notations in Theorem 1.7, we have

n; ni41
Hyy(L) = 56(L) @ (D Clsiat) @ (€D Ckmivry +si1}).  (18)
=1

=1

where H ]lv (L) is component of Hy (L) of homological grading i.
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1.4. Decompositions of the Lee—Gornik spectral sequences. The first results
of the present paper are formulas for { £, (L)} and {E,(L)}in terms of decomposi-
tion (1.7). To state our results, we need to introduce a non-standard tensor product
“X” of bigraded vector spaces.>

Definition 1.9. Let H = @, ; H"/ and E = P, , EP be two Z®>-graded
C-spaces. Then
HRE = PHR E)*F
a.p
is the Z®2-graded C-space satisfying
HRE = P HY ®c EP.
J+p=a,
q+i—j=p
Next, we define the x-filtration JFx of F; s, Tim.s, 131-,3 = F;s/(a—1)F; s and

Tim,s = Tim,s/(@—D)Tims:

0 — Cla]|li|{s} — 0 if p>s,

FPF s = (1.9)
0 if p <s,
0 — Cla]lli — 1||{s + 2km} N Cla]lli||[{s} — 0
if p > s+ 2km,
FTim.s = P (1.10)
0 — Cla]|li|{s} — O ifs <p<s+2km,
0 if p <s,
~ 0— Cli]| —0 ifp=>s,
G Fy = (1.11)
0 if p<s,
0 Cli — 1] = C|li|| —> 0 if p > s + 2km,
FTims =30 = Cli| = 0 ifs < p<s+2km, (1.12)
0 if p <s.

The filtered chain complexes F; s, T; m,s» 131-,3 and ﬁ,m,s are very simple. Their
spectral sequences are given in the following lemma, which is proved in Subsec-
tion 4.3 below.

3 The definition of “X” in Definition 1.9 comes from the normalization we use in the defini-
tion of the spectral sequence of a filtered chain complex. If one uses a different normalization,
then the definition of “X” needs to change accordingly.
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Lemma 1.10. For any r > 0,

EP9(Fyy) =

EPU(Tim,s) =

EP9(Fis) =

EP4(Tims) =

Note that

o isomorphisms (1.13) and (1.14) preserve the polynomial grading;

Clal{s} ifp=s,

andqg =i —s,
0 otherwise,
(Clal/(@™){s}y if p=s,
q=1-—s,
andr > 2km + 1,
Cla]{s} ifp=s,
qg=1i-—s,

andr <2km,

Clal{s + 2km} if p =15+ 2km,
q=i—1—s—2km,
andr <2km,

0 otherwise,

ifp=sandq =1i—s,
otherwise,
C ifp=s.

q=1-—s,
andr <2km,

C ifp=s+2km,
q=i—1—5—2km
andr < 2km,

0 otherwise.

523

(1.13)

(1.14)

(1.15)

(1.16)

o both{E,(T;ms)} and {Er(f},m,s)} collapse exactly at their Eop;,41-pages;*

e both{E,(F;s)} and {E,(ﬁi,s)} collapse at their Ey-pages;

e say that a spectral sequence ry collapses exactly at its L-page 1 —1 ; but
4 We say th p 1 seq {E}} collap ly at its E;-page if E 2 E: b

E;y, =E,;forallr >0.



524 H. Wu
e we have
Ey(Fis) = C|i|l{s} ¥ Er(Fo,0),
E;(Fis) = C|ill{s} ® E,(Fo,0),

where “R” is the product defined in Definition 1.9 and Cl||i||{s} is the
7.9?%-graded C-space given by

C ifp=iandq =s,

0 otherwise.

(Clli {shH P = {

Combining Lemma 1.10 and the following theorem, we get explicit formulas
for {E,(L)} and {FZ, (L)} in terms of Lobb’s decomposition (Theorem 1.7.)

Theorem 1.11. For an oriented link L, let

fp() =Piew = P 7w

i€z (i,/)€z®2
and, for each i,
{(mi,17 Si,l)s ceey (mi,n,- ’ Si,ni)} C Z>0 X Z

the sequence given in Theorem 1.7. Then, for any r > 1,

Er(L) 2= (Hp(L) R Er(Fo.0) & PP ErTim; 00 (1.17)
i€Z =1

Er(L) = (Hp(L) R Er(Foo)) & P Er(Tim; 1.5:,)- (1.18)
i€Z =1

where isomorphism (1.17) preserves the usually (p,q)-grading of spectral
sequences, while isomorphism (1.18) preserves the usually (p, q)-grading of spec-
tral sequences as well as the polynomial grading of each E}F*? -component.

Theorem 1.11 is proved in Subsection 4.3 below. The key to its proof is that,
when the chain complex (H(Cp (D), dpy). dy) is decomposed into complexes of
the forms F; s and T; ,, 5, the x-filtration decomposes accordingly. This is estab-
lished in Subsection 4.1.
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1.5. Lee-Gornik spectral sequence via exact couples. Let us recall the defini-
tion of exact couples of Z®2-graded C-linear spaces.

Definition 1.12. An exact couple of Z®2-graded C-linear spaces is a tuple (4, E,
f. g, h) such that
e Aand E are Z®2-graded C-linear spaces,

h
o A i) A, A 5 Eand E > A are homogeneous homomorphisms of

7®2-graded C-linear spaces,

o the triangle

DN

E

is exact.

Any exactcouple (A, E, f, g, h) has a derived couple (4’, E’, f’, g’, "), which
is itself an exact couple. We will review the definition of the derived couple in
Subsection 4.4. For now, we just point out that

d:=goh

is a differential on E, and E’ is defined to be the homology of (E, d).
Starting with an exact couple (AW, EM | £ oM ;M) one can inductive
define a sequence
{(A(r), E(r), f(r), g(r), h(r))}

of exact couples, where (4", E® £ ¢ p()y is the derived couple of
(AC—D EU=D =1 or=1) pr—1)) T et
40 = g o o),

Then {(E™, d ™)} is the spectral sequence induced by (A, ED | £ o p1)

Now let D be a link diagram. Recall that Cxy(D) = Cp(D)/aCp(D).
Denote by 7, the standard quotient map Cp(D) — Cy(D), which induces a
homomorphism

H(Cp(D), dpy) =2 H(Cn(D), dmy).



526 H. Wu

But H(Cp(D), dy,r) is a free Cla]-module (see for example Corollary 3.3 below).
So there is a short exact sequence

0 —> H(Cp(D),dmy) —> H(Cp(D),dms) ~> H(CN(D), dps) —> 0,

which induces an exact couple

Hp(D) . Hp(D) .

Hy (D)

where A is the connecting homomorphism from the long exact sequence construc-
tion, which is homogeneous with bidegree (1, —2k).

Theorem 1.13. Denote by {(E~ )(D), d ")} the spectral sequence induced by the
exact couple

(AMV(D), EV(D), fV, ¢ 1)y = (Hp(D), Hy(D), a, a4, A).

Then

- ~ 14-P—9
EJ)(D) = EZRY (D),

where {E, (D)} is the Lee~Gornik spectral sequence of D over C given in Theo-
rem 1.5.

The proof of Theorem 1.13 in Subsection 4.4 below is straightforward.
We simply compute the sequence of derived exact couples for each component
in decomposition (1.7) and compare it to Lemma 1.10.

Remark 1.14. From Theorem 1.13, it may seem like { £} is missing a lot of pages
of {Er (D)}. But, by Lemma 1.10 and Theorem 1.11, one can see that

Enkm+1(L) = Eggmin(L) = -+ 2 Egggminy (L)

for any link L and any non-negative integer m. So the missing pages are just
identical copies of pages of { E™}.

1.6. A natural A* CV~1-action on Hy (L). Foralink L, we take a closer look
at the exact couple (Hp (L), Hy (L), a, m4, A) defined in the previous subsection.
It equips Hy (L) with a differential () = 7, o A. Note that the construction of
the above exact couple depends on a particular homogeneous polynomial P (x, a)
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of form (1.1). In this subsection, we temporarily bring P back in the notation of
this differential on Hy (L) and write d 1()1) instead of d (V.
We consider the polynomial

Pi(x,b;) = xN Tt 4 bixt, (1.19)

where 1 < i < N and b; is a homogeneous variable of degree 2N + 2 — 2i.
Applying the exact couple constructed in Theorem 1.13 to P;, we define on Hy (L)

a homogeneous differential map §; := d 1(,1) of homological degree 1 and polyno-
mial degree 2i — 2N — 2.
We prove that §;, ..., 8xy—; give a natural /\* CN-1.action on Hy (L) and this

action can not be extended by adding other d I(,l)’s. The following is a lemma
needed in the construction, which provides some control on how small a torsion
component in Lobb’s decomposition can be.>

Lemma 1.15. Let a be a homogeneous variable of degree 2k, 2 < m < L%J and

L%
P(x,a) — xN—l—l + Z )&iaiXN_l—l_ki,
i=m
where Ay, . . ALNJ are scalars. Then, for any link L, we have m;; > m for all

i,lin decomposmon (1.7) of Hp(L). That is, Hp(L) does not contain torsion
components isomorphic to any of Cla]/(a), ..., C[a]/(@™ ).

Theorem 1.16. Let L be any link. As endomorphisms of Hy (L),
(1) éy =0;
(2) 6;6; +06;6; =0foranyl1 <i,j <N —1;
(3) each §; is natural in the sense that it commutes with homomorphisms of
Hy (L) induced by link cobordisms;
N . .
4) for a polynomial P(x,a) = xVN+! + Z}szlJ Ajal xNT1=ik with dega = 2k
and A; € C,
6)) 0 lfA1=00rk=1,
dp’ =
AbN+1—k otherwise.

Let V be a 7.9%-graded (N — 1)-dimensional C-linear space with a homoge-
neous basis {v1,...,vy—_1} such that v; has bidegree (1,2i —2N — 2). Then the
mapping v; + 8; induces a natural 7.2?-grading preserving action of \* V on
Hy(L).

5 Corollary 1.22 provides some control on how large a torsion component in Lobb’s decom-
position can be.
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Remark 1.17. In the case N = 2, we get just one differential ; on the rational
Khovanov homology H>(L). This §; is essentially the differential ® in [7, Sec-
tion 4].

Question 1.18. Are there more relations between 81, . ..,5ny—17 That is, does the
above \* V -action factor through a quotient ring of \* V?

In Subsection 5.5 below, we compute Hp, (L) for the closed 2-braid L in Fig-
ure 1 and observe that, on Hy (L), the differentials §;, ..., 8y are non-zero, but
8;8; =0forany 1 <i,j <N -1

OO

L

Figure 1. An example.

1.7. The torsion width. In turns out that one can recover the Z®2-graded module
structure of Hp(L) from {E, (L)} using Lemma 1.10 and Theorem 1.11.
We describe an algorithm that does this in Subsection 1.8 below. Roughly speak-
ing, we look at the pages of {E,(L)} backward starting from Eoo(L) to recover
first the free part of Hp (L) and then the torsion components from large to small.
To do this, we need to know where to start, that is, {E (L)} collapses at what page.
For this purpose, we introduce a numerical link invariant called torsion width.

Definition 1.19. Let L be an oriented link. Using the notations in Theorem 1.7,
we define the torsion width of Hp (L) to be®

twp(L) =max{m;; |i € Z,1 <[ <n;},
which, by Theorem 1.7, is a link invariant. Equivalently, one has

twp(L) = min{m | m € Z>o, a™ Hp(L) is free}.

6 We use the convention that twp (L) = 0 if Hp (L) is a free C[a]-module.
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Corollary 1.20. Let L be an oriented link with torsion width twp (L) = w, and
D a diagram of L. Assume D is not a union of disjoint circles embedded in the
plane. Then both spectral sequences {E, (L)} and {Er (L)} from Theorem 1.5 col-
lapse exactly at their Eyyy,+1-pages, where 2k = dega. Consequently, {EM(L)}
collapses exactly at its E®+V_page.

Proof. From Lemma 1.10, we know that {E,(F; 5)} and {E r(ﬁi, s)} both collapse
exactly at their Ey-pages, while {E,(Tims)} and {E,(Tims)} both collapse
exactly at their Epg,,+1-pages. So this corollary follows from Theorem 1.11. [

Next we define the thickness of the sI(N) Khovanov—Rozansky homology.

Definition 1.21. For an oriented link L, denote by H};j (L) the component of
Hpy (L) of homological degree i and polynomial degree j. Define the sl{(N)
homological thickness hty (L) and the local s[(N) homological thickness lhty (L)
of L to be

by (L) = max {1+ 3120 + 1) — @i + )] | Hif (L) # 0,

iy (1.20)
HZ(L) # 0},

Tty (L) :max{h;jz

| there existsi € Z,
(1.21)

such that Hi/' (L) # 0, HiFM2(L) # o}.

Of course, hty (L) is a naive generalization of the homological thickness of
the rational Khovanov homology. Note that lhty (L) is not always defined. For
example, lhty (unknot) is not defined. Even when lhty (L) is defined, it is not
clear whether it is always non-negative. But, from their definitions, one can see
that Ihty (L) < hty (L) if lhty (L) is defined. See [2, Figure 24 and Table 2] for a
knot K; satisfying lht; (K1) = 3 < htp(K;) = 4.

Corollary 1.22. We have
k-twp(L) < hty (L),

and, if
Hy(L) % Hp(L) == P FHL(L),
i€Z
then Ihty (L) is defined and
k-twp(L) <lhty (L),

where 2k = dega.
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Proof. By Corollary 1.8, each torsion component (Cla]/(a™))|i||{s} of Hp(L)
generates a pair of 1-dimensional components of Hy (L):

Cli{s} and Clji — 1[{2km + s

Corollary 1.22 follows from this observation. O

1.8. Recovering Hp (L) from {E (" (L)}. In this subsection, we give an algo-
rithm to recover the Z®2-graded C[a]-module structure of Hp(L) from the
7.®%-graded C-linear space structure on pages of the Lee—Gornik spectral
sequence over C. We write down the algorithm in terms of {£) (L)} to have
slightly simpler notations.

From page EM(L) = Hy(L), one can find the sI(N) homological thickness
hty (L) of L. By Corollary 1.22, we know that

htNk(L) J ‘

twp(L) <t := L

Soa®Hp(L) is a free Cla]-module and, by Corollary 1.20, {ED(L)) collapses at
or before the page £+ (L).

Now consider the pages (EOL) |1 <r <141 By Lemma 1.10 and
Theorems 1.11, 1.13, we observe the following.

1. Start with ECTD (L) =~ E©)(L). Note that

e cach free component Cla]||i ||{s} of Hp (L) contributes a 1-dimensional
component C||i [|{s} to E©®(L);

e torsion components of Hp (L) contribute nothing to £©(L).
So we can recover all the generators of the free part of Hp (L) from E@tD(L).

2. Next look at E®(L):

e cach free component Cla]||i ||{s} of Hp (L) contributes a 1-dimensional
component C||i ||{s} to E© (L);

e cach component Cla]/(a?)||i ||{s} of of Hp (L) contributes a component
Cllill{sy @ C|li — 1|[{2kt + s} to ED(L);

e for m < t, a component Cla]/(a™)|i||{s} of of Hp(L) contributes
nothing to £E@(L).
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Since we know all the generators of the free part of Hp (L) from the previous
step, we can recover all generators of torsion components of Hp (L) of the
form Cla]/(@®)[|i[|{s}.

3. Forany 1 <r < t, assume we have recovered all generators of free compo-
nents and torsion components of the form Cla]/(a”™)|i ||{s} of Hp (L), where
r 4+ 1 <m < t. Look at the page E)(L):

e cach free component Cla]||i ||{s} of Hp (L) contributes a 1-dimensional
component C||i [|{s} to E“)(L);

e if m > r, each component Cla]/(a™)||i||{s} of of Hp(L) contributes
Cllill{sy @ Clli — 1|[{2km + s} to E(L);

e for m < r, a component Cla]/(a™)||i||{s} of of Hp(L) contributes
nothing to £ (L).

