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Lifting pseudo-holomorphic polygons

to the symplectisation of P � R and applications

Georgios Dimitroglou Rizell1

Abstract. Let R�.P�R/ be the symplectisation of the contactisation of an exact symplec-

tic manifoldP , and letR�ƒ be a cylinder over a Legendrian submanifold of the contactisa-

tion. We show that a pseudo-holomorphic polygon in P having boundary on the projection

of ƒ can be lifted to a pseudo-holomorphic disc in the symplectisation having boundary

on R � ƒ. It follows that Legendrian contact homology may be equivalently de�ned by

counting either of these objects. Using this result, we give a proof of Seidel’s isomorphism

of the linearised Legendrian contact homology induced by an exact Lagrangian �lling and

the singular homology of the �lling.
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1. Introduction

Legendrian contact homology is a Legendrian isotopy invariant which was in-

troduced in [15] by Eliashberg, Givental, and Hofer, and in [6] by Chekanov.

It associates the so-called Chekanov–Eliashberg algebra to a Legendrian subman-

ifold ƒ � .Y; �/ of a contact manifold with a choice of contact form. �is is

a non-commutative di�erential graded algebra (DGA for short), which is freely

generated by the set of Reeb chords on ƒ. Roughly speaking, the di�erential

counts rigid pseudo-holomorphic discs in a certain symplectic manifold associ-

ated to Y endowed with a compatible almost complex structure, where the discs

are determined by ƒ and its Reeb chords. See Section 3 for de�nitions of the

above geometric objects and Section 4 for an introduction to Legendrian contact

homology.

�e Chekanov–Eliashberg algebra depends on the choice of representative of

the Legendrian isotopy class as well as on the compatible almost complex struc-

ture, but its homotopy type has been shown to be invariant under these choices for

a wide range of ambient contact manifolds .Y; �/. It should however be pointed out

that, even though there are many contact manifolds where the invariant has been

rigorously de�ned, there still are transversality issues that remain to be solved in

order for the construction to work for a general contact manifold.

�e version developed by Chekanov in [6] was the �rst rigorous construction of

Legendrian contact homology, where it was de�ned for Legendrian submanifolds

of the standard contact three-space

.C � R; dz � ydx/:

Here z is a coordinate on the R-factor. Legendrian contact homology was gener-

alised to the standard contact .2nC 1/-space

�

C
n � R; dz �

n
X

iD1

yidxi

�

in [10] by Ekholm, Etnyre, and Sullivan. �e same authors [13] later extended this

construction to a general contactisation

.P � R; dz C �/

of an exact symplectic manifold .P; d�/, were P is assumed to satisfy certain

technical conditions.
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�e canonical projection

…Lag W P � R �! P

of a contactisation is called the Lagrangian projection, and will be heavily

used in this paper. Observe that the Reeb chords on a Legendrian submanifold

ƒ � .P � R; dz C �/ coincide with the self-intersections of …Lag.ƒ/, and that

(after a suitable perturbation) we may assume the latter to be a �nite set of trans-

verse double-points.

Fix a compatible almost complex structure JP on .P; d�/, let a; b1; : : : ; bm be

double-points of …Lag.ƒ/, and write b D b1 � � � � � bm. We are interested in the

moduli spaces

MaIb.…Lag.ƒ/I JP /

of JP -holomorphic polygons

u W .D2; @D2/ �! .P;…Lag.ƒ//

having one positive boundary-puncture that is mapped to the double-point a, and

m negative boundary-punctures that are mapped to the double-points b1; : : : ; bm,

where the boundary-punctures moreover appear in this cyclic order with respect

to the orientation of the boundary. See Section 4.2.1 for more details.

�e di�erential in the above versions of Legendrian contact homology is de-

�ned by counting rigid JP -holomorphic polygons, that is, solutions inside a mod-

uli space as above that moreover is required to be zero-dimensional.

�e above construction of Legendrian contact homology obviously depends

heavily on the existence of the projection …Lag. Consequently it does not extend

to a general contact manifold.

Following the philosophy of symplectic �eld theory [15], relative symplec-

tic �eld theory was constructed in [8] by Ekholm. �is construction can be spe-

cialised to give a Legendrian contact homology for more general contact manifolds

.Y; �/, where � satis�es certain technical assumptions. For example, this version

is well-de�ned and satisfy invariance for the standard contact spheres .S2nC1; �/,

equipped with a certain perturbation of the standard contact form. We will how-

ever only be interested in applying this theory to contactisations .P �R; dzC �/,

where it also is well-de�ned.

Let .R � Y; d.et�// be a cylindrical almost complex structure J on the sym-

plectisation of a contact manifold .Y; �/, where t is a coordinate on the R-factor.

Let a; b1; : : : ; bm be Reeb chords onƒ and write b D b1 � � � � �bm. We are interested

in the moduli spaces

MaIb.R �ƒI J /
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of J -holomorphic discs

Qu W .D2; @D2/ �! .R � .P � R/;R �ƒ/

having one positive boundary-puncture asymptotic to the Reeb chord a at

t D C1, and m negative boundary-punctures asymptotic to the Reeb chords

b1; : : : ; bm at t D �1, where the boundary-punctures moreover appear in this

cyclic order with respect to the orientation of the boundary. Observe that, since J

is cylindrical, these moduli-spaces have a natural R-action induced by translations

of the t -coordinate. See Section 4.2.2 for more details.

�e latter de�nition of Legendrian contact homology is equipped with a di�er-

ential de�ned by counting non-trivial J -holomorphic discs (that is, not coinciding

with a trivial strip R � c over a Reeb chord) as de�ned above, that moreover are

required to be rigid up to translation.

�is version of Legendrian contact homology has the advantage that it �ts more

directly into the algebraic framework of symplectic �eld theory [15]. Indeed, it

was shown in [8] that an exact Lagrangian cobordism in R � Y between Legen-

drian submanifolds induce a DGA-morphism between the respective Chekanov–

Eliashberg algebras.

It is a natural question whether the two versions of Legendrian contact homol-

ogy de�ned for a contactisation, as described above, are equivalent. �is has been

expected and, indeed, was shown to be true for the standard contact three-space

C � R in [16, �eorem 7.7].

Also, in [11, Lemma 2.13] a generalisation of this result to the general contact

.2nC1/-spaceCn�Rwas outlined. One goal of this paper is to �ll in the technical

details of this proof, and also to obtain the result for Legendrian contact homology

in general contactisations.
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2. Results

In the following we will always assume that JP is a compatible almost com-

plex structure on .P; d�/ for which .P; d�; JP / has �nite geometry at in�nity,

see [13, De�nition 2.1]. For instance, if .P; d�/ is symplectomorphic to the com-

pletion of a Liouville domain, such almost complex structures always exist. Also,

this is true for the cotangent bundle of a smooth (not necessarily closed) manifold

with its standard symplectic structure.

�e main result is the following. Suppose that we are given a compatible almost

complex structure JP on .P; d�/ and a Legendrian submanifold

ƒ � .P � R; dz C �/

satisfying some technical, not too restrictive, assumptions. It follows that JP -holo-

morphic polygons in P with boundary on …Lag.ƒ/ lift to pseudo-holomorphic

discs in the symplectisation R � .P � R/ with boundary on R � ƒ. As a direct

consequence, it will follow that the two versions of Legendrian contact homology

discussed above are equivalent.

An exact Lagrangian �lling (inside the symplectisation) of a Legendrian sub-

manifold ƒ � R � P is an exact Lagrangian submanifold

L � .R � .P � R/; d.et.dz C �///

that coincides with the cylinder .N;C1/�ƒ outside of a compact set.

We use the above result for computing the wrapped Floer homology of the

pair consisting of an exact Lagrangian �lling and a small push-o� of itself. �is

computation is then used to deduce properties of the linearised Legendrian contact

homology ofƒ. In particular, we will prove that the linearised Legendrian contact

cohomology induced by the �lling is isomorphic to the singular homology of the

�lling, a result that was �rst observed by Seidel.

A proof of Seidel’s isomorphism was outlined in [9], but there it depends on

a conjectural analytical lemma. We will prove this theorem following a similar

strategy, but we will circumvent the analytical di�culties of the latter lemma by

establishing only its algebraic consequences.
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2.1. Lifting pseudo-holomorphic polygons to the symplectisation. A com-

patible almost complex structure JP on P lifts to a unique cylindrical (see Sec-

tion 3.4) almost complex structure zJP on the symplectisation

.R � .P � R/; d.et.dz C �///

determined by the requirement that the canonical projection

�P W R � .P � R/ �! P

is . zJP ; JP /-holomorphic, that is,

.D�P / zJP D JP .D�P /:

Let ƒ � P � R be a �xed chord-generic closed, not necessarily connected,

Legendrian submanifold. We will be interested in almost complex structures JP

that are regular for the moduli spaces MaIb.…Lag.ƒ/I JP /, i.e. chosen so that the

latter moduli spaces are transversely cut out.

In order to guarantee the existence of regular almost complex structures, the

following real-analyticity condition will be used repeatedly.

(RA) �ere is a neighbourhood U � P of the double-points Q.ƒ/ of…Lag.ƒ/ in

which JP is integrable and …Lag.ƒ/ is real-analytic.

To that end, by [13, Proposition 2.3, Lemma 4.5] it follows that a compati-

ble almost complex structure on P satisfying (RA) can be made regular after an

arbitrarily small perturbation having compact support inside U n Q.ƒ/.

Observe that if JP is integrable in some neighbourhood of the double-points of

…Lag.ƒ/, one can perturb ƒ by a Legendrian isotopy to make its projection real-

analytic in some, possibly smaller, neighbourhood containing the double-points.

Alternatively, given any Legendrian submanifoldƒ � P �R, it is always possible

to construct a compatible almost complex structure that satis�es (RA).

�eorem 2.1. LetJP be a regular compatible almost complex structure on .P; d�/

that is integrable in some neighbourhood of the double-points of the generic La-

grangian immersion …Lag.ƒ/, and let zJP be the cylindrical lift of JP to the sym-

plectisation of .P � R; dz C �/. It follows that �P induces a di�eomorphism

MaIb.R �ƒI zJP /=R ! MaIb.…Lag.ƒ/I JP /;

Qu 7! �P ı Qu;

where zJP moreover is regular for the moduli spaces MaIb.R �ƒI zJP /.

We refer to Section 7 for the proof.
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Remark 2.2. In the case when

.P D C; � D xdy D �.1=2/d.x2/.JP �/; JP D i/;

the fact that the above map is a bijection follows from [16, �eorem 7.7].

We generalise this result to triples .P; � D �d˛.JP �/; JP / where ˛ W P ! R

is a smooth and strictly JP -convex function. See Lemma 7.1 together with

Remark 7.2 below. Note that �eorem 2.1 is stronger, since it also asserts that

the lifted cylindrical almost complex structure is regular.

By the above theorem, the JP -holomorphic polygons in the de�nition of the

Legendrian contact homology di�erential given in [13] correspond bijectively to

the zJP -holomorphic discs in the de�nition of the di�erential given in [9].

�e following corollary thus immediately follows.

Corollary 2.3. Let ƒ � P � R be a chord-generic Legendrian submanifold of a

contactisation. �ere are choices of regular compatible almost complex structures

for which the two versions of the Chekanov–Eliashberg algebra (with coe�cients

in Z2) as de�ned in [13] and [15], respectively, become equal.

Remark 2.4. Coherent orientations for the moduli spaces of JP -holomorphic

polygons in exact symplectic manifolds with boundary on …Lag.ƒ/ were

de�ned in [12], under the additional assumption that ƒ is spin. �e version of

the Chekanov–Eliashberg algebra in [13] can thus be de�ned over Z in this case.

However, coherent orientations have not yet been worked out in detail for the cor-

responding moduli spaces in the symplectisation. �is is the reason why we only

acquire the result for coe�cients in Z2. It is of course expected that the latter

moduli spaces can be coherently oriented as well, and that the di�eomorphism in

�eorem 2.1 is orientation preserving.

2.2. Applications. For simplicity we will only consider the case when the sym-

plectic manifold .P; d�/ has vanishing Chern class andƒ � P �R has vanishing

Maslov class. We will furthermore assume that the Lagrangian �llings consid-

ered have vanishing Maslov class. In this case all gradings can be taken in Z.

�e below results hold in the general situation as well, but the grading has then to

be chosen in an appropriate group Z�.

An augmentation of a unital DGA .A�; @/ over Z2 is a unital DGA-morphism

� W .A�; @/ �! .Z2; 0/:

Augmentations can be used to de�ne the so called linearisation of the DGA,

which is a complex over Z2 spanned by the generators. See Section 4.4 for more



36 G. Dimitroglou Rizell

details. If the Chekanov–Eliashberg algebra has an augmentation, then we use

CL�.ƒ/ D .Z2hQi; d�/

to denote the corresponding linearised co-complex, where Q.ƒ/ denotes the set

of Reeb chords on ƒ. We will use

HCL�.ƒI �/

to denote the homology of this co-complex.

Observe that the cohomology depends on the choice of augmentation, but that

the set of isomorphism classes of all linearised Legendrian contact homologies is

a Legendrian isotopy invariant (also, see Remark 4.2).

It is shown in [9, �eorem 1.1] that, in accordance with the principles of sym-

plectic �eld theory, an exact Lagrangian �lling of ƒ induces an augmentation of

its Chekanov–Eliashberg algebra. For augmentations arising this way, there are

some strong consequences for the corresponding linearised Legendrian contact

cohomology. Namely, by using �eorem 2.1 we prove �eorem 6.2, of which the

following is a direct consequence.

�eorem 2.5 (Seidel, Conjecture 1.2 in [9]). Let ƒ � P � R be a closed

Legendrian n-dimensional submanifold which has an exact Lagrangian

�lling L � R � .P � R/ inside the symplectisation. It follows that there is an

isomorphism

ı W Hn��.L/ �! HCL�.ƒI �/;

where � is the augmentation induced by the �lling.

�e proof, the idea of which goes back to Seidel, was given in [8] but there

depends on the conjectural [9, Lemma 4.11]. �e idea is to use the relation be-

tween the wrapped Floer homology of an exact Lagrangian �lling and the lin-

earised Legendrian contact cohomology of its end (also, see [3]), together with

the observation that wrapped Floer homology vanishes inside symplectisations of

contactisations (see Proposition 5.12).

Wrapped Floer homology is a version of Lagrangian intersection Floer

homology, originally de�ned in [17] by Floer, generalised to non-compact exact

Lagrangian submanifold inside a Liouville domain. It �rst appeared in the litera-

ture in [2]. Di�erent versions have later been developed in [4], [3], [18] and [9].

We will be using the latter version, which is outlined in Section 5.
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�e below corollary of [9, Conjecture 1.2] was also shown in [9], but its proof

again depends on the the conjectural [9, Lemma 4.11]. We will not give a proof

of this lemma, but �eorem 6.2 below establishes a result that gives the same

information on the algebraic level. See Remark 6.3 for a further discussion. �is

result is su�cient in order to establish

Corollary 2.6 (Corollary 1.3 in [9]). Let ƒ � P � R be a closed Legendrian

n-dimensional submanifold which has an exact Lagrangian �lling

L � R � .P � R/:

�e diagram below is commutative, where the horizontal sequences are exact, the

upper sequence is the long exact sequence for the singular homology of a pair,

and where the vertical arrows are isomorphisms.

// HkC1.ƒ/ //

id

��

HkC1.L/ //

ı
��

HkC1.L;ƒ/ //

H �1ıı0

��

Hk.ƒ/

id

��

//

// HkC1.ƒ/
�

// HCLn�k�1.ƒI �/ // HCLk.ƒI �/
�

// Hk.ƒ/ //

Here

H WD .� �/t ; ı WD .g �/; ı0 WD .
 g/t ;

where we refer to Section 6.1 for the de�nition of �, �, and � , and to �eorem 6.2

for the de�nition of g and 
 .

�e long exact sequence at the bottom is the one constructed in [14, �eo-

rem 1.1], where we have used �eorem 2.1 above to translate these results to the

Chekanov–Eliashberg algebra de�ned in terms of the symplectisation (see Sec-

tion 6.1).

Remark 2.7. �e original formulation of [14, �eorem 1.1] requires ƒ � P � R

to be horizontally displaceable, i.e. that …Lag.ƒ/ � P can be displaced from

itself by a Hamiltonian isotopy. However, Proposition 5.13 shows that the results

in [14] also apply for the linearised Legendrian contact homology induced by an

exact Lagrangian �lling in R � .P � R/. �e reason is that such a �lling always

is displaceable, as follows from the proof of Proposition 5.12. Observe that this

holds even in the case when the Legendrian submanifold itself is not horizontally

displaceable (see Example 5.14).

Finally we note that results analogous to �eorem 2.5 and Corollary 2.6 for

the generating family homology have been obtained in [22] under the assumption

that the Legendrian submanifold and its �lling posses generating families.
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3. General de�nitions

3.1. Symplectic and contact manifolds. A contact manifold .Y; �/ is a smooth

.2nC 1/-dimensional manifold Y together with a maximally non-integrable �eld

of tangent hyperplanes �. We will consider the case when � D ker� for a �xed

one-form �, the so called contact form. Maximal non-integrability in this case

means that the .2nC 1/-form

� ^ .d�/^n ¤ 0

is nowhere vanishing.

An n-dimensional submanifold ƒ � .Y; �/ of a .2nC 1/-dimensional contact

manifold is called Legendrian if it is tangent to �. Two Legendrian submanifolds

are Legendrian isotopic if they are smoothly isotopic through Legendrian sub-

manifolds. Determining Legendrian isotopy classes is an important, but subtle,

question in contact geometry.

A choice of a contact form � on Y determines the so called Reeb vector �eld R

by

�.R/ D 1; �Rd� D 0:

An integral-curve of R starting and ending on two di�erent sheets of ƒ is called

a Reeb chord.

A symplectic manifold .X; !/ is an even-dimensional manifold together with

a closed non-degenerate two-form. An n-dimensional submanifold L � .X; !/ of

a 2n-dimensional symplectic manifold is called Lagrangian if

!jTL D 0:

We say that the symplectic manifold is exact if! is exact. Observe that an exact

symplectic manifold never is closed. An immersion of an n-dimensional manifold

L into an exact symplectic 2n-manifold .X; d�/ is called exact Lagrangian if the

pull-back of � to L is an exact one-form.

�e contactisation of an exact symplectic manifold .P; d�/ is the contact man-

ifold

.P � R; dz C �/;

where z is a coordinate on the R-factor. For this choice of contact form, the Reeb

vector-�eld is given by R D @z.
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�e canonical projection

…Lag W P � R �! P

is called the Lagrangian projection and it is easily checked that if ƒ � P � R is

Legendrian, then…Lag.ƒ/ � .P; d�/ is an exact Lagrangian immersion. Observe

that the self-intersections of …Lag.ƒ/ correspond bijectively to the Reeb chords

on ƒ.

Example 3.1. �e one-jet space of a smooth manifold M can be endowed with a

natural contact form

.J 1.M/ D T �M � R; dz C �M /;

where �M is minus the canonical one-form (also often called the Liouville form).

�is is also the archetypal example of a contactisation. �e canonical one-form is

given by
P

i yidx
i in local canonical coordinates on T �M , i.e. in coordinates of

the form .xi ; yidxi / for some choice of local coordinates xi on M . Specialising

to the case M D R
n we obtain the standard contact .2nC 1/-space.

