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Skein and cluster algebras of marked surfaces

Greg Muller1

Abstract. This paper considers several algebras associated to an oriented surface † with a

�nite set of marked points on its boundary. The �rst is the skein algebra Skq.†/, which is

spanned by links in the surface which are allowed to have endpoints at the marked points,

modulo several locally de�ned relations. The product is given by superposition of links.

A basis of this algebra is given, as well as several algebraic results.

When † is triangulable, a quantum cluster algebra Aq.†/ and quantum upper cluster
algebra Uq.†/ can be de�ned. These are algebras coming from the triangulations of † and

the elementary moves between them. Cluster algebras have been a subject of signi�cant

recent interest, due in part to their extraordinary positivity and Laurent properties.

Natural inclusions Aq.†/ � Sko
q.†/ � Uq.†/ are shown, where Sko

q.†/ is a certain

Ore localization of Skq.†/. When † has at least two marked points in each component,

these inclusions are strengthened to equality, exhibiting a quantum cluster structure on

Sko
q.†/.

The method for proving these equalities has the potential to show Aq D Uq for other

classes of cluster algebras. As a demonstration of this fact, a new proof is given that

Aq D Uq for acyclic cluster algebras.
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1. Introduction

In this paper, we consider marked surfaces: compact, oriented surfaces, possibly

with boundary, together with a �nite set of marked points in the boundary.1

1.1. The skein module. Motivated by computing the Jones polynomial of a

knot, Kau�man [18] introduced the Kau�man bracket, a (framed)2 knot invariant

de�ned by the two local relations in Figure 1.

D q C q�1 D�.q2 C q�2/

The Kau�man skein relation The value of the unknot

Figure 1. The skein relations (without marked points).

1 This contrasts with some references, where ‘marked surfaces’ may have interior marked

points.

2 We suppress the details of framing a knot; all drawn knots will be given the blackboard

framing.
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These relations are de�ned as manipulations of a knot (or link) in an oriented

3-manifold, where the dashed circle represents a small sphere, and the links are

understood to be kept identical outside this sphere. Using these relations, any link

in R3 can be reduced to a Laurent polynomial in q (the Kau�man bracket of the

link) times the empty link.

For a general oriented 3-manifold, these relations can be encoded in the ‘skein

module,’ introduced independently by Turaev [35] and [36] and Przytycki [28].

Let Zq WD ZŒq˙ 1
2 � denote the Laurent ring in the indeterminant3 q

1
2 , and let ZLinks

q

be the module of Zq-linear combinations of ambient isotopy classes of framed

links. Imposing the skein relations de�nes a quotient Zq-module of ZLinks
q , called

the skein module of the 3-manifold. The skein module of R3 is the free Zq-module

spanned by the empty link.

1.2. The skein algebra Skq.†/ (without marked points). When the 3-manifold

in question is † � Œ0; 1� for an unmarked surface †, two extra structures appear.

First, two links in †�Œ0; 1� can be ‘stacked’ vertically to give a new link in †�Œ0; 1�

which contains the �rst link in † � Œ0; 1
2
� and the second in † � Œ1

2
; 1�. This gives

a well-de�ned superposition product on the skein module of †� Œ0; 1� and makes

it into an associative Zq-algebra called the skein algebra of †.

Second, any link in † � Œ0; 1� can be projected into †, with overcrossings

and undercrossings used to keep track of the original link.4 As an abuse of

terminology, such a diagram will be called a link in †. The skein algebra of †

can be computed directly from the set of links in †, as the quotient of ZLinks
q by a

submodule generated by the skein relations. In this way, the skein algebra can be

associated directly to the surface †.

1.3. The skein algebra Skq.†/ (with marked points). Motivated by examples

coming from the theory of cluster algebras and Teichmüller theory, we de�ne a

generalization of skein algebras to marked surfaces.

Let † be a surface with a �nite set of ‘marked points’ M. A link in †

will be a collection of immersed curves in †, with transverse intersections and

boundary contained inM, together with a ‘crossing data.’ This is a choice, for each

intersection, of the order in which the curves pass over each other (see Section 2.3).

Links are considered up to homotopy through the set of links.

3 The justi�cation for including the half-power of q will come later.

4 Ambient homotopy may be required to ensure the projection has simple transverse inter-

sections.
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Remark 1.1. Actually, we will extend this de�nition of link to allow simultaneous

crossings at marked endpoints. Two curves can then arrive transversely at a

marked point in three ways: over, under and simultaneous. This generalization

does not a�ect the subsequent skein algebra (see Remark 3.1).

LetZLinks
q denote the freeZq-module spanned by (homotopy classes of) links in

†, and de�ne a quotient Zq-module Skq.†/ by imposing the relations in Figure 2.

The element in Skq.†/ corresponding to a link X will be denoted ŒX�.

D q C q�1 q� 1
2 D D q

1
2

The Kau�man skein relation The boundary skein relation

D�.q2 C q�2/ D D D 0

The value of the unknot The value of a contractible arc

Figure 2. The skein relations with marked points.

Notes on the �gure.

� A dashed circle denotes a small disc in †, and the links in each term of the

equality are understood to be identical outside the circle.

� A solid curve between grey and white denotes the boundary of †, and a dark

dot denotes a marked point.

� We also allow additional undrawn curves at the marked points which have

the same order with respect to the drawn curves.

These relations imply several other relations (Proposition 3.2): the (framed)

Reidemeister moves from knot theory, as well as an additional marked variation

of the second Reidemeister move (Figure 5).

Given two transverse links X and Y, their superposition X�Y is the union of the

two links, with every curve in X passing over every curve in Y. This extends to a

well-de�ned product on Skq.†/ and makes Skq.†/ into an associative Zq-algebra

(Proposition 3.7), which we call the skein algebra of †.
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Many properties of Skq.†/ are shown, which generalize known unmarked

results.

� (Corollary 6.16) Skq.†/ is a domain.

� (Theorem A.4) Skq.†/ is �nitely generated.

� (Lemma 4.1) Skq.†/ has a Zq-basis parametrized by simple multicurves.

1.4. Triangulations. Curves in † come in two types,

� loops: immersed images of S1, and

� arcs: immersed images of Œ0; 1�, with endpoints mapping to marked points.

A triangulation � of † is a simple multicurve consisting of arcs, such that the

complement of the arcs is a disjoint union of discs with three marked points. As

elements in Skq.†/, the arcs in � quasi-commute; that is, for xi ; xj 2 �, there is

a ƒ�
i;j 2 Z such that

Œxi �Œxj � D q
ƒ�

i;j Œxi �Œxj �:

The numbers ƒ�
i;j correspond to entries in a orientation matrix (Section 6.2).

Triangulations of † give embeddings of the skein algebra into well-behaved

algebras. Let the quantum torus T� associated to � be the Zq-algebra with a

Zq-basis of elements of the form M ˛ , for all ˛ 2 Z�, and multiplication de�ned

by5

M ˛M ˇ D q
1
2

h˛;ƒ�ˇiM ˛Cˇ D qh˛;ƒ�ˇiM ˇ M ˛:

Theorem 6.14. For each triangulation � of †, there is an injective Ore localiza-
tion

Skq.†/ ,�! Skq.†/Œ��1� ' T�

which sends Œxi � to M ei .

The theorem says that Skq.†/ embeds into its skew-�eld of fractions F, and

inside that skew-�eld, every element of Skq.†/ can be written as a skew-Laurent

polynomial in the arcs in �.

1.5. Three algebras. When † is triangulable, Theorem 6.14 leads to the de�ni-

tion of three related Zq-algebras.

5 Here, h�; �i is the natural dot product on Z�.
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� The localized skein algebra Sko
q.†/ (Section 5).

A boundary arc is a simple arc in † which is homotopic to an arc contained

in the boundary. A triangulation � of † contains the set of boundary arcs,

and so the localization Skq.†/Œ��1� contains the inverse to each boundary

arc. The localized skein algebra Sko
q.†/ is the Ore localization of Skq.†/ at

the boundary arcs in †.

� The (quantum) cluster algebra Aq.†/ (Section 7.2).

The skein algebra Skq.†/ is generated by simple curves (Corollary 4.3), and

so Sko
q.†/ is generated by simple curves and the inverses to boundary curves.

The (quantum) cluster algebra Aq.†/ of † is the Zq-subalgebra of Sko
q.†/

generated by simple arcs and the inverses to boundary arcs.

� The (quantum) upper cluster algebra Uq.†/ (Section 7.2).

Since † may have many triangulations, Theorem 6.14 provides many distinct

skew-Laurent expressions for an element in Skq.†/. This property may be

turned into a criterion for de�ning another algebra. The (quantum) upper
cluster algebra Uq.†/ of † is the Zq-algebra consisting of elements in the

skew-�eld F which can be written as a skew-Laurent polynomial in each

triangulation.

These algebras satisfy the following containments.

Theorem 7.15. For any triangulable marked surface †,

Aq.†/ � Sko
q.†/ � Uq.†/:

Our main result is that these are equalities for most marked surfaces.

Theorem 9.8. For a triangulable marked surface † with at least two marked
points in each connected component,

Aq.†/ D Sko
q.†/ D Uq.†/:

Remark 1.2. The de�nitions given above for Aq.†/ and Uq.†/ make Theo-

rem 7.15 immediate, but it is not clear they are quantum cluster algebras in the

sense of [3]. The body of the paper takes the opposite approach. In Section 7.2,

Aq.†/ and Uq.†/ are de�ned as quantum cluster algebras, and equivalence to the

previous de�nitions will be a consequence of Theorem 7.15.
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1.6. Quantum cluster algebras. Any two triangulations of † can be related by

a sequence of �ips, where a single arc is replaced by a distinct arc. The �ip of

an arc in � has a simple expression as a skew-Laurent polynomial in �, and by

iterating these expressions, any arc in any triangulation can be obtained.

This process is a speci�c case of a more general framework: the theory of

quantum cluster algebras (introduced in [11], quantized in [3]). We sketch this

theory now, precise de�nitions are in Section 7.1. One starts with a quantum seed:

� a �nite set of quasi-commuting cluster variables in a skew-�eld, which are

designated either exchangeable or frozen and

� a rule (called mutation) for replacing any exchangeable cluster variable by a

new exchangeable cluster variable, resulting in a new quantum seed.

The quantum cluster algebra Aq associated to a quantum seed is the Zq-algebra

generated by all the cluster variables obtained by iterated mutations, and the in-

verses to the frozen cluster variables. A quantum seed also determines a quantum
upper cluster algebra Uq , which is an algebra containing Aq de�ned as an inter-

section of quantum tori.6

In case of marked surfaces, a triangulation � of † determines a quantum seed.

� The cluster variables are the arcs in �, as elements in F, the skew-�eld of

Skq.†/. An arc is frozen if it is a boundary arc and exchangeable otherwise.

� The mutation rule is determined from the relative orientations of the arcs in

� at the endpoints.7

The resulting algebras Aq.†/ and Uq.†/ do not depend on the choice of triangu-

lation (De�nition 7.12), and coincide with the de�nitions of Aq.†/ and Uq.†/ in

the previous section (Theorem 7.15 and Remark 7.16).

The specialization q
1
2 D 1 of Aq.†/ becomes a commutative cluster alge-

bra A1.†/. Commutative cluster algebras associated to marked surfaces have

been introduced (in [15] and [7]) and extensively studied (in [9] and [10] and in

[31],[33],[32], and [23]). The relation of A1.†/ to skein algebras was noticed in

[7, Section 12.3]. The equality A1.†/ D Sko
1.†/ for triangulable surfaces with

at least two marked points (the commutative specialization of Theorem 9.8) has

been independently proven by Musiker, Schi�er, and Williams (in [24] and [26])

using more explicit methods than this paper.

6 In this paper, ‘cluster algebras’ are quantum cluster algebras unless otherwise speci�ed.

7 Speci�cally, the exchange matrix is a restriction of the skew-adjacency matrix in Sec-

tion 6.2.
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Remark 1.3. The commutative cluster algebra of a marked surface (as de�ned

in [9]) depends on a choice of coe�cients. The commutative specializationA1.†/

has coe�cients in the Laurent ring generated by the boundary arcs.

1.7. The structure of the paper. The �rst part of the paper focuses on skein

algebras of general marked surfaces.

(2) Curves and links in marked surfaces. This section gives our

de�nitions of ‘curve,’ ‘multicurve’ and ‘link’ for marked surfaces.

(3) The skein algebra Skq.†/ . The skein algebra is de�ned, �rst as a

Zq-module, and then as a Zq-algebra under the superposition product.

An anti-involution and a grading of Skq.†/ are given.

(4) Simple multicurves. Lemma 4.1 proves that the simple multicurves

de�ne a Zq-basis of Skq.†/. This is used to prove that simple curves are

not zero-divisors (Lemma 4.10), and multiplication by a simple arc x reduces

the ‘crossing number’ with x (Lemma 4.11).

(5) The localized skein algebra Sko
q.†/ . The localized skein alge-

bra is de�ned, shown to be an Ore localization, and a Zq-basis by certain

weighted simple multicurves is given.

The second part of the paper focuses on the case when † is triangulable, and the

connection to cluster algebras.

(6) Triangulations. Triangulations and some of their basic properties are

reviewed. A method is given for expressing an element of Skq.†/ as a skew-

Laurent polynomial in a given triangulation (Corollary 6.9). This is used to

prove that the localization of Skq.†/ at � is a quantum torus.

(7) Quantum cluster algebras of marked surfaces. Section 7.1

reviews the generalities of quantum cluster algebras. Section 7.2 de�nes the

quantum seed associated to a triangulation of a marked surface (Proposi-

tion 7.8) and checks that the corresponding cluster algebrasAq.†/ andUq.†/

only depend on † (Corollary 7.11). These are related to the localized skein

algebra by Aq.†/ � Sko
q.†/ � Uq.†/ (Theorem 7.15).

(8) A general technique for Aq D Uq . This section develops an ap-

proach for showing Aq D Uq for large classes of quantum cluster algebras.

The �nal criterion is given in Lemma 8.13. This criterion is used to provide

a new proof that Aq D Uq for ‘acyclic’ cluster algebras (Proposition 8.17).

(9) Aq.†/ D Sko
q.†/ D Uq.†/ for (most) marked surfaces. The-

orem 9.8 is proven using the techniques of the preceding section.
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The last part of the paper explores some cases and consequences of Theorem 9.8.

(10) Loop elements. The simple loops in Sko
q.†/ de�ne extra elements of

Aq.†/ which are not cluster variables. Considering these elements simpli�es

computations and provides a free Zq-basis of Aq.†/.

(11) The commutative specialization q
1
2 D 1 . This section discusses

the commutative specialization A1.†/ D Sko
1.†/ D U1.†/. The commuta-

tive cluster algebraA1.†/ is locally acyclic, which implies additional results.

(12) Examples and non-examples. This section explores speci�c cases

of †, such as discs and an annulus.

The paper concludes with an appendix showing that Skq.†/ is �nitely generated,

by directly generalizing the original proof of Bullock in the unmarked case [2].

1.8. Acknowledgements. The author would like to thank a great many people for

useful discussions and support; including A. Berenstein, M. Gekhtman, A. Knut-

son, G. Musiker, P. Plamondon, D. Thurston, M. Yakimov, and A. Zelevinsky.

Helpful comments and edits were provided by J. Geiger, J. Matherne, G. Musiker,

and H. Thomas.

2. Curves and links in marked surfaces

This section gives our de�nitions of ‘curve,’ ‘multicurve’ and ‘link’ for marked

surfaces.

2.1. Curves. A (framed) curve x in † is an immersion xWC ! † of a compact,

connected, 1-dimensional manifold into †, such that any boundary of C maps to

M and the interior of C does not map to M. There are two kinds of curves:

� Arcs: curves with endpoints in M;

� Loops: closed loops without endpoints.

Homotopies between curves are always through the class of curves; that is, we

only allow homotopies during which

� C remains immersed (regular homotopy),

� the endpoints remain in M (endpoint-�xed) and

� the interior remains disjoint from M.

As an abuse of terminology, two curves will be called homotopic if they may be

related by homotopy and orientation-reversal (so a homotopy class has no intrinsic

orientation).
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2.2. Multicurves. A multicurve X in .†;M/ will mean an unordered, �nite

set of curves in † which may contain duplicates (i.e., homotopic curves). Two

multicurves are homotopic if there is a bijection between their constituent curves

which takes a curve to a homotopic one. A curve can always be thought of as a

single element multicurve.

