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1. Introduction

Classical Morita theory (see [17]) describes when two rings have equivalent cat-

egories of representations. By now there are many generalizations of this theory

by varying what is represented and where it is represented (see e.g. [18, 8, 10, 3,

2, 20]).

In [13, 14, 15], motivated by recent success of higher categorical methods in

both topology (see e.g. [9, 19]) and representation theory (see e.g. [1, 7, 11, 4]), we

started a systematic study of the 2-representation theory of �nitary 2-categories.

�e latter should be thought of as 2-analogues of �nite dimensional algebras.

Assuming the existence of adjunction morphisms (which should be thought of

as 2-analogues of an involution on a �nite dimensional algebra) we constructed

certain natural classes of 2-representations and established, under some natural

conditions, a 2-analogue of Schur’s lemma as well as analogues of other crite-

ria for simplicity of a representation. In this article we drop the assumption on

existence of adjunction morphisms and study Morita theory for arbitrary �nitary

2-categories.

In view of the di�erent known versions of Morita theory (as in [18, 8, 10, 3,

2, 20]), our main results are as expected. Each �nitary 2-category is biequiva-
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lent to the (opposite of the) endomorphism 2-category of its representable (prin-

cipal) 2-representations. Our main result asserts that Morita equivalent �nitary

2-categories can be obtained one from the other by taking the (opposite of the)

endomorphism category of a suitable “projective generator” or, in other words,

by adding and/or removing retracts of principal 2-representations. Along the way

we obtain a full classi�cation of all retracts of principal 2-representations and

show that indecomposable retracts are given by indecomposable 1-morphisms

which square to an idempotent (the latter might decompose). In line with the

common phenomenon that “useful” categori�cations of semisimple algebras and

categories are usually not semisimple (see e.g. [4, 19]), retracts of projective

2-representations do not necessarily split o� as direct summands.

As an application we describe Morita equivalence classes for �nitary 2-cat-

egories of projective functors associated to �nite dimensional algebras. �is is

an important class of �nitary 2-categories which originally appeared in [13], and

which later, in [15], played the role of an important prototype of a certain class of

“simple” �nitary 2-categories appearing in an analogue of the Artin–Wedderburn

�eorem. As it turns out, the classi�cation is not obvious and Morita equivalence

classes are described in terms of adding/removing semi-simple direct summands

(under some additional restrictions). We also show that for 2-categories of Soergel

bimodules the Morita equivalence classes correspond to isomorphism classes of

Coxeter systems.

�e paper is organized as follows. In Section 2 we recall the classical Morita

theory for �nitary k-linear categories. Section 3 is a brief introduction to the

2-representation theory of �nitary 2-categories. In Section 4 we de�ne and clas-

sify projective 2-representations. Although our main techniques come from cate-

gory theory (see [2]), we also use the classical combinatorial description of idem-

potent matrices with non-negative integer coe�cients from [6]. In Section 5 we

prove our main result. We complete the paper with some examples and applica-

tions in Section 6.
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2. Morita theory for �nitary k-linear categories

In this section we present some well-known results from classical Morita theory

for �nite dimensional associative algebras in a form that resembles our subsequent

treatment of Morita theory for �nitary 2-categories. We denote by N the set of

positive integers.

2.1. Finitaryk-linear categories. �roughout the article, letk be an algebraically

closed �eld. A k-linear category is a category enriched over the category k-Mod

of k-vector spaces, meaning that morphisms form k-vector spaces and composi-

tion of morphisms is k-bilinear. A k-linear category C is called �nitary provided

that

� C is skeletally �nite, that is it has �nitely many isomorphism classes of ob-

jects;

� all morphism spaces in C are �nite dimensional (over k).

A �nitary k-linear category C is called reduced if we additionally have

� for any i 2 C the (�nite dimensional unital) k-algebra C.i; i/ is local.

2.2. Representations of �nitary k-linear categories. Let C be a �nitary k-line-

ar category. By a representation of C we mean a k-linear functor M W C ! k-Mod.

A �nitary representation of C is a k-linear functor M W C ! k-mod, where k-mod

denotes the category of �nite-dimensional k-vector spaces. Given two represen-

tations M and N of C, a morphism ˛ W M ! N is just a natural transformation from

M to N. All (�nitary) representations of C together with morphisms between them

form an abelian category denoted C-Mod (resp. C-mod).

One important example of a representation of C is given by the representable

functor C.i; �/ for i 2 C. For M 2 C-Mod we have the Yoneda isomorphism

HomC

�

C.i; �/;M
�

Š M.i/

given by ' 7! '.1i/. In particular, as M 7! M.i/ is exact, it follows that the

representation C.i; �/ is projective. We denote by C-proj the full additive sub-

category of C-mod consisting of all projective C-modules and note that C-proj

coincides with the full additive closure (by which we mean closure under direct

sums, direct summands, and isomorphisms) of the C.i; �/ for i 2 C. Further, any

indecomposable projective C-module is isomorphic to C.i; �/ � e, where e is an

indecomposable idempotent in C.i; i/ (the latter being canonically isomorphic to

EndC.C.i; �//
op).
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A progenerator for C-mod is a full subcategory P in C-proj such that the addi-

tive closure of P coincides with C-proj.

2.3. Morita theorem. For reduced k-linear categories the Morita theorem looks

as follows.

Proposition 1. Let A and C be two reduced �nitary k-linear categories. �en the

categories A-mod and C-mod are equivalent if and only if the categories A and

C are equivalent.

Proof. Let ˆ W A ! C be an equivalence with inverse ‰ W C ! A. �ese functors

give rise to functors

� ıˆ W C-mod �! A-mod and � ı‰ W A-mod �! C-mod:

�ese latter functors de�ne inverse equivalences as required.

Conversely, let ˆ W C-mod ! A-mod and ‰ W A-mod ! C-mod be mutually

inverse equivalences. �ey restrict to equivalences between C-proj and A-proj.

Let i1; i2; : : : ; ik be a �xed set of representatives of the isomorphism classes

of objects in C and let C0 be the full subcategory of C consisting of these objects.

�en C
0 is a skeleton of C and hence is equivalent to C. Let XC be the full subcate-

gory of C-proj with objects C.it ; �/ for t D 1; 2; : : : ; k. �e Yoneda isomorphism

gives an isomorphism of categories between XC and .C0/op. Similarly we de�ne

A
0 and XA and get an isomorphism between XA and .A0/op. Note that XC is a

multiplicity free additive generator of C-proj. �e equivalenceˆ thus maps it to a

multiplicity free additive generator of A-proj. Hence ˆ.XC/ is isomorphic to XA

which implies that the categories C0 and A
0 are isomorphic. �erefore C and A are

equivalent.

In the general case we have the following.

