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1. Introduction

Classical Morita theory (see [17]) describes when two rings have equivalent cat-
egories of representations. By now there are many generalizations of this theory
by varying what is represented and where it is represented (see e.g. [18, 8, 10, 3,
2, 20]).

In [13, 14, 15], motivated by recent success of higher categorical methods in
both topology (see e.g. [9, 19]) and representation theory (see e.g. [1, 7, 11, 4]), we
started a systematic study of the 2-representation theory of finitary 2-categories.
The latter should be thought of as 2-analogues of finite dimensional algebras.
Assuming the existence of adjunction morphisms (which should be thought of
as 2-analogues of an involution on a finite dimensional algebra) we constructed
certain natural classes of 2-representations and established, under some natural
conditions, a 2-analogue of Schur’s lemma as well as analogues of other crite-
ria for simplicity of a representation. In this article we drop the assumption on
existence of adjunction morphisms and study Morita theory for arbitrary finitary
2-categories.

In view of the different known versions of Morita theory (as in [18, 8, 10, 3,
2, 20]), our main results are as expected. Each finitary 2-category is biequiva-
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lent to the (opposite of the) endomorphism 2-category of its representable (prin-
cipal) 2-representations. Our main result asserts that Morita equivalent finitary
2-categories can be obtained one from the other by taking the (opposite of the)
endomorphism category of a suitable “projective generator” or, in other words,
by adding and/or removing retracts of principal 2-representations. Along the way
we obtain a full classification of all retracts of principal 2-representations and
show that indecomposable retracts are given by indecomposable 1-morphisms
which square to an idempotent (the latter might decompose). In line with the
common phenomenon that “useful” categorifications of semisimple algebras and
categories are usually not semisimple (see e.g. [4, 19]), retracts of projective
2-representations do not necessarily split off as direct summands.

As an application we describe Morita equivalence classes for finitary 2-cat-
egories of projective functors associated to finite dimensional algebras. This is
an important class of finitary 2-categories which originally appeared in [13], and
which later, in [15], played the role of an important prototype of a certain class of
“simple” finitary 2-categories appearing in an analogue of the Artin—Wedderburn
Theorem. As it turns out, the classification is not obvious and Morita equivalence
classes are described in terms of adding/removing semi-simple direct summands
(under some additional restrictions). We also show that for 2-categories of Soergel
bimodules the Morita equivalence classes correspond to isomorphism classes of
Coxeter systems.

The paper is organized as follows. In Section 2 we recall the classical Morita
theory for finitary k-linear categories. Section 3 is a brief introduction to the
2-representation theory of finitary 2-categories. In Section 4 we define and clas-
sify projective 2-representations. Although our main techniques come from cate-
gory theory (see [2]), we also use the classical combinatorial description of idem-
potent matrices with non-negative integer coefficients from [6]. In Section 5 we
prove our main result. We complete the paper with some examples and applica-
tions in Section 6.
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2. Morita theory for finitary k-linear categories

In this section we present some well-known results from classical Morita theory
for finite dimensional associative algebras in a form that resembles our subsequent
treatment of Morita theory for finitary 2-categories. We denote by IN the set of
positive integers.

2.1. Finitary k-linear categories. Throughout the article, let k be an algebraically
closed field. A k-linear category is a category enriched over the category k-Mod
of k-vector spaces, meaning that morphisms form k-vector spaces and composi-
tion of morphisms is k-bilinear. A k-linear category C is called finitary provided
that

o (is skeletally finite, that is it has finitely many isomorphism classes of ob-
jects;

e all morphism spaces in € are finite dimensional (over k).
A finitary k-linear category C is called reduced if we additionally have

e for any i € C the (finite dimensional unital) k-algebra C(i, i) is local.

2.2. Representations of finitary k-linear categories. Let C be a finitary k-line-
ar category. By a representation of € we mean a k-linear functor M: ¢ — k-Mod.
A finitary representation of C is a k-linear functor M: ¢ — k-mod, where k-mod
denotes the category of finite-dimensional k-vector spaces. Given two represen-
tations M and N of €, a morphism «: M — N is just a natural transformation from
M to N. All (finitary) representations of € together with morphisms between them
form an abelian category denoted C-Mod (resp. C-mod).

One important example of a representation of € is given by the representable
functor C(i,-) for i € €. For M € C-Mod we have the Yoneda isomorphism

Home (C(i,-), M) = M(1)

given by ¢ — ¢(1;). In particular, as M — M(3) is exact, it follows that the
representation C(i, ) is projective. We denote by C-proj the full additive sub-
category of C-mod consisting of all projective C-modules and note that C-proj
coincides with the full additive closure (by which we mean closure under direct
sums, direct summands, and isomorphisms) of the C(i, ) for i € C. Further, any
indecomposable projective C-module is isomorphic to C(i, ) - e, where e is an
indecomposable idempotent in C(i, i) (the latter being canonically isomorphic to
Ende(€(i, -))P).



4 V. Mazorchuk and V. Miemietz

A progenerator for C-mod is a full subcategory P in C-proj such that the addi-
tive closure of P coincides with C-proj.

2.3. Morita theorem. Forreduced k-linear categories the Morita theorem looks
as follows.

Proposition 1. Let A and C be two reduced finitary k-linear categories. Then the
categories A-mod and C-mod are equivalent if and only if the categories A and
C are equivalent.

Proof. Let ®: A — C be an equivalence with inverse ¥: € — A. These functors
give rise to functors

_o®: C-mod — A-mod and _oW¥: A-mod — C-mod.

These latter functors define inverse equivalences as required.

Conversely, let ®: ¢-mod — A-mod and ¥: A-mod — C-mod be mutually
inverse equivalences. They restrict to equivalences between C-proj and A-proj.