So we can recover all generators of torsion components of Hp (L) of the form
Clal/(a)li[[{s}.

The above algorithm allows us to inductively recover the Z®2-graded
C[a]-module structure of Hp(L) from {E)(L)}. In particular, we have proved
the following theorem.

Theorem 1.23. Hp(L) and {E™ (L)} (or, equivalently {Er (L)}) determine each
other and encode the same information of the link L.

Remark 1.24. With minor language changes, all the above theorems their proofs
generalize to the colored s[(N) link homology defined in [14, 15, 16].

1.9. Fast collapsing of the Lee spectral sequence and other observations.
As we have seen, each torsion component (Cla]/(a™))||i||{s} of Hp (L) in Lobb’s
decomposition contributes a 2-dimensional direct sum component

Cli|{s} ® Cl|li —1||{2km + s}

to Hy(L). Based on this, we make several observations.

First, the pairing of C|i|[{s} and C||i — 1||[{2km + s} is a generalization of
[7, Theorem 1.4], which states that, except those with homological degree 0, all
homogeneous generators of the rational Khovanov homology of an alternating
knot appear in pairs of bi-degree difference (—1,4). Here, we use the torsion
width to slightly generalize this theorem.
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Corollary 1.25. Suppose N = 2, dega = 4 and P(x,a) = x> —ax. Assume that
lhty (L) < 3 for a link L. Then twp(L) < 1. Consequently, {EM (L)} collapses
atits EW-or E (2)-page. Moreover, there exists a (possibly empty) sequence of
pairs of integers {(i1, 1), . . ., (in, Sp)} such that

Hy(L) = Hp(L) & @ (Clirll{si} @ Cllir — 1| {51 + 4}).
=1

Proof. If Hp(L) is a free C[a]-module, then twp (L) = 0. So {E (L)} collapses
atits EM-page and H,(L) = Hp(L).

Now assume Hp(L) has torsions. Then twp(L) > 1 and, by Corollary 1.8,
Hy(L) ¢ HTCP(L). Thus, by Corollary 1.22, we have 2twp(L) < lhtp(L) < 3.
So twp(L) < 1. This shows that, in this case, twp(L) = 1 and, therefore,
{EW (L)} collapses at its E®-page by Corollary 1.20. The decomposition of
H, (L) follows from Corollary 1.8. U

Remark 1.26. In [11], Shumakovitch observed that, in all the examples he knew,
the Lee spectral sequence collapses at its £)-page, even for H-thick links. Corol-
lary 1.25 explains why the Lee spectral sequences of some H-thick links collapse
so fast.

For example, consider the H-thick knot K in [2, Figure 24]. From [2, Table 2],
one can see that lht,(K;) = 3 and ht;(K;) = 4. By Corollary 1.25, {ED (K}
collapses at its E®-page.

Next, we look at the two ends of the sI(N) Khovanov—Rozansky homology of
a knot.

Corollary 1.27. Fix a positive integer N. For a knot K, define

hmin = min{i | Hy (K) # 0}
and
hmax = max{i | H]lv(K) 75 0}.

Moreover, for a fixed i, define

ghin = min{j | Hy' (K) # 0}
and
gl = max{;j | Hy' (K) # 0},

where H;\}j (K) is the component of H Ilv (K) of polynomial grading j.
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(1) If hyin < O, then

dime Hlmn(K) < dime Himn ' (K)  and  glmn > ghmnt1,

(2) If hpmax > 0, then

dimg Hp™ (K) < dimg Hp™ Y (K) and  ghmx < ghmo=1,

(3) If hmax = hmin = 0, then
Hy(K) = Fp(K)
forany P = P(x,a) of form (1.1).
Proof. For Part (1), consider the polynomial
Pi(x,by) = xV T 4 byx.

By [3, Theorem 2], H p, (K) is supported on homological degree 0. Therefore,
the free part of Hp, (K) is supported on homological degree 0. Since hpin < 0,
H]}\’,min (K) comes entirely from torsion components of Hp, (K) at homological
degree hmin + 1. Part (1) follows from this observation.

The proof of Part (2) is very similar and left to the reader.

For part (3), note that, if Hp (K) has torsion components, then Hy (L) should
occupy at least two homological degrees. But fipmax = hmin = 0. So Hp(K) is
free. Then Part (3) follows from Corollary 1.8. O

Finally, we consider the equivariant s[(N) Khovanov—Rozansky homology of
closed negative braids.

Corollary 1.28. Let P(x,a) be any polynomial of form (1.1). Suppose the link L
is the closure of a negative braid, then

Hp(L)=0

and HY (L), H3(L) are both free Cla]-modules.
In particular, if a knot K is the closure of a negative braid, then

Hp (K) = Hp (K) =0,

where
Pi(x,by) = x4+ byx

and by is a homogeneous variable of degree 2N .
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Proof. By the definition of Hy (L) in [5], we have CL (L) = 0if i < 0. So
H]iv (L) = 0if i < 0. This implies that Hg (L) is free. In [12, Theorem 5], Stosic
proved that Hy (L) = 0, which implies that H5(L) =~ 0 and H3(L) is a free
C[b1]-module.

For the knot K, recall that the free part of Hp, (K) is supported on homological
degree 0. So HI%I (K) being free means it vanishes. O

1.10. Organization of this paper. We review the constructions of Hp (L), E, (L)
and E, (L) in Sections 2 and 3. Then we prove Theorems 1.7, 1.11 and 1.13 in Sec-
tion 4. After that, we define the /\* CN—1_action in Section 5.

We assume the reader is somewhat familiar with the construction of the s[(N)
Khovanov-Rozansky homology in [5].

Acknowledgments. The author would like to thank Alexander Shumakovitch for
very interesting discussions.

2. Definition of Hp

In the remainder of this paper, N is a fixed positive integer with N > 2. We re-
view the construction of equivariant s[(N ) Khovanov—Rozansky in a more general
setting, which is needed in Section 5. In the current section and Section 3 below,

P =P(x,a1,...,ap) = xN+1 + xF(x,ay,...,an), 2.1

where x is a homogeneous variable of degree 2, a; is a homogeneous variable of
degree 2k;, and F(x,ay,...,a,) is ahomogeneous element of C[x, ay, ..., a,] of
degree 2N + 2 satisfying F(x,0...,0) = 0.

2.1. Graded and filtered matrix factorizations. Let

R =Clx1,...,xm,a1,...,an],
where x1, .. ., x,, are homogeneous variables of degree 2 and a; is a homogeneous
variable of degree 2k; for 1 < j < n. We endow two structures on R:

e The polynomial grading with degree function deg given by

n m n m

deg(l_[afj l_[xll') = szjpj —I—ZZI,'.

j=1 i=1 j=1 i=1
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o The x-filtration
0=9,'RCFRC---CIF'RC--

such that

n m
(Ha‘fj fo’) € FLR
i=1

i=1
if and only if Y/~ | 2/; < n. The degree function deg, of Fy is given by
n m m
deg, (l_[ af’ . Hxil") = ZZli.
j=1 i=1 i=1
Unless otherwise specified, when we say an element is homogeneous, we mean it

is homogeneous with respect to the polynomial grading.

Definition 2.1. Let M be an R-module. We say that M is a graded R-module
if it is endowed with a grading M = €, M; such that, for any homogeneous
element r of R, rM; C M, ges,. We say that M is an x-filtered R-module if
it is endowed with an increasing filtration F such that, for any element r of R,
FFM C FHET

Definition 2.2. Let w be a homogeneous element of R with degw = 2N + 2.
A matrix factorization M of w over R is a collection of two free R-modules M,
M and two R-module homomorphisms

d®: M° - Mm', d':Mm'— M°,
called differential maps, such that
d'd® =w-idyo and d%' = w-idy .

We usually write M as
do d!
M° — M' = MO.

We call M graded if M°, M are graded R-modules and d°, d' are homoge-
neous homomorphisms with

degd® = degd' = N + 1.
We call M x-filtered if M® and M! are x-filtered R-modules and

deg, d° deg,d' < N +1.
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In the definition of Hp, we use only Koszul matrix factorizations defined
below.

Definition 2.3. Let » and ¢ be homogeneous elements of R with deg (bc) =
2N + 2. Denote by (b, ¢) g the Koszul matrix factorization

R RN +1—degh) > R,

where b, ¢ act on R by multiplication and “{s}” means shifting by s both the
polynomial grading and the x-filtration” of R. This matrix factorization of bc is
both graded and x-filtered.

For homogeneouselements by --- , by, c1,- -+, ¢; of R withdeg(b;c;) = 2N +2,
i =1,---,1,denote by

bl C1
b2 Co
by ¢ /R

the Koszul matrix factorization

(b1,c1)R ®R (b2, ¢c2)R ®R - QR (b1, 1) R.

This matrix factorization of w = Zf.:l bic; is again both graded and x-filtered.
When R is clear from context, we drop it from the notation.

Definition 2.4. As a free R-module, (b, c)r has a basis {1¢, 11}, where 1, is the
“1” in the copy of R with Z,-grading e. More generally, the tensor product

bi

b2 Co

. = (b1.c1)R ®R (b2, c2)R ®r -+ ®r (b1, c1)R
by ¢ /R

7That is, in R{s},

and
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has a basis
{118 = (e1.....&1) € Zh)},

where
1§ = 181 R 181-

We call {1;} the standard basis for this Koszul matrix factorization.
Note that

e {1;} is a homogeneous basis with respect to the polynomial grading;
e degl; = deg, 1; for every &;

e deg, (3 - fz1z) <! if and only if deg, f; <[ — deg, 1; for every &.
2.2. The matrix factorization associated to a MOY graph

Definition 2.5. A MOY graph T is a finite oriented graph embedded in R? with
the following properties:

(1) edges of T are divided into two types: regular edges and wide edges;
(2) vertices of I are of two types:

e ENDPOINTS: 1-valent vertices that are endpoints of regular edges,
e INTERNAL VERTICES: 3-valent vertices with

— either two regular edges pointing inward and one wide edge point-
ing outward,

— or two regular edges pointing outward and one wide edge pointing
inward.

We say that I' is closed if it has no endpoints.
A marking of T" consists of

(1) afinite set of marked points on I" such that

e every regular edge contains at least one marked point, no wide edges
contain any marked points,

e every endpoint of I' is marked, none of the internal vertices are marked,;

(2) an assignment that assigns to each marked point a different homogeneous
variable of degree 2.
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In the rest of this subsection, we fix a MOY graph I' and a marking of T.

Assume xi, ..., X, are the variables assigned to the marked points of I'. Define
R = C[x1,...,Xm,ai....,ay], where a; is a homogeneous variable of degree
2kj for1 < j < n. Let P(x,ay,...,a,) be the homogeneous polynomial given
in (2.1).

Now cut I' at all the marked points. This cuts I into a collect of simple marked
MOY graphs I'y, ..., I'; of the two types in Figure 2.

Xp Xi

Xp— 5 Xj }<
Xq Xj

Li; ¥4 Fi,j; D.q

Figure 2. Pieces of I'.

Define P - )
Xi,ai,....ap) — P(xp.ai,...,a,
Xi — Xp
Since P(xi,a1,...,an) + P(x;,a1,...,a,) is symmetric in x; and x;, there is a

unique polynomial G(X,Y,a,...,a,) satisfying

G(xi +xj,x;xj,ai1,....a,) = P(x;j,ar,...,ap) + P(xj,ay,...,an).

Define

() _ G(xi +xj,xixj,a1,...,an) — G(xp + Xq, XiXj, A1, ..., Ap) 2.3)

L.J; P4 Xi +Xj — Xp — Xq o

(2) _ G(xp + xg.xiXj,a1,....an) — G(xp + Xq, XpXq.a1,...,0n) 2.4)

i P XiXj — XpXg T
Note that v;; ;, ul(lj) P’ ufzj) . are all homogeneous elements of R.
Definition 2.6. We set

Cp(Li; p) := (vi; p, Xi — Xp)R, (2.5)

(1)
u; Xi +Xj —Xp — Xq
Cr(Tii:pa)i=| 071 —13, 2.6
P( t,J,p,q) u(z) s oy -1 (2.6)
i,7; p.q 1240 pq R

Cp(I') :=Cp(I'1) ®r Cp(I'2) ®r --- ®r Cp(I7). (2.7)
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Note that

(1) Cp(I; p) is a Koszul matrix factorization of

w;; p = P(xi,ar,....an) — P(xp,ai,...,as);
(2) Cp(I'y,j; p,q) is a Koszul matrix factorization of

Wi j; pg = P(xi,ar,....an) + P(xj,a1,...,an)

— P(xp.ai,....an) — P(xq,a1,...,an);

(3) Cp(T') is a Koszul matrix factorization of

w = Z :I:P(.xi,aly---san)y

x;is assigned
to an endpoint

where the sign is positive if I" points towards the corresponding endpoint and
is negative if I" points away from the corresponding endpoint. In particular,
w = 0if T is closed.

Definition 2.7. For a closed MOY graph I, define

(1) Hp(T) to be the homology of Cp (I"), which inherits the polynomial grading,
the x-filtration and the Z,-grading of Cp(I"),

(2) Hn(T) to be the homology of Cy (I') = Cp(I')/(a1, .. .,an)-Cp(I"), which
inherits the polynomial grading and the Z,-grading of Cp (I'),

(3) Hp () to be the homology of Cp(I') = Cp(I')/(a1—1,...,an—1)-Cp(I),
which inherits the x-filtration and the Z,-grading of Cp (I).

2.3. The chain complex associated to a link diagram. A marking of a link
diagram D consists of

(1) afinite collection of marked points on D such that none of the crossings are
marked and every arc between two crossings contains at least one marked
point,

(2) an assignment that assigns to each marked point a different homogeneous
variable of degree 2.

Let D be an oriented link diagram with a marking. Assume x1, . .., X, are the
variables assigned to the marked points of D. Define

R =Clx1,...,xm,a1,...,an],

where a; is a homogeneous variable of degree 2k;. Cut D at its marked points.
This cuts D into simple pieces Dy, ..., D; of the types shown in Figure 3.
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X Xi X Xj
s 2, 1
i p Cij,Lj; P Ci.js pa
Figure 3. Pieces of D.
We define the chain complex Cp (I ,) to be
Cp(Ti; p) = 0— Cp(Ti; p)|I0] — O, (2.8)

where the term “Cp(I';; ,)” on the right hand side is the Koszul matrix factor-
ization defined in Definition 2.6 and “||0||” means this term is at homological
degree 0.

To define Cp (c.jE ), we need the following lemma.

i,j; p.q
Xp— 5 X X0 Xp. Xi
-
Xgeo » Xj X1 Xq}< Xj
Li; puTly; g Lij; pa

Figure 4. Homomorphisms yo and x;.

Lemma 2.8. [5, 6, 15] Up to homotopy and scaling, there is a unique homotopi-
cally non-trivial homomorphism

Xo: Cp(Li; p ULy g) — Cp(Lij; pg)
with
deg yo = 1.

And, up to homotopy and scaling, there is a unique homotopically non-trivial ho-
momorphism
x1: Cp(Lij; pg) — Cp(Li; p ULy g)
with
deg y; = 1.
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Moreover, these homomorphisms satisfy
deg, yo =deg, y1 =1
and, up to scaling by non-zero scalars,
X10 xo = (xp — X;)idcp (v, Hury, )
Yoo x1 = (xXp —xj)idep ;. po) -

Proof. The uniqueness of yo and y; is proved in a more general setting in [15,
Lemma 4.13]. Here, we only recall the constructions of y¢ and y; given by Krasner
in [6], which is a straightforward generalization of the corresponding construction
by Khovanov and Rozansky in [5].