�eorem 2 (Morita �eorem for k-linear categories). Let A and C be two �nitary

k-linear categories. �en the following assertions are equivalent.

.a/ �ere exists a progenerator P 2 C-mod such that Pop is equivalent to A.

.b/ �e categories A-proj and C-proj are equivalent.

.c/ �e categories A-mod and C-mod are equivalent.
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Proof. Claim (c) implies claim (b) as any categorical equivalence sends projective

objects to projective objects. If ˆ W A-proj ! C-proj is an equivalence, then the

image of the full subcategory in A-mod with objects A.i; �/, i 2 A, underˆ is a

progenerator for C-proj. Hence claim (b) implies claim (a). Finally, if there exists

a progenerator P 2 C-mod such that Pop is equivalent to A, then the functors

P ˝A � W A-mod �! C-mod and HomC.P; �/ W C-mod �! A-mod

are easily seen to be mutually inverse equivalences of categories (for the de�nition

of P ˝A � we refer to e.g. [16, Page 1139]).

2.4. Image of a functor. Let A and C be two categories and F W A ! C be a

functor. In general, one cannot speak about the “image” of F. However, if both A

and C are small and F induces an injective map from objects of A to objects of C,

then we can de�ne the image F.A/ of F to be the subcategory of C which consists

of all objects F.i/ for i 2 A and all morphisms F.˛/ where ˛ is a morphism in A.

3. Finitary 2-categories and their 2-representations

3.1. Various 2-categories. In this paper by a 2-category we mean a strict locally

small 2-category (see [12] for a concise introduction to 2-categories and bicat-

egories). Let C be a 2-category. We will use i; j; : : : to denote objects in C;

1-morphisms in C will be denoted by F;G; : : : ; 2-morphisms in C will be denoted

by ˛; ˇ; : : : . For i 2 C we denote by 1i the corresponding identity 1-morphism.

For a 1-morphism F we denote by idF the corresponding identity 2-morphism.

We will write ı0 for horizontal composition of 2-morphisms and ı1 for vertical

composition of 2-morphisms. �e opposite 2-category C
op is obtained by revers-

ing all 1-morphisms and keeping the direction of all 2-morphisms.

Denote by Cat the 2-category of all small categories. Let k be an algebraically

closed �eld. Denote by Ak the 2-category whose objects are small k-linear fully

additive categories, by which we mean additive categories which are idempotent-

closed (or Karoubian); 1-morphisms are additive k-linear functors and 2-mor-

phisms are natural transformations. Denote by A
f
k

the full 2-subcategory of Ak

whose objects are fully additive categories A such that A has only �nitely many

isomorphism classes of indecomposable objects and all morphism spaces in A are

�nite dimensional. We also denote by Rk the full subcategory of Ak containing

all objects which are equivalent to A-mod for some �nite dimensional associative

k-algebra A.



6 V. Mazorchuk and V. Miemietz

3.2. Finitary 2-categories. A 2-category C is called �nitary (over k), see [13],

if the following conditions are satis�ed:

� C has �nitely many objects up to equivalence;

� for any i; j 2 C we have C.i; j/ 2 A
f
k

and horizontal composition is both

additive and k-linear;

� for any i 2 C the 1-morphism 1i is indecomposable.

3.3. Homomorphisms, strong transformations and modi�cations. Here we

closely follow [12]. Let A and C be 2-categories. A homomorphism

H W A �! C

consists of the following data:

� a map H from objects of A to objects of C;

� functors

Hi;j W A.i; j/ �! C.H.i/;H.j//I

� natural isomorphisms

hG;F W Hi;j.G/ ı Hi;j.F/ ! Hi;j.G ı F/

and

hi W 1H.i/ ! Hi;i.1i/I

such that the following conditions are satis�ed:

hHıG;F ı1 .hH;G ı0 idHi;j.F// D hH;GıF ı1 .idHk;l.H/ ı0 hG;F/;

idHi;j.F/ D hF;1i ı1 .idHi;j.F/ ı0 hi/;

idHi;j.F/ D h1j;F ı1 .hj ı0 idHi;j.F//:

Given homomorphisms H and G from A to C a strong transformation

ˆ W H �! G

is given by the following data:

� functors

ˆi W H.i/ �! G.i/I

� natural isomorphisms

'F W G.F/ ıˆi �! ˆj ı H.F/I
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such that the following conditions are satis�ed:

'GıF ı1 .gG;F ı0 idˆi/ D .idˆk ı0 hG;F/ ı1 .'G ı0 idH.F// ı1 .idG.G/ ı0 'F/I

idˆi ı0 hi D '1i ı1 .gi ı0 idˆi/:

If the natural isomorphisms 'F are identities, the strong transformation is called a

strict transformation.

Given two strong transformations ˆ;‰ W H ! G a modi�cation

� W ˆ �! ‰

is a collection of 2-morphisms

�i W ˆi �! ‰i

such that

 F ı1 .idG.F/ ı0 �i/ D .�j ı0 idH.F// ı1 'F:

3.4. 2-representations. Let C be a �nitary 2-category. We de�ne the following

2-categories of 2-representations of C:

� the 2-category C-MOD has as objects all homomorphisms from C to Cat,

as 1-morphisms all strong transformations and as 2-morphisms all modi�ca-

tions;

� the 2-category C-amod has as objects all homomorphisms from C to Ak, as

1-morphisms all strong transformations and as 2-morphisms all modi�ca-

tions;

� the 2-category C-afmod has as objects all homomorphisms from C to A
f
k

,

as 1-morphisms all strong transformations and as 2-morphisms all modi�ca-

tions;

� the 2-category C-mod has as objects all homomorphisms from C to Rk, as

1-morphisms all strong transformations and as 2-morphisms all modi�ca-

tions.

�ese are indeed 2-categories since Ak, A
f
k

and Rk are. We will write HomC for

HomC-afmod.
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3.5. Biequivalence. Let A and C be two 2-categories. A biequivalence

H W A �! C

is a homomorphism which is essentially surjective on objects and which is a local

equivalence, that is Hi;j is an equivalence for all i and j. �e 2-categories A and

C are called biequivalent if there is a biequivalence from A to C. Biequivalence is

an equivalence relation, see [12, Subsection 2.2].

Alternatively, two homomorphisms H W A ! C and G W C ! A are mutually

inverse biequivalences if there exist strong transformations

H ı G
ˆ1

�! IdC; (1a)

IdC

ˆ2
�! H ı G; (1b)

G ı H
‰1

�! IdAIdA

‰2
�! G ı H (1c)

and modi�cations

�1 W ˆ1 ıˆ2 �! 1IdC ;

�2 W 1HıG �! ˆ2 ıˆ1;

�3 W ‰1 ı‰2 �! 1IdA ;

�4 W 1GıH �! ‰2 ı‰1:

such that the latter are isomorphisms.