Letiq, i,,...,1ix be afixed set of representatives of the isomorphism classes
of objects in € and let € be the full subcategory of € consisting of these objects.
Then €' is a skeleton of € and hence is equivalent to C. Let X¢ be the full subcate-
gory of C-proj with objects C(i;,—) fort = 1,2, ..., k. The Yoneda isomorphism
gives an isomorphism of categories between Xe and (€')°P. Similarly we define
A’ and X 4 and get an isomorphism between X 4 and (A’)°P. Note that X¢ is a
multiplicity free additive generator of C-proj. The equivalence & thus maps it to a
multiplicity free additive generator of A-proj. Hence ®(X¢) is isomorphic to X 4
which implies that the categories €’ and A’ are isomorphic. Therefore € and A are
equivalent. O

In the general case we have the following.
Theorem 2 (Morita Theorem for k-linear categories). Let A and C be two finitary
k-linear categories. Then the following assertions are equivalent.
(a) There exists a progenerator P € C-mod such that P°P is equivalent to A.
(b) The categories A-proj and C-proj are equivalent.

(c) The categories A-mod and C-mod are equivalent.
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Proof. Claim (c) implies claim (b) as any categorical equivalence sends projective
objects to projective objects. If ®: A-proj — C-proj is an equivalence, then the
image of the full subcategory in A-mod with objects A(i, ), i € A, under ® is a
progenerator for C-proj. Hence claim (b) implies claim (a). Finally, if there exists
a progenerator P € C-mod such that P°P is equivalent to A, then the functors

PRy —: A-mod — C-mod and Home(P,-): C-mod — A-mod

are easily seen to be mutually inverse equivalences of categories (for the definition
of P ® 4 — we refer to e.g. [16, Page 1139]). |

2.4. Image of a functor. Let A and C be two categories and F: A — C be a
functor. In general, one cannot speak about the “image” of F. However, if both A
and € are small and F induces an injective map from objects of A to objects of C,
then we can define the image F(A) of F to be the subcategory of € which consists
of all objects F(i) for i € A and all morphisms F(«) where « is a morphism in A.

3. Finitary 2-categories and their 2-representations

3.1. Various 2-categories. In this paper by a 2-category we mean a strict locally
small 2-category (see [12] for a concise introduction to 2-categories and bicat-
egories). Let C be a 2-category. We will use i, j,... to denote objects in C;
I-morphisms in € will be denoted by F, G, .. .; 2-morphisms in € will be denoted
by «, f8,.... For i € C we denote by 1; the corresponding identity 1-morphism.
For a 1-morphism F we denote by idr the corresponding identity 2-morphism.
We will write og for horizontal composition of 2-morphisms and o, for vertical
composition of 2-morphisms. The opposite 2-category C°P is obtained by revers-
ing all 1-morphisms and keeping the direction of all 2-morphisms.

Denote by Cat the 2-category of all small categories. Let k be an algebraically
closed field. Denote by Iy, the 2-category whose objects are small k-linear fully
additive categories, by which we mean additive categories which are idempotent-
closed (or Karoubian); 1-morphisms are additive k-linear functors and 2-mor-
phisms are natural transformations. Denote by Ql]{: the full 2-subcategory of 2
whose objects are fully additive categories A such that A has only finitely many
isomorphism classes of indecomposable objects and all morphism spaces in A are
finite dimensional. We also denote by Ry the full subcategory of 2y containing
all objects which are equivalent to A-mod for some finite dimensional associative
k-algebra A.
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3.2. Finitary 2-categories. A 2-category C is called finitary (over k), see [13],
if the following conditions are satisfied:

o ( has finitely many objects up to equivalence;

e for any i,j € C we have C(i, j) € 21]1{ and horizontal composition is both
additive and k-linear;

e forany i € € the 1-morphism 1; is indecomposable.

3.3. Homomorphisms, strong transformations and modifications. Here we
closely follow [12]. Let A and C be 2-categories. A homomorphism

HA—C
consists of the following data:

e a map H from objects of A to objects of C;

e functors
H; j: A(L, j) — C(H(1), H(3));

e natural isomorphisms

hG,Fi Hi’j (G) o} Hi’j (F) —> Hi’j (G o} F)
and
h;: Tgg) — Hii(13);

such that the following conditions are satisfied:
hioc,F o1 (hy,g °0 idn; ;) = hu,Gor o1 (idm, , 1) ©0 hG,F),
idy; ;p) = hp,1; 01 (idl; ;@) €0 hi),
idm; ;@ = hayF o1 (hy oo idm, ;)
Given homomorphisms H and G from A to C a strong transformation
> H—G

is given by the following data:

e functors
®;: HG) — G(i);

e natural isomorphisms

gr: G(F) 0o ®; — @5 0 H(F);
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such that the following conditions are satisfied:

9GoF ©1 (8G.F 00 ide;) = (idey 20 hG F) o1 (96 o0 idu@) ©1 (ide(G) 20 ¢F);
ide; o9 hy = ¢y, o1 (81 0g idg;).
If the natural isomorphisms ¢r are identities, the strong transformation is called a

strict transformation.
Given two strong transformations ®, ¥: H — G a modification

0:d— WV
is a collection of 2-morphisms
Oi: &3 — ¥

such that

YE o1 (idgr) 00 01) = (05 oo idu)) ©1 ¢F.

3.4. 2-representations. Let C be a finitary 2-category. We define the following
2-categories of 2-representations of C:

e the 2-category C-MOD has as objects all homomorphisms from € to Cat,
as 1-morphisms all strong transformations and as 2-morphisms all modifica-
tions;

e the 2-category C-amod has as objects all homomorphisms from € to 2y, as
I-morphisms all strong transformations and as 2-morphisms all modifica-
tions;

e the 2-category C-afmod has as objects all homomorphisms from € to A
as 1-morphisms all strong transformations and as 2-morphisms all modifica-
tions;

e the 2-category C-mod has as objects all homomorphisms from € to Ry, as
I-morphisms all strong transformations and as 2-morphisms all modifica-
tions.

These are indeed 2-categories since 2, Ql]l{ and Ry are. We will write Home for
Home-afmod~
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3.5. Biequivalence. Let A and C be two 2-categories. A biequivalence
HA—C

is a homomorphism which is essentially surjective on objects and which is a local
equivalence, that is H; ; is an equivalence for all i and j. The 2-categories A and
C are called biequivalent if there is a biequivalence from A to C. Biequivalence is
an equivalence relation, see [12, Subsection 2.2].