We will often focus on multicurves locally, by restricting to arbitrarily small

discs around a point in †. A strand in a multicurve X near a point p 2 † will be

a component of the restriction of X to an arbitrarily small disc around p.

A multicurve X is transverse if

� at each intersection in X, each strand has a di�erent tangent direction and

� each interior intersection (called a crossing) is between only two strands.

Every multicurve is homotopic to a transverse multicurve.

A transverse multicurve is simple if it has no interior intersections, and no

curves which are contractible. Contractible curves are either topologically trivial

loops (called unknots) or arcs which cut out a disc (called contractible arcs).

Remark 2.1. A transverse multicurve will be drawn as the union of its curves.

By the transverse condition, it is unambiguous what the constituent curves are.

2.3. Links. We now de�ne links, by equipping a transverse multicurve with

crossing data, about which strands are ‘passing over’ other strands. It will be

convenient to allow strands at a marked point to either pass over each other, or to

arrive simultaneously. This generalization is a convenience, not a necessity; see

Remark 3.1.

A (framed) link X is a transverse multicurve X, together with

� at each crossing, an ordering of the two strands and

� at each marked point, an equivalence relation on the strands and an ordering

on the equivalence classes of the strands.

Intuitively, a strand at a crossing must pass over or under the other strand,

and two strands at a marked point must pass over, under, or be simultaneous

(the equivalence relation). This is drawn in the natural way (Figure 3).

Figure 3. Crossings, ordered strands, and simultaneous strands.
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A simple multicurve X can be regarded as a link with the simultaneous ordering

at each endpoint; this will also be denoted by X.

Remark 2.2. Knot theory often considers ‘links,’ which would be links without

arcs by the above de�nition, and ‘virtual links,’ which would be links without arcs,

but where simultaneous crossings are allowed [19]. Thus, the above de�nition can

be thought of as ‘links with endpoints in M, which can be virtual links at their

endpoints.’

Links without arcs arise in knot theory, as projections of knots in 3-dimensional

space onto 2-dimensional space. Similarly, our notion of links can be thought of

as describing a multicurve in †� Œ0; 1�, where Œ0; 1� is the dimension coming ‘out

of the paper.’

Homotopies between links are through the class of transverse multicurves,

where crossing data are not changed. This means the intersections are re-

quired to stay transverse, and so intersections can neither be created nor removed

(in contrast with our de�nition of homotopy of multicurves). We will say two links

are homotopic if they may be related by homotopy and orientation-reversal.

Remark 2.3. This notion of equivalence is weaker than the usual de�nition of

equivalent links in knot theory, which uses Reidemeister moves and captures the

notion of when two links describe ambient isotopic links in 3-dimensional space.

This di�erence will become irrelevant later, as the skein relations will imply the

Reidemeister moves (Proposition 3.2).

3. The skein algebra Skq.†/

Inspired by knot theory, we now de�ne an algebra associated to a marked surface,

which consists of linear combinations of links modulo certain local relations, and

whose product corresponds to superimposing links.

3.1. The skein relations. LetZq denote the ring ZŒq˙ 1
2 � of Laurent polynomials

in the indeterminant q
1
2 . For any marked surface †, let ZLinks

q denote the free

Zq-module with basis given by equivalence classes of links in †.

We will de�ne a quotient Zq-module of ZLinks
q by imposing several classes of

relations (Figure 4), which are all de�ned in terms of local manipulations of a

link. These relations are expressed in terms of small discs, where it is understood

that they describe links identical to each other outside the disc. We also allow
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additional, undrawn curves at marked points, provided their order with respect to

the drawn curves and each other does not change.

D q C q�1 q� 1
2 D D q

1
2

The Kau�man skein relation The boundary skein relation

D�.q2 C q�2/ D D D 0

The value of the unknot The value of a contractible arc

Figure 4. The de�ning relations of Skq.†/.

De�ne the quotient Zq-module

Skq.†/ WD ZLinks
q =I

where I is the submodule generated by the set ¹l�rº, running over relations of the

form l D r in Figure 4. For a link X, the class of X in Skq.†/ will be denoted ŒX�.

Remark 3.1. By the boundary skein relation, Skq.†/ is spanned over Zq by

classes of links with no simultaneous endpoints. It would have been possible to

de�ne Skq.†/ only in terms of those links; this would also eliminate the need

for choosing a square root of q. However, allowing simultaneous endpoints gives

topological realizations of the multicurve elements de�ned in Section 4.

3.2. The Reidemeister moves. The relations imposed in Skq.†/ imply addi-

tional local relations which will be important (Figure 5). These are the (modi�ed)

Reidemeister moves from knot theory, together with an additional relation coming

from the addition of marked endpoints.

Proposition 3.2. The locally de�ned relations in Figure 5 hold in Skq.†/.

Proof. All four results follow from direct application of the relations in Figure 4.

We show the computation for Reidemeister 2; the others are similar:

Dq2 C C C q�2 D :

The four terms in the middle come from applying the Kau�man skein relation to

the two crossings. The value of the unknot then cancels the �rst and last terms. �
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D D

Modi�ed Reidemeister 1. Reidemeister 2.

D D

Marked Reidemeister 2. Reidemeister 3.

Figure 5. The Reidemeister moves for links with endpoints.

Remark 3.3. The �xed values of unknots and contractible arcs de�ned in Figure 4

are the only values for which the above Reidemeister moves hold (assuming the

Kau�man and boundary skein relation).

Remark 3.4. The Reidemeister moves describe the minimal relations needed to

relate two links (drawn in † with crossings) which describe the ambient isotopic

framed links in † � Œ0; 1�. The endpoints of the framed link in † � Œ0; 1� are

required to stay in M � Œ0; 1�, and the framing at the endpoints must stay tangent

to M � Œ0; 1�.

3.3. The superposition product. TheZq-module Skq.†/ may be equipped with

a Zq-bilinear, non-commutative product called the superposition product. If X

and Y are two links such that the union of the underlying multicurves X [ Y is

transverse, de�ne the superposition X �Y to be the link which is X[ Y where each

strand of X crosses over each strand of Y and all other crossings are ordered as in

X and Y.

Proposition 3.5. ŒX �Y� only depends on the homotopy classes of X and Y.

Proof. Let .X0; Y0/ be a pair of links homotopic to .X; Y/, such that the union of

underlying multicurves X0[ Y0 is transverse. There exists a family of pairs of links

.Xt ; Yt / for t 2 Œ0; 1� such that

� Xt is a homotopy between X and X0,

� Yt is a homotopy between Y and Y0,

� there is a �nite subset S � Œ0; 1� such that, for t 2 Œ0; 1� � S , the union of

underlying multicurves Xt [ Yt is transverse, and
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� for t 2 S , Xt [ Yt is transverse except for a single intersection, which is of

one of the three types in Figure 6.

Figure 6. Elementary failures of transversality.

The superpositions Xt0 �Yt0 and Xt1 �Yt1 are homotopic if t0 and t1 are in the same

component of Œ0; 1� � S . If there is a single element of S between t0 and t1, then

the two superpositions will be related by Reidemeister 2, Marked Reidemeister 2,

or Reidemeister 3, depending on which of the three non-transverse intersections

occurs. Then superpositions in adjacent components of Œ0; 1� � S are related by

a single Reidemeister move, and so ŒX � Y� and ŒX0 � Y0� are related by a �nite

sequence of Reidemeister moves. �

Remark 3.6. The quotient of ZLinks
q by the Zq-submodule generated by Reide-

meister 2, Marked Reidemeister 2 and Reidemeister 3 also admits a well-de�ned

superposition product, and Skq.†/ can be de�ned as a quotient algebra of this al-

gebra. Modi�ed Reidemeister 1 is unnecessary for the product to be well-de�ned.

For general X and Y, de�ne the superposition product ŒX�ŒY� by choosing

homotopic links X0 and Y0 such that X0 [Y0 is transverse, and letting

ŒX�ŒY� WD ŒX0 �Y0�:

By the proposition, this doesn’t depend on the choice of X0 and Y0. Extend this

product to all of Skq.†/ by Zq-bilinearity.

Proposition 3.7. The superposition product makes Skq.†/ into an associative
Zq-algebra with unit Œ;�, the class of the empty link.

Proof. For links X; Y; Z, �nd homotopic links X0; Y0; Z0 such that the union of

the underlying multicurves X0 [ Y0 [ Z0 is transverse. Then

.ŒX�ŒY�/ŒZ� D ŒX0 �Y0 � Z0� D ŒX�.ŒY�ŒZ�/

We also have ŒX�Œ;� D ŒX � ;� D ŒX� D Œ; � X� D Œ;�ŒX�. �

De�nition 3.8. The algebra Skq.†/ is the (Kau�man) skein algebra of †.
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When † has no marked points, this de�nition coincides with the usual de�ni-

tion of the Kau�man skein algebra of an (unmarked) surface, de�ned in [28].

Remark 3.9. Some authors replace Zq with a �eld k with a distinguished non-

zero element �, which plays the role of q
1
2 . This setup can be recovered from ours

as follows. The map Zq ! k with q
1
2 7! � makes k into a Zq-algebra. Then the

k-algebra k˝Zq
Skq.†/ is the skein algebra de�ned over k. Since Skq.†/ is a free

Zq-module (Lemma 4.1), no torsion complications arise.

Remark 3.10. In [30, De�nition 2.5], the authors also generalize skein algebras

to ‘marked surfaces.’ However, they generalize skein algebras in an orthogonal

direction, in that they require @† D ; but allow interior marked points. It is not

clear if the two de�nitions can be combined in some ‘best’ way; see Remark 7.14.

3.4. The bar involution. For X any link, let X� be the link with the same

underlying multicurve, but all crossing orders reversed.

Proposition 3.11. The map ŒX�� WD ŒX�� and .q
1
2 /� WD q� 1

2 extends to an
involutive ring antiautomorphism of Skq.†/, called the bar involution.

Proof. Let �WZ
Links.†/
q ! Z

Links.†/
q send ŒX� to ŒX�� and q

1
2 to q� 1

2 ; this map is

manifestly an involution. Each relation in Figure 4 goes to a relation of the same

type, and so there is a quotient involution �W Skq.†/! Skq.†/.

For links X; Y, let X0 and Y0 be homotopic links with X0[Y0 transverse. Then

ŒX��ŒY�� D ŒX��ŒY�� D ŒX� � Y�� D Œ.Y0 �X0/�� D ŒY0 �X0�� D .ŒY�ŒX�/�:

Since Œ;�� D Œ;�, this is a ring homomorphism. �

The bar involution will be useful for two reasons. First, it shows Skq.†/ is

isomorphic to its opposite algebra, which cuts some proofs in half. Second, we are

particularly interested in elements of Skq.†/ which are �xed by the bar involution.

3.5. The endpoint E-grading. The skein algebra had an endpoint grading,

where the degree of an arc is the formal sum of its endpoints, in the lattice ZM

spanned by the marked points. This grading restricts to the following sublattice E

in ZM:

E WD
°

f WM �! Z

ˇ

ˇ

ˇ
for all connected components †0 � †;

X

m2M\†0

f .m/ is even
±

:

Let EC be the subsemigroup whose image lands in N � Z.
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For any f WM! Z, let .Skq.†//f be the Zq-submodule spanned by links with

f .m/ strands at each marked point m; note that this is zero unless f 2 EC.

Proposition 3.12. This de�nes an EC-grading on Skq.†/.

Proof. Two homotopic links have the same set of endpoints, so ZLinks
q is naturally

EC-graded. The de�ning relations in Skq.†/ are EC-homogeneous by inspection.

�

The degree zero part is the subalgebra .Skq.†//0 spanned by links without

arcs; this is isomorphic to Skq.†0/, where †0 is the unmarked version of †.

4. Simple multicurves

4.1. Simple multicurves in Skq.†/. Recall that a simple multicurve X in † is

a transverse multicurve with no crossings, no unknots and no contractible arcs.

A simple multicurve can be regarded as a link with simultaneous endpoints; let

ŒX� denote the corresponding element in Skq.†/. No factor of q appears in the

de�nition of ŒX�, though it can be de�ned as a q-multiple of an ordered version

of X.

This element is �xed by the bar involution, that is, ŒX�� D ŒX�. More so, the

element ŒX� is the only q
1
2 -multiple of itself or any other ordering of its endpoints

which is �xed by the bar-involution. This gives an alternate de�nition of ŒX�.

Let SMulti be the set of homotopy classes of simple multicurves.

Lemma 4.1. Under X 7! ŒX�, the set SMulti maps to a Zq-basis of Skq.†/.

Proof. Let ZSMulti
q be the free Zq-module with basis SMulti. There is a map

sWZSMulti
q �! Skq.†/

which sends X to ŒX�.

De�ne a map Qr WZLinks
q ! ZSMulti

q as follows. Let X be a link.

(1) First, �nd n 2 Z such that ŒX� D q
n
2 ŒX0�, where X0 is identical to X except

with the simultaneous ordering on endpoints.

(2) Then, by applying the Kau�man skein relation to each crossing in X0, �nd

links Xi and mi 2 Z (for an index set I ) such that each Xi has no crossings,

and

ŒX0� D
X

i2I

qmi ŒXi �:
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(3) Finally, remove contractible components of each Xi using the de�ned values.

That is, let Xi be Xi with the contractible components removed, and let

�i 2 Zq be such that ŒXi � D �i ŒXi �.

Since each Xi is a simple multicurve, de�ne

Qr.X/ D
X

i2I

.q
n
2

Cmi �i /Xi 2 ZSMulti
q :

Because the relations are local, the steps in the construction of r.X/ could have

been taken in any order, with the exception of removing contractible components

created by applying the Kau�man skein relation. It follows that r descends to a

map

r W Skq.†/ �! ZSMulti
q :

By construction, s.r.ŒX�// D ŒX� as elements of Skq.†/. If X is a simple multic-

urve, then the construction of r.X/ makes no changes, and so r.s.X// D X. Then s

and r are inverses. �

For any element x 2 Skq.†/, there is a unique subset Supp.x/ � SMulti (called

the support of x) and unique non-zero �Y 2 Zq for each Y 2 Supp.x/, such that

x D
X

Y2Supp.x/

�YŒY�:

Remark 4.2. Because the skein relations are local, for any link X, there are simple

multicurves Xi which are each identical to X away from small neighborhoods of

each crossing and marked point, such that Supp.ŒX�/ D ¹Xiº.

Corollary 4.3. The Zq-algebra Skq.†/ is generated by the set of simple curves.

Proof. If X is a simple multicurve consisting of simple curves x1; x2; : : : ; xn, then

ŒX� D q
�
2 Œx1�Œx2� : : : Œxn� for some � 2 Z. Then the simple curves generate a

Zq-subalgebra of Skq.†/ which contains a basis, and so it coincides with all of

Skq.†/. �

4.2. Counting crossings. For any two simple multicurves X and Y, let �.X; Y/

denote the minimum number of crossings between X0 and Y0, over all transverse

pairs .X0; Y0/ homotopic to .X; Y/. Note that intersections at marked points are not

counted. We will say X and Y have minimal crossings if X � Y has �.X; Y/ crossings.
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Lemma 4.4. [8] Let X1; X2; : : : ; Xn be a �nite collection of simple multicurves.
Then there are simple multicurves X0

1; X0
2; : : : ; X0

n such that

� for all i , X0
i is homotopic to Xi and

� for all i and j , X0
i and X0

j have minimal crossings.

Idea of proof. This is done by choosing a hyperbolic metric on †. Then curve-

shortening �ow takes Xi to a geodesic X0
i , which also minimizes pairwise intersec-

tions. This may create intersections of higher order, but these can be resolved by

a small perturbation. �

Corollary 4.5. If X and Y are simple multicurves with components x1; x2; : : : ; xm

and y1; y2; : : : ; yn, then

�.X; Y/ D
X

1�i�n

1�j �m

�.xi ; yj /:

Proof. By Lemma 4.4, �nd X0 and Y0 homotopic to X and Y, respectively, so that

X0 [ Y0 is transverse and each pair of components has minimal crossings. In

particular, components in X0 do not cross each other, and so X0 is still a simple

multicurve; likewise, Y0 is still a simple multicurve. Since these are simple

multicurves homotopic to X and Y with minimal total crossings, �.X; Y/ is the

number of crossings in X0[Y0, which can be counted by summing over all pairs. �

Extend � to a map

� W Skq.†/ � Skq.†/ �! N;

�.x; y/ WD max¹� .X; Y/ j X 2 Supp.x/; Y 2 Supp.y/º:

De�ne �.0; x/ D 0 for all x.