3.6. Cancellative envelope of a 2-category. Let C be a �nitary 2-category.

De�ne a new 2-category yC as follows:

� yC has the same objects as C;

� 1-morphisms in yC are all possible expressions of the form FX1;:::;Xk
, where

k 2 N and F, X1,. . . , Xk are 1-morphisms in C such that F D X1 ı � � � ı Xk,

and also all possible expressions of the form .1i/¿, where i 2 C;

� yC.FX1;:::;Xk
;GY1;:::;Ym

/ WD C.F;G/;

� the identity 1-morphisms are .1i/¿, where i 2 C;

� horizontal composition of 1-morphisms is de�ned via

FX1;:::;Xk
ı GY1;:::;Ym

WD .F ı G/X1;:::;Xk ;Y1;:::;Ym
I

� both horizontal and vertical composition of 2-morphisms are induced from

the corresponding compositions in C.
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Forgetting the subscripts of 1-morphisms de�nes a 2-functor from yC to Cwhich

is a biequivalence by construction. �e category yC is cancellative in the sense that

for any 1-morphisms F, G and H in yC the equality F ı H D G ı H implies F D G

and, moreover, the equality H ı F D H ı G implies F D G.

3.7. 2-representations of biequivalent 2-categories. We will need the follow-

ing observation.

Proposition 3. Let A and C be two biequivalent �nitary 2-categories. �en the

2-categories A-afmod and C-afmod are biequivalent.

Proof. Every homomorphism H W A ! C induces a homomorphism

� ı H W C-afmod �! A-afmod:

If H W A ! C and G W C ! A are inverse biequivalences, then we claim that � ı H

and � ı G are also inverse biequivalences. Given the data of (1) and (2), com-

position with IdC-afmod and IdA-afmod de�nes the data establishing biequivalences

between A-afmod and C-afmod.

Combining Proposition 3 with construction of the cancellative envelope in

Subsection 3.7, we may, without loss of generality, always assume that C is can-

cellative.

4. Projective 2-representations

4.1. Principal 2-representations. Let C be a �nitary 2-category. For any i 2 C

we have the principal (�nitary) 2-representation C.i; �/ of C which we denote

by Pi. For any M 2 C-afmod we have the Yoneda equivalence of categories

HomC-afmod.Pi;M/ Š M.i/ (3)

given by evaluation at 1i, which is, moreover, surjective on objects (the proof is

analogous to [15, Lemma 3]). �e direct sum of principal 2-representations with

every i 2 C occurring exactly once is the 2-analog of a “free module of rank one”

in classical representation theory.
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For M 2 C-afmod consider the 2-category M de�ned as follows:

� objects of M are .�; ˆ;ˆ0;P/ where P is a direct sum of principal 2-repre-

sentations, ˆ;ˆ0 W P ! M are strong transformations and � W ˆ ! ˆ0 is a

modi�cation;

� a 1-morphism from .�; ˆ;ˆ0;P/ to .�; ‰;‰0;P0/ is a strong transformation

ƒ W P �! P
0

such that

‰ ıƒ D ˆ;

‰0 ıƒ D ˆ0

and

� ı0 idƒ D �I

� a 2-morphism of M is just a modi�cation

� W ƒ �! ƒ0

such that

� ı0 � D �:

�e 2-category M is the 2-category of principal covers of M, from which, as we

will see below in Proposition 4, we can recover M as a colimit. �is will be im-

portant in obtaining a description of projective 2-representations in Proposition 5

and is to be thought of as a substitute for “having enough projective modules” in

classical representation theory.

De�ne a 2-functor ‡ from M to C-afmod by sending .�; ˆ;ˆ0;P/ to P and

de�ning ‡ as the identity on both 1-morphisms and 2-morphisms. Recall that

a (strict) cocone .N;W/ of ‡ is an object N 2 C-afmod together with, for any

.�; ˆ;ˆ0;P/ 2 M, an assignment of two strong transformations

‚1; ‚2 W ‡.�;ˆ;ˆ0;P/ �! N

and a modi�cation

� W ‚1 �! ‚2;
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i.e.

W.�;ˆ;ˆ0;P/ D P

‚1

((

‚2

66
✤✤

✤✤

�� �� N

such that for all 2-morphisms

� W ƒ �! ƒ0

in M as above, we have

�� ı0 � D �� :

A strict colimit of‡ is an initial object in the 2-category of cocones of‡ . Clearly,

the pair .M;V/ de�ned via

V.�;ˆ;ˆ0;P/ WD .ˆ
�

H) ˆ0/

is a strict cocone of ‡ .

Proposition 4. �e cocone .M;V/ is a strict colimit.

Proof. Let .N;W/ be another strict cocone of ‡ in C-afmod. To de�ne a strong

transformation ‚ W M ! N, let i 2 C, X; Y 2 M.i/ and f W X ! Y . Consider

.�; ˆ;ˆ0;Pi/ such that ˆ is a strict transformation sending 1i to X , ˆ0 is a strict

transformation sending1i to Y and � is a modi�cation which evaluates to f (these

exist by the Yoneda lemma). Due to strictness of .N;W/ as a cocone, we neces-

sarily have‚.X
f

�! Y / D W.�;ˆ;ˆ0;Pi/.1i/. On the other hand, the latter de�nes

a morphism from .M;V/ to .N;W/. �e claim follows.

4.2. Projective 2-representations. Let C be a �nitary 2-category. A �nitary

2-representation P of C is called projective if HomC.P; �/ preserves all small col-

imits.

Proposition 5. A �nitary 2-representation P of C is projective if and only if it is

a retract of a direct sum of principal 2-representations.

Proof. We follow the classical argument from [2, Proposition 2]. From the Yoneda

lemma it follows that all principal representations (and their direct sums) are pro-

jective. Let P be a direct sum of principal 2-representations and P a retract of

P, that is there exist ˆ W P ! P and ‰ W P ! P such that ˆ‰ is isomorphic to

the identity on P. �en HomC.P; �/ is isomorphic to HomC.P; �/ ı‰ and hence

commutes with all small colimits (as HomC.P; �/ does).
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Let now M be a projective �nitary 2-representation of C. By Proposition 4,

M is equivalent to the colimit of‡ W M ! C-afmod. Since HomC.M; �/ preserves

all small colimits, we have

HomC.M;M/ Š HomC.M; lim
!
‡/ Š lim

!
HomC.M; ‡/:

Via this equivalence, the identity on M thus must have a representative in the right

hand side. �is means that there exists a direct sumP of principal 2-representations

and ˆ W P ! M such that the identity on M is represented in the term indexed by

.idˆ; ˆ;ˆ;P/, say by some ‰. �is means that ˆ‰ is the identity on M. �e

claim follows.

