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Equivariant Khovanov–Rozansky homology

and Lee–Gornik spectral sequence
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Abstract. Lobb observed in [8] that each equivariant sl.N / Khovanov–Rozansky homol-

ogy over CŒa� admits a standard decomposition of a simple form.

In the present paper, we derive a formula for the corresponding Lee–Gornik spectral se-

quence in terms of this decomposition. Based on this formula, we give a simple alternative

de�nition of the Lee–Gornik spectral sequence using exact couples. We also demonstrate

that an equivariant sl.N / Khovanov–Rozansky homology over CŒa� can be recovered from

the corresponding Lee–Gornik spectral sequence via this formula. �erefore, these two

algebraic invariants are equivalent and contain the same information about the link.

As a byproduct of the exact couple construction, we generalize Lee’s endomorphism

on the rational Khovanov homology to a natural
V�

C
N �1-action on the sl.N / Khovanov–

Rozansky homology.

A numerical link invariant called torsion width comes up naturally in our work. It de-

termines when the corresponding Lee–Gornik spectral sequence collapses and is bounded

from above by the homological thickness of the sl.N / Khovanov–Rozansky homology. We

use the torsion width to explain why the Lee spectral sequences of certain H-thick links col-

lapse so fast.
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1. Introduction

Our goal is to understand the equivariant sl.N / Khovanov–Rozansky homology

de�ned by Krasner in [6] and its relations to other versions of the Khovanov–

Rozansky homology. Since the algebra is much easier over a principal ideal do-

main, we focus on equivariant sl.N / Khovanov–Rozansky homologies over CŒa�.

Lobb observed in [8] that each such homology admits a standard decompo-

sition of a simple form. �e �rst result of the present paper is a decomposi-

tion formula for the corresponding Lee–Gornik spectral sequence in terms of

Lobb’s decomposition. Based on this formula, we de�ne a simple exact couple

whose spectral sequence is isomorphic to the corresponding Lee–Gornik spectral

sequence minus some repeated pages.

We also explain how to recover the Z
˚2-graded CŒa�-module structure of the

equivariant sl.N / Khovanov–Rozansky homology from the corresponding Lee–

Gornik spectral sequence. �erefore, an equivariant sl.N / Khovanov–Rozansky

homology over CŒa� and the corresponding Lee–Gornik spectral sequence deter-

mine each other and encode the same information of the link. When recovering

the equivariant sl.N / Khovanov–Rozansky homology, a numerical link invariant,

the torsion width, shows up naturally. It determines exactly when the Lee–Gornik

spectral sequence collapses and is bounded from above by the homological thick-

ness of the sl.N / Khovanov–Rozansky homology. It also allows us to explain the

fast collapsing of the Lee spectral sequences of certain H-thick links.

�e aforementioned exact couples equip the sl.N / Khovanov–Rozansky

homology with extra di�erentials. Using these di�erentials, we de�ne a natural
V�

C
N �1-action on the sl.N / Khovanov–Rozansky homology, which generalizes

Lee’s endomorphism ˆ on the rational Khovanov homology de�ned in [7, Sec-

tion 4]. In the process of this construction, we prove the non-existence of “small”

torsion components in certain equivariant sl.N / Khovanov–Rozanskyhomologies

over CŒa�.

In the remainder of this section, we brie�y review the background of this work

and state our results. All links and link cobordisms in this paper are oriented.

While all the results in this paper are stated over the base �eld C, these results

and their proofs remain true over any �eld of characteristic 0.
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1.1. Equivariant sl.N/ Khovanov–Rozansky homology over CŒa�. Following

the grading convention in [5], let x be a homogeneous variable of degree 2 and a

a homogeneous variable of degree 2k, where k is a positive integer. We consider

the following homogeneous polynomial of degree 2.N C 1/ in CŒx; a�:

P.x; a/ D xN C1 C

b N
k c

X

j D1

�j aj xN C1�jk ; (1.1)

where �1; : : : ; �bN
k c 2 C.

For any oriented link diagram D, one can use P.x; a/ to specialize Krasner’s

construction in [6] to give a bounded chain complex CP .D/ of graded matrix

factorizations overCŒa�. We will review the construction of CP .D/ in more details

in Section 2. For now, recall that CP .D/ comes with

� two Z-gradings: the homological grading and the polynomial grading;

� a �ltration: the x-�ltration Fx;

� two di�erential maps: dmf from the underlying matrix factorizations and d�

from crossing information.

�e homology H.CP .D/; dmf / is a �nitely generated free CŒa�-module that in-

herits both Z-gradings and the x-�ltration. �e equivariant sl.N / Khovanov–

Rozansky homology of D over CŒa� with potential P.x; a/ is de�ned to be the

homology

HP .D/ D H.H.CP .D/; dmf /; d�/; (1.2)

which, again, inherits both Z-gradings and the x-�ltration.

As a special case of Krasner’s work in [6], we have the following theorem.

�eorem 1.1. [6] Every Reidemeister move of D induces a homotopy equiva-

lence of CP .D/ that preserves bothZ-gradings and the x-�ltration. Consequently,

HP .D/, with its two Z-gradings and x-�ltration, is invariant under Reidemeister

moves.

Remark 1.2. Strictly speaking, Krasner only proved the invariance under braid-

like Reidemeister moves. But the proof of the invariance under Reidemeister move

IIb is very similar and given in [15, �eorem 8.2].

Also, the x-�ltration is not mentioned in [6]. But, from its de�nition in Sec-

tion 2 below, one can see that the homotopy equivalence associated to Reidemeis-

ter moves given in [6, 15] preserve the x-�ltration.
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De�ne

CN .D/ D CP .D/=aCP .D/:

�en CN .D/ is isomorphic to the sl.N / Khovanov–Rozanskychain complex in [5].

It inherits from CP .D/:

� the homological grading and the polynomial grading,1

� both di�erential maps, dmf and d�.

�e homology

HN .D/ D H.H.CN .D/; dmf /; d�/; (1.3)

is the sl.N / Khovanov–Rozansky homology de�ned in [5]. �e invariance of

HN .D/ was established by Khovanov and Rozansky in [5] but can now be viewed

as a corollary of �eorem 1.1.

Corollary 1.3. [5] Every Reidemeister move of D induces a homotopy equiva-

lence of CN .D/ that preserves both the homological grading and the polynomial

grading. Consequently, HN .D/, with its homological grading and polynomial

grading, is invariant under Reidemeister moves.

Proof. �e standard quotient map CP .D/ ! CN .D/ preserves homotopy equiv-

alence. So Corollary 1.3 follows from �eorem 1.1.

De�ne
yCP .D/ D CP .D/=.a � 1/CP .D/:

�en yCP .D/ is a bounded chain complex of �ltered matrix factorizations over C.

It inherits from CP .D/:

� the homological grading,

� the x-�ltration Fx,

� both di�erential maps, dmf and d�.

We call the homology

yHP .D/ D H.H. yCP .D/; dmf /; d�/; (1.4)

the deformed sl.N / Khovanov–Rozansky homology with potential P.x; 1/. �is

version of the Khovanov–Rozanskyhomology was originally introduced by Lee [7]

in the sl.2/ case and then by Gornik [3] in the general sl.N / case. Its invariance

was �rst established by the author in [13] but can now be viewed as a corollary of

�eorem 1.1.

1 �e increasing �ltration induced by this polynomial grading is the same as the x-�ltration

that CN .D/ inherits from CP .D/.
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Corollary 1.4. [13] Every Reidemeister move of D induces a homotopy equiva-

lence of yCP .D/ that preserves both the homological grading and the x-�ltration.

Consequently, yHP .D/, with its homological grading and x-�ltration, is invariant

under Reidemeister moves.

Proof. �e standard quotient map CP .D/ ! yCP .D/ preserves homotopy equiv-

alence. So Corollary 1.4 follows from �eorem 1.1.

1.2. �e Lee–Gornik spectral sequences.

�eorem 1.5. [3, 7] Let D be a diagram of an oriented link L. �en

� �e x-�ltration Fx on the chain complex .H. yCP .D/; dmf /; d�/ induces a

spectral sequence ¹ yEr .L/º converging to yHP .L/ with

yE1.L/ Š HN .L/I

� the x-�ltration Fx on the chain complex .H.CP .D/; dmf /; d�/ induces a

spectral sequence ¹Er .L/º converging to HP .L/ with

E1.L/ Š HN .L/ ˝C CŒa�:

Remark 1.6. Only the E0-pages of ¹ yEr.L/º and ¹Er .L/º depend on the choice

of the diagram D. By �eorem 1.1 and Corollary 1.4, for r � 1, yEr .L/ and Er .L/

are link invariants.

�e spectral sequence ¹ yEr .L/º was �rst observed by Lee [7] in the sl.2/ case

and then generalized to the sl.N / case by Gornik [3]. A complete construction

of ¹ yEr.L/º can be found in [13]. �e construction of ¹Er .L/º is very similar and

given in Section 3 below2. We call ¹ yEr .L/º the Lee–Gornik spectral sequence

over C and ¹Er .L/º the Lee–Gornik spectral sequence over CŒa�.

1.3. Lobb’s decomposition theorem. As shown in Section 3 below, the complex

.H.CP .D/; dmf /; d�/ is a bounded chain complex of �nitely generated graded

free CŒa�-module. Lobb [8] observed that this implies .H.CP .D/; dmf /; d�/ de-

composes into a direct sum of simple graded chain complexes of the forms

Fi;s D 0 �! CŒa�kik¹sº �! 0; (1.5)

Ti;m;s D 0 �! CŒa�ki � 1k¹s C 2kmº
am

�! CŒa�kik¹sº �! 0; (1.6)

2 In fact, we construct a somewhat more general spectral sequence. See �eorem 3.5 below.
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where kik indicates that the component is at homological degree i and, follow-

ing [5], ¹sº means shifting the polynomial grading up by s. �erefore, HP .D/ is

the direct sum of a free graded CŒa�-module and torsion components of the form

CŒa�=.am/. �e torsion part of HP .D/ is not yet well understood. But the free part

of HP .D/ is relatively simple and can be explicitly described using the deformed

sl.N / Khovanov–Rozansky homology yHP .D/. �eorem 1.7 below is a more pre-

cise formulation of the decomposition of HP .L/ observed by Lobb in [8].

For any oriented link L, denote by yH i
P .L/ the component of yHP .L/ of

homological grading i and by yHi
P .L/ the graded C-linear space associated to the

�ltered space . yH i
P .L/;Fx/. �at is,

yHi
P .L/ D

M

j 2Z

yHi;j
P .L/;

where
yHi;j

P .L/ D F
j
x

yH i
P .L/=Fj �1

x
yH i

P .L/:

�eorem 1.7. [8] Given an oriented link L and a homological degree i , there is

a (possibly empty) �nite sequence

¹.mi;1; si;1/; : : : ; .mi;ni
; si;ni

/º � Z>0 � Z

such that, as graded CŒa�-modules,

H i
P .L/ Š . yHi

P .L/ ˝C CŒa�/ ˚

ni
M

lD1

.CŒa�=.ami;l //¹si;lº; (1.7)

where H i
P .L/ is component of HP .L/ of homological grading i . Moreover, the

sequence

¹.mi;1; si;1/; : : : ; .mi;ni
; si;ni

/º

is unique up to permutation.

A complete proof of �eorem 1.7 is given in Subsection 4.2 below. A byproduct

of this theorem is a decomposition of HN .L/, which we formulate in the following

corollary. See Subsection 4.2 below for its proof.

Corollary 1.8. Using notations in �eorem 1.7, we have

H i
N .L/ Š yHi

P .L/ ˚
�

ni
M

lD1

C¹si;lº
�

˚
�

niC1
M

lD1

C¹2kmiC1;l C siC1;lº
�

; (1.8)

where H i
N .L/ is component of HN .L/ of homological grading i .
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1.4. Decompositions of the Lee–Gornik spectral sequences. �e �rst results

of the present paper are formulas for ¹Er .L/º and ¹ yEr.L/º in terms of decomposi-

tion (1.7). To state our results, we need to introduce a non-standard tensor product

“�” of bigraded vector spaces.3

De�nition 1.9. Let H D
L

i;j H
i;j and E D

L

p;q Ep;q be two Z
˚2-graded

C-spaces. �en

H � E D
M

˛;ˇ

.H � E/˛;ˇ

is the Z
˚2-graded C-space satisfying

.H � E/˛;ˇ D
M

j CpD˛;

qCi�j Dˇ

H
i;j ˝C Ep;q :

Next, we de�ne the x-�ltration Fx of Fi;s, Ti;m;s, yFi;s D Fi;s=.a � 1/Fi;s and
yTi;m;s D Ti;m;s=.a � 1/Ti;m;s:

F
p
x Fi;s D

8

<

:

0 �! CŒa�kik¹sº �! 0 if p � s;

0 if p < s;
(1.9)

F
p
x Ti;m;s D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 �! CŒa�ki � 1k¹s C 2kmº
am

�! CŒa�kik¹sº �! 0

if p � s C 2km;

0 �! CŒa�kik¹sº �! 0 if s � p < s C 2km;

0 if p < s;

(1.10)

F
p
x

yFi;s D

8

<

:

0 �! Ckik �! 0 if p � s;

0 if p < s;
(1.11)

Fp
x

yTi;m;s D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 ! Cki � 1k
1

�! Ckik �! 0 if p � s C 2km;

0 ! Ckik ! 0 if s � p < s C 2km;

0 if p < s:

(1.12)

�e �ltered chain complexes Fi;s, Ti;m;s, yFi;s and yTi;m;s are very simple. �eir

spectral sequences are given in the following lemma, which is proved in Subsec-

tion 4.3 below.

3 �e de�nition of “�” in De�nition 1.9 comes from the normalization we use in the de�ni-

tion of the spectral sequence of a �ltered chain complex. If one uses a di�erent normalization,

then the de�nition of “�” needs to change accordingly.
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Lemma 1.10. For any r � 0,

Ep;q
r .Fi;s/ Š

8

ˆ

ˆ

<

ˆ

ˆ

:

CŒa�¹sº if p D s;

and q D i � s;

0 otherwise,

(1.13)

Ep;q
r .Ti;m;s/ Š

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.CŒa�=.am//¹sº if p D s;

q D i � s;

and r � 2km C 1;

CŒa�¹sº if p D s;

q D i � s;

and r � 2km;

CŒa�¹s C 2kmº if p D s C 2km;

q D i � 1 � s � 2km;

and r � 2km;

0 otherwise,

(1.14)

Ep;q
r . yFi;s/ Š

8

<

:

C if p D s and q D i � s;

0 otherwise,
(1.15)

Ep;q
r . yTi;m;s/ Š

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

C if p D s;

q D i � s;

and r � 2km;

C if p D s C 2km;

q D i � 1 � s � 2km

and r � 2km;

0 otherwise.

(1.16)

Note that

� isomorphisms (1.13) and (1.14) preserve the polynomial grading;

� both ¹Er .Ti;m;s/º and ¹Er . yTi;m;s/º collapse exactly at their E2kmC1-pages;4

� both ¹Er.Fi;s/º and ¹Er. yFi;s/º collapse at their E0-pages;

4 We say that a spectral sequence ¹Er º collapses exactly at its Et -page if Et�1 © Et but

EtCr Š Et for all r � 0.
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� we have

Er .Fi;s/ Š Ckik¹sº � Er .F0;0/;

Er . yFi;s/ Š Ckik¹sº � Er . yF0;0/;

where “�” is the product de�ned in De�nition 1.9 and Ckik¹sº is the

Z
˚2-graded C-space given by

.Ckik¹sº/p;q D

´

C if p D i and q D s;

0 otherwise.

Combining Lemma 1.10 and the following theorem, we get explicit formulas

for ¹Er .L/º and ¹ yEr .L/º in terms of Lobb’s decomposition (�eorem 1.7.)

�eorem 1.11. For an oriented link L, let

yHP .L/ D
M

i2Z

yHi
P .L/ D

M

.i;j /2Z˚2

yHi;j
P .L/

and, for each i ,

¹.mi;1; si;1/; : : : ; .mi;ni
; si;ni

/º � Z>0 � Z

the sequence given in �eorem 1.7. �en, for any r � 1,

yEr .L/ Š . yHP .L/ � Er . yF0;0// ˚
M

i2Z

ni
M

lD1

Er . yTi;mi;l ;si;l
/; (1.17)

Er .L/ Š . yHP .L/ � Er .F0;0// ˚
M

i2Z

ni
M

lD1

Er .Ti;mi;l ;si;l
/; (1.18)

where isomorphism (1.17) preserves the usually .p; q/-grading of spectral

sequences, while isomorphism (1.18) preserves the usually .p; q/-grading of spec-

tral sequences as well as the polynomial grading of each E
p;q
r -component.

�eorem 1.11 is proved in Subsection 4.3 below. �e key to its proof is that,

when the chain complex .H.CP .D/; dmf /; d�/ is decomposed into complexes of

the forms Fi;s and Ti;m;s, the x-�ltration decomposes accordingly. �is is estab-

lished in Subsection 4.1.
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1.5. Lee–Gornik spectral sequence via exact couples. Let us recall the de�ni-

tion of exact couples of Z˚2-graded C-linear spaces.

De�nition 1.12. An exact couple of Z˚2-graded C-linear spaces is a tuple .A; E;

f; g; h/ such that

� A and E are Z
˚2-graded C-linear spaces,

� A
f
�! A, A

g
�! E and E

h
�! A are homogeneous homomorphisms of

Z
˚2-graded C-linear spaces,

� the triangle

A
f // A

g��⑦⑦
⑦⑦
⑦⑦
⑦

E

h

__❅❅❅❅❅❅❅

is exact.

Any exact couple .A; E; f; g; h/ has a derived couple .A0; E 0; f 0; g0; h0/, which

is itself an exact couple. We will review the de�nition of the derived couple in

Subsection 4.4. For now, we just point out that

d WD g ı h

is a di�erential on E, and E 0 is de�ned to be the homology of .E; d/.

Starting with an exact couple .A.1/; E.1/; f .1/; g.1/; h.1//, one can inductive

de�ne a sequence

¹.A.r/; E.r/; f .r/; g.r/; h.r//º

of exact couples, where .A.r/; E.r/; f .r/; g.r/; h.r// is the derived couple of

.A.r�1/; E.r�1/; f .r�1/; g.r�1/; h.r�1//. Let

d .r/ D g.r/ ı h.r/:

�en ¹.E.r/; d .r//º is the spectral sequence induced by .A.1/; E.1/; f .1/; g.1/; h.1//.

Now let D be a link diagram. Recall that CN .D/ D CP .D/=aCP .D/.

Denote by �a the standard quotient map CP .D/ ! CN .D/, which induces a

homomorphism

H.CP .D/; dmf /
�a
�! H.CN .D/; dmf /:
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But H.CP .D/; dmf / is a free CŒa�-module (see for example Corollary 3.3 below).

So there is a short exact sequence

0 �! H.CP .D/; dmf /
a

�! H.CP .D/; dmf /
�a
�! H.CN .D/; dmf / �! 0;

which induces an exact couple

HP .D/
a // HP .D/

�ayysss
ss
ss
ss
s

HN .D/

�

ee❑❑❑❑❑❑❑❑❑❑

;

where � is the connecting homomorphism from the long exact sequence construc-

tion, which is homogeneous with bidegree .1; �2k/.

�eorem 1.13. Denote by ¹. zE.r/.D/; d .r//º the spectral sequence induced by the

exact couple

.A.1/.D/; zE.1/.D/; f .1/; g.1/; h.1// D .HP .D/; HN .D/; a; �a; �/:

�en
zE.r/

p;q.D/ Š yEq;p�q

2k.r�1/C1
.D/;

where ¹ yEr .D/º is the Lee–Gornik spectral sequence of D over C given in �eo-

rem 1.5.

�e proof of �eorem 1.13 in Subsection 4.4 below is straightforward.

We simply compute the sequence of derived exact couples for each component

in decomposition (1.7) and compare it to Lemma 1.10.

Remark 1.14. From �eorem 1.13, it may seem like ¹ zE.r/º is missing a lot of pages

of ¹ yEr.D/º. But, by Lemma 1.10 and �eorem 1.11, one can see that

yE2kmC1.L/ Š yE2kmC2.L/ Š � � � Š yE2k.mC1/.L/

for any link L and any non-negative integer m. So the missing pages are just

identical copies of pages of ¹ zE.r/º.