Remark 4.6. If X and Y are general links, then �.ŒX�; ŒY�/ is less than or equal

to the minimum number of crossings between X0 and Y0, over all pairs .X0; Y0/

homotopic to .X; Y/. Equality is not always true; see Lemma 4.11 for an example.

For a �xed element x 2 Skq.†/, �.x;�/ behaves like the degree of a polyno-

mial.8

8 If the reader enjoys complicated words, they may correctly call � a bisubtropical map.
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Lemma 4.7. For x; y; z 2 Skq.†/,

(1) �.x; y/ D �.y; x/;

(2) �.x; y C z/ � max.�.x; y/; �.x; z//;

(3) �.x; yz/ � �.x; y/C �.x; z/;

(4) if �.y; z/ D 0, then �.x; yz/ D �.x; y/C �.x; z/.

Proof. The �rst two facts are clear from de�nitions, and the fourth follows from

Corollary 4.5. The third fact is the only one which requires some work.

Let X, Y and Z be simple multicurves whose union is transverse, and such that

each pair has minimal crossings. By Remark 4.2, there are simple multicurves Ti

such that Supp.Y � Z/ D ¹Tiº and each of the Ti are identical to Y � Z outside small

neighborhoods of the intersections between Y and Z. Then the number of crossings

between X and any Ti is �.X; Y/C �.X; Z/, and so

�.X; Ti/ � �.X; Y/C �.X; Z/:

Then �.ŒX�; ŒY�ŒZ�/ is the maximum of �.X; Ti/ over all i , so it also satis�es the

inequality.

Since any three simple multicurves are homotopic to such a triple by

Lemma 4.4, the inequality is true for arbitrary simple multicurves. The general

form of the inequality follows directly. �

Lemma 4.11 will give a non-trivial example where inequality (3) is strict.

Remark 4.8. Any element x 2 Skq.†/ gives an ascending �ltration on Skq.†/,

by

Fx;i .Skq.†// WD ¹y 2 Skq.†/ j �.x; y/ � iº

4.3. Cancelling simple arcs. A useful algebraic lemma is the observation that

simple arcs are not zero-divisors in Skq.†/; this will eventually be used to show

that all non-zero elements in Sk1.†/ are not zero-divisors (Corollary 6.16). This

observation follows by associating an initial multicurve to every non-zero element

of Skq.†/, and then showing that multiplication by a simple curve induces an

injective map on initial multicurves.

Fix an arbitrary total ordering � on the set of simple curves9 in †. We may

extend this to a total ordering � on the set SMulti.†/ of simple multicurves in †

with the following rules.10

9 This will be used to break ties for de�ning initial terms, and will not meaningfully a�ect

the outcome.

10 This is analogous to a graded lexicographic order among monomials in a polynomial ring.



454 G. Muller

� If two multicurves have a di�erent number of curves, then the multicurve

with more curves is larger.

� If two multicurves have the same number of curves, then the multicurve with

the �-largest curve not possessed by the other multicurve is larger.

By Lemma 4.1, any element x in Skq.†/ can be uniquely expressed as

x D
X

i2Z=2

qixi ;

where xi is a Z-linear combination of simple multicurves, with all but �nitely

many xi zero. De�ne the initial multicurve in.x/ of x to be the �-largest simple

multicurve in Supp.xi /, where xi is the non-zero term in x with the largest i .

Lemma 4.9. Let x be a simple arcs in †. Then the map

Y 7�! in.Œx�ŒY�/

is injection from SMulti to itself.

In fact, this map is given by choosing the ‘positive smoothing’ of every crossing

in x � Y; consequently, the above map does not depend on �. The proof of this

lemma may be found in Appendix C.

The lemma has the following algebraic consequence.

Lemma 4.10. If x is a simple arc, then Œx� is a not a zero divisor in Skq.†/.

Proof. Let y 2 Skq.†/ be such that Œx�y D 0. Write

y D
X

Y2Supp.y/

�YŒY�

for �Y non-zero in Zq. Then

0 D Œx�y D
X

Y2Supp.y/

�YŒx�ŒY� D
X

Y2I

�Y.q
iY Œx.Y/�C lower order terms in q/:

Let i D maxI .degq.�Y/C iY/, the maximal power of q appearing above,

0 D inq.Œx�y/ D
X

Y2Supp.y/

deg.�Y/CiYDi

inq.�Y/Œx.Y/�:

Since the map x is an injection and SMulti is a basis, the elements Œx.Y/� are

independent over Zq . Since inq.�Y/ cannot be zero, the support Supp.y/ must be

empty, and so y D 0.

Then Œx� is not a left zero divisor. By applying the bar involution, Œx�� D Œx� is

not a right zero divisor. �
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4.4. Reducing crossings. Next, we consider how multiplication by a simple

curve a�ects crossing number. We observe that multiplication by the class of a

simple arc x reduces the crossing number with respect to that curve.

Lemma 4.11. If x is a simple arc, then for all y 2 Skq.†/ such that �.Œx�; y/ > 0,

�.Œx�; Œx�y/ � �.Œx�; y/� 1:

Proof. First consider the case when y is a simple multicurve Y so that x � Y is

transverse, and x � Y has �.x; Y/ crossings (the minimal number, up to homotopy).

Consider the set I of multicurves which can be obtained by applying some com-

bination of the following two local relations to each crossing in x � Y.

7�! , 7�! .

Since the simple multicurves in the support Supp.Œx�ŒY�/ come from applying the

Kau�man skein relation to the crossings in x � Y, we have Supp.Œx�ŒY�/ � I .

Consider a simple multicurve Z 2 I . For two adjacent crossings in x � Y along

x, there are two local possibilities for Z, up to re�ection across x.

7�! , 7�! .

In this local picture, the �rst case is homotopic to a multicurve with crossing x

once, and the second is homotopic to a multicurve which does not cross x.

Between a crossing in x � Y and an end of x, there is one local possibility for Z,

up to re�ection across x.

7�! .

This local picture is homotopic to one which does not cross x.

Then Z is homotopic to a simple multicurve Z0, such that x �Z0 is transverse and

the crossings in x �Z0 occur at most once between each pair of adjacent crossings in

x � Y (and x � Z0 has no other crossings). Therefore, x � Z0 has strictly fewer crossings

than x � Y. Since the latter already has �.x; Y/ crossings,

�.Œx�; ŒZ0�/ � �.x; Y/� 1:

Because Supp.Œx�ŒY�/ � I ,

�.Œx�; Œx�ŒY�/ � �.Œx�; ŒY�/� 1:

The general form of the lemma follows from this case. �
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Remark 4.12. Multiplication by simple loops does not reduce crossing number.

Lemma 4.11 is useful, because multiplication by a su�ciently high power of

Œx� will make an element y 2 Skq.†/ have zero crossing number with Œx�.

Corollary 4.13. If x is a simple arc, then for all y 2 Skq.†/,

�.Œx�; Œx��.Œx�;y/y/ D 0:

Proof. By iterating Lemma 4.11, if i � �.Œx�; y/

�.Œx�; Œx�iy/ � �.Œx�; y/� i:

In particular, �.Œx�; Œx��.Œx�;y/y/ � 0, so it is zero. �

5. The localized skein algebra Sko

q
.†/

The connection from Skq.†/ to cluster algebras will be through the localization

Sko
q.†/ of Skq.†/ at the set of boundary curves.

5.1. The localized skein algebra. A boundary curve is a simple curve which

is homotopic to a subset of the boundary @†. A boundary curve is either an arc

connecting adjacent marked points on the same boundary component, or a loop

homotopic to an unmarked boundary component. The set of boundary curves is

�nite; it is the number of marked points plus the number of unmarked boundary

components.

De�nition 5.1. The localization of Skq.†/ at the set of boundary curves is the

localized skein algebra of †, denoted Sko
q.†/.

For the moment, Sko
q.†/ is de�ned as an abstract localization; that is, the

universal algebra with a map from Skq.†/ such that every boundary curve is sent

to a unit. This is improved with the following proposition.

Proposition 5.2. The algebra Sko
q.†/ is an injective Ore localization of Skq.†/.

Proof. Given a boundary curve x and a link Y, there are homotopic links x0 and

Y0 which only intersect at the boundary. Then, there is some � 2 Z such that

Œx�ŒY� D q
�
2 ŒY�Œx�. Therefore, the set of all products of boundary curves is right

and left permutable. By Ore’s theorem, the localization is injective Ore. �

We will identify Skq.†/ with its image in Sko
q.†/.
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The extra structures on Skq.†/ extend to Sko
q.†/. The bar involution � on

Skq.†/ (see Section 3.4) extends to an involutive ring antiautomorphism on

Sko
q.†/, by .xy�1/� D .y�/�1x�. The endpoint E-grading on Sko

q.†/ (see

Section 3.5) extends to an endpoint E-grading on Sko
q.†/, with deg.xy�1/ D

deg.x/ � deg.y/.

5.2. The basis of weighted simple multicurves. The Zq-basis of Skq.†/ by the

set SMulti of simple multicurves can be extended to a Zq-basis of Sko
q.†/ in the

following (somewhat arti�cial) way.

De�ne a weighted simple multicurve X to be a simple multicurve X, together

with an integer ‘weight’ wx for each x 2 X. Two weighted simple multicurves X

and Y are equivalent if, for each simple curve x in †, the sum of the weights on

curves in X homotopic to x is the same as the sum of the weights on curves in Y

homotopic to x. Intuitively, a curve x of weight wx 2 N is equivalent to wx-many

copies of x.

Let SMultio be the set of equivalence classes of weighted simple multicurves

with positive weights on non-boundary curves (and arbitrary integral weights on

boundary curves). Given X 2 SMultio, de�ne an element ŒX� 2 Sko
q.†/ by

ŒX� WD q
�
2

Y

x2X

Œx�wx ;

where q
�
2 is the unique q-power such that ŒX�� D ŒX�.

The Zq-basis of Skq.†/ then extends to a Zq-basis of Sko
q.†/.

Proposition 5.3. Under X! ŒX�, the set SMultio maps to a Zq-basis of Sko
q.†/.

Proof. Any element of Sko
q.†/ can be written as xy�1, with y a product of

boundary curves. Then y D qj ŒY�, where Y is some simple multicurve of boundary

arcs. The element x can be written as

x D
X

i

�i ŒXi �;

a Zq-linear combination of simple multicurves Xi . Then

xy�1 D
X

i

q�j �i ŒXi �ŒY�
�1:

It is always possible to add boundary curves to any simple multicurve, without

violating simplicity. Let X0
i be the weighted simply multicurve which contains all
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the curves in Xi and Y, with each weight counting how many times a given curve

appeared in Xi minus how many times it appeared in Y. Then there are �0
i such that

xy�1 D
X

i

�0
i ŒX

0
i �

and so SMultio spans Sko
q.†/ over Zq.

To show this is a Zq-basis, consider any relation between the weighted simple

multicurves. Denominators may be cleared by multiplying by a su�ciently large

multicurve ŒZ� in the boundary curves, giving a relation between weighted simple

multicurves with positive weights. This gives a relation between simple multic-

urves in Skq.†/, which must be the trivial relation (Lemma 4.1). Since ŒZ� is not a

zero divisor (Lemma 4.10), the original relation was also trivial. �

This basis is �xed by the bar involution, and is homogeneous for the E-grading.

6. Triangulations

This section explores the extra structure on Skq.†/ coming from a triangulation

of †. Since triangulations only exist when there are enough marked points, this

demonstrates an advantage over the unmarked case.

6.1. Triangulations. A marked surface † is triangulable if

� @† is not empty,

� each boundary component contains a marked point, and

� no connected component of † is a disc with one or two marked points.11

A triangulation12 of a triangulable † is a simple multicurve � such that

� no two curves in � are homotopic,

� � is maximal amongst simple multicurves with the �rst property, and

� � consists entirely of arcs.

A triangulation of � is a collection of arcs which cut † into a union of triangles.

11 This last condition is unnecessary for subsequent results on skein and cluster algebras.

12 This is sometimes called an ideal triangulation, to distinguish from triangulations which

are allowed to have vertices away from marked points.
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Remark 6.1. If only the �rst two conditions hold, � is called a maximal multic-
urve.

If x 2 � is a non-boundary arc, then is it an edge in two distinct triangles13 in

†��. There is a unique other curve x0 such that .��x/[x0 is also a triangulation;

both the curve and the resulting triangulation may be called the �ip of x in �.

x 7�!
x0

Figure 7. Flipping an arc.

Proposition 6.2. Let † be a triangulable surface with marked points M.

(1) Triangulations of † always exist.14

(2) Any simple multicurve of distinct arcs is contained in some triangulation.

(3) An arc is in every triangulation if and only if it is a boundary arc.

(4) Every triangulation has j�j D 6gC3hC2jMj�6 arcs, where g is the genus
and h is the number of boundary components of †.

(5) Every pair of triangulations are related by a sequence of �ips.

Proof. Our triangulations di�er from those in [9], in that they forbid boundary

arcs. However, their results can still be applied with appropriate modi�cation.

(1) [9, Lemma 2.13].

(2) This follows from the given de�nition of ‘triangulation.’

(3) A boundary arc is in every triangulation because it has no crossings with

any other arcs, and so it can always be added to a simple multicurve without

breaking simplicity. For any non-boundary arc x, �nd a triangulation con-

taining x and �ip x, to get a new triangulation which does not contain x.

(4) By [9, Proposition 2.10], there are j�j � jMj non-boundary arcs in every

triangulation. Since there are always jMj boundary arcs, the claim follows.

(5) [9, Proposition 3.8].

13 This is a consequence of requiring that marked points are on the boundary. If there are

interior marked points, there can be ’self-folded triangles’: triangles without all edges distinct.

14 That is, the de�nitions ‘triangulable’ and ‘triangulation’ behave as expected.
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�

It will frequently be useful to index the arcs in a triangulation with numbers

1; 2; : : : ; j�j; this will often be done without comment. Then we can write

� D ¹x1; x2; : : : ; xj�jº:

Let Z� denote the rank j�j lattice generated by the elements of �. For an indexed

triangulation, Z� ' Zj�j, and we identify elements ˛ of Z� with j�j-tuples of

integers .˛1; ˛2; : : : ; ˛j�j/.

6.2. The orientation matrix and the signed adjacency matrix. An end of an

arc x will be a strand of x in a small neighborhood of an endpoint. For an arc x, let

@1.x/ and @2.x/ denote the two ends of x (for an arbitrary numbering).

For two simple curves x; y with x [ y simple, de�ne

ƒx;y D
X

i;j 2¹1;2º

8

<

:

0 if @i .x/ and @j .y/ have di�erent endpoints

1 if @i .x/ is clockwise to @j .y/

�1 if @i .y/ is clockwise to @j .x/

9

=

;

:

This measures the power of q which relates the superposition Œx�Œy� D Œx � y� to the

(simultaneous) simple multicurve Œx [ y�.

Proposition 6.3. Let x and y be simple curves with X D x[ y a simple multicurve.