4.3. Idempotent matrices with non-negative integer coe�cients. For an arbi-

trary n 2 N we denote by 0n the zero n � n matrix and by 1n the identity n � n

matrix. We will need the following result from [6, �eorem 2].

Proposition 6. Let M be an idempotent matrix with non-negative integer coe�-

cients. �en there is a permutation matrix S such that S�1MS has the form

0

@

0a A AB

0 1b B

0 0 0c

1

A (4)

for some matrices A and B .

4.4. Idempotent endomorphisms of principal representations. By (3), for

every i; j 2 C we have HomC-afmod.Pi;Pj/ Š C.j; i/, which means that ev-

ery homomorphism from Pi to Pj is isomorphic to right multiplication by some

1-morphism in C.j; i/. Similarly, given a �nite direct sum of principal 2-repre-

sentations (with, say, k summands), every endomorphism ˆ of this direct sum is

isomorphic to right multiplication by a k�k matrix whose coe�cients are appro-

priate 1-morphisms in C. We will call a summand of any entry in this matrix a

summand of ˆ.

Let

P D

k
M

sD1

Pis

be a �nite direct sum of principal 2-representations of C and ˆ 2 EndC-afmod.P/.

We associate with ˆ a matrix M WD Mˆ de�ned as follows: the matrix M is

a block k � k matrix with blocks indexed by the summands of P. �e rows of

the .r; s/-block (i.e. block-row index r and block-column index s) are indexed
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by indecomposable 1-morphisms in C.ir ; j/ for any j in C. �e columns of the

.r; s/-block are indexed by indecomposable 1-morphisms in C.is; j/ for any j in

C. Let F be an indecomposable 1-morphism in C.ir ; j/ and G be an indecom-

posable 1-morphism in C.is; j
0/. �en the .F; G/-entry in the .r; s/-block is given

by the multiplicity of G as a direct summand of ˆ.F/ (in particular, if this entry

is nonzero, then j D j0). Note that M is a square matrix with non-negative in-

teger coe�cients. Furthermore, if ‰ 2 EndC-afmod.P/, then MˆM‰ D M‰ıˆ.

In particular, ‰ is idempotent, by which we mean‰2 Š ‰, if and only if we have

M 2
‰ D M‰ .

Assume that ˆ Š ˆ2 ¤ 0, then M ¤ 0. By Proposition 6, in this case all

diagonal entries of M are equal to either 0 or 1 and there is at least one non-

zero diagonal entry. Let F1; F2; : : : ; Fm be a complete list of indecomposable

1-morphisms indexing the non-zero diagonal entries of M .

Lemma 7. (a) For every i 2 ¹1; 2; : : : ; mº, let ji ; ki be such that Fi 2 C.ji ; ki /.

�en there is a unique indecomposable summand �i of ˆ, given by right multipli-

cation by an indecomposable 1-morphism Gi 2 C.ji ; ji/, and such that

�i .Fi / Š Fi ı Gi Š Fi ˚ Xi

for some 1-morphism Xi 2 C.ji ; ki /.

(b) We have ˆ.X/ Š X ı Gi D 0.

Proof. We use Proposition 6 to reduce M to the form zM given by (4). �en

the multiplicities of ˆ.Fi / are given by the row v of zM indexed by Fi . Note

that Fi indexes a row in the second row of blocks of the 3 � 3 block decomposi-

tion of zM . �erefore ˆ.Fi / D Fi ˚ Y for some Y with ˆ.Y/ D 0. Now there

is a unique indecomposable summand �i of ˆ which contributes the summand

Fi above, and it is given by right multiplication with a unique indecomposable

1-morphism Gi 2 C.ji ; ji/. De�ne Xi via Fi ı Gi Š Fi ˚ Xi . �en, with Xi

being a summand of Y and �i being a summand of ˆ, we have that �i .Xi / is a

summand of ˆ.Y/ and hence equals zero.

Lemma 8. For i 2 ¹1; 2; : : : ; mº the 1-morphism Gi satis�es

Gi ı Gi Š Gi ˚ Qi ;

where

Gi ı Qi D 0

and

ˆ.Qi / D 0:
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Proof. From Lemma 7(a) we have that Gi is the only indecomposable summand

of ˆ sending Fi to Fi (plus something). �is yields that Gi is a summand of

Gi ı Gi occurring with multiplicity one (since Fi appears with multiplicity one

in Fi ı Gi ). In particular, it follows that Gi Š Fji
for some ji 2 ¹1; 2; : : : ; mº.

We also have Gji
D Gi , so that Qi D Xji

. From Lemma 7(b) we thus get

ˆ.Qi / D 0, in particular Qi ı Gi D 0. To prove Gi ı Qi D 0 we compute G3
i

in two di�erent ways. On the one hand,

G3
i Š Gi ı .Gi ˚ Qi / Š Gi ˚ Qi ˚ Gi ı Qi :

On the other hand,

G3
i Š .Gi ˚ Qi / ı Gi Š Gi ˚ Qi ˚ Qi ı Gi :

Now Gi ı Qi D 0 follows from Qi ı Gi D 0 by comparing the two isomorphisms

above.

Lemma 9. Let i; j 2 ¹1; 2; : : : ; mº be such that Gi 6Š Gj .

.a/ We have ˆ.Gi ı Gj / D 0.

.b/ We have Gi ı Gj D 0.

Proof. We use Proposition 6 to reduce M to the form zM given by (4). Note

that Gi indexes a row in the second block of the 3 � 3 block decomposition of
zM , so ˆ.Gi / D Gi ˚ Y with ˆ.Y/ D 0. �e composition Gi ı Gj is a direct

summand ofˆ.Gi /. Since Gi 6Š Gj , the composition Gi ı Gj does not contain Gi

as a direct summand (by Lemma 7(a)) and is hence contained in Y, implying that

ˆ.Gi ı Gj / D 0. �is proves claim (a).

As .Gi ı Gj / ı Gj is a summand of ˆ.Gi ı Gj /, we obtain .Gi ı Gj / ı Gj D 0

by (a). On the other hand, Gi ı .Gj ı Gj / contains, as a summand, Gi ı Gj by

Lemma 8. �is implies claim (b) and completes the proof.

Note that it is possible that Gi Š Gj for i ¤ j , where i; j 2 ¹1; 2; : : : ; mº.

�erefore we de�ne � to be the multiplicity free direct sum of all �i for i 2

¹1; 2; : : : ; mº. Similarly, de�ne ‚ such that �2 Š � ˚ ‚. From the above dis-

cussion it follows that the endomorphism‚ is given by putting, for each i , a copy

of Qi (as given by Lemma 8) in the appropriate places. De�ne… to be a summand

of ˆ such that ˆ D � ˚ ‚ ˚…. As an immediate corollary from Lemma 8 we

have.

