
Quantum Topol. 7 (2016), 553–638

DOI 10.4171/QT/81

Quantum Topology

© European Mathematical Society

Quantum shu�es and quantum supergroups of basic type

Sean Clark, David Hill, and Weiqiang Wang

Abstract. We initiate the study of several distinguished bases for the positive half of a

quantum supergroup Uq associated to a general super Cartan datum .I; .�; �// of basic type

inside a quantum shu�e superalgebra. �e combinatorics of words for an arbitrary total

ordering on I is developed in connection with the root system associated to I. �e mono-

mial, Lyndon, and PBW bases of Uq are constructed, and moreover, a direct proof of the

orthogonality of the PBW basis is provided within the framework of quantum shu�es.

Consequently, the canonical basis is constructed for Uq associated to the standard super

Cartan datum of type gl.n j 1/, osp.1 j 2n/, or osp.2 j 2n/ or an arbitrary non-super Cartan

datum. In the non-super case, this re�nes Leclerc’s work and provides a new self-contained

construction of canonical bases. �e canonical bases of Uq , of its polynomial modules, as

well as of Kac modules in the case of quantum gl.2 j 1/ are explicitly worked out.
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1. Introduction

1.1. �e Drinfeld–Jimbo quantum group associated to a simple Lie algebra

admits extremely rich structures with a wide variety of applications in represen-

tation theory, low-dimensional topology, and mathematical physics. In particular,

the positive half admits some remarkable bases with interesting geometric and

categorical interpretations, including PBW bases and canonical bases introduced

by Lusztig [26, 27, 28] (see also [14] for another approach to canonical bases from

the viewpoint of crystals).

In contrast, the quantum supergroups associated to a simple Lie superalge-

bra are not well understood beyond the foundational work of Yamane [33, 34].

As Lie superalgebras form an important extension of Lie algebras, it is natural to

ask which structural features carry over to the super setting.

Some reasons to hope such a structure exists are the recent categori�cation

results for quantum supergroups in [16, 12, 15, 8, 17], following earlier pioneering

works of Khovanov, Lauda, and Rouquier [18, 32]. However, due to various inter-

nal di�culties (e.g. lack of integral forms, isotropic odd roots, lack of positivity

due to super signs), no construction of a canonical basis existed or was even con-

jectured in the super setting until recently the authors [6] constructed the canonical

bases for the integrable modules and the positive half of quantum supergroups as-

sociated to the “anisotropic” super Cartan datum, meaning no isotropic odd simple

roots occur. �e anisotropic super Cartan datum is distinguished among all super

Cartan datum in the sense that the corresponding Lie superalgebras and quantum

supergroups admit a semisimple category of integrable modules in parallel to the

usual Kac-Moody setting. �e only anisotropic super Cartan datum of �nite type

corresponds to the Lie superalgebra osp.1 j 2n/.

�ere are many other �nite-dimensional simple Lie superalgebras besides

osp.1 j 2n/, among which the most important class are those of basic type. Sim-

ilar to semisimple Lie algebras, the Lie superalgebras of basic type admit non-

degenerate even bilinear forms, root systems, triangular decompositions, and so

on (cf. [13, 7]). However, there is no reasonable semisimple category of �nite-

dimensional integrable modules for Lie superalgebras of basic type except for

osp.1 j 2n/. Another phenomenon is the existence of non-conjugate simple sys-

tems for a general Lie superalgebra of basic type. �e quantum supergroups stud-

ied in [33] are associated to these basic Lie superalgebras.

LetUq denote the positive half of a quantum supergroup of basic type. Benkart,

Kang, and Kashiwara [2] constructed the crystal (but not the global) bases for the

polynomial representations of quantum gl.m j n/, and subsequently Kwon [20]

constructed crystal bases for Kac modules of quantum gl.m j n/ (also cf. [21]
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in the case of osp.r j 2n/ and [30] in the case of osp.1 j 2n/); none of these

authors constructed crystal bases or canonical bases for Uq. As the works [6, 4]

helped us to lift the mental block on the existence of canonical bases for a class of

quantum supergroups, we are motivated to reexamine the possibilities for quantum

supergroups of basic type.

Since the basic Lie superalgebras include simple Lie algebras as limiting cases,

we require an approach toward canonical bases which would work equally well

for the usual quantum group of �nite type. However, Lusztig’s geometric ap-

proach (via either perverse sheaves or quiver geometry) is not applicable for now,

while Kashiwara’s algebraic approach requires a semisimple category of inte-

grable modules and hence works well only for the anisotropic quantum super-

groups.

1.2. In this paper, we provide a �rst step toward the construction of canoni-

cal bases for quantum supergroups of basic type, and give a description of Uq

which we believe will be useful for future studies on categori�cation

(cf. [19, 10, 11, 29, 3]). Our approach through quantum shu�es is inspired by the

work of Leclerc [23] which, in turn, builds on other foundational works of

M. Lothaire [25], J. A. Green [9], P. Lalonde and A. Ram [22], and M. Rosso [31]

on relations among combinatorics of words, root systems, quantum groups and

quantum shu�es. In this paper, we systematically develop a super version of the

aforementioned works, and almost always work in the most general setting of ar-

bitrary (not merely the standard) simple systems of basic type. �e passage from

the classical to the super setting is highly nontrivial, due largely to the lack of

positivity in the formula for the shu�e product. Moreover, our results go beyond

those appearing in the literature, leading to new combinatorial proofs of classical

results on quantized Lie algebras.

Among other results, we construct a family of monomial bases and orthogonal

PBW bases of Uq , one for each total ordering of the index set I labeling the simple

roots. We then construct an integral form in types gl.m j n/, osp.1 j 2n/ and

osp.2 j 2n/, which yield a canonical basis for Uq when the Cartan data is of

type gl.m j 1/, osp.1 j 2n/ and osp.2 j 2n/. We are also able to obtain a bar-

invariant psuedo-canonical basis for gl.m j n/. However, this basis fails to be

almost orthogonal with respect to the bilinear form and is not independent of the

chosen ordering on I.
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Unlike in the non-super setting, the PBW bases constructed here are not known

to be orthogonal a priori. To obtain this result, we generalize a main result of

Leclerc [23, �eorem 36] and prove it directly from the combinatorics of Lyndon

words (Leclerc’s proof used the orthogonality of PBW bases due to Lusztig); see

Lemma 4.19 and �eorem 5.1. In the special case of the natural ordering on I given

in Table 1, Yamane [33] constructs a PBW basis and proves that it is orthogonal

through a case-by-case analysis. Our proof is type independent for almost all or-

derings on I. Our argument applies equally well to the Cartan-Killing root datum,

yielding an independent proof of the orthogonality of the PBW bases and a new

self-contained algebraic construction of the canonical basis of the positive half of

a Drinfeld–Jimbo quantum group of �nite type. After completion of this paper,

we learned of a similar construction of orthogonal PBW-type bases for Nichols

algebras appearing in [1].

1.3. We now provide a detailed description of the main results of the paper

section by section. In the preliminary Section 2, we collect various basic results

on quantum superalgebras of basic type, most of which can be found in Yamane’s

papers [33, 34].

In Section 3, generalizing the work of Rosso [31] and Green [9], we embed the

positive half of a quantum supergroup Uq associated to a general Cartan datum

.I; .�; �// of basic type in a quantum shu�e superalgebra. �is should be viewed as

a dual version to a construction of Lusztig who realized Uq as a quotient of a free

algebra by the radical of a bilinear form. In the super setting we use (a variant of)

a non-degenerate bilinear form on Uq constructed by Yamane [33].

�e combinatorics of super words, such as dominant words (also known as

good words) and Lyndon words, is then developed systematically in Section 4.

Superizing the constructions of Leclerc [23], we construct monomial bases of Uq.

More signi�cantly, we develop a highest word theory for Uq and establish a bi-

jection between the set of dominant Lyndon words and the reduced root sys-

tem associated to I, generalizing a fundamental result of Lalonde and Ram [22].

Finally, we construct an auxiliary Lyndon basis for Uq and obtain Lemma 4.19.

In Section 5, we give a construction of PBW bases of Uq . From Lemma 4.19

we deduce �eorem 5.1, prove a Levendorskii–Soibelman type formula, and prove

that these bases are orthogonal, see �eorem 5.5, Lemma 5.6 and �eorem 5.7. We

note that Lemma 5.6 can be viewed as a combinatorial analog of [29, Lemma 3.2].

In Section 6, we compute the dominant Lyndon words and root vectors ex-

plicitly for quantum supergroups of type A-D. �ese PBW root vectors are very

similar to those de�ned in [33], though we express them in the basis of words.
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Additionally, we compute the inner product between any two root vectors. �is

information is also contained in [33, ÷10:3], but as our sign convention on the bilin-

ear form di�ers from that in loc. cit. we derive the formulas directly. �eorem 5.7

explains how to compute the norm of any PBW basis vector.

In Section 7, we introduce the integral form of Uq, where we have to restrict

ourselves to the standard simple systems, and to types gl.m j n/, osp.1 j 2n/ and

osp.2 j 2n/, as well as any non-super type. In the non-super specialization, this

allows us to give a new self-contained algebraic construction of a canonical basis

of Uq; more importantly, we obtain a canonical basis of Uq in types gl.m j 1/,

osp.1 j 2n/ and osp.2 j 2n/.

�e case of gl.2 j 1/ is studied in detail in Section 8. Explicit formulas for the

canonical basis of Uq were already given in [16]. We show that the canonical basis

of Uq descends to a canonical basis of every polynomial representation and every

Kac module of quantum gl.2 j 1/. On the other hand, we show that the canonical

basis of Uq fails to descend to a canonical basis for certain �nite-dimensional

simple modules of quantum gl.2 j 1/. We conjecture these phenomena hold for

general gl.m j 1/ case.