Œx�Œy� D q
1
2

ƒx;yŒX� D qƒx;yŒy�Œx�:

Proof. This is a restatement of the boundary skein relation (Figure 4). �

Given an indexed triangulation � D ¹x1; x2; : : : ; xj�jº, de�ne a skew-symmetric

j�j � j�j-matrix ƒ�, called the orientation matrix of �, by

ƒ�
ij WD ƒxi ;xj :

Finally, extend ƒ� to a skew-symmetric bilinear form ƒ�WZ� � Z� ! Z by

ƒ�.˛; ˇ/ WD h˛; ƒ�ˇi D
X

1�i;j �j�j

ƒ�
ij ˛i ǰ :

Later on, we will also need a related matrix which measures when two ends are

immediately clockwise in a triangulation. For two simple curves x; y in a indexed

triangulation �, de�ne

Q�
x;y D

X

i;j 2¹1;2º

8

<

:

0 if @i .x/ and @j .y/ have di�erent endpoints

�1 if @i.x/ is immediately clockwise to @j .y/ in �

1 if @i.y/ is immediately clockwise to @j .x/ in �

9

=

;

:
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Note the sign-reversal. De�ne a skew-symmetric j�j � j�j matrix Q�, called the

skew-adjacency matrix of �, by

Q�
ij WD Q�

xi ;xj
:

Finally, extend Q� to a skew-symmetric bilinear form Q�WZ� � Z� ! Z by

Q�.˛; ˇ/ WD ˛�Q�ˇ D
X

1�i;j �j�j

Q�
ij ˛i ǰ :

6.3. Monomials in �. Fix a triangulation � of †. For ˛ 2 N�, let �˛ denote

a simple multicurve which has ˛i -many curves homotopic to xi , for each i , and

no other components. The corresponding class Œ�˛� 2 Skq.†/ does not depend

on the choice of such a multicurve. Such an element is called a monomial in the

triangulation �.

Multiplication of monomials can be computed using the following proposition.

Proposition 6.4. We have

Œ�˛� D q
� 1

2

P

i<j ƒ�
ij

˛i j̨ Œx1�˛1 Œx2�˛2 : : : Œxj�j�
˛j�j ;

Œ�˛�Œ�ˇ � D q
1
2

ƒ�.˛;ˇ/Œ�˛Cˇ � D qƒ�.˛;ˇ/Œ�ˇ �Œ�˛�:

Proof. The superposition product Œx1�˛1 Œx2�˛2 : : : Œxj�j�
˛j�j corresponds to a link

X which has the same underlying multicurve as �˛; however, the ordering on X is

via superposition, and the ordering on �˛ is simultaneous. By repeatedly applying

the boundary skein relation (Figure 4), one obtains the �rst identity.

The second identity follows from the �rst identity, or by direct application of

the boundary skein relation. �

Monomials can be characterized as follows. For any element y 2 Skq.†/,

de�ne the element ��.y/ 2 N� by

��.y/ WD .�.Œx1�; y/; �.Œx2�; y/; : : : ; �.Œxj�j�; y//:

Lemma 4.7 implies that

�.Œ�˛�; x/ D ˛ � ��.x/;

where the dot product uses the standard basis in N�.

Proposition 6.5. For X a simple multicurve, ŒX� is a monomial in � if and only if
��.ŒX�/ D 0.
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Proof. If ŒX� D Œ�˛�, then

�.Œxi �; Œ�˛�/ D
X

1�j �j�j

j̨ �.Œxi �; Œxj �/ D 0

and so ��.Œ�˛�/ D 0.

Now, assume ��.ŒX�/ D 0. Then there is a homotopic simple multicurve X0

which does not cross any xi 2 �. Then each component of X0 is a simple curve

which does not cross any xi 2 �. Because � is maximal, each component of X0 is

homotopic to some arc in �. Then every component of X0 is homotopic to an arc

in �, and so ŒX0� D Œ�˛� for some ˛. �

A polynomial15 in � is a Zq-linear combination of monomials, and the set

of polynomials in � is a Zq-subalgebra of Skq.†/ by the proposition. By the

proposition, x 2 Skq.†/ is a polynomial in � if and only if ��.x/ D 0.

Remark 6.6. A triangulation � gives Skq.†/ an NN -�ltration, where NN has the

partial order ˛ � ˇ if ˛i � ˇi for all i . The �ltration is

F�;˛.Skq.†// WD ¹x 2 Skq.†/ j ��.x/ � ˛º:

Then the subalgebra of polynomials in � is F�;0.Skq.†//.

Remark 6.7. If � is a maximal multicurve (possibly with loops), the results of

this section remain true (where ƒ�
ij WD 0 if either xi or xj is a loop).

6.4. Laurent expressions. In Section 4.4, it was shown that multiplying y by a

su�ciently high power of an arc Œx� had zero crossing number with Œx�. This can

be directly generalized to triangulations.

Lemma 6.8. For all y 2 Skq.†/, ��.Œ���.y/�y/ D 0.

Proof. By Proposition 6.4, there is some n 2 Z such that

Œ���.y/� D q
1
2

nŒ�˛�Œxi �
�.xi ;y/:

By Lemma 4.7,

�.Œxi �; Œ���.y/�y/ � �.Œxi �; Œ�˛�/C �.Œxi �; Œxi �
�.xi ;y/y/:

The �rst term on the right is zero by Proposition 6.5, and the second is zero

by Corollary 4.13. Therefore, �.Œxi �; Œ���.y/�y/ D 0 and so every term in

��.Œ���.y/�y/ is zero. �

15 Some call these ‘skew-polynomials,’ to emphasize their monomials only quasi-commute.
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Corollary 6.9. For all y 2 Skq.†/, Œ���.y/�y is a polynomial in �.

Remark 6.10. If Œ���.y/� had a left inverse in Skq.†/, then we could write

y D
X

˛

�˛Œ���.y/��1Œ�˛�:

This can be regarded as a (skew) Laurent polynomial in �; this will be made

precise by introducing quantum tori. Such an inverse does not exist in Skq.†/, but

it will exist in an appropriate localization.

6.5. Quantum tori. Let ƒ be a skew-symmetric N � N matrix with integral

coe�cients. De�ne the (based) quantum torus Tƒ of ƒ to be the associative

Zq-algebra such that

� as a Zq-module, Tƒ has a free Zq-basis denoted M ˛ as ˛ runs over ZN and

� the product of these basis elements is given by

M ˛ �M ˇ D q
1
2

ƒ.˛;ˇ/M ˛Cˇ ;

and general products are determined by Zq-bilinearity.

These are ‘based’ quantum tori because the lattice ZN comes with an explicit

basis, denoted ¹e1; e2; : : : ; eN º. There are then distinguished elements of the

form M ei , which generate Tƒ together with M �ei . The basis ¹e1; e2; : : : ; eN º of

ZN gives elements ¹M e1 ; M e2; : : : ; M eN º and ¹M �e1 ; M �e2 ; : : : ; M �eN º which

generate the algebra Tƒ.

Remark 6.11. The ring Tƒ is also called a ring of ‘skew-Laurent polynomials.’

The name ‘quantum torus’ is motivated as follows. The ring C˝Z.Tƒ=hq
1
2�1i/ is

a ring of complex Laurent polynomials in N variables (independent of ƒ), which

is the ring of regular functions on the variety .C�/N , called the ‘N -dimensional

algebraic torus.’ In this way, C˝ZTƒ de�nes a quantization of the algebraic torus

with parameter q
1
2 .

Proposition 6.12. [17] The quantum torus Tƒ is a Noetherian Ore domain.

As a consequence, Tƒ embeds into its skew-�eld of fractions F.

When ƒ D ƒ�, the orientation matrix of a triangulation, we write T�

for T.ƒ�/.
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6.6. Embeddings into quantum tori. We now have all the tools needed to show

that a skein algebra embeds into a quantum torus for each triangulation.

Lemma 6.13. The set of monomials in � generate an Ore set.

Proof. Let x 2 Skq.†/ and Œ�ˇ � be a monomial in �. By Corollary 6.9,

Œ���.x/�x D
X

˛2NN

�˛Œ�˛�

for �nitely many non-zero �˛ 2 Zq, and so

Œ�ˇC��.x/�x D q� 1
2

ƒ�.ˇ;��.x//Œ�ˇ �
X

˛2NN

�˛Œ�˛�

D
�

q� 1
2

ƒ�.ˇ;��.x//
X

˛2NN

qƒ�.ˇ;˛/�˛Œ�˛�
�

Œ�ˇ �:

Then the set of monomials in � satis�es the left Ore condition. Since the bar-

involution sends monomials to themselves, they automatically satisfy the right

Ore condition as well. �

Let Skq.†/Œ��1� be the localization at the monomials16 in �. For any ˛ 2 Z�,

de�ne the Laurent monomial Œ�˛� 2 Skq.†/Œ��1� by the rule

Œ�ˇ 0�ˇ � WD q
1
2

ƒ�.ˇ;ˇ 0/Œ�ˇ ��1Œ�ˇ 0

�:

One may check that this is independent of the representation ˛ D ˇ0 � ˇ, and the

multiplication rules of Proposition 6.4 hold for general ˛; ˇ 2 ZN .

Theorem 6.14. For each triangulation � of †, there is an injective Ore localiza-
tion

Skq.†/ ,�! Skq.†/Œ��1� ' T�

which sends Œ�˛� to M ˛ .

Proof. The injectivity of the Ore localization Skq.†/ ! Skq.†/Œ��1� follows

because the Ore set consists of non-zero-divisors.

Let f WT� ! Skq.†/Œ��1� be the Zq-linear map de�ned by f .M ˛/ D Œ�˛�.

This is an algebra homomorphism by Proposition 6.4.

16 This notation is non-abusive, because Skq.†/ and Œ���1 generate Skq.†/Œ��1�.
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Let Œ�˛��1x be an arbitrary element in Skq.†/Œ��1�, with x 2 Skq.†/ and

˛ 2 NN . By Corollary 6.9, y D Œ���.x/�x is a polynomial in �, so there is some

Y 2 T� with f .Y / D y. Then

f .qƒ.˛;��.x//M �.˛C��.x//Y / D qƒ.˛;��.x//Œ��.˛C��.x//�y

D Œ�˛��1Œ���.x/��1y

D Œ�˛��1x:

Therefore, f is surjective.

Let  D
P

˛ �˛M ˛ be an element in the kernel of f . Let ˇ 2 NN such that

˛ C ˇ 2 NN for all ˛ with �˛ ¤ 0,

0 D Œ�ˇ �f
�

X

˛

�˛M ˛
�

D
X

˛

�˛Œ�ˇ �Œ�˛� D
X

˛

�˛q��.ˇ;˛/=2Œ�˛Cˇ �:

Since ˛Cˇ is in NN , the elements Œ�˛Cˇ � are simple multicurves. By Lemma 4.1,

these are independent over Zq , and so �˛ D 0 for all ˛. Then the kernel of f is 0,

so f is an isomorphism. �

Corollary 6.15. The Laurent monomials in � are a Zq-basis of Skq.†/Œ��1�.

Proof. This is true for T� by construction. �

Corollary 6.16. For any †, Skq.†/ and Sko
q.†/ are Ore domains.

Proof. If @† D ;, then this is [29, Theorem 4.7]. For any † with @† ¤ ;,

it is possible to add marked points to † to get a marked surface †0 with a

triangulation �. By Theorem 6.14,

Skq.†/ ,�! Skq.†0/ ,�! Skq.†0/Œ��1� ' T�:

Then Skq.†/ includes into an Ore domain, so it is an Ore domain. Since Sko
q.†/

is an injective Ore localization of an Ore domain, it is also an Ore domain. �

7. Quantum cluster algebras of marked surfaces

We now turn to cluster algebras of marked surfaces. Cluster algebras are de�ned

in terms of a set of ‘seeds’; combinatorial objects with the property that the full

set of seeds can be recovered from any individual seed by ‘mutation.’ In the

case of triangulable marked surfaces, seeds will correspond to triangulations and

mutation will correspond to �ipping an arc inside a triangulation.
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There are many variations on cluster algebras. We highlight one distinction.

� Commutative cluster algebras A are (as you would expect) commutative

algebras, de�ned as subalgebras of Q.x1; x2; : : : ; xn/ generated by a set of

elements produced by an iterative mutation rule.

� Quantum cluster algebrasAq are Zq-subalgebras of a skew-�eld F generated

by a set of elements produced by an iterative mutation rule.

A quantum cluster algebra Aq always becomes a commutative cluster algebra A1

under the specialization q
1
2 ! 1. However, not every commutative cluster algebra

can arise this way (see Remark 7.14 for a relevant example), and multiple quantum

cluster algebras can have the same commutative specialization (see Section 12.1

for a relevant example).

We focus on the quantum case, and so ‘cluster algebra’ will refer to a quantum

cluster algebra. Commutative cluster algebras will always be labeled as such.

7.1. Quantum cluster algebras. In [11], commutative cluster algebras were in-

troduced to axiomatize structures occurring in the study of canonical bases, and it

was rapidly discovered that these algebras occur in many areas of math. In [14], the

authors introduced the idea of a ‘compatible’ Poisson structure on a commutative

cluster algebra; and in [3], these Poisson structures were ‘quantized’ by quantum

cluster algebras.

A quantum seed (of skew-symmetric type17) in a skew-�eld F is a triple

.B; ƒ; M/, where

� the exchange matrix B is an N � ex integer matrix (for a subset ex �

¹1; : : : ; N º), such that �B is skew-symmetric, where � is the ex �N matrix

which projects ZN onto Zex,

� the compatibility matrix ƒ is an N �N skew-symmetric, integer matrix, such

that ƒB D D�, where � is the N � ex matrix which includes Zex into ZN, and

D is an N �N diagonal matrix with entries Di i > 0 (the identity ƒB D D�

is called the compatibility condition), and

� M WZN ! F � ¹0º is a function such that

M.˛/M.ˇ/ D q
1
2

ƒ.˛;ˇ/M.˛ C ˇ/:

We require that the Zq-span of M.ZN / � F is a based quantum torus of ƒ

whose skew-�eld of fractions is F.

Note that ƒ can be recovered from M by the quasi-commutation relations.

17 This is to distinguish from more general ‘skew-symmetrizable’ quantum seeds.
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Remark 7.1. The notation for a quantum seed here di�ers from [3], who would

write .M; B/ where we write .B; ƒ; M/.

The following proposition is useful to know.

Proposition 7.2. [3, Proposition 3.3],[14] For a quantum seed .B; ƒ; M/, the
matrix B has rank jexj (the largest possible).

A quantum seed .B0; ƒ0; M 0/ is the mutation at i 2 ex of a quantum seed

.B; ƒ; M/, both in F, if

� the exchange relation holds:

B0
jk D

8

ˆ

<

ˆ

:

�Bjk if i D j or i D k,

Bjk C
1

2
.jBj i jBik C Bj i jBik j/ otherwise,

� for ˛ 2 ZN such that ˛i D 0, M.˛/ DM 0.˛/, and

� the quantum cluster relation holds:

M 0.ei / DM
�

� ei C
X

Bji >0

Bj iej

�

CM
�

� ei �
X

Bji <0

Bj i ej

�

:

For a given quantum seed .B; ƒ; M/ and i , there always exists a unique mutation

at i (see [3, Section 4.4]). Mutating twice in a row at the same index returns to

the original quantum seed, and if Bij D 0, then mutating at i and at j commutes.

Two quantum seeds .B; ƒ; M/ and .B0; ƒ0; M 0/ in F are mutation equivalent if

they can be related by an arbitrary sequence of mutations and reordering indices.

De�nition 7.3. The quantum cluster algebra Aq.B; ƒ; M/ of a quantum seed

.B; ƒ; M/ is the Zq-subalgebra of F generated by all elements of the form M 0.˛/,

with .B0; ƒ0; M 0/ mutation equivalent to .B; ƒ; M/, ˛i 2 N for i 2 ex and ˛i 2 Z

for i 2 N � ex.

When the quantum seed is clear, the cluster algebra will be denoted Aq.

An element of the form M 0.ei/ 2 F is called a cluster variable in Aq.B; ƒ; M/.

If i 2 ex, then M.ei / is called a mutable variable; otherwise, it is a frozen variable.

Then Aq.B; ƒ; M/ is the subalgebra of F generated by the cluster variables,

together with the inverses of the frozen variables.

Proposition 7.4. Any element of Aq may be written as a�1b, where a is a product
of frozen variables and b is a polynomial in cluster variables.
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Proof. Since they are never mutated, frozen variables are represented in every

quantum seed of Aq . Then frozen variables and their inverses quasi-commute

with every cluster variable, so they may be collected on the left of any expression

in Aq. �

Any quantum cluster algebra determines a quantum upper cluster algebra.

De�nition 7.5. The quantum upper cluster algebra Uq.B; ƒ; M/ is de�ned as

the intersection of the based quantum tori de�ned by M 0, for each quantum seed

.B 0; ƒ0; M 0/ equivalent to .B; ƒ; M/,

Uq.B; ƒ; M/ D
\

.B0;ƒ0;M 0/ � .B;ƒ;M /

Zq �M
0.ZN /:

Remark 7.6. By [3, Theorem 5.1], it su�ces to only intersect the jexjC1 quantum

tori corresponding to .B; ƒ; M/ and its one-step mutations.