3.2. Hamiltonian isotopies. A smooth time-dependent Hamiltonian

Hs W X �! R

on a symplectic manifold .X; !/ gives rise to the corresponding Hamiltonian

vector-�eld XHs
on X , which is determined by

�XHs
! D dHs :

We denote the induced one-parameter �ow by

R �X �! X;

.s; x/ 7�! �s
H .x/;

which can be seen to preserve the symplectic form. A Hamiltonian isotopy is an

isotopy of a symplectic manifold induced by a Hamiltonian as above.

It follows by Weinstein’s Lagrangian neighbourhood theorem that any one-

parameter family of exact Lagrangian embeddings can be realised by a time-

dependent Hamiltonian isotopy of the ambient symplectic manifold.



40 G. Dimitroglou Rizell

3.3. Exact Lagrangian cobordisms and �llings. �e symplectisation of a con-

tact manifold .Y; �/ is the exact symplectic manifold

.R � Y; d.et�//;

where t is a coordinate on the R-factor. It is easily checked that ƒ � .Y; �/ is

Legendrian if and only if the cylinder R �ƒ � R � Y is Lagrangian.

An exact Lagrangian cobordism L (inside the symplectisation) from the Leg-

endrian submanifoldƒ� toƒC is an exact Lagrangian submanifold inR�Y which

coincides with

..�1;�N/�ƒ�/ [ ..N;C1/�ƒC/; N > 0;

outside of a compact subset L \ ¹t 2 Œ�N;N �º. We moreover require there to

exist a primitive of the pull-back of et� to L that is constant when restricted to

either of the ends L\ ¹t � �N º or L\ ¹t � N º (this is automatically satis�ed if

the end is connected). In the case ƒ� D ;, we say that L is an exact Lagrangian

�lling of ƒC.

Suppose that V is an exact Lagrangian cobordism from ƒ� to ƒ0 and that W

is an exact Lagrangian cobordism from ƒ0 to ƒC. We also assume that V andW

have been translated appropriately in the t -direction, in order for

V \ ¹t � �1º D Œ�1;C1/�ƒ0;

W \ ¹t � 1º D .�1; 1��ƒ0;

to hold. We may then de�ne the concatenation of V and W to be

V ˇW WD .¹t � 0º \ V / [ .¹t � 0º \W /;

which is a Lagrangian cobordism from ƒ� to ƒC. In the case when V andW are

exact, it follows that the concatenation is exact as well.

Consider the translation

�s W R � Y �! R � Y;

.t; y/ 7�! .s C t; y/:

For each s � 0 we also de�ne the concatenation

V ˇs W WD .¹t � 0º \ V / [ .¹t � 0º \ �s.W //;

which by construction is cylindrical in the set ¹�1 � t � 1C sº.

Observe that all the concatenations V ˇs W are Hamiltonian isotopic.
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3.4. Almost complex structures. An almost complex structure J on X is a

bundle-endomorphism of TX satisfying J 2 D �id. We say that an almost com-

plex structure J on a symplectic manifold .X; !/ is compatible with the symplectic

form if !.�; J �/ is a Riemannian metric on X , and tamed by the symplectic form

if !.v; J v/ > 0 whenever v ¤ 0. It is well-known that the spaces of such almost

complex structures are non-empty and contractible.

An almost complex structure on the symplectisation .R�Y; d.et�// of .Y; �/ is

said to be cylindrical if it is compatible with the symplectic form, invariant under

translations of the t -coordinate, satis�es J@t D R, and preserves the contact-

planes ker� � T Y .

3.4.1. �e almost complex structure induced by a metric. Assume that we are

given a Lagrangian immersion

� W L �! .X; !/

with transverse double-points. Here we describe how to construct a compatible

almost complex structure in a neighbourhood of �.L/ induced by the choice of a

Riemannian metric on L.

By Weinstein’s Lagrangian neighbourhood theorem, the immersion � can be

extended to a symplectic immersion

Q� W .D�L; d�L/ �! .X; !/

of the co-disc bundle .D�L; d�L/ � .T �L; d�L/, with �bres of su�ciently small

radius. We require that Q� restricts to � along the zero-section.

Constructing Q� with some care, we can moreover make it satisfy the following

property. Let Q � …Lag.L/ be the set of double-points. We require there to be

disjoint neighbourhoods

pi 2 Uq;i � L; i D 1; 2;

¹p1; p2º D …�1
Lag.q/;

for each q 2 Q, and di�eomorphisms

'q;i W Uq;i �! Dn

to the n-disc, such that

.Q�jD�Uq;2
ı '�

q;2/
�1 ı .Q�jD�Uq;1

ı '�
q;1/ W D

�Dn �! D�Dn;

.q; p/ 7�! .�p; q/;

holds in some neighbourhood of the zero-section.
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Let g be the choice of a Riemannian metric on L that coincides with the Eu-

clidean metric in the above coordinates 'q;i W Uq;i ! Dn, where Uq;i is a neigh-

bourhood of the pre-image of a double-point. �e metric g determines a compat-

ible almost complex structure Jg on .T �L; d�L/ as follows.

First, the metric g induces the Levi-Civita connection on the cotangent bundle

� W T �L �! L

which, in turn, determines the horizontal subbundle

Hx � TxT
�L

for every x 2 T �L. �e horizontal subbundle is a complement of the correspond-

ing vertical subbundle

Vx WD ker.T �/x:

�ere are canonical identi�cations

Hx ' T�.x/L and Vx ' T �
�.x/L:

We de�ne Jg by requiring that JgHx D Vx and that, for the horizontal vector

identi�ed with h 2 T�.x/L, the vertical vector Jgh is identi�ed with the covector

g.h; �/ 2 T �
�.x/

L. We refer to [14, Remark 6.1] for an expression of this almost

complex structure in local coordinates.

Finally, the almost complex structure Jg can be pushed forward using Q� to a

compatible almost complex structure in a neighbourhood of �.L/, as required. Ob-

serve that Jg satis�es (RA) since, by construction, there are holomorphic coordi-

nates near each double-point in which the two intersecting sheets of �.L/ coincide

with Re .Cn/ [ Im .Cn/.

3.4.2. Adjusted triples .f; g; J /. Again, we consider a Lagrangian immersion

�.L/ � X as above. Also, let

f W L �! R

be a Morse function, g a Riemannian metric on L, and J an almost complex

structure onX . We say that the triple .f; g; JP / is adjusted to �.L/ (see [13, Section

6.3.1]) given that the following holds.
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� In a neighbourhood of �.L/ � X , the compatible almost complex structure

JP is induced by the metric g on L as above. In particular, we require each

pre-image of a double-point to have a neighbourhood Uq;i � L with coordi-

nates 'q;i W Uq;i ! Dn in which g is the Euclidean metric.

� �e function f is real-analytic and without critical points in the above coor-

dinates 'q;i W Uq;i ! Dn near the pre-image of a double-point.

� �e eigenvalues of the Hessian of f (with respect to the metric g) at a critical

point all have the same absolute values.

By [13, Lemma 6.5] it follows that there are triples .f; g; JP / adjusted to

…Lag.ƒ/ for which .f; g/ is a Morse–Smale pair, and such that JP is regular.

�e importance of adjusted triples comes from the fact that [13, �eorem 3.6] ap-

plies to them. �is establishes an identi�cation of JP -holomorphic discs on the

two-copy of …Lag.ƒ/ with (generalised) JP -holomorphic discs on …Lag.ƒ/, in

case when the two-copy is obtained by pushing …Lag.ƒ/ o� itself using

df � D�ƒ. We refer to Section 6.1 for more details.

4. Background on Legendrian contact homology

In the following, we assume that ƒ � P � R is a closed Legendrian submani-

fold which is chord generic, that is, …Lag.ƒ/ is a generic immersion whose self-

intersections thus consist of transverse double-points. Observe that this always can

be assumed to hold after an arbitrarily C 1-small Legendrian isotopy. In particular,

it follows that the set Q.ƒ/ of Reeb chords on ƒ is �nite.

Recall that we require there to exist compatible almost complex structures JP

on P for which .P; d�; JP / has �nite geometry at in�nity, as de�ned in [13, Def-

inition 2.1]. Also, we will only consider almost complex structures on P of this

kind. Given that one such almost complex structure exists, this condition is how-

ever not too restrictive. Namely, any deformation of such a compatible almost

complex structure still satis�es this property, given that the deformation is sup-

ported inside a compact subset of P .

4.1. �e grading. To each Reeb chord c on ƒ we associate a grading

jcj D CZ.�c/ � 1;

where �c is a path of Lagrangian tangent-planes in C
n associated to c, and where

CZ.�c/ denotes the Conley-Zehnder index of this path as de�ned in [10].

�e path �c is obtained as follows.
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One says that a Reeb chord is pure if its endpoints lie on the same component

of ƒ and, otherwise, one says that it is mixed.

In the case when c is a pure Reeb chord we let �c be the tangent-planes of

…Lag.ƒ/ along the choice of a capping path 
c of c, which is a continuous path

on ƒ with starting-point (respectively end-point) at the end-point (respectively

starting-point) of c. Furthermore, we assume that …Lag.
c/ is null-homologous

in P and we choose a symplectic trivialisation of TP along …Lag.
c/ induced by

a chain bounding …Lag.
c/.

�is construction provides a well-de�ned grading of the pure Reeb chords

modulo the Maslov number of ƒ and twice the �rst Chern number of P .

For simplicity, we will in the following assume both to be zero.

For a mixed Reeb chord there is obviously no capping path in the above sense.

Instead, we proceed as follows. Fix points p, q on two di�erent components ofƒ,

together with a path 
 in P connecting p and q. Also, �x the choice of a path of

Lagrangian planes in TP along 
 starting at Tp…Lag.ƒ/ and ending at Tq…Lag.ƒ/.

For each mixed Reeb chord c from the component containing p to the compo-

nent containing q, we construct a capping path by choosing a path on ƒ from the

end-point of c to p, followed by 
 , and �nally followed by a choice of path on ƒ

from q to the starting-point of c. Joining the corresponding paths of Lagrangian

tangent-planes of …Lag.ƒ/ with the above choices of Lagrangian planes along 
 ,

we get the desired path �c .

It should be pointed out that the grading of the mixed Reeb chords starting and

ending at two �xed components of ƒ depend on the above choice of a curve 


together with the path of Lagrangian planes along this curve. However, given two

Reeb chords both whose starting-points and end-points are located onƒ1 andƒ2,

respectively, the di�erence in grading between these two chords is independent of

these choices.

4.2. �e relevant moduli spaces. �e di�erential in Legendrian contact homol-

ogy is de�ned by a count of certain pseudo-holomorphic discs. We begin with the

de�nitions of the moduli spaces that contain these discs.

4.2.1. �e moduli spaces of pseudo-holomorphic polygons. Fix a compatible

almost complex structure JP onP . Given double-points a; b1; : : : ; bm of…Lag.ƒ/,

and writing b WD b1 � � � � � bm, we let

MaIb.…Lag.ƒ/I JP /
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denote the moduli space of continuous maps

u W .D2; @D2/ �! .P;…Lag.ƒ//;

which are smooth in the interior, where they moreover satisfy

x@JP
.u/ WD duC JPdu ı i D 0:

Furthermore, we require there to be m C 1 distinct boundary points p0; : : : ; pm,

appearing in this cyclic order relative to the boundary orientation, such that the

following holds.

� �e map uj@D2n¹pi º has a continuous lift to ƒ under…Lag.

� umaps p0 to a and the z-coordinate of the above lift of uj@D2n¹pi º is required

to make a positive jump when traversing p0 in positive direction according

to the boundary orientation.

� u maps pi to bi for i > 0 and the z-coordinate of the above lift of uj@D2n¹pi º

is required to make a negative jump when traversing pi in positive direction

according to the boundary orientation.

Finally, two solutions are identi�ed if they di�er by a biholomorphism of the do-

main. We refer to p0 as a positive boundary puncture mapping to a, and to pi

with i > 0 as a negative boundary puncture mapping to bi . We will refer to the

above above discs as pseudo-holomorphic polygons.

4.2.2. �e moduli spaces of pseudo-holomorphic discs with strip-like ends in

the symplectisation. Here we assume that V � .R� .P �R/; d.et.dzC �/// is

an exact Lagrangian cobordism from ƒ� to ƒC.

Fix a compatible almost complex structure J on R� .P �R/which we require

to be cylindrical outside of some set of the form Œ�N;N �� .P � R/. Given Reeb

chords a 2 Q.ƒC/ and b1; : : : ; bm 2 Q.ƒ�/, and writing b WD b1 � � � � � bm, we let

MaIb.V I J /

denote the moduli space of continuous maps

Qu D .˛; u/ W . PD2; @ PD2/ ! .R � .P � R/; V /

which are smooth in the interior, where they moreover satisfy

x@J . Qu/ WD d QuC Jd Qu ı i D 0:
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Here

PD2 D D2 n ¹p0; : : : ; pmº

for a �xed choice of m C 1 distinct points p0; : : : ; pm 2 @D2, appearing in this

cyclic order relative to the boundary orientation, and i is some conformal structure

on PD2.

We moreover require that Qu has the following asymptotical behaviour. Let


c.t / W Œ0; `.c/� �! P � R

be the parametrisation of a Reeb chord c on ƒ for which


 0
c.t / D @z :

Also, for each Reeb chord on ƒ, we �x a contact-form preserving identi�cation

of a neighbourhood of the Reeb chord with .D�Dn � R; dz C �Dn/.

� Let s C i t be coordinates on PD2 induced by a biholomorphic identi�cation

ofD2 with the strip ¹sC i t I 0 � t � `.a/º � C under which p0 corresponds

to s D C1. We require there to be s0 2 R and � > 0 such that

k.˛; u/.s C i t / � .s C s0; 
a.t //k � e��jsj

holds in the above coordinates, for all s > 0 su�ciently large.

� Let s C i t be coordinates on PD2 induced by a biholomorphic identi�cation

ofD2 with the strip ¹sC i t I 0 � t � `.bi /º � C under which pi corresponds

to s D �1. We require there to be s0 2 R and � > 0 such that

k.˛; u/.s C i t /� .s C s0; 
bi
.t //k � e��jsj

holds in the above coordinates, for all s < 0 su�ciently small.

Finally, two solutions are identi�ed if they di�er by a biholomorphism of the

domain. We refer to p0 as a positive boundary puncture asymptotic to a, and

to pi with i > 0 as a negative boundary puncture asymptotic to bi .

In the de�nition of the Chekanov–Eliashberg algebra we will consider the

cylindrical cobordism V D R � ƒ and an almost complex structure J which

is cylindrical on all of the symplectisation. Observe that, in this case, the above

moduli spaces carry a natural R-action induced by translation of the t -coordinate.
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4.2.3. Energies. We will use the following notions of energies for the pseudo-

holomorphic discs of the two kinds considered above.

For a disc

u W D2 �! P;

we de�ne its symplectic area, also called d�-energy, by

Ed� .u/ WD

Z

u

d�:

Consider a J -holomorphic disc

Qu W D2 �! R � .P � R/

having boundary on R�ƒ, and where J is cylindrical. Following [5, Section 5.3],

we de�ne its d� and �-energy by

Ed� . Qu/ WD

Z

Qu

d�;

E�. Qu/ WD sup
�2C

Z

Qu

�.t/dt ^ .dz C �/;

respectively, where C is the set of smooth functions

� W R �! R�0

having compact support and satisfying
Z

R

�.t/dt D 1:

To each Reeb chord c, we assign the action

`.c/ WD

Z

c

.dz C �/:

Given u 2 MaIb.R�ƒI J / and Qu 2 MaIb.…Lag.ƒ/I JP /, where J again is assumed

to be cylindrical, a calculation similar to [8, Lemma B.3] and [5, Lemma 5.16]

yields

0 � Ed� .u/ D Ed� . Qu/ D `.a/ � .`.b1/C � � � C `.bm//;

0 < E�. Qu/ D `.a/:

Observe that the d�-energy of a pseudo-holomorphic disc in P vanishes if and

only if the disc is constant, while the d�-energy of a pseudo-holomorphic disc in

the symplectisation vanishes if and only if it is contained entirely in a trivial strip

R � c over a Reeb chord c.
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4.2.4. Dimension formulae. We call an almost complex structure regular if

the appropriate moduli spaces are transversely cut out, and hence are smooth

�nite-dimensional manifolds. In this case, it follows from the calculation of the

Fredholm index in [10, Section 6] (also see [13, Proposition 2.3]), that the dimen-

sions of the above moduli spaces are given by

dimMaIb.V I J / D jaj � jb1j � � � � � jbmj;

dimMaIb.…Lag.ƒ/I JP / D jaj � jb1j � � � � � jbmj � 1:

Recall that we here assume that the Maslov classes of V andƒ, as well as the �rst

Chern class of P , all vanish.

In particular, observe that

dimMaIb.R �ƒI J / D dimMaIb.…Lag.ƒ/I JP /C 1:

In the case when J is cylindrical, the extra degree of freedom in the moduli space

of J -holomorphic discs on the left-hand side should be thought of as coming from

the translations of the t -coordinate.

Since the pseudo-holomorphic discs in MaIb.…Lag.ƒ/I JP / have only

one positive puncture, any compatible almost complex structure on .P; d�/

satisfying (RA) can be approximated by a regular almost complex structure [13,

Lemma 4.5].

Any solution Qu 2 MaIb.V I J / is necessarily always injective, i.e. it has an

interior-point x 2 D for which u�1.u.x// D ¹xº and du.x/ ¤ 0, as follows by

its asymptotical properties. �e standard transversality argument [20, Chapter 3]

applies, showing that J can be made regular after an arbitrarily small compactly

supported perturbation.

Observe that more work is needed in order to �nd a regular J that is also

cylindrical. See [7] for the case without boundary. However, in our setting, we

will use �eorem 2.1 to deduce the regularity for the cylindrical lift zJP of a regular

almost complex structure JP on P .

4.3. �e Chekanov–Eliashberg algebra. Consider the unital gradedZ2-algebra

A�.ƒ/ freely generated by the Reeb chords on ƒ with grading determined by the

Conley-Zehnder index as above. �e Chekanov–Eliashberg algebra of ƒ is the

chain complex .A�.ƒ/; @/, where the di�erential @ is de�ned as follows.

Let a be a Reeb chord generator of the algebra. �e di�erential given in [13] is

de�ned by

@.a/ WD
X

jaj�jbjD1

jMaIb.…Lag.ƒ/I JP /jb
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for some choice of regular compatible almost complex structure JP on P . Simi-

larly, the di�erential given in [8] is de�ned by

@.a/ WD
X

jaj�jbjD1

jMaIb.R �ƒI J /=Rjb

for some choice of regular cylindrical almost complex structure J on

R�.P �R/. Observe that the dimension formula implies that the sum is taken over

zero-dimensional moduli spaces. Together with the Gromov–Hofer compactness

in [13] and [5], it follows that the above counts make sense.

In both of the above cases the di�erential is extended to the whole algebra via

the Leibniz rule

@.ab/ D @.a/b C a@.b/;

and it follows that @ is of degree �1. Moreover, the above formula for the

d�-energy implies that the di�erential is action-decreasing, and hence that there

is an induced �ltration of the complex A� induced by the action.