Acknowledgements. Weiqiang Wang is partially supported by the NSF grant

DMS-1101268. �e authors thank Institute of Mathematics, Academia Sinica,

Taipei for providing an excellent working environment and support, which greatly

facilitated this research. We also thank Bernard Leclerc for helpful discussions

and clari�cations regarding his paper.

2. Quantum supergroups of basic type

In this section, we review some fundamental properties of the positive half of a

quantum supergroup of basic type, including the bilinear form and de�ning rela-

tions.

2.1. Root data. Let g D gN0 ˚ gN1 be a complex basic Lie superalgebra of rank

mC nC 1 D N of type A-G [13, 7]. Let ẑ D ẑ N0 t
ẑ

N1 be the root system for g,

and let

ˆ D ˆ N0 tˆ N1 D
°

ˇ 2 ẑ
ˇ
ˇ
ˇ
1

2
ˇ … ẑ

±
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be the reduced root system for g, where ˆs D ˆ \ ẑ s , for s 2 ¹N0; N1º; as usual N0

and N1 here and below indicate the even and odd (roots) respectively. We will work

with ˆ and not ẑ until Section 7. Let

… D … N0 t… N1 D ¹˛i j i 2 Iº

be a simple system for ẑ which is labelled by I D IN0 t IN1 D ¹1; : : : ; N º, and let

ˆC � ˆ

be the corresponding set of positive roots. We de�ne the parity function p.�/ on I

by letting

p.i/ D s for i 2 Is with s 2 ¹N0; N1º.

Let Q be the root lattice. �e monoid

QC WD
M

i2I

Z�0˛i

is Z2-graded by declaring

p.˛i / D p.i/

and extending linearly. We further decompose

ˆ N1 D ˆiso tˆn-iso

where ˆiso (resp. ˆn-iso) is the set of isotropic (resp. non-isotropic) odd roots.

Decompose

… N1 D …iso t…n-iso

(resp. IN1 D Iiso t In-iso) accordingly.

In Table 1 below, we list the Dynkin diagrams which arise from an arbitrary

choice of ˆC (for type A-D) and label the simple roots according to the labels on

the nodes of the corresponding diagram. �e diagrams labelled with .?/ in types

F.3 j 1/ and G.3/ will be referred to as distinguished diagrams (F.3 j 1/ is often

referred to as F.4/ in literature). �e simple roots may be even, odd isotropic,

or odd non-isotropic, and we will label the corresponding nodes #, ˝, and  ,

respectively. We will use the notation ˇ to denote a simple root which may be

either odd isotropic or even, and Y for a simple root which may be either odd

non-isotropic or even.
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Table 1. Dynkin diagrams for general simple systems.

A.m; n/ ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ ˇ

1 2 n nC1 nC2 mCn mCnC1

B.m; nC 1/ ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ Y>

1 2 n nC1 nC2 mCn mCnC1

C.nC 1/ ˇ ˇ � � � ˇ ˇ̌ #<

1 2 n nC1

D.m; nC 1/ ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ

#✈✈✈
ˇ

#
❍❍

❍

1 2 n nC1 nC2

mCn

mCnC1

ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ
✈̋✈✈

ˇ

˝
❍❍

❍

˝

˝1 2 n nC1 nC2

mCn

mCnC1

F.3 j 1/ .?/ # ## #> # ˝

1 2 3 4

# ˝> ˝ #< # #

1 2 3 4

# ˝> ˝ ## #<

1 2 3 4

˝

#✟✟✟✟
✟✟✟✟
✟✟✟✟

#

˝
✻✻
✻✻

˝ ˝̋ #<

1

2

3 4

˝

#
✟✟✟✟

#

˝
✻✻
✻✻

˝ ˝̋ #<

1

2

3 4

G.3/ .?/ # #<˝ #

1 2 3

˝ #<˝ ˝

1 2 3

˝ #< ˝

1 2 3

˝

#
✟✟✟✟
✟✟✟✟

#

˝
✻✻
✻✻

˝ ˝

1

2

3

D.2 j 1I˛/ ˝

#✈✈✈
˝

#
❍❍

❍

�1

1C˛

1

2

3

˝

#✈✈✈
˝

#
❍❍

❍

�˛

1C˛

1

2

3

.˛ 2 Z>0/ ˝

˝
✟✟✟✟

˝ ˝

˝

˝
✻✻
✻✻

1

2

3

˛

�1�˛
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�e basic Lie superalgebras are examples of symmetrizable contragredient

Lie superalgebras associated to (super generalized) Cartan matrices [13],

which are endowed with a non-degenerate even supersymmetric bilinear form. Let

A D .aij /i;j2I be a symmetrizable Cartan matrix for g. Let di , i 2 I,

be positive integers satisfying

diaij D djaj i ; and gcd.di j i 2 I/ D 1:

De�ne a symmetric bilinear form

.�; �/ W Q �Q �! Z

by letting

.˛i ; j̨ / D diaij ; i; j 2 I:

In particular, we have the following basic property.

Lemma 2.1. �e following are equivalent for i 2 I:

(1) ai i D 0I

(2) i 2 IisoI

(3) .˛i ; ˛i/ D 0.

We set the notation

� D �1; (2.1)

which will be used to keep track of super-signs. Set

sij D

8

<

:

1 if .˛i ; j̨ / � 0;

� if .˛i ; j̨ / < 0:
(2.2)

We call the triple .I;…; .�; �/ / a Cartan datum of basic type.

2.2. Quantum superalgebra Uq . Let g D n�˚h˚nC be the triangular decom-

position of g. �e quantized enveloping algebra Uq.g/ with Chevalley generators

ei ; fi ; k
˙1
i (i 2 I) has been systematically de�ned and studied in [33] (here we

choose to adopt a more standard version without an extra parity operator denoted

by � in loc. cit.). Let Uq D Uq.n
C/ be the subalgebra of Uq.g/ generated by the

elements ei (i 2 I). By de�nition, Uq is a quotient of a free superalgebra on the

generators ei by the radical of the bilinear form, just as de�ned by [28, Part I] in
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the non-super setting. We will use a rescaling of this bilinear form; see Proposi-

tion 2.4 below.

�e algebra Uq is QC-graded by declaring that the degree of ei is ˛i :

Uq D
M

�2QC

Uq;� :

For homogeneous u 2 Uq, we write juj for the degree of u in this grading. �ere

is also a Z2-grading on Uq by setting

p.u/ D p.�/ if juj D �.

�e next proposition is standard (see e.g. [33]); in the case of B.0; nC 1/ the

novel bar involution was introduced in [12].

Proposition 2.2. �e algebra Uq admits the following symmetries:

(1) a Q.q/-linear anti-automorphism

� W Uq �! Uq

de�ned by

�.ei / D ei for all i 2 I and �.uv/ D �.v/�.u/: (2.3)

(2) A Q-linear automorphism

N W Uq �! Uq

(called a bar involution) de�ned by

Nq D

8

<

:

�q�1 if Uq is of type B.0; nC 1/;

q�1 otherwise,
(2.4)

with

ei D ei for all i 2 I;

and

uv D Nu NvI

(3) a Q-linear anti-automorphism

� W Uq �! Uq

de�ned by

�.u/ D �.u/: (2.5)
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Proof. �e existence of the anti-automorphism � is proved in [34, Lemma 6.3.1].

�e existence of the bar involution can be proved using similar arguments to those

in [28, §1.2.12] (see also [5, Cor 1.4.4]).

�e algebra Uq has the structure of a twisted bi-superalgebra with coproduct

de�ned on the generators by

�.ei / D ei ˝ 1C 1˝ ei :

�e coproduct is an algebra homomorphism

� W Uq �! Uq ˝ Uq

with respect to the twisted multiplication on Uq ˝ Uq:

.a˝ b/.c ˝ d/ D �p.b/p.c/q�.jbj;jcj/ac ˝ bd;

for a; b; c; d 2 Uq homogeneous in the .QC � Z2/-grading.

2.3. Bilinear forms on Uq . �e goal of this section is to establish the existence

of the bilinear form described in Proposition 2.4, a variant of which �rst appeared

in [33]. Indeed, let .�; �/sgn be the form appearing in loc.cit.. �is form satis-

�es Conditions (B1)–(B3) in the statement of Proposition 2.4 below, but with the

.q; �/-bialgebra structure on Uq ˝ Uq replaced by a .q�1; �/-bialgebra structure

and with the bilinear form satisfying

.x0 ˝ x00; y0 ˝ y00/sgn D �
p.x00/p.y0/.x0; y0/sgn.x

00; y00/sgn: (2.6)

In order to deduce the proposition, we begin with some general comments

about rescaling of bilinear forms. To this end, let

t W QC �QC �! Q.q/�

be a function such that

t .�; �/ D t .�; �/;

t .�C �; �/ D t .�; �/t.�; �/;

t .�; � C �/ D t .�; �/t.�; �/:
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Lemma 2.3. Assume we have a bilinear form ¹�; �º on Uq such that

(1) for all � ¤ � in QC,

¹Uq;�; Uq;�º D 0;

(2) for all i 2 I,

¹1; 1º D 1 and ¹ei ; eiº ¤ 0;

(3) for all x; y; z 2 Uq ,

¹xy; zº D ¹x ˝ y;�.z/º;

where

¹x ˝ y; x0 ˝ y0º D t .jyj; jx0j/¹x; x0º¹y; y0º:

�en there is a symmetric bilinear form .�; �/ on Uq such that

(a) for all � ¤ �,

.Uq;�; Uq;�/ D 0;

(b) for all i 2 I,

.1; 1/ D 1 and .ei ; ei/ ¤ 0I

(c) for all x; y; z 2 Uq ,

.xy; z/ D .x ˝ y;�.z//;

where

.x ˝ y; x0 ˝ y0/ D .x; x0/.y; y0/:

Speci�cally, the bilinear form is given by

.x; y/ D t .jxj/�1¹x; yº;

where

t .˛i1 C : : :C ˛in/ D
Y

r<s

t .˛ir ; ˛is/:

Proof. Note that t .˛i1 C : : : C ˛in/ de�ned above does not depend on the or-

der because t is symmetric. Since this rescaling is well de�ned on each weight

space, it su�ces to show that the given bilinear form satis�es the required proper-

ties. (a) and (b) are trivially true, and the form .�; �/ is clearly symmetric. For (c),

let x; y; z be homogeneous and

�.z/ D
X

z1 ˝ z2:
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�en

.xy; z/ D t .jxj C jyj/�1 ¹xy; zº

D t .jxj C jyj/�1 ¹x ˝ y;�.z/º

D t .jxj C jyj/�1
X

t .jyj; jz1j/ ¹x; z1º ˝ ¹y; z2º

D t .jxj C jyj/�1
X

t .jyj; jxj/t .jxj/t .jyj/.x; z1/˝ .y; z2/:

Observing that

t .jxj; jyj/t .jxj/t .jyj/ D t .jxj C jyj/

�nishes the proof.