A main result in the theory of cluster algebras is the Laurent phenomenon.

Theorem 7.7. [3, Corollary 5.2] Aq.B; ƒ; M/ � Uq.B; ƒ; M/.

While this inclusion is not always equality, there are many important examples

where it is. Determining when Aq D Uq is an active area of research in both the

quantum and commutative settings. Techniques for attacking this problem will be

developed in Section 8.

Quantum cluster algebras are quantizations of commutative cluster algebras,
as de�ned in [11]. These are commutative algebras de�ned only by an exchange

matrix B.

Commutative cluster algebras may be recovered from their quantizations by

specializing q
1
2 to 1; that is, quotienting out by the ideal generated by q

1
2 �1 2 Zq,

A1.B/ WD Aq.B; ƒ; M/=hq
1
2 � 1i;

U1.B/ WD Uq.B; ƒ; M/=hq
1
2 � 1i:

7.2. Quantum cluster algebras of marked surfaces. In [15], the authors ob-

serve that a triangulable marked surface † determines a commutative cluster al-

gebra.We now extend their construction to a quantum cluster algebra.

Let † be a marked surface, and let F be the skew-�eld of fractions of the skein

algebra Skq.†/. For any triangulation �, construct a quantum seed in F as follows.
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� ex � ¹1; 2; : : : ; N º ' � is the subset of non-boundary arcs 18 in �.

� B� D Q� ı �, where � W Zex ! ZN is the natural inclusion.

� ƒ� is the orientation matrix of �.

� M � W ZN ! F is given by M�.˛/ D Œ�˛�.

Proposition 7.8. The triple .B�; ƒ�; M �/ is a quantum seed.

Proof. The only non-trivial fact to prove is that ƒ�B� D 4� (the compatibility
condition). Let xj 2 � be a non-boundary arc. For xi 2 �, consider the matrix

entry

.ƒ�Q�/ij D
X

1�k�N

ƒ�
ikQ

�
kj :

The curve xj is an edge in two distinct triangles in †��. Let xk1
; xk2

; xk3
; xk4

be

the other arcs around these triangles, ordered as in Figure 8. Note that these arcs

need not be distinct nor have distinct endpoints, despite the �gure.

xj

xk1

xk2

xk3

xk4

Figure 8. The adjacent arcs.

From the de�nition of Q�, Q�
kj
D .�1/` if k D k`, and 0 otherwise. Then

.ƒ�Q�/ij D
X

1�`�4

.�1/`ƒ�
ik`

:

The arcs k` need not be distinct for the above sum to remain valid.

We consider xi in three cases.

� Case 1 : i 62 ¹j; k1; k2; k3; k4º. At each end of xi , either there are no ends

of the arcs xk`
, or there are two of the form xk`

and xk`C1
for some `. In the

latter case, both xk`
and xk`C1

are either clockwise or counter-clockwise to

xi , and so ƒ�
ik`
D ƒ�

ik`C1
. Therefore, .ƒ�Q�/ij D 0.

18 Recall that a boundary arc is an arc homotopic to an arc contained in the boundary @†.
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� Case 2: i D k` for some `. Then ƒ�
ik`C1

D �ƒ�
ik`�1

and all others are

zero, so .ƒ�Q�/ij D 0.

� Case 3: i D j . In this case, ƒ�
ik`
D Q�

ik`
D .�1/`, and so .ƒ�Q�/ij D 4.

By de�nition, ej is in the image of � if and only if xj is a non-boundary arc, so

ƒ�B� D ƒ�Q�� D 4�. �

From the de�nitions, M �.ei / D Œ�ei � D Œxi � 2 Skq.†/.

Theorem 7.9. For any triangulation �, and any �ip �0 of � at a non-boundary
arc xj , .B�0

; ƒ�0
; M �0

/ is the mutation of .B�; ƒ�; M �/ at j .

Proof. The exchange relation is unchanged from the commutative version of

this theorem, which can be found in [9, Proposition 4.8]. It is also clear that

M �.˛/ DM �0
.˛/ if j̨ D 0. The remaining work is the quantum cluster relation.

Let x0
j be the �ip of xj in �, so that �0 D .��xj /[x0

j , and let xk1
; xk2

; xk3
; xk4

be as in Figure 8. Because the endpoints of xj and x0
j need not be distinct, the

superposition xj �x
0
j may not have the simultaneous ordering on all of its ends. Let

X be the link which is identical to xj � x
0
j except with the simultaneous ordering on

the ends. There is then some � 2 Z such that

Œxj �Œx0
j � D q

1
2

�ŒX�:

If the endpoints of xj and x0
j are all distinct, this correction is unneeded and � D 0.

The link X has a single transverse crossing; by the Kau�man skein relation,

D q Cq�1 D q Cq�1
:

In the second equality, we have used homotopy to show that the resulting links

have components corresponding to xk2
; xk4

and xk1
; xk3

, respectively. Since X

had simultaneous ends and a single transverse crossing, we can be assured that

the right-hand side consists of simple multicurves. Therefore,

q� 1
2

�Œxj �Œx0
j � D qŒxk2

[ xk4
�C q�1Œxk1

[ xk3
�:

which we may rewrite as monomials in �, and divide by q� 1
2

�Œ�ej �.

Œ.�0/ej � D q
1
2

.�C2/Œ��ej �Œ�ek2
Cek4 �C q

1
2

.��2/Œ��ej �Œ�ek1
Cek3 �: (7.1)
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Lemma 7.10. � D ƒ�
jk2
Cƒ�

jk4
� 2 D ƒ�

jk1
Cƒ�

jk3
C 2.

Proof. Let w1; w2; w3; w4 denote the four corners of the quadralateral cut out by

the ¹xk`
º, thought of as wedges in small neighborhoods of the marked points,

w2

w3w4

w1
.

For m ¤ n 2 ¹1; 2; 3; 4º, de�ne

…m;n D

8

<

:

0 if wm and wn have disjoint marked points

1 if wm is clockwise to wn at a shared marked point

�1 if wn is clockwise to wm at a shared marked point

9

=

;

:

Since the interiors of the wedges are disjoint from each other, this is well-de�ned.

Note that …m;n D �…n;m. From the de�nitions,

� D …2;1 C…2;3 C…4;1 C…4;3;

ƒ�
jk2
D 1C…2;3 C…4;2 C…4;3;

ƒ�
jk4
D 1C…4;1 C…2;4 C…2;1:

The �rst equality follows. The second equality is proved similarly. 4

The lemma and Proposition 6.4 imply that

q
1
2

.�C2/Œ��ej �Œ�ek2
Cek4 � D q

1
2

.�C2/q
1
2

.�ƒ�
jk2

�ƒ�
jk4

/
Œ�ek2

Cek4
�ej �

D Œ�ek2
Cek4

�ej �

and

q
1
2

.��2/Œ��ej �Œ�ek1
Cek3 � D q

1
2

.��2/q
1
2

.�ƒ�
jk1

�ƒ�
jk3

/
Œ�ek1

Cek3
�ej �

D Œ�ek1
Cek3

�ej �:

Equation (7.1) then becomes

Œ.�0/ej � D Œ�ek2
Cek4

�ej �C Œ�ek1
Cek3

�ej �:

Switching term on the right, this is the quantum cluster relation, as required.

M �0

.ej / DM �
�

� ej C
X

Bkj >0

Bkj ek

�

CM �
�

� ej �
X

Bkj <0

Bkj ek

�

:

Then .B�0

; ƒ�0

; M �0

/ is the mutation of .B�; ƒ�; M �/ at j . �
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Corollary 7.11. For any two triangulations � and �0 of †, the quantum seed
.B�0

; ƒ�0
; M �0

/ is mutation equivalent to .B�; ƒ�; M �/, and every seed muta-
tion equivalent to .B�; ƒ�; M �/ is of this form.

Proof. Every mutation at i 2 ex corresponds to a �ipping a non-boundary arc in

a triangulation, so any sequence of mutations corresponds to a sequence of �ips.

Since every triangulation �0 is related to � by a sequence of �ips, every quantum

seed coming from a triangulation is mutation equivalent to .B�; ƒ�; M �/. �

Thus, we can speak unambiguously about ‘the’ quantum cluster algebraAq.†/

and quantum upper cluster algebra Uq.†/ of a triangulable marked surface †.

De�nition 7.12. For any triangulation � of †, the subalgebras

Aq.†/ WD Aq.B�; ƒ�; M �/ � F;

Uq.†/ WD Uq.B�; ƒ�; M �/ � F

are the quantum cluster algebra of † and the quantum upper cluster algebra of †,

respectively.

Remark 7.13. These quantum cluster algebras are quantizations of the commu-

tative cluster algebras of marked surfaces de�ned in [15] and [9], with boundary
coe�cients. This means the coe�cients (in the sense of [11]) are the Laurent ring

generated by the set of boundary arcs. The coe�cient-free case may be recovered

by quotienting Aq.†/ or Uq.†/ by the ideal generated by q
1
2 � 1 and ¹x� 1º as x

runs over the set of boundary arcs.

Remark 7.14. We can now justify requiring that the marked points are contained

in the boundary. For a marked surface † with internal marked points, there is an

associated commutative cluster algebra A.†/ de�ned in [14] and [9] (where the

coe�cients are the Laurent ring generated by the boundary arcs). It is possible

to use the ‘tagged arcs’ of [9] to de�ne a commutative ‘tagged skein algebra’

Sk.†/ (with q
1
2 D 1) which has a localization Sko.†/ which is naturally a cluster

algebra.19

However, for any triangulation � of †, the corresponding exchange matrix

B� will never be of full rank. Therefore, by Proposition 7.2, this commutative

cluster algebra admits no quantization. It is possible there is a well-behaved

generalization of † to the case of internal marked points for general q, but it

cannot correspond to the quantum cluster algebra of † (with coe�cients coming

from boundary arcs).

19 This is intended for a subsequent publication.
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7.3. Relation to the skein algebra. The algebrasAq.†/ andUq.†/ were de�ned

as subalgebras ofF, the skew-�eld of fractions of Sko
q.†/, and so the three algebras

can be compared as subalgebras.

Theorem 7.15. For any triangulable marked surface †,

Aq.†/ � Sko
q.†/ � Uq.†/:

It will be shown in Theorem 9.8 that these inclusions are equalities so long as

† contains at least two marked points.

Proof of Theorem 7.15. Let � be a triangulation of †. By de�nition, M �.˛/ D

Œ�˛�. For any ˛ 2 ZN with ˛i � 0 for i 2 ex, write ˛ D ˇ�ˇ0, where ˇ; ˇ0 2 NN

and ˇ0
i D 0 for i 2 ex. Then

M �.˛/ D Œ�˛� D q� 1
2

ƒ�.ˇ;ˇ 0/Œ�ˇ �Œ�ˇ 0

��1:

Since Œ�ˇ 0
� is a monomial in the boundary arcs, M �.˛/ 2 Sko

q.†/. Since this is

true for any quantum seed and any ˛ with ˛i � 0 for i 2 ex, Aq.†/ � Sko
q.†/.

The quantum torus Zq �M
�.ZN / is the same as T�, because they are both the

Zq-span of the Œ�˛� for ˛ 2 ZN . Then, Theorem 6.14 implies that Sko
q.†/ � T�.

Since this is true for any quantum seed, Sko
q.†/ � Uq.†/. �

Remark 7.16. Under this inclusion, Aq.†/ is the Zq-subalgebra of Sko
q.†/ gen-

erated by arcs (ie, cluster variables) and inverses to boundary arcs. Hence, the

de�nition given here for Aq.†/ (De�nition 7.12) agrees with the one give in the

introduction.

Remark 7.17. Let A
\
q.†/ be the Zq-subalgebra of F generated by the cluster

variables, but not the inverses to ‘frozen’ variables. Then A
\
q.†/ � Skq.†/ as

the subalgebra generated by the arcs; however, this is only an equality when † is

contractible. If there is a non-trivial loop ` 2 †, then Œ`� 2 Skq.†/ is not a scalar,

but does have E-degree zero. This cannot happen in A
\
q.†/, so A

\
q.†/ ¤ Skq.†/.

7.4. Laurent formulae and denominators. Given a link X and a triangulation

�, the proof of Theorem 6.14 gives an explicit method to express ŒX� as an element

of the quantum torus T�. Speci�cally, applying the Kau�man skein relation

repeatedly to Œ���.ŒX�/�ŒX� eventually gives a polynomial
P

˛ �˛Œ�˛� in �, and so

ŒX� D Œ���.ŒX�/��1
X

˛

�˛Œ�˛� D
X

˛

�0
˛Œ�˛���.ŒX�/�:
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Since Aq.†/ � Sko
q.†/, this can also be applied to any cluster variable in Aq.†/.

A cluster variable will correspond to a simple arc x, and so

Œx� D Œ���.Œx�/��1
X

˛

�˛Œ�˛� D
X

˛

�0
˛Œ�˛���.Œx�/�:

This gives an e�ective method for expressing a cluster variable as a skew-Laurent

polynomial in the cluster variables of any other cluster. This approach is already

well-known for commutative cluster algebras. For discs, explicit formulas appear

in the work of Schi�er [31], and are more explicitly related to the skein relations

in [16, Section 2.1.5]. For general marked surfaces, a related method for producing

Laurent expansions in terms of T-paths and snake graphs has been developed in

[32], [33], and [22].

One consequence of this formula is a denominator Œ���.Œx�/� for the skew-

Laurent expression. This is the smallest possible denominator, as this proposition

shows.

Proposition 7.18 ([9, Theorem 8.6]20). If x is a simple arc in †, � is a triangu-
lation of † and Œ�˛�Œx� 2 Skq.†/ is a polynomial in �, then

˛ � ��.Œx�/ 2 N�:

7.5. Gradings on Aq.†/. In [14, Section 2.2], the authors de�ne a grading21 on

any cluster algebra, which is the ‘largest possible’ compatible grading. For Aq.†/,

this is shown to coincide with the endpoint E-grading de�ned in Section 3.5.

For any abelian group L, an L-grading on a cluster algebra Aq is compatible
if each cluster variable is homogeneous. Given a compatible L-grading on Aq, a

morphism f W L ! L0 induces a compatible L0-grading on Aq, by degL0.x/ WD

f .degL.x//. A compatible grading on Aq is universal if it is the initial object in

the category of compatible gradings of Aq and induction maps between them.

In [14], the authors de�ne compatible gradings, and characterize the universal

compatible grading of any cluster algebra.

Lemma 7.19 ([14, Lemma 2.3]22). Let .B; ƒ; M/ be a quantum seed for Aq. Then

deg.M.˛// D ˛ C B.Zex/ 2 .ZN =B.Zex//

extends to a universal compatible grading of Aq by ZN =B.Zex/.

20 Their result is for commutative cluster algebras, but it implies the quantum result.

21 In truth, [14] de�ne a torus action on A, but semi-simple torus actions by T are equivalent

to gradings by the character lattice of T.

22 The result in [14] is stated for torus actions, but is equivalent to the result stated here.
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For the cluster algebras we consider, this coincides with the endpoint E-grad-

ing.

Proposition 7.20. For any �, the map ı W Z� ! E which sends an arc in � to its
endpoints induces an isomorphism Z�=B.Zex/

�
�! E.

Proof. Simple arcs in † are E-homogeneous elements in Skq.†/, so Aq.†/ is

generated by E-homogeneous elements (cluster variables and inverses to frozen

variables); it follows that Aq.†/ is compatibly E-graded.

Fix a triangulation �, and let ıWZ� ! E be the map which sends a monomial

in � to its endpoint degree. The map ı kills the image B�.Zex/, and so it descends

to a map ı0WZ�=B�.Zex/! Ewhich is the map which induces the E-grading from

the Z�=B�.Zex/-grading.

For every pair of marked points in a connected component of †, there is an

arc connecting them. The degrees of these arcs generated E, and so the map ı0 is

surjective.