1.6. A natural
V

�

CN �1-action on HN .L/. For a link L, we take a closer look

at the exact couple .HP .L/; HN .L/; a; �a; �/ de�ned in the previous subsection.

It equips HN .L/ with a di�erential d .1/ D �a ı �. Note that the construction of

the above exact couple depends on a particular homogeneous polynomial P.x; a/
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of form (1.1). In this subsection, we temporarily bring P back in the notation of

this di�erential on HN .L/ and write d
.1/
P instead of d .1/.

We consider the polynomial

Pi .x; bi / D xN C1 C bix
i ; (1.19)

where 1 � i � N and bi is a homogeneous variable of degree 2N C 2 � 2i .

Applying the exact couple constructed in �eorem 1.13 to Pi , we de�ne on HN .L/

a homogeneous di�erential map ıi WD d
.1/
Pi

of homological degree 1 and polyno-

mial degree 2i � 2N � 2.

We prove that ı1; : : : ; ıN �1 give a natural
V�

C
N �1-action on HN .L/ and this

action can not be extended by adding other d
.1/
P ’s. �e following is a lemma

needed in the construction, which provides some control on how small a torsion

component in Lobb’s decomposition can be.5

Lemma 1.15. Let a be a homogeneous variable of degree 2k, 2 � m �
�

N
k

˘

and

P.x; a/ D xN C1 C

b N
k c

X

iDm

�ia
ixN C1�ki ;

where �m; : : : ; �bN
k c are scalars. �en, for any link L, we have mi;l � m for all

i; l in decomposition (1.7) of HP .L/. �at is, HP .L/ does not contain torsion

components isomorphic to any of CŒa�=.a/; : : : ;CŒa�=.am�1/.

�eorem 1.16. Let L be any link. As endomorphisms of HN .L/,

(1) ıN D 0I

(2) ıiıj C ıj ıi D 0 for any 1 � i; j � N � 1I

(3) each ıi is natural in the sense that it commutes with homomorphisms of

HN .L/ induced by link cobordisms;

(4) for a polynomial P.x; a/ D xN C1 C
Pb N

k c
j D1 �j aj xN C1�jk with deg a D 2k

and �i 2 C,

d
.1/
P D

´

0 if �1 D 0 or k D 1;

�1ıN C1�k otherwise.

Let V be a Z
˚2-graded .N � 1/-dimensional C-linear space with a homoge-

neous basis ¹v1; : : : ; vN �1º such that vi has bidegree .1; 2i � 2N � 2/. �en the

mapping vi 7! ıi induces a natural Z˚2-grading preserving action of
V�

V on

HN .L/.

5 Corollary 1.22 provides some control on how large a torsion component in Lobb’s decom-

position can be.
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Remark 1.17. In the case N D 2, we get just one di�erential ı1 on the rational

Khovanov homology H2.L/. �is ı1 is essentially the di�erential ˆ in [7, Sec-

tion 4].

Question 1.18. Are there more relations between ı1; : : : ; ıN �1? �at is, does the

above
V�

V -action factor through a quotient ring of
V�

V ?

In Subsection 5.5 below, we compute HPi
.L/ for the closed 2-braid L in Fig-

ure 1 and observe that, on HN .L/, the di�erentials ı1; : : : ; ıN �1 are non-zero, but

ıiıj D 0 for any 1 � i; j � N � 1.

✛
✛

L

Figure 1. An example.

1.7. �e torsion width. In turns out that one can recover the Z˚2-graded module

structure of HP .L/ from ¹ yEr.L/º using Lemma 1.10 and �eorem 1.11.

We describe an algorithm that does this in Subsection 1.8 below. Roughly speak-

ing, we look at the pages of ¹ yEr .L/º backward starting from yE1.L/ to recover

�rst the free part of HP .L/ and then the torsion components from large to small.

To do this, we need to know where to start, that is, ¹ yEr .L/º collapses at what page.

For this purpose, we introduce a numerical link invariant called torsion width.

De�nition 1.19. Let L be an oriented link. Using the notations in �eorem 1.7,

we de�ne the torsion width of HP .L/ to be6

twP .L/ D max¹mi;l j i 2 Z; 1 � l � niº;

which, by �eorem 1.7, is a link invariant. Equivalently, one has

twP .L/ D min¹m j m 2 Z�0; amHP .L/ is freeº:

6 We use the convention that twP .L/ D 0 if HP .L/ is a free CŒa�-module.
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Corollary 1.20. Let L be an oriented link with torsion width twP .L/ D w, and

D a diagram of L. Assume D is not a union of disjoint circles embedded in the

plane. �en both spectral sequences ¹Er .L/º and ¹ yEr.L/º from �eorem 1.5 col-

lapse exactly at their E2kwC1-pages, where 2k D deg a. Consequently, ¹ zE.r/.L/º

collapses exactly at its E.wC1/-page.

Proof. From Lemma 1.10, we know that ¹Er .Fi;s/º and ¹Er . yFi;s/º both collapse

exactly at their E0-pages, while ¹Er.Ti;m;s/º and ¹Er . yTi;m;s/º both collapse

exactly at their E2kmC1-pages. So this corollary follows from �eorem 1.11.

Next we de�ne the thickness of the sl.N / Khovanov–Rozansky homology.

De�nition 1.21. For an oriented link L, denote by H
i;j
N .L/ the component of

HN .L/ of homological degree i and polynomial degree j . De�ne the sl.N /

homological thickness htN .L/ and the local sl.N / homological thickness lhtN .L/

of L to be

htN .L/ D max
°

1 C
1

2
Œ.2i1 C j1/ � .2i2 C j2/� j H

i1;j1

N .L/ ¤ 0;

H
i2;j2

N .L/ ¤ 0
±

;

(1.20)

lhtN .L/ D max
°j1 � j2

2
j there exists i 2 Z;

such that H
i;j1

N .L/ ¤ 0; H
iC1;j2

N .L/ ¤ 0
±

:
(1.21)

Of course, htN .L/ is a naive generalization of the homological thickness of

the rational Khovanov homology. Note that lhtN .L/ is not always de�ned. For

example, lhtN .unknot/ is not de�ned. Even when lhtN .L/ is de�ned, it is not

clear whether it is always non-negative. But, from their de�nitions, one can see

that lhtN .L/ � htN .L/ if lhtN .L/ is de�ned. See [2, Figure 24 and Table 2] for a

knot K1 satisfying lht2.K1/ D 3 < ht2.K1/ D 4.

Corollary 1.22. We have

k � twP .L/ � htN .L/;

and, if

HN .L/ © yHP .L/ WD
M

i2Z

yHi
P .L/;

then lhtN .L/ is de�ned and

k � twP .L/ � lhtN .L/;

where 2k D deg a.
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Proof. By Corollary 1.8, each torsion component .CŒa�=.am//kik¹sº of HP .L/

generates a pair of 1-dimensional components of HN .L/:

Ckik¹sº and Cki � 1k¹2km C sº:

Corollary 1.22 follows from this observation.

1.8. Recovering HP.L/ from ¹ zE .r/.L/º. In this subsection, we give an algo-

rithm to recover the Z
˚2-graded CŒa�-module structure of HP .L/ from the

Z
˚2-graded C-linear space structure on pages of the Lee–Gornik spectral

sequence over C. We write down the algorithm in terms of ¹ zE.r/.L/º to have

slightly simpler notations.

From page zE.1/.L/ D HN .L/, one can �nd the sl.N / homological thickness

htN .L/ of L. By Corollary 1.22, we know that

twP .L/ � � WD
jhtN .L/

k

k

:

So a�HP .L/ is a free CŒa�-module and, by Corollary 1.20, ¹ zE.r/.L/º collapses at

or before the page zE.�C1/.L/.

Now consider the pages ¹ zE.r/.L/ j 1 � r � � C 1º. By Lemma 1.10 and

�eorems 1.11, 1.13, we observe the following.

1. Start with zE.�C1/.L/ Š zE.1/.L/. Note that

� each free componentCŒa�kik¹sº of HP .L/ contributes a 1-dimensional

component Ckik¹sº to zE.1/.L/;

� torsion components of HP .L/ contribute nothing to zE.1/.L/.

So we can recover all the generators of the free part of HP .L/ from zE.�C1/.L/.

2. Next look at zE.�/.L/:

� each free componentCŒa�kik¹sº of HP .L/ contributes a 1-dimensional

component Ckik¹sº to zE.�/.L/;

� each componentCŒa�=.a� /kik¹sº of of HP .L/ contributes a component

Ckik¹sº ˚ Cki � 1k¹2k� C sº to zE.�/.L/;

� for m < � , a component CŒa�=.am/kik¹sº of of HP .L/ contributes

nothing to zE.�/.L/.
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Since we know all the generators of the free part of HP .L/ from the previous

step, we can recover all generators of torsion components of HP .L/ of the

form CŒa�=.a�/kik¹sº.

3. For any 1 � r < � , assume we have recovered all generators of free compo-

nents and torsion components of the form CŒa�=.am/kik¹sº of HP .L/, where

r C 1 � m � � . Look at the page zE.r/.L/:

� each free componentCŒa�kik¹sº of HP .L/ contributes a 1-dimensional

component Ckik¹sº to zE.r/.L/;

� if m � r , each component CŒa�=.am/kik¹sº of of HP .L/ contributes

Ckik¹sº ˚ Cki � 1k¹2km C sº to zE.r/.L/;

� for m < r , a component CŒa�=.am/kik¹sº of of HP .L/ contributes

nothing to zE.r/.L/.

So we can recover all generators of torsion components of HP .L/ of the form

CŒa�=.ar/kik¹sº.

�e above algorithm allows us to inductively recover the Z
˚2-graded

CŒa�-module structure of HP .L/ from ¹ zE.r/.L/º. In particular, we have proved

the following theorem.

�eorem 1.23. HP .L/ and ¹ zE.r/.L/º (or, equivalently ¹ yEr.L/º) determine each

other and encode the same information of the link L.

Remark 1.24. With minor language changes, all the above theorems their proofs

generalize to the colored sl.N / link homology de�ned in [14, 15, 16].

1.9. Fast collapsing of the Lee spectral sequence and other observations.

As we have seen, each torsion component .CŒa�=.am//kik¹sº of HP .L/ in Lobb’s

decomposition contributes a 2-dimensional direct sum component

Ckik¹sº ˚ Cki � 1k¹2km C sº

to HN .L/. Based on this, we make several observations.

First, the pairing of Ckik¹sº and Cki � 1k¹2km C sº is a generalization of

[7, �eorem 1.4], which states that, except those with homological degree 0, all

homogeneous generators of the rational Khovanov homology of an alternating

knot appear in pairs of bi-degree di�erence .�1; 4/. Here, we use the torsion

width to slightly generalize this theorem.
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Corollary 1.25. Suppose N D 2, deg a D 4 and P.x; a/ D x3 � ax. Assume that

lht2.L/ � 3 for a link L. �en twP .L/ � 1. Consequently, ¹ zE.r/.L/º collapses

at its E.1/- or E.2/-page. Moreover, there exists a (possibly empty) sequence of

pairs of integers ¹.i1; s1/; : : : ; .in; sn/º such that

H2.L/ Š yHP .L/ ˚
n

M

lD1

.Ckilk¹slº ˚ Ckil � 1k¹sl C 4º/:

Proof. If HP .L/ is a free CŒa�-module, then twP .L/ D 0. So ¹ zE.r/.L/º collapses

at its E.1/-page and H2.L/ Š yHP .L/.

Now assume HP .L/ has torsions. �en twP .L/ � 1 and, by Corollary 1.8,

H2.L/ © yHP .L/. �us, by Corollary 1.22, we have 2 twP .L/ � lht2.L/ � 3.

So twP .L/ � 1. �is shows that, in this case, twP .L/ D 1 and, therefore,

¹ zE.r/.L/º collapses at its E.2/-page by Corollary 1.20. �e decomposition of

H2.L/ follows from Corollary 1.8.

Remark 1.26. In [11], Shumakovitch observed that, in all the examples he knew,

the Lee spectral sequence collapses at its E.2/-page, even for H-thick links. Corol-

lary 1.25 explains why the Lee spectral sequences of some H-thick links collapse

so fast.

For example, consider the H-thick knot K1 in [2, Figure 24]. From [2, Table 2],

one can see that lht2.K1/ D 3 and ht2.K1/ D 4. By Corollary 1.25, ¹ zE.r/.K1/º

collapses at its E.2/-page.

Next, we look at the two ends of the sl.N / Khovanov–Rozansky homology of

a knot.

Corollary 1.27. Fix a positive integer N . For a knot K, de�ne

hmin D min¹i j H i
N .K/ ¤ 0º

and

hmax D max¹i j H i
N .K/ ¤ 0º:

Moreover, for a �xed i , de�ne

gi
min D min¹j j H

i;j
N .K/ ¤ 0º

and

gi
max D max¹j j H

i;j
N .K/ ¤ 0º;

where H
i;j
N .K/ is the component of H i

N .K/ of polynomial grading j .
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(1) If hmin < 0, then

dimC H
hmin
N .K/ � dimC H

hminC1
N .K/ and g

hmin
min > g

hminC1
min :

(2) If hmax > 0, then

dimC H
hmax
N .K/ � dimC H

hmax�1
N .K/ and ghmax

max < ghmax�1
max :

(3) If hmax D hmin D 0, then

HN .K/ Š yHP .K/

for any P D P.x; a/ of form (1.1).

Proof. For Part (1), consider the polynomial

P1.x; b1/ D xN C1 C b1x:

By [3, �eorem 2], yHP1
.K/ is supported on homological degree 0. �erefore,

the free part of HP1
.K/ is supported on homological degree 0. Since hmin < 0,

H
hmin
N .K/ comes entirely from torsion components of HP1

.K/ at homological

degree hmin C 1. Part (1) follows from this observation.

�e proof of Part (2) is very similar and left to the reader.

For part (3), note that, if HP .K/ has torsion components, then HN .L/ should

occupy at least two homological degrees. But hmax D hmin D 0. So HP .K/ is

free. �en Part (3) follows from Corollary 1.8.

Finally, we consider the equivariant sl.N / Khovanov–Rozansky homology of

closed negative braids.

Corollary 1.28. Let P.x; a/ be any polynomial of form (1.1). Suppose the link L

is the closure of a negative braid, then

H 1
P .L/ Š 0

and H 0
P .L/, H 2

P .L/ are both free CŒa�-modules.

In particular, if a knot K is the closure of a negative braid, then

H 1
P1

.K/ Š H 2
P1

.K/ Š 0;

where

P1.x; b1/ D xN C1 C b1x

and b1 is a homogeneous variable of degree 2N .
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Proof. By the de�nition of HN .L/ in [5], we have C i
N .L/ D 0 if i < 0. So

H i
N .L/ Š 0 if i < 0. �is implies that H 0

P .L/ is free. In [12, �eorem 5], Stosic

proved that H 1
N .L/ Š 0, which implies that H 1

P .L/ Š 0 and H 2
P .L/ is a free

CŒb1�-module.

For the knot K, recall that the free part of HP1
.K/ is supported on homological

degree 0. So H 2
P1

.K/ being free means it vanishes.

1.10. Organization of this paper. We review the constructions of HP .L/, Er .L/

and yEr .L/ in Sections 2 and 3. �en we prove �eorems 1.7, 1.11 and 1.13 in Sec-

tion 4. After that, we de�ne the
V�

C
N �1-action in Section 5.

We assume the reader is somewhat familiar with the construction of the sl.N /

Khovanov–Rozansky homology in [5].

Acknowledgments. �e author would like to thank Alexander Shumakovitch for

very interesting discussions.

2. De�nition of HP

In the remainder of this paper, N is a �xed positive integer with N � 2. We re-

view the construction of equivariant sl.N / Khovanov–Rozansky in a more general

setting, which is needed in Section 5. In the current section and Section 3 below,

P D P.x; a1; : : : ; an/ D xN C1 C xF.x; a1; : : : ; an/; (2.1)

where x is a homogeneous variable of degree 2, aj is a homogeneous variable of

degree 2kj , and F.x; a1; : : : ; an/ is a homogeneous element of CŒx; a1; : : : ; an� of

degree 2N C 2 satisfying F.x; 0 : : : ; 0/ D 0.

2.1. Graded and �ltered matrix factorizations. Let

R D CŒx1; : : : ; xm; a1; : : : ; an�;

where x1; : : : ; xm are homogeneous variables of degree 2 and aj is a homogeneous

variable of degree 2kj for 1 � j � n. We endow two structures on R:

� �e polynomial grading with degree function deg given by

deg
�

n
Y

j D1

a
pj

j �
m

Y

iD1

x
li

i

�

D
n

X

j D1

2kj pj C
m

X

iD1

2li :
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� �e x-�ltration

0 D F�1
x R � F0

xR � � � � � Fn
xR � � � �

such that
�

n
Y

iD1

a
pj

j �
m

Y

iD1

x
li

i

�

2 F
n
xR

if and only if
Pm

iD1 2li � n. �e degree function degx of Fx is given by

degx

�

n
Y

j D1

a
pj

j �
m

Y

iD1

x
li

i

�

D
m

X

iD1

2li :

Unless otherwise speci�ed, when we say an element is homogeneous, we mean it

is homogeneous with respect to the polynomial grading.

De�nition 2.1. Let M be an R-module. We say that M is a graded R-module

if it is endowed with a grading M D
L

i Mi such that, for any homogeneous

element r of R, rMi � MiCdeg r . We say that M is an x-�ltered R-module if

it is endowed with an increasing �ltration Fx such that, for any element r of R,

rFi
xM � F

iCdegx r
x M .

De�nition 2.2. Let w be a homogeneous element of R with deg w D 2N C 2.

A matrix factorization M of w over R is a collection of two free R-modules M 0,

M 1 and two R-module homomorphisms

d 0 W M 0 ! M 1; d 1 W M 1 ! M 0;

called di�erential maps, such that

d 1d 0 D w � idM 0 and d 0d 1 D w � idM 1 :

We usually write M as

M 0 d0

�! M 1 d1

�! M 0:

We call M graded if M 0, M 1 are graded R-modules and d 0, d 1 are homoge-

neous homomorphisms with

deg d 0 D deg d 1 D N C 1:

We call M x-�ltered if M 0 and M 1 are x-�ltered R-modules and

degx d 0; degx d 1 � N C 1:
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In the de�nition of HP , we use only Koszul matrix factorizations de�ned

below.

De�nition 2.3. Let b and c be homogeneous elements of R with deg .bc/ D

2N C 2. Denote by .b; c/R the Koszul matrix factorization

R
b

�! R¹N C 1 � deg bº
c

�! R;

where b; c act on R by multiplication and “¹sº” means shifting by s both the

polynomial grading and the x-�ltration7 of R. �is matrix factorization of bc is

both graded and x-�ltered.

For homogeneous elements b1 � � � ; bl ; c1; � � � ; cl of R with deg.bici / D 2N C2,

i D 1; � � � ; l , denote by
0

B

B

B

@

b1 c1

b2 c2

:::
:::

bl cl

1

C

C

C

A

R

the Koszul matrix factorization

.b1; c1/R ˝R .b2; c2/R ˝R � � � ˝R .bl ; cl /R:

�is matrix factorization of w D
Pl

iD1 bici is again both graded and x-�ltered.

When R is clear from context, we drop it from the notation.

De�nition 2.4. As a free R-module, .b; c/R has a basis ¹10; 11º, where 1" is the

“1” in the copy of R with Z2-grading ". More generally, the tensor product

0

B

B

B

@

b1 c1

b2 c2

:::
:::

bl cl

1

C

C

C

A

R

D .b1; c1/R ˝R .b2; c2/R ˝R � � � ˝R .bl ; cl /R

7 �at is, in R¹sº,

deg
�

n
Y

j D1

a
pj

j
�

m
Y

iD1

x
li

i

�

D s C
n

X

j D1

2kj pj C
m

X

iD1

2li

and

degx

�

n
Y

j D1

a
pj

j
�

m
Y

iD1

x
li

i

�

D s C
m

X

iD1

2li :
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has a basis

¹1E" j E" D ."1; : : : ; "l/ 2 Z
l
2º;

where

1E" D 1"1
˝ � � � ˝ 1"l

:

We call ¹1E"º the standard basis for this Koszul matrix factorization.