�e following is a variant of a theorem due to Yamane [33, Section 2].

Proposition 2.4. �ere exists a unique nondegenerate symmetric bilinear form

.�; �/ W Uq � Uq �! Q.q/

satisfying

(B1) .1; 1/ D 1;

(B2) .ei ; ej / D ıij , for all i; j 2 I;

(B3) .x; yz/ D .�.x/; y ˝ z/, for all x; y; z 2 Uq.

Here we have used

.x0 ˝ x00; y0 ˝ y00/ WD .x0; y0/.x00; y00/:

Proof. Let .�; �/sgn be the bilinear form appearing in [33, Section 2]. �is bilinear

form was shown to satisfy the 3 properties in the proposition with respect to (2.6).

Take

t .�; �/ D �p.�/p.�/

and

¹x; yº D . Nx; Ny/sgn; x; y 2 Uq:

�en the bilinear form .�; �/ obtained from ¹�; �º satis�es the same properties,

by Lemma 2.3.
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In [12, Proposition 3.3], the authors showed directly that the unsigned version

of the bilinear form for Uq of type B.0; n/ (and other anisotropic Kac-Moody

types) is well-de�ned. Our preference for this form is due to the fact that it agrees

with a bilinear form arising from categori�cation.

Proposition 2.5. Let

e0
i W Uq �! Uq

denote the adjoint of left multiplication by ei with respect to the binear form:

.eiu; v/ D .u; e
0
i .v//:

�en, e0
i satis�es

(1) e0
i.ej / D ıij ;

(2) for homogenous u; v 2 Uq ,

e0
i .uv/ D e

0
i .u/v C �

p.u/p.i/q�.˛i ;juj/ue0
i .v/;

(3) for homogeneous u 2 Uq ,

e0
i .u/ D 0 for all i 2 I () juj D 0.

Proof. Property (1) is obvious from the de�nition. To prove Property (2), let

x 2 Uq and write

�.x/ D
X

x1 ˝ x2:

�en,

.x; e0
i .uv// D .eix; uv/

D ..ei ˝ 1C 1˝ ei /�.x/; u˝ v/

D
X

.eix1 ˝ x2; u˝ v/C
X

�p.x1/p.i/q�.˛i ;jx1j/.x1 ˝ eix2; u˝ v/

D
X

.eix1; u/.x2; v/C
X

�p.x1/p.i/q�.˛i ;jx1j/.x1; u/.eix2; v/:

Note that if a summand of the second sum in the last line above is nonzero, then

jx1j D juj and p.x1/ D p.u/. �erefore,

.x; e0
i.uv// D

X

.eix1; u/.x2; v/C
X

�p.u/p.i/q�.˛i ;juj/.x1; u/.eix2; v/

D
X

.x1; e
0
i.u//.x2; v/C

X

�p.u/p.i/q�.˛i ;juj/.x1; u/.x2; e
0
i.v//

D
X

.x1 ˝ x2; e
0
i.u/˝ v C �

p.u/p.i/q�.˛i ;juj/u˝ e0
i .v//

D .x; e0
i.u/v C �

p.u/p.i/q�.˛i ;juj/ue0
i .v//:

Since the form is nondegenerate, (2) follows.
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Finally, to prove (3), note that if juj D �, then je0
i .u/j D � � ˛i . In particular,

if juj D 0, then e0
i .u/ D 0 for all i 2 I. Conversely, if e0

i .u/ D 0 for all i , then we

have .ei1 � � � eid ; u/ D 0 for all i1; : : : ; id 2 I and d � 1. As these monomials span
L

�¤0 Uq;� , and the form is nondegenerate, we must have juj D 0.

Corollary 2.6. �e subalgebra E of EndQ.q/.Uq/ generated by the e0
i for i 2 I is

isomorphic to Uq under the identi�cation ei 7! e0
i .

Proof. Since the bilinear form is nondegenerate, the map ei 7! e0
i de�nes an anti-

isomorphism between Uq and E; Composing with the map � de�ned in Proposi-

tion 2.2 yields the desired isomorphism.

2.4. De�ning relations for Uq . De�ne the q-commutator on homogeneous

u; v 2 Uq by

adqu.v/ D Œu; v�q D uv � �
p.u/p.v/q.juj;jvj/vu:

De�ne the usual quantum integer and its super analogue for n 2 Z�0:

Œn� D
qn � q�n

q � q�1

and

¹nº D
�nqn � q�n

�q � q�1
:

More generally, for i 2 I , set

qi D q
di ;

�i D �
p.i/;

and de�ne

Œn�i D

8

ˆ
ˆ̂
<

ˆ̂

:̂

�ni q
n
i � q

�n
i

�iqi � q
�1
i

if i 2 In-iso;

qni � q
�n
i

qi � q
�1
i

otherwise,

�
n

k

�

i

D
Œn�i Œn � 1�i � � � Œn � k C 1�i

Œk�i Š
;

where n 2 Z and k 2 Z�0.
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Proposition 2.7 ([33, 34]). �e algebraUq satis�es the following relations when-

ever the given Dynkin subdiagram appears:

(Iso) eiej D �ej ei for i; j 2 IN1 with aij D 0;

(N-Iso) for i 2 IN0 [ In-iso and i ¤ j ,

X

rCsD1Cjaij j

.�1/r�
p.i;j Ir/
i

�
1C jaij j

r

�

i

eri ej e
s
i D 0;

where

p.i; j I r/ D

�
r

2

�

p.i/C rp.i/p.j /;

(AB) for

ˇ ˝̋ ˇ
i j k

.sij ¤ sjk/

or

Y ˝̋ ˇ<
i j k

adqej ı adqek ı adqej .ei / D 0;

(CD1) for

# ˝̋ ˝>
i j k

adqej ı adq.adqej .ek// ı adqei ı adqej .ek/ D 0;

(CD2) for

ˇ ## ˝ <# #

i j k l

adqek ı adqej ı adqek ı adqel ı adqek ı adqej .ei / D 0I

(D) for

ˇ
✈̋✈✈

ˇ

˝
❍❍

❍

˝

˝

i

j

k

adqek ı adqej .ei / D adqej ı adqek.ei /I

(F1) for

# ˝> ˝ #< # #

1 2 3 4

adqE ı adqE ı adqe4 ı adqe3 ı adqe2 D 0;

where

E D adq.adqe1.e2// ı adqe3.e2/I



568 S. Clark, D. Hill, and W. Wang

(F2) for

# ˝> ˝ #< # #

1 2 3 4

adq.adqe1.e2// ı adq.adqe3.e2// ı adqe3.e4/

D adq.adqe3.e2// ı adq.adqe1.e2// ı adqe3.e4/I

(F3) for

˝ ˝̋ #<
1 3 4

adqe3 ı adqe1 ı adqe3.e4/ D 0;

(F4) for

˝

✟̋✟✟✟
✟✟✟✟
✟✟✟✟

˝ ˝

˝

˝
✻✻
✻✻

1

2

3

Œ3�adqei ı adqej .ek/C Œ2�adqej ı adqei .ek/ D 0;

(G1) for

˝ #<˝ ˝
1 2 3

adqE ı adqE ı adqE ı adqe2.e1/ D 0;

where

E D adqe2.e3/;

(G2) for

˝ #< ˝
1 2 3

adqe2 ı adqe3 ı adqe3 ı adqe2.e1/ D adqe3 ı adqe2 ı adqe3 ı adqe2.e1/;

(G3) for

˝ ˝˝

#
✟✟✟✟
✟✟✟✟

#

˝
✻✻
✻✻

1

2

3

adqe1 ı adqe2.e3/ � Œ2�adqe2 ı adqe1.e3/ D 0;

(D˛) for

˝

˝
✟✟✟✟

˝ ˝

˝

˝
✻✻
✻✻

1

2

3

˛

�1�˛

Œ˛ C 1�adqe1 ı adqe3.e2/C Œ˛�adqe3 ı adqe1.e2/ D 0:
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�eorem 2.8 ([33, Proposition 10.4.1]). If the Dynkin diagram for Uq is of type

A-D, or the distinguished diagram in types F and G, then the relations given in

Proposition 2.7 are de�ning relations for Uq.

3. Quantum shu�e superalgebras

In this section, we formulate a quantum shu�e superalgebra associated to a Cartan

datum of basic type, and construct an embedding of the half-quantum superalge-

bra Uq into a quantum shu�e superalgebra. �ese form super generalizations of

constructions of Green [9] and Rosso [31].

3.1. �e homomorphism ‰ , I. Let .I;…; .�; �// be a Cartan datum of basic type.