The lattice E is a full-rank sublattice of ZM, so it has rank jMj. The lattice

Z�=B.Zex/ has rank equal to j�j � rank.B�/. By Proposition 7.2, rank.B�/ D

jexj, and j�j � jexj is the number of boundary arcs jMj. Then ı0 is a surjective

maps between lattices of the same rank, so it is an isomorphism. �

Corollary 7.21. The endpoint E-grading on Sko
q.†/ restricts to a universal com-

patible grading on Aq.†/.

8. A general technique for Aq D Uq

In this section, we develop a technique for simultaneously proving Aq D Uq

for classes of cluster algebras. Many of the ideas here are quantum analogs of

commutative ideas which appeared in [25].

8.1. Exchange types. An n � n integral skew-symmetric matrix A may be mu-
tated at an index i 2 ¹1; : : : ; nº using the exchange relation as in Section 7.

By construction, this notion of mutation is compatible with mutation of quantum

seeds under the map which sends any quantum seed .B; ƒ; M/ to the matrix23 �B.

An exchange type T is an equivalence class of skew-symmetric matrices, under

the relation generated by mutation and conjugation by a permutation matrix.

23 Recall that � is the the ex � N -matrix which projects ZN onto Zex, so that �B is the

’principal part’ of B (see Section 7.1).
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Given a quantum seed .B; ƒ; M/, the exchange type of �B consists of matrices

of the form �B0 for quantum seeds .B0; ƒ0; M 0/ mutation equivalent to .B; ƒ; M/.

We say the exchange type of a quantum seed .B; ƒ; M/ is the exchange type of

�B, and the exchange type of a cluster algebra Aq is the exchange type of any of

its quantum seeds.

The results which follow depend only on the exchange type of a cluster algebra.

Remark 8.1. An n � n integral skew-symmetric matrix A can be encoded in a

quiver Q.A/, with vertex set ¹1; : : : ; nº and Aij -many arrows from j to i (where

negative arrows are from i to j ). Mutation can be encoded as an operation on a

quiver [20, Section 2], and exchange types correspond to mutation-equivalence

classes of quivers.

8.2. Isolated cluster algebras. A quantum seed or cluster algebra is called

isolated if its exchange type is the zero matrix. Concretely, a cluster algebra is

isolated if every quantum seed .B; ƒ; M/ has �B D 0.

Proposition 8.2. If Aq is isolated, Aq D Uq.

Remark 8.3. In [3, Theorem 7.5], the authors show that Aq D Uq whenever Aq

has an acyclic exchange type, which immediately implies this proposition. We

include a proof anyway, because a by-product of the techniques we develop will

be a new proof of Berenstein and Zelevinsky’s theorem (Proposition 8.17).

Proof of Proposition 8.2. Let .B; ƒ; M/ be a seed for Aq , with corresponding

quantum torus Tƒ. Let R denote the subring of Aq generated by the frozen

variables and their inverses. The ring R is naturally a quantum subtorus of Tƒ,

and so Tƒ is a free left R-module with basis ¹M.˛/º as ˛ runs over Zex.

Since Bij D 0 for all i; j 2 ex, all mutations commute with each other. Mutat-

ing once at each i 2 ex in any order gives the quantum seed ..�1/jexjB; ƒ0; M 0/,

with24

Pi WDM 0.ei/M.ei / D q�M
�

X

Bji >0

Bj i ej

�

C q�M
�

�
X

Bji <0

Bj iej

�

:

Since the expression on the right contains no indices in ex, Pi 2 R.

24 Here, and throughout, q� denotes a half-power of q not worth keeping careful track of.
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Choose an element x 2 Uq � Tƒ, write (for �˛ 2 R)

x D
X

˛

�˛M.˛/ D
X

˛2Zex

q��˛M.e1/˛1M.e2/˛2 : : : M.ejexj/
˛jexj :

Let us rewrite x by replacing some of these cluster variables with their mutation.

Choose any I � ex.

x D
X

˛2Zex

q��˛

�

Y

i2I

M.ei /
˛i

��

Y

i 62I

M.ei /
˛i

�

D
X

˛2Zex

q��˛

�

Y

i2I

.M 0.ei /
�1Pi /

˛i

��

Y

i 62I

M.ei /
˛i

�

D
X

˛2Zex

q��˛

�

Y

i2I

P
˛i

i

��

Y

i2I

M 0.ei /
�˛i

��

Y

i 62I

M.ei /
˛i

�

:

Let TI be the quantum torus corresponding to the seed which is the mutation

of .B; ƒ; M/ at the set I in any order. The cluster variables in this seed are

¹M 0.ei /ºi2I [ ¹M.ei /ºi 62I . Since the exponents ˛i may be negative, it is not

immediate that the coe�cient �˛

Q

i2I P
˛i

i is an element of R. However, because

x 2 Uq , it is also in TI , and so this coe�cient is in R.

Let I˛ � ex be the set on which ˛ is negative. Then

x D
X

˛2Zex

q�
�

�˛

Y

i2I˛

P
˛i

i

��

Y

i2I˛

M 0.ei/
�˛i

��

Y

i 62I˛

M.ei /
˛i

�

:

This expression is in Aq , so Aq D Uq . �

Remark 8.4. This proof is essentially the same as that of [1, Lemma 4.1].

8.3. Freezing and cluster localization. Let Aq be a quantum cluster algebra,

with skew-�eld of fractions F. Fix a quantum seed .B; ƒ; M/ of Aq , and choose

a set s � ex of exchangeable indices. If we let ex.s/ D ex � s and B.s/ be the

restriction of B to ex.s/, then .B.s/; ƒ; M/ de�nes a new quantum seed, called the

freezing of .B; ƒ; M/ at s. Let A
.s/
q and U

.s/
q be the corresponding cluster algebras

of this new seed. By construction, these new algebras are subalgebras of F.

On the level of the principal part �B, freezing a set s is the square submatrix

on the indices ex�s. As a slight abuse of notation, for any skew-symmetric matrix

A, we write A.s/ for the square submatrix of A after deleting the columns and rows

in s (whether or not we think of A as the skew-symmetric part of an exchange

matrix).
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Denote by S WD ¹M.ei / j i 2 sº the initial cluster variables in Aq. Let Aq ŒS�1�

(resp. UqŒS�1�) denote the subalgebra of F generated by Aq and S�1 (resp. Uq

and S�1).

These four algebras can be compared by the following proposition.25

Proposition 8.5. There are inclusions in F

A
.s/
q � Aq ŒS�1� � UqŒS�1� � U

.s/
q :

Proof. The cluster variables of A
.s/
q are a subset of the cluster variables of Aq.

The only new generators are the inverses of the newly-frozen variables, but those

are in the localization by construction. This gives the �rst inclusion. Similarly,

A
.s/
q has fewer clusters than Aq, so the intersection de�ning U

.s/
q has strictly fewer

terms than Uq; so Uq � U
.s/
q . Since U

.s/
q also contains the inverses of S , this gives

the last inclusion. The middle inclusion follows from the inclusion Aq � Uq. �

If A
.s/
q D AqŒS�1�, then A

.s/
q is a localization of Aq which is naturally a cluster

algebra; in this case, we call A
.s/
q a cluster localization of Aq. Determining which

freezings give cluster localizations seems to be an interesting problem.

One nice aspect of cluster localizations is that they are Ore localizations.

Proposition 8.6. If A.s/
q D AqŒS�1� is a cluster localization, then it is an Ore

localization of Aq at the multiplicative set generated by S .

Proof. Any x 2 Aq is in A
.s/
q , and so by Proposition 7.4, x D a�1b for a a product

of frozen variables of A
.s/
q and b a polynomial in the cluster variables of A

.s/
q . The

cluster variables of A
.s/
q are a subset of the cluster variables of Aq, so b 2 Aq.

Frozen variables in A0
q are either frozen in Aq or in S , so we can write

a D q�cd , where c is a product of frozen variables in Aq and d is a product

of elements in S . Then x D d �1.q��c�1b/, where d is a product of elements in

S , and q��c�1b 2 Aq. ThenAq ŒS�1� is a left Ore localization. Since the elements

of S are �xed by the bar involution, it is also a right Ore localization. �

Remark 8.7. If s D ex, then A
.s/
q D AqŒS�1� is the quantum torus Tƒ � F

corresponding to the quantum seed .B; ƒ; M/. In this way, cluster localizations

generalize these embeddings.

Remark 8.8. In terms of the quiver Q.�B/, freezing deletes the vertices in s.

25 This is the quantum analog of [25, Proposition 3.1].
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8.4. Relatively prime elements. We give a technique for producing localiza-

tions of a cluster algebra whose collective intersection is the original cluster alge-

bra. This algorithm will only depend on the skew-symmetric submatrix �B.

Given an n � n skew-symmetric matrix A, i 2 ¹1; : : : ; nº is a sink if Aj i � 0

for all j . Similarly, a source is an index i 2 ¹1; : : : ; nº such that Aj i � 0 for all

j 2 ex.

Remark 8.9. In terms of the quiver Q.A/, a source is a vertex without outgoing

arrows, and a sink is a vertex without incoming arrows.

Sources and sinks are a source of pairs of cluster variables which generate Aq.

Lemma 8.10. Let .B; ƒ; M/ be a quantum seed, with i; j 2 ex such that Bij ¤ 0

and i is a sink or a source in �B. Then the cluster variables M.ei / and M.ej /

generate the trivial left ideal in Aq.B; ƒ; M/.

Proof. Assume i is a sink (the other case is similar); this implies Bj i > 0. If

.B0; ƒ0; M 0/ is the mutation of the original seed at i , then

M 0.ei/M.ei / D q�M
�

X

Bki >0

Bkiek

�

C q�M
�

�
X

Bki <0

Bki ek

�

:

Since we may always factor a monomial M.˛/ into q�M.˛�ˇ/M.ˇ/ for any ˛ and

ˇ, we move the �rst term on the right hand side to the left, and pull out an M.ej /.

q�M 0.ei /M.ei / � q�M
�

� ej C
X

Bki >0

Bkiek

�

M.ej / DM
�

�
X

Bki >0

Bki ek

�

:

Since Bj i > 0, the left-hand side is in any left Aq-ideal containing M.ei / and

M.ej /. Since i is a sink, Bki < 0 implies that that k 62 ex, and so the right

hand side is a monomial in non-exchangeable indices, which are invertible by

construction. It follows that the left Aq-ideal generated by M.ei / and M.ej / is

trivial. �

Remark 8.11. This lemma is weaker than its commutative analog, [25, Lemma

5.3], which applies to any ‘covering pair,’ which generalizes the condition on i

and j . There is no obvious quantum analog of the argument for this more general

condition.

Lemma 8.12. If M.ei / and M.ej / generate Aq as a left ideal, then

Aq ŒM.ei /
�1�\AqŒM.ej /�1� D Aq :
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Proof. For any x 2 Aq ŒM.ei /
�1� \ AqŒM.ej /�1�, let nx 2 N be the smallest

positive integer such that, for all a; b 2 N such that aC b � nx , M.aei C bej /x 2

Aq . Such an nx exists; to see this, write x D M.cei /
�1y D M.dej /�1z for

y; z 2 Aq and note that nx � c C d . Clearly, nx D 0 if and only if x 2 Aq.

For contradiction, assume there exists x 62 Aq with nx minimal among ele-

ments of .AqŒM.ei /
�1�\AqŒM.ej /�1�/�Aq. For any a; b 2 Nwith aCb � nx�1,

M.aei C bei /ŒM.ei /x� DM..aC 1/ei C bej /x �!M.aei C bei /ŒM.ei /x� 2 Aq:

This implies that nM.ei /x � nx � 1. Since nx was minimal, M.ei /x 2 Aq . By a

symmetric computation, M.ej /x 2 Aq .

De�ne the left denominator ideal I of x by

I WD ¹y 2 Aq j yx 2 Aqº

This is a left Aq-ideal. As has been observed, M.ei / and M.ej / are in I .

By Lemma 8.10, I D Aq. In particular, 1 2 I and 1 � x 2 Aq . This contradicts

x 62 Aq . �

8.5. A lemma for provingAq D Uq . These techniques can be combined to give

the following criterion for showing large classes of cluster algebras haveAq D Uq.

Lemma 8.13. Let P be a set of exchange types. Assume that, for every non-
isolated exchange type T 2 P, there is a skew-symmetric matrix A 2 T, and indices
i; j such that

(1) Aij ¤ 0 and i is either a source or a sink in A and

(2) the exchange types of the freezings A.i/ and A.j / are both in P.

Then Aq D Uq for all Aq with exchange type in P.

Proof. Assume P non-empty; the alternative case is immediate.

We proceed by induction on the size of T; this is the size of any matrix in T.

Let T 2 P have minimal size. If it is not isolated, then there is some A 2 T with a

freezing A.i/ with exchange type in P. Since the size of A.i/ is less than the size of

A, this contracts minimality; so T is isolated. Then Aq D Uq for any Aq of type T

by Proposition 8.2.

Assume that Aq D Uq for every Aq of type T 2 P with size < n. Let T 2 P

be an exchange type of size n, and let Aq be a cluster algebra of type T. If Aq is

isolated, then Aq D Uq .
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Else, let A 2 T be the matrix and i; j be the indices guarenteed by the

hypothesis. Since Aq has type T, there is a quantum seed .B; ƒ; M/ of Aq such

that �B D A, and we identify i; j with indices in ex. Then the freezings A
.i/
q and

A
.j /
q are of type A.i/ and A.j / respectively. These exchange types are in P and so

by the inductive hypothesis, A
.i/
q D U

.i/
q and A

.j /
q D U

.j /
q . Then the inclusions in

Proposition 8.5 are equalities; in particular,

A
.i/
q D AqŒM.ei /

�1� and A
.j /
q D AqŒM.ej /�1�:

By Lemma 8.10, M.ei / and M.ej / generate Aq as a left ideal, so by Lemma 8.12,

Uq � U
.i/
q \ U

.j /
q D A

.i/
q \A

.j /
q D Aq ŒM.ei /

�1� \AqŒM.ej /�1� D Aq :

But Aq � Uq , so Aq D Uq. By induction, this is true for all T 2 P. �

Remark 8.14. The above lemma is a weaker version of the Ban� algorithm

which appeared in [25, Section 5], reformulated as an criterion rather than an

algorithm. Speci�cally, if the condition .2/ in the lemma was replaced by the

weaker condition ‘.i; j / is a covering pair in A,’ then a setP satis�es the hypothesis

of the new version of the lemma if and only if the Ban� algorithm produces an

acyclic cover for every commutative cluster algebra A1 with exchange type in P.

As a consequence, if P satis�es the lemma as it is stated above, every commutative

cluster algebra A1 with exchange type in P is locally acyclic (see Section 11).

Remark 8.15. The union xP of all sets P which satisfy the lemma also satis�es the

lemma, so xP is the unique maximal set of exchange types satisfying the lemma.

Are there any cluster algebras Aq with Aq D Uq and exchange type not in xP?

8.6. Digression: acyclic cluster algebras. A n � n skew-symmetric matrix A

is called acyclic if there is no sequence of indices i1; i2; : : : ; in D i1 such that

Aij C1ij > 0. An exchange type is acyclic if any matrix in it is.

Remark 8.16. The matrix A is acyclic if and only if Q.A/ has no directed cycles.

Cluster algebras of acyclic type are an important class of examples, for which

many general results are known. A byproduct of Lemma 8.13 is a new proof that

Aq D Uq for acyclic cluster algebras, which �rst appeared in [3, Theorem 7.5].

Proposition 8.17. If Aq has acyclic exchange type, then Aq D Uq .
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Proof. If A is acyclic and not zero, then there is some i which is a sink, and j with

Aj i < 0. This can be shown by starting at a non-isolated vertex in Q.A/ and moving

along arrows; eventually a dead-end is reached because the index set is �nite and

cycles are forbidden. The freezings A.i/ and A.j / are also acyclic. Therefore, the

class of acyclic exchange types satis�es the hypothesis of Lemma 8.13. �

Remark 8.18. This is of limited usefulness for cluster algebras of marked sur-

faces, because Aq.†/ has acyclic exchange type only for certain simple surfaces

(see [9, Remark 10.11]).

9. Aq.†/ D Uq.†/ for (most) marked surfaces

The techniques of the previous section can now be applied to the class of triangu-

lable marked surfaces with at least two marked points on each connected compo-

nent.