Corollary 10. We have ˆ‚ D 0.
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Lemma 11. We have the following identities:

.a/ �…� D ‚… D �…2 D …2� D 0,

.b/ … Š �…˚…� ˚…2,

.c/ …3 D 0,

.d/ …2 Š …�….

Proof. Using Corollary 10, we compute

� ˚‚˚… D ˆ Š ˆ2 D � ˚‚˚ �…˚…� ˚‚…˚…2

which implies

… Š �…˚…� ˚‚…˚…2: (5)

Inserting the right hand side of (5) into the �rst summand on the right we obtain

… Š �.�…˚…� ˚‚…˚…2/˚…� ˚‚…˚…2: (6)

Using Corollary 10 and comparing the right hand sides of (5) and (6) gives the

identities �…� D �…‚ D �…2 D 0. Inserting the right hand side of (5) into

the second summand on the right we obtain

… Š �…˚ .�…˚…� ˚‚…˚…2/� ˚‚…˚…2: (7)

Using Corollary 10 and comparing the right hand sides of (5) and (7) gives the

identities ‚… D …2� D 0. �is proves claim (a). Claim (b) follows from (5) and

claim (a).

Let N be the matrix associated to … (similarly to how M is associated to ˆ).

�en both N and M � N have non-negative integer coe�cients. Let S be a per-

mutation matrix such that S�1MS D zM and set zN D S�1NS . �en both zN

and zM � zN have non-negative integer coe�cients and from the de�nition of… it

follows that zN has the form

0

@

0a A0 B 0

0 0b C 0

0 0 0c

1

A:

Clearly, zN 3 D 0 and thus …3 D 0 proving claim (c).

Inserting (b) into one of the factors in …2 D …2, we obtain

…2 Š .�…˚…� ˚…2/…: (8)

Now claim (d) follows from claims (a) and (c). �is completes the proof.
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Corollary 12. We have the following isomorphisms:

.a/ .� ˚‚/2 Š � ˚‚,

.b/ .� ˚‚˚…�/2 Š � ˚‚˚…�,

.c/ .� ˚‚˚…�/.� ˚‚/ Š � ˚‚˚…�,

.d/ .� ˚‚/.� ˚‚˚…�/ Š � ˚‚,

.e/ ˆ.� ˚‚˚…�/ Š � ˚‚˚…�,

.f/ .� ˚‚˚…�/ˆ Š ˆ.

Proof. Claim (a) follows from the de�nitions and Corollary 10. Claim (b) follows

from claim (a), Corollary 10 and Lemma 11(a). Claim (c) follows from Corol-

lary 10. Claims (d) and (e) follow from Corollary 10 and Lemma 11(a). Finally,

claim (f) follows from Corollary 10 and Lemma 11(a), (b) and (d).

4.5. Projective 2-subrepresentations of principal 2-representations. For

i 2 C �x an indecomposable 1-morphism G 2 C.i; i/ and also a 1-morphism

Q 2 C.i; i/ such that

G ı G Š G ˚ Q and G ı Q D Q ı G D Q ı Q D 0:

�en E WD G ı G is a weakly idempotent 1-morphism in C.i; i/ (in the sense

that E ı E Š E). Assume now that C is cancellative. In this case the functor

.� ı E/j is injective when restricted to objects of Pi.j/. Hence we can consider

the corresponding image Pi.j/ıE. �e left action of C leaves Pi.�/ıE invariant.

We denote by Pi;E this 2-subrepresentation of Pi and by ƒ the corresponding

natural inclusion. Denote by ƒ0 W Pi ! Pi;E the strict transformation given by

sending 1i to E.

Proposition 13. �e composition ƒ0ƒ is isomorphic to the identity on Pi;E.

In particular, Pi;E is projective.

Proof. Let F and F0 be two 1-morphisms in C. �en F ı E and F0 ı E are in Pi;E.

Any morphism ˛ W F ı E ! F0 ı E in Pi;E is, by de�nition, of the form ˇ ı0 idE

for some ˇ W F ! F0. �e composition ƒ0ƒ is given by right multiplication by E.

Denote by � W E ! E2 an isomorphism. �en the diagram

F ı E
ˇı0idE //

idFı0�

��

F0 ı E

idF0 ı0�

��
F ı E ı E

ˇı0idEı0idE // F0 ı E ı E
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where the vertical arrows are isomorphisms provides an isomorphism from the

identity on Pi;E to ƒ0ƒ.

Corollary 14. .a/ �e restriction of � ı E to Pi;E is isomorphic to the identity

functor on Pi;E.

.b/ �e restriction of � ı G to Pi;E is isomorphic to the identity functor on Pi;E.

.c/ EndC.Pi;E/ is biequivalent to E ı C.i; i/ ı E.

Proof. Claim (a) is a direct consequence of Proposition 13. Claim (b) follows from

claim (a) since E ı Q D 0 (see Lemma 8).

To prove claim (c) we consider the composition

Pi
ƒ0

�! Pi;E
ˆ

�! Pi;E
ƒ

�! Pi

whereˆ 2 EndC.Pi;E/. �enƒˆƒ0 is an endomorphism of Pi and hence is given

(up to equivalence) by right multiplication with some 1-morphism F 2 C.i; i/ by

the Yoneda Lemma. We have F ı E Š F since F 2 Pi;E by claim (a). Further,

using idempotency of E we have

F Š ˆ.E/ Š ˆ.E ı E/ Š E ıˆ.E/ Š E ı F:

�is yields that F is isomorphic to a 1-morphism in E ı C.i; i/ ı E. If ˆ0 2

EndC.Pi;E/ is similarly given by some F0 and � W ˆ ! ˆ0 is a modi�cation, then,

again by the Yoneda Lemma, the corresponding modi�cation

idƒ ı0 � ı0 idƒ0 W ƒˆƒ0 �! ƒˆ0ƒ0

is given by some 2-morphism ˛ W F ! F0. It follows that � is given by restriction

of ˛ to Pi;E. Claim (c) follows.

4.6. Description of projective �nitary 2-representations. Now we are ready

to describe projective 2-representations of C. We assume that C is cancellative.

�eorem 15. Let P be a projective 2-representation of C. �en

P Š

m
M

sD1

Pis ;Es
(9)

for some is 2 C and Es 2 C.is; is/ such that Es D Gs ı Gs for some indecompos-

able Gs 2 C.is; is/ and, additionally,

Gs ı Gs Š Gs ˚ Qs and Gs ı Qs D Qs ı G D Qs ı Qs D 0

for some Qs 2 C.is; is/.
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Proof. Let P be a projective 2-representation of C. By Proposition 5, there exists a

direct sum P of principal 2-representations and strong transformationsˆ W P ! P

and ‰ W P ! P such that ˆ‰ is isomorphic to the identity endomorphism of P.

�erefore ‰ˆ is isomorphic to an idempotent endomorphism of P.