We now refer to the invariance results for the above two versions of Legen-

drian contact homology, that is, the following holds for either of the above two

de�nitions of the boundary operator @.

�eorem 4.1 (�eorem 1.1 in [13], [8]). For a closed Legendrian submanifold

ƒ � P � R of the contactisation of a Liouville domain, it is the case that

� @2 D 0.

� �e homotopy type of .A�.ƒ/; @/ is independent of the choice of a regu-

lar compatible almost complex structure, and invariant under Legendrian

isotopy.

4.4. Linearised Legendrian contact homology. �e results in [8, Lemma 3.15]

and [8, Section 4] show that an exact Lagrangian cobordism V from ƒ� to ƒC

induces a unital DGA-morphism

ˆV W .A.ƒC/; @C/ �! .A.ƒ�/; @�/:

It is de�ned by counting rigid J -holomorphic discs inR�.P�R/ having boundary

on L and boundary-punctures asymptotic to Reeb chords. Here we require J to

coincide with the cylindrical almost complex structures J˙1 in the sets ¹t � N º

and ¹t � �N º, respectively, where N > 0 is su�ciently large, and J˙1 are used

in the de�nitions of the above Chekanov–Eliashberg algebras. Again, we assume

that the Maslov class of V vanishes.
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In particular, as is also shown in [9], an exact Lagrangian �lling L of ƒ

together with an appropriate choice of almost complex structure induces a uni-

tal DGA-morphism

�L W .A.ƒ/; @/ �! .Z2; 0/;

where the right-hand side is the trivial DGA. In general, a unital DGA-morphism

to .Z2; 0/ is called an augmentation.

Given an augmentation � of a semi-free DGA .A�; @/, one can construct the

following chain complex. De�ne an algebra automorphism ‰� of A� by prescrib-

ing ‰�.a/ D a C �.a/ for each generator a. It follows that the constant part of

‰� ı @ ı .‰�/�1 vanishes and, consequently, its linear part

@� WD .‰� ı @ ı .‰�/�1/1

is itself a di�erential on the graded Z2-vector space A1
� spanned by the generators

of A�. We call the chain complex .A1
�; @�/ the linearisation of the DGA induced

by �.

Obviously, an augmentation of .A�; @/ pulls back under a unital DGA-mor-

phism

ˆ W .A0
�; @

0/ �! .A�; @/

to an augmentation

�0 WD � ıˆ

of .A0
�; @

0/. Moreover, the map ‰� ı ˆ ı .‰�0
/�1 has vanishing constant part.

We denote its linear part by

ˆ� WD .‰� ıˆ ı .‰�0
/�1/1 W .A01

� ; @
0
�0/ ! .A1

�; @�/:

�is can be seen to be a chain-map between the corresponding linearisations.

If the Chekanov–Eliashberg algebra of a Legendrianƒ has an augmentation �,

we denote the corresponding linearisation by

.CL�.ƒ/; @�/ WD .A�.ƒ/
1 D Z2hQ.ƒ/i; @�/;

also called its linearised Legendrian contact homology complex. �e homology

of this complex will be denoted HCL�.ƒI �/. We will also use .CL�.ƒ/; d�/ to

denote the associated co-complex, and HCL�.ƒI �/ to denote the corresponding

cohomology.
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�e homotopy type of this complex does indeed depend on the choice

of augmentation. However, [6, �eorem 5.2] shows that the set of all

isomorphism classes of linearised homologies is a Legendrian isotopy invari-

ant. �is proof however depends on the invariance result for the version of the

Chekanov–Eliashberg algebra as de�ned in [6] and [13], which gives more than

just invariance of the homotopy type; it establishes that the stable tame isomor-

phism type of the Chekanov–Eliashberg algebra is a Legendrian isotopy invariant.

Remark 4.2. A priori it is not clear from the invariance proof in [8] that

the stable tame isomorphism type of the Chekanov–Eliashberg algebra de�ned

using the symplectisation is an invariant. Of course, �eorem 2.1 is one way

to establish this result in the latter setting as well. In particular, the invariance

result [6, �eorem 5.2] for the linearised Legendrian contact homology applies

here as well.

We now recall the invariance property for the linearised contact homology

induced by a �lling.

�eorem 4.3 (�eorems 1.1 and 2.1 in [9]). Let L � R � .P � R/ be a �lling of

ƒ. �e homotopy type of .CL�.ƒ/; d�L
/ is independent of the choice of an almost

complex structure. Suppose that L0 is a �lling of ƒ0 that is isotopic to L by a

Hamiltonian isotopy supported in a set of the form R �K, where K � P � R is

compact. It follows that there is a homotopy equivalence

.CL�.ƒ/; d�L
/ ' .CL�.ƒ0/; d�L0 /:

In the setting considered here, this invariance result can also be seen to follow

from techniques similar to the ones used in the proof of �eorem 6.2,

together with the invariance of wrapped Floer homology under Hamiltonian iso-

topies (see �eorem 5.7).

5. Background on wrapped Floer homology

We will now give an outline of wrapped Floer homology as de�ned in [9].

Wrapped Floer homology is a Hamiltonian isotopy invariant of pairs of exact La-

grangian �llings inside an exact symplectic manifold. Here we will only consider

the case when the ambient symplectic manifold is the symplectisation of a con-

tactisation, even though the theory is de�ned in more generality.
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In the following, we thus letL andL0 be exact Lagrangian �llings ofƒ andƒ0,

respectively, inside the symplectisation of a contactisation

.R � .P � R/; d.et�//; � WD dz C �;

where P is 2n-dimensional. To simplify the de�nition of the grading, we assume

that the Maslov class vanishes for both L and L0, and that P has vanishing �rst

Chern class.

5.1. De�nition of the wrapped Floer homology complex. After a generic

Hamiltonian perturbation ofL0 we may assume thatL andL0 intersect transversely

in �nitely many double-points, and that the Legendrian link ƒ [ƒ0 is embedded

and chord-generic.

5.1.1. �e graded vector space. Use c1; : : : ; cl to denote the Reeb chords start-

ing on ƒ and ending on ƒ0, and x1; : : : ; xk to denote the double-points of L[L0.

We de�ne the vector spaces

CF0.L; L0/ WD Z2hx1; : : : ; xki;

CF1.L; L0/ WD Z2hc1; : : : ; cli;

CF.L; L0/ WD CF0.L; L0/˚ CF1.L; L0/;

which we endow with the following grading.

Assume that both L and L0 are cylindrical in the set ¹t � N º and consider a

function

�.t/ W R �! R�0

satisfying

� 0.t / � 0;

�.t/ D 0; for t � N ,

and

�.t/ D 1; for all su�ciently big t > 0.

�ere is a Hamiltonian

H W R � .P � R/ �! R

depending only on the t -coordinate, and whose Hamiltonian vector-�eld is given

by

XH D ��.t/@z:
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Its time-s �ow �s
H has the property that, for generic �.t/ and s > 0 su�ciently

large, the double-points ofL[�s
H .L

0/ appearing in ¹t � N º are transverse double-

points which naturally are in bijective correspondence with the Reeb chords start-

ing on ƒ and ending on ƒ0. To see this, observe that �s
H wraps L0 in the negative

Reeb-direction.

We �x a Legendrian lift of the exact Lagrangian immersion L [ �s
H .L

0/ to

the contactisation of the symplectisation, which moreover has the property that

all Reeb chords start on the lift of L. Using the constructions in Section 4.1,

we can associate paths � of Lagrangian tangent-planes in the symplectisation to

each generator (considered as a mixed Reeb chord on the lift to the contactisation

of the symplectisation). �e gradings of the generators are then de�ned to be

jxi j WD CZ.�xi
/; jci j WD CZ.�ci

/:

Remark 5.1. Observe that for a Reeb-chord generator ci , this grading di�ers from

the grading jci jLCH in Section 4.1 obtained when considering ci as a generator of

the Chekanov–Eliashberg algebra ofƒ[ƒ0. More precisely, the capping paths in

P used for the grading jci jLCH can be lifted to capping paths in the symplectisa-

tion, and the corresponding gradings are related by jci j D jci jLCH C 2.

Remark 5.2. Recall that the above grading is not canonical; the di�erent choices

of paths of Lagrangian planes along the curve 
 in the construction given in Sec-

tion 4.1 may induce a global shift in grading of CF�. However, in the case when

L0 is a su�ciently C 1-small perturbation of L, which moreover is assumed to be

connected, a canonical grading is obtained as follows; we choose both the path


 , and the path of Lagrangian planes along 
 , to be su�ciently close to constant

paths.

5.1.2. �e di�erential. Under the decomposition

CF�.L; L
0/ D CF0

�.L; L
0/˚ CF1

� .L; L
0/

the di�erential will be of the form

@ WD

�

@0 0

ı @1

�

;

where the entries in the matrix are to be de�ned below. In other words, we will

construct the wrapped Floer homology complex as the mapping cone

.CF.L; L0/; @/ WD Cone.ı/

of a chain-map ı.
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We �x a compatible almost complex structure J onR�.P�R/which coincides

with the cylindrical almost complex structure J1 in the set ¹t � N º for some

su�ciently big N > 0. In the following we assume that J is regular for the below

spaces of pseudo-holomorphic discs. To see how this can be achieved, we refer to

Section 5.1.6 below.

We will consider pseudo-holomorphic discs having boundary on L [ L0 and

boundary-punctures of which some are asymptotic to Reeb chords on the Legen-

drian end, and some are mapped to double-points of L[L0. We will require that

these pseudo-holomorphic discs satisfy the conditions in Section 4.2.2 outside of

some compact set, and that they satisfy the conditions in Section 4.2.1 in some

neighbourhood of the punctures which are mapped to double-points.

Recall that we have �xed a Legendrian lift of L [ L0 with the property that

every Reeb chord starts on L and ends on L0, and that this choice induces a notion

of positivity and negativity for the punctures of the latter kind.

5.1.3. �e sub-complex CF1. �e two �llings L and L0, together with the al-

most complex structure J , induce augmentations �L and �L0 of the Chekanov–

Eliashberg algebra of ƒ and ƒ0, respectively. Here we let both DGAs be de�ned

using the cylindrical almost complex structure J1.

�ere is an induced augmentation �L[L0 of the Chekanov–Eliashberg algebra

of the Legendrian link ƒ [ ƒ0 which vanishes on generators corresponding to

chords between ƒ and ƒ0, and which takes the value �L and �L0 on generators

corresponding to chords on ƒ and ƒ0, respectively.

�e Reeb chords on ƒ [ ƒ0 starting on ƒ and ending on ƒ0 span a

sub-complex of the linearised Legendrian contact homology complex of the link

ƒ [ƒ0. We will use

.CL�.ƒ;ƒ
0/; @�L;�L0 / � .CL�.ƒ[ƒ0/; @�L[L0 /

to denote this sub-complex. Also, we will let .CL�.ƒ;ƒ0/; d�L;�L0 / denote the

corresponding co-complex and we will use HCL�.ƒ;ƒ0I �L; �L0/ to denote the

corresponding cohomology.

We de�ne @1 by making the identi�cation

.CF1
� .L; L

0/; @1/ WD .CL��2.ƒ;ƒ0/; d�L;�L0 /;

where we recall the above grading conventions.
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5.1.4. �e quotient-complex CF0. We de�ne the complex

.CF0.L; L0/; @0/ WD .Z2hx1; : : : ; xki; @0/;

@0.xi / D
X

jxj j�jxi jD1

jMxj Ixi
.L[ L0I J /jxj ;

where Mxj Ixi
.L [ L0I J / denotes the moduli space of J -holomorphic polygons

de�ned in Section 4.2.1. Recall that jxj j � jxi j � 1 is the dimension of this moduli

space in the case when J is regular. Since these polygons have only two punctures,

we will sometimes refer to them as strips.

Remark 5.3. Recall that we are considering a Legendrian lift of L [ L0 to the

contactisation of the symplectisation for which all Reeb chords start on L and end

on L0. �e complex .CF0.L; L0/; @0/ is in fact nothing else than the linearised

Legendrian contact cohomology complex of this lift. Note that, since there are no

pure Reeb chords on this Legendrian lift, there is a canonical augmentation that

maps every generator to zero.

One can associate an action `d.et �/ to every generator in .CF0.L; L0/; @0/,

by associating to it the action of the corresponding Reeb chord for the above

choice of Legendrian lift of L [ L0. It follows that a pseudo-holomorphic strip

u 2 Mxj Ixi
.L[ L0/ has d.et�/-area given by

0 < Ed.et �/.u/ D `d.et �/.xj / � `d.et �/.xi /;

and that hence @0 is action-increasing with respect to the action `d.et �/.

5.1.5. �e chain map. �ere is a chain map

ı W .CF0
�.L; L

0/; @0/ �! .CL��1.ƒ;ƒ0/; d�L;�L0 /;

xi 7�!
X

jcj j�jxi jD1

jMcj Ixi
.L[ L0I J /jcj ;

where the moduli-space

Mcj Ixi
.L[ L0I J /

consists of J -holomorphic discs inside R � .P � R/ having boundary on L[L0,

a positive puncture asymptotic to the Reeb chord cj from ƒ to ƒ0, and a negative

puncture mapping to the double-point xi 2 L\ L0.

Finally, observe that jcj j � jxi j � 1 is the dimension of the above moduli space

in the case when J is regular.
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5.1.6. Finding regular almost complex structures. �e following method can

be used to show the existence of almost complex structures that are regular for the

above moduli spaces. Recall that J is a compatible almost complex structure on

R � .P � R/ which coincides with a cylindrical almost complex structure J1 in

the set ¹t � N º.

By the discussion in Section 4.2.4, after a compactly supported perturbation,

we may assume that J is regular for the discs in the de�nition of the augmenta-

tions. By �eorem 2.1 it follows that, after choosing J1 to be the cylindrical lift

of a regular almost complex structure on P , we may assume that J1 is regular for

all discs in the de�nition of @1.

It remains to show that the moduli spaces in the de�nition of @0 and ı can

be made transversely cut out. Observe that these discs have exactly one and two

boundary punctures mapping to double-points, respectively. Assuming that J sat-

is�es (RA) in a neighbourhood of the double-pointsL\L0, [13, Lemma 4.5] again

applies to show that J may be assumed to be regular for these moduli-spaces after

a compactly supported perturbation.

5.2. �e transfer-map induced by an exact Lagrangian cobordism. Let L

andL0 be exact Lagrangian �llings ofƒ andƒ0 as above, and let V � R�.P �R/

be an exact Lagrangian cobordism from ƒ0 to ƒ00. We moreover assume that L

and L0 are cylindrical in the set ¹t � �1º.

Let J denote the regular almost complex structure on R � .P � R/ de�ning

.CF�.L; L
0/; @/, which we assume coincides with the cylindrical almost complex

structure J1 in the set ¹t � �1º.

Assuming that V is cylindrical in the set ¹t � 1º, recall the de�nition of the

concatenation

L00
s WD L0 ˇs V; s � 0;

given in Section 3.3, which is an exact Lagrangian �lling of ƒ00. We assume that

L and L00 intersect transversely. �e double-points of L[L00
s can be decomposed

as

L \ L00
s D .L\ L0/ t ..R �ƒ/ \ V /:

Fix an almost complex structure JV which coincides with J1 on ¹t � 1º and

with the cylindrical almost complex structure J 00
1 on some set of the form ¹t > N º.

For each s > 0, we consider the almost complex structure

J ˇs JV
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onR�.P�R/which coincides with J in the set ¹t � sC1º and with JV .t�s; p; z/

in the set ¹t � s C 1º. We let .CF�.L; L
00
s /; @

00
s / be the induced wrapped Floer

homology complex.

Let

CF0
�.R �ƒ; V / � CF0

�.L; L
0 ˇs V /

denote the subspace spanned by the double-points .R�ƒ/\V . �e above wrapped

Floer homology complex is of the form

CF�.L; L
0 ˇs V / D CF0

�.L; L
0/˚ CF0

�.R �ƒ; V /˚ CF1
� .L; L

00
s /;

@00
s D

0

@

@0 ı00
4 0

ı00
1 @V 0

ı00
2 ı00

3 @00
1

1

A ;

where @0 is the di�erential of CF0
�.L; L

0/, given that s > 0 is chosen su�ciently

large.

To see the latter claim, observe that we can increase s > 0 without changing

the action of the generators in CF0
�.L; L

0/. A monotonicity argument for the

d.et�/-area of pseudo-holomorphic curves with boundary (see the proof of

Lemma 6.4) can be used to give the following. �e discs in the de�nition of @0

are all contained in some set ¹t � Aº for s > 0 su�ciently large, where A is inde-

pendent of s. Alternatively, this statement can be shown using a neck-stretching

argument (see [5, Section 3.4]).

Remark 5.4. In the case when all generators of CF0
�.R�ƒ; V / have `d.et �/-action

greater than CF0
�.L; L

0/, it immediately follows that ı00
4 D 0.

In [9, Section 4.2.2] the so called transfer map is constructed which, for s > 0

su�ciently large, is a chain map of the form

ˆV W .CF�.L; L
0/; @/ ! .CF�.L; L

0 ˇs V /; @
00
s /;

ˆV D

0

B

@

idCF0 0

0 �0

0 �1

1

C

A
;

relative the above decomposition.
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To describe its components, we proceed as follows. Take generators

ci 2 CF1
� .L; L

0/;

dj 2 CF1
� .L; L

0 ˇ V /;

xj 2 CF0
�.R �ƒ; V /;

and let a and b denote words of Reeb chords on ƒ0 and ƒ, respectively.

We use Mdj Ia;ci ;b..R � ƒ/ [ V I JV / to denote the moduli space of JV -holo-

morphic discs as de�ned in Section 4.2.2 having boundary on .R � ƒ/ [ V and

boundary punctures asymptotic to the prescribed Reeb chords.

Similarly, we de�ne the moduli spaceMxj Ia;ci ;b..R�ƒ/[V I JV / consisting of

JV -holomorphic discs having boundary on .R�ƒ/[V , a positive puncture map-

ping to xj , and its negative punctures asymptotic to the prescribed Reeb chords.

Here the Legendrian lift of of .R�ƒ/[V has been chosen so that all Reeb chords

start on the lift of R�ƒ. As in Section 4.2.1, this induces the notions of positivity

and negativity for a puncture mapping to a double-point.

Remark 5.5. Observe that with this notion of positivity and negativity for the

boundary punctures, it is not necessary for a JV -holomorphic disc as above to

posses a positive puncture. However, a strip without positive punctures must have

a negative puncture asymptotic to a Reeb chord at �1 starting on ƒ0 and ending

on ƒ.

For a generator ci 2 CF1
� .L; L

0/, the components of ˆV are given by the

following counts of rigid JV -holomorphic discs in the above moduli-spaces:

�0.ci / WD
X

jxj j�jci jD0

jajDbjD0

jMxj Ia;ci ;b..R �ƒ/ [ V I JV /j�L0.a/�L.b/xj ;

�1.ci / WD
X

jdj j�jci jD0

jajDbjD0

jMdj Ia;ci ;b..R �ƒ/ [ V I JV /j�L0.a/�L.b/dj :

In the case when JV is regular, the dimensions of the above moduli spaces are

given by jxj j � jci j � jaj � jbj and jdj j � jci j � jaj � jbj, respectively.

A neck-stretching argument can be used to show the following.