9.1. Marked surfaces with isolated cluster algebras. The �rst step is to char-

acterize which cluster algebras of marked surfaces have isolated exchange type.

Proposition 9.1. If † is a union of topological discs, each with 3 or 4 marked
points, then Aq.†/ has isolated exchange type.

Proof. Let � be a triangulation of †. The only non-boundary curves in � will

be diagonals across connected components with 4 marked points. Since any two

such curves x; y are in di�erent components, Q�
x;y D 0, and so �B� D 0. �

Remark 9.2. These are the only triangulable marked surfaces whose cluster

algebras have isolated exchange type.26

9.2. Cutting a marked surface. Freezing a quantum seed .B�; ƒ�; M �/ can

be interpreted as the topological action of ‘cutting,’ at least on the level of the

skew-symmetric matrix �B�.

Let x be a simple non-boundary arc27 in †. The cutting �x.†/ of † along ˛

is the marked surface obtained by cutting † along x, compactifying † by adding

26 We emphasize that this is not true in the larger generality of marked surfaces with non-

boundary marked points (not considered in this paper, but cover in [9].

27 Cutting at any simple curve may be de�ned, but the resulting marked surface will only be

triangulable for simple non-boundary arcs, so we do not consider the more general case.
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boundary along the two sides of x, and adding marked points where the endpoints

of x were. There is a natural map

�x.†/ �! †

which is a bijection away from x � †, a 2-to-1 map over the interior of x, and

such that the preimage of marked points are all marked. The two types of cut are

pictured in Figure 9.

x

x

Figure 9. Types of cuts.

The map �x.†/ ! † takes a triangulation of �x.†/ to a triangulation of †

which contains x. This induces a bijection between triangulations of �x.†/ and

triangulations of † which contain x.

Proposition 9.3. Let x be a simple non-boundary arc in †. Let � be a triangula-
tion of † containing x, and �0 be the corresponding triangulation of �x.†/. Then
the skew-symmetric matrix �B�0

is the submatrix .�B�/.x/ of �B� where the row
and column corresponding to x has been removed.

Proof. Let y; z 2 �0. Then

.�B�0

/y;z D Q�0

y;z D Q�
y;z D .�B�/y;z:

The set ex0 � �0 of non-boundary arcs is ex � ¹xº, so �B�0
is the restriction of

�B� away from x. �

Corollary 9.4. Let x be a simple non-boundary arc in †, and let � be a triangula-
tion of † containing x. Then Aq.�x.†// has the same exchange type as Aq.†/.x/,
the freezing of x in the quantum seed corresponding to �.

Remark 9.5. It is not true that Aq.�x.†// D Aq.†/.x/. The induced triangulation

�0 of �x.†/ has one more element than �, and so the cluster algebras in question

do not have isomorphic skew-�elds of fractions.
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9.3. Finding relatively prime elements. We now topologically characterize

pairs of cluster variables (ie, simple arcs) which satisfy Lemma 8.10.

Lemma 9.6. Let x; y; z be non-crossing, simple arcs in .†;M/ as in Figure 10,
with the endpoints of y distinct and x; y non-boundary.28 Then, for any triangula-
tion ¹x; y; zº � � of †, y is a sink of the matrix .�B�/ with B�

yx > 0.

yx
z

Figure 10. A con�guration of arcs.

Proof. In any triangulation � of .†;M/ which contains x; y and z, there can be

no non-boundary arcs immediate clockwise or counterclockwise to y other than

x and z. Therefore, Q�
x At each end of y, there will be no arcs in � which are

counter-clockwise to y, and so there are no arrows out of y in Q�. �

9.4. Proving Aq D Uq for most marked surfaces. We are now in a position to

prove that Aq.†/ D Uq.†/ for a many marked surfaces.

Theorem 9.7. If Aq is a cluster algebra with the same exchange type as Aq.†/

for † a triangulable marked surfaces with at least two marked points in each
connected component, then Aq D Uq.

Proof. Let P be the set of exchange types comings from such marked surfaces.

We showP satis�es the hypothesis of Lemma 8.13. Let T be an exchange type inP,

and let † be such that Aq.†/ has exchange type T. If every connected component

of † is a disc 3 or 4 marked points, then T is isolated (Proposition 9.1).

Otherwise, choose a connected component †0 of † which is not a disc with 3

or 4 marked points. Choose a simple non-boundary arc y with distinct endpoints

(by hypothesis, †0 has at least two marked points). There exists non-crossing

simple arcs x and z (which may coincide) so that x; y; z are as in Figure 10.

The curves x and z cannot both be boundary arcs, since that would force †0 to

be a disc with 4 marked points. Assume x is a non-boundary arc (the other case is

identical).

28 Other pairs of marked points may coincide, and x and z may coincide.
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Choose a triangulation � containing x; y; z. By Proposition 9.3, the freezing

.�B�/.x/ D .�B�0
/ where �0 is the induced triangulation on the cutting �x.†/.

Since the cutting �x.†/ is still a marked surface with at least two marked points in

each connected component, the exchange type of .�B�/.x/ is in P. By an identical

argument, the exchange type of .�B�/.y/ is in P.

Then �B� 2 T is non-isolated, with indices x; y such that

(1) .�B�/x;y > 0 and y is a sink of �B� (by Lemma 9.6) and

(2) .�B�/.x/ and .�B�/.x/ have exchange type in P.

Thus, P satis�es Lemma 8.13. �

The localized skein algebra Sko
q.†/ is between Aq.†/ and Uq.†/, so they

coincide.

Theorem 9.8. If † is triangulable and has at least two marked points in each
connected component, then

Aq.†/ D Sko
q.†/ D Uq.†/:

Proof. This is an immediate consequence of Theorems 7.15 and 9.7. �

Remark 9.9. One immediate advantage of this theorem is computational. Com-

putations in cluster algebras can be quite di�cult, for several reasons. Working

with expressions in Aq in di�erent seeds requires choosing an explicit sequence

of mutations relating the seeds, and the complexity grows rapidly with the number

of mutations. The upper cluster algebra Uq does not come with a generating set,

and so working with general elements can be daunting.

The localized skein algebra is much easier to work with. Elements are ex-

pressed in terms of topological objects which �t on a piece of paper. The skein

relations are local, and links may be freely homotoped; both of which keep com-

plexity low.

10. Loop elements

10.1. Loop elements in Aq.†/. By de�nition, the subalgebra Aq.†/ � Sko
q.†/

contains arcs and inverses to boundary arcs. Therefore, the equality Aq.†/ D

Sko
q.†/ in Theorem 9.8 is equivalent to the following proposition.
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Proposition 10.1. Let † be a triangulable marked surface with at least two
marked points in each connected component. For each simple loop ` 2 †,

Œ`� D ŒY��1
X

i

�i Œxi;1�Œxi;2� : : : Œxi;ni
�;

where Y is a link of boundary arcs, each xi;j is an arc, and �i 2 Zq .

Proof. Cluster variables in Aq.†/ correspond to arcs, and so products of clus-

ter variables correspond to general links. Frozen variables correspond to bound-

ary arcs, and so a general element of Aq.†/ can be written in the above form.

By Theorem 9.8, this is equally true of all elements of Sko
q.†/. �

These expressions are distinct from the skew-Laurent expressions from Corol-

lary 6.9; the arcs xi;j are allowed to cross each other, but there are no negative

powers of non-boundary arcs.

Finding such an expression for a simple loop is typically very di�erent from

writing it as a skew-Laurent polynomial of the arcs in a triangulation. First, while

every curve has a unique expression as a skew-Laurent polynomial in the arcs of

a triangulation, there will be many ways to write a simple loop as a polynomial in

arcs divided by a monomial in boundary arcs. Second, the author does not know

of any direct algorithm to produce any such expression, analogous to Remark 6.10

or the band graph techniques found in [23].

From a cluster algebraic perspective, these loop elements are compelling. They

are not an ingredient in the cluster structure on Aq.†/, but they are a useful tool in

computations. For example, a product of two simple arcs can have many crossings,

and applying the Kau�man skein relation to each crossing may produce loops.

10.2. The Zq-basis of weighted simple multicurves. The localized skein alge-

bra has a naturalZq-basis, given by the set SMultio of weighted simple multicurves

with positive weights on non-boundary curves (Proposition 5.3). Theorem 9.8 im-

plies this is also a basis for Aq.†/ and Uq.†/.

Proposition 10.2. Let † be a triangulable marked surface with at least two
marked points in each connected component. Then SMultio maps to a Zq-basis
of Aq.†/ and Uq.†/ under the map X! ŒX�.

The problem of �nding natural bases for cluster algebras goes back to the

origins of their study. Commutative cluster algebras were discovered in the study

of Lusztig’s dual canonical basis for CŒG� of a reductive group, as a conjectural

method of explicitly producing classical limits of elements of the dual canonical
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basis [11, Introduction]. A good history and bibliography of recent work on bases

of cluster algebras can be found in the Introduction to [23].

Some of this basis comes directly from the cluster structure. If X is a weighted

simple multicurve without loops, then there is some triangulation � which con-

tains every arc in X. Then X is a monomial in �; in the language of cluster algebras,

this is called a cluster monomial29 in the seed corresponding to �.

The remaining basis elements contain loop elements. As has been mentioned,

loop elements are di�cult to express as explicit elements of Aq.†/, and so these

basis elements of Aq.†/ do not follow naively from the cluster structure.

Remark 10.3. In the specialization q
1
2 D 1, this basis automatically goes to a Z-

basis of the commutative cluster algebras A1.†/ and U1.†/. However, this basis

is not a ‘canonically positive’ (or ‘atomic’) basis. That is, an element x 2 A1.†/

can have a positive Laurent expression for each seed �, without being a positive

combination of the basis elements SMultio.

An alternative basis for A1.†/ which may be canonically positive has been

put forward in [7], [4], and [23]. This basis is related to the basis of weighted

simple multicurves, by replacing simple loops with multiplicity by a single loop

with self-crossings. Proofs of canonically positivity for some S can be found in

[34] and [5].

11. The commutative specialization q
1

2 D 1

In the specialization q
1
2 D 1, Theorem 9.8 becomes equalities

A1.†/ D Sko
1.†/ D U1.†/

This endows Sko
1.†/ with the structure of a commutative cluster algebra.

11.1. Geometry of commutative cluster algebras. The equality A1.†/ D

U1.†/ was already shown in a previous work by the author [25, Theorem 10.6], us-

ing the idea of local acyclicity. This is a geometric notion which does not directly

generalize to the quantum setting.30

Given a cluster algebra Aq, the specialization A1 is commutative and so it can

be studied geometrically, by considering the scheme Spec.A1/. If A
.s/
q is a cluster

29 Some references regard the Laurent ring of frozen variables as coe�cients, rather than as

cluster variables (as we are). In the former case, a cluster monomial would be a weighted simple

multicurve without loops or boundary arcs, but the coe�cient ring would be much larger.

30 However, the techniques of Section 8 are based on this geometric approach (Remark 8.14).
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localization of Aq, then A
.s/
1 is localization of A1, and so

Spec.A
.s/
1 / � Spec.A1/

is an open subscheme.

A collection ¹A
.si /
1 º of cluster localizations of A1 is a cover if the correspond-

ing open subschemes cover Spec.A1/. If ¹A
.si /
1 º is a cover of A1, then

A1 D
\

i

A
.si /
1

though the converse is not true in general.

11.2. Local acyclicity. Recall that an exchange type T is acyclic if there is a

skew-symmetric matrix A 2 T with no cycles.31 If A has acyclic exchange type,

then A D U ([1, Corollary 1.19] or Proposition 8.17 and Remark 8.14).

This can be generalized, by checking acyclicity locally.

De�nition 11.1 ([25, De�nition 3.9]). A commutative cluster algebra A is locally
acyclic if it has a cover ¹A.si /º by acyclic cluster localizations.

Marked surfaces † such that A1.†/ is locally acyclic have been characterized.

Theorem 11.2 ([25, Theorems 10.6 and 10.10]). The cluster algebra A1.†/ is
locally acyclic if and only if † has at least two marked points in each connected
component of †.

Remark 11.3. Marked surfaces in [25] are allowed to have interior marked points,

so the statements there are more general.

11.3. Consequences. Local acyclicity has several consequences.

Proposition 11.4. Let A be a locally acyclic commutative cluster algebra. Then

(1) [25, Theorem 4.1] A D U,

(2) [25, Theorem 4.2] A is �nitely generated, integrally closed and locally a
complete intersection, and

(3) [25, Theorem 7.7] Q˝A is a regular domain.

These results can then be applied to commutative cluster algebras of marked

surfaces, and the q
1
2 D 1 localized skein algebra.

31 A cycle is a list of indices i1; i2; : : : ; in�1; in D i1 2 ex such that Bij ij C1
> 0 for all j .
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Corollary 11.5. Let † be a triangulable marked surface with at least two marked
points in each connected component.

(1) A1.†/ D Sko
1.†/ D U1.†/,32

(2) Sko
1 is �nitely generated, integrally closed, and locally a complete intersec-

tion, and

(3) Q˝ Sko
1.†/ is a regular domain.

As a consequence of the last fact (see [25, Corollary 7.9]),

� Spec.Q˝ Sko
1.†// is a smooth scheme,

� Hom.Sko
1.†/;C/ is a smooth complex manifold, and

� Hom.Sko
1.†/;R/ is a smooth real manifold.

Here, both Homs are as rings.

Remark 11.6. There is an open inclusion

Spec.Sko
1.†// � Spec.Sk1.†//

By analogy with the cluster structure on double Bruhat cells in semisimple Lie

groups, it seems possible that Spec.Sko
1.†// is the ‘big cell’ in some natural

strati�cation of Spec.Sk1.†//. Ideally, this is a �nite strati�cation by smooth a�ne

schemes, whose coordinate rings are commutative cluster algebras.

12. Examples and non-examples

12.1. Marked discs. Let †n be the disc with n marked points on the boundary.

A simple curve in †n will always be homotopic to a chord xa;b connecting distinct

marked points a; b, and so Skq.†/ is generated by the
�

n
2

�

-elements of the form

Œxa;b � (Corollary 4.3). The relations are

Œxa;b�Œxb;c � D qŒxb;c�Œxa;b�; Œxa;b�Œxc;d � D Œxc;d �Œxa;b�;

Œxa;c �Œxb;d � D qŒxa;b�Œxc;d �C q�1Œxa;d �Œxb;c�:

as a; b; c; d run over distinct marked points in clockwise order around @†n.

The boundary arcs are the elements Œxa;b � for a; b adjacent on the boundary, and

Sko
q.†n/ is the Ore localization at this set.

32 This is to say; locally acyclic provides an alternative (though fundamentally the same)

proof.
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The surface is triangulable when n � 3, and so Aq.†n/ D Sko
q.†n/ D Uq.†n/

(Theorem 9.8). The cluster variables coincide with the set of chords Œxa;b�, with

clusters corresponding to triangulations.

The commutative cluster algebra A1.†/ is a basic example in cluster algebras;

thorough investigations can be found in [16, Section 2.1] and [12, Section 3]. In our

language, the main observation is that Sk1.†n/ coincides with the homogeneous

coordinate ring OŒGrC.2; n/� of the Grassmannian GrC.2; n/. This isomorphism

depends on an identi�cation of the marked points with a basis of Cn; a cluster

variable Œxa;b� then corresponds to the Plücker coordinate pa;b.

In [13], Grabowski and Launois exhibit a quantum cluster algebra structure on

the quantum GrassmannianOq ŒGr.2; n/�, a speci�c quantization of OŒGrC.2; n/�.

One might hope that the quantum Grassmannian would coincide with Skq.†n/.

However, this is impossible; the quantum Grassmannian depends on an identi�-

cation of the basis elements with the set ¹1; 2; : : : ; nº; a cyclic permutation does

not induce an automorphism of Oq ŒGr.2; n/� [21] (cf. [37]). The skein algebra

Skq.†n/ has no such dependency. Inspecting the quantum seeds in [13, Section

3.1] con�rms that these are di�erent quantizations of the same commutative cluster

algebra.

12.2. A marked annulus. Let † be the annulus with a single marked point on

each boundary component. Let a and b denote the two boundary arcs, and let `

denote the unique simple loop (Figure 11). The remaining simple curves are arcs

connecting the two marked points; they may be parametrized by Z as follows.