Note that

� ¹1E"º is a homogeneous basis with respect to the polynomial grading;

� deg 1E" D degx 1E" for every E";

� degx.
P

E" fE"1E"/ � l if and only if degx fE" � l � degx 1E" for every E".

2.2. �e matrix factorization associated to a MOY graph

De�nition 2.5. A MOY graph � is a �nite oriented graph embedded in R
2 with

the following properties:

(1) edges of � are divided into two types: regular edges and wide edges;

(2) vertices of � are of two types:

� endpoints: 1-valent vertices that are endpoints of regular edges,

� internal vertices: 3-valent vertices with

– either two regular edges pointing inward and one wide edge point-

ing outward,

– or two regular edges pointing outward and one wide edge pointing

inward.

We say that � is closed if it has no endpoints.

A marking of � consists of

(1) a �nite set of marked points on � such that

� every regular edge contains at least one marked point, no wide edges

contain any marked points,

� every endpoint of � is marked, none of the internal vertices are marked;

(2) an assignment that assigns to each marked point a di�erent homogeneous

variable of degree 2.
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In the rest of this subsection, we �x a MOY graph � and a marking of �.

Assume x1; : : : ; xm are the variables assigned to the marked points of �. De�ne

R D CŒx1; : : : ; xm; a1; : : : ; an�, where aj is a homogeneous variable of degree

2kj for 1 � j � n. Let P.x; a1; : : : ; an/ be the homogeneous polynomial given

in (2.1).

Now cut � at all the marked points. �is cuts � into a collect of simple marked

MOY graphs �1; : : : ; �l of the two types in Figure 2.

xp ✲ xi

xp

xq✒
❘ ✒

❘

xi

xj

�i I p �i;j I p;q

Figure 2. Pieces of � .

De�ne

vi I p D
P.xi ; a1; : : : ; an/ � P.xp; a1; : : : ; an/

xi � xp

: (2.2)

Since P.xi ; a1; : : : ; an/ C P.xj ; a1; : : : ; an/ is symmetric in xi and xj , there is a

unique polynomial G.X; Y; a1; : : : ; an/ satisfying

G.xi C xj ; xixj ; a1; : : : ; an/ D P.xi ; a1; : : : ; an/ C P.xj ; a1; : : : ; an/:

De�ne

u
h1i
i;j I p;q D

G.xi C xj ; xixj ; a1; : : : ; an/ � G.xp C xq ; xixj ; a1; : : : ; an/

xi C xj � xp � xq

; (2.3)

u
h2i
i;j I p;q D

G.xp C xq; xixj ; a1; : : : ; an/ � G.xp C xq ; xpxq ; a1; : : : ; an/

xixj � xpxq

: (2.4)

Note that vi I j ; u
h1i
i;j I p;q ; u

h2i
i;j I p;q are all homogeneous elements of R.

De�nition 2.6. We set

CP .�i I p/ WD .vi I p; xi � xp/R; (2.5)

CP .�i;j I p;q/ WD

0

@

u
h1i
i;j I p;q xi C xj � xp � xq

u
h2i
i;j I p;q xixj � xpxq

1

A

R

¹�1º; (2.6)

CP .�/ WD CP .�1/ ˝R CP .�2/ ˝R � � � ˝R CP .�l /: (2.7)
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Note that

(1) CP .�i I p/ is a Koszul matrix factorization of

wi I p D P.xi ; a1; : : : ; an/ � P.xp; a1; : : : ; an/I

(2) CP .�i;j I p;q/ is a Koszul matrix factorization of

wi;j I p;q D P.xi ; a1; : : : ; an/ C P.xj ; a1; : : : ; an/

� P.xp; a1; : : : ; an/ � P.xq; a1; : : : ; an/I

(3) CP .�/ is a Koszul matrix factorization of

w D
X

xi is assigned
to an endpoint

˙P.xi ; a1; : : : ; an/;

where the sign is positive if � points towards the corresponding endpoint and

is negative if � points away from the corresponding endpoint. In particular,

w D 0 if � is closed.

De�nition 2.7. For a closed MOY graph �, de�ne

(1) HP .�/ to be the homology of CP .�/, which inherits the polynomial grading,

the x-�ltration and the Z2-grading of CP .�/,

(2) HN .�/ to be the homology of CN .�/ D CP .�/=.a1; : : : ; an/ � CP .�/, which

inherits the polynomial grading and the Z2-grading of CP .�/,

(3) yHP .�/ to be the homology of yCP .�/ D CP .�/=.a1 �1; : : : ; an �1/ � CP .�/,

which inherits the x-�ltration and the Z2-grading of CP .�/.

2.3. �e chain complex associated to a link diagram. A marking of a link

diagram D consists of

(1) a �nite collection of marked points on D such that none of the crossings are

marked and every arc between two crossings contains at least one marked

point,

(2) an assignment that assigns to each marked point a di�erent homogeneous

variable of degree 2.

Let D be an oriented link diagram with a marking. Assume x1; : : : ; xm are the

variables assigned to the marked points of D. De�ne

R D CŒx1; : : : ; xm; a1; : : : ; an�;

where aj is a homogeneous variable of degree 2kj . Cut D at its marked points.

�is cuts D into simple pieces D1; : : : ; Dl of the types shown in Figure 3.
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xp ✲ xi

xp

xq s
✸

xi

xj

xp

xq s
✸

xi

xj

�i I p cC
i;j I p;q c�

i;j I p;q

Figure 3. Pieces of D.

We de�ne the chain complex CP .�i I p/ to be

CP .�i I p/ D 0 �! CP .�i I p/k0k �! 0; (2.8)

where the term “CP .�i I p/” on the right hand side is the Koszul matrix factor-

ization de�ned in De�nition 2.6 and “k0k” means this term is at homological

degree 0.

To de�ne CP .c˙
i;j I p;q/, we need the following lemma.

xp

xq ✲

✲ xi

xj

�0 //

�1

oo
xp

xq✒
❘ ✒

❘

xi

xj

�i I p t �j I q �i;j I p;q

Figure 4. Homomorphisms �0 and �1.

Lemma 2.8. [5, 6, 15] Up to homotopy and scaling, there is a unique homotopi-

cally non-trivial homomorphism

�0 W CP .�i I p t �j I q/ �! CP .�i;j I p;q/

with

deg �0 D 1:

And, up to homotopy and scaling, there is a unique homotopically non-trivial ho-

momorphism

�1 W CP .�i;j I p;q/ �! CP .�i I p t �j I q/

with

deg �1 D 1:
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Moreover, these homomorphisms satisfy

degx �0 D degx �1 D 1

and, up to scaling by non-zero scalars,

�1 ı �0 ' .xp � xj / idCP .�iI pt�j I q/;

�0 ı �1 ' .xp � xj / idCP .�i;j I p;q/ :

Proof. �e uniqueness of �0 and �1 is proved in a more general setting in [15,

Lemma 4.13]. Here, we only recall the constructions of �0 and �1 given by Krasner

in [6], which is a straightforward generalization of the corresponding construction

by Khovanov and Rozansky in [5].

Recall that

CP .�i I p t �j I q/ D

�

vi I p xi � xp

vj I q xj � xq

�

R

D

�

R

R¹2 � 2nº

�

d0

�!

�

R¹1 � nº

R¹1 � nº

�

d1

�!

�

R

R¹2 � 2nº

�

;

where

d 0 D

�

vi I p xj � xq

vj I q �xi C xp

�

;

d 1 D

�

xi � xp xj � xq

vj I q �vi I p

�

;

and that

CP .�i;j I p;q/ D

0

@

u
h1i
i;j I p;q xi C xj � xp � xq

u
h2i
i;j I p;q xixj � xpxq

1

A

R

¹�1º

D

�

R¹�1º

R¹3 � 2nº

�

ı0

�!

�

R¹�nº

R¹2 � nº

�

ı1

�!

�

R¹�1º

R¹3 � 2nº

�

;

where

ı0 D

0

@

u
h1i
i;j I p;q xi xj � xpxq

u
h2i
i;j I p;q �xi � xj C xp C xq

1

A ;

ı1 D

0

@

xi C xj � xp � xq xixj � xpxq

u
h2i
i;j I p;q �u

h1i
i;j I p;q

1

A :
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In the above explicit forms of CP .�i I p t �j I q/ and CP .�i;j I p;q/, de�ne

�0 W CP .�i I p t �j I q/ �! CP .�i;j I p;q/

by the matrices

�0
0 D

�

xp � xj 0

z 1

�

;

�1
0 D

�

xp �xj

�1 1

�

;

and de�ne

�1 W CP .�i;j I p;q/ �! CP .�i I p t �j I q/

by the matrices

�0
1 D

�

1 0

�z xp � xj

�

�1
1 D

�

1 xj

1 xp

�

;

where

z D �u
h2i
i;j I p;q C

u
h1i
i;j I p;q C xiu

h2i
i;j I p;q � vj I q

xi � xp

:

It is straightforward to verify that �0 and �1 satisfy all the properties in the lemma.

We de�ne

CP .cC
i;j I p;q/

D 0 ! CP .�i;j I p;q/k � 1k¹N º
�1
�! CP .�i I p t �j I q/k0k¹N � 1º ! 0;

(2.9)

CP .c�
i;j I p;q/

D 0 ! CP .�i I p t �j I q/k0k¹1 � N º
�0
�! CP .�i;j I p;q/k1k¹�N º ! 0:

(2.10)

De�nition 2.9. We set

CP .D/ D CP .D1/ ˝R � � � ˝R CP .Dl/;

where CP .Di/ is de�ned in (2.8), (2.9) and (2.10).
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We call the resolution

c˙
i;j I p;q Ý �i I p t �j I q

a 0-resolution and

c˙
i;j I p;q Ý �i;j I p;q

a .˙1/-resolution. If we choose a 0- or .˙1/-resolution for every crossing in D,

then we get a MOY graph, which we call a MOY resolution of D. Of course, the

marking of D induces a marking of each MOY resolution of D. Let MOY.D/

be the set of all MOY resolutions of D. Denote by w the writhe of D. For each

� 2 MOY.D/, let

„.�/ D .# of .C1/-resolutions in �/ � .# of .�1/-resolutions in �/:

�en, as Z˚2-graded R-modules,

CP .D/ Š
M

�2MOY.D/

CP .�/k � „.�/k¹.N � 1/w C „.�/º: (2.11)

Note that every MOY resolution � of D is a closed MOY graph. So CP .�/

is a Koszul matrix factorization of 0 and, therefore, a Z2-graded chain complex.8

�us, the di�erential maps of the matrix factorizations of the MOY resolutions of

D give rise to a di�erential map dmf on CP .D/ satisfying:

� dmf is homogeneous with deg dmf D degx dmf D N C 1;

� dmf preserves the homological grading.

�e di�erential maps of CP .Di / give rise to a di�erential map d� of CP .D/

satisfying:

� d� is homogeneous with deg d� D degx d� D 0;

� d� raises the homological grading by 1.

As in (1.2), HP .D/ is de�ned to be

HP .D/ D H.H.CP .D/; dmf /; d�/;

which inherits both Z-gradings and the x-�ltration of CP .D/. �e invariance of

HP .D/ is stated in �eorem 1.1.

8 CP .D/ and HP .D/ both inherit thisZ2-grading. But thisZ2-grading on HP .D/ is always

pure and equal to the number of Seifert circles of D. So, unless otherwise speci�ed, we do not

keep track of this grading.
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3. �e Lee–Gornik Spectral Sequence

Now we review the construction of yEr .L/ and construct Er .L/. In this section,

P D P.x; a1; : : : ; an/ is the polynomial de�ned in (2.1) and HP is the corre-

sponding equivariant sl.N / Khovanov–Rozansky homology over CŒa1; : : : ; an�.

3.1. Structure of HP.�/. Let � be a closed MOY graph with a marking.

As before, assume x1; : : : ; xm are the variables assigned to the marked points of

� and de�ne R D CŒx1; : : : ; xm; a1; : : : ; an�, where aj is a homogeneous variable

of degree 2kj . P.x; a1; : : : ; an/ is the homogeneous polynomial given in (2.1).

If we replace every wide edge in � by a pair of parallel regular edges, that is,

change �i;j I p;q to �i I p t �j I q in Figure 4, then we change � into a collection of

oriented circles embedded in the plane. Denote by " the total rotation number of

this collection and call " the rotation number of �. Furthermore, denote by H "
P .�/

(resp. yH "
P .�/) the component of HP .�/ (resp. yHP .�/) of Z2-grading " and by

H
";p
N .�/ the component of HN .�/ of Z2-grading " and polynomial grading p.

Lemma 3.1. [3, Proposition 3.2] As C-linear spaces,

yH "C1
P .�/ Š 0; (3.1)

Fp
x

yH "
P .�/=Fp�1

x
yH "

P .�/ Š H
";p
N .�/: (3.2)

See for example [13, Proposition 2.19] for a complete proof of Lemma 3.1.

Slightly modifying this proof, we get Lemma 3.2, which is mentioned in [17] with-

out proof. Since certain technical aspects of its proof are needed later on, we prove

Lemma 3.2 in details here.

Lemma 3.2. As graded CŒa1; : : : ; an�-modules,

H "C1
P .�/ Š 0; (3.3)

Fp
x H "

P .�/=Fp�1
x H "

P .�/ Š H
";p
N .�/ ˝C CŒa1; : : : ; an�: (3.4)

Proof. Note that CP .�/ is also a graded CŒx1; : : : ; xm�-module and Fx is the in-

creasing �ltration induced by this grading structure. We call the grading of the

graded CŒx1; : : : ; xm�-module CP .�/ the x-grading of CP .�/. Denote by d0 and

d1 the two di�erential maps of the matrix factorization CP .�/. We decompose

d0 and d1 into sums of homogeneous components with respect to the x-grading.
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�at is,

d0 D

N
X

lD0

d
.l/
0 ; (3.5)

d1 D
N

X

lD0

d
.l/
1 ; (3.6)

where d
.l/
1 and d

.l/
0 are R-module homomorphisms and satisfy:

� they are homogeneous with respect to both the polynomial grading and the

x-grading,

� deg d
.l/
0 D deg d

.l/
1 D N C 1, degx d

.l/
0 D degx d

.l/
1 D N C 1 � 2l .

Recall that CP .�/ is a matrix factorization of 0. So d0 ı d1 D 0 and d1 ı d0 D 0.

Comparing the homogeneous parts with respect to the x-grading, one gets that,

for any l � 0,

l
X

iD0

d
.i/
0 ı d

.l�i/
1 D 0; (3.7)

l
X

iD0

d
.i/
1 ı d

.l�i/
0 D 0; (3.8)

where we use the convention that d
.i/
0 D 0 and d

.i/
1 D 0 if i > N .

By the de�nition of CN .�/, there is an isomorphism ofZ2-periodic chain com-

plexes of CŒa1; : : : ; an�-modules

CN .�/ ˝C CŒa1; : : : ; an� Š C 0
P .�/

d
.0/
0

�! C 1
P .�/

d
.0/
1

�! C 0
P .�/;

that preserves the Z2-grading, the polynomial grading and the x-grading. So there

is an isomorphism of CŒa1; : : : ; an�-modules

HN .�/ ˝C CŒa1; : : : ; an� Š H.CP .�/; d .0// (3.9)

preserving the Z2-grading, the polynomial grading and the x-grading.

Now we are ready to prove that H "C1
P .�/ D 0. From [5], we know that

H "C1
N .�/ D 0. By (3.9), this means H "C1.CP .�/; d .0// D 0. �at is, Im.d

.0/
" / D

ker.d
.0/
"C1/. Let ˛ be any element in ker d"C1 that is homogeneous with respect

to the polynomial grading with deg ˛ D g. Decomposing ˛ according to the
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x-grading, we get ˛ D
P1

iD�1 ˛l , where ˛l is homogeneous with respect to both

the polynomial grading and the x-grading with deg ˛l D g, degx ˛l D g � 2l .

Of course, ˛l D 0 for l < 0 and l � 1 since the x-grading is bounded below.

Next, we construct inductively a sequence ¹ˇlº
1
�1 � C "

P .�/ such that

(1) ˇl D 0 for l < 0;

(2) each ˇl is homogeneous with respect to both the polynomial grading and the

x-grading;

(3) deg ˇl D g � N � 1 and degx ˇl D g � 2l � N � 1;

(4) ˛l D
PN

iD0 d
.i/
" ˇl�i for all l 2 Z.

Again, since the x-grading is bounded below, ˇl D 0 for l � 1. Note that

¹ˇlº
�1
�1 is the zero sequence and satis�es conditions (1-4) for l up to �1. Now

assume that, for some l � 0, there is a sequence ¹ˇlº
l�1
�1 satis�es conditions (1-

4) up to l � 1. Let us construct ˇl . In the equation d"C1˛ D 0, compare the

homogeneous parts with respect to the x-grading of x-degree N C 1 C g � 2l .

�is gives us

0 D
N

X

j D0

d
.j /
"C1˛l�j

D d
.0/
"C1˛l C

N
X

j D1

d
.j /
"C1˛l�j

D d
.0/
"C1˛l C

N
X

j D1

d
.j /
"C1

N
X

iD0

d .i/
" ˇl�j �i

D d
.0/
"C1˛l C

2N
X

qD1

�

q
X

j D1

d
.j /
"C1d .q�j /

"

�

ˇl�q

(by (3.7) and (3.8)) D d
.0/
"C1˛l �

N
X

qD1

d
.0/
"C1d .q/

" ˇl�q

D d
.0/
"C1

�

˛l �
N

X

qD1

d .q/
" ˇl�q

�

:
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So

˛l �

N
X

qD1

d .q/
" ˇl�q 2 ker.d

.0/
"C1/ D Im.d .0/

" /:

�erefore, there is a ˇl satisfying conditions (1-3) such that

d .0/
" ˇl D ˛l �

N
X

qD1

d .q/
" ˇl�q:

�us, ¹ˇlº
l
�1 satis�es conditions (1-4) above. �is completes the inductive con-

struction. Note that
P1

lD�1 ˇl is a �nite sum and therefore a well de�ned element

of C "
P .�/. We have

˛ D
1

X

lD�1

˛l

D
1

X

lD�1

N
X

iD0

d .i/
" ˇl�i

D
N

X

iD0

d .i/
"

�

1
X

lD�1

ˇl�i

�

D
N

X

iD0

d .i/
"

�

1
X

lD�1

ˇl

�

D d"

�

1
X

lD�1

ˇl

�

:

So ˛ 2 Im d". �is shows Im.d"/ D ker.d"C1/ and therefore H "C1
P .�/ D 0.

It remains to prove (3.4). According to (3.9), we only need to show that

F
p
x H "

P .�/=Fp�1
x H "

P .�/ Š H ";p.CP .�/; d .0//; (3.10)

where H ";p.CP .�/; d .0// is the direct sum component of the free CŒa�-module

H.CP .�/; d .0// consisting of homogeneous elements ofZ2-grading " and x-grad-

ing p.
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Denote by .ker d
.0/
" /p the CŒa�-submodule of ker d

.0/
" consisting of elements

homogeneous with respective to the x-grading of x-degree p. Next, for every

˛ 2 .ker d
.0/
" /p, we construct by induction a sequence ¹˛lº

1
0 � C "

P .�/, such that

˛0 D ˛, ˛l is a homogeneous element with respective to the x-grading of x-degree

p � 2l , and

l
X

j D0

d .j /
" ˛l�j D 0; for all l 2 Z; (3.11)

where we use the convention that d
.j /
" D 0 for j > N . Again, since the x-grading

is bounded below, ˛l D 0 for l � 1. Clearly, ¹˛lº
0
0 with ˛0 D ˛ satis�es the

initial condition and equation (3.11) up to l D 0. Assume that, for some l � 1,

¹˛lº
l�1
0 is constructed and satis�es the initial condition and equation (3.11) up to

l � 1. Let us �nd an ˛l . Note that

d
.0/
"C1

�

l
X

j D1

d .j /
" ˛l�j

�

D

l
X

j D1

d
.0/
"C1d .j /

" ˛l�j

(by (3.7) and (3.8)) D �
l

X

j D1

j �1
X

iD0

d
.j �i/
"C1 d .i/

" ˛l�j

.setting q D l � j C i/ D �
l�1
X

qD0

q
X

iD0

d
.l�q/
"C1 d .i/

" ˛q�i

D �
l�1
X

qD0

d
.l�q/
"C1

�

q
X

iD0

d .i/
" ˛q�i

�

.by induction hypothesis/ D 0

But H "C1.CP .�/; d .0// D 0, that is, Im.d
.0/
" / D ker.d

.0/
"C1/. So there is an

˛l 2 C "
P .�/ homogeneous with respective to the x-grading of x-degree n � 2l

satisfying

d .0/
" ˛l D �

l
X

j D1

d .j /
" ˛l�j :

�us, the sequence ¹˛lº
l
0 satis�es the initial condition and equation (3.11) up

to l . �is completes the induction and we have the sequence ¹˛lº
1
0 . As ex-

plained above,
P1

lD0 ˛l is in fact a �nite sum and therefore a well de�ned element
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of C "
P .�/. Note that the homogeneous part of d".