Proposition 5.6. Let L and L0 be exact Lagrangian �llings. Given exact La-

grangian cobordisms V and W , where the positive end of V equals the negative

end of W , it follows that

ˆV ˇW D ˆW ıˆV W .CF�.L; L
0/; @/ �! .CF�.L; L

0 ˇ V ˇW /; @00/;
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given that all involved almost complex structures have been appropriately chosen.

5.3. Invariance under Hamiltonian isotopy. �e Wrapped Floer homology

complex satis�es the following invariance property.

�eorem 5.7. [9, �eorem 4.10] LetL;L0; L00 � R�.P �R/ be exact Lagrangian

�llings. Suppose that L00 D �1
Hs
.L0/ is isotopic to L0 by a Hamiltonian isotopy

supported in R �K, where K is compact. �ere is a homotopy equivalence

ˆ W .CF�.L; L
0/; @/ �! .CF�.L; L

00/; @00/:

Since the proof of �eorem 6.2 is based on some constructions used in the

proof of this invariance theorem, we formulate its main ingredients below.

�e core of the argument is as follows. Subsequent applications of Lemma A.1

implies the following standard fact. Let L0 and L00 be �llings of ƒ0 and ƒ00, re-

spectively. Given a Hamiltonian isotopy �s
Hs

as above, there are exact Lagrangian

cobordisms U , V , and W satisfying the following.

� L0 ˇ U is isotopic to L00 D �1
Hs
.L0/ by a compactly supported Hamiltonian

isotopy.

� U ˇ V is isotopic to R �ƒ0 by a compactly supported Hamiltonian isotopy.

� V ˇW is isotopic to R�ƒ00 by a compactly supported Hamiltonian isotopy.

�e idea is now to use transfer-maps induced by U , V , and W , together with an

invariance result for compactly supported Hamiltonian isotopies. To that end, the

following two propositions are needed.

Proposition 5.8. [9, Section 4.2.1] Let L and L0 be exact Lagrangian �llings.

Given paths �s
Hs
.L0/ of �llings and Js of almost complex structures, both which

are �xed outside of some compact set, there is an induced homotopy equivalence

ˆHs ;Js
W .CF�.L; L

0/; @/ �! .CF�.L; �
1
Hs
.L0//; @00/:

Here the former complex is de�ned using J0 and the latter is de�ned using J1.

Furthermore, the restriction

ˆHs ;Js
jCF1 W .CF1

� .L; L
0/; @1/ �! .CF1

� .L; �
1
Hs
.L0//; @00

1/

is an isomorphism of complexes. In the case when there are no births or deaths

of double-points during the Hamiltonian isotopy, it follows that ˆHs ;Js
is an iso-

morphism of complexes as well.
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Proposition 5.9. [9, Section 4.2.3] Let L and L0 be exact Lagrangian �llings.

Assume that we are given paths �s
Hs
.V / of exact Lagrangian cobordisms, and

Js WD J ˇ� JV;s of almost complex structures, both which are �xed outside of

some compact set. Write W WD �1
Hs
.V / and let the transfer maps ˆV and ˆW be

de�ned using JV;0 and JV;1, respectively. �e diagram

.CF�.L; L
0/; @/

ˆV
// .CF�.L; L

0 ˇ� V /; @
00/

ˆHs ;Js

��

.CF�.L; L
0/; @/

ˆW
// .CF�.L; L

0 ˇ� W /; @
000/

commutes up to homotopy, given that � > 0 is su�ciently large and that the

positive end of L0 agrees with the negative ends of V and W .

5.4. �e transfer map induced by the negative Reeb-�ow. Let L and L0 be

�llings ofƒ andƒ0, respectively, as above. We moreover assume that both �llings

are cylindrical in the set ¹t � �1º. In this section we obtain a re�ned invariance

result in the special case when the Hamiltonian

H W R � .P � R/ �! R

only depends on the t -coordinate, and when its Hamiltonian vector-�eld

XH D ��.t/@z moreover satis�es

� �.t/; � 0.t / � 0,

� �.t/ has support in ¹t � 1º, and

� �.t/ is constant in ¹t � N º, for some N � 1.

Observe that this Hamiltonian isotopy �xes the hypersurfaces ¹tº�.P �R/, where

it acts by some reparametrisation of the negative Reeb �ow. For a generic choice

of �.t/, it is the case that L\ �1
H .L

0/ consists of transverse double-points.

Remark 5.10. LetH be a Hamiltonian as above and useƒ0
s to denote the Legen-

drian submanifold of which �s
H .L

0/ is an exact Lagrangian �lling. Given that �s
H

is non-trivial, for s > 0 su�ciently large there are no Reeb chords from ƒ to ƒ0
s.

Moreover, there is a natural identi�cation

CF�.L; L
0/ ' CF�.L; �

s
H .L

0// D CF0
�.L; �

s
H .L

0//

of graded vector-spaces.
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�e co-complex associated to .CF0
�.L; �

s
H .L

0/; @0/ is related to the version of

the wrapped Floer cohomology complex as de�ned in [3], [18]. However, one

technical di�erence is that the latter versions are de�ned using moduli-spaces of

solutions to a Cauchy–Riemann equation with a perturbation-term depending on

a Hamiltonian vector-�eld.

Now consider the exact Lagrangian cylinder

V WD �1
H .R �ƒ0/

and, for each s � 0, the corresponding �lling L0 ˇs V of ƒ00.

Observe that V satis�es

�P .V / D …Lag.ƒ
00/ D …Lag.ƒ

0/

and that the self-intersections of .R�ƒ/[ V are transverse double-points corre-

sponding to a subset of the Reeb chords on ƒ [ ƒ0 starting on ƒ and ending on

ƒ0. Moreover, there is a natural identi�cation

CF�.L; L
0/ ' CF�.L; L

0 ˇs V /

of graded vector spaces.

�e below result shows that this identi�cation may be assumed to hold on the

level of complexes as well, given that we choose the almost complex structure

with some care.

To that end, we consider a compatible almost complex structure JP on .P; d�/

and let zJP denote its cylindrical lift. We let J be a compatible almost complex

structure on R � .P � R/ coinciding with zJP in the set ¹t � 1º. �e following

proposition is also a key step in the proof of �eorem 6.2 below.

Proposition 5.11. Let JP be a regular compatible almost complex structure on P

that is integrable in a neighbourhood of the double-points of …Lag.ƒ [ ƒ0/ and

consider an almost complex structure J as above, that moreover satis�es (RA)

in a neighbourhood of the double-points L \ L0 � ¹t < 0º. After an arbitrarily

small compactly supported perturbation of J , and for s > 0 su�ciently large, we

may suppose that

(1) J is regular for the moduli spaces in the de�nition of .CF�.L; L
0/; @/ and

.CF�.L; L
0 ˇs V /; @

00
s /.

(2) �e transfer map

ˆV W .CF�.L; L
0/; @/ �! .CF�.L; L

0 ˇs V /; @
00
s /

is the identity map with respect to the natural identi�cation of the generators.
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Proof. (1) A J -holomorphic disc having a single positive boundary-puncture as-

ymptotic to a Reeb chord is somewhere injective in a set ¹t � M º, as follows by its

asymptotical properties. By a standard transversality argument [20, Chapter 3],

it follows that the moduli spaces consisting of such discs may be assumed to be

transversely cut out after a perturbation as above.

For a regular almost complex structure JP , �eorem 2.1 implies that the
zJP -holomorphic curves with boundary on R � .ƒ [ ƒ0/ also can be assumed

to be regular.

�e moduli spaces of J -holomorphic strips, of which at least one boundary

puncture maps to a double-point in L \ L0, may be assumed to be transversely

cut out by the transversality argument in [13, Proposition 2.3]. Here we have used

that (RA) holds in a neighbourhood of these double-points, and that the two punc-

tures of the strip correspond to di�erent generators, as follows by the formula for

the symplectic area.

What remains is to show the transversality of the moduli spaces

Ms WD MyIx.L[ .L0 ˇs V /I J /

of rigid J -holomorphic strips whose boundary-punctures both map to double-

points x; y 2 .R �ƒ/ \ V .

To that end, we consider the limit of the boundary conditions L[ .L0 ˇs V / as

s ! C1. �is limit amounts to stretching the neck along the contact-type hyper-

surface ¹t D 2º, see [5, Section 3.4]. Furthermore, by the Gromov–Hofer com-

pactness in [5], it follows that the solutions in Ms converge to so-called pseudo-

holomorphic buildings consisting of the following levels.

� A top level consisting of zJP -holomorphic discs with boundary on .R�ƒ/[V

and boundary-punctures mapping to double-points and Reeb chords.

�is level is non-empty and can either consist of a single (possibly broken)

disc, as shown in Figure 1, or of two (possibly broken) discs, as shown in

Figure 2.

� Possibly several middle levels consisting of zJP -holomorphic discs with

boundary on the cylindrical Lagrangian submanifold R � .ƒ [ƒ0/.

� A bottom level consisting of (possibly broken) J -holomorphic discs with

boundary on L [ L0. Furthermore, each disc has either exactly one positive

puncture, as shown in Figure 1, or exactly two, as shown in Figure 2. In any

case, each disc is somewhere injective.
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x

yt

t

R �ƒV

L0 L

Figure 1. A possible pseudo-holomorphic building in lims!C1 MyIx.L[ .L0 ˇs V /IJ /

consisting of a top and a bottom level.

yt

t

R �ƒV

L0
L

x

L0

R �ƒ V

Figure 2. A possible pseudo-holomorphic building in lims!C1 MyIx.L[ .L0 ˇs V /IJ /

consisting of a top and a bottom level.
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By the index formula it can be computed that the expected dimensions of all

the moduli spaces of pseudo-holomorphic discs in the building sum to 0 � k,

where k � 0 is the total number of nodes of the broken discs. By a broken disc,

we here mean broken in the Floer-sense, i.e. living in the boundary of a moduli-

space compacti�ed as in [10, Section 2.3]. A broken disc thus consists of several

pseudo-holomorphic discs joined at nodes, where each node corresponds to a pair

of boundary-punctures that are mapped to the same double-point.

Note that, in order to see that the only possible con�gurations of the top layer

are the two (possibly broken) con�gurations described above, we have used the

exactness of the boundary condition. Namely, together with Stoke’s theorem,

it follows that there can be no (broken) disc, all whose punctures are negative

punctures asymptotic to Reeb chords.

By the above reasoning, the discs in the bottom level may be assumed to be

transversely cut out. Furthermore, since JP is regular, �eorem 2.1 implies that

the solutions in the middle levels are transversely cut out. Using Lemma 8.3 it

follows that the top levels are transversely cut out as well. Since all the moduli

spaces in the building are transversely cut out, holomorphic gluing �nally shows

that Ms is transversely cut out, given that s > 0 is su�ciently large. �is �nishes

the claim.

As a side remark, we make the following observations. It follows that each disc

in the building must live in a moduli space of non-negative expected dimension.

�e additivity of the dimension thus implies that all these moduli spaces are zero-

dimensional, and thus no disc is broken in the Floer sense. It also follows that the

middle-levels all are trivial strips over Reeb chords, and can thus be ignored.

Finally, it can be seen that there is no rigid disc as shown on the right in the

top level of Figure 2. To that end, observe that such a disc would project to a

JP -holomorphic disc having boundary on …Lag.ƒ [ ƒ0/ of negative expected

dimension, which therefore is constant. However, no disc as shown on the right in

the top level of Figure 2 is contained in a plane of the form R � .¹qº � R/.

(2) Since �P .V / D …Lag.ƒ
0/, the . zJP ; JP /-holomorphic projection �P

induces maps

Mf Ia;c;b..R �ƒ/ [ V I zJP / �! Mf Ia;c;b.…Lag.ƒ[ƒ0/I JP /;

Qu 7�! �P ı Qu;

between moduli spaces, where c is a Reeb chord starting on ƒ and ending on ƒ0,

f is either a double-point or a mixed Reeb chord, and where a D a1 � � � � � am1
and

b D b1 � � � � � bm1
are words of Reeb chords on ƒ0 and ƒ, respectively.
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By de�nition jf j � jcj � jaj � jbj D 0 holds for the moduli spaces contributing

to ˆV . Consequently, their projections are JP -holomorphic discs having exactly

one positive puncture and negative expected dimension, as follows by the index

computations in Lemma 8.3. By the regularity of JP , these latter discs must be

constant, which implies that the corresponding zJP -holomorphic discs are actually

strips contained entirely in planes of the form R � .¹qº � R/.

From this it follows thatˆV has the required form. Here, part (1) of Lemma 8.3

has been used to infer that the above moduli spaces contributing to ˆV are trans-

versely cut out.

Recall that, we might have had to perturb zJP by a compactly supported per-

turbation in step (1) to achieve transversality for some of the moduli spaces under

consideration, and that there is no guarantee that this perturbation is cylindrical.

However, the computations in part (2) are still valid, given that the perturbation is

su�ciently small. Namely, one may assume that there is a bijection between the

moduli spaces in the de�nition of ˆV before and after such a perturbation.

5.5. Consequences of the invariance. An immediate consequence of the in-

variance theorem is the acyclicity of the wrapped Floer homology in the current

setting.

Proposition 5.12. Let L;L0 be exact Lagrangian �llings inside the symplectisa-

tion of a contactisation. It follows that HF�.L; L
0/ D 0.

Proof. Using the negative Reeb �ow �@z one can isotope L0 to an exact La-

grangian �lling L00 for which CF�.L; L
00/ D 0. Since this is a Hamiltonian �ow,

the claim now follows from the invariance theorem.

A similar argument shows an analogous property for the linearised Legendrian

contact cohomology of Legendrian links in certain positions.

Proposition 5.13. Let L;L0 � R � .P � R/ be exact Lagrangian �llings of

ƒ and ƒ0, respectively, which induce an augmentation �L[L0 of the Chekanov–

Eliashberg algebra of the link ƒ [ ƒ0. If all mixed Reeb-chords on ƒ [ ƒ0 start

on ƒ, it follows that

HCL�.ƒ;ƒ0I �L; �L0/ D 0;

or equivalently,

HCL�.ƒ [ƒ0I �L[L0/ D HCL�.ƒI �L/˚ HCL�.ƒ0I �L0/:
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Proof. �ere is a Lagrangian �lling L00 isotopic to L0 by a compactly supported

Hamiltonian isotopy which satis�es CF0
�.L; L

00/ D 0. It immediately follows that

.CF�.L; L
00/; @00/ D .CF1

� .L; L
00/; @1/ D .CL��2.ƒ;ƒ0/; d�L;�L0 /:

Proposition 5.12 implies that the above complexes are acyclic.

In particular, the assumptions of the previous proposition are ful�lled for a link

consisting of a Legendrian submanifold ƒ � P � R admitting a �lling inside the

symplectisation, together with a copy ofƒ translated su�ciently far in the positive

z-direction. �is shows that ƒ satis�es the requirements for the existence of the

duality long exact sequence in [14], given that we use the augmentation induced

by the �lling.

Example 5.14. (1) �e fact that the augmentation is induced by a �lling inside the

symplectisation is crucial for the above to hold. For instance, let M be a compact

manifold with boundary and let ƒ be the zero-section of J 1.@M/. �e closed

Legendrian submanifold ƒ has a �lling L consisting of the zero-section of the

symplectic manifold T �M , where the latter is considered as an exact symplectic

manifold having a convex cylindrical end over the contact manifold J 1.@M/.

We consider a translation ƒ0 of ƒ su�ciently far in the positive z-direction,

and let L0 denote a �lling of ƒ0 that is Hamiltonian isotopic to L. Observe that,

since neitherƒ norƒ0 have any Reeb chords, these �llings necessarily induce the

trivial augmentations.

�e results in Section 6.1 can be used to show that the corresponding linearised

Legendrian contact cohomology satis�es

HCL�.ƒ;ƒ0I �L; �L0/ D H�C1.@M IZ2/;

which clearly is non-zero.

(2) Let ƒ1 � J 1.N / be the zero-section, and let ƒ2 be a copy of the zero-

section shifted in the positive z-direction. It is readily seen that the Legendrian

linkƒ WD ƒ1 [ƒ2 has an exact Lagrangian �lling L � R�J 1.N / di�eomorphic

to R � N . �e Legendrian submanifold ƒ is not horizontally displaceable, since

a calculation as above shows that

HCL�.ƒ;ƒ0I �0; �0/ D

4
M

iD1

H�C1.N IZ2/ ¤ 0
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for the trivial augmentation �0, whereƒ0 again is a copy ofƒ translated su�ciently

far in the positive z-direction. In contrast to this, it follows from Proposition 5.13

that

HCL�.ƒ;ƒ0I �L; �L0/ D 0;

where L0 denotes a suitable translation of the �lling L. Consequently, [14, �eo-

rem 1.1] can still be applied to ƒ, given that we use the augmentation induced by

the �lling.

6. Applications of �eorem 2.1

In this section we use �eorem 2.1 to show that the analysis in [14] made for

pseudo-holomorphic polygons in P with boundary on an exact Lagrangian im-

mersion carries over to the symplectisation.

Let .f; g; JP / be a triple adjusted to…Lag.ƒ/ as de�ned in Section 3.4.2, where

f W ƒ ! .0; 1=2� is a Morse function, g is a Riemannian metric on ƒ, and JP is

a compatible almost complex structure on P induced by the metric g. Suppose

that …Lag.ƒ
0/ is an exact Lagrangian immersion that is C1-close to …Lag.ƒ/.

Furthermore, we assume that …Lag.ƒ
0/ is identi�ed with the image of the section

df under the symplectic immersion of the co-disc bundle .D�ƒ; d�ƒ/ used in the

construction of JP (see Section 3.4.1).

In [14] it is shown that the rigid JP -holomorphic polygons having one pos-

itive puncture and boundary on …Lag.ƒ [ ƒ0/ correspond to JP -holomorphic

polygons having boundary on …Lag.ƒ/ together with gradient �ow-lines on ƒ.

In Section 6.1 below we recall these results.

In the case when zJP is the cylindrical lift of JP to the symplectisation, we can

use the lifting result in �eorem 2.1 to obtain an analogous result for the corre-

sponding zJP -holomorphic discs inside the symplectisation having boundary on

.R �ƒ/ [ .R �ƒ0/.

In order to apply �eorem 2.1, recall that JP needs to be integrable near the

double-points of …Lag.ƒ \ ƒ0/. For the double-points corresponding to double-

points of…Lag.ƒ/ this automatically follows from the fact that JP is induced by a

metric on ƒ as in Section 3.4.1. For the double-points corresponding to Crit.f /,

this can be achieved by choosing the metric g in the construction of JP to be �at

near Crit.f / � ƒ.

Finally, we use these results to complete the proof of Seidel’s isomorphism

outlined in [9].
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6.1. �e Legendrian contact cohomology of the Legendrian two-copy link.

For an n-dimensional Legendrian submanifoldƒ � P �R we de�ne the following

Legendrian two-copy links. Let .f; g; JP / be a triple adjusted to …Lag.ƒ/.

�e construction of the almost complex structure JP induced by the metric

g in Section 3.4.1 provides the choice of a symplectic immersion of .D�ƒ; d�ƒ/

into P , by which the zero-section is mapped to …Lag.ƒ/. �is immersion lifts

to a contact-form preserving di�eomorphism from a neighbourhood of the zero-

section in .J 1.ƒ/; dz C �ƒ/ to a neighbourhood of ƒ � P � R, which moreover

maps the zero-section to ƒ. We consider the following Legendrian submanifolds,

where the constants � > � > 0 will become useful in Section 6.2 below.