Let

F D F.I/

be the free associative superalgebra over Q.q/ generated by I, with parity pre-

scribed by p.�/ on I. Let W D td�0I
d be the set of words in F, i.e., the monoid

generated by I. �e identity element is the empty word ;, and a general word will

be denoted by

i D .i1; i2; : : : ; id / D i1i2 � � � id :

For i 2 I and k 2 N, we will use the notation

ik D i i : : : i
„ƒ‚…

k

:

Note that F has a weight space decomposition

F D
M

�2QC

F�

by setting

j.i1; : : : ; id /j D ˛i1 C : : :C ˛id

and extending linearly. We de�ne

W� D W \ F� : (3.1)
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Finally, de�ne the length function

` W W �! Z�0

as

`.i1; : : : ; id / D d: (3.2)

Let v 2 Q.q/. We de�ne the v-quantum shu�e product

˘v W F � F �! F

inductively by the formula

.xi/˘v.yj / D .x˘v.yj //i C �
.p.x/Cp.i//p.j /v�.jxjC˛i ; j̨ /..xi/˘vy/j; (3.3)

and x˘v; D ;˘vx D x; for homogenous x; y 2 F and i; j 2 I. �e quantum

shu�e products of interest will be those for v D q or v D q�1, so when there is

no chance of confusion we will write

˘ D ˘q and N̆ D ˘q�1 :

Iterating (3.3) above, we obtain

.i1; : : : ; ia/˘ .iaC1; : : : ; iaCb/ D
X

�

�".�/q�e.�/.i�.1/; : : : ; i�.aCb//; (3.4)

where the sum is over minimal coset representatives in SaCb=Sa � Sb,

".�/ D
X

r�a<s
�.r/<�.s/

p.i�.r//p.i�.s//; and e.�/ D
X

r�a<s
�.r/<�.s/

.˛i�.r/
; ˛i�.s/

/: (3.5)

We call each

.i�.1/; : : : ; i�.aCb//

in (3.4) a shu�e of .i1; : : : ; ia/ and .iaC1; : : : ; iaCb/. More generally, given x; y 2

F such that

x D
X

cww and y D
X

dww;

we say that a word z 2 W occurs as a shu�e in x ˘y if z is a shu�e of words

w1; w2 2 W such that

cw1
dw2
¤ 0:
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Proposition 3.1. �e shu�e product is associative and satis�es

x ˘ y D �p.x/p.y/q�.jxj;jyj/y N̆ x;

where we have used the notation

N̆ D ˘q�1 :

Proof. �e proof is straightforward using (3.4).

We call .F; ˘ / the quantum shu�e (super)algebra associated to I.

We now describe the bialgebra structure on Fwith respect to the concatenation

product, and explain the relationship with the shu�e product. Equip F ˝ F with

the associative product

.w ˝ x/.y ˝ z/ D �p.x/p.y/q�.jxj;jyj/.wy/˝ .xz/;

where we use the concatenation product on each tensor factor. �en,

ı W F �! F˝ F

given by

ı.i/ D i ˝ 1C 1˝ i

is an algebra homomorphism with respect to the concatenation product on both

sides.

Lemma 3.2. �e algebra F admits a symmetric bilinear form .�; �/ such that

.1; 1/ D 1;

and

.i; j / D ıi;j ; for i; j 2 I;

.ij; k/ D .i˝ j; ı.k//; for i; j 2 W;

where

.i1 ˝ i2; j1 ˝ j2/ D .i1; j1/.i2; j2/:

Proof. �is can be proved by a standard argument; cf. [28, 5].
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Note that there is an obvious surjective algebra homomorphism

 W F �! Uq

given by

i 7�! ei I

moreover,

� ı  D . ˝  / ı ı;

and hence by Proposition 2.4,

.i; j/ D . .i/;  .j//:

Suppose that i D i1 � � � in. For any a < b 2 N, set

Œa:b� D ¹a; aC 1; : : : ; b � 1; bº :

�en for any subset P D ¹k1 < : : : < kmº of Œ1:n�, de�ne

iP D ik1
� � � ikm

so that iP is a word of length m � n. We have

ı.i/ D
Y

k2Œ1:n�

ı.ik/ D
Y

k2Œ1:n�

.ik ˝ 1C 1˝ ik/;

where this non-commuting product is taken in the order k D 1; : : : ; n. �e last

product can be expanded as a sum

X

P�Œ1:n�

z.P /;

where

z.P / D z1 : : : zn

with

zk D ik ˝ 1 if k 2 P

and

zk D 1˝ ik if k 2 P c D Œ1:n� n P .
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Now expanding z.P / using the tensor multiplication rule gives us

z.P / D �".�P /q�e.�P /iP ˝ iP c ;

where �P is the minimal coset representative in Sn=Sn�m � Sm satisfying

�P .Œn �mC 1:n�/ D P

and ".�P / and e.�P / are de�ned in (3.5). Hence, for a word i 2 W of length n,

we have

ı.i/ D
X

P�Œ1:n�

�".�P /q�e.�P /iP ˝ iP c : (3.6)

Let F� be the graded dual of F. �en for any word i in F, we set fi to be the

dual basis element:

fi.j/ D ıij; for all i; j 2 W:

We endow F
� with an associative algebra structure with multiplication de�ned by

.fg/.x/ D .g ˝ f /.ı.x//; for f; g 2 F�; x 2 F:

Lemma 3.3. �e map

� W F� �! .F;˘/; fi 7�! i

is an isomorphism of algebras.

Proof. It is clear that the given map is a vector space isomorphism; it remains to

show the products match. Let i D .i1; : : : ; in/ and j D .j1; : : : ; jm/, and suppose

that k has weight jij C jjj. �en by (3.6) we have

ı.k/ D
X

P�Œ1:nCm�

�".�P /q�e.�P /kP ˝ kP c :

�en we see that

�k
i;j WD .fj ˝ fi/.ı.k// D

X

�".�P /q�e.�P /;

where the sum is over P � Œ1:nCm� such that

kP D j and kP c D i:

�erefore,

fifj D
X

�k
i;jfk: (3.7)
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On the other hand, by (3.4) that

i ˘ j D
X

�

�".�/q�e.�/.l�.1/; : : : ; l�.mCn//;

where

i � j D .l1; : : : ; lmCn/;

� 2 SnCm=Sn � Sm is a minimal coset representative, and

P D ¹�.nC 1/; : : : ; �.nCm/º :

Let k 2 WjijCjjj. �en k appears as a summand of i˘ j if and only if

k D .l�.1/; : : : ; l�.mCn// for some � such that k�.ŒnC1:nCm� D j and k�.Œ1:n�/ D i.

In particular, � satis�es

� D �P for P D �.ŒnC 1:nCm�/.

�erefore,

i ˘ j D
X

k

X

P�Œ1:nCm�
kP Dj; kP c Di

�".�P /q�e.�P /k D
X

k

�k
i;jk:

Comparing this to (3.7) shows that � is an algebra isomorphism.

Corollary 3.4. �ere exists an algebra embedding

‰ W Uq �! .F;˘q/

such that

‰.ei / D i:

Proof. �e epimorphism

 W F �! Uq

induces an injective homomorphism of graded duals

 � W U �
q �! F

�:

But since .�; �/ on Uq is nondegenerate,

U �
q Š Uq I

on the other hand, we just proved that F� Š .F;˘/, and so the composition

‰ W Uq
Š
�! U �

q

 �

�! F
� Š
�! .F; ˘ /

is the desired map.
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De�ne

U D ‰.Uq/

to be the subalgebra of .F; ˘ / generated by I.

3.2. �e homomorphism ‰ , II. In the case where the diagram for Uq in Table 1

is of typeA-D or the distinguished diagram in types F andG, we give an alternate

description of the homomorphism ‰ above. �is new description of ‰ and then

U is suitable for computations later on.

For x; y 2 F, introduce the notation

x˘q;ty D x˘qy � x˘ty: (3.8)

�en Proposition 3.1 can be rephrased as

x ˘y � �p.x/p.y/q.jxj;jyj/y ˘ x D x ˘q;q�1 y; (3.9)

for x; y 2 F homogeneous. We denote

i ˘ r D i ˘ � � � ˘ i
„ ƒ‚ …

r times

below, and recall sij from (2.2).

Lemma 3.5. �e following identities hold in F whenever the indicated Dynkin

subdiagram associated to Uq appears:

(Iso) for i; j 2 IN1 with aij D 0,

i ˘ j C j ˘ i D 0;

(N-Iso) if i ¤ j and i 2 IN0 [ In-iso,

X

rCsD1Cjaij j

.�1/r�
p.i;j Ir/
i

�
1C jaij j

r

�

i

i ˘ r ˘ j ˘ i ˘ s D 0;

(A/B) for

ˇ ˝̋ ˇ
i j k

.sij ¤ sjk/

or

Y ˝̋ ˇ<
i j k

j ˘q;q�1 .k ˘q;q�1 .j ˘q;q�1 i// D 0;
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(CD1) for

# ˝̋ ˝>
i j k

j ˘q;q�1 ..j ˘q;q�1 k/˘q;q�1 .i ˘q;q�1 .j ˘q;q�1 k/// D 0;

(CD2) for

ˇ ## ˝ <# #

i j k l

k ˘q;q�1 .j ˘q;q�1 .k ˘q;q�1 .l ˘q;q�1 .k ˘q;q�1 .j ˘q;q�1 i///// D 0;

(D) for

ˇ
✈̋✈✈

ˇ

˝
❍❍

❍

˝

˝

i

j

k

k ˘q;q�1 .j ˘q;q�1 i/ D j ˘q;q�1 .k ˘q;q�1 i/;

(F1) for

# ˝> ˝ #< # #

1 2 3 4

E˘q;q�1 .E˘q;q�1 .4˘q;q�1 .3˘q;q�1 2/// D 0;

where

E D .1˘q;q�1 2/˘q;q�1 .3˘q;q�1 2/

D .q5 C q2 � q�2 � q�5/.3122C 1322/C .q2 � q�2/.1232/;