Recall that

vi;p X —Xp
CP(Fi;pUFj;q)=( _ _ )
Vj;q Xj —Xq/R

B R d° [R{1—n}] a R
- [R{z—zn}} 7 [R{l —n}} 7 [R{z—zn}]

where
doz(vi;p xj_xq)
Visg —Xi+Xp)
dl = (xi—xp xj—xq)
Vji q —vi;p )
and that
, Xi + Xj —Xp — Xgq
CP(Fi,./'; p,q) = J Pa -1}
t] D.q XiXj — XpXq R
R{—1} 80 R{—n} 8_1> R{—1}
R{3 —2n} R{2—n} R{3—-2n}|
where
l ] pg —Xi —Xj + Xp + Xq
s (x, +Xj—Xp—Xg XiXj — XpXgq
o (1)
,J Pq Ui pa
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In the above explicit forms of Cp(I';; , U Tj. ;) and Cp (I, p,q), define
x0: Cp(Li; p U T g) — Cp(Tij; pg)

by the matrices

and define
x1: Cp(Tij; pg) — Cp(Li; p U Ty )

by the matrices

1 0
0 _
= (_Z Xp x,)
1 x;
1 _ J
where 0 o
__(2) Ui jspg T XU pg —Visa
2= "Uj pa + .
e Xi — Xp
It is straightforward to verify that yo and y; satisfy all the properties in the lemma.
O
We define
Cp (CiJ,Fj; pa)
X
=0— Cp(Tij: p)ll = H{N} = Cp(Ti; p U Ty ) O{N — 1} — 0,

(2.9)

Cr(¢ij; pg)

x
=0 — Cp(Ty; p UT); )OI = N} => Cp(Tij: p.) I1I{-N} — 0.

(2.10)

Definition 2.9. We set
Cp(D) = Cp(D1) ®r -+ ®r Cp(Dy),
where Cp (D;) is defined in (2.8), (2.9) and (2.10).
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We call the resolution

+

Cijspag ™7 Ly p Ul g

a 0-resolution and

+

Cijipa ™ Lij; pa

a (£1)-resolution. If we choose a 0- or (£1)-resolution for every crossing in D,
then we get a MOY graph, which we call a MOY resolution of D. Of course, the
marking of D induces a marking of each MOY resolution of D. Let MOY(D)
be the set of all MOY resolutions of D. Denote by w the writhe of D. For each
I' e MOY(D), let

(") = (# of (+1)-resolutions in I') — (# of (—1)-resolutions in I').
Then, as Z®2-graded R-modules,

Cr(D)= @ CrMI-aMHN - DHw +A(D)}. (2.11)
remMoy(D)

Note that every MQOY resolution I' of D is a closed MOY graph. So Cp(T")
is a Koszul matrix factorization of 0 and, therefore, a Z,-graded chain complex.?
Thus, the differential maps of the matrix factorizations of the MOY resolutions of
D give rise to a differential map d,,,y on Cp (D) satisfying:

o d,r is homogeneous with degd,,, s = deg, dpy = N + 1;
e d, s preserves the homological grading.

The differential maps of Cp(D;) give rise to a differential map d, of Cp(D)
satisfying:

e d, is homogeneous with degd, = deg, d, = 0;
e d, raises the homological grading by 1.
As in (1.2), Hp(D) is defined to be
Hp(D) = H(H(Cp(D).dny).dy).

which inherits both Z-gradings and the x-filtration of Cp (D). The invariance of
Hp (D) is stated in Theorem 1.1.

8 Cp (D) and H p (D) both inherit this Z,-grading. But this Z,-grading on Hp (D) is always
pure and equal to the number of Seifert circles of D. So, unless otherwise specified, we do not
keep track of this grading.
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3. The Lee—Gornik Spectral Sequence
Now we review the construction of E,(L) and construct E,(L). In this section,

P = P(x,ai,...,ap) is the polynomial defined in (2.1) and Hp is the corre-
sponding equivariant sI(N) Khovanov—Rozansky homology over Clay, ..., ay].

3.1. Structure of Hp(I'). Let I' be a closed MOY graph with a marking.

As before, assume xy, ..., x,, are the variables assigned to the marked points of
I' and define R = C[xy,...,Xp.ay,...,a,], where a; is a homogeneous variable
of degree 2k;j. P(x,ai....,ay) is the homogeneous polynomial given in (2.1).

If we replace every wide edge in I" by a pair of parallel regular edges, that is,
change I'; ;; p 4 to Ty, , U T, 4 in Figure 4, then we change I' into a collection of
oriented circles embedded in the plane. Denote by ¢ the total rotation number of
this collection and call ¢ the rotation number of I". Furthermore, denote by Hp (")
(resp. ﬁf, (I")) the component of Hp(I") (resp. Hp (I")) of Z5-grading & and by
Hy?(T) the component of Hy (") of Z,-grading ¢ and polynomial grading p.

Lemma 3.1. [3, Proposition 3.2] As C-linear spaces,
HETY(D) =0, (3.1)

FPH(T)/FP HE(T) = HGP(T). (3.2)

See for example [13, Proposition 2.19] for a complete proof of Lemma 3.1.
Slightly modifying this proof, we get Lemma 3.2, which is mentioned in [17] with-
out proof. Since certain technical aspects of its proof are needed later on, we prove
Lemma 3.2 in details here.

Lemma 3.2. As graded Clay, .. ., ay]-modules,
HEP'(T) =0, (3.3)
FLH(T)/FL ' HE(T) = HyP(I') ®¢ Clay. . . .. an). (3.4)

Proof. Note that Cp(T) is also a graded C[x1, ..., x;]-module and F, is the in-
creasing filtration induced by this grading structure. We call the grading of the
graded C[xy, ..., x]-module Cp(T") the x-grading of Cp(I"). Denote by dy and
dj the two differential maps of the matrix factorization Cp(I"). We decompose
do and d; into sums of homogeneous components with respect to the x-grading.
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That is,
do = Zd(l) (3.5)
N
dy =Y a, (3.6)
1=0

where d 1(1) and dél) are R-module homomorphisms and satisfy:
e they are homogeneous with respect to both the polynomial grading and the
x-grading,
o degd"’ =degd"’ = N +1,deg, d\" = deg, d’ = N +1-2I.
Recall that Cp (I") is a matrix factorization of 0. So dy o d; = 0 and d; o dy = 0.

Comparing the homogeneous parts with respect to the x-grading, one gets that,
forany [ > 0,

1
Y dPoa™ =0, (3.7)

i=0
l . .
Y dPody™ =0, (3.8)

where we use the convention that déi) = 0 and dl(i) =0ifi > N.
By the definition of Cy (I"), there is an isomorphism of Z,-periodic chain com-
plexes of Clay, ..., a,]-modules

0) d(O)
Cn(T) ®¢ Clay.....a,] = CH() = CH(T) — C(T).

that preserves the Z,-grading, the polynomial grading and the x-grading. So there
is an isomorphism of C[ay, ..., a,]-modules

Hy(T) ®c Clay, ....an] = H(Cp(I),d®) (3.9)

preserving the Z,-grading, the polynomial grading and the x-grading.

Now we are ready to prove that H;“(F) = 0. From [5], we know that
HEPY(T) = 0. By (3.9), this means H!(Cp(T'), d @) = 0. That is, Im(d\”) =
ker(d (0)1) Let o be any element in ker d.4; that is homogeneous with respect
to the polynomial grading with degae = g. Decomposing « according to the
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i—_ o0 @1, Where o is homogeneous with respect to both
the polynomial grading and the x-grading with degoy = g, deg, oy = g — 2.
Of course, oy = 0 for / < 0 and/ > 1 since the x-grading is bounded below.
Next, we construct inductively a sequence {;}>,, C Cz(I") such that

x-grading, we geta = > 52

(1) By =0forl < 0;

(2) each B; is homogeneous with respect to both the polynomial grading and the
x-grading;

(3) degpy =g— N —1landdeg, By =g—2/ - N —1;
4) o = Zf\’:o ds(i)ﬁl_i forall/ € Z.

Again, since the x-grading is bounded below, 8; = 0 for [ > 1. Note that
{B1}=L, is the zero sequence and satisfies conditions (1-4) for / up to —1. Now
assume that, for some / > 0, there is a sequence {f;}' 7. satisfies conditions (I-
4)yup to ! — 1. Let us construct §;. In the equation d,+1¢ = 0, compare the

homogeneous parts with respect to the x-grading of x-degree N + 1 4+ g — 21.
This gives us

N
Zd(ﬂ“l -J
j=0
= ds(f)l—)lal + Zd(])lal —j
N ) N .
= ds(?ir)lal + Z ds(—Jf—)l st(l)ﬂl—j—i
j=1 i=0
2N q
0
=dQ + Y (Zd(f) dl- f>)
qg=1 j=1
N
(by 3.7)and 3.8)) = d Qo = > d,d@pi_,

N
= ds(?l—)l( -y ds(q)ﬂl—q)-
g=1
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So

N
o = Z A9, e ker(d?)) = Im(d®).

q=1
Therefore, there is a 8; satisfying conditions (1-3) such that
N
A0 ==Y d9B,.
qg=1

Thus, {B;}. ., satisfies conditions (1-4) above. This completes the inductive con-
struction. Note that 72 ___ B; is a finite sum and therefore a well defined element
of Cp(I'). We have

So o € Imd,. This shows Im(d;) = ker(d.+1) and therefore H;“(F) = 0.

It remains to prove (3.4). According to (3.9), we only need to show that
FPHS(T)/FP HE (D) = HSP(Cp(T),d ), (3.10)
where H&P(Cp(T'),d®) is the direct sum component of the free C[a]-module

H(Cp(I'), d®) consisting of homogeneous elements of Z,-grading & and x-grad-
ing p.
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Denote by (ker dg(o))p the C[a]-submodule of ker dg(o) consisting of elements
homogeneous with respective to the x-grading of x-degree p. Next, for every
a € (ker ds(o)) »» We construct by induction a sequence {a;}5° C Cp(I"), such that
oo = o, «; is ahomogeneous element with respective to the x-grading of x-degree
p —2l, and

)
Y dPa_j =0, forallleZ, (3.11)
j=0

where we use the convention that 4 = 0 for j > N. Again, since the x-grading
is bounded below, ¢y = 0 for [ > 1. Clearly, {al}g with @g = « satisfies the
initial condition and equation (3.11) up to / = 0. Assume that, for some / > 1,
{oq}f,‘1 is constructed and satisfies the initial condition and equation (3.11) up to
[ — 1. Let us find an «;. Note that

1 1
() : © G
ds+1(§ ds(])al—j) =Y 4, 0dPa;
=1 =1

1 j-1
(by B.7)and 3.8) =—> Y dV"dPay_,
j=1i=0
I-1 g¢q '
(settingg =1 —j +i)=—>_ Y dPdDe,;

qg=0i=0

1-1 q
1= i
== Z da(+1q) ( Z dy )O‘q—i)
q=0 i=0
(by induction hypothesis) = 0

But H*+!(Cp(I),d®@) = 0, that is, Im(d”) = ker(d'?,). So there is an
a; € Cp(I') homogeneous with respective to the x-grading of x-degree n — 2/
satisfying
I
dS(O)Oll = — Z ds(j)al_j.

Jj=1

Thus, the sequence {(xl}é satisfies the initial condition and equation (3.11) up
to /. This completes the induction and we have the sequence {o;}3°. As ex-
plained above, Y ;2 , o; is in fact a finite sum and therefore a well defined element
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of C£(T'). Note that the homogeneous part of ds (D72, o) with respect to the
x-grading of x-degree N + 1+ p — 2l is

I
Z ds(j)()ll_j =0
Jj=0

by equation (3.11). This implies that

dé‘( Z al) = 07
1=0
that is, Y ;2 oy is acycle in (Cp (L), d).
Define
$p: (kerd ), — FLHE(T)/FL Hp(T)
by

o
o —> [Z oq].

=0
Since the top homogeneous component of Y72, ; with respect to the x-grading is
o9 = o, one can see that ¢~>p (o) does not depend on the choice of {¢; }3° and is well
defined. It is also easy to verify that ¢, is a C[ay, . .., ay]-module homomorphism
preserving the polynomial grading. Moreover, ¢, is surjective. To see this, note
that any element of 72 Hg (I')/F2~" H5 (') can be expressed as [37° ) ;], where
«; is a homogeneous element with respective to the x-grading of x-degree p — 2/
and d; > 72,0y = 0. Comparing the top homogeneous parts with respect to the
x-grading on both sides of this equation, one gets dg(o)ao = 0, which means «q €
(ker dg(o)) . By the definition of ¢,, one easily sees that ¢, (atg) = Do el

Denote by (Im ds(i)l )p the homogeneous component of Im ds(ﬁ)r)l with respect

to the x-grading of x-degree p. We prove isomorphism (3.10) by showing that
kerg, = (Im ds(ﬁ)r)l . Assume « € ker, and {o;}$° is a sequence given by the
above inductive construction. Then

Yo =de1B+y. (3.12)
=0

where y isacyclein F27'C5(T'),and B € C5T1(I") satisfying de+18 € FLCE(T).
We claim that we can choose 8 so thatdeg, 8 < p—N —1. Assume thatdeg, 8 =
g > p— N —1 and denote by B, the top homogeneous part of 8 with respect to the
x-grading. Comparing the top homogeneous parts with respect to the x-grading on
both sides of equation (3.12), we have ds(?r)l Bo = 0. So there exists a homogeneous
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element 6 € C5(T) of degree g — N — 1 such that &.”0 = . Let ' = f — d.0.
Then B’ also satisfies the above equation, and deg, 8’ < deg, B. Repeat this
process. Within finite steps, we geta f € C5+'(T") with deg, B < p— N — 1 and

> A~
Yoo =der1f+y. (3.13)
=0

Let ,30 be the homogeneous part of B with respect to the x-grading of x-degree
p—N —1. Comparing the top homogeneous parts with respect to the x-grading on
both sides of equation (3.13), one can see that « = g = ds(g_)l Bo. This shows « €

(Im ds(i)l)p. So ker¢, C (Im ds(i)l)p. On the other hand, if o € (Im ds(i)l)p, then
o= ds(f?l B for some B € C f,“ (I') homogeneous with respect to the x-grading of
x-degree p — N — 1. So

o0 o0
>ar = a6+ Y a
1=0 =1

) N
=det1p + (Zal - st(i)lﬂ) € ker ép.
=1 J

Thus, (Ima’s(i)1 » C kerg,. This shows (Im ds(i)l)p = ker@, and, therefore,
¢, induces a C[ay, ..., ay]-module isomorphism

¢p: HoP(Cp(I'),d ) — SLHR()/FL  Hp(I)
preserving the polynomial grading. O

Corollary 3.3. Let I" be a closed MOY graph. Then

(1) Hp(D) is a finite dimensional C-space and its x-filtration is bounded and
exhaustive;

(2) Hp(T") is a finitely generated graded-free Clay,...,ay]-module and its
x-filtration is bounded and exhaustive, where “graded-free” means Hp(T")
is graded, free and admits a homogeneous basis.

Proof. From [5], we know that Hy (T") is finite dimensional and its polynomial
grading is bound above and below. In addition, by their definitions, we know that
the x-filtrations of Hp (I") and Hp (I") are bounded below and exhaustive. Using
Lemmata 3.1 and 3.2, one can inductively prove that, for every p,
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o F2 H p(I) is a finite dimensional C-space,

e FPHp () is a finitely generated free Clay. .. ., a,]-module.

Lemmata 3.1 and 3.2 also imply that the x-filtrations of Hp (') and Hp(I") are
bounded above. Thus,

o H p () is itself a finite dimensional C-space,

e Hp(I) is itself a finitely generated free Clay, ..., a,]-module.

Finally, since the polynomial grading of Hp(I") is bounded below, we know that
Hp(T) is a graded-free C[a;, .. ., a,]-module by, for example, [14, Lemma 3.3].
O

3.2. E,(L)and E, (L). Using Lemmata 3.1, 3.2 and Corollary 3.3, it is straight-
forward to prove Theorem 1.5. We summarize the key observation in the proof as
the following lemma.