P1
lD0 ˛l / with respect to the

x-grading of x-degree N C 1 C p � 2l is

l
X

j D0

d .j /
" ˛l�j D 0

by equation (3.11). �is implies that

d"

�

1
X

lD0

˛l

�

D 0;

that is,
P1

lD0 ˛l is a cycle in .CP .�/; d/.

De�ne
Q�p W .ker d .0/

" /p �! F
p
x H "

P .�/=Fp�1
x H "

P .�/

by

˛ 7�!
h

1
X

lD0

˛l

i

:

Since the top homogeneous component of
P1

lD0 ˛l with respect to the x-grading is

˛0 D ˛, one can see that Q�p.˛/ does not depend on the choice of ¹˛lº
1
0 and is well

de�ned. It is also easy to verify that Q�p is a CŒa1; : : : ; an�-module homomorphism

preserving the polynomial grading. Moreover, Q�p is surjective. To see this, note

that any element of F
p
x H "

P .�/=F
p�1
x H "

P .�/ can be expressed as Œ
P1

lD0 ˛l �, where

˛l is a homogeneous element with respective to the x-grading of x-degree p � 2l

and d"

P1
lD0 ˛l D 0. Comparing the top homogeneous parts with respect to the

x-grading on both sides of this equation, one gets d
.0/
" ˛0 D 0, which means ˛0 2

.ker d
.0/
" /p. By the de�nition of Q�n, one easily sees that Q�p.˛0/ D Œ

P1
lD0 ˛l �.

Denote by .Im d
.0/
"C1/p the homogeneous component of Im d

.0/
"C1 with respect

to the x-grading of x-degree p. We prove isomorphism (3.10) by showing that

ker Q�p D .Im d
.0/
"C1/p. Assume ˛ 2 ker Q�p and ¹˛lº

1
0 is a sequence given by the

above inductive construction. �en

1
X

lD0

˛l D d"C1ˇ C ; (3.12)

where  is a cycle inF
p�1
x C "

P .�/, and ˇ 2 C "C1
P .�/ satisfying d"C1ˇ 2 F

p
x C "

P .�/.

We claim that we can choose ˇ so that degx ˇ � p�N �1. Assume that degx ˇ D

g > p�N �1 and denote by ˇ0 the top homogeneous part of ˇ with respect to the

x-grading. Comparing the top homogeneousparts with respect to the x-grading on

both sides of equation (3.12), we have d
.0/
"C1ˇ0 D 0. So there exists a homogeneous
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element � 2 C "
P .�/ of degree g � N � 1 such that d

.0/
" � D ˇ0. Let ˇ0 D ˇ � d"� .

�en ˇ0 also satis�es the above equation, and degx ˇ0 < degx ˇ. Repeat this

process. Within �nite steps, we get a Ǒ 2 C "C1
P .�/ with degx

Ǒ � p � N � 1 and

1
X

lD0

˛l D d"C1
Ǒ C : (3.13)

Let Ǒ
0 be the homogeneous part of Ǒ with respect to the x-grading of x-degree

p�N �1. Comparing the top homogeneous parts with respect to the x-grading on

both sides of equation (3.13), one can see that ˛ D ˛0 D d
.0/
"C1

Ǒ
0. �is shows ˛ 2

.Im d
.0/
"C1/p. So ker Q�p � .Im d

.0/
"C1/p. On the other hand, if ˛ 2 .Im d

.0/
"C1/p, then

˛ D d
.0/
"C1ˇ for some ˇ 2 C "C1

P .�/ homogeneous with respect to the x-grading of

x-degree p � N � 1. So

1
X

lD0

˛l D d
.0/
"C1ˇ C

1
X

lD1

˛l

D d"C1ˇ C
�

1
X

lD1

˛l �

N
X

j D1

d
.j /
"C1ˇ

�

2 ker Q�p:

�us, .Im d
.0/
"C1/p � ker Q�p. �is shows .Im d

.0/
"C1/p D ker Q�p and, therefore,

Q�p induces a CŒa1; : : : ; an�-module isomorphism

�p W H ";p.CP .�/; d .0// �! F
p
x H "

P .�/=Fp�1
x H "

P .�/

preserving the polynomial grading.

Corollary 3.3. Let � be a closed MOY graph. �en

(1) yHP .�/ is a �nite dimensional C-space and its x-�ltration is bounded and

exhaustive;

(2) HP .�/ is a �nitely generated graded-free CŒa1; : : : ; an�-module and its

x-�ltration is bounded and exhaustive, where “graded-free” means HP .�/

is graded, free and admits a homogeneous basis.

Proof. From [5], we know that HN .�/ is �nite dimensional and its polynomial

grading is bound above and below. In addition, by their de�nitions, we know that

the x-�ltrations of yHP .�/ and HP .�/ are bounded below and exhaustive. Using

Lemmata 3.1 and 3.2, one can inductively prove that, for every p,
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� F
p
x

yHP .�/ is a �nite dimensional C-space,

� F
p
x HP .�/ is a �nitely generated free CŒa1; : : : ; an�-module.

Lemmata 3.1 and 3.2 also imply that the x-�ltrations of yHP .�/ and HP .�/ are

bounded above. �us,

� yHP .�/ is itself a �nite dimensional C-space,

� HP .�/ is itself a �nitely generated free CŒa1; : : : ; an�-module.

Finally, since the polynomial grading of HP .�/ is bounded below, we know that

HP .�/ is a graded-free CŒa1; : : : ; an�-module by, for example, [14, Lemma 3.3].

3.2. Er.L/ and yEr.L/. Using Lemmata 3.1, 3.2 and Corollary 3.3, it is straight-

forward to prove �eorem 1.5. We summarize the key observation in the proof as

the following lemma.

Lemma 3.4. Suppose �1 is a closed MOY graph and �0 is obtained from �1 by

replacing a wide edge by a pair of parallel regular edges.9 Denote by

CP .�0/
�0 //

CP .�1/
�1

oo

the homomorphisms induced by this local change and by �
.0/
0 , �

.0/
1 the top homo-

geneous parts of �0, �1 with respect to the x-grading. In addition, we denote by

d
.0/

mf
the top homogeneous parts of the di�erential maps of CP .�0/ and CP .�1/

with respect to the x-grading. �en

� the morphisms

.CP .�0/; d
.0/

mf
/

�
.0/
0 //

.CP .�0/; d
.0/

mf
/

�
.0/
1

oo

are homomorphisms of matrix factorizations of 0I

9 �at is, replacing a piece of �1 of the form �i;j I p;q in Figure 4 by �iI p t �j I q in the

same �gure.



552 H. Wu

� the following squares commute, where " is the rotation number of �0 and �1,

and �p;�0
, �p;�1

are the isomorphisms constructed in the proof of Lemma 3.2:

H ";p.CP .�0/; d
.0/

mf
/

�
.0/
0

��

�p;�0 // Fp
x H "

P .�0/=F
p�1
x H "

P .�0/

�0

��

H ";p.CP .�1/; d
.0/

mf
/

�p;�1 // F
p
x H "

P .�1/=F
p�1
x H "

P .�1/;

H ";p.CP .�1/; d
.0/

mf
/

�
.0/
1

��

�p;�1 // F
p
x H "

P .�1/=F
p�1
x H "

P .�1/

�1

��

H ";p.CP .�0/; d
.0/

mf
/

�p;�0 // Fp
x H "

P .�0/=F
p�1
x H "

P .�0/:

Proof. �is lemma follows easily from the constructions of �0, �1 and �n.

We leave the details to the reader.

�e part of �eorem 1.5 about yEr .L/ is proved in [3, 13]. So we only need to

prove the part about ¹Er .L/º, which is a special case of the following theorem.

�eorem 3.5. x-�ltration Fx on the chain complex .H.CP .D/; dmf /; d�/ induces

a spectral sequence ¹Er .L/º converging to HP .L/ with

E1.L/ Š HN .L/ ˝C CŒa1; : : : ; an�:

Proof. By Corollary 3.3, the x-�ltration of H.CP .D/; dmf / is bounded and ex-

haustive. So Er .L/ converges to HP .L/. It remains to show that E1.L/ Š

HN .L/ ˝C CŒa1; : : : ; an�. By Lemma 3.4, we know that E0.L/ is isomorphic to

the chain complex .H.CP .D/; d
.0/

mf
/; d

.0/
� /, where d

.0/

mf
and d

.0/
� are the top homo-

geneous parts of dmf and d� with respect to the x-grading of CP .D/. So E1.L/ Š

H.H.CP .D/; d
.0/

mf
/; d

.0/
� /. On the other hand, by the de�nition of HN .L/, it

is easy to see that H.H.CP .D/; d
.0/

mf
/; d

.0/
� / Š HN .L/ ˝C CŒa1; : : : ; an�. So

E1.L/ Š HN .L/ ˝C CŒa1; : : : ; an�.
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4. Decomposition �eorems

Next, we prove �eorems 1.7, 1.11, and compute the spectral sequences of the

�ltered chain complexes Fi;s, Ti;m;s, yFi;s and yTi;m;s de�ned in (1.9)–(1.12).

�eorem 1.13 follows easily from these.

In this section, P D P.x; a/ is a homogeneous polynomial of form (1.1)

and HP is the corresponding equivariant sl.N / Khovanov–Rozansky homology

over CŒa�. Recall that deg a D 2k.

4.1. A closer look at Fx. To prove �eorems 1.7 and 1.11, we need to better

understand the relation between the polynomial grading and the x-�ltration. �e

goal of this subsection is to show that, for a closed MOY graph �, any direct sum

decomposition of HP .�/ in the category of graded CŒa�-modules is also a direct

sum decomposition in the category of �lteredC-spaces. �eorems 1.7 and 1.11 both

follow from this.

In the rest of this subsection, � is a closed MOY graph with a marking, x1; : : : ,

xm are the variables assigned to the marked points of � and R D CŒx1; : : : ; xm; a�,

where a is a homogeneous variable of degree 2k. P.x; a/ is a homogeneous poly-

nomial of form (1.1). Unless otherwise speci�ed, when we say an element is ho-

mogeneous, we mean it is homogeneous with respect to the polynomial grading.

We start with simple observations.

Lemma 4.1. Suppose M is a Koszul matrix factorization over R (see De�ni-

tion 2.3) and � is a homogeneous element of M . �en degx � � deg �, and

degx � < deg � if and only if � 2 aM .

Proof. Let ¹1E"º be the standard basis for M de�ned in De�nition 2.4. �en � D
P

E" fE"1E", where fE" is a homogeneous element of R with deg fE" D deg � � deg 1E".

Note that, for every f 2 R, degx f � deg f , and degx f < deg f if and only if

f 2 aR. So degx fE" C degx 1E" � deg fE" C deg 1E" D deg � for all E". �is shows

that degx � � deg �. Moreover, degx � < deg � if and only if degx fE" < deg fE" for

all E" if and only if fE" 2 aR for all E".

Lemma 4.2. Let M be a �nitely generated free CŒa�-module and ¹viº a basis for

M . For any � 2 C, denote by �a�� W M ! M=.a � �/M the standard quotient

map. �en ¹�a��.vi /º is a basis for the C-space M=.a � �/M .

Proof. Since ¹viº spans M , we know that ¹�a��.vi /º spans M=.a � �/M . It re-

mains to show that ¹�a��.vi /º is linearly independent. Suppose ¹ci º � C satis�es
P

i ci �a��.vi / D 0. �en
P

i civi 2 .a � �/M . �erefore, there are fi 2 R such
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that
P

i ci vi D .a � �/
P

i fivi . �at is,
P

i .ci � .a � �/fi /vi D 0. Since ¹viº

a basis for M , this means ci � .a � �/fi D 0 and, therefore, ci D fi D 0 for

every i .

Lemma 4.3. For f 2 R, denote by fi the homogeneous component of f with

deg fi D i . �en degx fi � degx f for every i .

Proof. Obvious.

Lemma 4.4. (1) If u 2 Fn
xCP .�/, then all homogeneous components of u are

also in Fn
xCP .�/.

(2) If Œu� 2 Fn
xHP .�/, then all homogeneous components of Œu� are also in

Fn
xHP .�/.

Proof. CP .�/ is a Koszul matrix factorization. Denote by ¹1E"º the standard basis

for CP .�/ given in De�nition 2.4. Recall that ¹1E"º is a homogeneous basis with

respect to the polynomial grading.

To prove Part (1) of the lemma, assume u 2 Fn
xCP .�/ and denote by ui the

homogeneous component of u with deg ui D i . Every ui can be uniquely ex-

pressed as ui D
P

E" gi;E"1E", where gi;E" is a homogeneous element of R with

deg gi;E" D i � deg 1E". �en u D
P

i ui D
P

E".
P

i gi;E"/1E". Since u 2 Fn
xCP .�/,

we have degx

P

i gi;E" � n�degx 1E" for every E". Note that gi;E" is the homogeneous

component of
P

i gi;E" of polynomial degree i � deg 1E". �us, by Lemma 4.3, we

have degx gi;E" � n � degx 1E". So degx ui D degx

P

E" gi;E"1E" � n. �is proves

Part (1).

To prove Part (2), note that Œu� is represented by a cycle u 2 Fn
xCP .�/. Denote

by ui the homogeneous component of u with deg ui D i . Since the di�erential of

CP .�/ is homogeneous, each ui is a cycle, and Œui � is the homogeneous component

of Œu� with degŒui � D i . �en Part (2) of the lemma follows from Part (1).

By Corollary 3.3, HP .�/ is a �nitely generated graded-free CŒa�-module. �e

next lemma determines the x-�ltration degrees of elements of homogeneous bases

for HP .�/.

Lemma 4.5. Let ¹Œuj �º be any homogeneousbasis for the freeCŒa�-module HP .�/.

�en degxŒuj � D degŒuj � for every j .
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Proof. By Lemma 4.1, we know that degxŒuj � � degŒuj � for every j . Assume

n D degx Œuj � < degŒuj � D l for a certain j . �en Œuj � is represented by a cycle

uj 2 Fn
xCP .�/. Denote by uj;i the homogeneous component of uj with deg uj;i D

i . By Lemma 4.4, we know that uj;i 2 Fn
xCP .�/ for every i . Also, since the

di�erential of CP .�/ is homogeneous, each uj;i is itself a cycle. By comparing the

homogeneous components in Œuj � D
P

i Œuj;i �, we get Œuj � D Œuj;l � and Œuj;i � D 0

if i ¤ l . Note that degx uj;l � n < l D deg uj;l . So, by Lemma 4.1, uj;l D av

for some v 2 CP .�/. It is easy to see that v is a homogeneous cycle in CP .�/

and that ¹Œv�º [ ¹ui j i ¤ j º spans HP .�/ and is CŒa�-linearly independent. In

other words, ¹Œv�º[¹Œui � j i ¤ j º is also a basis for HP .�/. But this is impossible

because, if this is true, then the determinant of the change-of-coordinates matrix

from the basis ¹Œuj �º to the basis ¹Œv�º [ ¹Œui � j i ¤ j º is a, which is not invertible

in CŒa�.

De�nition 4.6. Denote by

�a W CP .�/ �! CN .�/.D CP .�/=aCP .�//

the standard quotient map. To keep notations simple, we denote again by

�a W HP .�/ ! HN .�/

the homomorphism induced by the quotient map �a.

Recall that CN .�/ inherits the polynomial grading of CP .�/ via �a, which

makes �a a homogeneous map of degree 0. Moreover, CN .�/ also inherits the

x-�ltration of CP .�/ via �a. It is easy to see the x-�ltration of CN .�/ is the

increasing �ltration induced by its polynomial grading.

Lemma 4.7. �e map

�a W HP .�/ �! HN .�/

is a surjective homogeneous homomorphism with

deg �a D 0

and

ker �a D aHP .�/:

Moreover, any homogeneous basis for the free CŒa�-module HP .�/ is mapped by

�a to a homogeneous basis for the C-space HN .�/.
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Proof. By its de�nition, we know that �a W HP .�/ ! HN .�/ is a homogeneous

homomorphism with deg �a D 0. �e short exact sequence

0 �! CP .�/
a

�! CP .�/
�a
�! CN .�/ �! 0

induces a long exact sequence

� � � �! H "C1
N .�/ �! H "

P .�/
a

�! H "
P .�/

�a
�! H "

N .�/

�! H "C1
P .�/

a
�! H "C1

P .�/
�a
�! H "C1

N .�/ �! � � �

with Z2 homological grading, where " is the rotation number of �. From [5], we

know that H "C1
N .�/ Š 0. By Lemma 3.2, we know that H "C1

P .�/ Š 0. So the

above long exact sequence becomes a short exact sequence

0 �! HP .�/
a

�! HP .�/
�a
�! HN .�/ �! 0:

It follows from this that �a W HP .�/ ! HN .�/ is surjective and ker �a D aHP .�/.

�e statement about bases follows then from Lemma 4.2.

Lemma 4.8. For any Œu� 2 HP .�/, Œu� 2 Fn
xHP .�/ if and only if aŒu� 2 Fn

xHP .�/.

Proof. Since the map CP .�/
a
�! CP .�/ preserves the x-�ltration, so does the map

HP .�/
a
�! HP .�/. �erefore, aŒu� 2 Fn

xHP .�/ if Œu� 2 Fn
xHP .�/.

Now assume Œu� … Fn
xHP .�/. Since the x-�ltration is exhaustive, there is an

l > n such that Œu� 2 Fl
xHP .�/ and Œu� … Fl�1

x HP .�/. Denote by " the rotation

number of �. Recall that, by Lemma 3.2, we have H "C1
P .�/ D 0. Moreover, in

the proof of Lemma 3.2, we constructed an isomorphism

�l W H
";l
N .�/ ˝C CŒa� �! Fl

xH "
P .�/=Fl�1

x H "
P .�/

of CŒa�-modules. So Œu� 2 H "
P .�/ and ��1

l
.Œu�/ ¤ 0. But H

";l
N .�/ ˝C CŒa� is a

free CŒa�-module. So ��1
l

.aŒu�/ D a��1
l

.Œu�/ ¤ 0. �us, aŒu� … Fl�1
x HP .�/ and,

therefore, aŒu� … Fn
xHP .�/.

Lemma 4.9. Let ¹Œuj �º be a homogeneous basis for HP .�/. For any ¹fj º � CŒa�

and any l 2 Z,
P

j fj Œuj � 2 Fl
xHP .�/ if and only if fj D 0 whenever degŒuj � > l .

Proof. By Lemma 4.5, we have degx Œuj � D degŒuj � for every j . If fj D 0 when-

ever degŒuj � > l , then, by Lemma 4.8, we know that
P

j fj Œuj � 2 Fl
xHP .�/.

Now assume
P

j fj Œuj � 2 Fl
xHP .�/. We prove by contradiction that fj D 0

whenever degŒuj � > l . Assuming the conclusion is not true, then

n WD ¹degŒuj � j fj ¤ 0º > l:
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Without loss of generality, we assume

nj WD degxŒuj � D degŒuj �

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

D n if 1 � j � p;

< n if p C 1 � j � p C q;

> n otherwise.