Alternatively, two homomorphisms H: A — € and G: € — A are mutually
inverse biequivalences if there exist strong transformations

HoG 25 1de, (1a)
5]
Ide — Ho G, (Ib)
GoH -5 1duldy —> GoH (1)

and modifications
01: @1 0Py — 14
05 : Tgog —> Py 0 Oy,
O3: WyoW, —> 1jq,,
04: Igon —> W20 ¥y

such that the latter are isomorphisms.

3.6. Cancellative envelope of a 2-category. Let C be a finitary 2-category.
Define a new 2-category C as follows:

e C has the same objects as C;

e |-morphisms in € are all possible expressions of the form Fx, . x,, where

.....

k € NandF, Xj,..., Xg are 1-morphisms in C such that F = Xj o--- 0 X,
and also all possible expressions of the form (1;)g, where i € C;

L é(Fxl ..... X s GY1 ..... Ym) = G(Fa G),
e the identity 1-morphisms are (1;)g, where i € C;

e horizontal composition of 1-morphisms is defined via

e both horizontal and vertical composition of 2-morphisms are induced from
the corresponding compositions in C.
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Forgetting the subscripts of 1-morphisms defines a 2-functor from € to € which
is a biequivalence by construction. The category C is cancellative in the sense that
for any 1-morphisms F, G and H in C the equality FoH = Go Himplies F = G
and, moreover, the equality Ho F = H o G implies F = G.

3.7. 2-representations of biequivalent 2-categories. We will need the follow-
ing observation.

Proposition 3. Let A and C be two biequivalent finitary 2-categories. Then the
2-categories A-afmod and C-afmod are biequivalent.

Proof. Every homomorphism H: A — € induces a homomorphism
—oH: C-afmod — A-afmod.

IfH: A — Cand G: C — A are inverse biequivalences, then we claim that _ o H
and _ o G are also inverse biequivalences. Given the data of (1) and (2), com-
position with Ide_afmod and Id 4-afmoq defines the data establishing biequivalences
between A-afmod and C-afmod. O

Combining Proposition 3 with construction of the cancellative envelope in
Subsection 3.7, we may, without loss of generality, always assume that € is can-
cellative.

4. Projective 2-representations

4.1. Principal 2-representations. Let C be a finitary 2-category. Forany i € C
we have the principal (finitary) 2-representation C(i, ) of € which we denote
by IP;. For any M € C-afmod we have the Yoneda equivalence of categories

Hom(i‘—afmod(IPiy M) = M(l) (3)

given by evaluation at 1;, which is, moreover, surjective on objects (the proof is
analogous to [15, Lemma 3]). The direct sum of principal 2-representations with
every i € C occurring exactly once is the 2-analog of a “free module of rank one”
in classical representation theory.
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For M € C-afmod consider the 2-category M defined as follows:

e objects of M are (1, ®, ', P) where PP is a direct sum of principal 2-repre-
sentations, ®, ®': P — M are strong transformations and n: ® — @ is a
modification;

e a l-morphism from (5, ®, &', P) to (¢, ¥, ¥, P’) is a strong transformation

A:P— P
such that

YoA =0,

VoA =7
and

Copidp =n;

e a 2-morphism of M is just a modification
AA— A

such that
Cog A =mn.

The 2-category M is the 2-category of principal covers of M, from which, as we
will see below in Proposition 4, we can recover M as a colimit. This will be im-
portant in obtaining a description of projective 2-representations in Proposition 5
and is to be thought of as a substitute for “having enough projective modules” in
classical representation theory.

Define a 2-functor Y from M to C-afmod by sending (1, ®, ®’,P) to P and
defining Y as the identity on both 1-morphisms and 2-morphisms. Recall that
a (strict) cocone (N,20) of Y is an object N € C-afmod together with, for any
(n, @, ¥, P) € M, an assignment of two strong transformations

@1, @25 T(T], CD, CD/, ]P) — N

and a modification
0: @1 —> @2,
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i.e.
0,
T
QH(T],@,Q/,IP) = ]P \\l_wn/ N
02
such that for all 2-morphisms
AA— A
in M as above, we have
0; Op A= 0;7.

A strict colimit of T is an initial object in the 2-category of cocones of Y. Clearly,
the pair (M, ) defined via

n
V,0,0.p) = (&= ')

is a strict cocone of Y.

Proposition 4. The cocone (M, 1) is a strict colimit.

Proof. Let (N, 20) be another strict cocone of Y in C-afmod. To define a strong
transformation ®: M — N, leti € €, X,Y € M(i) and f: X — Y. Consider
(n, ®, @', P;) such that ® is a strict transformation sending 1; to X, @’ is a strict
transformation sending 1 to Y and 7 is a modification which evaluates to f (these
exist by the Yoneda lemma). Due to strictness of (N, 20) as a cocone, we neces-

sarily have ® (X i> Y) = W(,,9,9/,p;)(11). On the other hand, the latter defines
a morphism from (M, ) to (N, 20). The claim follows. O

4.2. Projective 2-representations. Let C be a finitary 2-category. A finitary
2-representation P of C is called projective if Home (P, —) preserves all small col-
imits.

Proposition 5. A finitary 2-representation P of C is projective if and only if it is
a retract of a direct sum of principal 2-representations.

Proof. We follow the classical argument from [2, Proposition 2]. From the Yoneda
lemma it follows that all principal representations (and their direct sums) are pro-
jective. Let IP be a direct sum of principal 2-representations and P a retract of
P, that is there exist ®: P — P and W: P — P such that ®WV is isomorphic to
the identity on P. Then Home (P, _) is isomorphic to Home (PP, —) o W and hence
commutes with all small colimits (as Home (P, —) does).
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Let now M be a projective finitary 2-representation of €. By Proposition 4,
M is equivalent to the colimit of Y : M — C-afmod. Since Home (M, _) preserves
all small colimits, we have

Home (M, M) = Home(M, lim Y') = lim Home (M, T).
— —

Via this equivalence, the identity on M thus must have a representative in the right
hand side. This means that there exists a direct sum PP of principal 2-representations
and ®: P — M such that the identity on M is represented in the term indexed by
(ide, @, ®, P), say by some V. This means that ®W is the identity on M. The
claim follows. U

4.3. Idempotent matrices with non-negative integer coefficients. For an arbi-
trary n € IN we denote by 0, the zero n x n matrix and by 1, the identity n x n
matrix. We will need the following result from [6, Theorem 2].