Lemma 3.4. Suppose I'y is a closed MOY graph and Ty is obtained from I'y by
replacing a wide edge by a pair of parallel regular edges.® Denote by

X0
Cp(Io) T; Cp(I'1)

the homomorphisms induced by this local change and by )(80), )((10) the top homo-

geneous parts of xo, x1 with respect to the x-grading. In addition, we denote by
d;o} the top homogeneous parts of the differential maps of Cp(I'g) and Cp(I'1)
with respect to the x-grading. Then

o the morphisms
0, 20 ©
(Cp(To). di)) == (Cp(To). d )

X1

are homomorphisms of matrix factorizations of 0;

9That is, replacing a piece of I'; of the form I'; ;. , , in Figure 4 by I';. , U T';. 4 in the
same figure.
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o the following squares commute, where ¢ is the rotation number of T'g and I'y,
and ¢p 1y, Pp,r, are the isomorphisms constructed in the proof of Lemma 3.2:

H5?(Cp(T),d"") ) 229 FPHE (o) /F2 HE(To)
E )
H®?(Cp(T1),d") ) I g2 H () /FET HE(TY),
H®?(Cp(T1),d") ) 2T g2 H () /FET HE ()

lxﬁo’ X1

HoP(Cp(To), d%) 2252 5 1 (1) /T2~ HE (To).

Proof. 'This lemma follows easily from the constructions of yo, y; and ¢y.
We leave the details to the reader. O

The part of Theorem 1.5 about E.(L) is proved in [3, 13]. So we only need to
prove the part about { £, (L)}, which is a special case of the following theorem.

Theorem 3.5. x-filtration F on the chain complex (H(Cp(D), dpr), dy) induces
a spectral sequence {E, (L)} converging to Hp (L) with

Ev(L) = HN(L) ®c Clay, . .., an).

Proof. By Corollary 3.3, the x-filtration of H(Cp(D), d,,y) is bounded and ex-
haustive. So E,(L) converges to Hp(L). It remains to show that E;(L) =
Hy (L) ®¢ Clay, ...,ay]. By Lemma 3.4, we know that Eo(L) is isomorphic to
the chain complex (H(Cp (D), d (O)) d (O)) where d,, ©) and d )((0) are the top homo-
geneous parts of d,, r and d,, with respect to the x- gradlng of Cp(D).So E (L) =

H(H(Cp(D).d\).d{”). On the other hand, by the definition of Hy (L), it

is easy to see that H(H(Cp(D).dy1).dy”) = Hy(L) ®c Clai.....a]. So
Ei1(L) = Hy(L) ®c Clay, . .., an]. 0
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4. Decomposition Theorems

Next, we prove Theorems 1.7, 1.11, and compute the spectral sequences of the
filtered chain complexes Fjy, Tjm.s, Fis and Tj,, defined in (1.9)—(1.12).
Theorem 1.13 follows easily from these.

In this section, P = P(x,a) is a homogeneous polynomial of form (1.1)
and Hp is the corresponding equivariant s((N) Khovanov—Rozansky homology
over C[a]. Recall that dega = 2k.

4.1. A closer look at F,. To prove Theorems 1.7 and 1.11, we need to better
understand the relation between the polynomial grading and the x-filtration. The
goal of this subsection is to show that, for a closed MOY graph I', any direct sum
decomposition of Hp (I") in the category of graded C[a]-modules is also a direct
sum decomposition in the category of filtered C-spaces. Theorems 1.7 and 1.11 both
follow from this.

In the rest of this subsection, I is a closed MOY graph with a marking, xy, ...,
Xm are the variables assigned to the marked points of I' and R = C|xy, ..., X, a],
where a is a homogeneous variable of degree 2k. P(x, a) is a homogeneous poly-
nomial of form (1.1). Unless otherwise specified, when we say an element is ho-
mogeneous, we mean it is homogeneous with respect to the polynomial grading.

We start with simple observations.

Lemma 4.1. Suppose M is a Koszul matrix factorization over R (see Defini-
tion 2.3) and p is a homogeneous element of M. Then deg,p < degp, and
deg, p <degpifandonlyifp € aM.

Proof. Let {13} be the standard basis for M defined in Definition 2.4. Then p =
>z fz1z where f; is a homogeneous element of R with deg f; = deg p —deg ;.
Note that, for every f € R, deg, f < deg f, and deg, f < deg f if and only if
f € aR. Sodeg, f; + deg, 1; < deg f; + deg 1; = degp for all . This shows
that deg, p < deg p. Moreover, deg, p < deg p if and only if deg, f; < deg f; for
all £ if and only if f; € aR for all &. O

Lemma 4.2. Let M be a finitely generated free Cla]-module and {v;} a basis for
M. Forany A € C, denote by ma—y : M — M/(a — A)M the standard quotient
map. Then {m,_,(v;)} is a basis for the C-space M/(a — A)M.

Proof. Since {v;} spans M, we know that {r,_, (v;)} spans M/(a — A)M. It re-
mains to show that {m,_, (v;)} is linearly independent. Suppose {c;} C C satisfies
Y i cimg—p(vi) = 0. Then ), ¢;v; € (a — A)M. Therefore, there are f; € R such
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that Y, civ; = (@ —A) Y ; fivi. Thatis, > ,(¢; — (@ — A) fi)vi = 0. Since {v;}
a basis for M, this means ¢; — (@ — A) f; = 0 and, therefore, ¢; = f; = 0 for
everyi. U

Lemma 4.3. For f € R, denote by f; the homogeneous component of f with
deg fi = i. Then deg, f; < deg, f foreveryi.

Proof. Obvious. U

Lemma4.4. (1) Ifu € 37Cp(T"), then all homogeneous components of u are
also in F.Cp(I").

(2) If [u] € FLHp(T'), then all homogeneous components of [u] are also in
FeHp (D).

Proof. Cp (") is a Koszul matrix factorization. Denote by {1;} the standard basis
for Cp(I") given in Definition 2.4. Recall that {1;} is a homogeneous basis with
respect to the polynomial grading.

To prove Part (1) of the lemma, assume u € F%Cp(I") and denote by u; the
homogeneous component of ¥ with degu; = i. Every u; can be uniquely ex-
pressed as u; = ) zg;zlz where g; ; is a homogeneous element of R with
degg;z =i —deglz Thenu = ) ;u; = ) 2(>; g;.3) 1z Since u € I Cp(I'),
we have deg, Y, g; z < n—deg, 1; for every €. Note that g; ; is the homogeneous
component of ) ; g; z of polynomial degree i — deg 1;. Thus, by Lemma 4.3, we
have deg, g; ; < n —deg, 1;. So deg, u; = deg, ) :g;z1; < n. This proves
Part ().

To prove Part (2), note that [u] is represented by a cycle u € F7Cp(I"). Denote
by u; the homogeneous component of u with degu; = i. Since the differential of
Cp(T") ishomogeneous, each u; is a cycle, and [u;] is the homogeneous component
of [u] with deg[u;] = i. Then Part (2) of the lemma follows from Part (1). O

By Corollary 3.3, Hp(I") is a finitely generated graded-free C[a]-module. The
next lemma determines the x-filtration degrees of elements of homogeneous bases
for Hp(T').

Lemma 4.5. Let {[u;]} be any homogeneous basis for the free Cla]-module Hp (T').
Then deg, [u;] = deglu;] for every j.
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Proof. By Lemma 4.1, we know that deg, [u;] < deg[u;] for every j. Assume
n = deg,[u;] < degfu;] = [ for a certain j. Then [u;] is represented by a cycle
uj € 3% Cp(I'). Denote by u;; the homogeneous component of u; withdegu;; =
i. By Lemma 4.4, we know that u;; € 37Cp(I") for every i. Also, since the
differential of Cp (I') is homogeneous, each u; ; is itself a cycle. By comparing the
homogeneous components in [u;] = Y ;[u;;], we get [u;] = [u;;] and [u;;] =0
if i # [. Note thatdeg, u;; <n <[ = degu;;. So, by Lemma 4.1, uj; = av
for some v € Cp(T"). It is easy to see that v is a homogeneous cycle in Cp(I")
and that {[v]} U{u; | i # j} spans Hp(T") and is C[a]-linearly independent. In
other words, {[v]} U{[u;]|i # j}is also abasis for Hp(I"). But this is impossible
because, if this is true, then the determinant of the change-of-coordinates matrix
from the basis {[u;]} to the basis {[v]} U {[u;] | i # j} is a, which is not invertible
in Cla]. O

Definition 4.6. Denote by
ma: Cp(I') — Cy(I)(= Cp(I')/aCp(I))
the standard quotient map. To keep notations simple, we denote again by
mq: Hp(I') > Hy(I')
the homomorphism induced by the quotient map n,,.

Recall that C (I') inherits the polynomial grading of Cp(I") via w,, which
makes 7, a homogeneous map of degree 0. Moreover, Cx (I") also inherits the
x-filtration of Cp(I") via m,. It is easy to see the x-filtration of Cn(I") is the
increasing filtration induced by its polynomial grading.

Lemma 4.7. The map
e HP(F) — HN(F)

is a surjective homogeneous homomorphism with
degrm, =0

and
kern, = aHp(T).

Moreover, any homogeneous basis for the free Cla]-module Hp (") is mapped by
74 to a homogeneous basis for the C-space Hy (I).
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Proof. By its definition, we know that n,: Hp(I') — Hy(I") is a homogeneous
homomorphism with deg 7, = 0. The short exact sequence

0 — Cp(I') — Cp(T") =% Cy(T) — 0
induces a long exact sequence
r— HEP () — HE(D) = Hp(T) =5 Hy (D)
— HZP'(D) 5 BTN 5SS HEPNH(T) — -

with Z, homological grading, where ¢ is the rotation number of I'. From [5], we
know that H5"(I") =~ 0. By Lemma 3.2, we know that H5™'(I") = 0. So the
above long exact sequence becomes a short exact sequence

0 — Hp(T) — Hp((T) =% Hy(T) —> 0.

It follows from this that 7, : Hp(I') — Hx(I') is surjectiveand ker nr, = aHp ().
The statement about bases follows then from Lemma 4.2. O

Lemma4.8. Forany[u] € Hp('), [u] € 3% Hp (') ifand onlyifalu] € 3% Hp(I').

Proof. Since the map Cp (I") Lc p(I") preserves the x-filtration, so does the map
Hp(T) i Hp(T'). Therefore, a[u] € I3 Hp(I'") if [u] € I¢Hp(T).

Now assume [u] ¢ F% Hp(I"). Since the x-filtration is exhaustive, there is an
| > n such that [u] € CT"in (') and [u] ¢ CT"i_al (I"). Denote by ¢ the rotation
number of I'. Recall that, by Lemma 3.2, we have Hf,“(I‘) = 0. Moreover, in
the proof of Lemma 3.2, we constructed an isomorphism

¢1: Hy (D) ®c Cla] — FLHp (D) /T HE (D)

of C[a]-modules. So [u] € Hp(I') and ¢l_1([u]) # 0. But Hf\;l(I‘) Q¢ Cla] is a
free Cla]-module. So ¢, ' (a[u]) = a¢; ' ([u]) # 0. Thus, a[u] ¢ F.~' Hp(T) and,
therefore, alu] ¢ 3% Hp (D). O

Lemma 4.9. Let {[u;]} be a homogeneous basis for Hp(I"). For any { f;} C Cla]
andanyl € Z, ) _; filu;] € F! Hp(T) if and only if f; = Owheneverdegu;] > .

Proof. By Lemma 4.5, we have deg  [u;] = deg[u;] for every j. If f; = 0 when-
ever deg[u;] > [, then, by Lemma 4.8, we know that ZJ- Jfiluj] € L Hp ().

Now assume ) ; fj[u;] € F! Hp(T). We prove by contradiction that f; = 0
whenever deg[u;] > [. Assuming the conclusion is not true, then

n = {degluj] | fi # 0} > 1.
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Without loss of generality, we assume
=n ifl1 <j <p,
nj i=deg [uj] =degluj]y<n ifp+1<j<p+gq,

>n otherwise.

By the definition of n, we know that f; =Ounless1 < j < p+4+g¢q.Forl < <
p +q.write fj = >, ¢jia’. Define

) p+a
il = cuilul+ D Cintion;a" " us].
j=1 j=p+1

Then the homogeneous component of ) ; fj[u;] of polynomial degree n + i is
a'[v;]. By Lemma 4.4, we have a'[v;] € . Hp(T'). Therefore, by Lemma 4.8, we
have [v;] € FL Hp(T'). Consider

p
ma(vi]) =Y ciima(lu;]) € Hy (D).
j=1

On the one hand, we have that 7, ([v;]) € % Hy (T"). On the other hand, we know
that deg 7, ([u1]) = -+ = 7a([up]) = n > [. But the x-filtration on Hy (") is
induced by the polynomial grading. We must have

D
ma(vi)) = ) crima(lu;]) = 0.

j=1
Lemma 4.7 tells us that {m,([u1])....,ma([up])} is linearly independent. So
cj; =0fori >0and1 < j < p. In other words, f; = Oforl < j < p.
This contradicts the definition of 7. O

Definition 4.10. Denote by
fa—1: Cp(I) — Cp(I)(= Cp(I)/(a = HCp(I))
the standard quotient map. To keep notations simple, we denote again by
fa1: Hp(I) — Hp(I)
the homomorphism induced by the quotient map 7,—;.

Note that C p(I") inherits the x-filtration of Cp(T") through 7,_;.
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Lemmad4.11. 7,_; : Hp(T) = Hp()isa surjective homomorphism preserving
the x-filtration with kern,—; = (a — 1)Hp(I"). Moreover, for any homogeneous
basis {[u;]} for the free Cla]-module Hp(T"),

o {m,_1([uj])} is a basis for the C-space Hp(D);

o deg, m,—1([uj]) = degu;] for every j:

e forany{c;} C C,
Y ejma(uj]) € FLHp(T) < ¢; =0
J

whenever degu;] > 1.

Proof. By its definition, we know that 7,—: Hp(I') — H p(I") preserves the
x-filtration. The short exact sequence

0 — Cp(I) L5 Cp(r) 2924 Ep(T) —> 0
induces a long exact sequence

T HSH(F) - HP(F) L HP(F) HP(F)
_ H8+l(r) HS-I—I(F) HS-I—I(F)

with Z, homological grading, where ¢ is the rotation number of I'. By Lem-
mata 3.1 and 3.2, we know that PAI;H(F) ~ 0 and H5T'(I') = 0. So the above
long exact sequence becomes a short exact sequence

0 — Hp(T) <=5 Hp(T) 22 Ap(M) —s 0.

Thus, 74—1: Hp(I') — ﬁp (") is surjective and ker 7,1 = (a — 1) Hp ().

Now assume {[u;]} is a homogeneous basis for the free C[a]-module Hp (I")
with deg[u;] = n;. It follows from the above and Lemma 4.2 that {7, ([u;])} is
a basis for the C-space Hp (D).

Since the map 7,—1: Hp(I') — Vil p(I") preserves the x-filtration, we get from
Lemma 4.5 that deg, 7,1 ([u;]) < deg,[u;] = deg[u;] = n;. Next, we prove that
deg, m,—1([u;]) = n;. Note that [u;] is represented by a homogeneous cycle u; in
Cp(I") with degu; = n;. Recall that the x-filtration on Cp(I') is the increasing
filtration associated to an x-grading on Cp(I"). Denote by u;; the homogeneous
component of u; with respect to this x-grading. Then u;; = 0if i > n; and, by
Lemma 4.1, uj; € aCp(I') if i < nj;. So wa(ujn;) = ma(uy;) is a homogeneous
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cyclein Cy (I') of polynomial degree n; representing the homology class 7, ([u;]).
Lemma 4.7 implies that 4 ([u;]) # 0. Recall that Lemma 3.1 is proved in [13] by
a construction very similar to the proof of Lemma 3.2. To summarize, we know
that

o H™(I) = HEM(T) = 0;

e every homogeneous cycle in Cg (I') can be completed to a cycle in C p(I)
by adding terms with strictly lower polynomial degrees, and this correspon-
dence gives rise to a well defined isomorphism

o HE™(T) — FLHL(T) /T Ay ().