By the de�nition of n, we know that fj D 0 unless 1 � j � p C q. For 1 � j �

p C q, write fj D
P

i�0 cj;i a
i . De�ne

Œvi � D

p
X

j D1

cj;i Œuj � C

pCq
X

j DpC1

cj;nCi�nj
an�nj Œuj �:

�en the homogeneous component of
P

j fj Œuj � of polynomial degree n C i is

ai Œvi �. By Lemma 4.4, we have ai Œvi � 2 Fl
xHP .�/. �erefore, by Lemma 4.8, we

have Œvi � 2 Fl
xHP .�/. Consider

�a.Œvi �/ D

p
X

j D1

cj;i�a.Œuj �/ 2 HN .�/:

On the one hand, we have that �a.Œvi �/ 2 Fl
xHN .�/. On the other hand, we know

that deg �a.Œu1�/ D � � � D �a.Œup�/ D n > l . But the x-�ltration on HN .�/ is

induced by the polynomial grading. We must have

�a.Œvi �/ D

p
X

j D1

cj;i �a.Œuj �/ D 0:

Lemma 4.7 tells us that ¹�a.Œu1�/; : : : ; �a.Œup�/º is linearly independent. So

cj;i D 0 for i � 0 and 1 � j � p. In other words, fj D 0 for 1 � j � p.

�is contradicts the de�nition of n.

De�nition 4.10. Denote by

�a�1 W CP .�/ �! yCP .�/.D CP .�/=.a � 1/CP .�//

the standard quotient map. To keep notations simple, we denote again by

�a�1 W HP .�/ �! yHP .�/

the homomorphism induced by the quotient map �a�1.

Note that yCP .�/ inherits the x-�ltration of CP .�/ through �a�1.
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Lemma 4.11. �a�1 W HP .�/ ! yHP .�/ is a surjective homomorphism preserving

the x-�ltration with ker �a�1 D .a � 1/HP .�/. Moreover, for any homogeneous

basis ¹Œuj �º for the free CŒa�-module HP .�/,

� ¹�a�1.Œuj �/º is a basis for the C-space yHP .�/I

� degx �a�1.Œuj �/ D degŒuj � for every j I

� for any ¹cj º � C,

X

j

cj �a�1.Œuj �/ 2 Fl
x

yHP .�/ () cj D 0

whenever degŒuj � > l .

Proof. By its de�nition, we know that �a�1 W HP .�/ ! yHP .�/ preserves the

x-�ltration. �e short exact sequence

0 �! CP .�/
a�1
��! CP .�/

�a�1
���! yCP .�/ �! 0

induces a long exact sequence

� � � �! yH "C1
P .�/ �! H "

P .�/
a�1
��! H "

P .�/
�a�1
���! yH "

P .�/

�! H "C1
P .�/

a�1
��! H "C1

P .�/
�a�1
���! yH "C1

P .�/ �! � � �

with Z2 homological grading, where " is the rotation number of �. By Lem-

mata 3.1 and 3.2, we know that yH "C1
P .�/ Š 0 and H "C1

P .�/ Š 0. So the above

long exact sequence becomes a short exact sequence

0 �! HP .�/
a�1
��! HP .�/

�a�1
���! yHP .�/ �! 0:

�us, �a�1 W HP .�/ ! yHP .�/ is surjective and ker �a�1 D .a � 1/HP .�/.

Now assume ¹Œuj �º is a homogeneous basis for the free CŒa�-module HP .�/

with degŒuj � D nj . It follows from the above and Lemma 4.2 that ¹�a�1.Œuj �/º is

a basis for the C-space yHP .�/.

Since the map �a�1 W HP .�/ ! yHP .�/ preserves the x-�ltration, we get from

Lemma 4.5 that degx �a�1.Œuj �/ � degx Œuj � D degŒuj � D nj . Next, we prove that

degx �a�1.Œuj �/ D nj . Note that Œuj � is represented by a homogeneous cycle uj in

CP .�/ with deg uj D nj . Recall that the x-�ltration on CP .�/ is the increasing

�ltration associated to an x-grading on CP .�/. Denote by uj;i the homogeneous

component of uj with respect to this x-grading. �en uj;i D 0 if i > nj and, by

Lemma 4.1, uj;i 2 aCP .�/ if i < nj . So �a.uj;nj
/ D �a.uj / is a homogeneous
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cycle in CN .�/ of polynomial degree nj representing the homology class �a.Œuj �/.

Lemma 4.7 implies that �a.Œuj �/ ¤ 0. Recall that Lemma 3.1 is proved in [13] by

a construction very similar to the proof of Lemma 3.2. To summarize, we know

that

� yH "C1
P .�/ Š H "C1

N .�/ Š 0I

� every homogeneous cycle in C "
N .�/ can be completed to a cycle in yC "

P .�/

by adding terms with strictly lower polynomial degrees, and this correspon-

dence gives rise to a well de�ned isomorphism

O�n W H
";n
N .�/ �! Fn

x
yH "

P .�/=Fn�1
x

yH "
P .�/:

Clearly, �a�1.uj / is a cycle in yC "
P .�/ obtained from �a.uj;nj

/ by adding terms

with polynomial degrees strictly less than deg �a.uj;nj
/ D nj . Denote by

�.n/ W Fn
x

yH "
P .�/ �! Fn

x
yH "

P .�/=Fn�1
x

yH "
P .�/

the standard quotient map. We have a commutative diagram

H
";n
P .�/

�a�1 //

�a

��

Fn
x

yH "
P .�/

�.n/

��

H
";n
N .�/

O�n

Š
// Fn

x
yH "

P .�/=Fn�1
x

yH "
P .�/;

(4.1)

where H
";n
P .�/ (resp. H

";n
N .�/) is the component of HP .�/ (resp. HN .�/) with

Z2-degree " and polynomial degree n. �us,

�.nj /.�a�1.Œuj �// D O�nj
.Œ�a.uj;nj

/�/ D O�nj
.�a.Œuj �// ¤ 0:

So �a�1.Œuj �/ … F
nj �1
x

yH "
P .�/ and, therefore, degx �a�1.Œuj �/ D nj .

It remains to show that
P

j cj �a�1.Œuj �/ 2 Fl
x

yHP .�/ if and only if cj D 0

whenever nj > l . Recall that degx �a�1.Œuj �/ D nj . If cj D 0 whenever nj > l ,

then we clearly have that

X

j

cj �a�1.Œuj �/ 2 F
l
x

yHP .�/:

Now assume that there is at least one j such that nj > l and cj ¤ 0. �en

n WD max¹nj j cj ¤ 0º > l:
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Consider

Œu� WD
X

j

cj an�nj Œuj �:

Œu� is a homogeneous element of HP .�/ of polynomial degree n, and

�a�1.Œu�/ D
X

j

cj �a�1.Œuj �/:

From diagram (4.1), we have

�.n/
�

X

j

cj �a�1.Œuj �/
�

D �.n/.�a�1.Œu�//

D O�n.�a.Œu�//

D O�n

�

X

nj Dn

cj �a.Œuj �/
�

:

By Lemma 4.7, ¹�a.Œuj �/º is a basis for HN .�/. By the de�nition of n, we know

that nj D n and cj ¤ 0 for at least one j . �us,

X

nj Dn

cj �a.Œuj �/ ¤ 0:

But

O�n W H
";n
N .�/ �! Fn

x
yH "

P .�/=Fn�1
x

yH "
P .�/

is an isomorphism. So

�.n/.�a�1.Œu�// D O�n.
X

nj Dn

cj �a.Œuj �// ¤ 0:

�us
X

j

cj �a�1.Œuj �/ D �a�1.Œu�/ … Fl
x

yHP .�/.� Fn�1
x

yHP .�//:

Remark 4.12. In conclusion of this subsection, we note that Lemmata 4.9 and 4.11

imply that any direct sum decomposition of HP .�/ in the category of graded

CŒa�-modules is also a direct sum decomposition in the category of �ltered

C-spaces and induces a direct sum decomposition of yHP .�/ in the category of

�ltered C-spaces.
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4.2. Decomposition of HP.L/. In this subsection, we give a proof of Lobb’s

decomposition theorem (�eorem 1.7.)

As before, a is a homogeneous variable of degree 2k.

Lemma 4.13. [8] Assume that

.C �; d �/ D � � �
dn�1

���! C n dn

��! C nC1 dnC1

���! � � �

is a bounded chain complex of �nitely generated graded-free CŒa�-module and

its di�erential d � preserves the grading of C �. �en, in the category of chain

complexes of graded CŒa�-modules, .C �; d �/ is a direct sum of chain complexes

of the forms Fi;s and Ti;m;s given in (1.5)–(1.6).

Proof. We prove the lemma by an induction on the total rank of C �. If either

rank C � D 0 or rank C � D 1, then the lemma is trivially true. Assume rank C � D

K � 2 and the lemma is true if the rank of the chain complex is less than K. �ere

is an n such that C n ¤ 0 and C j D 0 for all j < n. Consider the section

0 �! C n dn

��! C nC1 dnC1

���! � � �

of C �. Let ¹u1; : : : ; upº be a homogeneous basis for C n with

deg u1 � � � � � deg up;

and ¹v1; : : : ; vqº a homogeneous basis for C nC1 with

deg v1 � � � � � deg vq:

For each 1 � j � p, we have

d n.uj / D

q
X

iD1

fi;j vi ;

where each fi;j is a monomial in a of degree

deg fi;j D deg uj � deg vi :

Note that deg fi;j is increasing with respect to both i and j .
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If .f1;1; : : : ; fq;1/ D 0, then C � has a direct sum component

0 �! CŒa� � u1 �! 0 Š Fn;deg u1
:

�us, by induction hypothesis, the lemma is true for C �.

If .f1;1; : : : ; fq;1/ ¤ 0, then there is an l such that fl;1 ¤ 0 and fi;1 D 0 for all

1 � i < l . De�ne a q � q matrix „ D .�i;j / by

�i;j D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1 if i D j;

fi;1

fl;1

if i > l and j D l;

0 otherwise.

�en „ is invertible and „�1 D . Q�i;j / is given by

Q�i;j D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1 if i D j;

�
fi;1

fl;1

if i > l and j D l;

0 otherwise.

Note that, for any i > l ,
fi;1

fl;1
is a monomial of a of degree

deg fi;1 � deg fl;1 D deg vl � deg vi :

We have

.d nu1; : : : ; d nup/ D .v1; : : : ; vq/.fi;j / D .v1; : : : ; vq/„„�1.fi;j /:

Let

Qvj D

q
X

iD1

�i;j vi

and

gi;j D

q
X

˛D1

Q�i;˛f˛;j :
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�en ¹ Qv1; : : : ; Qvqº is a homogeneous basis for C nC1 with

deg Qvi D deg vi ;

gi;j is a monomial in a with

deg gi;j D deg fi;j ;

and

.d nu1; : : : ; d nup/ D . Qv1; : : : ; Qvq/.gi;j /:

Note that gl;1 D fl;1 ¤ 0 and gi;1 D 0 for all i ¤ l . Next, de�ne a p � p

matrix ‚ D .�i;j / by

�i;j D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 if i D j;

�
gl;j

gl;1

if i D 1 and j > 1;

0 otherwise,

where
gl;j

gl;1
is a monomial of a of degree

deg gl;j � deg gl;1 D deg uj � deg u1:

Let

Quj D

p
X

iD1

�i;j ui

and

hi;j D

p
X

˛D1

gi;˛�˛;j :

�en ¹ Qu1; : : : ; Qupº is a homogeneous basis for C n with

deg Quj D deg uj ;

hi;j is a monomial in a with

deg hi;j D deg gi;j D deg fi;j ;

and

.d n Qu1; : : : ; d n Qup/ D . Qv1; : : : ; Qvq/.hi;j /:

Note that hl;1 D gl;1 D fl;1 ¤ 0, hi;1 D 0 for all i ¤ l and hl;j D 0 for all

j ¤ 1. �us, C � has a direct sum component

0 �! CŒa� � Qu1

hl;1

��! CŒa� � Qvl �! 0 Š T
nC1;

deg Qu1�deg Qvl
2k

;deg Qvl

:

By the induction hypothesis, the lemma is true for C �.
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�e existence of the decomposition in �eorem 1.7 follows from Lemma 4.13.

To prove the uniqueness of this decomposition, we need the following lemma,

which is a slight re�nement of the standard invariance theorem for modules over

a principal ideal domain.

Lemma 4.14. Suppose that ¹.m1; s1/; : : : ; .mp; sp/º and ¹.n1; t1/; : : : ; .nq; tq/º are

two sequences in Z>0 � Z satisfying

� m1 � � � � � mp , n1 � � � � � nq I

� if i < j and mi D mj , then si � sj I

� if i < j and ni D nj , then ti � tj I

� as graded CŒa�-modules,

p
M

iD1

.CŒa�=.ami //¹siº Š

p
M

j D1

.CŒa�=.anj //¹tj º:

�en p D q and mi D ni , si D ti for every 1 � i � p.

Proof. We adapt the proof of the invariance theorem in [4, Section 3.9] to prove

Lemma 4.14. �e only change is that, instead of counting dimensions, we count

graded dimensions. Recall that, for a �nite dimensional graded C-space V D
L

i Vi , where Vi is the homogeneous component of V of degree i , the graded

dimension of V is gdimC V WD
P

i ˇi dimC Vi , where ˇ is a homogeneous variable

of degree 1.

Let

M WD

p
M

iD1

.CŒa�=.ami //¹siº Š

p
M

j D1

.CŒa�=.anj //¹tj º:

Denote by zi the multiplicative unit 1 in .CŒa�=.ami //¹siº, which is a homogeneous

element of M of degree si . For any l � 0, de�ne

M .l/ WD alM=alC1M:

�en M .l/ is a �nite dimensional graded C-space. If l � mp , then M .l/ D 0 and

gdimC M .l/ D 0. If 0 � l < mp, then there is a unique j such that

m1 � � � � � mj � l < mj C1 � � � � � mp :
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One can see that

alM D

p
M

iDj C1

CŒa�alzi

and ¹alzj C1 C alC1M; : : : ; alzp C alC1M º is a homogeneous basis for the

C-space M .l/. So

gdimC M .l/ D ˇ2kl

p
X

iDj C1

ˇsi :

For any integer c, de�ne

Sl;c D ¹i j 1 � i � p; si D c; mi > lº:

We observe that the coe�cient of ˇcC2kl in gdimC M .l/ is equal to the cardinality

of Sl;c. Similarly, de�ning

S 0
l;c D ¹i j 1 � i � q; ti D c; ni > lº;

we have that the coe�cient of ˇcC2kl in gdimC M .l/ is equal to the cardinality

of S 0
l;c

. �us, for any .l; c/ 2 Z�0 � Z, the cardinalities of Sl;c and S 0
l;c

are equal.

�e lemma follows from this.

It is now very easy to prove �eorem 1.7 and Corollary 1.8.

Proof of �eorem 1.7 and Corollary 1.8. Fix a diagram D of L and a marking of D.

Let x1; : : : ; xm be the variables assigned to the marked points of � and R D

CŒx1; : : : ; xm; a�. By Corollary 3.3, H.CP .D/; dmf / with its polynomial grad-

ing is a �nitely generated graded-free CŒa�-module. By the de�nition of d�, we

know that it preserves the polynomial grading.

According to Lemma 4.13, in the category of chain complexes of graded

CŒa�-modules, .H.CP .D/; dmf /; d�/ decomposes into a direct sum of chain com-

plexes of the forms Fi;s and Ti;m;s given in (1.5)–(1.6). Note that each factor of Fi;s

in this decomposition contributes a direct sum component CŒa�kik¹sº to HP .L/

and each factor of Ti;m;s contributes a direct sum component .CŒa�=.am//kik¹sº to

HP .L/. To prove the existence of decomposition (1.7), it remains to determine the

free part of HP .L/. By Lemma 4.11, the above decomposition of .H.CP .D/; dmf /,

d�/ induces a decomposition of .H. yCP .D/; dmf /; d�/ in the category of �ltered

chain complexes of C-spaces. Each factor of Fi;s (resp. Ti;m;s) in the decompo-

sition of .H.CP .D/; dmf /; d�/ corresponds to a factor of yFi;s (resp. yTi;m;s) in

the decomposition of .H. yCP .D/; dmf /; d�/, and the grading of Fi;s (resp. Ti;m;s)
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induces the �ltration on the corresponding yFi;s (resp. yTi;m;s). �e homology of
yTi;m;s vanishes and, as a �ltered C-space, the homology of yFi;s is

Ckik¹sº Š .CŒa�=.a � 1//kik¹sº:

One can see from this that, as a graded CŒa�-module, the free part of HP .L/ is

isomorphic to yHP .L/ ˝C CŒa�. �us, we have proved the existence of decompo-

sition (1.7).

�e uniqueness of decomposition (1.7) follows from Lemma 4.14. �is com-

pletes the proof of �eorem 1.7.

To prove Corollary 1.8, note that, by Lemma 4.7,

.H.CN .D/; dmf /; d�/ Š H.CP .D/; dmf /=aH.CP .D/; dmf /

as chain complexes of graded C-spaces. Moreover, as chain complexes of graded

C-spaces,

Fi;s=aFi;s Š 0 �! Ckik �! 0;

Ti;m;s=aTi;m;s Š

8

<

:

0 �! Cki � 1k¹s C 2kmº
0

�! Ckik¹sº �! 0 if m � 1;

0 �! Cki � 1k¹s C 2kmº
1

�! Ckik¹sº �! 0 if m D 0:

So Corollary 1.8 also follows from the decomposition of the chain complex

.H.CP .D/; dmf /; d�/.

4.3. Decompositions of Er.L/ and yEr.L/. In this subsection, we prove the

decompositions of Er .L/ and yEr .L/.

First, we compute the spectral sequences of the �ltered chain complexes Fi;s,

Ti;m;s, yFi;s and yTi;m;s. We use the notations given in [9, Section 2.2]. Since Fx is

an increasing �ltration and the notations in [9, Section 2.2] are for a decreasing

�ltration, we need to adjust their de�nitions accordingly.

Let .C �; d;F/ be a �ltered chain complex such that d raises the homological

grading by 1 and F is increasing. Set

Zp;q
r D F

pC pCq \ d �1.Fp�r C pCqC1/; (4.2)

Bp;q
r D F

pC pCq \ d.FpCr C pCq�1/; (4.3)

Ep;q
r D Zp;q

r =.Z
p�1;qC1
r�1 C B

p;q
r�1/: (4.4)

�en ¹Ep;q
r º is the spectral sequence of .C �; d;F/.
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Proof of Lemma 1.10. We only compute Er .Fi;s/ and Er .Ti;m;s/. �e computa-

tion of Er . yFi;s/ and Er . yTi;m;s/ is very similar and left to the reader.

Recall that the di�erential map of Fi;s is 0. So B
p;q
r .Fi;s/ D 0 and

Zp;q
r .Fi;s/ D F

pF
pCq
i;s

D

8

<

:

CŒa�¹sº if p � s; q D i � p;

0 otherwise.

So

Ep;q
r .Fi;s/ D FpF

pCq
i;s =Fp�1F

pCq
i;s

Š

8

<

:

CŒa�¹sº if p D s; q D i � s;

0 otherwise.

�e observations about ¹Er.Fi;s/º in Lemma 1.10 follow from this.

Recall that the �ltered chain complex Ti;m;s is given by

Fp
x Ti;m;s D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 �! CŒa�ki � 1k¹s C 2kmº
am

��! CŒa�kik¹sº �! 0

if p � s C 2km;

0 �! CŒa�kik¹sº �! 0

if s � p < s C 2km;

0 if p < s:

Note that Z
p;q
r .Ti;m;s/ D 0 unless q D i � 1 � p or i � p. So E

p;q
r .Ti;m;s/ D 0

unless q D i � 1 � p or i � p.

We compute E
p;i�1�p
r .Ti;m;s/ �rst. Note that

Fp
x T i�1

i;m;s D

8

<

:

CŒa�¹s C 2kmº if p � s C 2km;

0 if p < s C 2km;

d �1.Fp�r
x T i

i;m;s/ D

8

<

:

CŒa�¹s C 2kmº if p � r � s;

0 if p � r < s:
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�us,

Zp;i�1�p
r .Ti;m;s/ D F

p
x T i�1

i;m;s \ d �1.Fp�r
x T i

i;m;s/

D

8

<

:

CŒa�¹s C 2kmº if p � s C 2km and p � s C r;

0 otherwise.

Also,

Bp;i�1�p
r .Ti;m;s/ D Fp

x T i�1
i;m;s \ d.FpCr

x T i�2
i;m;s/ D 0:

�erefore,

Ep;i�1�p
r .Ti;m;s/ D Zp;i�1�p

r .Ti;m;s/=Zp�1;i�p
r .Ti;m;s/

Š

8

<

:

CŒa�¹s C 2kmº if p D s C 2km � s C r;

0 otherwise.