(F2) for

# ˝> ˝ #< # #

1 2 3 4

.1˘q;q�1 2/˘q;q�1 ..3˘q;q�1 2/˘q;q�1 .3˘q;q�1 4//

D .3˘q;q�1 2/˘q;q�1 ..1˘q;q�1 2/˘q;q�1 .3˘q;q�1 4//I

(F3) for

˝ ˝̋ #<
1 3 4

3˘q;q�1 .1˘q;q�1 .3˘q;q�1 4// D 0I
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(F4) for

˝

✟̋✟✟✟
✟✟✟✟
✟✟✟✟

˝ ˝

˝

˝
✻✻
✻✻

1

2

3

Œ3�.i ˘q;q�1 .j ˘q;q�1 k//C Œ2�.j ˘q;q�1 .i ˘q;q�1 k// D 0I

(G1) for

˝ #<˝ ˝
1 2 3

E˘q;q�1 .E˘q;q�1 .E˘q;q�1 .2˘q;q�1 1/// D 0;

where

E D .2˘q;q�1 3/ D �.q3 � q�3/.23/I

(G2) for

˝ #< ˝
1 2 3

2˘q;q�1 .3˘q;q�1 .3˘q;q�1 .2˘q;q�1 1///

D 3˘q;q�1 .2˘q;q�1 .3˘q;q�1 .2˘q;q�1 1///I

(G3) for

˝ ˝˝

#
✟✟✟✟
✟✟✟✟

#

˝
✻✻
✻✻

1

2

3

1˘q;q�1 .2˘q;q�1 3/ � Œ2�.2˘q;q�1 .1˘q;q�1 3// D 0I

(D˛) for

˝

˝
✟✟✟✟

˝ ˝

˝

˝
✻✻
✻✻

1

2

3

˛

�1�˛

Œ˛ C 1�.1˘q;q�1 .3˘q;q�1 2//C Œ˛�.3˘q;q�1 .1˘q;q�1 2// D 0:

Proof. �is follows from Corollary 3.4 and the corresponding relations for Uq

given in Proposition 2.7. �ese can also be deduced directly by tedious (but

straightforward) computer calculation, which we omit.
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Lemma 3.6. For each i 2 I, de�ne the Q.q/-linear operator

"0
i W F �! F

by

"0
i .i1; : : : ; id / D ıi;id .i1; : : : ; id�1/

and

"0
i .;/ D 0:

�en, the endomorphisms "0
i satisfy

"0
i .j / D ıij

and

"0
i .x ˘ y/ D "

0
i .x/˘y C �

p.x/p.y/q�.˛i ;jxj/x ˘ "0
i .y/:

Proof. �is is immediate from the de�nition and (3.3).

Given i D .i1; : : : ; id / 2 Id , de�ne

e0
i D e

0
i1
e0
i2
� � � e0

id
and "0

i D "
0
i1
"0
i2
� � � "0

id
: (3.10)

De�ne a Q.q/-linear map

‰ W Uq �! F

by letting

‰.u/ D
X

i2W�

e0
i.u/i; for u 2 Uq;� : (3.11)

(Here we have abused the same notation‰ as before, as it follows immediately by

Proposition 3.7 below that they coincide.) Since

e0
i.u/ 2 Uq;0 D Q.q/;

this map is well de�ned. By Proposition 2.5, ‰ is injective and

‰.ei / D i for i 2 I.
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Proposition 3.7. When the diagram for Uq is of type A-D or the distinguished

diagram in types F and G, the map

‰ W Uq �! .F; ˘ /

given by (3.11) is an injective algebra homomorphism (and hence coincides with

the ‰ given in Corollary 3.4).

Proof. We have just seen the injectivity of ‰ above. In the cases we are con-

sidering, we have by Lemma 3.5 and �eorem 2.8 that there exists an algebra

homomorphism

‡ W Uq �! .F; ˘ /

such that

‡.ei/ D i for all i 2 I.

Using Lemma 3.6, this map satis�es

‡ ı e0
i .u/ D "

0
i ı‡.u/:

Let u 2 Uq;� , and i 2 W� . Set i.u/ to be the coe�cient of i in ‡.u/. �en,

i.u/ D "
0
i ı ‡.u/ D ‡ ı e

0
i.u/ D e

0
i.u/‡.1/ D e

0
i.u/;

where

"0
i D "

0
i1
� � � "0

id
:

Hence

‰.u/ D ‡.u/

and so ‰ is an algebra homomorphism.

�e ‰ here and the ‰ given in Corollary 3.4 coincide since both are algebra

homomorphisms satisfying ‰.ei / D i for i 2 I.

Let � be the Dynkin diagram associated to U and let h�i be the set of subdia-

grams inducing relations associated to (AB)–(D) in Lemma 3.5. �en using (3.9),

we may rewrite the relation corresponding to � 0 2 h�i in the form

X

iD.i1;:::;id /2W

#�0.i/.i1 ˘ i2 ˘ � � � ˘ id / D 0; for #�0.i/ 2 Q.q/: (3.12)
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Example 3.8. Let U be associated to the diagram

# ˝̋ #

i j k

.sij D �1 ¤ sjk D 1/:

�e only subdiagram causing a relation of the form (AB)–(D) is the whole diagram

(which corresponds to (AB)) so

h�i D ¹i; j; kº

(where we identify the subdiagram with its set of labels). We have

#¹i;j;kº.i/ D

8

ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
:

1 if i 2 ¹jkj i; j ijk; kj ij; ijkj º ;

�q if i 2 ¹jj ik; j ikj º ;

�q�1 if i 2 ¹kijj I jkij º ;

0 otherwise.

Proposition 3.9. Let U be associated to a diagram of type A-D, or to the distin-

guished diagram of type F or G. �e element

x D
X

k2W

k.x/k 2 F

belongs to U if and only if the following statements hold for all h; h0 2 W.

(1) For all i; j 2 Iiso with aij D 0,

h�ij �h0.x/C h�j i �h0.x/ D 0I

(2) For all i 2 IN0 [ In-iso and j 2 I with i ¤ j ,

X

rCsD1Cjaij j

.�1/r�
p.i;j Ik/
i

�
1C jaij j

r

�

i

h�ir �j �is �h0.x/ D 0I

(3) For all � 0 2 h�i, and with #�0 de�ned as in (3.12),

X

i2W

#�0.i/h�i�h0.x/ D 0:
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Proof. Let V be the subspace of F spanned by those elements that satisfy the state-

ments (1)–(3). Let

x D ‰.u/ D
X

k2W;jkjD�

.k/k 2 U�

be the image of some u 2 Uq. �en, for k D .k1; : : : ; kd /,

.k/ D e0
k.u/ D .ek1

� � � ekd
; u/

by de�nition. �en by Corollary 2.6, x 2 V.

Conversely, note that by Lemma 3.5 x 2 F satis�es (1)-(3) exactly when x is

orthogonal to a subspace of F � isomorphic to the kernel of the algebra surjection

F �! .F; ˘ /:

�erefore, we see that

V� D F� \ V

has the same dimension as Uq;� . As ‰ is injective,

dimU� D dim V� ;

and therefore

U D V:

3.3. Automorphisms of U. For

� D
X

i2I

ci˛i 2 Q
C;

we set

N.�/ D
1

2

�

.�; �/ �
X

i2I

ci .˛i ; ˛i/
�

(3.13a)

and

P.�/ D
1

2

�

p.�/2 �
X

i2I

cip.˛i /
�

; (3.13b)

where here we interpret p.˛i / 2 ¹0; 1º and p.�/ D
P

i2I cip.˛i/ as integers.

Below we realize certain automorphisms of U, whose counterparts for Uq

were given in Proposition 2.2, as restrictions of simple linear maps on F (com-

pare [23, Proposition 6]).
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Proposition 3.10. (1) Let

� W F �! F

be the Q.q/-linear map de�ned by

�.i1; : : : ; id / D .id ; : : : ; i1/:

�en,

�.x ˘ y/ D �.y/˘ �.x/ for all x; y 2 F.

In particular,

�‰.u/ D ‰�.u/ for all u 2 Uq ,

see (2.3).

(2) Let

x 7�! Nx

be the Q-linear map F! F such that

Nq D

8

<

:

�q�1 if Uq is of type B.0; nC 1/;

q�1 otherwise,

and

.i1; : : : ; id / D �
P

s<t p.is/p.it /q�
P

s<t .˛is ;˛it
/.id ; : : : ; i1/:

�en,

x ˘y D Nx ˘ Ny

and

‰.u/ D ‰. Nu/ for all u 2 Uq .

(3) Let

� W F �! F

be the Q-linear map de�ned by

�.x/ D �.x/:
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�en,

�‰.u/ D ‰�.u/ for all u 2 Uq

and for

� D
X

i2I

ci˛i 2 Q
C

and i 2 W� ,

�.i/ D �P.�/q�N.�/i:

Proof. First note that

P.˛i1 C : : :C ˛in/ D
X

s<t

p.is/p.it /

and

N.˛i1 C : : :C ˛in/ D
X

s<t

.˛is ; ˛it /;

so (3) follows from (1) and (2). We need only check (1) and (2) when x; y 2 W.