Choose such an arc to be x0, and de�ne the rest by the conditions that xi and xiC1

do not intersect, and both ends of xiC1 are clockwise to both ends of xi .

`

a

b x0

x1

Figure 11. Simple curves in † (The two dashed edges are identi�ed).

The simple curves a; b; ` and ¹xiºi2Z generate Skq.†/ as a Zq-algebra. The

elements Œa� and Œb� are central. Some relations among these generators are

Œ`�Œxi � D qŒxiC1�C q�1Œxi�1�;

Œxi �ŒxiC1� D q�1ŒxiC1�Œxi �;
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Œxi �ŒxiC2� D Œa�Œb�C q�2ŒxiC1�2;

Œxi �ŒxiC3� D qŒ`�Œa�Œb�C q�2ŒxiC1�ŒxiC2�:

Since ŒxiC1� D qŒ`�Œxi ��q2Œxi�1�, the �ve elements a; b; `; x0; x1 generate Skq.†/.

The triangulations of † are the sets ¹a; b; xi ; xiC1º for some i . Since † has two

marked points, Aq.†/ D Skq.†/ D Uq.†/ (Theorem 9.8).

The loop element Œ`� can be written as a skew-Laurent polynomial in any

triangulation (Theorem 6.14),

Œ`� D .Œxi �ŒxiC1�/�1.qŒxi �
2 C q�1Œa�Œb�C q�3ŒxiC1�2/:

and as a product of cluster variables divided by frozen variables (Proposition 10.1),

Œ`� D .Œa�Œb�/�1.q�1Œxi �ŒxiC3�� q�3ŒxiC1�ŒxiC2�/:

Appendices

A. Finite generation of Skq.†/

It has been shown by Bullock that Skq.†/ is �nitely generated when † is unmarked

[2, Theorem 1]. The idea of his proof still works in the marked case, with the

necessary modi�cations.

Remark A.1. What follows is a simpli�ed version of Bullock’s proof, since we

will not explicitly bound the number of generators.

We assume @† ¤ ; (otherwise, Bullock’s result applies directly). The marked

surface † has a handle decomposition (Figure 12); observe that every marked point

can be placed on the boundary of the 0-handle.

Figure 12. The handle decomposition of †. There are g-many pairs of 1-handles along the

top, h-many 1-handles along the bottom, and any marked point may denote multiple close

marked points (or none).
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A link is in standard position (with respect to the handle decomposition) if its

intersection with any 1-handle is a union of strands homotopic to the core, and the

number of strands is minimal with respect to homotopy. Every link is homotopic

to one in standard position; for the remainder of the section we assume all links

are in standard position.

The complexity of a link is the total number of strands in the intersection

with the 1-handles, minus the number of 1-handles it intersects. So, a link has

complexity zero if its intersection with any 1-handle contains at most one strand.

Proposition A.2. The set of simple curves of complexity zero is �nite.

Proof. Fix a subset S of the 1-handles. If x is a simple curve of complexity zero

which intersects exactly the 1-handles in S , then x is determined by its intersection

with the 0-handle. The intersection of x with the 0-handle is a non-crossing

matching between the attaching points of the 1-handles in S , and either 2 or 0

marked points. There are �nitely many such non-crossing matchings, and �nitely

many subsets S of the 1-handles, so the set of zero complexity simple curves is

�nite. �

Lemma A.3. The set of simple curves of complexity zero generates Skq.†/.

Proof. We claim every simple curve x in † is in the Zq-subalgebra of Skq.†/

generated by simple curves of complexity zero. The proof is by induction on

complexity �. The case � D 0 is trivial.

Assume � � 1. Then there is some 1-handle which x intersects in multiple

strands. Choose the two innermost strands, and consider the following picture,

where there may be additional components in the 1-handle.

.
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By repeated application of the Kau�man skein relation,

D�q2 Cq

D�q2 Cq2 Cq3

D�q2 Cq2 Cq2 Cq4
.

The four links on the right-hand side are products of simple curves with

complexity < �. By induction, Œx� is in the subalgebra generated by the simple

curves of complexity zero, and so every simple curve is. By Corollary 4.3, this set

generates all of Skq.†/. �

Finite generation follows immediately.

Theorem A.4. Skq.†/ and Sko
q.†/ are �nitely generated.

Proof. Skq.†/ is generated by the simple curves of complexity zero, which is

�nite. The localized skein algebra Sko
q.†/ is generated by the simple curves of

complexity zero and the inverses to boundary curves, which is again �nite. �

B. Relation with Teichmüller space and quantum Teichmüller space

Here, we brie�y describe the relation of the skein algebra of a marked surface to

certain geometric and algebraic objects in Teichmüller theory.

B.1. Teichmüller spaces and moduli space of local systems. As before, let

† be a marked surface; that is, a compact, oriented surface with a �nite set of

marked points M on the boundary. Let †o be the corresponding opened surface,

where a small ball around each point of M has been removed. Let @M � †o

be the boundary of these removed neighborhoods. Note that the boundary of †o

alternates between restrictions of components of @† and components of @M.
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� The Teichmüller space T.†/ is the moduli space of hyperbolic metrics (up

to isotopy) on †�M such that each component of@†�M is a geodesic, and

each point in M is a ‘cusp.’

� The decorated Teichmüller space yT.†/ is the moduli space of hyperbolic

metrics (up to isotopy) on †o such that each component of the restriction of

@† is a geodesic, and each component of @M is a horocycle (that is, an arc

of constant curvature).

There is a natural projection

yT.†;M/ �! T.†;M/:

which extends the metric to the small balls around points in M. Both of these are

real manifolds with a canonical Weil-Petersson Poisson structure [27].

This projection map was realized in [7] as the positive part33 of a projection

of complex varieties which parametrize certain local systems.

yT.†/ T.†/

A.†/ X.†/:

 

�

 
-

!  
-

!

 

�

Here, A.†/ is the moduli space of decorated SL2-local systems on .†;M/,34 and

X.†/ is the moduli space of framed PGL2-local systems on .†;M/.

Via Fock and Goncharov’s theory of cluster ensembles, the moduli space X.†/

has a canonical Poisson structure, which extends the Weil-Petersson form on T.†/.

They also describe a quantization of X.†/: each triangulation � of † de�nes a

quantum torus QTSq;�.†/ inside a common skew-�eld QTSq.†/. This skew-�eld

QTSq.†/ had been previously introduced by Chekhov and Fock, and called the

quantum Teichmüller space of † [6]. The q D 1 specialization produces a �eld

QTS1.†/ which is canonically isomorphic to the �eld of rational functions on the

variety X.†/, and every element of QTS1.†/ restricts to a well-de�ned function

on T.X/.

Remark B.1. Unlike the quantum tori de�ning a quantum cluster algebra, the in-

tersection of the quantum tori QTSq;�.†/ may be too small to generate QTSq.†/

as a skew-�eld.

33Here, ‘positive part’ means the subset on which a certain system of distinguished coordi-

nates has positive real values.

34 In fact, these are local systems twisted by a ‘spin structure’; speci�cally, they are SL2-local

systems on the unit tangent bundle to † with monodromy �Id2 around any �ber.
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B.2. Relation to skein algebra. Fock and Goncharov also de�ne a (commuta-

tive) cluster structure on the variety A.†/. This cluster structure has a cluster

variable for each arc in †, and the clusters correspond to triangulations.35 This

can be extended to a canonical isomorphism

Sk1.†/
�
�! O.A.†//:

Under this isomorphism, elements in Sk1.†/ restrict to functions on yT.†/ which

take positive real values. Speci�cally, arcs and loops in Sk1.†/ restrict to the

corresponding Penner coordinates36 on yT.†/.

This story may be quantized as follows. For each triangulation � of †, there

is a map

�� W QTSq;�.†/ �! Skq.†/Œ��1� ' T�:

A non-boundary arc x 2 � de�nes an element Xx 2 QTS.†/q;�. Then �� is

de�ned by

��.Xx/ D Œ�Q�x�:

That is, ��.Xx/ is the ‘cross-ratio’ of the four arcs in Skq.†/ immediately adjacent

to x (normalized by a power of q so that ��.Xx/ is invariant under the bar

involution). The map �� extends to an inclusion of fraction �elds

�WQTSq.†/ �! F.Skq.†//:

which does not depend on a choice of triangulation �. Hence, Chekhov and Fock’s

quantum Teichmüller space can be realized as a sub-skew-�eld of the fraction �eld

37 of Skq.†/. Under the q D 1 specialization, the map

� W QTS1.†/ �! F.Sk1.†//:

is the same as the map induced on fraction �elds by the cluster ensemble map

A.†/ �! X.†/:

Remark B.2. In many ways, the algebra Skq.†/ is the ‘decorated’ analog of the

quantum Teichmüller space QTSq.†/. In each case, each triangulation determines

a quantum torus inside a �xed skew-�eld. The main di�erence is that the intersec-

tion of the quantum tori in QTSq.†/ is too small, and so one must keep track of

the whole skew-�eld QTS yq.†/ to have a reasonable invariant. By contrast, the

intersection of quantum tori containing Skq.†/ is Skq.†/, which is large enough

for every quantum torus to be recoverable as an Ore localization.

35 This cluster algebra associated to † was independently introduced in [14], who also high-

lighted its realization as functions on T.†/.

36 An excellent reference for the connection between Sk1.†/ and Penner coordinates is [9].

37Note that � lands in the sub-skew-�eld of degree 0 for the endpoint grading of Sk1.†/.
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C. Proof of Lemma 4.9

C.1. The initial multicurve has positive smoothings. Let x be a simple arc in

†. For a given Y, choose a homotopy representative of Y so that x � Y is transverse

with minimal crossings.

Let x\Y denote the set of crossings (that is, non-boundary intersections) in the

superposition x � Y. For any function � W x \ Y ! ¹�;Cº, let R� be the multicurve

obtained by applying the local relation (called a positive smoothing)

7�!

to each crossing sent toC by � , and by applying the local relation (called a negative
smoothing)

7�!

to each crossing sent to � by � . The purpose if this is that

Œx�ŒY� D qa
X

�Wx\Y�!¹�;Cº

qj��1.C/j�j��1.�/jŒR� �

where a 2 Z=2 is the exponent produced by making the endpoints in x � Y

simultaneous.

Lemma C.1. In any R� ,

j¹contractible loopsºj C
1

2
j¹contractible arcsºj � j¹negative smoothingsºj

If equality holds, then each strand in each negative smoothing is in a contractible
curve.

Proof. Choose a tubular neighborhood T of x small enough that Y intersects T a

minimal number of times, but large enough to contain the chosen neighborhoods

of each crossing in x � Y.

Let z be a contractible curve in R� , and let D � † denote the disc with

boundary z. Construct a graph � whose vertices are connected components of

DX@T , and with an edge between two components if they have common boundary

in D \ @T . The graph � is then a retract of the disc D, which implies that � is

a tree. Since z intersects T but is not contained in T , there must be at least one

component of D \ @T contained in T , and one component of D \ @T disjoint

from T . It follows that T is a tree with at least two vertices, and so it has at least

two vertices of degree 1.
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A degree 1 vertex of � corresponds to a component of D X @T with a single

boundary component in D\@T . Let D0 be such a component of DX@T ; we split

into three cases.

� @D0 contains a marked point. This implies that z is a contractible arc; and so

the marked point in @D0 is the unique marked point in z. It follows that there

can be at most one component of D X @T of this type.

� D0 � D \ T and @D0 contains no marked points. The boundary of D0 must

contain a component of xX Y, whose endpoints are crossings in x\ Y. In R� ,

one must be a negative smoothing and one must be a positive smoothing

in R� ; otherwise, D0 could cross over x and have at least two boundary

components in D \ @T .

� D0 � D X T and @D0 contains no marked points. This implies that the

boundary of D0 in z can be deformed to the interior T , contracting the

assumption that T and Y intersect a minimum number of times. There are

no components of this type.

Hence, if z is a contractible arc, then it must pass through a negative smoothing

at least once, and if z is a contractible loop, then it must pass through a negative

smoothing at least twice. Since each negative smoothing has two strands, this

implies the stated lemma. �

Using the skein relations, we can write

ŒR� � D qj��1.C/j�j��1.�/j.�q2 � q�2/L� ı� ŒyR� �:

where yR� be the simple multicurve obtained by deleting contractible curves in R� ,

L� is the number of contractible loops in R� , and ı� is 0 if R� has a contractible

arc and 1 if it does not.

Œx�ŒY� D qa
X

�Wx\Y

qj��1.C/j�j��1.�/j.�q2 � q�2/L� ı� ŒyR� �

D qa
X

�Wx\Y

L�
X

iD0

�

L�

i

�

.�1/iqj��1.C/j�j��1.�/jC2L� �4iı� ŒyR� �:

Using the fact that jx \ Yj D ��1.C/C ��1.�/, we deduce that

Œx�ŒY� D qaCjx\Yj
X

�Wx\Y

ı� ŒyR� �

L�
X

iD0

�

L�

i

�

.�1/iq2.L� �j��1.�/j�2i/:
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Since j��1.�/j is the number of negative smoothings, L� � j�
�1.�/j � 0 and

equality only holds when R� has an equal number of contractible loops and

negative smoothings (which implies that ı� D 1).

Lemma C.2. Let �C denote the function which sends every crossing to C. If �

is another function such that R� has an equal number of contractible loops and
negative smoothings, then yR� � yR�C

. Consequently,

in.Œx�ŒY�/ D ŒyR�C
�:

Proof. By Lemma C.1, neither R�C
nor R� have contractible arcs. Consequently,

both ŒR�C
� and ŒR� � are non-zero.

Choose any negative smoothing in R� , and let R� 0 denote the multicurve in

which it has been replaced by a positive smoothing. This alteration involves at

most two curves in R� which must become at least one curve in R� 0 , and so the

total number of curves can decrease by at most 1. However, since the number of

negative smoothings has decreased by 1, the number of contractible loops must

have decreased by exactly 1, and so R� 0 has an equal number of contractible loops

and negative smoothings.

The two strands in the chosen negative smoothing in R� must both be in

contractible loops, by the preceding lemma. Since the number of contractible

loops decreases by 1, there are two possibilities.

� The two strands were in distinct contractible loops in R� . They become one

contractible loop in R� 0 .

� The two strands are in the same contractible loop in R� . They become two

loops in R� 0 , which must be non-contractible.

In the �rst case, yR� � yR� 0 , and in the second, yR� � yR� 0 .

By switching negative smoothings to positive smoothings one at a time, we

may construct a sequence

R� D R�0
; R�1

; : : : ; R�n
D R�C

such that at each step, yR�i
� yR�iC1

. Furthermore, since R�C has no contractible

loops, the last step in this sequence must be of the second type above; that is,
yR�n�1

� yR�C
. By transitivity, yR� � yR�C . �

C.2. The map is an injection. Choose a tubular neighborhood T of x. For a

given Y, choose a homotopy representative of Y so that Y intersects both x and T a

minimal number of times.
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Let x denote the map Y 7! in.Œx�ŒY�/ D ŒyR�C �. The multicurve x.Y/ has the

following concrete construction inside the tubular neighborhood T : cut Y along

each crossing in x � Y and reconnect the strands by shifting to the right along x.

Any spare ends on either side are attached to the endpoints of x. The two cases

(distinct versus identical endpoints of x) are illustrated in the Figure 13.

Figure 13. Explicit construction of x.Y/.

Lemma C.3. For any simple curve, the map xW SMulti! SMulti is injective.

Proof. Let Y be a simple multicurve transverse to xwith minimal crossings. De�ne

a new multicurve �x.Y/ as follows.

� If x has one end at a marked point p, and there are no strands of Y counter-

clockwise to x at p, then �x.Y/ is the empty multicurve ;.

� If x has both ends at a marked point p, and there are fewer than two strands

of Y counter-clockwise to x, then �x.Y/ is the empty multicurve ;.

� Otherwise, construct �x.Y/ as follows. Cut Y along x, and at each end of x,

disconnect the �rst strand of Y counter-clockwise to x. Reconnect these ends

by shifting to the left along x.

The composition �x.x.Y// D Y, therefore x is injective. �

Lemma 4.9 is an immediate consequence of Lemmas C.2 and C.3.
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Figure 14. Explicit construction of �x.Y/.
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