Next, we compute E
p;i�p
r .Ti;m;s/. Note that

Zp;i�p
r .Ti;m;s/ D Fp

x T i
i;m;s \ d �1.Fp�r

x T iC1
i;m;s/

D Fp
x T i

i;m;s

D

8

<

:

CŒa�¹sº if p � s;

0 if p < s;

and

d.FpCr
x T i�1

i;m;s/ D

8

<

:

am
CŒa�¹sº if p C r � s C 2km;

0 if p C r < s C 2km:

So

Bp;i�p
r .Ti;m;s/ D

8

<

:

am
CŒa�¹sº if p � s and p C r � s C 2km;

0 if p C r < s C 2km:

Recall that

Ep;i�p
r .Ti;m;s/ D Zp;i�p

r .Ti;m;s/=.Zp�1;i�pC1
r .Ti;m;s/ C Bp;i�p

r .Ti;m;s//:
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Putting these together, we get

Ep;i�p
r .Ti;m;s/ Š

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.CŒa�=.am//¹sº if p D s and r � 2km C 1;

CŒa�¹sº if p D s and r � 2km;

0 otherwise.

�is completes the computation of ¹Er .Ti;m;s/º. Note that ¹Er.Ti;m;s/º collapses

exactly at its E2kmC1-page.

Next, we prove �eorem 1.11.

Proof of �eorem 1.11. Fix a diagram D of L and a marking of D. Let x1; : : : ; xm

be the variables assigned to the marked points of � and R D CŒx1; : : : ; xm; a�.

By Corollary 3.3, H.CP .D/; dmf / with its polynomial grading is a �nitely gener-

ated graded-free CŒa�-module. By the de�nition of d�, we know it preserves the

polynomial grading.

According to Lemma 4.13, in the category of chain complexes of graded

CŒa�-modules, .H.CP .D/; dmf /; d�/ decomposes into a direct sum of chain com-

plexes of the forms Fi;s and Ti;m;s given in (1.5)–(1.6). By Lemma 4.9, this is

also a decomposition in the category of �ltered chain complexes, in which the �l-

trations on Fi;s and Ti;m;s are given by (1.9)–(1.10). �us, the spectral sequence

of .H.CP .D/; dmf /; d�/ is the direct sum of the spectral sequences of its compo-

nents in this decomposition. Decomposition (1.18) in �eorem 1.11 then follows

from this and Lemma 1.10.

By Lemma 4.11, the above decomposition of .H.CP .D/; dmf /; d�/ induces

a decomposition of .H. yCP .D/; dmf /; d�/ in the category of �ltered chain com-

plexes into a direct sum of chain complexes of the forms yFi;s and yTi;m;s given in

(1.11)–(1.12). �e spectral sequence of .H. yCP .D/; dmf /; d�/ is the direct sum of

the spectral sequences of its components in this decomposition. Decomposition

(1.17) in �eorem 1.11 then follows from this and Lemma 1.10.

4.4. Exact couples. Let us �rst recall the de�nition of derived couples.

Lemma 4.15. Let .A; E; f; g; h/ be an exact couple as de�ned in De�nition 1.12.

De�ne

1. A0 D f .A/,

2. E 0 D H.E; d/ D ker d=d.E/, where d D g ı h W E ! E,

3. f 0 D f jA0 ,
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4. g0.˛/ D g.ˇ/ where ˛ D f .ˇ/ 2 A0,

5. h0.� C d.E// D h.�/ for any � 2 ker d .

�en

� A0 and E 0 are Z
˚2-graded C-linear spaces;

� A0 f 0

�! A0, A0 g0

�! E 0 and E 0 h0

�! A0 are well de�ned homogeneous homomor-

phisms of Z˚2-graded C-linear spaces,

� the triangle

A0 f 0

// A0

g0~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

E 0
h0

``❆❆❆❆❆❆❆❆

is exact.

�at is, .A0; E 0; f 0; g0; h0/ is itself an exact couple. .A0; E 0; f 0; g0; h0/ is called the

derived couple of .A; E; f; g; h/. We shall write

.A0; E 0; f 0; g0; h0/ D .A; E; f; g; h/0:

Proof. See for example [9, Proposition 2.7].

�e following is a simple observation.

Corollary 4.16. In the notations of Lemma 4.15, h0 D 0 if h D 0.

For a chain complex C of graded-free CŒa�-modules, denote by

.A.1/.C /; E.1/.C /; f
.1/

C ; g
.1/
C ; h

.1/
C /

the exact couple

H.C /
a // H.C /

�ayyrrr
rr
rr
rr
r

H.C=aC /

�

ee▲▲▲▲▲▲▲▲▲▲

induced by the short exact sequence

0 �! C
a

�! C
�a

�! C=aC �! 0;

where �a is the standard quotient map. De�ne a sequence

¹.A.r/.C /; E.r/.C /; f
.r/

C ; g
.r/
C ; h

.r/
C /º



Equivariant Khovanov–Rozansky homology 571

of exact couples such that

.A.r/.C /; E.r/.C /; f
.r/

C ; g
.r/
C ; h

.r/
C /

D .A.r�1/.C /; E.r�1/.C /; f
.r�1/

C ; g
.r�1/
C ; h

.r�1/
C /0:

Lemma 4.17. Let Fi;s and Ti;m;s be the chain complexes de�ned in (1.6) and (1.5).

�en, as Z˚2-graded C-linear spaces,

E.r/.Fi;s/ Š Ckik¹sº for all r � 1; (4.5)

E.r/.Ti;m;s/ Š

8

<

:

Cki � 1k¹2km C sº ˚ Ckik¹sº if 1 � r � m;

0 if r � m C 1:
(4.6)

Proof. For the chain complex Fi;s , note that h
.1/
Fi;s

D 0 in the exact couple

.A.1/.Fi;s/; E.1/.Fi;s/; f
.1/

Fi;s
; g

.1/
Fi;s

; h
.1/
Fi;s

/:

By Corollary 4.16, this means

h
.r/
Fi;s

D 0 for all r � 1.

So the di�erential on E.r/.Fi;s/ is 0 for all r � 1. �us,

E.r/.Fi;s/ Š E.1/.Fi;s/ Š Ckik¹sº for all r � 1.

So we have proved isomorphism (4.5).

Now consider the chain complex Ti;m;s. Note that

H.Ti;m;s/ Š CŒa�=.am/kik¹sº;

H.Ti;m;s=aTi;m;s/ Š Cki � 1k¹2km C sº ˚ Ckik¹sº

and the exact couple

.A.1/.Ti;m;s/; E.1/.Ti;m;s/; f
.1/

Ti;m;s
; g

.1/
Ti;m;s

; h
.1/
Ti;m;s

/

D .H.Ti;m;s/; H.Ti;m;s=aTi;m;s/; a; �a; �/

is the exact sequence

0 �! Cki � 1k¹2km C sº
�

�! CŒa�=.am/kik¹sº

a
�! CŒa�=.am/kik¹sº

�a
�! Ckik¹sº �! 0;
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where the connecting homomorphism

C
�

�! CŒa�=.am/

is given by

�.1/ D am�1:

For 1 � r � m � 1 denote by

ar � CŒa�=.am/

the subspace of CŒa�=.am/ spanned by ¹ar ; arC1; : : : ; am�1º and by

a�r W ar � CŒa�=.am/ �! CŒa�=.am/

and linear mapping given by

a�r .arCi/ D ai for i D 0; : : : ; m � 1 � r .

A simple induction shows that, for 1 � r � m, there is an isomorphism of exact

couples

.A.r/.Ti;m;s/; E.r/.Ti;m;s/; f
.r/

Ti;m;s
; g

.r/
Ti;m;s

; h
.r/
Ti;m;s

/

Š .ar�1 � H.Ti;m;s/; H.Ti;m;s=aTi;m;s/; a; �a ı a�rC1; �/:

�us,

E.r/.Ti;m;s/ Š H.Ti;m;s=aTi;m;s/

Š Cki � 1k¹2km C sº ˚ Ckik¹sº

if 1 � r � m.

When r D m, the di�erential on

E.m/.Ti;m;s/ Š Cki � 1k¹2km C sº ˚ Ckik¹sº

is

d .m/ D g
.r/
Ti;m;s

ı h
.r/
Ti;m;s

D �a ı a�mC1 ı �;

which is an isomorphism

Cki � 1k¹2km C sº
Š
�! Ckik¹sº:

So

E.mC1/.Ti;m;s/ D H.E.m/.Ti;m;s/; d .m// Š 0:

�is completes the proof of isomorphism (4.6).

Proof of �eorem 1.13. Comparing Lemma 4.17 to Lemma 1.10, one can see that

�eorem 1.13 follows from �eorems 1.7 and 1.11.
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5. �e
V

�

C
N �1-action on HN .L/

As we have seen, every polynomial P D P.x; a/ of form (1.1) induces an

exact couple

.HP .L/; HN .L/; a; �a; �/;

which equips HN .L/ with a di�erential

d
.1/
P WD �a ı �:

In this section, we study this di�erential d
.1/
P . Our goal is to prove �eorem 1.16

and establish the
V�

C
N �1-action on HN .L/.

5.1. Naturality. In this subsection, we �x a P D P.x; a/ of form (1.1).

From [5], we know that every link cobordism induces, up to an overall scaling

by a non-zero scalar, a homomorphism of the sl.N / Khovanov–Rozansky homol-

ogy HN . We brie�y recall the de�nition of this homomorphism here.

To de�ne this homomorphism, Khovanov and Rozansky �rst decompose the

link cobordism into a �nite sequence of Reidemeister and Morse moves, that is, a

movie. For each Reidemeister move and Morse move, they de�ne in [5] a corre-

sponding chain map of the chain complex .H.CN ; dmf /; d�/. �ey then de�ne the

chain map associated to this cobordism to be the composition of the chain maps

associated to the Reidemeister and Morse moves in this movie. �ey proved in

[5, Proposition 37] that, up to an overall scaling by a non-zero scalar, the homo-

morphism on HN induced by this chain map does not depend on the choice of the

movie.

In [6, 15], Khovanov and Rozansky’s chain maps associated to Reidemeister

and Morse moves are generalized to CŒa�-linear homogeneous chain maps of the

chain complex .H.CP ; dmf /; d�/. So each movie presentation of a link cobordism

induces aCŒa�-linear homogeneous chain map of the complex .H.CP ; dmf /; d�/.10

Comparing the constructions in [5, 6, 15], we have the following lemma.

10 It does not seem too hard to generalize Khovanov and Rozansky’s proof in [5] to show that,

up to an overall scaling by a non-zero scalar, the homomorphism on HP induced by this chain

map does not depend on the choice of the movie presentation of the cobordism. But we do not

need this to prove our results.
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Lemma 5.1. Let S be a link cobordism from link L0 to L1. Fix diagrams of L0,

L1 and a movie presentation of S . Denote by

.H.CN .L0/; dmf /; d�/
fN
��! .H.CN .L1/; dmf /; d�/

and

.H.CP .L0/; dmf /; d�/
fP
��! .H.CP .L1/; dmf /; d�/

the chain maps induced by this movie presentation of S . �en the following dia-

gram commutes:

H.CP .L0/; dmf /
fP //

�a

��

H.CP .L1/; dmf /

�a

��
H.CN .L0/; dmf /

fN // H.CN .L1/; dmf /

Proof. See the constructions in [5, 6, 15].

Next, we interpret d
.1/
P as the connecting homomorphism of a long exact se-

quence, which slightly simpli�es the proof of the naturality and signi�cantly sim-

pli�es the proof of the anti-commutativity later on.

For a link L, choose one of its diagrams. By Corollary 3.3 and Lemma 4.7,

H.CP .L/; dmf / is a free CŒa�-module and

H.CN .L/; dmf / Š H.CP .L/; dmf /=aH.CP .L/; dmf /:

Also, from the proof of Lemma 4.7, one can see that

H.CP .L/=a2CP .L/; dmf / Š H.CP .L/; dmf /=a2H.CP .L/; dmf /:

�erefore, the short exact sequence

0 �! CŒa�=.a/
a

�! CŒa�=.a2/
�a
�! CŒa�=.a/ �! 0

induces a short exact sequence

0 �! H.CN .L/; dmf /
a

�! H.CP .L/=a2CP .L/; dmf /

�a
�! H.CN .L/; dmf / �! 0:

(5.1)
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Lemma 5.2. Let HP .L/ D H.H.CP .L/=a2CP .L/; dmf /; d�/. �en short exact

sequence (5.1) induces a long exact sequence

� � �
�a
�! H i�1

N .L/
d

.1/
P

��! H i
N .L/

a
�! H

i
P .L/

�a
�! H i

N .L/
d

.1/
P

��! � � � :

Proof. Denote by ı the connecting homomorphism in the above long exact se-

quence. We only need to prove that ı D d
.1/
P . Consider the following commutative

diagram with short exact rows:

0 // H.CP .L/; dmf /
a //

�a

��

H.CP .L/; dmf /

�
a2

��
0 // H.CN .L/; dmf /

a // H.CP .L/=a2CP .L/; dmf /

H.CP .L/; dmf /
�a //

�
a2

��

H.CN .L/; dmf / //

id

��

0

H.CP .L/=a2CP .L/; dmf /
�a // H.CN .L/; dmf / // 0:

It induces the following commutative diagram with long exact rows.

� � �
�a // H i�1

N .L/
� //

id
��

H i
P .L/

a //

�a

��

� � �

� � �
�a // H i�1

N .L/
ı // H i

N .L/
a // � � �

�us, ı D �a ı � D d
.1/
P .

Lemma 5.3. Let S be a link cobordism from link L0 to L1. Denote by

HN .L0/
fN
��! HN .L1/

the homomorphism induced by S . �en the following diagram commutes:

H i�1
N .L0/

d
.1/
P //

fN

��

H i
N .L0/

fN

��
H i�1

N .L1/
d

.1/
P // H i

N .L1/:
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Proof. Pick diagrams for L0, L1 and choose a movie presentation of S . Denote

by

.H.CN .L0/; dmf /; d�/
fN
��! .H.CN .L1/; dmf /; d�/

and

.H.CP .L0/; dmf /; d�/
fP
��! .H.CP .L1/; dmf /; d�/

the chain maps induced by this movie presentation of S . Of course,

HN .L0/
fN
��! HN .L1/

is, up to scaling, the homomorphism induced by the chain map

.H.CN .L0/; dmf /; d�/
fN
��! .H.CN .L1/; dmf /; d�/:

Recall that fP is CŒa�-linear and

H.CP .L/=a2CP .L/; dmf / Š H.CP .L/; dmf /=a2H.CP .L/; dmf /:

So fP induces a chain map

H.CP .L/=a2CP .L/; dmf /
fP
��! H.CP .L/=a2CP .L/; dmf /:

�us, we have the following commutative diagram with short exact rows:

0 // H.CN .L0/; dmf /
a //

fN

��

H.CP .L0/=a2CP .L/; dmf /

fP

��
0 // H.CN .L1/; dmf /

a // H.CP .L1/=a2CP .L/; dmf /

H.CP .L0/=a2CP .L/; dmf /
�a //

fP

��

H.CN .L0/; dmf / //

fN

��

0

H.CP .L1/=a2CP .L/; dmf /
�a // H.CN .L1/; dmf / // 0:

By Lemma 5.2, this diagram induces the following commutative diagram with

long exact rows.

� � �
�a // H i�1

N .L0/
d

.1/
P //

fN

��

H i
N .L0/

fN

��

a // � � �

� � �
�a // H i�1

N .L1/
d

.1/
P // H i

N .L1/
a // � � �

�is proves the lemma.

Note that Part (3) of �eorem 1.16 follows from Lemma 5.3.
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5.2. Anti-commutativity. In this subsection, we �x a homogeneous polynomial

P D P.x; a1; a2/ D xN C1 C xF.x; a1; a2/ (5.2)

of degree 2N C 2, where

� x, a1 and a2 are homogeneous variables of degrees 2, 2k1 and 2k2, respec-

tively,

� deg F.x; a1; a2/ D 2N and F.x; 0; 0/ D 0.

We de�ne

P1 D P.x; a1; 0/ and P2 D P.x; 0; a2/: (5.3)

�e goal of this subsection is to show that d
.1/
P1

and d
.1/
P2

anti-commute, which

implies Part (2) of �eorem 1.16.

Lemma 5.4. Let R be a commutative ring and A, B , C and D chain complexes of

R-modules, whose di�erentials raise the homological grading by 1. Assume there

is an exact sequence of chain complexes

0 �! A
f

�! B
g

�! C
h

�! D �! 0:

�en this exact sequence induces an R-homomorphism

� W H i .D/ �! H iC2.A/

for every homological degree i .

Proof. Of course, one can split the exact sequence

0 �! A
f

�! B
g

�! C
h

�! D �! 0

into short exact sequences

0 �! A
f

�! B �! B=f .A/ �! 0

and

0 �! B=f .A/
g

�! C
h

�! D �! 0:

�en � can be de�ned as the composition of the connecting homomorphisms

from these two short exact sequences. But what we actually need later on is that

� is de�ned by diagram chasing and does not depend on the choices made in that

chasing. So this is how we will prove the lemma here.
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:::
:::

:::
:::

0 // AiC2 f //

dA

OO

B iC2 g //

dB

OO

C iC2 h //

dC

OO

DiC2 //

dD

OO

0

0 // AiC1 f //

dA

OO

B iC1 g //

dB

OO

C iC1 h //

dC

OO

DiC1 //

dD

OO

0

0 // Ai f //

dA

OO

B i g //

dB

OO

C i h //

dC

OO

Di //

dD

OO

0

0 // Ai�1 f //

dA

OO

B i�1 g //

dB

OO

C i�1 h //

dC

OO

Di�1 //

dD

OO

0

:::

dA

OO

:::

dB

OO

:::

dC

OO

:::

dD

OO

In the above diagram, let x 2 Di be a cycle. �at is, dD.x/ D 0. Since h is

surjective, there is a chain y 2 C i such that h.y/ D x. �en

h.dC .y// D dD.x/ D 0:

So dC .y/ 2 ker h D g.B iC1/. �us, there exists a z 2 B iC1 such that

g.z/ D dC .y/:

�en

g.dB.z// D dC .dC .y// D 0:

So dB.z/ 2 ker g D f .A/. �at is, there exists w 2 AiC2 such that

f .w/ D dB.z/:

But f .dA.w// D dB.dB.z// D 0 and f is injective. So dA.w/ D 0, that is, w is a

cycle in AiC2.
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Next, we show that the mapping

Œx� 7�! Œw�

is a well de�ned homomorphism on homology, that is, it does not depend on the

choices made in the above construction.

Assume x0 2 Di is a cycle such that

Œx0� D Œx�:

�en there is a Qx 2 Di�1 with

dD. Qx/ D x0 � x:

Since h is surjective, there is a Qy 2 C i�1 satisfying

h. Qy/ D Qx:

Now let y0 2 C i be any chain such that h.y0/ D x0. �en

h.y0/ D x0 D x C dD. Qx/ D h.y C dC . Qy//:

�us,

y0 � y � dC . Qy/ 2 ker h D g.B i /:

�is means that there exists a Qz 2 B i such that

g. Qz/ D y0 � y � dC . Qy/:

Now let z0 2 B iC1 be any chain satisfying

g.z0/ D dC .y0/:

�en

g.z0/ D dC .y0/

D dC .y C dC . QY / C g. Qz//

D g.z C dB. Qz//:

�is implies that

z0 � z � dB. Qz/ 2 ker g D f .B iC1/:

So there exists a Qw 2 AiC1 such that

f . Qw/ D z0 � z � dB. Qz/:
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Finally, let w0 2 AiC2 be any chain with

f .w0/ D dB.z0/:

�en

f .w0/ D dB.z0/

D dB.z C dB. Qz/ C f . Qw//

D f .w C dA. Qw//:

But f is injective. So

w0 D w C dA. Qw/:

�is shows that w0 is a cycle and Œw0� D Œw�.

From the above, we know that

� W H i .D/ �! H iC2.A/

given by

�.Œx�/ D Œw�

is well de�ned. It is straightforward to show that � is R-linear.