Note that (1) is clear from (3.4). To prove (2), proceed by induction. Suppose (2)

holds provided `.x/C `.y/ � n (the case n D 1 being trivial). Applying � to the

expression for .�.y/j /˘ .�.x/i/ given by (3.3), we have

.ix/˘ .jy/ D �p.i/.p.y/Cp.j //q�.˛i ;jyjC j̨ /i.x ˘ .jy//C j..ix/˘ y/:

�erefore, assuming

`.xi/C `.yj / D nC 1;

we have

.ix/˘ .jy/

D �p.i/.p.y/Cp.j //q�.˛i ;jyjC j̨ /i.x ˘ jy/C j.ix ˘y/

D �p.i/p.x/q�.˛i ;jxj/.x ˘ jy/i

C �p.j /.p.x/C˛i Cp.y//q�. j̨ ;˛i CjxjCjyj/.ix ˘y/j

D �p.i/p.x/Cp.j /p.y/q�.˛i ;jxj/�. j̨ ;jyj/. Nx ˘ Nyj /i

C �p.i/p.x/Cp.j /p.y/Cp.j /.p.x/Cp.i//q�.˛i ;jxj/�. j̨ ;˛i CjxjCjyj/. Nxi ˘ Ny/j

D �p.i/p.x/Cp.j /p.y/q�.˛i ;jxj/�. j̨ ;jyj/. Nxi ˘ Nyj /

D .ix ˘ jy/:

�is proves (2).
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3.4. �e bialgebra structure of U. We now transport the bilinear form from Uq

to U via ‰.

Proposition 3.11. Let

� W F �! F˝ F

be the map

�.i1; : : : ; id / D
X

0�k�d

.ikC1; : : : ; id /˝ .i1; : : : ; ik/:

�en,

�.x ˘ y/ D �.x/˘�.y/;

where we de�ne the shu�e product on F˝ F by

.w ˝ x/˘ .y ˝ z/ D �p.x/p.y/q�.jxj;jyj/.w ˘y/˝ .x ˘ z/:

In particular,

�‰ D .‰ ˝‰/�:

Proof. For x 2 W, we write

�.x/ D
X

x2 ˝ x1:

�en, for any i 2 I,

�.xi/ D �.x/ � .i ˝ 1/C 1˝ xi D
X

x2i ˝ x1 C 1˝ xi;

where we have used the associative multiplication

.w ˝ x/ � .y ˝ z/ D wy ˝ xz:

Let x; y 2 W and i; j 2 I. Assume the proposition is proved provided

`.x/C `.y/ � n (the case n D 1 being trivial). Suppose

`.xi/C `.yj / D nC 1:

Write

�.x/ D
X

x2 ˝ x1

and

�.y/ D
X

y2 ˝ y1:
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We compute

�.xi ˘yj / D �..x ˘ yj /i C �.p.x/Cp.i//p.j /q�.jxjC˛i ; j̨ /.xi ˘ y/j /

D �.x ˘ yj / � .i ˝ 1/

C 1˝ .x ˘ yj /i

C �.p.x/Cp.i//p.j /q�.jxjC˛i ; j̨ /.�.xi ˘ y/ � .j ˝ 1/

C 1˝ .xi ˘ y/j /:

By induction, this equals

.�.x/˘�.yj // � .i ˝ 1/

C �.p.x/Cp.i//p.j /q�.jxjC˛i ; j̨ /.�.xi/˘�.y// � .j ˝ 1/

C 1˝ .xi ˘ yj /

D
h� X

x2 ˝ x1

�

˘
� X

y2j ˝ y1 C 1˝ yj
�i

� .i ˝ 1/

C �.p.x/Cp.i//p.j /q�.jxjC˛i ; j̨ /
h� X

x2i ˝ x1 C 1˝ xi
�

˘
� X

y2 ˝ y1

�i

� .j ˝ 1/

C 1˝ .xi ˘ yj /

D
X

�p.x1/.p.y2/Cp.j //q�.jx1j;jy2jC j̨ /.x2 ˘ y2j /i ˝ .x1 ˘ y1/

C
X

x2i ˝ .x1 ˘yj /

C �.p.x/Cp.i//p.j /q�.jxjC˛i ; j̨ /

X

�p.x1/p.y2/q�.jx1j;jy2j/.x2i ˘y2/j ˝ .x1 ˘ y1/

C �.p.x/Cp.i//p.j /q�.jxjC˛i ; j̨ /

X

�.p.x/Cp.i//p.y2 //q�.jxjC˛i ;jy2j/y2j ˝ .xi ˘y1/

C 1˝ .xi ˘ yj /

D
X

�p.x1/.p.y2/Cp.j //q�.jx1j;jy2jC j̨ /..x2 ˘y2j /i

C �.p.x2/Cp.i//p.j /q�.jx2jC˛i ; j̨ /.x2i ˘y2/j /˝ .x1 ˘y1/

C
X

x2i ˝ .x1 ˘yj /

C
X

�.p.x/Cp.i//.p.y2 /Cp.j //q�.jxjC˛i ;y2C j̨ /y2j ˝ .xi ˘y1/

C 1˝ .xi ˘ yj /

D �.xi/˘�.yj /:

�is completes the proof.
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Remark 3.12. �e formulas in this paper di�er slightly from those appearing

in [19], where multiplication and comultiplication correspond to induction and

restriction at the categori�ed level. If we regard the shu�e product in this paper

as a map

m˘ W U˝ U �! U;

then the precise relationship with induction and restriction in a categori�cation of

U will be

ŒInd� D � ım˘ ı .� ˝ �/

and

ŒRes� D .� ˝ �/ ı� ı �:

As a consequence of Proposition 3.11, we obtain the following counterpart of

Proposition 3.11 via the algebra isomorphism

‰ W Uq �! U:

Proposition 3.13. �ere exists a symmetric nondegenerate bilinear form

.�; �/ W U˝ U �! Q.q/

satisfying

(1) .1; 1/ D 1;

(2) for i; j 2 I, .i; j / D ıij ;

(3) .x; y ˘ z/ D .�.x/; y ˝ z/, for x; y; z 2 U.

4. Combinatorics of words

In this section, we will develop word combinatorics for the q-shu�e superalgebra

following closely [23, Section 3] (which was in turn built on [25, 22]).

4.1. Dominant words and monomial bases. We now �x a total ordering �

on I. Let W D .W;�/ be the ordered set with respect to the corresponding lexico-

graphic order:

i D .i1; : : : ; id / < .j1; : : : ; jk/ D j

if there exists an r such that ir < jr and is D js for s < r , or if d < k and is D js

for s D 1; : : : d (i.e., i is a proper left factor of j).



Quantum shu�es and quantum supergroups of basic type 587

For x 2 F, we set

max.x/ D i

if �i ¤ 0 in the expansion x D
P

j2W �jj (where �j 2 Q.q/) and �j D 0 unless

i � j. A word i 2 W is called dominant (also called good in [23]) if i D max.u/

for some u 2 U, and let WC denote the subset of dominant words of W.

�e following proposition proves that the set WC labels bases of Uq and U.

�e proof proceeds exactly as in [23, Proposition 12].

Proposition 4.1. (1) �ere exists a unique basis of homogeneous vectors

¹mj j j 2 W
Cº

in U such that

"0
i.mj/ D ıij if jij D jjj;

where "0
i
is de�ned in Lemma 3.6 and (3.10).

(2) �e set

¹ei D ei1 � � � eid j i D .i1; : : : ; id / 2 W
Cº

is a basis (called monomial basis) of Uq .

For i D .i1; : : : ; id / 2 W, de�ne

"i D i1 ˘ � � � ˘ id D ‰.ei/:

De�ne the monomial basis for U to be

¹"i j i 2 W
Cº: (4.1)

�e next lemma generalizes [22] (cf. [23]).

Lemma 4.2. Every factor of a dominant word is dominant.

Proof. �is follows from the fact that U is stable under the action of "0
i and

"00
i D �"

0
i� , i 2 I. See [23, Lemma 13].
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4.2. Lyndon words

4.2.1. A word i D .i1; : : : ; id / 2 W is called Lyndon if it is smaller than any of

its proper right factors:

i < .ir ; : : : ; id /; for 1 < r � d: (4.2)

Let L denote the set of Lyndon words in W.

Let i 2 L. Call the decomposition i D i1i2 the co-standard factorization of i if

i1; i2 ¤ ;, i1 2 L, and the length of i1 is maximal among all such decompositions.

In this case, it is known that i2 2 L as well, see [25, Chapter 5]. Call the decom-

position i D i1i2 the standard factorization if i1; i2 ¤ ;, i2 2 L, and the length of

i2 is maximal among all such decompositions. As above, we have i1 2 L as well.

We will frequently use the following lemma.

Lemma 4.3 ([23, Lemma 14]). Let i 2 L, and let i D i1i2 be its co-standard

factorization. �en,

i2 D ir1i
0
1i;

where r � 0, i01 is a (possibly empty) proper left factor of i1, and i01i > i1.

We also have the following converse to this lemma.

Lemma 4.4. If i 2 L and j D ir i0i where r � 1, i0 is a (possibly empty) proper left

factor of i, and i < i0i , then

j 2 L:

Proof. It is enough to prove the statement when r D 1, the general case being

similar. To this end, assume i D .i1; : : : ; id / 2 L and j D ii0i satis�es the condi-

tions of the lemma. �en j D .i1; : : : ; id ; i1; : : : ; ik; i /. If j00 is a right factor of j

then either

(1) j00 D .ir ; : : : ; id ; i1; : : : ; ik; i /, or

(2) j00 D .ir ; : : : ; ik; i /.

In case (1), we have

i D .i1; : : : ; id / < .ir ; : : : ; id /

since i 2 L. As `.ir ; : : : ; id / < `.i/ we my conclude that j < j00. For case (2),

we have

i < .ir ; : : : ; id / < .ir ; : : : ; ik; i /;

so j < j00 as well. �is completes the proof.
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Let LC be the set of dominant Lyndon words in W. Note that

L
C D L \WC � W

C � W:

It is well known [25] that every word i 2 W has a canonical factorization as a

product of non-increasing Lyndon words:

i D i1 � � � id ; i1; : : : id 2 L; i1 � � � � � id : (4.3)

Lemma 4.5. Let i 2 L and j 2 W. Assume that i � j, and further assume i ¤ j if

jij 2 QC is isotropic odd. �en

max.i˘ j/ D ij:

Proof. We will prove a slightly stronger statement. Namely, we will prove that

max.i˘ j/ � ij

and

(1) if i > j, then the coe�cient of ij in i˘ j is �p.i/p.j/q�.jij;jjj/ and,

(2) if i D j, then the coe�cient of ii in i˘ i is 1C �p.i/q�.jij;jij/.