� Let ƒC � P � R be the push-o� of ƒ corresponding to

.�2df; �2 C �2f / � J 1.ƒ/

under the above identi�cation, where � > � > 0 are chosen to be su�ciently

small. In particular we assume that �2 C �2 is smaller than the shortest Reeb

chord on ƒ.

� Let ƒ� � P � R be the push-o� of ƒ corresponding to

.�2df;��1=2 C �2f / � J 1.ƒ/

under the above identi�cation, where � > � > 0 are chosen to be su�ciently

small. In particular, we assume that �1=2 ��2 > 0 is smaller than the shortest

Reeb chord on ƒ.

� Let ƒ1 � P � R be a copy of ƒC translated su�ciently far in the positive

z-direction, so that all mixed Reeb chords on ƒ [ƒ1 start on ƒ.

6.1.1. Generalised pseudo-holomorphic discs. We recall that a generalised

pseudo-holomorphic disc in P consists of the following data. Let c be a criti-

cal point of f and let

u W .D2; @D2/ �! .P;…Lag.ƒ//

be a pseudo-holomorphic polygon having boundary on …Lag.ƒ/ and boundary

punctures mapping to double-points, together with an additional marked point

pf 2 @D2. We require u.pf / to be connected to c via a �ow-line of rf (we allow

c D u.pf /). In the case when c is connected to u.pf / by the positive (respectively

negative) gradient �ow, we say that pf is a positive (respectively negative) Morse

puncture.

We refer to [14] for the expected dimension and transversality results for these

moduli spaces.
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6.1.2. Computations of the complexes for the di�erent two-copies. We as-

sume that the Chekanov–Eliashberg algebra ofƒ has an augmentation �. We may

assume that ƒ˙ are su�ciently C1-close to ƒ and hence that the Chekanov–

Eliashberg algebra ofƒi for i D C;�;1 coincide with the Chekanov–Eliashberg

algebra ofƒ (see e.g. [12, Lemma 4.13]). In particular, � induces an augmentation

of each component of the link ƒ [ƒi , and thus of the link itself.

We use .CL�.ƒ;ƒi /; di/ to denote the linearised Legendrian contact cohomol-

ogy complex generated by Reeb chords starting onƒ and ending onƒi , where the

complex is linearised using the augmentation �.

Choosing canonically de�ned capping paths, it can be shown that

CL�.ƒ;ƒ�/ D CL�.ƒ/;

CL�.ƒ;ƒC/ D C �C1
Morse.f /˚ CL�.ƒ/;

CL�.ƒ;ƒ1/ D CLn�2��.ƒ/˚ C �C1
Morse.f /˚ CL�.ƒ/;

where we recall that n D dimƒ. To that end, observe that a mixed Reeb chord

either corresponds to a Reeb chord on ƒ, or to a critical point of the Morse func-

tion f . We refer to [14, Section 3.1] for more details.

Since the co-di�erential is action-increasing, by comparing the length of the

Reeb chords in the di�erent summands above, one concludes that the di�erentials

are of the following form with respect to the above decompositions.

d� D dq ;

dC D

�

df 0

� dq

�

;

d1 D

0

@

dp 0 0

� df 0

� � dq

1

A :

Remark 6.1. Note that the exact Lagrangian immersion…Lag.ƒ[ƒi/ is the same

for i D �;C;1 and, hence, the set of pseudo-holomorphic polygons in P with

boundary on …Lag.ƒ [ ƒi / is independent of i . However, the notion of being a

positive or a negative puncture does depend on i .

By [14, Lemma 6.5], we may assume that .f; g/ is a Morse–Smale pair and

that JP is regular. Furthermore, according to [14, �eorem 3.6], for generic such

triples .f; g; JP / adjusted to …Lag.ƒ/, and for � > 0 small enough, the above

co-di�erentials can be de�ned by counting the following (generalised) JP -holo-

morphic discs.
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� dp D @� is the di�erential of the linearised Legendrian contact homology

complex of ƒ with respect to the augmentation �.

� dq D d� is the di�erential on the linearised Legendrian contact cohomology

complex with respect to the augmentation �.

� �e di�erential df is the di�erential on the Morse co-complex (i.e. counting

positive gradient �ow-lines).

� �e map � counts rigid generalised pseudo-holomorphic discs with boundary

on …Lag.ƒ/, one positive puncture, and one negative Morse-puncture at a

critical point of f .

� �e map � counts rigid pseudo-holomorphic discs with boundary on…Lag.ƒ/

and two positive punctures (after a domain-dependent perturbation of the

boundary condition).

� �e map � counts generalised pseudo-holomorphic discs with boundary on

…Lag.ƒ/ and two positive punctures, of which one is a Morse-puncture at a

critical point of f .

Note that requiring g to be �at in neighbourhoods of the critical points of f

does not impose any restriction here. In the case when zJP is the cylindrical lift

of JP , �eorem 2.1 thus applies to give that the above description of the com-

plexes holds for the version of Legendrian contact homology de�ned in terms of
zJP -holomorphic discs in the symplectisation as well. To that end, for such a choice

of g, the induced almost complex structure JP becomes integrable in a neighbour-

hood of the double-points of …Lag.ƒ[ƒi /.

6.2. �e wrapped Floer homology of the two-copy of a �lling. Let

L � R � .P � R/

be an .n C 1/-dimensional exact Lagrangian �lling of the Legendrian submani-

fold ƒ. We assume that L is cylindrical in the set ¹t � �2º.

6.2.1. Construction of the Morse functions F˙ on L. Start by �xing a positive

Morse function

f W ƒ �! .0; 1=2�;

and a smooth cut-o� function

� W R>0 �! Œ0; 1�



Lifting pseudo-holomorphic discs and applications 71

satisfying

�0.s/ � 0;

�j.0;e�1� D 0;

and

�jŒe�1=2;C1/ D 1:

For each 0 < � < 1 we de�ne the smooth function

f� W R>0 �ƒ �! R>0;

.s; p/ 7�! f�.s; p/ WD �2�.e�1=2s/f .p/;

which thus coincides with �2f on ¹s � e0º and vanishes on ¹s � e�1=2º. Also,

for each 1 > � > � > 0 and B > 0, we de�ne the smooth cut-o� functions

��.s/ WD �5 C .�2 � �5/�.s/;

Q��.s/ WD �5 C .�2 � �5/�.s/C .�1=2 � �2/�.e�.BC3=2/s/:

It follows that

��j.0;e�1� D �5;

��jŒe�1=2;C1/ D �2;

while

Q��j.0;eBC1=2� D ��;

Q��jŒeBC1;C1/ D �1=2:

Consider a �xed Morse function G on L \ ¹t � �1º given by et jL on

L\ ¹�2 � t � �1º D Œ�2;�1��ƒ � R � .P � R/:

We de�ne

F
�;�
C W L �! R
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to be the Morse function coinciding with �5G on L \ ¹t � �1º and with

��.s/s C sf� on

L\ ¹t � �1º D Œ�1;C1/�ƒ � R � .P � R/;

where we have set

s WD et jL\¹t��1º:

Let 0 < A < B be �xed. We also consider the Morse function

F �;�
� W L ! R

coinciding with F
�;�
C on

xL WD L \ ¹t � A � 1º

and which is given by Q��.s/˛.s/C sf� on

L \ ¹t � A � 1º D ŒA � 1;C1/�ƒ � R � .P � R/:

Here 0 < A < B have been chosen su�ciently large, and

˛ W R>0 �! R

is a smooth function satisfying

� ˛.s/ D s for s � eA�1, ˛.s/ > 0 for eA � s � eB , and ˛.eBC1=2/ D 0,

� ˛0.eA/ D 0, ˛0.eB/ < �1=2, and ˛0.s/ D �1 for s � eBC1, and

� ˛00.s/ � 0 for all s, and ˛00.s/ < 0 for eA � s � eB .

We will sometimes use F˙ to denote F
�;�
˙ .

�e critical points of FC correspond to the critical points of G and are all

contained in xL.

�e critical points of F� consist of critical points inside xL, which hence cor-

respond to the critical points of FC, together with critical points inside the set

L \ ¹A < t < Bº. �e latter critical points are determined by the equation

.�2˛0.s/C �2f .p//ds C s�2df .p/ D 0:

Since ˛00.s/ < 0 holds in this set, it follows that these critical points are non-

degenerate and correspond bijectively to critical points of f . Moreover, the Morse

index of such a critical point is one greater than the Morse index of the correspond-

ing critical point of f .
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We let g be a choice of a metric onƒ for which .f; g/ is Morse–Smale and let

.C ��1
Morse.f /; df / be the induced Morse co-complex, whose di�erential thus counts

positive gradient �ow lines.

Also, consider a Riemannian metric onL coinciding with a perturbation of the

product metric dt ˝ dt C g in the set ¹t � 0º, such that this metric together with

a small perturbation of F� is Morse–Smale. According to Lemma A.3 we may

assume that the corresponding Morse co-complex

.C �
Morse.F�/; dF�/ D .C �

Morse.FC/˚ C ��1
Morse.f /; dF�/;

has di�erential given by

dF� D

�

dFC 0

� df

�

:

Finally, the Morse cohomology groups associated to F˙ are given by

H �
Morse.FCIZ2/ D H �.LIZ2/ D H.nC1/��.xL; @xLIZ2/;

H �
Morse.F�IZ2/ D H �.xL; @xLIZ2/ D H.nC1/��.LIZ2/:

�e equalities on the left follow from the fact the di�erential in Morse cohomology

counts the positive gradient �ow-lines, while the negative gradients of FC and F�

points inwards and outwards of L \ ¹t � Bº, respectively. �e equalities on the

right follow by the Poincaré duality for manifolds with boundary.

6.2.2. Construction of the push-o�s L˙ of L. We will use the above Morse

functions F˙ to construct certain exact Lagrangian �llings corresponding to push-

o�s of L.

As above, we �x a symplectic immersion of .D�ƒ; d�ƒ/ into P extending the

immersion �, as constructed in Section 3.4.1. �is symplectic immersion lifts to a

contact-form preserving di�eomorphism

' W .U; dz C �ƒ/ �! .V; �/; � D dz C �;

from a neighbourhood U � J 1.ƒ/ of the zero-section to a neighbourhood

V � P � R of ƒ. Furthermore, ' maps the zero-section to ƒ.

It immediately follows that the map

.id; '�1/ W .Œ�2;C1/� V; d.et�// �! .Œ�2;C1/� U; d.et .dz C �ƒ///

is an exact symplectomorphism identifying a neighbourhood of L \ ¹t � �2º

with a neighbourhood of the cylinder over the zero-section in the symplectisation

of .J 1.ƒ/; dz C �ƒ/.
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Furthermore, the symplectisation of .U; dz C �ƒ/ is symplectomorphic to a

neighbourhood of the zero-section of the cotangent bundle of R>0 � ƒ via the

(non-exact) symplectomorphism

 W .R � J 1.ƒ/; d.et.dz C �ƒ/// �! .T �.R>0 �ƒ/; d�R>0�ƒ/;

.t; .q; p; z// 7�! ..et ; q/; .z; etp//:

Using the Weinstein Lagrangian neighbourhood theorem together with the

above symplectomorphisms, we can construct a symplectic identi�cation of a

neighbourhood of the zero-section in .T �L; d�L/with a neighbourhood ofL, such

that the identi�cation coincides with . ı .id; '�1//�1 on a neighbourhood of the

zero-section of

.T �.Œe�2;C1/�ƒ/; d�Œe�2;C1/�ƒ/ � .T �L; �L/:

For 0 < � < � < 1 su�ciently small, we use the above identi�cation to

construct the exact Lagrangian �llings L
�;�
C and L�;�

� inside R� .P �R/ by letting

them correspond to the graphs of dF
�;�
C and dF �;�

� inside of T �L, respectively.

By construction, we have

L
�;�
C \ ¹t � �1=2º D Œ�1=2;C1/�ƒC;

L�;�
� \ ¹t � B C 1º D ŒB C 1;C1/�ƒ�;

where the Legendrian submanifold ƒC corresponds to the 1-jet

.d.�2 C �2f /; �2 C �2f / � .T �ƒ � R D J 1.ƒ/; dz C �ƒ/;

and ƒ� corresponds to the 1-jet

.d.��1=2 C �2f /;��1=2 C �2f / � .T �ƒ � R D J 1.ƒ/; dz C �ƒ/;

under the above identi�cation. In other words, the Legendrian ends correspond to

the push-o�s of ƒ as constructed in Section 6.1 above.

Finally, note that the double-points of L[L˙ are in bijective correspondence

with the critical points of F˙.
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6.2.3. Computation of .CF.L; LC/; @/. We are now ready to state and prove

the main result of this section.

�eorem 6.2. �e wrapped Floer homology complex

.CF�.L; L
�;�
C /; @/ D .CF0

�.L; LC/˚ CF1
� .L; LC/; @/;

is given by

CF0
�.L; LC/ D C �

Morse.FC/;

CF1
� .L; LC/ D C ��1

Morse.f /˚ CL��2.ƒ/;

where the di�erential is of the form

@ D

0

@

dFC 0 0


 df 0

g � dq

1

A :

For 0 < � < � < 1 su�ciently small, a suitable Morse-function f on ƒ, and a

suitable compatible almost complex structure on R � .P � R/, it follows that

(i) .CL��2.ƒ/; dq/ is the linearised Legendrian contact cohomology complex

for ƒ induced by the �lling L, � is the map described in Section 6.1, and df

is the Morse co-di�erential induced by f I

(ii) dFC is the Morse co-di�erential induced by FCI

(iii) 
 is homotopic to � de�ned above.

In particular, Cone.
/ is isomorphic to .C �
Morse.F�/; dF�/.

Remark 6.3. �e proof of Corollary 2.6 given in [9] depends on the conjectural

analytical results (1)–(5) stated in [8, Conjectural Lemma 4.11]. More precisely,

the following statements are needed. First, the proof uses statements (1)–(3) to-

gether with a translation of the results in [14] to the version of Legendrian contact

homology de�ned via the symplectisation. �ese results follow from �eorem

2.1, as shown in Section 6.1 above. Second, the proof depends on the homotopy

equivalence established in part (iii) of �eorem 6.2, which can be seen as a weaker

version of (5) in the conjectural lemma.

Observe that part (5) of the conjectural lemma claims that there exists an al-

most complex structure for which the pseudo-holomorphic discs in the de�nition

of 
 are in bijection with the �ow-lines in the de�nition of �. Here, we only

prove that the corresponding chain-maps de�ned by these disc-counts are homo-

topy equivalent.
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Proof. By construction LC is cylindrical in the set ¹t � �1=2º, L� is cylindrical

in the set ¹t � B C 1º, and L� coincides with LC in the set ¹t � A � 1º. It also

follows that L� D LC ˇ V , where V is an exact Lagrangian cylinder. Here, we

may take V WD �1
H .R �ƒC/ for a Hamiltonian H W R � .P � R/ ! R that only

depends on the t -coordinate, and which satis�es the assumptions in Section 5.4.

Let JP be a regular compatible almost complex structure on P that satis-

�es the assumptions of �eorem 2.1. We use zJP to denote its cylindrical lift.

We �x a compatible almost complex structure J on R � .P � R/ that is induced

by a Riemannian metric on L in some neighbourhood of L \ ¹t � 0º and which

coincides with zJP on ¹t � 1º.

After an arbitrarily small compactly supported perturbation in the set

¹t � B C 3º, we assume that J is regular for the moduli spaces in the de�ni-

tion of .CF�.L; L
�;�
C /; @/.

(i) We will choose a triple .f; g; JP / adjusted to…Lag.ƒ/, where JP is regular

and .f; g/ is Morse–Smale. As before, we will choose the metric g so that JP

becomes integrable in some neighbourhood of …Lag.Crit.f // � …Lag.ƒ/.

Recall that, by construction, there are Darboux coordinates x C iy 2 C
n near

each double-point of…Lag.ƒ/ in which JP D i and the two branches of…Lag.ƒ/

correspond to the real and imaginary part, respectively.

�e results in Section 6.1 may thus be assumed to hold for the linearised Leg-

endrian cohomology of ƒ [ƒ˙ de�ned in terms of zJP and the augmentation �L

of the Chekanov–Eliashberg algebra ofƒ. Recall that, for � > 0 su�ciently small,

we may assume that the Chekanov–Eliashberg algebras of ƒ and ƒ˙ coincide.

We claim that @1 D d�L;�LC
coincides with dq D d�L

in Section 6.1. To see

this, we must show that the augmentation �LC induced by LC can be taken to

coincide with �L induced by L.

To that end, we will choose the Morse function f W ƒ ! .0; 1=2� with some

care near the end-points of the Reeb chords on ƒ. More precisely, in the coor-

dinates 'q;i W Uq;i ! Dn on the neighbourhoods Uq;i � ƒ of the end-points of

the Reeb chords, as used in the construction of the almost complex structure in

Section 3.4.1, we require f to be a�ne. It follows that there are holomorphic co-

ordinates z 2 C
n near each double-point of …Lag.ƒ/ in which this Lagrangian

immersion coincides with Re .Cn/ [ Im .Cn/, and where …Lag.ƒC/ coincides

with a translation Re .Cn/ [ Im .Cn/C z0.
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For such a Morse function f , there thus exist neighbourhoods U;UC � P of

the double-points of …Lag.ƒ/ and …Lag.ƒC/, respectively, for which there is a

contact-form preserving di�eomorphism

‰ W .U � R; ƒ\ .U � R// �! .UC � R; ƒC \ .UC � R//;

.p; z/ 7�! . .p/; z C h.p; z//;

and where  is the symplectomorphism given by the translation z 7! zCz0 in the

above holomorphic Darboux coordinates. Since  moreover is a JP -biholomor-

phism, it follows that .idR; ‰/ is a zJP -biholomorphism mappingR�.ƒ\.U�R//

to R � .ƒC \ .UC � R//.

After shrinking � > � > 0, the two augmentations �L and �L˙
of the

Chekanov–Eliashberg algebra of ƒ˙ may thus be assumed to be obtained by

counts of pseudo-holomorphic discs for two almost complex structures and two

Lagrangian boundary conditions that di�er by an arbitrarily small compactly sup-

ported perturbation. Here we have used the existence of the above zJP -biholo-

morphism together with the asymptotical properties of the solutions to infer that,

outside of a compact set in the domain, two such discs are solutions to the same

boundary-value problem. In particular, these two augmentations may be supposed

to be equal for � > � > 0 su�ciently small and a suitable Morse function f .

We let .CF�.L; LC/; @/ be the complex determined by J and f as above.

�e results in Section 6.1 can �nally be applied to give (i).

(ii) Since J is induced by a metric on L in a neighbourhood of L \ ¹t � 0º,

part (1) of Lemma 6.4 together with [13, Lemma 6.11] shows that, for a suitable

metric on L and function FC, we have @0 D dFC for � > 0 su�ciently small.