Clearly, m,—1(u;) is a cycle in C p (') obtained from 74(u;,,,) by adding terms
with polynomial degrees strictly less than deg 74 (u;,»,) = n;. Denote by

7™ FLAR() — FLH(D)/53 HE(T)
the standard quotient map. We have a commutative diagram

Ta—1

HE™(T) FULHE(T)
l”u lnm) 4.1)
g A(T)/T HR(T),

a2

HE'(T)

where Hp" (") (resp. Hy"(T')) is the component of Hp(I') (resp. Hy (I")) with
Z,-degree ¢ and polynomial degree n. Thus,

7 (a1 (1)) = b, ((7aCtjn; ) = b, (ra([])) # 0.

So ma—1([u;]) ¢ ?fcj_lﬁf, (T') and, therefore, deg, m4—1([u;]) = n;.

It remains to show that ) : ¢;ma—1([u;]) € F. Hp(I) if and only if ¢; = 0
whenever nj > [. Recall that deg, wa—1([u;]) = n;. If ¢; = 0 whenever n; > [,
then we clearly have that

chna_l([uj]) S ffiﬁp(r)
J

Now assume that there is at least one j such thatn; >/ and ¢; # 0. Then

n:=max{n; | ¢; # 0} > .
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Consider

] = )i [uy].
J
[u] is a homogeneous element of Hp (") of polynomial degree n, and

a1 ([u)) = Y ¢jma1([us))-
J

From diagram (4.1), we have

7O (3 ¢jar (7)) = 7 Grama ()
J
= ésn (”a ([u]))

By Lemma 4.7, {m,([u;])} is a basis for Hy(I"). By the definition of n, we know
that n; = n and ¢; # O for at least one j. Thus,

> eimafus]) # 0.
But
bn: HY" () — FLHE (D) /T HE(T)

is an isomorphism. So

7 (a1 () = du( Y cjma(lu;]) # 0.

Thus

Y cimam(uy]) = mam1 ([u)) ¢ Ty Hp (D)(C Ty Hp (). O
j

Remark 4.12. In conclusion of this subsection, we note that Lemmata 4.9 and 4.11
imply that any direct sum decomposition of Hp(I") in the category of graded
Cla]-modules is also a direct sum decomposition in the category of filtered
C-spaces and induces a direct sum decomposition of Hp(T) in the category of
filtered C-spaces.



Equivariant Khovanov—Rozansky homology 561

4.2. Decomposition of Hp(L). In this subsection, we give a proof of Lobb’s
decomposition theorem (Theorem 1.7.)

As before, a is a homogeneous variable of degree 2k.

Lemma 4.13. [8] Assume that

dn—l dan dn+1
Cc*d* =" scr ettt

is a bounded chain complex of finitely generated graded-free Cla]-module and
its differential d* preserves the grading of C*. Then, in the category of chain

complexes of graded Cla]-modules, (C*,d™) is a direct sum of chain complexes
of the forms F; s and T; p s given in (1.5)—(1.6).

Proof. We prove the lemma by an induction on the total rank of C*. If either
rank C* = O or rank C* = 1, then the lemma is trivially true. Assume rank C* =
K > 2 and the lemma is true if the rank of the chain complex is less than K. There
is an n such that C" # 0 and C/ = 0 for all j < n. Consider the section

dan dn+1
0_>Cn _)Cn—l—l £ ...

of C*. Let {uy,...,up} be ahomogeneous basis for C" with
degu; <--- <degup,

and {vy, ..., v4} a homogeneous basis for C**! with
degv; > .-+ > deguy.

Foreach1 < j < p, we have

q
d"(uj) =) fijvi,

i=1

where each f; ; is a monomial in a of degree
deg fi,; = degu; —deguv;.

Note that deg f;,; is increasing with respect to both i and .
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If (fi,1,---, fg1) = 0, then C* has a direct sum component
00— C[a] cup — 0 = Fn,degul-

Thus, by induction hypothesis, the lemma is true for C*.

If (fi1..... fg1) # O, then there is an [ such that f;; # 0 and f;; = 0 for all
1 <i <. Define a g x g matrix E = (&;) by

1 ifi =,
&ij = Ji ifi >/and j =1,
1,1
0 otherwise.

Then Z is invertible and 2! = (& ;) is given by

1 ifi = j,
~i,j= —fi’l ifi >/land j =1,
Jia
0 otherwise.

Note that, for any i >/, }(; : is a monomial of a of degree

deg f;.1 —deg f1.; = degv; —deguv;.
We have
d™uy,...,d"up) = (v1,...,v9)(fi,j) = (vl,...,vq)EE_l(fi,j).

Let

q

=Y &,vi

i=1

and

a
gij = Z Eiafaj-

a=1
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Then {01, ..., U4} is a homogeneous basis for C**! with
deg v; = degv;,
gi,j is a monomial in ¢ with
deg gi,; = deg fi;,
and
(d™uy,....d"up) = (V1,....049)(gi,j)-
Note that g;; = f;1 # 0Oand g;;; = O for all i # [. Next, definea p x p
matrix ® = (6; ;) by

1 ifi =,
6, =1-550 ifi=1andj > 1,
81,1
0 otherwise,
where ‘Z—"{ is a monomial of a of degree
degg;; —degg; = degu; —degu;.
Let
P
flj = Z@i,]‘ui
i=1
and
P
hi,j = Z Giabu,j-
a=1
Then {iiy, ..., 1,} is a homogeneous basis for C" with

degii; = degu;,
hi,; is a monomial in ¢ with

degh; ; = degg;; = deg fi ;.

and
(d™iq,....d"ip) = (U1,...,0q)(hi,j).

Note that 7; 7 = g1 = fi1 # 0, hjy = O0foralli # [ and h; ; = 0 for all
j # 1. Thus, C* has a direct sum component

~ 1.1 ~
X . ~ T _ ~ .
0— C[a] u, — C[a] V] —> 0=~ n I,degulz—kdegvl Jdeg ¥

By the induction hypothesis, the lemma is true for C*. O
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The existence of the decomposition in Theorem 1.7 follows from Lemma 4.13.
To prove the uniqueness of this decomposition, we need the following lemma,
which is a slight refinement of the standard invariance theorem for modules over
a principal ideal domain.

Lemma 4.14. Suppose that {(m1,s1), ..., (mp,sp)}and {(n1.t1), ..., (ng,ty)} are
two sequences in Zi-o X 7. satisfying

o my <--<mpng <--=<ng

o ifi < jandm; = m;j, then s; < sj;
e ifi < jandn; =nj, thent; <t;;
e as graded Cla]-modules,

p p
P (Clal/ @) {si} = E(Clal/ (@)t}

i=1 j=1
Then p = q and m; = n;, s; = t; forevery 1 <i < p.

Proof. We adapt the proof of the invariance theorem in [4, Section 3.9] to prove
Lemma 4.14. The only change is that, instead of counting dimensions, we count
graded dimensions. Recall that, for a finite dimensional graded C-space V =
D; Vi, where V; is the homogeneous component of V' of degree i, the graded
dimension of V is gdimy V 1=} ; B’ dimg V;, where B is a homogeneous variable
of degree 1.

Let

p p
M = P (Clal/(@™))isi} = @(Clal/(@™){t;}.

i=1 j=1

Denote by z; the multiplicative unit 1 in (C[a]/(a™i)){s; }, which is a homogeneous
element of M of degree s;. For any / > 0, define

MO = da' M/t M.

Then M? is a finite dimensional graded C-space. If [ > m,,, then M) = 0 and
gdimg M = 0.1f 0 < [ < my,, then there is a unique j such that

my <---<mj <l <mjyg <---<mp.
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One can see that

p
am = @ Clala'z;

i=j+1
and {a'zj41 + a't'M, ..., a'z, + a’*'M} is a homogeneous basis for the
C-space M So
P
gdimg MD =,32kl Z B,
i=j+1

For any integer c, define
Ste={i|1<i<p, si=c, m>I}

We observe that the coefficient of 872 in gdimy M ?) is equal to the cardinality
of S .. Similarly, defining

Sje=1il1<i<gq, ti=c,n>1}

we have that the coefficient of B¢+2¥! in gdimy M is equal to the cardinality
of S} .. Thus, for any (I, ¢) € Zx¢ x Z, the cardinalities of S; . and S, _ are equal.
The lemma follows from this. O

It is now very easy to prove Theorem 1.7 and Corollary 1.8.

Proof of Theorem 1.7 and Corollary 1.8. Fix a diagram D of L and a marking of D.
Let xi,...,x, be the variables assigned to the marked points of I' and R =
Clx1,...,Xm,a]. By Corollary 3.3, H(Cp(D), d,,y) with its polynomial grad-
ing is a finitely generated graded-free C[a]-module. By the definition of d,, we
know that it preserves the polynomial grading.

According to Lemma 4.13, in the category of chain complexes of graded
Cla]-modules, (H(Cp (D), dpy), dy) decomposes into a direct sum of chain com-
plexes of the forms F; s and T; s given in (1.5)—(1.6). Note that each factor of F; ¢
in this decomposition contributes a direct sum component Cla]||i||{s} to Hp(L)
and each factor of T; ,,, s contributes a direct sum component (Cla]/(a™))l|i ||{s} to
Hp(L). To prove the existence of decomposition (1.7), it remains to determine the
free partof Hp(L). By Lemma 4.11, the above decomposition of (H(Cp (D), dy, ),
d,) induces a decomposition of (H ((?p(D), dpyr),dy) in the category of filtered
chain complexes of C-spaces. Each factor of F; s (resp. Tim,s) in the decompo-
sition of (H(Cp(D),d,,r).dy) corresponds to a factor of ﬁi,s (resp. ﬁ,m,s) in
the decomposition of (H(ép (D), dyyr),dy), and the grading of F; s (resp. T m.s)
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induces the filtration on the corresponding E,s (resp. ﬁ,m,s). The homology of
T;.m.s vanishes and, as a filtered C-space, the homology of F; ; is

Clil{s} = (Clal/(a = D)l |[{s}.

One can see from this that, as a graded C[a]-module, the free part of Hp(L) is
isomorphic to Hp (L) ®¢ Cla]. Thus, we have proved the existence of decompo-
sition (1.7).

The uniqueness of decomposition (1.7) follows from Lemma 4.14. This com-
pletes the proof of Theorem 1.7.

To prove Corollary 1.8, note that, by Lemma 4.7,

(H(CN(D),dmy),dy) = H(Cp(D),dpys)/aH(Cp(D),dyr)

as chain complexes of graded C-spaces. Moreover, as chain complexes of graded
C-spaces,

F‘i’s/af‘i,s ; O — C”i” —> 0,

0 —> Clli — 1||{s + 2km) —> C|li |{s) —> 0 ifm > 1,
Ti,m,s/aTi,m,s = 1
0— C|i —1|{s + 2km} — CJli||{s} — 0 ifm =0.

So Corollary 1.8 also follows from the decomposition of the chain complex
(H(Cp(D),dmy).dy). [

4.3. Decompositions of E, (L) and E, (L). In this subsection, we prove the
decompositions of E, (L) and E,(L).

First, we compute the spectral sequences of the filtered chain complexes F; ,
Tim.s ﬁi,s and ﬁ,m,s. We use the notations given in [9, Section 2.2]. Since Fy is
an increasing filtration and the notations in [9, Section 2.2] are for a decreasing
filtration, we need to adjust their definitions accordingly.

Let (C*,d, J) be a filtered chain complex such that d raises the homological
grading by 1 and ¥ is increasing. Set

ZP4 = FpCPran g (FPr Pty (4.2)
B}{’:q — SE'PCP'Fq N d(§p+rcp+q—1)’ (43)
EP4 =704/ (ZP7 M + B, (4.4)

Then {EP*?} is the spectral sequence of (C*,d, F).
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Proof of Lemma 1.10. We only compute E,(F;s) and E,(T; m.s). The computa-
tion of E,(F; ) and E,(T; m,s) is very similar and left to the reader.
Recall that the differential map of F; s is 0. So BY*Y(F; 5) = 0 and

ZP4(Fy5) = TP LY

Clal{s} ifp=s,q=i-p,

0 otherwise.
So
EP9(F;5) = FPFFTE /gt FPF4

Clal{s} ifp=s,g=i-sy,

Il

0 otherwise.

The observations about { £, (F; 5)} in Lemma 1.10 follow from this.
Recall that the filtered chain complex 7; ,, s is given by

0 — Cla]lli — 1||{s + 2km} LN Cla]lli|l{s} — 0
if p>s+2km,

FTims = 0 —> Clallli|l{s} — 0

ifs < p<s+2km,

0 ifp<s.
Note that Z7**(T;ms) =Ounlessq =i —1—pori —p. So EF*(Tims) =0

unlessg =i —1—pori — p.
We compute EF* 1P (T; ) first. Note that

Clal{s + 2km} if p > s+ 2km,

Tl =
o 0 if p <s+2km,
a o Clal{s +2km} iftp—r >s,
d7NIYTT ) =

0 if p—r <s.
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Thus,

ZPN T (Tyms) = FET], L N d ™ (G2 T

(m,s)
x ti,m,s 1,m,s

Clal{s + 2km} ifp>s+2kmandp>s+r,

0 otherwise.

Also,
Bf’i_l_p(Ti,m,s) — gPTi~1 N d(?£+rT~i_2) = 0.

x i,m,s r,m,s
Therefore,
EPITP (Tyms) = ZP P (Tms) | ZE 7P (T o)
Clal{s +2km} itp=s+2km=>s+r,
0 otherwise.

Next, we compute EF* 7 (T m.s). Note that

Zf’i_p(Ti,m,s) — ?pT.i N d_l(ﬁr)lg_rT.i+1

x i,m,s i,m,s
— gpTi
- er Tz,m,s

Cla]{s} if p>s,

0 if p<s,

and
a@rrpizy = | Olels) i p = s 2km,
0 ifp+r<s+2km.

So

m .
piep _)a Clal{s} ifp=sand p+r >s+2km,
Br (7—'l,m,S) -
if p+r <s+2km.

Recall that

EP'P(Timys) = ZP P (Tyms) [(Z27 7P T N (Tims) + BP P (T m,s).
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Putting these together, we get

(Cla]l/(@™)){s} ifp=sandr >2km+1,
EPPP(Tyms) 2 1 Cla]{s) if p=sandr < 2km,

0 otherwise.

This completes the computation of {E,(7; ,»,s)}. Note that { £, (T; ,n,s)} collapses
exactly at its Eopp,+1-page. O

Next, we prove Theorem 1.11.

Proof of Theorem 1.11. Fix a diagram D of L and a marking of D. Let xy, ..., xn
be the variables assigned to the marked points of I' and R = C[xy, ..., X, a].
By Corollary 3.3, H(Cp(D), dp,r) with its polynomial grading is a finitely gener-
ated graded-free C[a]-module. By the definition of d,, we know it preserves the
polynomial grading.

According to Lemma 4.13, in the category of chain complexes of graded
Cla]-modules, (H(Cp(D), dpy), dy) decomposes into a direct sum of chain com-
plexes of the forms F; s and T;,, s given in (1.5)—(1.6). By Lemma 4.9, this is
also a decomposition in the category of filtered chain complexes, in which the fil-
trations on F; ¢ and 7; ,, s are given by (1.9)—(1.10). Thus, the spectral sequence
of (H(Cp(D), dyy), dy) is the direct sum of the spectral sequences of its compo-
nents in this decomposition. Decomposition (1.18) in Theorem 1.11 then follows
from this and Lemma 1.10.