Let i D .i1; : : : ; id / and j D .j1; : : : ; jk/. We prove this statement by a

double induction on `.i/ D d and `.j/ D k. To this end, suppose `.i/ D 1,

i.e. i D i1 D i 2 I. If i > j, then i > j1, so clearly max.i ˘ j/ D ij and ij occurs

with the coe�cient given in (1). If j D i, then j D j1 D i and

i ˘ i D .1C �p.i/q�.˛i ;˛i //.i i/:

Hence (2) follows.

Now, suppose that `.j/ D 1, so j D j1 D j 2 I. �e case i D j is treated above,

so assume that i > j . �en, j < i1. Assume

k D .k1; : : : ; kdC1/ D .i1; : : : ; ir�1; j; ir; : : : ; id /

is any word occurring as a nontrivial shu�e in i˘ j . �en, kr D j < i1 � ir ,

so k < ij and (1) holds.

We now proceed to the inductive step.
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Case 1 : i > j. Let i D i1i2 be the co-standard factorization of i and recall that i2

is of the form i2 D ir1i
0
1i , see Lemma 4.3. �en, if k occurs as a nontrivial shu�e

in i˘ j, there exists a factorization j D j1j2 such that k occurs in .i1 ˘ j1/.i2 ˘ j2/.

If i1 � j1, then by induction on `.i/, max.i1 ˘ j1/ � i1j1. It now follows that

k � i1j1 max.i2 ˘ j2/:

Since j < i < i2, induction on `.i/ implies that max.i2 ˘ j/ D i2j and any nontrivial

shu�e is strictly smaller. Now, since any word occurring in j1.i2 ˘ j2/ is a proper

shu�e in i2 ˘ .j1j2/ D i2 ˘ j, we have

k � i1j1 max.i2 ˘ j2/ < i1 max.i2 ˘ j/ D ij:

Assume i1 < j1. Since i > j, we must have j1 D i1j
0
1 with j0

1j2 < i2. Note that

any shu�e occurring in i1 ˘ j1 must occur in .i11 ˘ i1/.i12 ˘ j0
1/ for some factor-

ization i1 D i11i12. By induction, max.i11 ˘ i1/ � i1i11, so

k � i1i11 max.i12 ˘ j0
1/max.i2 ˘ j2/:

Any word occurring in i11.i12 ˘ j0
1/ must also occur in i1 ˘ j0

1, and any word

occurring in i1.i1 ˘ j0
1/.i2 ˘ j2/ also occurs in i1.i˘ .j

0
1j2//:

Set h D j0
1j2. If h < i, then induction on `.j/ implies that max.i˘h/ D ih and

any proper shu�e is strictly smaller. Hence,

k � i1i11 max.i12 ˘ j0
1/max.i2 ˘ j2/ < i1 max.i˘h/ D i1i

rC1
1 i01ih < i < ij:

We may, therefore, assume that h � i.

Recall that h < i2 D ir1i
0
1i . If h � ir1i

0
1, then h < i since ir1i

0
1 is a left factor of i.

�is contradicts our assumption, leaving us to consider the case where h > ir1i
0
1.

Since h < i2, it follows that h D ir1i
0
1h

0, where h0 < i . Suppose for the moment

that h0 D j 2 I, i.e. h D ir1i
0
1j , j < i . Since h > i, i01j > i1 and, therefore,

h 2 L by Lemma 4.4. Since `.h/ < `.i/ we may apply induction to conclude that

max.ih/ � hi. Hence,

k � i1i
r
1i

0
1j i < i D irC1

1 i01i < ij:

More generally, when h0 D jh00 is not a letter, any word in i1.i˘h/ can be obtained

by �rst shu�ing ir1i
0
1j into i to obtain a word i1l D i1.l1j l2/, and then shu�ing h00

into l2. Since we already have proved that the maximum of the i1l1j l2 appearing

this way is irC1
1 i01j i, irC1

1 i01j < i and `.irC1
1 i01j / D `.i/, the same holds in general.

�is �nishes Case 1 and proves (1).
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Case 2: i D j. �is case is almost identical to Case 1 except in the last step where

now h D ir1i
0
1i . From this we see that there are exactly two ways in which ii occurs

in i˘ i and (2) follows.

�e next statement follows immediately from the proof above.

Corollary 4.6. Assume that i 2 L and jij D � is isotropic odd, then

max.i˘ i/ < ii:

�e next proposition now follows as in [23, Proposition 16].

Proposition 4.7. Let i 2 LC and j 2 WC with i � j, and further assume i ¤ j if

jij 2 QC is isotropic odd. �en,

ij 2 WC:

�eorem 4.8. �e map

i 7�! jij

de�nes a bijection from L
C to ˆC. Moreover, i 2 WC if and only if its canonical

factorization is of the form i D i1 � � � ir , where i1; : : : ; ir 2 L
C satisfy i1 � : : : � ir

and is appears only once whenever jis j is isotropic odd.

Proof. We prove both statements simultaneously by induction. Let

L
C
n D ¹i 2 L

C j `.i/ D nº;

ˆC
n D ¹ˇ 2 ˆ

C j ht.ˇ/ D nº

and let W˚ be the set of words in W satisfying the conditions of the theorem.

By Proposition 4.7,

W
˚ � W

C:

Assume that for r < n there is a bijection

L
C
r �! ˆC

r ;

and

W
˚
� D W

C
� whenever ht.�/ < n.

�e base case is the bijection

L
C
1 D I ! … D ˆC

1 :
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We now proceed to the inductive step. Let � be an arbitrary total ordering on

ˆC. For � 2 QC, let

d.�/ D dimUq;� ;

and de�ne

d 0.�/ D j¹.ˇ1; : : : ; ˇd / 2 .ˆ
C/d j d � 2; ˇ1� � � � �ˇd ; ˇ1 C : : :C ˇd D �ºj:

�en, by the PBW theorem for Uq (cf. [33]),

d.�/ D 1C d 0.�/ if � 2 ˆC

and

d.�/ D d 0.�/ otherwise.

Assume that i 2 LC
n , jij D � 2 QC. By induction,

jW˚
� n¹iºj � d

0.�/:

Since W˚
� � W

C
� , and jWC

� j D d.�/,

d.�/ D jWC
� j � jW

˚
� j � 1C d

0.�/ � d.�/:

�is forces

d.�/ D 1C d 0.�/

and, therefore, � 2 ˆC
n . Moreover, it follows that i 2 WC

� is the unique Lyndon

word of its degree. Hence, the map LC
n ! ˆC

n is injective andW˚
� D W

C
� whenever

ht.�/ D n and LC
� ¤ ;.

We now prove this map is surjective. To this end, let ˇ 2 ˆC
n . By induction

jW˚
ˇ
j � d 0.ˇ/ and jW˚

ˇ
j > d 0.ˇ/ if and only if LC

ˇ
¤ ; (in which case there is a

unique i.ˇ/ 2 LC
ˇ

). Suppose that the map is not surjective; that is, jW˚
ˇ
j D d 0.ˇ/.

�en, there exists j 2 WC
ˇ
nW˚

ˇ
with j D j1 � � � jr with i D js D jsC1 odd isotropic

for some s. If j ¤ ii, then ii 2 WC by Lemma 4.2. Since `.ii/ < `.j/, W˚
2jij
D W

C
2jij

and so ii 2 W ˚, contradicting the de�nition of W ˚. But, the only alternative is

j D ii, which implies both 2jij D ˇ and jij are in ˆC, contradicting the fact that

ˆC is reduced. It now follows that

jW˚
� j D d.�/ D jW

C
� j

for all � 2 QC, which completes the proof of both statements of the theorem.
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4.3. Bracketing and triangularity. For homogeneous x; y 2 F, de�ne

Œx; y�q D xy � �
p.x/p.y/q.jxj;jyj/yx: (4.4)

When i 2 LC, we de�ne Œi�C 2 F inductively by

Œi�C D i if i D i 2 I

and

Œi�C D Œi1; i2�q otherwise,

where i D i1i2 is the co-standard factorization of i.

�e next two propositions are proved exactly as in [23, Propositions 19 and 20].

Proposition 4.9. For i 2 LC,

Œi�C D iC x;

where x is a linear combination of words j 2 WC satisfying

j > i:

Now, for i 2 W, let i D i1 � � � ir , where i1; : : : ; ir 2 L
C and i1 � : : : � ir , be its

canonical factorization. De�ne

Œi�C D Œi1�
C � � � Œir �

C:

Proposition 4.10. �e set ¹Œi�C j i 2 Wº is a basis for F.

Now, let

„ W .F; �/ �! .F; ˘ /

be the algebra homomorphism de�ned by

„.i1; : : : ; id / D i1 ˘ � � � ˘ id :

Obviously, we have „.F/ D U. �e next lemma generalizes [23, Lemma 21] with

an identical proof.

Lemma 4.11. A word i 2 W is dominant if and only if it cannot be expressed

modulo ker„ as a linear combination of words j > i.
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4.4. Lyndon bases. For i 2 WC we de�ne

Ri D „.Œi�
C/:

Proposition 4.12. Let i 2 LC and i D i1i2 be the co-standard factorization of i.

�en,

Ri D Ri1 ˘q;q�1 Ri2 :

Proof. Observe that i1; i2 2 L
C by Lemma 4.2 and ÷4.3. �erefore, we compute

that

Ri D „.ŒŒi1�
C; Œi2�

C�q/

D „.Œi1�
C/˘„.Œi2�

C/ � �p.i1/p.i2/q�.ji1j;ji2j/„.Œi2�
C/˘„.Œi1�

C/

D Ri1 ˘Ri2 � �
p.i1/p.i2/q�.ji1j;ji2j/Ri2 ˘Ri1 :

�e proposition now follows by applying Proposition 3.1.