By our analysis in Subsection 4.4, ‰ˆ is of the form ‰ˆ Š � ˚ ‚ ˚ …

with �2 Š � ˚ ‚ and ‚‰ˆ D ‰ˆ‚ D 0. By Corollary 12(a) and (c), � ˚ ‚

and .� ˚ ‚ ˚ …�/ are also idempotent endomorphisms of P. Moreover, by

Corollary 12(e) and (f), we have

‰ˆ Š ‰ˆ.� ˚‚˚…�/‰ˆ; (10a)

� ˚‚˚…� Š .� ˚‚˚…�/‰ˆ.� ˚‚˚…�/ (10b)

and similarly Corollary 12(c) and (d) yield

� ˚‚˚…� Š .� ˚‚˚…�/.� ˚‚/.� ˚‚˚…�/ (11a)

� ˚‚ Š .� ˚‚/.� ˚‚˚…�/.� ˚‚/: (11b)

Consider the strong transformations

� WD .� ˚‚/.� ˚‚˚…�/‰ W P ! P

�0 WD ˆ.� ˚‚˚…�/.� ˚‚/ W P ! P:

We have �0� Š ˆ‰�0�ˆ‰ and the latter is isomorphic to the identity on P

by (10) and (11). In the other direction, we deduce from (10) and (11) that the

composition ��0 is isomorphic to � ˚ ‚. �e latter is a diagonal idempotent

endomorphism of P. Since C is cancellative, we have a well-de�ned image of

� ˚ ‚ which has the form speci�ed in (9) by Proposition 13. Moreover, � ˚ ‚

is isomorphic to the identity endomorphism of this image. �is completes the

proof.

We would like to emphasize here the main di�erence between classical repre-

sentation theory and 2-representation theory. In classical representation theory, in-

decomposable projectives correspond to indecomposable idempotents.

In 2-representation theory, the idempotent associated to an indecomposable pro-

jective 2-representation might not itself be indecomposable, but is the square of

an indecomposable 1-morphism (which itself might not be idempotent), see Ex-

ample 6.2 for an example of this.
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5. 2-Morita theory

5.1. 2-progenerators. Let C be a �nitary 2-category. We denote by C-proj the

full 2-subcategory of C-afmod whose objects are projective 2-representations.

A full 2-subcategory P of C-proj is called a 2-progenerator provided that for any

projective 2-representation P of C there is P0 in the additive closure ofP and strong

transformations ‰ W P ! P0 and ˆ W P0 ! P such that ˆ‰ is isomorphic to the

identity on P. For example, the 2-subcategory PC;P of C-afmod whose objects

are the principal 2-representations of C is a 2-progenerator. Note that PC;P is

biequivalent to C
op and EndC.PC;P/ is biequivalent to C. Note also that a full

2-subcategory P of C-proj is a progenerator if any principle 2-representation is a

retract of an object in the additive closure of P.

5.2. �e essential 2-subcategory of a �nitary 2-category. Let C be a �nitary

2-category. De�ne a binary relation � on the set of equivalence classes of objects

of C as follows: i � j if and only if there exist ˆ 2 C.j; i/ and ‰ 2 C.i; j/ such

that ˆ‰ Š 1i. Denote by �
C the full 2-subcategory of C given by a choice of one

object i in each equivalence class which is a maximal element with respect to �.

We will call �
C the essential 2-subcategory of C.

5.3. �e main result. �e following is the main result of this paper. Recall that

A
op is de�ned in Subsection 3.1.

�eorem 16 (Morita theorem for �nitary 2-categories). Let A and C be two �ni-

tary 2-categories. �en the following assertions are equivalent.

.a/ �ere is a 2-progeneratorP forCwhose endomorphism2-category is biequiv-

alent to A
op.

.b/ �e 2-categories A-proj and C-proj are biequivalent.

.c/ �e 2-categories A-afmod and C-afmod are biequivalent.

5.4. �e implication (c))(b))(a). Assume that A-afmod and C-afmod are

biequivalent. Since the notion of a projective 2-representation is categorical,

it follows that A-proj and C-proj are biequivalent. �e image of PA;P under such

biequivalence is a 2-progenerator for C.

5.5. �e implication (a))(b). Denote byA the endomorphism 2-category ofP.

�en A
op and A are biequivalent and hence A-afmod and A

op-afmod are biequiv-

alent by Proposition 3. In particular, A-proj and A
op-proj are biequivalent by
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Subsection 5.4. It remains to show that C-proj and A
op-proj are biequivalent. We

have the obvious 2-functor

HomC.P; �/ W C-proj �! A
op-MOD:

�is 2-functor sends objects of P to principal, and hence projective, 2-represen-

tations of Aop. Let P be a projective 2-representation of C. By our de�nition of

a 2-progenerator, there is P0 in the additive closure of P and strong transforma-

tions ‰ W P ! P0 and ˆ W P0 ! P such that ˆ‰ is isomorphic to the identity

on P. Applying HomC.P; �/ we get that HomC.P;P
0/ is a direct sum of prin-

cipal 2-representations of Aop, and HomC.P;P/ comes together with two maps

HomC.P; ˆ/ and HomC.P; ‰/ such that HomC.P; ˆ‰/ is isomorphic to the iden-

tity on HomC.P;P/. Since HomC.P;P
0/ is a projective 2-representation of Aop,

so is HomC.P;P/. �erefore

HomC.P; �/ W C-proj �! A
op-proj: (12)

Let I WD ¹i1; : : : ; ikº be a cross-section of equivalence classes of objects in

C. Let P WD Pi1
˚ � � � ˚ Pik

and P a 2-representation in the additive closure of

P such that there exist strong transformations ‰ W P ! P and ˆ W P ! P with

the property that ˆ‰ is isomorphic to the identity on P. Let M and N be two

2-representations of C, let further ƒ;ƒ0 W M ! N be strong transformations and

� W ƒ ! ƒ0 a modi�cation. �en the Yoneda Lemma says that HomC.P; �/ maps

M 7�!
M

i2I

M.i/;

N 7�!
M

i2I

N.i/;

ƒ 7�!
M

i2I

ƒi;

ƒ0 7�!
M

i2I

ƒ0

i;

� 7�!
M

i2I

�i:

Since ˆ‰ is isomorphic to the identity on P, it follows that composition with ˆ

maps ƒ, ƒ0 or � to zero if and only if ƒ D 0, ƒ0 D 0 or � D 0, respectively. �is

implies that the 2-functor HomC.P; �/ from (12) is locally faithful.
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Let Q denote the multiplicity-free direct sum of all objects in P up to equiva-

lence (in particular, this sum is �nite). By construction, P is a 2-progenerator for

C. Hence there is a direct sum R of principal 2-representations of C and strong

transformations ‰0 W Q ! R and ˆ0 W R ! Q such that ˆ0‰0 is isomorphic to the

identity on Q. Since C
op is biequivalent to PC;P, the 2-functor

HomC.PC;P; �/ W C-proj �! End.PC;P/
op-afmod

is locally full and dense by Proposition 3. As the additive closures of PC;P and P

coincide, it follows that the 2-functor

HomC.P; �/ W C-proj ! End.P/op-afmod

is locally full and dense. Since R belongs to the additive closure of P, we get that

the 2-functor

HomC.R; �/ W C-proj �! End.R/op-afmod

is locally full and dense. Finally, since ˆ0‰0 is isomorphic to the identity on Q,

composition with ‰0 gives that the 2-functor

HomC.Q; �/ W C-proj �! End.Q/op-afmod

is locally full and dense. �e latter implies that the 2-functor HomC.P; �/ from (12)

is locally full and dense.