We have concluded that the di�erential is of the form

@ D

0

@

dFC 0 0


 df 0

� � dq

1

A :

(iii) We must show that 
 ' �, where the latter map is a component of the

di�erential of the Morse co-complex

.C �
Morse.F�/; dF�/ D .C �

Morse.FC/˚ C ��1
Morse.f /; dF�/;

dF� D

�

dFC 0

� df

�

;

as constructed in Lemma A.3.
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Recall that J coincides with a compactly supported perturbation of the cylin-

drical lift zJP in the set ¹t � 1º. Without loss of generality, the conditions in

Proposition 5.11 may thus be assumed to hold, after choosing A > 0 su�ciently

big. In other words, J is also regular for the moduli spaces in the de�nition of the

complex .CF.L; L�/; @�/ and, moreover, the obvious identi�cation of generators

induces an isomorphism of complexes. In particular, the identity @� D @ holds

under the canonical identi�cation of generators.

We now consider a tame almost complex structure J 0 satisfying the following

properties.

� J 0 coincides with J in the set ¹t � 0º [ ¹t � B C 3º.

� In a neighbourhood of L\ ¹t � B C 2º, J 0 is the push-forward of an almost

complex structure on T �L induced by a metric on L (see Section 3.4.1).

� �e canonical projection �P is .J 0; JP /-holomorphic in the set ¹t � A � 1º.

To see the existence of such an almost complex structure we argue as fol-

lows. Let Q� be the symplectic immersion of .D�ƒ; d�ƒ/ into P that is used in the

construction of the almost complex structure JP induced by the metric g on ƒ,

as described in Section 3.4.1. Recall that Q� restricted to the zero-section is the

immersion � of …Lag.ƒ/ � P . Consider a (non-symplectic!) embedding

T �ŒA � 2; B C 3� � T �ƒ �! ŒA � 2; B C 3� � .P � R/;

..t; z/; .q; p// 7�! .t; .Q�.q; p/; h.q; p/C z//;

de�ned in a neighbourhood of the zero-section of the domain, where h.q; 0/ is

given by the z-coordinate of the lift of � to ƒ � P � R, and where the above map

moreover takes the tangent-planes 0˚ T .T �ƒ/ along the zero-section

ŒA � 2; B C 3� �ƒ � T �.ŒA � 2; B C 3� �ƒ/

to the contact-planes. Observe that the zero-section is mapped to

ŒA � 2; B C 3� �ƒ � R � .P � R/:

�e construction in Section 3.4.2 applied to the product metric dt ˝ dt C g

on ŒA � 2; B C 3� � ƒ induces a compatible almost complex structure Jdt2Cg

on T �.ŒA � 2; B C 3� � ƒ/. Using the above (non-symplectic!) identi�cation,

this almost complex structure can be pushed forward to a neighbourhood U of

ŒA � 2; B C 3� �ƒ � R � .P � R/.
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By construction, this almost complex structure Jdt2Cg in U is invariant un-

der translations of the t and z-coordinate, satis�es Jdt2Cg@t D @z , and has the

property that

�P W U �! �P .U /

is .Jdt2Cg ; JP /-holomorphic. Furthermore, it can be checked that Jdt2Cg is

tamed by the symplectic form on the symplectisation in some neighbourhood of

ŒA � 2; B C 3� �ƒ. To construct the required tame almost complex structure J 0,

it now su�ces to perform an appropriate interpolation of tame almost complex

structures.

[13, Lemma 6.11] together with part (2) of Lemma 6.4 implies that, for � > 0

su�ciently small, we may assume that there is an identity

@0
0 D dF� :

Here we might have to perturb the pair .F�; dt
2 C g/ to make it Morse–Smale.

Also, we will have to use an almost complex structure J 00 induced by this perturbed

metric in a neighbourhood of L in order to de�ne @0. However, the resulting J 00

may be assumed to be an arbitrarily small compactly supported perturbation of J 0.

Using Lemma A.3 we infer that @0 is of the form

@0 D

0

@

dFC 0 0

� df 0

� � �

1

A :

We now consider a path ¹Jsºs2Œ0;1� of tame almost complex structures coincid-

ing with J in the set ¹t � 0º [ ¹t � B C 3º, where J0 D J , J1 D J 0, and such

that �P is .Js; JP /-holomorphic in the set ¹t � A � 1º for all s.

Using part (3) of Lemma 6.4, for � > � > 0 su�ciently small, we may

assume that every Js-holomorphic strip with both punctures at generators cor-

responding to CMorse.f / are contained inside ¹A � 1 � t � Bº. Since �P is

.Js ; JP /-holomorphic when restricted to this set, it follows that any such strip

projects to a JP -holomorphic strip in P having boundary on …Lag.ƒ [ ƒ0/ and

being of the same index. Since JP is regular, it now follows that there can be no

such Js-holomorphic strips of negative index.

Furthermore, part (1) of Lemma 6.4 implies that any Js-holomorphic strip hav-

ing punctures at double-points corresponding to CMorse.FC/ are contained inside

¹t � 0º. Since Js D J in this set, the regularity of J implies that there are no such

strips of negative index either.
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�e non-existence of the pseudo-holomorphic strips of negative index having

both punctures at double-points corresponding to generators of either CMorse.f /

or CMorse.FC/ still holds if we consider a su�ciently small perturbation J 0
s of the

path Js . Without loss of generality, we may thus assume this property to hold for

a path starting at J 0
0 D J and ending at J 0

1 D J 00.

�e above form of the possible J 0
s-holomorphic discs of index �1 has the

following consequence: �e isomorphism of chain-complexes given by Propo-

sition 5.8 applied to the path J 0
s is of the form

ˆ W .CF.L; L�/; @�/ �! .CF.L; L�/; @
0/;

ˆ D

0

@

idC.FC/ 0 0

� idC.f / 0

� � �

1

A :

�e chain-map property

ˆ ı @� D @0 ıˆ;

can now be written as

0

@

dFC 0 0

� ı dFC C 
 df 0

� � �

1

A D

0

@

dFC 0 0

� C df ı � df 0

� � �

1

A ;

which translates into the fact that there is a chain-homotopy � ' 
 .

Lemma 6.4. Let L and L
�;�
˙ be the exact Lagrangian �llings as constructed in

Section 6.2 and let Js, s 2 Œ0; 1�, be a family of tame almost complex structures on

R � .P � R/. Let U0, UBC2, and UŒA�1;B� denote �xed compact neighbourhoods

of L\¹t � 0º, L\¹t � BC2º, and L\¹A�1 � t � Bº, respectively. Choosing

0 < � < � < 1 su�ciently small we may suppose that

(1) Any Js-holomorphic strip having boundary on L [ L
�;�
˙ , whose both punc-

tures are mapped to double-points corresponding to Crit.F
�;�
C /, is contained

inside U0.

(2) Any Js-holomorphic strip having boundary on L [ L�;�
� , whose both punc-

tures are mapped to double-points corresponding to Crit.F �;�
� /, is contained

inside UBC2.

(3) Any Js-holomorphic strip having boundary on L [ L�;�
� , whose both punc-

tures are mapped to double-points corresponding to Crit.f /, is contained

inside UŒA�1;B�.
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Proof. Consider the symplectic form ! WD d.et .dz C �// on R � .P � R/.

�e !-area of a strip as above whose positive and negative puncture corre-

spond to the critical points p and q of F˙, respectively, is given by F˙.p/�F˙.q/.

It immediately follows that there is a constant E > 0 independent of � > � > 0

such that any Js-holomorphic strip in (1) and (2) have !-area bounded from above

byE�5 andE�2, respectively. Similarly, it readily follows that the Js-holomorphic

strips in (3) may be assumed to have !-area bounded from above by E�2, given

that � > 0 is su�ciently small (in particular, see the construction of ˛.s/ in Sec-

tion 6.2.1).

We now outline a consequence of the monotonicity property for the !-area

of Js-holomorphic curves without boundary [23, Proposition 4.3.1(ii)] and with

boundary [23, Proposition 4.7.2(ii)]. Let K � R � .P � R/ be a compact set and

Ws a family of proper exact Lagrangian submanifolds. Take any p 2 K, s 2 Œ0; 1�,

and su�ciently small r > 0. �ere is a constant D > 0 independent of these

choices for which the following holds. Any non-constant Js-holomorphic curve

inside the ball Br.p/ of radius r which, moreover, satis�es the properties that

� it passes through the centre p 2 K of the ball, and

� its boundary is located on @Br.p/[ .Br.p/ \Ws/,

has !-area bounded from below by Dr2.

Using this monotonicity property, we will argue by contradiction, showing that

if a strip as in (1), (2), and (3) leaves the set U0, UBC2, and UŒA�1;B�, respectively,

then its !-area must exceed the corresponding upper bound found above.

To that end, there is a �xed metric on R � .P � R/ and a constant C > 0

independent of � and � for which the following hold. �e two components

.L[L
�;�
˙ /\¹t D t0º, are at a distance at least C�2 for t0 2 ¹0; A�1; Bº, while the

two components .L[L�;�
� /\ ¹t D B C 2º are at a distance at least C.�1=2 � �2/.

�e monotonicity property for the !-area of Js-holomorphic curves with

boundary on L [ L
�;�
˙ thus gives a constant D > 0 independent of � > � > 0

for which the following holds.

� If a Js-holomorphic strip as above has a boundary-point passing through

either of the sets

V0 WD .L[ L
�;�
˙ / \ ¹t D 0º;

VA�1 WD .L[ L
�;�
˙ / \ ¹t D A � 1º;

VB WD .L[ L
�;�
˙ / \ ¹t D Bº;

then it must have !-area bounded from below by D�4.
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� If a Js-holomorphic strip as above has a boundary-point passing through the

set

VBC2 WD .L[ L�;�
� / \ ¹t D B C 2º;

then it must have !-area bounded from below by D.�1=2 � �2/2.

To that end, by examining the above bounds of distances, we may assume that the

ball of radius �2=2 centred at any point in V0 [ VA�1 [ VB intersects .L [ L
�;�
˙ /

in a disc, and that the ball of radius .�1=2 � �2/=2 centred at any point in VBC2

intersects L [ L�;�
� in a disc.

After shrinking � > � > 0, a comparison with the above upper bounds for the

!-area of the strips of either type (1) and (3), we conclude that no such

Js-holomorphic strip has a boundary-point passing through either of the sets V0,

VA�1, or VB . Similarly, we may assume that no Js-holomorphic strip of type (2)

has a boundary-point passing through the set VBC2.

(1) �e above argument shows that the boundary of a Js-holomorphic strip of

this type is contained inside the set ¹t � 0º. In particular, for each � > � > 0

su�ciently small, its boundary may be assumed to be disjoint from some �xed

ı-neighbourhood of @U0. Suppose that such a Js-holomorphic strip is not con-

tained entirely in U0. Consequently, it has an interior point passing through

p 2 @U0, where p is of distance at least ı > 0 from the boundary.

(2) �e above argument shows that the boundary of a Js-holomorphic strip

of this type is contained inside the set ¹t � B C 2º. In particular, for each

� > � > 0 su�ciently small, its boundary may be assumed to be disjoint from

some �xed ı-neighbourhood of @UBC2. Suppose that such a Js-holomorphic strip

is not contained entirely in UBC2. Consequently, it has an interior point passing

through p 2 @UBC2, where p is of distance at least ı > 0 from the boundary.

(3) �e above argument shows that the boundary of a Js-holomorphic strip of

this type is contained inside the set ¹A � 1 � t � Bº. In particular, for each

� > � > 0 su�ciently small, its boundary may be assumed to be disjoint from

some �xed ı-neighbourhood of @UŒA�1;B�. Suppose that such a Js-holomorphic

strip is not contained entirely in UŒA�1;B�. Consequently, it has an interior point

passing through p 2 @UŒA�1;B�, where p is of distance at least ı > 0 from the

boundary.

In all of the three cases above, the monotonicity property for the !-area of

Js-holomorphic curves without boundary shows that the strip must have !-area

bounded from below by Dı2 > 0, where both D > 0 and ı > 0 are independent

of the choices of (su�ciently small) numbers � > � > 0. When � > � > 0 is small

enough, this contradicts the above upper bounds of the !-area, which means that

the Js-holomorphic strip must be contained inside the required neighbourhood.
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7. Proof of �eorem 2.1

In the following, we �x a front-generic Legendrian submanifold ƒ � P � R.

We begin with the below lemma, which is a generalisation of the analysis

in [16, �eorem 7.7] to the case of an arbitrary contactisation. Here we make

the identi�cation P � R ' P � iR � P � C and de�ne

L WD ¹.p; x C iy/ 2 P � CI .p; iy/ 2 ƒº ' ƒ � R:

Lemma 7.1. Given a JP -holomorphic polygon

u W .D2; @D2/ �! .P;…Lag.ƒ//

with punctures mapping to double-points, there is a .JP ˚ i/-holomorphic lift

.u; a/ W .D2; @D2/ �! .P � C; L/:

Let p 2 @D2 be a puncture that is mapped by u to a double-point corresponding

to the Reeb chord ¹u.p/º � ŒA; AC `�, and choose holomorphic coordinates iden-

tifying D2 with ¹s C i t I 0 � t � 1º � C, in which p corresponds to s D C1.

It follows that there are C 2 C, � > 0, for which the bound

ka.s C i t / � C ˙ `.s C i t /k � e��s

holds for all s > 0 su�ciently large.

Proof. Away from the boundary punctures, there is a unique continuous lift

.uj@D2 ; h/ W @D2 ! ƒ � P � R:

By abuse of notation, we let h W D2 ! R denote the harmonic extension to the

interior. Observe that h is bounded and C1 away from the boundary punctures,

where it has jump discontinuities.

Let �g be the Harmonic conjugate of h, which is smooth in the interior ofD2.

We de�ne

a.s C i t / WD g.s; t /C ih.s; t /;

which is holomorphic in the interior of D2 and satis�es the correct boundary

condition. It remains to show that a has the above asymptotic behaviour at its

boundary punctures.

In the following we will use S0 > 0 to denote some su�ciently large real

number.
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We �x a boundary puncture p 2 @D2 of u. Choose a conformal identi�cation

of the domain D2 with the strip ¹s C i t I 0 � t � 1º � C such that the boundary-

puncture p corresponds to s D C1. An application of [21, �eorem B] yields

that there are C1 functions

v;w W ¹s C i t I 0 � t � 1º �! C
n;

and a number � > 0, such that

u.s C i t / D �
1

�
e��sv.t /C w.s; t /; s � S0;

holds in a Darboux chart centred at u.p/. Moreover, there is a ı > 0 such that

kw.s; t /kC kŒs;C1/ D O.e�.�Cı/s/

holds for s � S0.

Let

hC.s/ WD h.s; 1/

and

h�.s/ WD h.s; 0/

denote h above restricted to the respective boundary component of the strip. Recall

that the contact form is given by dzC� , where � is a one-form on P . Considering

the expressions

hC.s1/ � hC.s0/ D

Z s1

s0

uj¹tD1º
�.��/ds;

h�.s1/ � h�.s0/ D

Z s1

s0

uj¹tD0º
�.��/ds;

and using the above asymptotic expansion, it follows that

h˙.s/ D C˙ C O.e��s/; (7.1)

� d

ds

�k

h˙.s/ D O.e��s/; k D 1; 2; 3; : : : (7.2)

holds for s � S0.
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�e Poisson kernel for the strip ¹s C i t I 0 � t � 1º is given by

P.s; t / D �
sin�t

cosh�s � cos�t
;

as computed in [24], and the harmonic extension f .s; t / to the strip of a function

given by fC.s/ along ¹t D 1º and f�.s/ along ¹t D 0º is given by the convolution

f .s; t / D
1

2�

Z C1

�1

.P.� � s; t /f�.�/C P.� � s; 1 � t /fC.�// d�

D
1

2�

Z C1

�1

.P.�; t/f�.� C s/C P.�; 1� t /fC.� C s// d�:

(7.3)

Observe that the harmonic extension h.s; t / can be expressed by such a con-

volution and, by the regularity of h˙, it is C1 up to the boundary for s � S0.

Likewise, the bounded harmonic function

h0.s; t / WD C� C .CC � C�/t

on the strip can expressed by a convergent convolution of the Poisson kernel with

its restriction to the boundary. Since

h.s; t /� h0.s; t / D O.e��s/; t 2 ¹0; 1º; s � S0;

holds along the boundary of the strip by (7.1), using formula (7.3) we get the esti-

mate

h.s; t /� h0.s; t / D O.e��s/; s � S0; (7.4)

in the interior of the strip as well.

Since convolving with the Poisson kernel commutes with the operation @s,

using (7.2) it similarly follows that

.@s/
kh.s; t / D O.e��s/; k > 0; s � S0: (7.5)

In order to �nd a bound for @th.s; t / we proceed as follows. Observe that

@t .h � h0/.s; 1=2/

D
1

2�

Z C1

�1

@tP.�; 1=2/ ..h�.� C s/ � C�/ � .hC.� C s/ � CC// d�;
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where

@tP.s; 1=2/ D �2 cos�t cosh�s � 1

.cosh�s � cos�t/2

ˇ

ˇ

ˇ

ˇ

tD1=2

D O.e�2jsj/

for jsj � S0. Together with (7.1) we get the estimate

@t .h � h0/.s; 1=2/ D O.e��s/ (7.6)

for s � S0. �e harmonicity of .h � h0/.s; t / together with (7.5) implies that

@2
t .h � h0/.s; t / D �@2

s .h � h0/.s; t / D O.e��s/;

which together with (7.6) can be integrated to give

@t .h � h0/.s; t / D O.e��s/; s � S0:

�e latter identity is equivalent to

@th.s; t / D .CC � C�/C O.e��s/; (7.7)

for s � S0.

In particular, the Harmonic conjugate �g.s; t / of h.s; t / on the strip satis�es

g.s; t / D B C .CC � C�/s C O.e��s/;

for some B 2 R, as follows by integrating the Cauchy–Riemann equations

@sg D @th; @tg D �@sh;

together with the estimates (7.5) and (7.7).

�is estimate together with (7.4) �nally gives the sought asymptotic bound of

a.s C i t / WD g.s; t /C ih.s; t /;

after possibly choosing a smaller � > 0.

Remark 7.2. In the case when � D �dJP ˛ D �d˛.JP �/ for some smooth func-

tion ˛ W P ! R, the map

.R � .P � R/;R �ƒ/ �! .P � C; L/;

.t; .p; z// 7�! .p; t � ˛.p/C iz/;

can be seen to pull back JP ˚ i to the cylindrical lift of JP .

In the following we �x a regular compatible almost complex structure JP on

P which moreover is integrable in some neighbourhood of the double-points of

…Lag.ƒ/.
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Proof of �eorem 2.1. Since the projection�P is . zJP ; JP /-holomorphic, and since

JP is regular, Lemma 8.2 below implies that zJP is regular as well and that the

smooth map

P W MaIb.R �ƒI zJP /=R �! MaIb.…Lag.ƒ/I JP /;

Qu 7�! �P ı Qu;

is a local di�eomorphism. We will show that

(1) P is injective, and

(2) P takes values in every component of MaIb.…Lag.ƒ/I JP /.

Observe that, since P has a natural extension to a map between the respective

compacti�cations of the above moduli spaces, it can be seen that the image of

P is closed (we refer to the proof of part (2) below for more details about these

compacti�cations). Together with the above properties, it follows that P is a dif-

feomorphism.