By Lemma 4.11, the above decomposition of (H(Cp(D),d,,r),d,) induces
a decomposition of (H (ép (D).dmy),dy) in the category of filtered chain com-
plexes into a direct sum of chain complexes of the forms 13, s and T,m s given in
(1.11)—(1.12). The spectral sequence of (H(@p (D), dmy). dy) is the direct sum of
the spectral sequences of its components in this decomposition. Decomposition
(1.17) in Theorem 1.11 then follows from this and Lemma 1.10. ]

4.4. Exact couples. Let us first recall the definition of derived couples.

Lemma 4.15. Let (A, E, f, g, h) be an exact couple as defined in Definition 1.12.
Define

1. A = f(A),
2. E' = H(E,d) =kerd/d(E), whered = goh: E — E,
3./ =fla,
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4. g'(a) = g(B) wherea = f(B) € A,
5. W(n+ d(E)) = h(n) for any n € kerd.
Then

o A and E’' are Z®°?-graded C-linear spaces;

’ / h/
o A L) A, AL Eand E' 25 A are well defined homogeneous homomor-

phisms of 7Z.22-graded C-linear spaces,

o the triangle
f/

N

E/

A A

is exact.

That is, (A, E’, ', g’ 1) is itself an exact couple. (A', E’', ', g', 1) is called the
derived couple of (A, E, f, g, h). We shall write

(AVE' f'.g. 1) = (A.E, f.g.h).
Proof. See for example [9, Proposition 2.7]. O
The following is a simple observation.
Corollary 4.16. In the notations of Lemma 4.15, i’ = 0if h = 0.

For a chain complex C of graded-free C[a]-modules, denote by

ADC). EV(C). f¢". 8¢ )

o

H(C/aC)

induced by the short exact sequence

the exact couple

H(C) H(C)

0—C-5c2%claCc — 0,
where 7, is the standard quotient map. Define a sequence

(AD(C), ED©C), £, g%, h&))
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of exact couples such that
) ) ()
(AD©).ET(©C). 1.8 1)
- - -1 -1 -1
= (4770(C). ET0C). ¢V g0 Y

Lemma 4.17. Let F; s and T; ,, s be the chain complexes defined in (1.6) and (1.5).
Then, as 7.92-graded C-linear spaces,

ED(F; ) = Clil{s} forallr =1, (4.5)

Clli = 1||{2km + s} ® C|li||{s} i1 <r <m,
ey L [ b@Clilts} if ws
0 ifr>m+ 1.

Proof. For the chain complex F; s, note that h%)_s = 0 in the exact couple
AV (Fi). EQ(Fro). fr) 85, B ).
By Corollary 4.16, this means
WP =0 forallr > 1.
So the differential on E™ (F; ) is 0 for all > 1. Thus,
ED(F; ) = EW(F ) = C|i|{s} forallr > 1.

So we have proved isomorphism (4.5).
Now consider the chain complex 7; ,, s. Note that

H(T; m.s) == Clal/(@™)]i |{s}.
H(Tim.s/aTims) = Clli — 1[[{2km + s} & Ci |{s}
and the exact couple
A (Tyms), EO(Timys), f70), o8 B )
= (H(Tims). H(Tims/aTims). a. a. A)
is the exact sequence
0 —> Clli — 1{2km + s} == Clal/(@™)li||{s}

5 Clal/@™ill{sy = Clli | {s}y —> 0,
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where the connecting homomorphism
C 25 Clal/(@™)

is given by
A(l) =a™ !,

For 1 <r <m — 1 denote by
a’ - Clal/(a™)
the subspace of C[a]/(a™) spanned by {a”,a”*!,...,a™ !} and by
a":a"-Cla]/(a™) — Cla]/(a™)
and linear mapping given by
a (@ t)y=d" fori=0,....m—1—r.

A simple induction shows that, for 1 < r < m, there is an isomorphism of exact
couples

ATy ). EO(Tims). f1) g% h) )
= (a"" - H(Tim,s), H(Tim,s/aTims), @, a0 a” FA).
Thus,
ED(Tims) = H(Tim,s/aTim,s)
=~ Clli — 1)|{2km + s} ® C|ji |l{s}
ifl <r <m.
When r = m, the differential on

E™ (Tims) = Clli — 1|{2km + 5} & Cl|i || {s}
is

4 = g0 o p®

4 = 1, oa_m+1 o A,
im,s im,s

which is an isomorphism
Clli — 1|{2km + s} = Clli || {s}-

So
E" ) (Tins) = HE™ (Tim,s).d™) = 0.

This completes the proof of isomorphism (4.6). O

Proof of Theorem 1.13. Comparing Lemma 4.17 to Lemma 1.10, one can see that
Theorem 1.13 follows from Theorems 1.7 and 1.11. U
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5. The A\* CV~l.action on Hy (L)

As we have seen, every polynomial P = P(x,a) of form (1.1) induces an
exact couple

(HP(L)7 HN(L)7 a’ 7Ta, A)’
which equips Hy (L) with a differential
dl(,l) =Tmg0A.

In this section, we study this differential d 1(,1). Our goal is to prove Theorem 1.16
and establish the A" C¥~!-action on Hy (L).

5.1. Naturality. In this subsection, we fix a P = P(x, a) of form (1.1).

From [5], we know that every link cobordism induces, up to an overall scaling
by a non-zero scalar, a homomorphism of the s[(N) Khovanov—Rozansky homol-
ogy Hy. We briefly recall the definition of this homomorphism here.

To define this homomorphism, Khovanov and Rozansky first decompose the
link cobordism into a finite sequence of Reidemeister and Morse moves, that is, a
movie. For each Reidemeister move and Morse move, they define in [5] a corre-
sponding chain map of the chain complex (H(Cn, d,,r), dy). They then define the
chain map associated to this cobordism to be the composition of the chain maps
associated to the Reidemeister and Morse moves in this movie. They proved in
[5, Proposition 37] that, up to an overall scaling by a non-zero scalar, the homo-
morphism on Hy induced by this chain map does not depend on the choice of the
movie.

In [6, 15], Khovanov and Rozansky’s chain maps associated to Reidemeister
and Morse moves are generalized to C[a]-linear homogeneous chain maps of the
chain complex (H(Cp, dyz ). dy). So each movie presentation of a link cobordism
induces a C[a]-linear homogeneous chain map of the complex (H(Cp, dy,r), dy).'°
Comparing the constructions in [5, 6, 15], we have the following lemma.

10t does not seem too hard to generalize Khovanov and Rozansky’s proof in [5] to show that,
up to an overall scaling by a non-zero scalar, the homomorphism on Hp induced by this chain
map does not depend on the choice of the movie presentation of the cobordism. But we do not
need this to prove our results.
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Lemma 5.1. Let S be a link cobordism from link Ly to L. Fix diagrams of Ly,
L1 and a movie presentation of S. Denote by

(H(CN(Lo). dmp). dy) 25 (H(Cx(L1). dmy). dy)

and
(H(Cp(Lo). dmyp).dy) 22 (H(Cp(L1). dy). dy)

the chain maps induced by this movie presentation of S. Then the following dia-
gram commutes.

H(Cp(Lo). dms) —22—= H(Cp(L1). dy)

H(Cx (Lo). dyy) —L%—— H(Cn(L1). dy)

Proof. See the constructions in [5, 6, 15]. Ol

Next, we interpret d 1(31) as the connecting homomorphism of a long exact se-

quence, which slightly simplifies the proof of the naturality and significantly sim-
plifies the proof of the anti-commutativity later on.

For a link L, choose one of its diagrams. By Corollary 3.3 and Lemma 4.7,
H(Cp(L),dpy) is a free C[a]-module and

H(Cn(L).dmy) = H(Cp(L).dmy)/aH(Cp(L), dny).
Also, from the proof of Lemma 4.7, one can see that
H(Cp(L)/a*Cp(L).dpys) = H(Cp(L).dpy)/a® H(Cp(L).dmy).
Therefore, the short exact sequence
0 — Clal/(@) = Clal/(@®) = Clal/(a) — 0
induces a short exact sequence

0 —> H(CN(L),dmys) —> H(Cp(L)/a*Cp(L), dmy) -
X H(CN(L). dyy) —> 0.
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Lemma 5.2. Let #p(L) = H(H(Cp(L)/a*Cp(L),dpy),dy). Then short exact
sequence (5.1) induces a long exact sequence

i 1) i ) . i d(l)
IS HISNW(L) 2 H (L) S geh (L) =5 Hi (L) —— - .

Proof. Denote by § the connecting homomorphism in the above long exact se-
quence. We only need to prove that § = d 1(,1). Consider the following commutative

diagram with short exact rows:

0—— H(Cp(L),dpy) — - H(Cp(L),dny)

0—— H(CN(L),dmy) ——= H(Cp(L)/a*Cp(L). dpny)

H(Cp(L), dps) —=—= H(CN (L), dps) —=0

| Ju

H(Cp(L)/a*Cp(L), dps) —> H(CN (L), dps) — 0.

It induces the following commutative diagram with long exact rows.

"'LH;\,_I(L)LH}(L)L---

ok

T HIPN(L) s HE (L)~
Thus, § = 7750 A = d V. O
Lemma 5.3. Let S be a link cobordism from link Lg to L. Denote by
Hy(Lo) 2 Hy(Ly)

the homomorphism induced by S. Then the following diagram commutes:

1)
P

H ' (Lo) H, (Lo)

lfN lf/v
IO

Hy N (L1) ———— Hy(Ly).
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Proof. Pick diagrams for Lg, L, and choose a movie presentation of S. Denote
by
S
(H(CN(Lo). dmy), dy) = (H(CN(L1), dmy), dy)
and p
(H(Cp(Lo). dmy). dy) = (H(Cp(L1). dmy). dy)
the chain maps induced by this movie presentation of S. Of course,
f
Hy(Lo) == Hy (L)
is, up to scaling, the homomorphism induced by the chain map
f
(H(CN(Lo),dms). dy) = (H(Cx (L1). ), dy).
Recall that fp is C[a]-linear and
H(Cp(L)/a*Cp(L),dmys) = H(Cp(L). dpy)/a® H(Cp(L). dmy).
So fp induces a chain map
f
H(Cp(L)/a*Cp(L),dps) => H(Cp(L)/a’Cp(L). dyy).
Thus, we have the following commutative diagram with short exact rows:
0 —— H(CN(Lo). dmy) —— H(Cp(L0)/a*Cp(L).dny)

- -

0 —— H(CN(L1).dms) —= H(Cp(L1)/a*Cp(L), dpy)

H(Cp(L0)/a*Cp (L), dms) — H(CN(Lo), dms) —= 0
lfp lfzv
H(Cp(L1)/a?Cp(L), dmy) —2> H(CNn(L1), dpmy) — 0.

By Lemma 5.2, this diagram induces the following commutative diagram with
long exact rows.

. al® .
..LH;V—I(LO) L>H}V(Lo) _a._ ...

lfN lfN
Ta_ pri—1 dp’ i a
T HIEW (L) L HE (L) 2>
This proves the lemma. O

Note that Part (3) of Theorem 1.16 follows from Lemma 5.3.
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5.2. Anti-commutativity. In this subsection, we fix a homogeneous polynomial
P = P(x,a1,a) = x"*' + xF(x,a1,a) (5.2)

of degree 2N + 2, where

e x, a; and a, are homogeneous variables of degrees 2, 2k; and 2k,, respec-
tively,

e deg F(x,ay,az) =2N and F(x,0,0) = 0.

We define
Py :P(x,al,O) and P2:P(x,0,a2). (5.3)

The goal of this subsection is to show that d 1(,11) and d 1(,12) anti-commute, which
implies Part (2) of Theorem 1.16.

Lemma 5.4. Let R be a commutative ring and A, B, C and D chain complexes of
R-modules, whose differentials raise the homological grading by 1. Assume there
is an exact sequence of chain complexes

0o—sa s cp_o.

Then this exact sequence induces an R-homomorphism
A: H (D) — H'™2(A)
for every homological degree i.

Proof. Of course, one can split the exact sequence

h
oA B c N p o

into short exact sequences

O—>AL>B—>B/f(A)—>0

and
0— B/f(4)5>c D —0

Then A can be defined as the composition of the connecting homomorphisms
from these two short exact sequences. But what we actually need later on is that
A is defined by diagram chasing and does not depend on the choices made in that
chasing. So this is how we will prove the lemma here.
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dy dp dc dp

0 git2_J_piv2 8 _iv2 _h_ pit2 0
dy dp dc dp

0 gitt L pi+1 _& i1 _h_ pit1 0
dy dp dc dp

0 AL _pi & _ci M pi 0
dy dp dc dp

0 qi-1 S pi-1 &8 ci-1_h_ pi- 0
dy dp dc dp

In the above diagram, let x € Dibe a cycle. That is, dp(x) = 0. Since 4 is
surjective, there is a chain y € C’ such that 4(y) = x. Then

h(dc(y)) = dp(x) = 0.
So dc(y) € kerh = g(B'*1). Thus, there exists a z € B'*! such that
g(z) =dc(y).
Then
g(dp(z)) = dc(dc(y)) =0.
So dp(z) € kerg = f(A). That is, there exists w € A'*2 such that
f(w) =dp(z).

But f(d4a(w)) = dp(dp(z)) = 0 and f is injective. So d4q(w) = 0, that is, w is a
cycle in A1 +2,
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Next, we show that the mapping
[x] — [w]

is a well defined homomorphism on homology, that is, it does not depend on the
choices made in the above construction.
Assume x’ € D' is a cycle such that

Then there is a X € D~ with
dp(xX) = x’ — x.
Since £ is surjective, there is a § € C'~! satisfying
h(y) = X.
Now let y’ € C? be any chain such that 4(y’) = x’. Then
h(y') = x" = x +dp(X) = h(y + dc ().

Thus,
y' —y—dc(y) ekerh = g(B").

This means that there exists a Z € B such that
g@) =y —y—dc().
Now let z’ € B**! be any chain satisfying
g(z") =dc(y").
Then
g(z") =dc(y)
=dc(y +dc(Y) + g())
= g(z +dp(2)).

This implies that
7 —z—dp(Z) ekerg = f(B'T)).

So there exists a w € A*+! such that

f@) =z —z—dp(3).
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Finally, let w’ € A'*2 be any chain with

fw') =dp(z").

Then

fw') =dp()
=dp(z +dp(Z) + f(W))
= f(w + da(W)).

But f is injective. So

w' = w + dg ().

This shows that w’ is a cycle and [w'] = [w].

From the above, we know that
A: H (D) — H'"2(A)
given by
A([x]) = [w]
is well defined. It is straightforward to show that A is R-linear. O
Lemma 5.5. Let Py and P, be the polynomials defined in (5.3). Then

(1) m _ (1) (€))
dl,,1 oalP2 = —sz ocll,,1 .

Note that, applying Lemma 5.5 to P (x, b;,b;) = xV 1 4+ b;x! +b;x/, we get
Part (2) of Theorem 1.16.

Proof of Lemma 5.5. Let L be any link and D one of its diagrams. Recall that P
is the polynomial in (5.2). Set R = Cla;, az].
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Consider the following diagram.

0

0——=R/(a

0——=R/(a

0—=R/(a

1.a2) —> R/(a

—as
a

1,61%) — R/(a

TTay

+

1,az)l>R/(a

g
%, a) — R/(a
az +

Ta,
2,a3) —=R/(a
]Ta2

+

g
2,a2) —=R/(a

581

0
Note that, in diagram (5.4),
e all rows are exact,

e all columns are exact,

6 9
2

e the upper left square anti-commutes, which is indicated by a
e the other three squares commute, which is indicated by “+s.

Moreover, we get from diagram (5.4) an exact sequence

(%

0— R/(a1,a2) ——

a

) R/(a3, a2)
S

R/(a1,a3)

R/(ay,az) — 0.

(az,a1)
i R/(af,a%) (5.5)

Ta ) OTay =TayOTa,

By Corollary 3.3, H(Cp(D), dp,z) is a chain complex of graded-free R-mod-
ules. For i, j = 1,2 we denote by €; ; the chain complex

(H(Cp(D), dwy)/(@}.a})H(Cp(D), dmy). dy).