Proposition 6. Let M be an idempotent matrix with non-negative integer coeffi-
cients. Then there is a permutation matrix S such that ST'M S has the form

0, A AB
0 1, B 4)
0 0 O,

for some matrices A and B.

4.4. Idempotent endomorphisms of principal representations. By (3), for
every i,j € € we have Home.atmoa(Pi. Pj) = €(j, 1), which means that ev-
ery homomorphism from IP; to P; is isomorphic to right multiplication by some
I-morphism in C(j, i). Similarly, given a finite direct sum of principal 2-repre-
sentations (with, say, & summands), every endomorphism & of this direct sum is
isomorphic to right multiplication by a k x k matrix whose coefficients are appro-
priate 1-morphisms in €. We will call a summand of any entry in this matrix a
summand of ®.

Let
k

P=(Pr;,
s=1
be a finite direct sum of principal 2-representations of C and ® € Ende_atmod(P).
We associate with ® a matrix M := Mg defined as follows: the matrix M is
a block k x k matrix with blocks indexed by the summands of P. The rows of
the (r, s)-block (i.e. block-row index r and block-column index s) are indexed
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by indecomposable 1-morphisms in C(i,, j) for any j in €. The columns of the
(r, s)-block are indexed by indecomposable 1-morphisms in C(iy, j) for any j in
C. Let F be an indecomposable 1-morphism in C(i,, j) and G be an indecom-
posable 1-morphism in C(iy, j'). Then the (F, G)-entry in the (r, s)-block is given
by the multiplicity of G as a direct summand of ®(F) (in particular, if this entry
is nonzero, then j = j’). Note that M is a square matrix with non-negative in-
teger coeflicients. Furthermore, if ¥ € Ende_atmod(P), then MeMy = Myos.
In particular, ¥ is idempotent, by which we mean W? =~ W, if and only if we have
M\% = My.

Assume that ® =~ ®2 # 0, then M # 0. By Proposition 6, in this case all
diagonal entries of M are equal to either 0 or 1 and there is at least one non-
zero diagonal entry. Let F;,F,,...,F, be a complete list of indecomposable
I-morphisms indexing the non-zero diagonal entries of M.

Lemma 7. (a) Foreveryi € {1,2,...,m}, let j;, k; be such that F; € C(j;,k;).
Then there is a unique indecomposable summand T'; of ®, given by right multipli-
cation by an indecomposable 1-morphism G; € C(j;, j;), and such that

Ii(Fi))2FioG; =F, @& X,

Jor some 1-morphism X; € C(3;, k;).
(b) We have &(X) = X o G; = 0.

Proof. We use Proposition 6 to reduce M to the form M given by (4). Then
the multiplicities of ®(F;) are given by the row v of M indexed by F;. Note
that F; indexes a row in the second row of blocks of the 3 x 3 block decomposi-
tion of M. Therefore ®(F;) = F; @ Y for some Y with ®(Y) = 0. Now there
is a unique indecomposable summand I'; of ® which contributes the summand
F; above, and it is given by right multiplication with a unique indecomposable
I-morphism G; € C(j;, ji). Define X; via F; o G; = F; & X;. Then, with X;
being a summand of Y and I'; being a summand of ®, we have that I';(X;) is a
summand of ®(Y) and hence equals zero. ]

Lemma 8. Fori €{l1,2,...,m} the 1-morphism G; satisfies
GioG =G ®Q;,

where
GioQi =0

and

®(Qi) =0.



14 V. Mazorchuk and V. Miemietz

Proof. From Lemma 7(a) we have that G; is the only indecomposable summand
of ® sending F; to F; (plus something). This yields that G; is a summand of
G; o G; occurring with multiplicity one (since F; appears with multiplicity one
in F; o G;). In particular, it follows that G; = F;, for some j; € {1,2,...,m}.
We also have G;, = G;, so that Q; = Xj,. From Lemma 7(b) we thus get
®(Q;) = 0, in particular Q; o G; = 0. To prove G; o Q; = 0 we compute G}
in two different ways. On the one hand,

G ~Gio(G®Q)=G dQ &G 0Q;.
On the other hand,
G} =(Gi®Q)oG =G ®Q ®Qi oG;.

Now G; o Q; = 0 follows from Q; o G; = 0 by comparing the two isomorphisms
above. O

Lemma9. Leti, j € {1,2,...,m} be such that G; % G;.
(a) We have ®(G; o G;j) = 0.
(b) We have G; o G; = 0.

Proof. We use Proposition 6 to reduce M to the form M given by (4). Note
that G; indexes a row in the second block of the 3 x 3 block decomposition of
M, so ®(G;) = G; ® Y with ®(Y) = 0. The composition G; o Gj is a direct
summand of ®(G;). Since G; % G;, the composition G; o G; does not contain G;
as a direct summand (by Lemma 7(a)) and is hence contained in Y, implying that
®(G; o Gj) = 0. This proves claim (a).

As (G; 0 G;) o G; is a summand of ®(G; o G;), we obtain (G; 0Gj) o G; =0
by (a). On the other hand, G; o (G; o G;) contains, as a summand, G; o G; by
Lemma 8. This implies claim (b) and completes the proof. O

Note that it is possible that G; = G; fori # j, where i, j € {1,2,...,m}.
Therefore we define I" to be the multiplicity free direct sum of all I'; for i <
{1,2,...,m}. Similarly, define ® such that I'> ~ I" @ ®. From the above dis-
cussion it follows that the endomorphism ® is given by putting, for each i, a copy
of Q; (as given by Lemma 8) in the appropriate places. Define IT to be a summand
of ® suchthat ® = I' & © @ I1. As an immediate corollary from Lemma 8 we
have.