It remains to show that the 2-functor HomC.P; �/ from (12) is surjective on

equivalence classes of objects. Let now P be a projective 2-representation of Aop.

Without loss of generality we may assume thatAop is cancellative. By �eorem 15,

P is equivalent to a direct sum of 2-representations of the form P
A

op

i;E for some

i 2 A
op and E 2 A

op.i; i/ such that E2 Š E. From the de�nition of Aop we have

that any such E comes from an idempotent endomorphism of an object Q 2 P.

Since Aop is �nitary (in particular, 1i is indecomposable), Q has the form PC

j;F for

some j 2 C and F2 Š F 2 C.j; j/. From Corollary 14(c) it follows that E comes

from some H2 Š H 2 F ı C.j; j/ ı F. Consequently, HomC.P;P
C

j;H/ Š P
A

op

i;E and

hence HomC.P; �/ is surjective on equivalence classes of objects.

5.6. �e implication (b))(c). We start with the following observation (recall

that the de�nition of the essential 2-subcategories �
A and �

C is in Section 5.2).

Lemma 17. Under assumption (b) the 2-categories �
A and �

C are biequivalent.
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Proof. �e order � extends in the obvious way to all Pi;E in A-proj (and similarly

for C-proj). Note that maximal elements with respect to � will be principal. Any

biequivalence between A-proj and C-proj maps maximal elements with respect

to � (for A) to maximal elements with respect to � (for C) and hence induces a

biequivalence between �
A and �

C.

Now from Proposition 3 we have that �
A-afmod and �

C-afmod are biequivalent.

�e proof of the implication (b))(c) is now completed by the following:

Proposition 18. �e 2-categories C-afmod and �
C-afmod are biequivalent.

Proof. We have the restriction functor

Res W C-afmod ! �
C-afmod:

Let P be a full subcategory of �
C-proj consisting of restrictions to �

C of all prin-

cipal 2-representations of C. As in the previous subsection we have the obvious

2-functor

Hom�C.P; �/ W
�
C-afmod ! C-afmod:

Moreover, it is easy to check that Res ı Hom�C
.P; �/ is isomorphic to the identity

on �
C-afmod. In particular, Hom�C

.P; �/ maps non-equivalent 2-representations

of �
C to non-equivalent 2-representations of C, moreover, it is locally faithful and

locally injective on isomorphism classes of objects.

Let M and N be 2-representations of C. Let ƒ;ƒ0 W M ! N be strong trans-

formations and ˛ W ƒ ! ƒ0 a modi�cation. Let j be an object of �
C and i be an

object of C n �
C such that i � j. Following the notation of Subsection 5.2, we

have the commutative (up to natural isomorphism) diagram

M.j/

M.ˆ/
,,

ƒj

��
ƒ0

j

��
❴

❴

❴

❴ks
˛j

M.i/
M.‰/

ll

ƒi
��

ƒ0

i

��
❴

❴

❴

❴ks
˛i

N.j/

N.ˆ/
,,
N.i/

N.‰/

ll

from which we have isomorphisms

�1 W ƒi ! N.ˆ/ƒjM.‰/

and

�2 W ƒ0

i ! N.ˆ/ƒ0

jM.‰/:
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Furthermore, we also have

˛i D ��1
2 ı1 .idN.ˆ/ ı0 ˛j ı0 idM.‰// ı1 �1:

�is proves that Res maps non-equivalent 2-representations of C to non-equivalent

2-representations of �C, moreover, it also proves that Res is locally faithful and

locally injective on isomorphism classes of objects.

Combined with the previous paragraph we have that

� Res and Hom�C
.P; �/ induce mutually inverse bijections between equiva-

lence classes of objects,

� locally they induce mutually inverse bijections between isomorphism classes

of 1-morphisms,

� locally they induce injections in both directions on the level of 2-morphisms.

Since 2-morphism spaces are �nite dimensional, we obtain that the 2-functors Res

and Hom�C
.P; �/ are mutually inverse biequivalences.

6. Examples

6.1. Morita equivalent but not biequivalent �nitary 2-categories. Denote by

A the path algebra of the quiver 1 // 2 over k and let C be a small category

equivalent to A-proj. Denote by F the endofunctor of C given by tensoring with

Ae2 ˝k e2A. Clearly, F2 Š F. Consider the 2-category C de�ned as follows:

� C has one object i (which we identify with C);

� 1-morphisms in C are all functors which are isomorphic to a direct sum of

copies of F and the identity functor 1i D IdC;

� 2-morphisms in C are all natural transformations of functors.

Let A denote the full 2-subcategory of C-proj with objects Pi and Pi;F. Set

A WD A
op:

�en A and C are Morita equivalent by �eorem 16. On the other hand, A has two

objects which are not equivalent (since the functors representing the actions of 1i

and F on Pi;F are isomorphic while the functors representing the actions of 1i and

F on Pi are not isomorphic). At the same time C has only one object. Hence A

and C are not biequivalent.
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6.2. Indecomposable non-idempotent 1-morphisms which square to idempo-

tent 1-morphisms. Take A D k˚k˚k over k, let D be a small category equiv-

alent to k-mod and C WD D ˚ D ˚ D (which is equivalent to A-proj D A-mod).

Denote by E the identity functor on D and let F and K be the endofunctors of C

given by the matrices

0

@

0 E 0

0 E E

0 0 0

1

A and

0

@

0 0 E

0 0 0

0 0 0

1

A;

respectively. We have K2 D KF D FK D 0 and F2 Š F˚K, from which it follows

that .F ˚ K/2 Š F ˚ K. Consider the 2-category C de�ned as follows:

� C has one object i (which we identify with C);

� 1-morphisms in C are all functors which are isomorphic to a direct sum of

copies of F, K and the identity functor 1i D IdC;

� 2-morphisms in C are given by scalar multiples of the identity natural trans-

formations on F, K and 1i, extended additively to their direct sums.

�e 1-morphism F in C is an indecomposable non-idempotent 1-morphism which

squares to an idempotent (but decomposable) 1-morphism.