Lemma 5.5. Let P1 and P2 be the polynomials de�ned in (5.3). �en

d
.1/
P1

ı d
.1/
P2

D �d
.1/
P2

ı d
.1/
P1

:

Note that, applying Lemma 5.5 to P.x; bi ; bj / D xN C1 C bix
i C bj xj , we get

Part (2) of �eorem 1.16.

Proof of Lemma 5.5. Let L be any link and D one of its diagrams. Recall that P

is the polynomial in (5.2). Set R D CŒa1; a2�.
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Consider the following diagram.

0

��

0

��

0

��
0 // R=.a1; a2/

a1 //

�a2

��
�

R=.a2
1; a2/

�a1 //

a2

��
C

R=.a1; a2/

a2

��

// 0

0 // R=.a1; a2
2/

a1 //

�a2

��
C

R=.a2
1; a2

2/
�a1 //

�a2

��
C

R=.a1; a2
2/

�a2

��

// 0

0 // R=.a1; a2/
a1 //

��

R=.a2
1; a2/

�a1 //

��

R=.a1; a2/ //

��

0

0 0 0

(5.4)

Note that, in diagram (5.4),

� all rows are exact,

� all columns are exact,

� the upper left square anti-commutes, which is indicated by a “�”,

� the other three squares commute, which is indicated by “C”s.

Moreover, we get from diagram (5.4) an exact sequence

0 �! R=.a1; a2/

�

a1

�a2

�

������!

R=.a2
1; a2/

˚

R=.a1; a2
2/

.a2;a1/
�����! R=.a2

1; a2
2/

�a1
ı�a2

D�a2
ı�a1

�������������! R=.a1; a2/ �! 0:

(5.5)

By Corollary 3.3, H.CP .D/; dmf / is a chain complex of graded-free R-mod-

ules. For i; j D 1; 2 we denote by Ci;j the chain complex

.H.CP .D/; dmf /=.ai
1; a

j
2 /H.CP .D/; dmf /; d�/:

Note that

C1;1 Š .H.CN .D/; dmf /; d�/;

whose homology is HN .L/. Exact sequence (5.5) induces an exact sequence

0 �! C1;1

�

a1

�a2

�

������!

C2;1

˚

C1;2

.a2;a1/
�����! C2;2

�a1
ı�a2

D�a2
ı�a1

�������������! C1;1 �! 0: (5.6)
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By Lemma 5.4, exact sequence (5.6) induces a homomorphism

� W H i
N .L/ �! H iC2

N .L/:

We prove the lemma by showing that

� D d
.1/
P1

ı d
.1/
P2

D �d
.1/
P2

ı d
.1/
P1

: (5.7)

To prove (5.7), we demonstrate that each of d
.1/
P1

ı d
.1/
P2

and �d
.1/
P2

ı d
.1/
P1

can be

realized by a diagram chasing used to de�ne �.

Again, recall that H.CP .D/; dmf / is a chain complex of graded-free R-mod-

ules. Tensoring H.CP .D/; dmf / with every item in diagram (5.4), we get a dia-

gram of chain complexes

0

��

0

��

0

��
0 // C1;1

a1 //

�a2

��
�

C2;1

�a1 //

a2

��
C

C1;1

a2

��

// 0

0 // C1;2
a1 //

�a2

��
C

C2;2

�a1 //

�a2

��
C

C1;2

�a2

��

// 0

0 // C1;1
a1 //

��

C2;1

�a1 //

��

C1;1
//

��

0

0 0 0

(5.8)

in which

� all rows are exact,

� all columns are exact,

� the upper left square anti-commutes, which is indicated by a “�”,

� the other three squares commute, which is indicated by “C”s.

�is is the diagram that we will chase. Note that, for each homological degree i ,

there is a diagram of the form in 5.8. So our diagram chasing involves three levels

of a 3-dimensional diagram. In stead of drawing the rather complex 2-dimensional

projection of this 3-dimensional diagram, we look at each homological level in-

dividually with the understanding that the each di�erential map points from one

spot on one level to the same spot one level higher.
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0

��

0

��

0

��
0 // C i

1;1

a1 //

�a2

��
�

C
i
2;1

�a1 //

a2

��
C

C
i
1;1

a2

��

// 0

0 // C i
1;2

a1 //

�a2

��
C

.z 2/C i
2;2

�a1 //

�a2

��
C

.y2 2/C i
1;2

�a2

��

// 0

0 // C i
1;1

a1 //

��

.y1 2/C i
2;1

�a1 //

��

.x 2/C i
1;1

//

��

0

0 0 0

(5.9)

Let us start with homological degree i . As in diagram (5.9), let x be any cycle

in the C
i
1;1 at the lower right corner. By the exactness, there is a y1 in the C

i
2;1 in

the bottom row such that �a1
.y1/ D x. Use exactness again, there is a z in the

C
i
2;2 at the center such that �a2

.z/ D y1. Let y2 D �a1
.z/ in the C

i
1;2 in the right

column. Since the lower right square commutes, we have that �a2
.y2/ D x. �is

�nishes the chase at homological degree i .

0

��

0

��

0

��
0 // C iC1

1;1

a1 //

�a2

��
�

.˛2; ˇ1 2/C iC1
2;1

�a1 //

a2

��
C

.w2 2/C iC1
1;1

a2

��

// 0

0 // .˛1; ˇ2 2/C iC1
1;2

a1 //

�a2

��
C

.dz 2/C iC1
2;2

�a1 //

�a2

��
C

.dy2 2/C iC1
1;2

�a2

��

// 0

0 // .w1 2/C iC1
1;1

a1 //

��

.dy1 2/C iC1
2;1

�a1 //

��

.dx D 0 2/C iC1
1;1

//

��

0

0 0 0
(5.10)

Now we move to homological degree i C 1. First, we map x; y1; y2 and z by

the di�erential maps. Recall that x is a cycle. So �a1
.dy1/ D �a2

.dy2/ D dx D 0.
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By exactness, there is a w1 in the C
iC1
1;1 at the lower left corner such that

a1.w1/ D dy1. �e chase x Ý y1 Ý w1 is the chase used in the de�nition of

the connecting homomorphism of the long exact sequence from the bottom row

of diagram (5.8). So w1 is a cycle. Moreover, by Lemma 5.2, this connecting

homomorphism is d
.1/
P1

. So

d
.1/
P1

.Œx�/ D Œw1�: (5.11)

Similarly, there is a cycle w2 in the C
iC1
1;1 at the upper right corner such that

a2.w2/ D dy2 and

d
.1/
P2

.Œx�/ D Œw2�: (5.12)

By exactness, there is an ˛1 in the C
iC1
1;2 in the left column such that

�a2
.˛1/ D w1:

Similarly, there is an ˛2 in the C
iC1
2;1 in the top row such that �a1

.˛2/ D w2.

Note that �a2
.dz � a1.˛1// D dy1 � a1.w1/ D 0. So there is a ˇ1 in the C

iC1
2;1

in the top row such that

a2.ˇ1/ D dz � a1.˛1/: (5.13)

Similarly, �a1
.dz � a2.˛2// D 0 and there is a ˇ2 in the C

iC1
1;2 in the left column

such that

a1.ˇ2/ D dz � a2.˛2/: (5.14)

0

��

0

��

0

��
0 // .1; 2 2/C iC2

1;1

a1 //

�a2

��
�

.d˛2; dˇ1 2/C iC2
2;1

�a1 //

a2

��
C

.dw2 D 0 2/C iC2
1;1

a2

��

// 0

0 // .d˛1; dˇ2 2/C iC2
1;2

a1 //

�a2

��
C

.ddz D 0 2/C iC2
2;2

�a1 //

�a2

��
C

C
iC2
1;2

�a2

��

// 0

0 // .dw1 D 0 2/C iC2
1;1

a1 //

��

C
iC2
2;1

�a1 //

��

C
iC2
1;1

//

��

0

0 0 0
(5.15)
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Finally, we look at homological grading i C 2. By equation (5.13),

.a2; a1/

�

dˇ1

d˛1

�

D ddz D 0:

By the exactness of sequence (5.6), there is a 1 in the C
iC2
1;1 at the top left corner

such that
�

a1.1/

�a2.1/

�

D

�

dˇ1

d˛1

�

:

Since
�

a1
�a2

�

is injective and

�

a1.d1/

�a2.d1/

�

D

�

ddˇ1

dd˛1

�

D 0;

we know that 1 is a cycle. Clearly, the chase

x Ý z Ý

�

ˇ1

˛1

�

Ý 1

de�nes �.Œx�/. So

Œ1� D �.Œx�/:

Similarly, there is a cycle 2 in the C
iC2
1;1 at the top left corner such that

�

a1.2/

�a2.2/

�

D

�

d˛2

dˇ2

�

:

�e chase

x Ý z Ý

�

˛2

ˇ2

�

Ý 2

de�nes �.Œx�/. So

Œ2� D �.Œx�/:

Altogether, we have

�.Œx�/ D Œ1� D Œ2�: (5.16)

Note that a2.�1/ D d˛1. So the chase w1 Ý˛1 Ý�1 de�nes the connecting

homomorphism of the long exact sequence from the left column in (5.8), which,

by Lemma 5.2, is d
.1/
P2

. So

d
.1/
P2

.Œw1�/ D �Œ1�: (5.17)
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Similarly, note that a1.2/ D d˛2. By Lemma 5.2, the chase w2 Ý ˛2 Ý 2 gives

that

d
.1/
P1

.Œw2�/ D Œ2�: (5.18)

Putting equations (5.11), (5.12), (5.16), (5.17) and (5.18) together, we get that

�.Œx�/ D d
.1/
P1

.d
.1/
P2

.Œx�// D �d
.1/
P2

.d
.1/
P1

.Œx�//:

�is proves the lemma.

5.3. Action of d
.1/

P
. In this subsection, we describe the action of d

.1/
P on HN .L/

in terms of torsion components of HP .L/ and prove Parts (1) and (4) of �eo-

rem 1.16.

Let P D P.x; a/ be of form (1.1) and L a link. Recall that, according to

�eorem 1.7, HP .L/ decomposes into components of the forms CŒa�kik¹sº and

CŒa�=.am/kik¹sº. By Corollary 1.8, CŒa�kik¹sº contributes a component Ckik¹sº

to HN .L/ and CŒa�=.am/kik¹sº contributes a component

Ckik¹sº ˚ Cki � 1k¹s C 2kmº (�)

to HN .L/. �e next lemma describes the action of d
.1/
P on such components and

follows from the proof of Lemma 4.17.

Lemma 5.6. (1) d
.1/
P restricts to 0 on the componentCkik¹sº of HN .L/ induced

by the component CŒa�kik¹sº of HP .L/.

(2) If m > 1, then d
.1/
P restricts to 0 on the component (�) of HN .L/ induced by

the component CŒa�=.am/kik¹sº of HP .L/.

(3) On the component Ckik¹sº ˚ Cki � 1k¹s C 2kº of HN .L/ induced by the

component CŒa�=.a/kik¹sº of HP .L/, the restriction of d
.1/
P is given by

� d
.1/
P jCkik¹sº D 0,

� d
.1/
P jCki�1k¹sC2kº is an isomorphism Cki � 1k¹s C 2kº

Š
�! Ckik¹sº.

Proof. �e restrictions of d
.1/
P on these components are computed in the proof of

Lemma 4.17. �e current lemma follows from that computation.

In [7, 4.2.3 Example], Lee observed that the homomorphism ˆ matches a pair

of generators of bi-degree di�erence .1; 4/. �is is a special case of Part (3) of

Lemma 5.6.11

11 �e normalization in [7] is di�erent from ours.
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Corollary 5.7. Let P D P.x; a/ be of form (1.1) and L a link. �en d
.1/
P ¤ 0

on HN .L/ if and only if at least one of the components of HP .L/ in decomposi-

tion (1.7) is of the form CŒa�=.a/kik¹sº.

Proof. �is follows from Lemma 5.6.

Lemma 5.8. Suppose

P1 D P1.x; a/ D xN C1 C

b N
k c

X

iD1

�1;ia
ixN C1�ik ;

P2 D P2.x; a/ D xN C1 C

b N
k c

X

iD1

�2;ia
ixN C1�ik ;

where a is a homogeneous variable of degree 2k. Assume that there exists an

integer m such that 1 � m �
�

N
k

˘

and �1;i D �2;i for 1 � i � m � 1. Let D be a

link diagram with a marking. De�ne

CP1;m.D/ WD CP1
.D/=amCP1

.D/;

CP2;m.D/ WD CP2
.D/=amCP2

.D/:

�en .CP1;m.D/; d�/ and .CP2;m.D/; d�/ are identical as chain complexes of

graded matrix factorizations of 0 over CŒa�=.am/. �erefore,

H.H.CP1;m.D/; dmf /; d�/ Š H.H.CP2;m.D/; dmf /; d�/

as Z˚2-graded CŒa�-modules.

Proof. Let x1; : : : ; xm be the variables associated to marked points on D. For any

MOY resolution � of D, it is obvious from De�nition 2.6 that

CP1;m.�/ WD CP1
.�/=amCP1

.�/

and

CP2;m.�/ WD CP2
.�/=amCP2

.�/

are the same matrix factorization of 0 over the ring CŒx1; : : : ; xm; a�=.am/. Let �0

and �1 be two MOY resolutions of D that are di�erent at exactly one crossing.

�at is, �0 and �1 resolve all but one crossings of D the same way, and that one

remaining crossing is resolved to a pair of parallel arcs in �0 and a wide edge in �1.
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From the construction in Lemma 2.8, one can see that the following diagrams

commute:

CP1;m.�0/
�0 //

id

��

CP1;m.�1/

id

��
CP2;m.�0/

�0 // CP2;m.�1/;

CP1;m.�0/

id

��

CP1;m.�1/
�1oo

id

��
CP2;m.�0/ CP2;m.�1/:

�1oo

�us, .CP1;m.D/; d�/ and .CP2;m.D/; d�/ are identical as chain complexes of ma-

trix factorizations of 0 over CŒx1; : : : ; xm; a�=.am/. And the lemma follows.

Lemma 1.15 follows easily from Lemma 5.8.

Proof of Lemma 1.15. Fix a diagram D of L and apply Lemma 5.8 to xN C1 and

P.x; a/ D xN C1 C

b N
k c

X

iDm

�ia
ixN C1�ki :

�en we have

H.H.CxNC1;m.D/; dmf /; d�/ Š H.H.CP;m.D/; dmf /; d�/

as Z˚2-graded CŒa�-modules. But

H.H.CxNC1;m.D/; dmf /; d�/ Š HN .L/ ˝C CŒa�=.am/:

�is means that, all direct sum components of H.H.CP;m.D/; dmf /; d�/ must

be of the form CŒa�=.am/kik¹sº. If HP .L/ has a torsion component of the form

CŒa�=.al/kik¹sº with 1 � l < m. �en the chain complex .H.CP .D/; dmf /; d�/

has a direct sum component

Ti;l;s D 0 �! CŒa�ki � 1k¹s C 2klº
al

�! CŒa�kik¹sº �! 0:
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Since H.CP .D/; dmf / is a free CŒa�-module, we know that

H.CP;m.D/; dmf / Š H.CP .D/; dmf /=amH.CP .D/; dmf /:

So .H.CP;m.D/; dmf /; d�/ contains a direct sum component

Ti;l;s=amTi;l;s D 0 �! CŒa�=.am/ki � 1k¹s C 2klº
al

�! CŒa�=.am/kik¹sº �! 0:

�erefore, H.H.CP;m.D/; dmf /; d�/ has a direct sum component

CŒa�=.al/ki � 1k¹s C 2kmº ˚ CŒa�=.al/kik¹sº:

By Lemma 4.14, this is a contradiction. �us, HP .L/ does not contain torsion

components isomorphic to CŒa�=.al/kik¹sº.

Next, we apply Lemma 1.15 and Corollary 5.7 to prove Part (1) of �eorem 1.16.

Corollary 5.9. (1) If

P.x; a/ D xN C1 C

b N
k c

X

iD2

�ia
ixN C1�ki ;

then

d
.1/
P D 0

for any link.

(2) ıN D 0 for any link, where ıN is de�ned in Subsection 1.6.

Proof. Let L be any link and D a diagram of L.

We prove Part (1) of the corollary �rst. By Lemma 1.15, HP .L/ contains no

torsion components of the form CŒa�=.a/kik¹sº. �en, by Corollary 5.7, d
.1/
P D 0

on HN .L/. �is proves Part (1).

Now we prove Part (2). Recall that

ıN D d
.1/
PN

;

where

PN D PN .x; a/ D xN C1 C bN xN

and bN is a homogeneous variable of degree 2. De�ne

P D P.y; bN / D
�

y �
bN

N C 1

�N C1

C bN

�

y �
bN

N C 1

�N

:
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Note that P is of form (1.1) and the coe�cient of bN yN in P is 0. �us, by

Lemma 1.15, HP .L/ contains no torsion components of the form CŒa�=.a/kik¹sº.

Put a marking on D and let x1; : : : ; xm be the variables associated to marked

points on D. We introduce another collection of homogeneous variables

y1; : : : ; ym

of degree 2. Denote by

� W CŒx1; : : : ; xm; bN � �! CŒy1; : : : ; ym; bN �

the ring isomorphism given by

�.bN / D bN

and

�.xi / D yi �
bN

N C 1

for i D 1; : : : ; m. In the remainder of this proof, we write

Rx D CŒx1; : : : ; xm; bN �

and

Ry D CŒy1; : : : ; ym; bN �:

Let � be any MOY resolution of D. Assume �i I p and �i;j I p;q depicted in

Figure 2 are pieces of �. By de�nition 2.6, it is clear that � induces an isomor-

phism

� W CPN
.�i I p/ �! CP .�i I p/:

For �i;j I p;q , � induces an isomorphism

� W CPN
.�i;j I p;q/ D

�

� xi C xj � xp � xq

� xixj � xpxq

�

Rx

¹�1º

Š
�!

�

� �.xi C xj � xp � xq/

� �.xi xj � xpxq/

�

Ry

¹�1º

D

�

� yi C yj � yp � yq

� yiyj � ypyq � bN

N C1
.yi C yj � yp � yq/

�

Ry

¹�1º

Š

�

� yi C yj � yp � yq

� yiyj � ypyq

�

Ry

¹�1º

Š CP .�i;j I p;q/:
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In the above computation, we used [14, Corollary 2.16 and Lemma 2.18]. �is

shows that, for any MOY resolution � of D, � induces an isomorphism

� W CPN
.�/

Š
�! CP .�/:

Now let �0 and �1 be two MOY resolutions of D that are di�erent at exactly

one crossing. �at is, �0 and �1 resolve all but one crossings of D the same way,

and that one remaining crossing is resolved to a pair of parallel arcs in �0 and a

wide edge in �1. Assume �i I p t �j I q and �i;j I p;q in Figure 4 are the pieces of

�0 and �1 from resolving this crossing. �en the homomorphisms

CPN
.�i I p t �j I q/

�0 //
CPN

.�i;j I p;q/
�1

oo

induce homomorphisms

CP .�i I p t �j I q/
�ı�0ı��1

//
CP .�i;j I p;q/

�ı�1ı��1

oo :

Note that

� � ı �0 ı ��1 and � ı �1 ı ��1 are both homogeneous homomorphisms of

degree 1.

� Since �0, �1 are homotopically non-trivial and � is an isomorphism,

� ı �0 ı ��1 and � ı �1 ı ��1

are also homotopically non-trivial.

From the uniqueness part of Lemma 2.8, one can see that, up to homotopy and

scaling by non-zero scalars, � ı �0 ı ��1 and � ı �1 ı ��1 are the homomorphisms

CP .�i I p t �j I q/
�0 //

CP .�i;j I p;q/
�1

oo

de�ned in Lemma 2.8. �us, the following diagrams commute up to homotopy

and scaling by non-zero scalars.

CPN
.�0/

�0 //

�

��

CPN
.�1/

�

��
CP .�0/

�0 // CP .�1/

CPN
.�0/

�

��

CPN
.�1/

�1oo

�

��
CP .�0/ CP .�1/

�1oo



592 H. Wu

�e above shows that CPN
.D/ and CP .D/ are isomorphic as objects in the

category of chain complexes over the homotopy category of graded matrix factor-

izations of 0 overCŒbN �. �us, HPN
.L/ Š HP .L/ asZ˚2-gradedCŒbN �-modules.