Note that
€11 = (H(CN(D),dpy), dy),

whose homology is Hy (L). Exact sequence (5.5) induces an exact sequence

(—az) €$1 @an)

0—>€1,1 _—

a

Ta) OTay =TayOTa,
2,2

€11 — 0. (5.6

'61,2
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By Lemma 5.4, exact sequence (5.6) induces a homomorphism

H. Wu

A: Hy (L) — HYT(L).

We prove the lemma by showing that

_ 4 n _ (1) [6))
A—a’P1 OdP2 ——dP2 oa’Pl.

5.7

To prove (5.7), we demonstrate that each of d ;,11) ° ;,12) and —d ;,12) od 1(311) can be

realized by a diagram chasing used to define A.

Again, recall that H(Cp (D), dyr) is a chain complex of graded-free R-mod-
ules. Tensoring H(Cp (D), dy,,y) with every item in diagram (5.4), we get a dia-

gram of chain complexes

0 0 0
ai Tay
0 €11 ©2,1 Ci1
—az — ax + az
ai Tay
0 €12 [P Cip
Tay + Tay + Tap
ai Tay
0 €11 ©21 Ci1
0 0 0

in which
e all rows are exact,

e all columns are exact,

e the upper left square anti-commutes, which is indicated by a

o the other three squares commute, which is indicated by “+s.

(5.8)

This is the diagram that we will chase. Note that, for each homological degree i,
there is a diagram of the form in 5.8. So our diagram chasing involves three levels
of a 3-dimensional diagram. In stead of drawing the rather complex 2-dimensional
projection of this 3-dimensional diagram, we look at each homological level in-
dividually with the understanding that the each differential map points from one
spot on one level to the same spot one level higher.
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0 0 0
0 f{,l “a fé.,l el 8{,1 0
—az - az + as
; ai . Tay .
0 €2 (z €L, —> (y2 )€}, —=0 (5.9)
Tag  + Tas + Ta,
i ai i Taq i
0 €1,1 On e)'62’1 — (x 6)61’1 —0
0 0 0

Let us start with homological degree i. As in diagram (5.9), let x be any cycle
in the €{ | at the lower right corner. By the exactness, there is a y; in the €} | in
the bottom row such that 7,4, (y1) = x. Use exactness again, there is a z in the
€} , at the center such that 774, (z) = yi. Let y, = 74, (2) in the €] , in the right
column. Since the lower right square commutes, we have that 4, (y2) = x. This
finishes the chase at homological degree i.

0 0 0
0 eit! Us (2, B OEH s (wp @)Y ———0
—as - ax + as
0 —— (1. 2 VEI S~ (dz ©)EL — " (dy; )L >0
Tay + Tay + Tap
0—— (g OEI — U (dy; et — (dx = 0 ©)Ei — 0

(5.10)
Now we move to homological degree i 4 1. First, we map x, yi, y» and z by
the differential maps. Recall that x is a cycle. So 74, (dy1) = 74,(dy2) = dx = 0.
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By exactness, there is a w; in the ‘ijl at the lower left corner such that
ai(w;) = dy;. The chase x ~ y; ~ w; is the chase used in the definition of
the connecting homomorphism of the long exact sequence from the bottom row
of diagram (5.8). So w; is a cycle. Moreover, by Lemma 5.2, this connecting
homomorphism is d 1(,11). So

d) ((x]) = [wil. (5.11)

Similarly, there is a cycle w, in the ‘G{jl at the upper right corner such that
az(wz) = dy; and
dp) (1)) = [wa]. (5.12)

By exactness, there is an &y in the €11 in the left column such that

Tay (1) = wy.

Similarly, there is an &, in the ‘65*;1 in the top row such that 7,4, (2) = w>.
Note that 74, (dz —a;(a1)) = dyy —ai(w;) = 0. So there is a B in the ‘C”“
in the top row such that

az(B1) = dz —ai(ay). (5.13)

Similarly, 74, (dz — a2(a2)) = 0 and there is a B, in the ‘C”H in the left column
such that

ai(Bz) = dz — az(az). (5.14)
0 0 0
0—(y1,72 G)‘C’{jiZ _a (daz, dp e)*gé’j{Z Tay (dws = 0 E)«Gi’jz .0
—a — a» + a
0— (dor. dp; )ELE? - (ddz = 0 ELF el $? 0
a2 + Ta + Tay
0— (dw; =0 e)ei}> e — et 0
0 0 0

(5.15)
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Finally, we look at homological grading i + 2. By equation (5.13),

(az,al)(jﬁi) =ddz =0.

By the exactness of sequence (5.6), there is a y; in the ‘C’{jz at the top left corner

such that
(al()’l) ) _ (dﬂl)
—az(y1) dai )
Since (44, ) is injective and

(al(d)/l) ) _ (ddﬁl) -0
—ax(dy1) dda ’

we know that y; is a cycle. Clearly, the chase

x«»z«»(’Bl)«»yl

aq

defines A ([x]). So
[y1]l = A([x]).

Similarly, there is a cycle y, in the ‘G{jz at the top left corner such that
(al()’z) ) _ (daz)
—ax(y2) dp2)

(7)
X~ Z~> ~ Y2
B2

The chase

defines A ([x]). So
[v2] = A([x]).
Altogether, we have
A([x]) = [n] = 2] (5.16)

Note that a; (—y1) = day. So the chase w; ~» o1 ~> —y; defines the connecting
homomorphism of the long exact sequence from the left column in (5.8), which,
by Lemma 5.2, is dl(,lz). So

d ((wi]) = ~[nl. (5.17)
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Similarly, note that a1 (y,) = da,. By Lemma 5.2, the chase wy ~> o ~> y, gives
that

df) ((wa)) = [2]. (5.18)
Putting equations (5.11), (5.12), (5.16), (5.17) and (5.18) together, we get that

A([x]) = d5) (@) (X)) = —df) (@) (X))

This proves the lemma. O

5.3. Action of d 1(,1). In this subsection, we describe the action of d 1(,1) on Hy (L)
in terms of torsion components of Hp (L) and prove Parts (1) and (4) of Theo-
rem 1.16.

Let P = P(x,a) be of form (1.1) and L a link. Recall that, according to
Theorem 1.7, Hp(L) decomposes into components of the forms Cla]||i||{s} and
Cla]/(@™)]i |{s}. By Corollary 1.8, C[a]||i||{s} contributes a component C||i ||{s}
to Hy (L) and Cl[a]/(a™)|i||{s} contributes a component

Cllif{s} ® Clli = 1|{s + 2km} ()

to Hy (L). The next lemma describes the action of d 1(,1) on such components and
follows from the proof of Lemma 4.17.

Lemma 5.6. (1) a’l(,l) restricts to 0 on the component C||i ||{s} of Hn (L) induced
by the component Cla]||i||{s} of Hp(L).

2) If m > 1, thend 1()1) restricts to 0 on the component (x) of Hy (L) induced by
the component Cla]/(a™)|i||{s} of Hp(L).

(3) On the component C||i||{s} ® C|li — L||{s + 2k} of Hny (L) induced by the
component Clal/(a)||i |[{s} of Hp (L), the restriction ofdl(,l) is given by

1
o di’letins =0,
o dV|cli—1)(s+2x) is an isomorphism C|li — 1||{s + 2k} = C[|i||{s}.
Proof. 'The restrictions of d 1(,1) on these components are computed in the proof of
Lemma 4.17. The current lemma follows from that computation. O

In [7, 4.2.3 Example], Lee observed that the homomorphism ® matches a pair
of generators of bi-degree difference (1, 4). This is a special case of Part (3) of
Lemma 5.6.!!

11'The normalization in [7] is different from ours.
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Corollary 5.7. Let P = P(x,a) be of form (1.1) and L a link. Then d},l) #0
on Hy (L) if and only if at least one of the components of Hp (L) in decomposi-
tion (1.7) is of the form Cla]/(a)|i||{s}.

Proof. 'This follows from Lemma 5.6. O

Lemma 5.8. Suppose

| %]
Pl — Pl(x,a) — )CN+1 + Z Al,iaixN+1_ik,

i=1

L%
Py = Py(x,a) = xNt! 4 Z Ay at xN 1k

i=1

where a is a homogeneous variable of degree 2k. Assume that there exists an
integer m such that 1 < m < L%J and A ; = Ay for1 <i <m—1. Let D bea
link diagram with a marking. Define

€p, m(D) :== Cp,(D)/a™Cp,(D),
€p,,m(D) := Cp,(D)/a™Cp, (D).

Then (€p, m(D),dy) and (€py,m(D),dy) are identical as chain complexes of
graded matrix factorizations of 0 over Cla]/(a™). Therefore,

H(H(Cp;m(D),dmys).dy) = HH(Cpym(D). dms). dy)
as 7.92-graded Cla]-modules.

Proof. Let xq, ..., x, be the variables associated to marked points on D. For any
MOY resolution I of D, it is obvious from Definition 2.6 that

€P1 m (F) = CP1 (F)/amCPl (r)
and
€P2,m(r) = CPz(F)/amCPz(r)

are the same matrix factorization of 0 over the ring C[x1, ..., X, a]/(a™). Let Ty
and I'; be two MOY resolutions of D that are different at exactly one crossing.
That is, 'y and I'; resolve all but one crossings of D the same way, and that one
remaining crossing is resolved to a pair of parallel arcs in Iy and a wide edge in I'y.
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From the construction in Lemma 2.8, one can see that the following diagrams
commute:

€p, m(To) —2—€p, m(T)

- -

€p,m(Lo) — X €p,m(I'1),

€pym(To) ~———€p, n(T1)

- -

€pym(Lo) ~<—2——€p, ().

Thus, (€p, m(D), dy) and (€p, m (D), d) are identical as chain complexes of ma-
trix factorizations of 0 over C[xy, ..., Xm, a]/(a™). And the lemma follows. [

Lemma 1.15 follows easily from Lemma 5.8.

Proof of Lemma 1.15. Fix a diagram D of L and apply Lemma 5.8 to x¥*1 and

|
P(x,a) — .XN+1 + )LiaixN+1_ki.

i

2
| I—

Il
3

Then we have
H(H(Cyn+1,,(D), dmy), dy) = H(H(Cpm(D), dmy), dy)
as Z.%2-graded C[a]-modules. But
H(H(CxN+1, (D). dmy). dy) = Hy(L) Qc Clal/(a™).
This means that, all direct sum components of H(H(€pu(D),dyyr),dy) must
be of the form Cla]/(a™)|i||{s}. If Hp(L) has a torsion component of the form

Cla]/(@") )i |{s} with 1 <1 < m. Then the chain complex (H(Cp(D), Amy), dy)
has a direct sum component

al
Ti1.s = 0— Clal|li — 1||{s + 2kl} — Cla]|li||{s} — 0.
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Since H(Cp(D), d,,r) is a free Cla]-module, we know that
H(Cpm(D),dpny) = H(Cp(D),dynys)/a™ H(Cp(D), dpy).

So (H(€pm(D),dmy),dy) contains a direct sum component

Tijs/a"Tig,s =0 —> Clal/(@™) i — 1[l{s + 2k} <, Clal/@™)li[|{s} — 0.
Therefore, H(H(Cpm(D),dny), dy) has a direct sum component
Cla)/(a")li — 1]l{s + 2km} @ Cla]/ (@) i [{s}.

By Lemma 4.14, this is a contradiction. Thus, Hp(L) does not contain torsion
components isomorphic to Cla]/(a’)|i ||{s}. O

Next, we apply Lemma 1.15 and Corollary 5.7 to prove Part (1) of Theorem 1.16.

Corollary 5.9. (1) If

N
P(x,a) = XN 4+ LkX:J Ajal xNFIKE
i=2
then
d =0
for any link.

(2) §n = 0 for any link, where 8y is defined in Subsection 1.6.

Proof. Let L be any link and D a diagram of L.

We prove Part (1) of the corollary first. By Lemma 1.15, Hp(L) contains no
torsion components of the form Cla]/(a)||i|{s}. Then, by Corollary 5.7, d 1()1) =0
on Hy (L). This proves Part (1).

Now we prove Part (2). Recall that

Sy = dy),

where
Py = Py(x,a) = xNV 1 4 byxV

and by is a homogeneous variable of degree 2. Define

P = P(y,by) = (y— ij\: 1)N+1 +bzv(y— Nbi I)N-
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Note that P is of form (1.1) and the coeflicient of by yN in P is 0. Thus, by
Lemma 1.15, Hp (L) contains no torsion components of the form C[a]/(a)|i||{s}.

Put a marking on D and let xy, ..., x,, be the variables associated to marked
points on D. We introduce another collection of homogeneous variables

yls'-'ﬁym
of degree 2. Denote by
£: Clx1, ..., Xm,bN] — Cy1, ..., Ym, bN]

the ring isomorphism given by

E(bn) = bn
and
bn
g(Xl)_yl_N—i-l
fori = 1,...,m. In the remainder of this proof, we write
R, =C[x1,...,Xm,bN]
and

Ry =C[y17""ym7bN]'

Let I be any MOY resolution of D. Assume I';; , and I ;; , 4 depicted in
Figure 2 are pieces of I'. By definition 2.6, it is clear that £ induces an isomor-
phism

§: Cpy (Ti; p) — Cp(Ly; p).

For I'; ;. p.¢. & induces an isomorphism

* X+ Xj—Xp —Xg
: Cpy (T, = -
‘i‘_ PN( 1] p,q) (* XiXj — XpXgq Rx{ }

i (* g(xl' +.Xf/ —Xp —.qu)) {_1}
Ry

* E(xix; — xpxq)

_C Yi+Yi—Yp—Yq ) !
= by {_ }
% YiVi = YpVa — N1 Wi Vi =Y — Ya) /R,

I

C m+w—h—m){4}
* YiYj — YpYq Ry

= Cp(Tij; p.g)-
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In the above computation, we used [14, Corollary 2.16 and Lemma 2.18]. This
shows that, for any MQOY resolution I' of D, £ induces an isomorphism

£: Cpy () > Cp(I).

Now let I'g and I'; be two MQY resolutions of D that are different at exactly
one crossing. That is, Iy and I'; resolve all but one crossings of D the same way,
and that one remaining crossing is resolved to a pair of parallel arcs in I'y and a
wide edge in I';. Assume I';; , U T, ; and Iy ;; 54 in Figure 4 are the pieces of
Iy and I'y from resolving this crossing. Then the homomorphisms

X0
CPN (Fi; p U Fj; q) i CPN (Fi,j; p,q)

induce homomorphisms

goxoot™!
Cp(Li; pUTy; o) ————=Cp(I'ij; pg) -
goyyof!
Note that
e £oypoé&tand £ o y; o &7 are both homogeneous homomorphisms of
degree 1.

e Since yg, y1 are homotopically non-trivial and £ is an isomorphism,
Eoyoof ' and Eoy o0&’
are also homotopically non-trivial.

From the uniqueness part of Lemma 2.8, one can see that, up to homotopy and
scaling by non-zero scalars, £ o ygo £~ ! and £ o y; 0 £7! are the homomorphisms

X0
Cp(Ti; p U Ty q) <T—l> Cr(Tij: p.a)

defined in Lemma 2.8. Thus, the following diagrams commute up to homotopy
and scaling by non-zero scalars.

Cpy (To) —22—— Cp, (T)
I I
Cp(To) —22~ Cp(T))

Cpy (Do) <——— Cp (Ty)

) )

Cp(To) ~—2— Cp(I)
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The above shows that Cp, (D) and Cp (D) are isomorphic as objects in the
category of chain complexes over the homotopy category of graded matrix factor-
izations of 0 over C[by]. Thus, Hp,, (L) = Hp(L) as Z®?-graded C[by]-modules.
Therefore, Hp, (L) contains no torsion components of the form Cla]/(a)||i|/{s}.
By Corollary 5.7, 65y = d 1(,2 = 0 on Hy(L). This proves Part (2) of the corol-
lary. O

We have proved Parts (1-3) of Theorem 1.16 so far. It remains to prove Part (4).
We start with the following corollary of Lemma 5.8.