Corollary 10. We have 0 = 0.
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Lemma 11. We have the following identities:
(@) TTIT = OI = I'M? = II?T" =0,

(b)) =T @Il @ 2,

(c) M3 =0,

(d) ? = MT'IL.

Proof. Using Corollary 10, we compute
reeel=0xd>=TgO0a'MaIl ¢ oI ¢

which implies
MI~TMeIl & eI & 12 (3)

Inserting the right hand side of (5) into the first summand on the right we obtain
Nx=ITNe NI ®eIeN?) el ¢ eI eI (6)

Using Corollary 10 and comparing the right hand sides of (5) and (6) gives the
identities 'TIT' = I'I® = I'l1? = 0. Inserting the right hand side of (5) into
the second summand on the right we obtain

NxIMeTIaeIl ¢eMNeI*)I & eIl ¢ 12 (7

Using Corollary 10 and comparing the right hand sides of (5) and (7) gives the
identities ®TT = IT2T" = 0. This proves claim (a). Claim (b) follows from (5) and
claim (a).

Let N be the matrix associated to I (similarly to how M is associated to ®).
Then both N and M — N have non-negative integer coefficients. Let S be a per-
mutation matrix such that S~'MS = M and set N = S™!NS. Then both N
and M — N have non-negative integer coefficients and from the definition of IT it
follows that N has the form

0, A B’
0 0, C'].
0 0 O,

Clearly, N3 = 0 and thus 13 = 0 proving claim (c).
Inserting (b) into one of the factors in 1> = T12, we obtain

%~ (' e I @ O)11. (8)

Now claim (d) follows from claims (a) and (c). This completes the proof. ]
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Corollary 12. We have the following isomorphisms:
(@ Te0)?x=Ta6,

b) Tre®aellN?=IeO¢Ir,

c) Te®alINTe®) =T ¢ IIT,

d Teo)(I'epeaIll) =T 06,

(e) T dOaIlN =T &6 @ IIT,

H TeaIlNP = .

Proof. Claim (a) follows from the definitions and Corollary 10. Claim (b) follows
from claim (a), Corollary 10 and Lemma 11(a). Claim (c) follows from Corol-
lary 10. Claims (d) and (e) follow from Corollary 10 and Lemma 11(a). Finally,
claim (f) follows from Corollary 10 and Lemma 11(a), (b) and (d). O

4.5. Projective 2-subrepresentations of principal 2-representations. For
i e C fix an indecomposable 1-morphism G € €(i, 1) and also a 1-morphism
Q € €(i, 1) such that

GoGz=GpQ and GoQ=QoG=QocQ=0.

Then E := G o G is a weakly idempotent 1-morphism in C(i,1i) (in the sense
that E o E =~ E). Assume now that C is cancellative. In this case the functor
(= o E); is injective when restricted to objects of IP; (j). Hence we can consider
the corresponding image IP; (j) oE. The left action of € leaves IP; (~) oE invariant.
We denote by P; g this 2-subrepresentation of P; and by A the corresponding
natural inclusion. Denote by A’: P; — P; g the strict transformation given by
sending 1; to E.

Proposition 13. The composition A'A is isomorphic to the identity on P; g.
In particular, P; g is projective.

Proof. Let F and F’ be two 1-morphisms in C. Then Fo E and F' o E are in P; .
Any morphism «: Fo E — F' o E in P; g is, by definition, of the form § oq idg
for some §: F — F'. The composition A’A is given by right multiplication by E.
Denote by 1: E — E? an isomorphism. Then the diagram

FoE Pooide FoE

idpoonl lidF/oon
ﬂooidEOOidE
FoEoE F oEoE
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where the vertical arrows are isomorphisms provides an isomorphism from the
identity on P; g to A’A. O

Corollary 14. (a) The restriction of — o E to P; g is isomorphic to the identity
functor on P; .

(b) The restriction of — o G to P; g is isomorphic to the identity functor on P; .
(c) Ende(P; E) is biequivalent to Eo C(i, i) o E.
Proof. Claim (a) is a direct consequence of Proposition 13. Claim (b) follows from

claim (a) since E 0 Q = 0 (see Lemma 8).
To prove claim (c) we consider the composition
A @ A
IPj_ —> Pi,E — Pi,E — IPj_

where ® € Ende(P; ). Then A®A’ is an endomorphism of P; and hence is given
(up to equivalence) by right multiplication with some 1-morphism F € C(i, i) by
the Yoneda Lemma. We have F o E =~ F since F € P; g by claim (a). Further,
using idempotency of E we have

F~ ®E) =~ ®(EoE) ~Eo ®E) ~EoF.

This yields that F is isomorphic to a 1-morphism in E o C(i,i) o E. If &’ €
Ende (P; g) is similarly given by some F and n: & — &' is a modification, then,
again by the Yoneda Lemma, the corresponding modification

idp og nogidpr: AGA — AD'A’

is given by some 2-morphism «: F — F'. It follows that 7 is given by restriction
of o to P; g. Claim (c) follows. O

4.6. Description of projective finitary 2-representations. Now we are ready
to describe projective 2-representations of C. We assume that C is cancellative.

Theorem 15. Let P be a projective 2-representation of C. Then

m
P= PPk, €))
s=1
for some is € Cand Eg € C(iy, is) such that E; = G; o Gy for some indecompos-
able Gy € C(is, i5) and, additionally,
GsoGy =Gy Qs and Gyo0Qy=Q;0G=Q;0Q; =0

Jor some Qg € C(is, is).
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Proof. Let P be a projective 2-representation of C. By Proposition 5, there exists a
direct sum P of principal 2-representations and strong transformations ®: P — P
and ¥: P — P such that ®WV is isomorphic to the identity endomorphism of P.
Therefore W& is isomorphic to an idempotent endomorphism of P.