�erefore, HPN
.L/ contains no torsion components of the form CŒa�=.a/kik¹sº.

By Corollary 5.7, ıN D d
.1/
PN

D 0 on HN .L/. �is proves Part (2) of the corol-

lary.

We have proved Parts (1-3) of �eorem 1.16 so far. It remains to prove Part (4).

We start with the following corollary of Lemma 5.8.

Corollary 5.10. Suppose bi is a homogeneous variable of degree 2N C 2 � 2i

and

P1 D P1.x; bi / D xN C1 C

j

N
NC1�i

k

X

j D1

�j b
j
i xN C1�j.N C1�i/;

P2 D P2.x; bi / D xN C1 C �1bi x
i ;

where �1; : : : ; �j

N
NC1�i

k 2 C. �en, for any link L, d
.1/
P1

D d
.1/
P2

on HN .L/.

Proof. Fix a diagram D of L and a marking on D. De�ne CP1;m.D/ and CP2;m.D/

as in Lemma 5.8. According to that lemma, for m D 1; 2, .CP1;m.D/; d�/ and

.CP2;m.D/; d�/ are identical as chain complexes of matrix factorizations of 0

over CŒbi �=.bm
i /. In particular, note that identity, as an isomorphism between the

above two chain complexes, is CŒbi �-linear. Recall that H.CPi
.D/; dmf / is a free

CŒbi �-module, CPi ;1.D/ Š CN .D/ and

H.CPi ;2.D/; dmf / Š H.CPi
.D/; dmf /=a2H.CPi

.D/; dmf /:

So we have the following commutative diagram with exact rows:

0 // H.CN .D/; dmf /
bi //

id

��

H.CP1;2.D/; dmf /

id

��
0 // H.CN .D/; dmf /

bi // H.CP2;2.D/; dmf /

H.CP1;2.D/; dmf /
�bi //

id

��

H.CN .D/; dmf / //

id

��

0

H.CP2;2.D/; dmf /
�bi // H.CN .D/; dmf / // 0:
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By Lemma 5.2, this induces the following commutative diagram with exact rows.

� � �
�bi // H

j
N .L/

d
.1/
P1 //

id
��

H
j C1
N .L/

bi //

id
��

� � �

� � �
�bi // H j

N .L/
d

.1/
P2 // H j C1

N .L/
bi // � � �

�us, d
.1/
P1

D d
.1/
P2

on HN .L/.

�e following lemma concludes the proof of Part (4) of �eorem 1.16.

Lemma 5.11. Suppose bi is a homogeneous variable of degree 2N C 2 � 2i and

� a non-zero scalar. De�ne

Pi D xN C1 C bix
i

and

{Pi D xN C1 C �bix
i :

�en, for any link L,

d
.1/

{Pi

D �d
.1/
Pi

D �ıi

on HN .L/.

Proof. Fix a diagram D of L and a marking of D. Consider the ring automor-

phism

� W CŒbi � �! CŒbi �

given by

�.bi / D �bi :

Note that � induces on CŒbi �=.bi / the identity automorphism

CŒbi �=.bi /
id

�! CŒbi �=.bi /:

For any MOY resolution � of D, � induces an isomorphism

� W CPi
.�/ �! C {Pi

.�/;

which, in turn, induces a chain complex isomorphism

� W CPi
.D/ �! C {Pi

.D/:
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Note that this chain complex isomorphism induces the identity chain map

CPi
.D/=biCPi

.D/ Š CN .D/ �! idCN .D/ Š C {Pi
.D/=biC {Pi

.D/:

Using �, we get the following commutative diagram with exact rows:

0 // H.CN .D/; dmf /
bi //

id

��

H.CPi
.D/=b2

i CPi
.D/; dmf /

�Š

��
0 // H.CN .D/; dmf /

�bi //

� id

��

H.C {Pi
.D/=b2

i C {Pi
.D/; dmf /

id

��
0 // H.CN .D/; dmf /

bi // H.C {Pi
.D/=b2

i C {Pi
.D/; dmf /

H.CPi
.D/=b2

i CPi
.D/; dmf /

�bi //

�Š

��

H.CN .D/; dmf / //

id

��

0

H.C {Pi
.D/=b2

i C {Pi
.D/; dmf /

�bi //

id

��

H.CN .D/; dmf / //

id

��

0

H.C {Pi
.D/=b2

i C {Pi
.D/; dmf /

�bi // H.CN .D/; dmf / // 0:

(5.19)

By Lemma 5.2, diagram (5.19) induces a commutative diagram with exact rows

� � �
�bi // H

j
N .L/

ıi //

id
��

H
j C1
N .L/

bi //

id
��

� � �

� � �
�bi // H

j
N .L/

� //

id
��

H
j C1
N .L/

�bi //

� id
��

� � �

� � �
�bi // H j

N .L/
d

.1/

{Pi // H j C1
N .L/

bi // � � �

;

where � is the connecting homomorphism induced by the second row of dia-

gram (5.19). �us, we have d
.1/

{Pi

D �� D �ıi .

5.4. A recapitulation of the proof of �eorem 1.16. �e proof of �eorem 1.16

is spread out in the �rst three subsections of this section. Here we give a quick

recap of this proof.
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� Part (1) is proved in Corollary 5.9.

� Applying Lemma 5.5 to P D xN C1 C bi x
i C bj xj , one gets Part (2).

� Part (3) is a special case of Lemma 5.3.

� Corollaries 5.9, 5.10 and Lemma 5.11 imply that, for a polynomial

P.x; a/ D xN C1 C

b N
k c

X

iD1

�ia
ixN C1�ik

with deg a D 2k and �i 2 C,

d
.1/
P D

8

<

:

0 if �1 D 0 or k D 1;

�1ıN C1�k otherwise.

�is proves Part (4).

5.5. An example. Next we compute HPi
.L/ for the closed 2-braid L in Figure 1,

which allows us to conclude that, on HN .L/, the di�erentials ı1; : : : ; ıN �1 are

non-zero, but ıiıj D 0 for any 1 � i; j � N � 1.

In our computation, we use the diagram of L with two marked points in Fig-

ure 5. We also denote by �0, �1 the two MOY resolutions of L in Figure 5. Before

going any further, let us recall the Gaussian elimination lemma.

Lemma 5.12 ([1, Lemma 4.2]). Let C be an additive category and

I D � � � �! C

�

˛

ˇ

�

����!

A

˚

D

�

� ı

 "

�

������!

B

˚

E

�

� �
�

�����! F �! � � �

a chain complex over C. Assume that A
�
�! B is an isomorphism in C with in-

verse ��1. �en I is homotopic to

II D � � � �! C
ˇ

�! D
"���1ı
������! E

�
�! F �! � � � :
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✛
✛
x2

x1

L

✛
✛
x2

x1

�0

✛
✛
x2

x1

�1

Figure 5. L and two of its MOY resolutions.

By [17, �eorem 1.1],12 for any polynomial P D P.x; a/ of form (1.1), CP .L/

is homotopic to the chain complex

0 �! CP .�0/¹�4N C 4º
�0

�! CP .�1/¹�4N C 3º
0

�! CP .�1/¹�4N C 1º

x1�x2
����! CP .�1/¹�4N � 1º

0
�! CP .�1/¹�4N � 3º �! 0;

(5.20)

where CP .�0/¹�4N C4º is at homological degree 0 and �0 is the homomorphism

associated to wide edge in �1. �us,

CP .L/ ' C1 ˚ C2 ˚ C3; (5.21)

12 Strictly speaking, [17, �eorem 1.1] is stated only for P.x; a/ D xNC1 � ax. But it is

straightforward to check that this theorem and its proof remain true for a general P.x; a/ of

form (1.1).
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where

C1 D 0 ! CP .�0/k0k¹�4N C 4º
�0
�! CP .�1/k1k¹�4N C 3º ! 0;

C2 D 0 ! CP .�1/k2k¹�4N C 1º
x1�x2
����! CP .�1/k3k¹�4N � 1º ! 0;

C3 D 0 ! CP .�1/k4k¹�4N � 3º ! 0:

✛
✛
x2

x1

U�1

✛x2

U0

Figure 6. Two diagrams of the unknot.

Consider the two diagrams of the unknot in Figure 6. Note that

C1 D CP .U�1/¹�3N C 3º:

So

H.H.C1; dmf /; d�/ D HP .U�1/¹�3N C 3º

Š HP .U0/¹�3N C 3º

Š CŒx2; a�=
�@P.x2; a/

@x2

�

k0k¹�4N C 4º:

(5.22)

In particular, note that H.H.C1; dmf /; d�/ is a free CŒa�-module.

By [6, Proposition 10],13

C3 '
N �2
M

iD0

CP .U0/k4k¹�3N � 5 � 2iº:

So

H.H.C3; dmf /; d�/ Š
N �2
M

iD0

HP .U0/k4k¹�3N � 5 � 2iº

Š
N �2
M

iD0

CŒx2; a�=
�@P.x2; a/

@x2

�

k4k¹�4N � 4 � 2iº:

(5.23)

13 We are not tracking the Z2-grading here.
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Note that H.H.C3; dmf /; d�/ is again a free CŒa�-module.

It remains to compute H.H.C2; dmf /; d�/. Write

P.x; a/ D
N C1
X

iD1

fix
i ;

where fN C1 D 1 and each fi is a monomial of a of degree 2N C 2 � 2i . (For

degree reasons, many of these fi ’s vanish.) By [13, the proof of Lemma 2.18], as

an endomorphism of CP .�0/,

m

�

N
X

iD0

.i C 1/fiC1xi
1

�

D m

�@P.x1; a/

@x1

�

' 0; (5.24)

where m.�/ is the endomorphism given by the multiplication by �.

Next, we explicitly write down the inclusions and projections in the decompo-

sition

CP .�1/ '
N �2
M

iD0

CP .U0/¹N � 2 � 2iº: (5.25)

Consider the homomorphisms in Figure 7, where

� � and � are the homomorphisms associated to the circle creation and annihi-

lation (see [6] for their de�nitions,)

� �0 and �1 are the �-maps associated to the wide edge in �1.

Recall that

(1) � and � are homogeneous of degree �N C 1 and CŒx2; a�-linear. For 1 � i �

N � 1,

� ım.xi
1/ ı � '

´

idCP .U0/ if i D N � 1;

0 if ; i D 0; 1; : : : ; N � 2:
(5.26)

(2) �0 and �1 are homogeneous of degree 1 and CŒx1; x2; a�-linear. �1 ı �0 '

.x1 � x2/ idCP .�0/.

De�ne

˛ D �0 ı �

and

ˇ D � ı �1:
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Figure 7. De�nition of ˛ and ˇ.

Note that these are homogeneous homomorphisms of degree �N C 2. For i D

0; 1; : : : ; N � 2, de�ne

˛i W CP .U0/¹2 C 2i � N º �! CP .�1/

and

ˇi W CP .�1/ �! CP .U0/¹2 C 2i � N º

by

˛i D m

�

i
X

pD0

i�p
X

lD0

.N � p C 1/fN �pC1xl
1x

i�p�l
2

�

ı ˛
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and

ˇi D
1

N C 1
ˇ ım.xN �i�2

1 /:

Note that ˛i and ˇi are homogeneous homomorphisms of degree 0. For any 0 �

i; j � N � 2,

ǰ ı ˛i D
1

N C 1
ˇ ım

�

x
N �j �2
1

i
X

pD0

i�p
X

lD0

.N � p C 1/

fN �pC1xl
1x

i�p�l
2

�

ı ˛

D
1

N C 1
� ı �1 ım

�

x
N �j �2
1

i
X

pD0

i�p
X

lD0

.N � p C 1/

fN �pC1xl
1x

i�p�l
2

�

ı �0 ı �

D
1

N C 1
� ım

�

.x1 � x2/x
N �j �2
1

i
X

pD0

i�p
X

lD0

.N � p C 1/

fN �pC1xl
1x

i�p�l
2

�

ı �

D
1

N C 1

i
X

pD0

.N � p C 1/

fN �pC1 � � ım
�

x
N �j �2
1 .x1 � x2/

i�p
X

lD0

xl
1x

i�p�l
2

�

ı �

D
1

N C 1

i
X

pD0

.N � p C 1/

fN �pC1 � � ım.x
N �j �2
1 .x

i�pC1
1 � x

i�pC1
2 // ı �

D
1

N C 1

i
X

pD0

.N � p C 1/

fN �pC1 � .� ım.x
N Ci�j �p�1
1 / ı �

� � ım.x
N �j �2
1 x

i�pC1
2 / ı �/

[by (5.26)] '
i

X

pD0

.N � p C 1/fN �pC1 � � ım.x
N Ci�j �p�1
1 / ı �:

If j > i , then N C i � j � p � 1 � N � 2 for p D 0; : : : ; i . So, by (5.26),

ǰ ı ˛i ' 0 in this case.
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If j < i then, by (5.24),

ǰ ı ˛i '
1

N C 1
� ım.x

i�j �1
1

i
X

pD0

.N � p C 1/fN �pC1x
N �p
1 / ı �

' �
1

N C 1
� ım.x

i�j �1
1

N
X

pDiC1

.N � p C 1/fN �pC1x
N �p
1 / ı �

' �
1

N C 1

N
X

pDiC1

.N � p C 1/fN �pC1� ım.x
N �pCi�j �1
1 / ı �

' 0;

where, in the last step, we used (5.26) and that N C i � j � p � 1 � N � 2 for

p D i C 1; : : : ; N .

If i D j , then, by (5.26) and that fN C1 D 1, we have

ˇi ı ˛i '
1

N C 1

i
X

pD0

.N � p C 1/fN �pC1 � � ım.x
N �p�1
1 / ı �

' �� ım.xN �1
1 / ı �

' idCP .U0/ :

Altogether, we get that, for 0 � i; j � N � 2,

ǰ ı ˛i '

8

<

:

idCP .U0/ if i D j;

0 otherwise.
(5.27)

We can use ˛i and ǰ as the inclusions and projections in decomposition (5.25).

Recall that the di�erential map of C2 is the endomorphism m.x1 � x2/ of

CP .�1/. Its action on the components of CP .�1/ in decomposition (5.25) is given

by

ǰ ım.x1 � x2/ ı ˛i D ǰ ım.x1/ ı ˛i � ǰ ım.x2/ ı ˛i

D ǰ �1 ı ˛i � x2 � ǰ ı ˛i

'

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�x2 � idCP .U0/ if i D j;

idCP .U0/ if i D j � 1;

0 otherwise.

(5.28)
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�us, using decomposition (5.25), we have

C2 Š 0

�!

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

CP .U0/¹2 � N º

˚

CP .U0/¹4 � N º

˚
:::

˚

CP .U0/¹N � 4º

˚

CP .U0/¹N � 2º

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

k2k¹�4N C 1º

DN�1
����!

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

CP .U0/¹4 � N º

˚

CP .U0/¹6 � N º

˚
:::

˚

CP .U0/¹N � 2º

˚

CP .U0/¹2 � N º

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

k3k¹�4N � 1º

�! 0;

where the di�erential DN �1 is the .N � 1/ � .N � 1/ matrix

DN �1 D

0

B

B

B

B

B

B

B

B

B

@

1 �x2 0 � � � 0 0

0 1 �x2 � � � 0 0

0 0 1 � � � 0 0

� � � � � � � � � � � � � � � � � �

0 0 0 � � � �x2 0

0 0 0 � � � 1 �x2

�x2 0 0 � � � 0 0

1

C

C

C

C

C

C

C

C

C

A

:

Here note the di�erence in the ordering of components in the two columns in the

chain complex.
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Now apply Gaussian elimination (Lemma 5.12) to the “1” at the upper left

corner of DN �1. We get that

C2 ' 0

�!

2

6

6

6

6

6

6

6

6

6

6

4

CP .U0/¹4 � N º

˚
:::

˚

CP .U0/¹N � 4º

˚

CP .U0/¹N � 2º

3

7

7

7

7

7

7

7

7

7

7

5

k2k¹�4N C 1º

DN�2
����!

2

6

6

6

6

6

6

6

6

6

6

4

CP .U0/¹6 � N º

˚
:::

˚

CP .U0/¹N � 2º

˚

CP .U0/¹2 � N º

3

7

7

7

7

7

7

7

7

7

7

5

k3k¹�4N � 1º

�! 0;

where the di�erential DN �2 is the .N � 2/ � .N � 2/ matrix

DN �2 D

0

B

B

B

B

B

B

B

B

B

@

1 �x2 0 � � � 0 0

0 1 �x2 � � � 0 0

0 0 1 � � � 0 0

� � � � � � � � � � � � � � � � � �

0 0 0 � � � �x2 0

0 0 0 � � � 1 �x2

�x2
2 0 0 � � � 0 0

1

C

C

C

C

C

C

C

C

C

A

:

Clearly, we can apply Gaussian elimination to the “1” at the upper left corner of

DN �1 again and again. After N � 2 Gaussian eliminations, we get that

C2 ' 0 �! CP .U0/k2k¹�3N �1º
�xN�1

2
�����! CP .U0/k3k¹�5N C1º �! 0: (5.29)
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From now on, we specialize to the case

P D Pi .x; bi / D xN C1 C bi x
i ;

where

deg bi D 2N C 2 � 2i:

In this case,

CPi
.U0/ Š Mk0k¹�N C 1º

and

H.H.C2; dmf /; d�/ Š H.0 �! Mk2k¹�4N º
�xN�1

2
�����! Mk3k¹�6N C 2º �! 0/;

where M is the graded free CŒbi �-module

M D CŒx2; bi �=..N C 1/xN
2 C ibix

i�1
2 /

D
N �1
M

j D0

CŒbi � � x
j
2

Š
N �1
M

j D0

CŒbi �¹2j º:

(5.30)

It is straightforward to check that

H 2.H.C2; dmf /; d�/ Š ker.m.xN �1
2 //¹�4N º

D

i�2
M

j D0

CŒbi � � ..N C 1/x
N �iCj C1
2 C ibix

j
2 /¹�4N º

Š
i�2
M

j D0

CŒbi �¹2.�N � i C j C 1/º:

(5.31)

and

H 3.H.C2; dmf /; d�/

Š coker.m.xN �1
2 //¹�6N C 2º

D
�

i�2
M

j D0

CŒbi � � x
j
2

�

¹�6N C 2º ˚
�

N �2
M

j Di�1

CŒbi �=.bi / � x
j
2

�

¹�6N C 2º

Š
�

i�2
M

j D0

CŒbi �¹�6N C 2j C 2º
�

˚
�

N �2
M

j Di�1

CŒbi �=.bi /¹�6N C 2j C 2º
�

:

(5.32)
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Combining (5.21), (5.22), (5.23), (5.30), (5.31) and (5.32), we get the follow-

ing lemma.

Lemma 5.13. Let L be the closed 2-braid in Figure 1 and

Pi .x; bi / D xN C1 C bix
i ;

where 1 � i � N � 1 and

deg bi D 2N C 2 � 2i:

�en

H 0
Pi

.L/ Š
N �1
M

j D0

CŒbi �¹�4N C 4 C 2j º;

H 1
Pi

.L/ Š 0;

H 2
Pi

.L/ Š
i�2
M

j D0

CŒbi �¹2.�N � i C j C 1/º;

H 3
Pi

.L/ Š
�

i�2
M

j D0

CŒbi �¹�6N C 2j C 2º
�

˚
�

N �2
M

j Di�1

CŒbi �=.bi /¹�6N C 2j C 2º
�

;

H 4
Pi

.L/ Š
N �2
M

lD0

N �1
M

j D0

CŒbi �¹�4N � 4 � 2l C 2j º;

H l
Pi

.L/ Š 0 if l < 0 or l > 4:

Corollary 5.14. Let L be the closed 2-braid in Figure 1. �en, for any 1 � i �

N � 1, we have

ıi jH l
N

.L/

8

<

:

¤ 0 if l D 2;

D 0 if l ¤ 2:

In particular, as endomorphisms of HN .L/, ıi ¤ 0, but ıiıj D 0 for any 1 �

i; j � N � 1.

Proof. By Lemma 5.13, all torsion components of HPi
.L/ are isomorphic to

CŒbi �=.bi / and are at homological degree 3. �e corollary follows from this and

Lemma 5.6.
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