Corollary 5.10. Suppose b; is a homogeneous variable of degree 2N + 2 — 2i
and

Py =Pi(x.b) =xNtT1 4 N ap] NHITINVEIED,
j=1

Py = Py(x,b;) = xV T 4 dybixY,

where )n,...,)LL N J € C. Then, for any link L, dl(,ll) = dI(le) on Hy(L).

N+1—i

Proof. Fix adiagram D of L and amarking on D. Define €p, ,,(D) and €p, ,» (D)
as in Lemma 5.8. According to that lemma, for m = 1,2, (€p, m(D),d,) and
(€py,m(D),dy) are identical as chain complexes of matrix factorizations of 0
over C[b;]/(b!"). In particular, note that identity, as an isomorphism between the
above two chain complexes, is C[b;]-linear. Recall that H(Cp, (D), d,r) is a free
C[b;]-module, €p, 1 (D) = Cn(D) and

H(Cp, 2(D), dmys) 2= H(Cp; (D), dpy)/a* H(Cp, (D). dmy).

So we have the following commutative diagram with exact rows:

b;
0—— H(CN(D)7 dmf) - H(€P1,2(D)’ dmf)

- -

b;
0 —— H(CN(D),dmy) — H(Cp,2(D), dpf)

Tp,
H(€p, 2(D),dyf) — H(CN(D),dpms) —=0

- -

Tp;
H(€p,2(D),dpf) —= H(CN(D),dps) —0.
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By Lemma 5.2, this induces the following commutative diagram with exact rows.

(1)
U H (L) — H/V“(L)

T
Thi i dp) JH+1 gy bi
- —= H{ (L) —= H}" (1) =—
Thus, dj) = d}) on Hy(L). ]
The following lemma concludes the proof of Part (4) of Theorem 1.16.

Lemma 5.11. Suppose b; is a homogeneous variable of degree 2N + 2 — 2i and
A a non-zero scalar. Define

Pi — XN+1 —I—b,'xi
and
fv’,- AR Ab;xt.

Then, for any link L,
(1) (1
dﬁi = AdPi = AJ;
on Hy(L).

Proof. Fix a diagram D of L and a marking of D. Consider the ring automor-
phism
§: Clbi] — C[bi]

given by
§(bi) = Ab;.

Note that ¢ induces on C[b;]/(b;) the identity automorphism
id
Clbil/ (bi) — Clbil/ (o).
For any MOY resolution I' of D, ¢ induces an isomorphism
¢: Cp(I') — Cp (1),
which, in turn, induces a chain complex isomorphism

{: Cp,(D) — Cj, (D).
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Note that this chain complex isomorphism induces the identity chain map
Cp;(D)/biCp;(D) = Cy(D) — idCn (D) = Cp (D) /biC, (D).

Using ¢, we get the following commutative diagram with exact rows:

0 ——= H(CN(D). dmy) —i H(Cp,(D)/b?Cp, (D). dyny)

iw .

0 —— H(Cx(D). dms) ——> H(Cp,(D)/bZCf, (D). dpry)

- lw

0 ——= H(CN(D). dny) —= H(C,(D)/b2C}s, (D). dmy)

H(Cp,(D)/b>Cp, (D). dyy) —= H(CN(D). dypy) —= 0

%lt lid
TTh

H(Cp,(D)/b}C5, (D). ds) —> H(CN (D). ds) —0

S

H(Cp,(D)/D}C (D). dyny) — = H(CN (D). dyny) — 0.
(5.19)

By Lemma 5.2, diagram (5.19) induces a commutative diagram with exact rows

I H (L) =2 H T () 2
b
I H (L) =2 T ()
. lid d(l) l/lid
gL —2 m () 2

where A is the connecting homomorphism induced by the second row of dia-
gram (5.19). Thus, we have d ) = AA = 28;. O

5.4. A recapitulation of the proof of Theorem 1.16. The proof of Theorem 1.16
is spread out in the first three subsections of this section. Here we give a quick
recap of this proof.
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Part (1) is proved in Corollary 5.9.

Applying Lemma 5.5 to P = xV ! + b;x' + b;x/, one gets Part (2).

Part (3) is a special case of Lemma 5.3.

Corollaries 5.9, 5.10 and Lemma 5.11 imply that, for a polynomial

¥
P(x,a) = xN+1 + )kialXN_l_l_lk
i=1
with dega = 2k and A; € C,
d},l): 0 if Ay =00rk =1,
A16ny+1—k otherwise.
This proves Part (4).

5.5. Anexample. Nextwe compute Hp, (L) for the closed 2-braid L in Figure 1,
which allows us to conclude that, on Hx (L), the differentials §;,...,8y—; are
non-zero, but §;6; = Oforany 1 <i,j <N — L.

In our computation, we use the diagram of L with two marked points in Fig-
ure 5. We also denote by I'y, I'; the two MOY resolutions of L in Figure 5. Before
going any further, let us recall the Gaussian elimination lemma.

Lemma 5.12 ([1, Lemma 4.2]). Let C be an additive category and

(g) 4 (i i) B (i v)

D E

a chain complex over C. Assume that A — B is an isomorphism in C with in-
verse ¢~ . Then T is homotopic to

—vo18
M=o —Cc D g " ..
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X2

X1

X2

I'y

Figure 5. L and two of its MOY resolutions.

By [17, Theorem 1.1],!2 for any polynomial P = P(x,a) of form (1.1), Cp(L)
is homotopic to the chain complex

0 —> Cp(To){—4N + 4} X% Cp(T1){=4N + 3} -2 Cp(T){—4N + 1}

ZE5 Cp(D){—4N — 1} = Cp(T){—4N =3} — 0,
(5.20)

where Cp(I'g){—4N + 4} is at homological degree 0 and x is the homomorphism
associated to wide edge in I'y. Thus,

Cp(L) =~ C,® C, 0 Cs, (5.21)

12 Strictly speaking, [17, Theorem 1.1] is stated only for P(x,a) = x¥*! —ax. But it is
straightforward to check that this theorem and its proof remain true for a general P(x,a) of
form (1.1).
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where
C1 = 0 Cp(To)[0[{—4N + 4} => Cp(T)|[1[[{=4N +3} > 0,

C> = 0 — Cp(T)2I{—4N + 1} =2 Cp(T))|3|{—4N — 1} — 0,
C;=0—Cp(T)||4|{—4N -3} — 0.

X2 X2
X1
U_,4 Uy

Figure 6. Two diagrams of the unknot.

Consider the two diagrams of the unknot in Figure 6. Note that
C1 = Cp(U-1){-3N +3}.
So
H(H(Cy,dpy),dy) = Hp(U-1){—=3N + 3}
~ Hp(Up){—3N + 3}

(5.22)
dP(x32,a)
= Clxz.al/ (2 ) [0[{—4N +4}.
X2
In particular, note that H(H(C1, d,,r), dy) is a free Cla]-module.
By [6, Proposition 10],!3
N-2
Cs = P CpUo)[[4I{-3N — 5 - 2i}.
i=0
So
N-2
H(H(C3,dpmy), dy) = Hp(Uo)||4I{—3N —5—2i}
=0 (5.23)
N2 P (x2, a)
= P Clxa.al/ (2= ) I4I{-4N — 4 21},
X2

13 We are not tracking the Z,-grading here.
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Note that H(H(C3,d,,r), dy) is again a free Cla]-module.
It remains to compute H(H(Cs, dpy), dy). Write

N+1

P(x,a) =) fix',
i=1

where fy4+1 = 1 and each f; is a monomial of a of degree 2N + 2 — 2i. (For
degree reasons, many of these f;’s vanish.) By [13, the proof of Lemma 2.18], as
an endomorphism of Cp ('),

m(i(l’ + 1)f,-+1x§) - m(w) ~ 0, (5.24)
i=0

8x1

where m(x) is the endomorphism given by the multiplication by .
Next, we explicitly write down the inclusions and projections in the decompo-
sition
N-2
Cp(T1) ~ @) Cp(Up){N —2—2i}. (5.25)

i=0
Consider the homomorphisms in Figure 7, where

e ; and € are the homomorphisms associated to the circle creation and annihi-
lation (see [6] for their definitions,)

e xo and y; are the y-maps associated to the wide edge in I';.
Recall that
(1) ¢ and € are homogeneous of degree —N + 1 and C[x;, a]-linear. For 1 <i <
N —1,
idcpwy ifi =N—1,

(5.26)
0 if,i =0,1,...,N =2.

eom(x’i)OL:{

(2) yxo and y; are homogeneous of degree 1 and C[x, x5, a]-linear. y; o yo ~
(.X] - x2) idCP (To)-

Define

Q= ool
and

p=c¢€oyr
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X2

I

Figure 7. Definition of o and B.

Note that these are homogeneous homomorphisms of degree —N + 2. For i
0,1,..., N —2, define

a;i: Cp(Up){2+2i — N} — Cp(I'y)

Bi: Cp(I'1) —> Cp(Up){2+2i — N}

i i—p

o = m(z Z(N -p+ l)fN—p+1X{x;_”_l) oa

p=01[=0

599
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and

i = s BomGd i),

Note that «; and B; are homogeneous homomorphisms of degree 0. For any 0 <
i,j <N-=-2,

) i i—p
Bow = gpom(xl Y Y (W —p+1)

p=0[=0 | _i—p—I
IN—p+1X1X; ou

i
Ni_leoxlom(xl - 222(1\/ p+1)

fN—p-Hxlxz © Xool

i i—p
€o m((x1 - xz)va_]_2 Z Z(N -p+1
=0/=0 e
r fN_pHx{x’z p l) ol

1
= =2 (N=p+D
N+1 = o
IN—p+1 60m< (xl—xz)Zx )o
1 i
TP S e
=0 N—j—=2, i—p+1 i—p+1
SN—p+1-€0om(x; (x3 — X2 ) ot
1 i
P 2
® fn-pir-(eom@x) TP o0y
_eom(xN Jj—2 z p+1)OL)

i
[by (5.26)] = > (N = p+ D) fy—ps1-€com(xy /P oy
p=0

If j >i,then N +i—-j—-p—1=<N—-2forp =0,...,i. So, by (5.26),
Bj o a; =~ 0 in this case.
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If j < i then, by (5.24),

1 i1 % -
Bjoa; ~ N + leom(xi ’ 1X:UV—P"‘ D fv-ps1xy 7)ot
p=0

N
1 _
~ — com(x; TN Y (N=p+ D fv_prixy D)o

N +1 o
1
~ - Z (N = p + D fy-prrcom@y "7 o

p=i+1
~ 0,
where, in the last step, we used (5.26) andthat N +i —j —p—1 < N — 2 for

p=i+1,...,N.
Ifi = j, then, by (5.26) and that fxy4; = 1, we have

Bioa = —— Z(N P+ fvepir-eomxy P ol

N+1

~ € om(x] N1y oy

~

>~ idep o) -

Altogether, we get that, for 0 <i,j < N —2,

idc U, ifi = j1
Bjoa; ~ r (o) (5.27)
0 otherwise.

We can use «; and B; as the inclusions and projections in decomposition (5.25).
Recall that the differential map of C, is the endomorphism m(x; — x3) of
Cp(T'1). Its action on the components of Cp (I';) in decomposition (5.25) is given
by
Bjom(x1 —x2) oa; = fj om(xy) ooty — Bj om(x2) o
=fj—10ai —x2-Bj o
—x2-idcp @y ifi = J, (5.28)
>~ yidep o) ifi =j —1,

0 otherwise.
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Thus, using decomposition (5.25), we have

C2 ~0
[ Cp(Uo){2—N} 7]
®
Cp(Up){4— N}
®
— : [2[{—4N + 1}
(&)
Cp(Uo){N — 4}
©®
L Cp(Uo){N —2} |
[ Cp(Uo){4— N} 7]
®
Cp(Uo){6— N}
®
2r, : I3 {—4N — 1)
©®
Cp(Uo){N —2}
©®
L Cp(Uo){2— N} |
— 0,

where the differential Dy_; is the (N — 1) x (N — 1) matrix

I —x 0 0 0
0 I —x 0 0
0 0 1 0 0
Dy_1 =
0 0 0 —x 0
0 0 0 I —x
—x 0 0 0 0

Here note the difference in the ordering of components in the two columns in the
chain complex.
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Now apply Gaussian elimination (Lemma 5.12) to the “1” at the upper left
corner of Dy_;. We get that

C2 ~0
[ Cp(Ug){4— N} |
D
— ® I2[{—4N + 1}
Cp(Uo){N — 4}
D
| Cp(Uo){N —2} |
[ Cp(Up){6— N} ]|
D
ELEN ® 131{=4N — 1}
Cp(Ug){N —2}
®
| Cp(Ug){2— N} |
—0

s

where the differential Dy_5 is the (N —2) x (N — 2) matrix

Il —x» 0 -+ 0 0
0 1 —x =+ 0 0
0 0 1 -~ 0 0
Dy_p = ..
0 0 0 - —x2 O
0 0 0 - 1 -x
-x3 0 0 -+ 0 0

Clearly, we can apply Gaussian elimination to the “1” at the upper left corner of
Dy again and again. After N — 2 Gaussian eliminations, we get that

N—1

Cy; ~0— Cp(Up)|I2|{—-3N—1} SRCEEN Cp(U)|I3I{—-5N+1} — 0. (5.29)
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From now on, we specialize to the case
P = Pi(x,bi) = XN+1 + bixi,
where
degb; = 2N +2 —2i.

In this case,
Cp; (Up) = M|O]{—N + 1}

and
_+N—1

H(H(Ca.dpy).dy) = H(O —> M|2|{—4N} —— M|3[[{=6N + 2} —> 0),
where M is the graded free C[b;]-module
M = C[x2,b;]/(N + D)x +ib;xi™h)

=

Clbi] - x}

(5.30)

-
Il
<)

T

Il

Clbil{2j}-

-
I
S

It is straightforward to check that
H*(H(Cy. dy). dy) = ker(m(xziV D{-4N}

N

Clbi] - (N + DxY 7+ 4ibix]){—4N}
(5.31)

Il
. ~.
I
(=]

|
)

I

Clbil[{2(=N —i + j + 1)}.

-
Il
(=}

and
H*(H(Ca, dyy), dy)

>~ coker(m(xY"1)){—6N + 2}

i—2 N-2
- (@@[b,-]-xg){—ézvm}@( D clvil/bi)- x2){ 6N +2)
j=0

j=i—1
i—2 N-2
~ (@C[bi]{—6N +2) + 2}) ® ( D Clbil/Bi){—6N +2) + 2})
Jj=0 j=i—1

(5.32)
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Combining (5.21), (5.22), (5.23), (5.30), (5.31) and (5.32), we get the follow-
ing lemma.

Lemma 5.13. Let L be the closed 2-braid in Figure 1 and
P;(x,bi) = xNT1 4 bixt,
wherel <i <N —1and
degb; = 2N +2 —2i.

Then

N-1
Hp (L) = @) Clbil{—4N + 4 + 2/},

j=0

Hp (L) =0,

i—2
Hp (L) = @ Cbil{2(—N —i +j + D},
j=0

N

i—2 N—-
HE (L) = (D CBili-6N +2j +2}) & ( D Cbil/B)i-6N +2) +2}),
j=0 j=i-1
N—-2N-1
Hp (L) = @ @ Clbil{—4N —4 21 + 2/},
=0 j=0

Hp(L)=0 ifl <Oorl>4.

Corollary 5.14. Let L be the closed 2-braid in Figure 1. Then, for any 1 < i

N — 1, we have
#0 ifl =2,
8i|H,lV(L)

IA

=0 ifl #2.

In particular, as endomorphisms of Hy(L), §; # 0, but §;8; = 0 for any 1
i,j <N-—1

IA

Proof. By Lemma 5.13, all torsion components of Hp, (L) are isomorphic to
C[b;]/(b;) and are at homological degree 3. The corollary follows from this and
Lemma 5.6. U
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