By our analysis in Subsection 4.4, W is of the form V& =~ '  ©® ¢ I1
withI'? '@ ® and O¥® = VPO = 0. By Corollary 12(a) and (c), [ & ®
and (I' @ ® @ IIT") are also idempotent endomorphisms of P. Moreover, by
Corollary 12(e) and (f), we have

U= VPT @O @ NV, (10a)

Freell'xTe®aINVYP(I &6 ¢ IIDN) (10b)
and similarly Corollary 12(c) and (d) yield

re0aeNlxTe0a Nl e e) e eIl (11a)

reo=Toe0) (e IIlN(I'® 06). (11b)
Consider the strong transformations

Q=ToO)T®O@INY: P> P

Q=0T lNTa®&06): PP

We have Q'Q =~ dWQ'QPW and the latter is isomorphic to the identity on P
by (10) and (11). In the other direction, we deduce from (10) and (11) that the
composition 2’ is isomorphic to I' & ©. The latter is a diagonal idempotent
endomorphism of PP. Since C is cancellative, we have a well-defined image of
I' & ® which has the form specified in (9) by Proposition 13. Moreover, I' & ®
is isomorphic to the identity endomorphism of this image. This completes the
proof. O

We would like to emphasize here the main difference between classical repre-
sentation theory and 2-representation theory. In classical representation theory, in-
decomposable projectives correspond to indecomposable idempotents.
In 2-representation theory, the idempotent associated to an indecomposable pro-
jective 2-representation might not itself be indecomposable, but is the square of
an indecomposable 1-morphism (which itself might not be idempotent), see Ex-
ample 6.2 for an example of this.
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5. 2-Morita theory

5.1. 2-progenerators. Let C be a finitary 2-category. We denote by C-proj the
full 2-subcategory of C-afmod whose objects are projective 2-representations.
A full 2-subcategory P of C-proj is called a 2-progenerator provided that for any
projective 2-representation P of C there is P’ in the additive closure of P and strong
transformations W: P — P’ and ®: P’ — P such that ®W¥ is isomorphic to the
identity on P. For example, the 2-subcategory Pe p of C-afmod whose objects
are the principal 2-representations of C is a 2-progenerator. Note that Pe p is
biequivalent to C°P and Ende(Pe,p) is biequivalent to C. Note also that a full
2-subcategory P of C-proj is a progenerator if any principle 2-representation is a
retract of an object in the additive closure of P.

5.2. The essential 2-subcategory of a finitary 2-category. Let C be a finitary
2-category. Define a binary relation < on the set of equivalence classes of objects
of € as follows: i < j if and only if there exist ® € C(j, i) and ¥ € C(i, j) such
that ®W 2 1;. Denote by € the full 2-subcategory of € given by a choice of one
object i in each equivalence class which is a maximal element with respect to <.
We will call TC the essential 2-subcategory of C.

5.3. The main result. The following is the main result of this paper. Recall that
A°P is defined in Subsection 3.1.

Theorem 16 (Morita theorem for finitary 2-categories). Let A and C be two fini-
tary 2-categories. Then the following assertions are equivalent.

(a) Thereisa?2-progenerator® for C whose endomorphism 2-category is biequiv-
alent to AP,

(b) The 2-categories A-proj and C-proj are biequivalent.

(c) The 2-categories A-afmod and C-afmod are biequivalent.

5.4. The implication (c)=(b)=(a). Assume that A-afmod and C-afmod are
biequivalent. Since the notion of a projective 2-representation is categorical,
it follows that A-proj and C-proj are biequivalent. The image of P 4 p under such
biequivalence is a 2-progenerator for C.

5.5. The implication (a)=(b). Denote by A the endomorphism 2-category of P.
Then A°? and A are biequivalent and hence A-afmod and A°P-afmod are biequiv-
alent by Proposition 3. In particular, A-proj and A°P-proj are biequivalent by
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Subsection 5.4. It remains to show that C-proj and A°P-proj are biequivalent. We
have the obvious 2-functor

Home (P, -): C-proj — A°’-MOD.

This 2-functor sends objects of P to principal, and hence projective, 2-represen-
tations of A°P. Let P be a projective 2-representation of €. By our definition of
a 2-progenerator, there is P’ in the additive closure of P and strong transforma-
tions W: P — P’ and ®: P’ — P such that ®W¥ is isomorphic to the identity
on P. Applying Home (P, —) we get that Home (P, P’) is a direct sum of prin-
cipal 2-representations of A°P, and Home (P, P) comes together with two maps
Home (P, ) and Home (P, W) such that Home (P, @ W) is isomorphic to the iden-
tity on Home (P, P). Since Home (P, P’) is a projective 2-representation of AP,
so is Home (P, P). Therefore

Home (P, -): C-proj —> A°P-proj. (12)

Let I := {i;,...,1ix} be a cross-section of equivalence classes of objects in
C. Let P := Pj, ®---® P;, and P a 2-representation in the additive closure of
P such that there exist strong transformations ¥: P — P and ®: P — P with
the property that ®W is isomorphic to the identity on . Let M and N be two
2-representations of C, let further A, A’: M — N be strong transformations and
n: A — A’ a modification. Then the Yoneda Lemma says that Home (1P, ) maps

M — P M),

iel

N+— O NQ).

iel

Al—)@Ai,

iel

A +— @A/i,

iel
N +— @ ni.
iel

Since ® W is isomorphic to the identity on P, it follows that composition with ®
maps A, A’ or 7 to zero if and only if A = 0, A’ = 0 or n = 0, respectively. This
implies that the 2-functor Home (P, —) from (12) is locally faithful.
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Let Q denote the multiplicity-free direct sum of all objects in P up to equiva-
lence (in particular, this sum is finite). By construction, PP is a 2-progenerator for
C. Hence there is a direct sum R of principal 2-representations of € and strong
transformations ¥’: Q — R and ®': R — Q such that &'V’ is isomorphic to the
identity on Q. Since C°P is biequivalent to P¢ p, the 2-functor

Home(Pe p, —): C-proj —> End(Pe p)°P-afmod

is locally full and dense by Proposition 3. As the additive closures of Pe p and P
coincide, it follows that the 2-functor

Home (P, —): C-proj — End(P)°P-afmod

is locally full and dense. Since R belongs to the additive closure of P, we get that
the 2-functor

Home (R, -): C-proj —> End(R)°P-afmod

is locally full and dense. Finally, since ®'¥’ is isomorphic to the identity on Q,
composition with W’ gives that the 2-functor

Home(Q, —): C-proj —> End(Q)°P-afmod

is locally full and dense. The latter implies that the 2-functor Home (P, —) from (12)
is locally full and dense.