6.3. Morita equivalence classes for 2-categories of projective functors for

�nite dimensional algebras. Let A be a �nite dimensional k-algebra. Assume

that A Š A1 ˚ A2 ˚ � � � ˚ Ak with A1; A2; : : : ; Ak connected (that is indecom-

posable as algebras). Denote by CA the 2-category de�ned as follows (compare

[13, 7.3]):

� objects are 1; : : : ; kwhere we identify iwith some small category equivalent

to Ai -proj;

� 1-morphisms are all additive functors from Ai -proj to Aj -proj isomorphic

to direct sums of functors realized as tensoring with either projective

Aj -Ai -bimodules or, additionally, with the bimodule Ai in case i D j ;

� 2-morphisms are natural transformations of functors.

Note that, up to biequivalence, CA does not depend on the choice of small cate-

gories equivalent to Ai -proj for i D 1; 2; : : : ; k. �e 2-category CA is of particular

interest, as in [15, �eorem 13] it was shown that �at 2-categories, which are “sim-

ple” in a certain sense, are constructed from these.
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For B Š B1 ˚ B2 ˚ � � � ˚ Bm with B1; B2; : : : ; Bm connected, write A � B

provided that the following two conditions are satis�ed:

� m D k C 1, A1 Š B1; A2 Š B2,. . . , Ak Š Bk and Bm Š k;

� there are idempotents e; e0 2 A such that dim eAe0 D 1.

Denote by � the minimal equivalence relation (on the class of all �nite dimen-

sional k-algebra) containing both � and the classical Morita equivalence relation

for �nite dimensional algebras.

�eorem 19. Let A and B be two �nite dimensional k-algebras. �en CA and CB

are Morita equivalent if and only if A � B .

Proof. We �rst note that the 2-category CA is, clearly, independent of the choice

of A within its Morita equivalence class. Hence, to prove su�ciency it is enough

to show that A � B implies Morita equivalence of CA and CB . Let P
CB
m be the

principal 2-representation of B associated to Bm. We identify A with the subal-

gebra B1 ˚ � � � ˚ Bk of B . Let x denote the identity in Bm. �en Bx ˝k eA and

Ae0 ˝k xB are 1-morphisms in CB . As dim eAe0 D 1, we have

Bx ˝k eA˝B Ae
0 ˝k xB Š Bx ˝k xB

˚ dim eAe0

Š Bm:

�is implies that P
CB
m is a retract of P

CB

1 ˚ � � � ˚ P
CB

k . By our choice of A we

have that the endomorphism 2-category of P
CB

1 ;P
CB

2 ; : : : ;P
CB

k is biequivalent to

the endomorphism 2-category of P
CA

1 ;P
CA

2 ; : : : ;P
CA

k . �e claim follows.

To prove necessity, let us analyze idempotent 1-morphisms in CA. Let e; e0 be

primitive idempotents in A andAe0 ˝k eA the corresponding projective bimodule.

We have

Ae0 ˝k eA˝A Ae
0 ˝k eA Š Ae0 ˝k eA

˚ dim eAe0

(13)

and hence

.Ae0 ˝k eA˝A Ae
0 ˝k eA/˝A .Ae

0 ˝k eA˝A Ae
0 ˝k eA/

Š .Ae0 ˝k eA˝A Ae
0 ˝k eA/

˚.dim eAe0/2

:

�is implies thatAe0˝keA˝AAe
0˝keA is idempotent if and only if dim eAe0 D 1.

Note that, by (13), the latter is equivalent to Ae0 ˝k eA being idempotent.

By �eorem 16, the Morita equivalence class of a �nitary 2-category is obtained by

adding or removing retracts of indecomposable principal 2-representations. Let P

be a retract corresponding to an idempotent Ae0 ˝k eA. Since Ae0 ˝k eA is idem-

potent, it factors through k-proj. �is implies that the endomorphism 2-category

of P1;P2; : : : ;Pk;P is biequivalent to CB where B D A˚ k. �is completes the

proof.
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6.4. 2-categories of Soergel bimodules. Let .W; S/ be a �nite Coxeter system

and CW the corresponding coinvariant algebra (see [21] for details). Let S.W;S/

be a 2-category of Soergel CW -CW -bimodules for .W; S/ as de�ned in [13, Sub-

section 7.1] or [14, Example 3] (in those papersW is assumed to be a Weyl group,

however, our more general assumption works just �ne, see [5, 21]). �e 2-category

S.W;S/ is usually described using its de�ning 2-representation:

� S.W;S/ has one object which is identi�ed with some small category A equiv-

alent to CW -mod;

� 1-morphisms of S.W;S/ are endofunctors of A isomorphic to direct sums of

endofunctors given by tensoring with Soergel bimodules;

� 2-morphisms of S.W;S/ are natural transformations of functors.

Clearly, up to biequivalence, S.W;S/ does not depend on the choice of A.

Proposition 20. Let .W; S/ and .W 0; S 0/ be �nite Coxeter systems. �en the

2-categories S.W;S/ and S.W 0;S 0/ are Morita equivalent if and only if .W; S/ and

.W 0; S 0/ are isomorphic.

Proof. �e “if” part is obvious. �e “only if” part follows from �eorem 16 and

the following two observations.

Observation 1 . �e 2-categories S.W;S/ and S.W 0;S 0/ are biequivalent if

and only if .W; S/ and .W 0; S 0/ are isomorphic. �e “if” part is again obvious.

To prove the “only if” part, note that any biequivalence between S.W;S/ andS.W 0;S 0/

induces an isomorphism between the 2-endomorphism algebras of the identity 1-

morphisms in S.W;S/ and S.W 0;S 0/. By de�nition, these endomorphism algebras

are isomorphic to CW and CW 0 , respectively. Finally, it is easy to check that

CW Š CW 0 if and only if .W; S/ Š .W 0; S 0/.

Observation 2. �e only weakly idempotent 1-morphism in S.W;S/ is the

identity 1-morphism. Tensoring with a Soergel bimodule is a non-zero and exact

endofunctor of A and the latter category has only one simple object up to isomor-

phism (call it L). Let G be an indecomposable 1-morphism in S.W;S/ such that

F WD GıG Š G˚Q is weakly idempotent. Letm be the length of F.L/ Š F2.L/.

�en m D m2 and hence m D 1 (since G is nonzero). It follows that Q D 0 and

thus F D G. In particular, F is indecomposable and hence corresponds to some

element w 2 W and, moreover, F.L/ Š L. In the natural graded picture F.L/ is a

graded self-dual vector space with non-zero components in degrees ˙ the length

of w. �erefore F.L/ Š L implies that the length of w equals zero and hence w

must coincide with the identity element. �erefore F is isomorphic to the identity

1-morphism. �is completes the proof.
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