We begin by making the following observation. �e integrability of JP in a

neighbourhood of the double-points of …Lag.ƒ/, together with the compatibility

of JP , implies that d� is a Kähler form there. It is well-known that

d� D �ddJP f

holds in some possibly smaller neighbourhood, for some smooth real-valued func-

tion f . Locally we have

� D �dJP f C dg

for some smooth real-valued function g. �e function de�ned by

˛.z/ WD f .z/C g.i � z/

in some local holomorphic chart thus satis�es �dJP ˛ D � . �is fact will be used

in the proofs of both part (1) and (2).

(1) Since � D �dJP ˛ holds in some neighbourhood U � P of the double-

points, the identi�cation made in Remark 7.2 can be applied to identify

.R � .U � R/; zJP /

with

.U � C; JP ˚ i/:
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Suppose that two zJP -holomorphic discs Qu and Qu0 satisfy

u WD P. Qu/ D P. Qu0/:

�e boundary-condition implies that �Cı Quju�1.U / and �Cı Qu0ju�1.U / are holomor-

phic maps whose imaginary parts agree along the boundary, where we have used

the above identi�cation. By a standard result, these maps di�er by a real constant

on each component of u�1.U / that intersects @D2.

Note that u�1.U / \ @ PD2 ¤ ; by the behaviour of u near the boundary-

punctures. It thus follows that, after a translation of the t -coordinate, Qu and Qu0

may be assumed to coincide on a non-empty open set. �e union of critical points

P WD Crit. Qu/ [ Crit. Qu0/ � PD2

is a discrete set by [19, �eorem 3.5]. Now [19, Lemma 4.2] can be used to show

that the equality Qu D Qu0 holds on a both open and closed subset of int PD2 n P .

In conclusion, Qu D Qu0 holds on PD2, which implies the injectivity.

(2) In the case when the assumptions of Remark 7.2 are satis�ed, that is when

� D �dJP ˛, Lemma 7.1 can be used to construct an explicit lift to a JP -holomor-

phic disc, which immediately gives this property. In the general case we proceed

as follows.

�e above moduli spaces can be compacti�ed by using Gromov–Hofer com-

pactness. See [13] for the case of the moduli space of JP -holomorphic polygons

in P and [5] for the case of the moduli space of zJP -holomorphic discs in the sym-

plectisation. �e compacti�ed moduli spaces are manifolds having boundary with

corners.

Points in the boundary strata of these moduli spaces correspond to so called

broken con�gurations. In this setting, a broken con�guration can be identi�ed

with a connected directed tree with the extra data consisting of

� a pseudo-holomorphic disc in a moduli space as above assigned to each ver-

tex,

� a Reeb chord assigned to each directed edge,

and satisfying the following condition. Given an edge starting at the vertex v1,

ending at the vertex v2, and corresponding to the Reeb chord c, we require the

pseudo-holomorphic disc corresponding to v1 (respectively v2) to have a negative

(respectively positive) boundary-puncture at c.

A broken con�guration can be glued to give a pseudo-holomorphic disc.

Recall that the sum of d�-energies of the discs in a broken con�guration equals

the d�-energies of the corresponding glued pseudo-holomorphic disc.
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We let

P W xMaIb.R �ƒI zJP /=R �! xMaIb.…Lag.ƒ/I JP /

be the natural extension of P to a continuous map on the compacti�ed moduli

spaces, where the domain should be interpreted as the compacti�cation of the

quotient MaIb.R �ƒI zJP /=R.

By the formula for the d�-energy in terms of the action of Reeb chords,

together with the fact that there are only �nitely many Reeb chords on ƒ, it fol-

lows that there are �nitely many non-empty moduli spaces as above in the case

under consideration. Moreover, the above compactness theorems imply that each

moduli space has �nitely many components.

We prove the theorem by induction on the d�-energy. Assume that the state-

ment has been shown for every moduli space consisting of discs having d�-energy

strictly less than A. We must now show that P maps into each component of the

moduli space MaIb.…Lag.ƒ/I JP / consisting of JP -holomorphic polygons having

d�-energy equal to A.

We begin with the case of a non-compact component of the moduli space

MaIb.…Lag.ƒ/I JP /, i.e. a component whose compacti�cation has non-empty

boundary. Since each pseudo-holomorphic disc in a broken con�guration

corresponding to a boundary-point has d�-area strictly less than A, the induc-

tion hypothesis implies that the above map P maps into its boundary. Gluing a

broken con�guration in xMaIb.R � ƒI zJP /=R being a point in the preimage

of such a boundary-point produces a solution contained in the interior of

MaIb.R � ƒI zJP /=R. Furthermore, this solution projects to the corresponding

component of MaIb.…Lag.ƒ/I JP /, which �nishes the claim in this case.

�e remainder of the proof concerns the case of a compact component of

MaIb.…Lag.ƒ/I JP /, i.e. a component that is a closed manifold. In this case we

proceed as follows to show the existence of a lifted solution.

Recall the existence of the smooth function ˛ W U ! R satisfying � D �dJP ˛,

where U � P is a neighbourhood of the double-points. We choose a cut-o�

function � W P ! R�0 having support inside U and which has the property that

� D 1 in a neighbourhood V � U of the double-points. We construct the smooth

function

ˇ W P � R �! R;

p 7�!

8

<

:

�.p/ � ˛.p/; p 2 U

0; p … U:
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Consider the one-parameter family of smooth one-forms �s on P �R de�ned

by

�s.p; z/ WD

8

<

:

dz C s�; p 2 P n U;

dz � dJP ..1� s/ˇ C s˛/; p 2 U:

Observe that �1 D dzC � coincides with the original contact form on P �R and

that each �s coincides with the original contact form in the neighbourhood V �R

containing the Reeb chords.

�e induced one-parameter family

�s WD ker�s � T .P � R/

of tangent hyper-plane �elds satis�es the following properties for each s 2 Œ0; 1�.

� �s is transverse to @z .

� �s is invariant with respect to translations of the z-coordinate.

� �s coincides with the contact-distribution ker.dz C �/ in V � R.

� d� restricts to a symplectic form on �s .

For every s 2 Œ0; 1� we lift JP to a an almost complex structure Js on the

symplectisation R � .P � R/ which is uniquely determined by the requirements

that

� Js is invariant with respect to translations of the t and z-coordinates,

� Js@t D @z ,

� Js�s D �s , and

� �P is .Js; JP /-holomorphic.

First observe that, since �1 D ker.dz C �/ is the contact distribution, by con-

struction we have J1 D zJP . For the same reasons, since �s agrees with the contact

distribution in V � R, it follows that Js D zJP in R � .V � R/ for each s 2 Œ0; 1�.

Second, it can be checked that J0 coincides with the pull-back of the almost

complex structure JP ˚ i on P � C under the di�eomorphism

� W R � .P � R/ �! P � C;

.t; .p; z// 7�! .p; t � ˇ.p/C iz/:
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To that end, observe that the hypersurfaces ¹tº�P�R are mapped by � to level-sets

of the smooth function

� W P � C �! R;

.p; x C iy/ 7�! x C ˇ.p/;

and that, since

��.�dJP ˚i�/ D ��.dy � dJP ˇ/ D dz � dJP ˇ D �0;

the .JP ˚ i/-complex tangencies to the latter hypersurfaces correspond to

J0-complex tangencies to the former.

Recall that we want to lift a JP -holomorphic disc lying in a transversely cut

out closed component

M � MaIb.…Lag.ƒ/I JP /:

By using Lemma 7.1 together with the above .J0; JP ˚ i/-holomorphic di�eo-

morphism � we can lift each u 2 M to a �nite-energy J0-holomorphic disc in the

symplectisation. We use

zM � MaIb.R �ƒI J0/

to denote the component of the moduli space containing these lifts, which is trans-

versely cut out by Lemma 8.2. Observe that zM is a closed manifold and that the

above projection induces a di�eomorphism zM ! M.

Consider the connected component

W �
[

s2Œ0;1�

MaIb.R �ƒI Js/

containing zM. Again, the above projection induces a map zP W W ! M, which

thus is of degree one when restricted to W \ ¹s D 0º D zM.

Lemma 8.2 implies that W is transversely cut out, and is hence a smooth �nite-

dimensional manifold. �e goal is to show thatW is compact. In this case, sinceW

is a compact cobordism from the closed manifold W\ ¹s D 0º D zM to the closed

manifold W \ ¹s D 1º, it follows that zP restricted to W \ ¹s D 1º has degree one

as well. In particular, W \ ¹s D 1º is non-empty, and there is a zJP -holomorphic

lift of any solution inside M.

To show the compactness of W we argue as follows. First, recall that Js D zJP

in a neighbourhood of the form R � .V � R/ where V � R contains all the Reeb

chords on ƒ. In particular, outside of some compact subset of the domain, two

solutions in W are solutions to the same boundary-value problem.
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Second, since we have

R@z D kerd� � kerd�s; �@z
�s D 1;

the pair .d�; �s/ is a so-called stable Hamiltonian structure on P � R. Moreover,

Js is compatible with this stable Hamiltonian structure in the sense described in

[5, Section 2.2]. In conclusion, it follows that the Gromov–Hofer compactness

applies to the moduli-space W of Js-holomorphic curves.

Furthermore, the computation

�dJs .t � .1 � s/ˇ/ D �s C .1� s/dJP ˇ D dz C s�

shows that the function t � .1 � s/ˇ on the symplectisation is weakly Js-convex.

�is implies that the maximum-principle holds for this function pulled back to any

Js-holomorphic curve, which prevents certain bad breakings.

�e above shows that W may be compacti�ed as usual. However, no sequence

of curves in W can converge to a broken solution, since such a solution

necessarily would project under zP to a broken solution in the boundary of
xM � MaIb.…Lag.ƒ/I JP /, which is empty by assumption. It thus follows that

W was compact to begin with.

8. Transversality for lifted discs

Let �P be .J; JP /-holomorphic. In this section we show that the transversal-

ity of certain moduli spaces of J -holomorphic discs Qu in the symplectisation

of P � R follows from the transversality of the corresponding moduli space of

JP -holomorphic discs

P. Qu/ WD �P ı Qu:

It should be mentioned that we do not specify which functional-analytic set-up

we are using. On the other hand, the proofs use arguments applied to solutions of

a linearised problem which are smooth, as follows by elliptic regularity. Hence,

these arguments can be applied independently of the functional-analytic set-up.

8.1. A sketch of the construction of the linearised operator. Here we sketch

the construction of the linearisations of the non-linear Cauchy–Riemann operators

under consideration.
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�e moduli spaces of the above JP -holomorphic discs are constructed as the

vanishing-locus of the section

u 7�! x@JP
u D duC JPdu ı i

of a bundle

E
0;1 �! B:

Here B denotes a Banach manifold consisting of maps

u W .D2; @D2/ �! .P;…Lag.ƒ//

in an appropriate Sobolev class. We refer to [13] for more details.

By the linearisation of x@JP
at a JP -holomorphic disc u 2 B we denote the

linear operator

Du WD �F ı T x@JP
W TuB �! �0;1.u�TP /;

where �F is the projection to the �bre over u of the bundle E0;1.

By the choice of a metric, one can make the identi�cation

TuB ' �.u�TP; uj�
@D2T .…Lag.ƒ///;

where the right-hand side denotes the space of sections in u�TP which take value

in the sub-bundle uj�
@D2T .…Lag.ƒ// along the boundary. Observe that we have

to consider the completion of the space of smooth sections with respect to an

appropriate Sobolev norm, but that we have suppressed this from the notation.

In the the case of the symplectisation R � .P � R/ there are similar construc-

tions, where x@J becomes a section in the bundle

zE0;1 �! zB

over the Banach manifold zB consisting of maps

Qu W . PD2; @ PD2/ �! .R � .P � R/;R �ƒ/

in an appropriate Sobolev class (with positive weights). We refer to [1] and [7] for

examples of this, although the analytical set-up there di�ers from that in [13].

In any case, when B and zB consists of maps in suitable Sobolev spaces, the

linearisation Du at a solution u of the respective non-linear Cauchy–Riemann

operator is elliptic. We use

indexDu D dim kerDu � dim cokerDu

to denote its Fredholm index. In the case when the linearisation Du is surjec-

tive, that is cokerDu D 0, it follows that a neighbourhood of u in its moduli

space is transversely cut out. In particular, this neighbourhood is a smooth �nite-

dimensional manifold.
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8.2. �e transversality results. Let J be a (not necessarily cylindrical) almost

complex structure on R � .P � R/ that is invariant under translation in the t and

z-coordinates, satis�es J@t D @z , and which has the property that

�P W R � .P � R/ �! P

is .J; JP /-holomorphic. Furthermore, we assume that J preserves the contact-

planes above neighbourhoods of the double-points of …Lag.ƒ/ � P .

We �x the metric

Qg WD dt ˝ dt C .�P /
�.g/C .dz C �/˝ .dz C �/;

g.v1; v2/ WD d�.v1; JPv2/; vi 2 TP;

on R � .P � R/, where g is the metric on P induced by the symplectic form and

choice of compatible almost complex structure. Observe that under the splitting

T.t0;.p0;z0//.R � .P � R// D R@t ˚ ker.dz C �/˚ R@z

the exponential map induced by Qg takes the form

eexp.t0;.p0;z0//.t; v; 0/ D .t0 C t; .expp0
.v/; z0 C F.p0; v///;

eexp.t0;.p0;z0//.t; 0; z/ D .t0 C t; p0; z0 C z/;

where exp denotes the exponential map on P induced by the metric g, and where

F W P � ker.dz C �/ �! R

is a smooth function.

We use eexp to make the identi�cation

T Qu
zB ' �. Qu�T .R � .P � R//; Quj�

@D2.T .R �ƒ///

and exp to make the identi�cation

TuB ' �.u�TP; uj�
@D2.T…Lag.ƒ///:
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Writing

u WD �P ı Qu;

the tangent-map

T�P W �. Qu�T .R � .P � R/// �! �.u�TP /

has a canonical extension to

T�P W �0;1. Qu�T .R � .P � R/// �! �0;1.u�TP /:

Using the properties

�P ı eexp.0; v; 0/ D exp.v/;

�P ı eexp.t; 0; z/ D exp.0/;

T �P .x@J Qu/ D T�P .d QuC Jd Qu ı i/

D x@JP
.�P ı Qu/

it readily follows that

Lemma 8.1. For the above choices, and u D �P ı Qu, we have

T�P ıD Qu D Du ı T�P :

In particular, the restriction of T�P induces a linear map

TP W kerD Qu �! kerDu:

Lemma 8.2. Let J be as above, and consider a �nite-energy J -holomorphic disc

Qu W . PD2; @ PD2/ �! .R � .P � R/;R �ƒ/

with punctures asymptotic to Reeb chords, and write u WD �P ı Qu. It follows that

indexD Qu D indexDu C 1:

If Du is surjective it follows that D Qu is surjective as well and, moreover, that the

tangent-map

TP W T Qu.MaIb.R �ƒI J /=R/ �! Tu.MaIb.…Lag.ƒ/I JP //

induced by the projection P is an isomorphism.
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Proof. �e statement concerning the indices follow from their expressions in terms

of the gradings of the Reeb chords (see Section 4.2.4).

We now investigate

kerTP D kerD Qu \ kerT�P ;

where

kerT�P � �. Qu�T .R � .P � R//; Quj�
@D2.T .R �ƒ///

consists of sections in the one-dimensional trivial complex sub-bundle whose �bre

is given by Rh@t ; @zi.

Using the fact that J is invariant under translation of the t and z-coordinates,

it follows that D Qujker T �P
can be identi�ed with the standard Cauchy–Riemann

operator on this trivial complex bundle. Hence, kerTP � kerT�P can be seen to

consist of holomorphic sections.

Using the identi�cation of xC iy 2 C with x@t C y@z , such a section is more-

over identi�ed with a holomorphic function h W PD2 ! C. By elliptic regularity for

the solutions in kerD Qu, we may suppose that h extends to a continuous function

on the closed unit disc.

Since the linearised boundary condition moreover implies that h is real

(i.e. takes values in R@t ) when restricted to the boundary, it now follows that h is

constant and real. In other words,

kerTP D R@t

is one-dimensional.

In conclusion, we have shown that

1C dim kerDu � dim kerD Qu:

In the case when cokerDu D 0, we have

indexD Qu D 1C indexDu D 1C dim kerDu;

which together with the above inequality yields indexD Qu � dim kerD Qu. Finally,

this implies that

indexD Qu D dim kerD Qu;

and thus that cokerD Qu D 0. From this it also follows that TP is an isomorphism.
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Let V be an exact Lagrangian cobordism arising as �1
H .R � ƒ0/, where the

Hamiltonian �ow

�s
H .t; .p; z// D .t; .p; z � s�.t///

is as described in Section 5.4. In other words, �.t/; �.t/0 � 0, �.t/ has sup-

port contained in ŒN;C1/, and � 0.t / has compact support. We also assume that

.R � ƒ/ [ V only has transverse double-points and that its Legendrian ends are

chord-generic. For the cylindrical lift zJP to R � .P � R/ of a compatible almost

complex structure JP on P , observe that the projection again induces a map

P W Mf Ia;e;b..R �ƒ/ [ V I zJP / �! Mf Ia;e;b.…Lag.ƒ [ƒ0/I JP /;

Qu 7�! �P ı Qu;

of moduli spaces, where f and e denote either Reeb-chords or double-points.

Lemma 8.3. Let zJP be the cylindrical lift of JP and consider

Qu 2 Mf Ia;e;b..R �ƒ/ [ V I zJP /

and

u WD �P ı Qu

as above. It follows that

indexD Qu D indexDu

in the case when e is a double-point and

indexD Qu D indexDu C 1

in the case when e is a Reeb chord. Moreover, the following holds.

(1) Suppose that JP is integrable in a neighbourhood of the double-points of

…Lag.P /; if �P ı Qu is constant, i.e. Qu is a strip contained a plane of the form

R � .¹qº � R/, it follows that Qu is transversely cut out.

(2) If the negative puncture e is mapped to a double-point of .R�ƒ/[ V and if

JP is regular, then Qu is transversely cut out as well.
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Proof. �e statement concerning the indices again follow from their expressions

in terms of the gradings of the Reeb chords and the double-points (see

Sections 4.2.4 and 5.2).

Observe that Lemma 8.1 applies in this setting as well, that is, the projection

T�P induces a map

TP W kerD Qu �! kerDu:

(1) We assume that the domain of Qu is D2 n ¹p0; p1º and that its image is

contained in the plane R � .¹qº � R/ living over a double-point

q 2 …Lag.ƒ [ƒ0/ � P:

We useL˙ � TqP denote the tangent-planes of the two branches of…Lag.ƒ[ƒ0/

at q. Furthermore, we make a conformal identi�cation of the domainD2n¹p0; p1º

with ¹s C i t I t 2 Œ0; 1�º � C.

We consider an element Q�.s C i t / 2 kerD Qu and let

�.s C i t / WD TP. Q�/:

We begin by showing that �.s C i t / D 0.

By the integrability assumption, there is a holomorphic chart near q 2 .P; JP /

which moreover induces an identi�cation TqP ' C
n. Without loss of generality

we may assume that the subspace L� is identi�ed with the real-part Rn � C
n

while LC is the real span of ¹ei�j ej ºj D1;:::;n, where ei denotes the standard basis

of Cn, and 0 < �i < � .