It remains to show that the 2-functor Home (P, —) from (12) is surjective on
equivalence classes of objects. Let now P be a projective 2-representation of AP.
Without loss of generality we may assume that A°P is cancellative. By Theorem 15,
P is equivalent to a direct sum of 2-representations of the form P* for some
i e A’ and E € A°P(i, i) such that E? = E. From the definition of ﬂ‘)p we have
that any such E comes from an idempotent endomorphism of an object Q € P.
Since AP is finitary (in particular, 1; is indecomposable), Q has the form Pe for
some j € Cand F? = F € C(j, j). From Corollary 14(c) it follows that E comes
from some H? = H € F o €(j, j) o F. Consequently, Home (P, P{ ;) = P and
hence Home (P, _) is surjective on equivalence classes of objects

5.6. The implication (b)=-(c). We start with the following observation (recall
that the definition of the essential 2-subcategories YA and 7€ is in Section 5.2).

Lemma 17. Under assumption (b) the 2-categories A and TC are biequivalent.
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Proof. The order < extends in the obvious way to all P; g in A-proj (and similarly
for C-proj). Note that maximal elements with respect to < will be principal. Any
biequivalence between A-proj and C-proj maps maximal elements with respect
to < (for A) to maximal elements with respect to < (for €) and hence induces a
biequivalence between T4 and TC. O

Now from Proposition 3 we have that T4-afmod and T @-afmod are biequivalent.
The proof of the implication (b)=>(c) is now completed by the following:

Proposition 18. The 2-categories C-afmod and C-afmod are biequivalent.

Proof. We have the restriction functor
Res: C-afmod — T@-afmod.

Let P be a full subcategory of T@-proj consisting of restrictions to "€ of all prin-
cipal 2-representations of C. As in the previous subsection we have the obvious
2-functor

Homy (P, -): Te-afmod — C-afmod.

Moreover, it is easy to check that Res o Homy o (P, —) is isomorphic to the identity
on T€-afmod. In particular, Hom; o (P, —) maps non-equivalent 2-representations
of 7@ to non-equivalent 2-representations of €, moreover, it is locally faithful and
locally injective on isomorphism classes of objects.

Let M and N be 2-representations of C. Let A, A’: M — N be strong trans-
formations and «: A — A’ a modification. Let j be an object of € and i be an
object of @\ T@ such that i < j. Following the notation of Subsection 5.2, we
have the commutative (up to natural isomorphism) diagram

M(®)
M(3) M(i)

’ ) M(¥) / .
Aj<§?>AJ N(@) A<§:>A
N@) N(@)
NW)

from which we have isomorphisms

%'1 Ay —> N(q))AJM(\I/)
and
£2: A} > N(®)A,M(D).
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Furthermore, we also have

ai = &' o1 (idnee) 00 @5 00 idmew)) 1 &1

This proves that Res maps non-equivalent 2-representations of € to non-equivalent
2-representations of 7@, moreover, it also proves that Res is locally faithful and
locally injective on isomorphism classes of objects.

Combined with the previous paragraph we have that

e Res and Homy (P, —) induce mutually inverse bijections between equiva-
lence classes of objects,

e Jlocally they induce mutually inverse bijections between isomorphism classes
of 1-morphisms,

e locally they induce injections in both directions on the level of 2-morphisms.

Since 2-morphism spaces are finite dimensional, we obtain that the 2-functors Res
and Homy (P, —) are mutually inverse biequivalences. O

6. Examples

6.1. Morita equivalent but not biequivalent finitary 2-categories. Denote by
A the path algebra of the quiver 1 —— 2 over k and let € be a small category
equivalent to A-proj. Denote by F the endofunctor of € given by tensoring with
Aey Ry ez A. Clearly, F? = F. Consider the 2-category C defined as follows:

e C has one object i (which we identify with C);

e l-morphisms in C are all functors which are isomorphic to a direct sum of
copies of F and the identity functor 1; = Ide;

e 2-morphisms in C are all natural transformations of functors.

Let A denote the full 2-subcategory of C-proj with objects P; and P; g. Set
A= AP,

Then A and € are Morita equivalent by Theorem 16. On the other hand, A has two
objects which are not equivalent (since the functors representing the actions of 1;
and F on P; r are isomorphic while the functors representing the actions of 1; and
F on IP; are not isomorphic). At the same time € has only one object. Hence A
and € are not biequivalent.
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6.2. Indecomposable non-idempotent 1-morphisms which square to idempo-
tent 1-morphisms. Take A = k@ k@ k over k, let D be a small category equiv-
alent to k-mod and € := D & D & D (which is equivalent to A-proj = A-mod).
Denote by E the identity functor on D and let F and K be the endofunctors of €
given by the matrices

0 E O 0 0 E
0 E E and 0 0 0],
0 0 O 0 0 O

respectively. We have K? = KF = FK = 0 and F?> =~ F®K, from which it follows
that (F @ K)? =~ F @ K. Consider the 2-category C defined as follows:

e C has one object i (which we identify with C);

e 1l-morphisms in € are all functors which are isomorphic to a direct sum of
copies of F, K and the identity functor 1; = Ide;

e 2-morphisms in C are given by scalar multiples of the identity natural trans-
formations on F, K and 1;, extended additively to their direct sums.

The 1-morphism F in C is an indecomposable non-idempotent 1-morphism which
squares to an idempotent (but decomposable) 1-morphism.

6.3. Morita equivalence classes for 2-categories of projective functors for
finite dimensional algebras. Let A be a finite dimensional k-algebra. Assume
that A = A1 @ A, ® --- D A with Ay, A, ..., Ax connected (that is indecom-
posable as algebras). Denote by C4 the 2-category defined as follows (compare
[13, 7.3]):

e objectsare 1, ...,k where we identify i with some small category equivalent
to A;-proj;

e I-morphisms are all additive functors from A;-proj to A;-proj isomorphic
to direct sums of functors realized as tensoring with either projective
Aj-A;-bimodules or, additionally, with the bimodule A4; in case i = j;

e 2-morphisms are natural transformations of functors.

Note that, up to biequivalence, €4 does not depend on the choice of small cate-
gories equivalent to A;-proj fori = 1,2, ..., k. The 2-category C4 is of particular
interest, as in [15, Theorem 13] it was shown that fiat 2-categories, which are “sim-
ple” in a certain sense, are constructed from these.
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For B =~ B, ® B, ® --- & B,, with By, B,, ..., B, connected, write A ~ B
provided that the following two conditions are satisfied:

o m=k+1,A1 ;Bl,Angz,...,Ak %Bk andBm ~ k;
e there are idempotents e, ¢’ € A such that dimeAde’ = 1.

Denote by ~ the minimal equivalence relation (on the class of all finite dimen-
sional k-algebra) containing both ~ and the classical Morita equivalence relation
for finite dimensional algebras.

Theorem 19. Let A and B be two finite dimensional k-algebras. Then C4 and Cp
are Morita equivalent if and only if A ~ B.

Proof. We first note that the 2-category Cy4 is, clearly, independent of the choice
of A within its Morita equivalence class. Hence, to prove sufficiency it is enough
to show that A ~ B implies Morita equivalence of C4 and Cp. Let P be the
principal 2-representation of B associated to B,,. We identify A with the subal-
gebra By @ --- @ By of B. Let x denote the identity in B,,. Then Bx ®x eA and
Ae’ ®i; xB are 1-morphisms in Cp. As dimeAe’ = 1, we have

Bx ®p eA ®p Ae’ @ xB =~ Bx ®) xB®dimede’ ~ p

This implies that P32 is a retract of IPfB - b ]PEB. By our choice of A we
have that the endomorphism 2-category of IP:(EB , IPZ(2 B IPE 5 is biequivalent to
the endomorphism 2-category of PS4, PS4, ..., IPEA. The claim follows.

To prove necessity, let us analyze idempotent 1-morphisms in Cy4. Let e, e’ be
primitive idempotents in A and Ae’ ®y e A the corresponding projective bimodule.
We have

Ae’ @1 eA @4 Ae’ @) eA = Ae' ®) eADdimede (13)

and hence

(Ae’' ® eA ®4 Ae’ R eA) @4 (Ae’ R A ®4 Ae’ R eA)
= (Ae/ QK eA Q4 Ae’ Ok eA)GB(dimeAe

/)2

This implies that Ae’ @ e AR 4 Ae’ Qe A is idempotent if and only if dimeAe’ = 1.
Note that, by (13), the latter is equivalent to Ae’ ®j eA being idempotent.
By Theorem 16, the Morita equivalence class of a finitary 2-category is obtained by
adding or removing retracts of indecomposable principal 2-representations. Let P
be a retract corresponding to an idempotent Ae’ ®y eA. Since Ae’ ®y; eA is idem-
potent, it factors through k-proj. This implies that the endomorphism 2-category
of P1, Py, ..., Pk, Pis biequivalent to Cp where B = A & k. This completes the
proof. O
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6.4. 2-categories of Soergel bimodules. Let (W, S) be a finite Coxeter system
and Cy the corresponding coinvariant algebra (see [21] for details). Let S(w,s)
be a 2-category of Soergel Cy -Cy -bimodules for (W, S) as defined in [13, Sub-
section 7.1] or [14, Example 3] (in those papers W is assumed to be a Weyl group,
however, our more general assumption works just fine, see [5, 21]). The 2-category
8w,s) is usually described using its defining 2-representation:

e Sw,s) has one object which is identified with some small category A equiv-
alent to Cy-mod;

e 1-morphisms of 8¢, s) are endofunctors of A isomorphic to direct sums of
endofunctors given by tensoring with Soergel bimodules;

e 2-morphisms of S, s) are natural transformations of functors.

Clearly, up to biequivalence, §(w,s) does not depend on the choice of A.

Proposition 20. Let (W, S) and (W', S’) be finite Coxeter systems. Then the
2-categories Sw,s)y and Sy sy are Morita equivalent if and only if (W, S) and
(W', S") are isomorphic.

Proof. The “if” part is obvious. The “only if” part follows from Theorem 16 and
the following two observations.

OBSERVATION 1. The 2-categories Say,s)y and Sgw 57y are biequivalent if
and only if (W, S) and (W', S") are isomorphic. The “if” part is again obvious.
To prove the “only if”” part, note that any biequivalence between 8w, s) and 8w~ 57
induces an isomorphism between the 2-endomorphism algebras of the identity 1-
morphisms in 8,5y and Sy s/y. By definition, these endomorphism algebras
are isomorphic to Cy and Cy, respectively. Finally, it is easy to check that
Cw =~ Cyr if and only if (W, S) = (W', S’).

OBSERVATION 2. The only weakly idempotent 1-morphism in Sy, s) is the
identity 1-morphism. Tensoring with a Soergel bimodule is a non-zero and exact
endofunctor of A and the latter category has only one simple object up to isomor-
phism (call it L). Let G be an indecomposable 1-morphism in Sy, sy such that
F:= GoG = G@ Q is weakly idempotent. Let m be the length of F(L) 2= F?(L).
Then m = m? and hence m = 1 (since G is nonzero). It follows that Q = 0 and
thus F = G. In particular, F is indecomposable and hence corresponds to some
element w € W and, moreover, F(L) = L. In the natural graded picture F(L) is a
graded self-dual vector space with non-zero components in degrees + the length
of w. Therefore F(L) =~ L implies that the length of w equals zero and hence w
must coincide with the identity element. Therefore F is isomorphic to the identity
I-morphism. This completes the proof. U
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