Because of the integrability of JP near q, the linearisation Du at the constant

solution

u W D2 n ¹p0; p1º �! ¹qº � P

is the standard Cauchy–Riemann operator on sections

� W D2 n ¹p0; p1º �! C
n ' TqP:

In the above choice of holomorphic coordinates, it follows that the j -th component

�j .s C i t / solves the boundary-value problem

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

@s�j .s C i t /C i@t�j .s C i t / D 0;

�j .s C i0/ 2 R;

�j .s C i1/ 2 Rei�j :
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In particular �j .sCi t / is holomorphic. Again, elliptic regularity implies that � has

a continuous extension to the boundary of the unit disc. Since �j ¤ 0, the open

mapping theorem shows that the holomorphic function �j satisfying the above

boundary conditions must vanish identically.

In conclusion, an element Q� 2 D Qu satis�es

TP. Q�/ D 0

and must hence be tangent to Qu. In other words, it corresponds to an in�nitesimal

conformal reparametrisation of the domain, from which the claim follows.

(2) As in the proof of Lemma 8.2 we will investigate

kerTP D kerD Qu \ kerT�P :

Again, it follows that kerT�P � �. Qu�T .R� .P �R/// consists of the sections of

the trivial complex bundle whose �bre x@t Cy@z can be identi�ed with xCiy 2 C.

Recall that, since zJP is invariant under translation of the t and z-coordinates,

elements of kerTP can be identi�ed with holomorphic functions h W PD2 ! C

that, by elliptic regularity, have a continuous extension to the boundary of the

closed unit disc.

�e linearised boundary condition implies that

8

<

:

h.s C i0/ 2 R;

h.s C i1/ 2 R.1� i� 0.R//;

where we have used an appropriate identi�cation of D2 n ¹p0; p1º with

¹s C i t I t 2 Œ0; 1�º � C:

By using the open-mapping theorem it can be seen that h actually maps into the

cone .�1/kR�0.1� i� 0.R// for some k 2 ¹0; 1º (recall that � 0.R/ � R�0).

�e linearised boundary condition has a discontinuity at the negative boundary-

puncture p 2 @D2 mapping to the double-point e. It follows that h must vanish

there. Suppose that the t -coordinate takes the value t0 at the double-point e and

observe that � 0.t0/ > 0 by construction. Examining the linearised boundary con-

dition near the puncture p one sees that, for each � 0.t0/ > ı > 0, there is some

� > 0 for which

h.ei�p/ 2

8

<

:

.�1/kR�0.1� i.� 0.t0/C .�ı; ı///; 0 � � > ��;

.�1/kR�0; � > � � 0;
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where we have holomorphically identi�ed the domain of h with the unit disc.

See Figure 3 for a schematic picture.

Unless h vanishes identically, a Schwarz-re�ection together with the open map-

ping theorem shows that the image of h must intersect the open quadrant

¹x C iyI x; y 2 .�1/kR>0º:

Together with � 0.R/ � R�0, this contradicts the fact that the image of h is con-

tained inside of the cone .�1/kR�0.1� i� 0.R//.

In conclusion, we have shown that TP is injective and hence that

indexD Qu D indexDu

D dim kerDu

� dim kerD Qu:

�is implies that dim cokerD Qu D 0, i.e. that Qu is transversely cut out.

y

x

�1 1

� maxt2R �
0.t /

Figure 3. �e shaded region is the cone .�1/kR�0.1 � i� 0.R// for k D 1. �e arrow

schematically depicts the behaviour of h along the (oriented) boundary near the negative

puncture p when k D 1.

Remark 8.4. �e integrability condition in part (1) of the above lemma can be

dropped. Using a separation of variables, the corresponding linearised equation

can be solved in the general case as well. By analysing such a solution it can be

shown that its projection �.s C i t / either vanishes identically or blows up near a

puncture. In the above proof, the open mapping theorem is used in order to deduce

this.
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A. Appendix

�e following standard lemma is used in the invariance proof.

Lemma A.1. Let V be an exact Lagrangian cobordism fromƒ� to ƒ in the sym-

plectisation .R�Y; d.et�//. Let V 0 D �1
Hs
.V / be an exact Lagrangian cobordism

from ƒ� to ƒ0 which is Hamiltonian isotopic to V (we allow ƒ� D ;).

If �s
Hs

is supported in Œ�N;C1/�K for some compact setK � Y andN > 0,

then there exists an exact Lagrangian cobordism W from ƒ to ƒ0 satisfying that

� V ˇW is isotopic to V 0 by a compactly supported Hamiltonian isotopy, and

� W is Hamiltonian isotopic to R �ƒ by a Hamiltonian isotopy as above.

Remark A.2. In particular, this lemma can be applied to the Hamiltonian isotopy

of W that it produces.

Proof. Take a su�ciently large number A > 0 such that V \ ¹t � Aº and

V 0 \ ¹t � Aº both are cylindrical. Consider a smooth cut-o� function � W R ! R

satisfying 0 � �.t/ � 1, �j.�1;A� D 1, and whose support is contained inside

.�1; B� for some B > A.

We de�ne

Ws WD ..�1; A��ƒ/ [ �s
.1��/H .V \ ¹t � Aº/;

and observe thatW0 D R�ƒ, while W WD W1 is an exact Lagrangian cobordism

from ƒ to ƒ0.

To infer that W1 is cylindrical outside of a compact set we have used the as-

sumption that Hs has support inside R � K where K is compact, which implies

that �s
H .Œ�k; k��K/ � R �K, k D 1; 2; 3; : : : is an exhaustion by compact sets.

We can make the identi�cation

V ˇW D �1
.1��/H .V /;

where the right-hand side obviously is exact Lagrangian isotopic to V 0 via the

compactly supported isotopy

V� WD �1
.1���/H .V /; V0 D V 0; V1 D V ˇW

parametrised by � 2 Œ0; 1�.

Finally,W is Hamiltonian isotopic to R�ƒ via a Hamiltonian isotopy having

support in ŒA;C1/�K by construction.
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For the following lemma, we assume that g is a metric on ƒ for which .f; g/

constitutes a Morse–Smale pair. We let .C �
Morse.f /; df / denote the induced Morse

co-complex. Recall that L � R � .P � R/ is a manifold with a cylindrical end

L \ ¹t � �2º D Œ�2;C1/�ƒ � R � .P � R/;

and that F˙ are Morse-functions on L as de�ned in Section 6.2.1.

Lemma A.3. Consider a metric onLwhich coincides with dt˝dtCg on ¹t � 0º.

After a perturbation of this metric and of the function F�, we may assume that the

induced Morse co-complex satis�es

.C �
Morse.F�/; dF�/ D .C �

Morse.FC/˚ C ��1
Morse.f /; dF�/;

where

dF� D

�

dFC 0

� df

�

:

In other words, .C �
Morse.F�/; dF�/ D Cone.�/ is the mapping-cone of a chain-

map

� W .C �
Morse.F�/; dF�/ �! .C �

Morse.f /; df /:

Proof. By considering the action-�ltration of this Morse co-complex it follows

that the sub-space

C ��1
Morse.f / � C �

Morse.F�/

is a sub-complex. �e only non-trivial part of the above statement is thus that

the di�erential dF� restricted to this sub-complex may be assumed to coincide

with df .

We restrict our attention to the domain

U WD Œ0; B� �ƒ � L � R � .P � R/;

on which we let s WD et jU be the restriction. We construct the one-parameter

family

F�.s; p/ WD �2˛.s/C ..1� �/s C �˛.s//�2f .p/; � 2 Œ0; 1�;

of smooth functions on U , where ˛.s/ and f are as constructed in Section 6.2.1.

One can check that F� is a one-parameter family of functions all whose negative

gradients point outwards of U , and such that F0 D F�jU .

Recall that ˛.s/ D s for s � eA�1, ˛.eBC1=2/ D 0, and ˛0.eB/ < 0.

�e critical points of F� satisfy

.�2˛0.s/C ..1� �/C �˛0.s//�2f .p//ds C ..1� �/s C �˛.s//�2df .p/ D 0:
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For � > � > 0 su�ciently small, it follows that critical points .t; p/ of F� are in

bijection with critical points p of f , and have t -coordinate satisfying A � t < B .

Moreover, since ˛00.s/ < 0 for s 2 ŒeA; eB �, the critical points of F� are all non-

degenerate.

Recall that eA is the unique critical point of ˛.s/, and that ˛.eA/ > 0.

All critical points of F1 are thus contained in the hypersurface ¹t D Aº. Since

F1 is of the form ˛.s/.�2 C �2f / in a neighbourhood of this hypersurface, we

may assume that .F1; dt ˝ dt C g/ is a Morse–Smale pair for which

.C �
Morse.F1/; dF1

/ D .C ��1
Morse.f /; df /

under the obvious identi�cation of critical points.

Consider the canonical projection

� W U D Œ0; B� �ƒ �! ƒ;

which maps gradient �ow lines of .F�; dt ˝ dt C g/ to (reparametrised) gradient

�ow lines of .f; g/.

Any gradient �ow line of F� which is tangent to the t -direction in U must be

contained entirely in a line of the form R � ¹pº, where p is a critical point of f .

In particular, such a gradient �ow line cannot connect two critical points.

Consequently, a non-trivial gradient �ow line of negative expected dimension

occurring in the family .F�; dt ˝ dt C g/, which connects two critical points,

projects under � to a non-trivial (reparametrised) gradient �ow-line of .f; g/ in

ƒ, which moreover connects the corresponding critical points of f . An index

computation implies that they both have the same expected dimension.

Since .f; g/ is a Morse–Smale pair by assumption, the above argument shows

that there cannot be any non-trivial gradient �ow lines of negative expected di-

mension in the family .F�; dt ˝ dt C g/. It follows that this family induces a

trivial cobordism of the rigid gradient �ow lines.

After a generic perturbation of this family, we conclude that

.C �
Morse.F0/; dF0

/ D .C �
Morse.F1/; dF1

/;

where the complex on the left is obtained by some generic perturbation of the pair

.F0; dt ˝ dt C g/.

Finally, this shows that we may assume that the sub-complex

.C ��1
Morse.f /; df / � .C �

Morse.F�/; dF�/

has a di�erential given by

dF� jC.f / D dF0
jC.f / D dF1

jC.f / D df :



104 G. Dimitroglou Rizell

References

[1] C. Abbas, Pseudoholomorphic strips in symplectizations. II. Fredholm theory and

transversality. Comm. Pure Appl. Math. 57 (2004), no. 1, 1–58. MR 2007355

Zbl 1073.53104

[2] A. Abbondandolo and M. Schwarz, On the Floer homology of cotangent bundles.

Comm. Pure Appl. Math. 59 (2006), no. 2, 254–316. MR 2190223 Zbl 1084.53074

[3] M. Abouzaid, On the wrapped Fukaya category and based loops. J. Symplectic

Geom. 10 (2012), no. 1, 27–79. MR 2904032 Zbl 1298.53092

[4] M. Abouzaid and P. Seidel, An open string analogue of Viterbo functoriality. Geom.

Topol. 14 (2010), no. 2, 627–718. MR 2602848 Zbl 1195.53106

[5] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, Compactness

results in symplectic �eld theory. Geom. Topol. 7 (2003), 799–888. MR 2026549

Zbl 1131.53312

[6] Y. Chekanov, Di�erential algebra of Legendrian links. Invent. Math. 150 (2002),

n,. 3, 441–483. MR 1946550 Zbl 1029.57011

[7] D. L. Dragnev, Fredholm theory and transversality for noncompact pseudoholomor-

phic maps in symplectizations. Comm. Pure Appl. Math. 57 (2004), no. 6, 726–763.

MR 2038115 Zbl 1063.53086

[8] T. Ekholm, Rational symplectic �eld theory over Z2 for exact Lagrangian cobor-

disms. J. Eur. Math. Soc. (JEMS) 10 (2008), no. 3, 641–704. MR 2421157

Zbl 1154.57020

[9] T. Ekholm, Rational SFT, linearized Legendrian contact homology, and Lagrangian

Floer cohomology. In I. Itenberg, B. Jöricke, and M. Passare (eds.), Perspectives in

analysis, geometry, and topology. On the occasion of the 60th birthday of O. Viro.

Progress in Mathematics, 296. Birkhäuser/Springer, New York, 2012, 109–145.

MR 2884034 MR 2867634 (collection) Zbl 1254.57024 Zbl 1230.00045 (collection)

[10] T. Ekholm, J. Etnyre, and M. Sullivan, �e contact homology of Legendrian sub-

manifolds in R2nC1. J. Di�erential Geom. 71 (2005), no. 2 177–305. MR 2197142

Zbl 1103.53048

[11] T. Ekholm, J. Etnyre, and M. Sullivan, Non-isotopic Legendrian submanifolds in

R2nC1. J. Di�erential Geom. 71 (2005), no. 1, 85–128. MR 2191769 Zbl 1098.57013

[12] T. Ekholm, J. Etnyre, and M. Sullivan, Orientations in Legendrian contact homol-

ogy and exact Lagrangian immersions. Internat. J. Math. 16 (2005), no. 5, 453–532.

MR 2141318 Zbl 1076.53099

[13] T. Ekholm, J. Etnyre, and M. Sullivan, Legendrian contact homology inP�R. Trans.

Amer. Math. Soc. 359 (2007), no. 7, 3301–3335. MR 2299457 Zbl 1119.53051

[14] T. Ekholm, J. B. Etnyre, and J. M. Sablo�, A duality exact sequence for Leg-

endrian contact homology. Duke Math. J. 150 (2009), no. 1, 1–75. MR 2560107

Zbl 1193.53179

http://www.ams.org/mathscinet-getitem?mr=2007355
http://zbmath.org/?q=an:1073.53104
http://www.ams.org/mathscinet-getitem?mr=2190223
http://zbmath.org/?q=an:1084.53074
http://www.ams.org/mathscinet-getitem?mr=2904032
http://zbmath.org/?q=an:1298.53092
http://www.ams.org/mathscinet-getitem?mr=2602848
http://zbmath.org/?q=an:1195.53106
http://www.ams.org/mathscinet-getitem?mr=2026549
http://zbmath.org/?q=an:1131.53312
http://www.ams.org/mathscinet-getitem?mr=1946550
http://zbmath.org/?q=an:1029.57011
http://www.ams.org/mathscinet-getitem?mr=2038115
http://zbmath.org/?q=an:1063.53086
http://www.ams.org/mathscinet-getitem?mr=2421157
http://zbmath.org/?q=an:1154.57020
http://www.ams.org/mathscinet-getitem?mr=2884034
http://www.ams.org/mathscinet-getitem?mr=2867634
http://zbmath.org/?q=an:1254.57024
http://zbmath.org/?q=an:1230.00045
http://www.ams.org/mathscinet-getitem?mr=2197142
http://zbmath.org/?q=an:1103.53048
http://www.ams.org/mathscinet-getitem?mr=2191769
http://zbmath.org/?q=an:1098.57013
http://www.ams.org/mathscinet-getitem?mr=2141318
http://zbmath.org/?q=an:1076.53099
http://www.ams.org/mathscinet-getitem?mr=2299457
http://zbmath.org/?q=an:1119.53051
http://www.ams.org/mathscinet-getitem?mr=2560107
http://zbmath.org/?q=an:1193.53179


Lifting pseudo-holomorphic discs and applications 105

[15] Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic �eld theory.

Geom. Funct. Anal. (2000), Special Volume, Part II, 560–673. GAFA 2000 (Tel Aviv,

1999). MR 1826267 Zbl 1821865

[16] J. B. Etnyre, L. L. Ng, and J. M. Sablo�, Invariants of Legendrian knots and coher-

ent orientations. J. Symplectic Geom. 1 (2002), no. 2, 321–367. MR 1959585

Zbl 1024.57014

[17] A. Floer, Morse theory for Lagrangian intersections. J. Di�erential Geom. 28 (1988),

no. 3, 513–547. MR 965228 Zbl 0674.57027

[18] K. Fukaya, P. Seidel, and I. Smith, �e symplectic geometry of cotangent bundles

from a categorical viewpoint. In A. Kapustin, M. Kreuzer and K.-G. Schlesinger

(eds.), Homological mirror symmetry. Lecture Notes in Physics, 757. Springer, Berlin,

2009, 1–26. MR 2596633 Zbl 1163.53344 Zbl 1151.81001 (collection)

[19] L. Lazzarini, Existence of a somewhere injective pseudo-holomorphic disc. Geom.

Funct. Anal. 10 (2000), 829–862. MR 1791142 Zbl 1003.32004

[20] D. McDu� and D. Salamon, J -holomorphic curves and symplectic topology. Amer-

ican Mathematical Society Colloquium Publications 52, 2nd ed., American Mathe-

matical Society, Providence, R.I., 2012. MR 2954391 Zbl 1272.53002

[21] J. W. Robbin and D. A. Salamon, Asymptotic behaviour of holomorphic strips. Ann.

Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 5, 573–612. MR 1849689

Zbl 0999.53048

[22] J. M. Sablo� and L. Traynor, Obstructions to Lagrangian cobordisms between

Legendrians via generating families. Algebr. Geom. Topol. 13 (2013), no. 5,

2733–2797. MR 3116302 Zbl 1270.53096

[23] J.-C. Sikorav, Some properties of holomorphic curves in almost complex mani-

folds. In Michèle Audin and Jacques Lafontaine (eds.), Holomorphic curves in sym-

plectic geometry. Progress in Mathematics, 117. Birkhäuser, Basel, 1994, 165–189.

MR 1274929 MR 1274923 (collection)

[24] D. V. Widder, Functions harmonic in a strip. Proc. Amer. Math. Soc. 12 (1961), 67–72.

MR 0132838 Zbl 0096.07703

Received Mai 20, 2013

Georgios Dimitroglou Rizell,

Department of Pure Mathematics and Mathematical Statistics,

Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road,

Cambridge, CB3 0WB, U.K.

e-mail: g.dimitroglou@maths.cam.ac.uk

http://www.ams.org/mathscinet-getitem?mr=1826267
http://zbmath.org/?q=an:1821865
http://www.ams.org/mathscinet-getitem?mr=1959585
http://zbmath.org/?q=an:1024.57014
http://www.ams.org/mathscinet-getitem?mr=965228
http://zbmath.org/?q=an:0674.57027
http://www.ams.org/mathscinet-getitem?mr=2596633
http://zbmath.org/?q=an:1163.53344
http://zbmath.org/?q=an:1151.81001
http://www.ams.org/mathscinet-getitem?mr=1791142
http://zbmath.org/?q=an:1003.32004
http://www.ams.org/mathscinet-getitem?mr=2954391
http://zbmath.org/?q=an:1272.53002
http://www.ams.org/mathscinet-getitem?mr=1849689
http://zbmath.org/?q=an:0999.53048
http://www.ams.org/mathscinet-getitem?mr=3116302
http://zbmath.org/?q=an:1270.53096
http://www.ams.org/mathscinet-getitem?mr=1274929
http://www.ams.org/mathscinet-getitem?mr=1274923
http://www.ams.org/mathscinet-getitem?mr=0132838
http://zbmath.org/?q=an:0096.07703
mailto:g.dimitroglou@maths.cam.ac.uk

	Introduction
	Results
	General definitions
	Background on Legendrian contact homology
	Background on wrapped Floer homology
	Applications of Theorem 2.1
	Proof of Theorem 2.1
	Transversality for lifted discs
	Appendix
	References