Recall the monomial basis from (4.1). �e next result generalizes [23, Propo-

sition 22].

Proposition 4.13. For i 2 WC, we have

Ri D "i C
X

j2WC; j>i

�ij "j;

for some �ij 2 Q.q/. In particular, the set ¹Ri j i 2 W
Cº is a basis for U.

Proof. By Lemma 4.11 we have

Œi�C 2 iC
X

j2WC; j>i

�ij j C ker„;

for some �ij 2 ZŒq; q�1�. �erefore, the �rst statement follows by applying „.

�e second statement follows since the transition matrix from the monomial basis

is triangular.

Call the basis ¹Ri j i 2 WCº the Lyndon basis for U. �e following theorem

is an analogue of [23, �eorem 23] and is immediate from �eorem 4.8 and the

de�nitions.
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Proposition 4.14. �e Lyndon basis has the form

8

<̂

:̂

Ri1 ˘ � � � ˘Rik

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

i1; : : : ; ik 2 L
C;

i1 � � � � � ik ; and

is�1 > is > isC1 if jis j 2 ˆ
C
N1

is isotropic

9

>=

>;

:

4.5. Computing dominant Lyndon words. Given i 2 LC, write

i D iC.ˇ/

if ˇ 2 ˆC is the image of i under the bijection LC ! ˆC (i.e. jij D ˇ).

Proposition 4.15. Let ˇ1; ˇ2 2 ˆ
C be such that ˇ1 C ˇ2 D ˇ 2 ˆC. Suppose

that iC.ˇ1/ < iC.ˇ2/. �en

iC.ˇ1/i
C.ˇ2/ � iC.ˇ/:

Proof. �is proof essentially proceeds as in [23, Proposition 24]. Indeed, write

i1 D iC.ˇ1/;

i2 D iC.ˇ2/

and

i D iC.ˇ/:

We have that

Ri1 ˘Ri2 D
X

j2WC; j�i1i2

zj Rj;

where zj 2 ZŒq; q�1�. It is therefore necessary to show that zi ¤ 0.

For this, we appeal to [33, �eorem 10.5.8] which provides a specialization

x 7! x from Uq to U.n/. Write

sj D ‰
�1.Rj/ for j 2 WC.

�en sj 2 n being an iterated bracket of Chevalley generators. We have that

si D Œsi1 ; si2� belongs to the ˇ-weight space of n, which is 1-dimensional and

spanned by si. �erefore,

si1 si2 D �
p.i1/p.i2/si2 si1 C �si 2 U.n/

for some nonzero � 2 Z. It now follows that zi ¤ 0 and hence i � i1i2.
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�is yields an inductive method for computing dominant Lyndon words as

described in [23, ÷4:3]. We recall it here. Let

C.ˇ/ D ¹.ˇ1; ˇ2/ 2 ˆ
C �ˆC j ˇ1 C ˇ2 D ˇ and iC.ˇ1/ < iC.ˇ2/º:

�en, the next proposition is a super-analogue of [23, Proposition 25].

Proposition 4.16. For ˇ 2 ˆC,

iC.ˇ/ D max¹iC.ˇ1/i
C.ˇ2/ j .ˇ1; ˇ2/ 2 C.ˇ/º:

Moreover, if .ˇ1; ˇ2/ 2 C.ˇ/ achieves the maximum, then

iC.ˇ/ D iC.ˇ1/i
C.ˇ2/

is the co-standard factorization of iC.ˇ/.

Corollary 4.17 ([23, Corollary 27]). For ˇ 2 ˆC, iC.ˇ/ is the smallest dominant

word of its degree.

4.6. Further properties of Lyndon bases

Lemma 4.18. Let i D .i1; : : : ; id / 2 L
C. �en, i1 is a left factor of every word

appearing in the expansion of Ri.

Proof. Proceed by induction on the length of i, the case i D i1 2 I being trivial.

For the inductive step, let i D i1i2 be the costandard factorization of i.

By [23, Lemma 14], i2 D ir1i
0
1i where r � 0, i01 is a (possibly empty) left fac-

tor of i1 and i 2 I is such that i01i > i1. By Proposition 4.12,

Ri D Ri1 ˘q;q�1 Ri2 :

By induction, i1 is a left factor of every word in the expansion of Ri1 .

If i2 D ir1i
0
1i with either r > 0 or i01 ¤ ;, then i1 is a left factor of every word in

the expansion of Ri2 and therefore the same holds for Ri. Otherwise, i2 D i , and,

if k D .i1; k2; : : : ; kd�1/ is a word appearing in the expansion of Ri1 then

k˘ i D �p.i1/p.i/q�.˛i1
;˛i /i1..k2; : : : ; kd�1/˘ i/C ik:

In particular, i1 is a left factor of every word appearing in k˘q;q�1 i . �is proves

the lemma.
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Lemma 4.19. For i 2 LC, we have max.Ri/ D i.

Proof. We proceed by induction on the length `.i/, the case i D i 2 I being clear.

For the inductive step, let i D i1i2 be the co-standard factorization of i 2 L
C.

Induction applies to i1 and i2, so max.Ri1/ D i1 and max.Ri2/ D i2. In particular,

max.Ri1 ˘Ri2/ � max.i1 ˘ i2/. Since i1 < i2 and the words appearing as shu�es

in i1 ˘ i2 are the same as the words appearing as shu�es in i1 N̆ i2 and i2 ˘ i1,

Lemma 4.5 implies that

max.Ri/ D max.Ri1 ˘q;q�1 Ri2/ � i2i1:

Now i2i1 only appears in Ri1 ˘Ri2 as a summand of i1 ˘ i2, and using 3.4 we see

that it appears with coe�cient equal to 1, hence

max.Ri/ < i2i1:

We will prove that if k 2 W
C occurs as a shu�e in Ri1 ˘Ri2 , and

i1i2 � k < i2i1, then k D i1i2. To this end, we use Lemma 4.3, which says

that i2 D ir1i
0
1i where r � 0, i01 is a (possibly empty) left factor of i1 and i 2 I is

such that i01i > i1.

Assume k D k1 � � �kn is the canonical factorization of k into a nonincreasing

product of dominant Lyndon words. Write i1 D .i1; : : : ; id / and i2 D .i1; : : : ; ir/.

If k occurs in Ri1 ˘Ri0
1
i , then by Lemma 4.18, k1 D .i1; : : :/. As i1 is Lyndon,

we have i1 � is for any s � d . In particular, the inequality k1 � kt now implies

that kt D .i1; : : :/ for all t .

Assume until the last paragraph of this proof that if U of typeF.3 j 1/ in Table 1

we consider only its distinguished diagram and 3 2 I is not minimal, or if U is of

type G.3/ in Table 1 we consider only its distinguished diagram and 2 2 I is not

minimal. Here, 3 2 I (resp. 2 2 I) refer to the labels appearing in Table 1 for the

distinguished diagrams marked by .?/.

An inspection of the root systems of basic Lie superalgebras implies that n � 3

since jkj 2 ˆC, and n˛i1 appears in its support. It follows that if i1 occurs only

once in i, then k D k1 is Lyndon. Since jkj D jij we must have k D i as i is the

unique dominant Lyndon word of its degree. �e n D 3 case can only occur in

type G.3/ (see [33, p.45]) and corresponds to jij being a root of the Lie algebra of

type G2 where the result can be veri�ed by inspection of [23, ÷5:5:4].

Let us now consider the case where i1 appears twice in jij and suppose

k D k1k2 is the canonical factorization of a word k 2 WC appearing in Ri1 ˘Ri2 .

We want to show that k2 D ;, so suppose otherwise. By the assumption in the

cases of F.3 j 1/ and G.3/, we have i D i1i2, where i2 D i01i and i0 is a left factor

of i1 (now, possibly empty or equal to i).
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Suppose �rst that i01 ¤ ;. Let h be any word occurring as a summand in Ri1 ,

let l be any word occurring as a summand in Ri2 , and assume that k occurs as a

shu�e in h˘ l. First observe that h D .i1; h2; : : : ; hd / and l D .i1; l1; : : : ; le/ with

i1 < hs and i1 < lt for all s, t . Note k1 ¤ h unless h D i1 and, since k2 2 L
C

is the unique dominant Lyndon word of weight jij � ji1j, k2 D i2 D l . Similarly,

k1 ¤ l unless l D i2 and k2 D i1 D h. �e case k1 D l contradicts the fact that

k < i2i1, and the case k1 D l contradicts k1 > k2. So in either case, we arrive at

a contradiction.

Next, observe that k1 is not a proper left factor of h. If it were, then k1k2 <

h � i1 < i1i2, since k1k2 D .i1; h2; : : : ; hr ; i1; : : :/ for some r < d and i1 < hrC1,

which is a contradiction with the choice of k. Similarly, k1 is not a proper left

factor of l. If it were, then it would be less-than-or-equal-to the corresponding left

factor of i2. As i2 D i01i , any proper left factor of i2 is a left factor of i1. Hence,

following the analysis of left factors of h, we arrive at a contradiction. But then if

k1 is not equal to a left factor of h or l, it must contain both i1’s, contradicting the

assumption that k2 ¤ ;.

We are, therefore, left to consider the case where i01 D ;, so i D i1i . �en,

i1 D j1j
0
2 where i D j1j2 is the standard factorization of i and j2 D j0

2i (i.e.

j2 is a Lyndon word of maximal length). We clearly have j1 and j2 of the form

j1 D .i1; : : :/ and j2 D .i1; : : :/ and, since i is Lyndon, j1 < j2. In fact, since

j1j
0
2 D i1 is Lyndon,

j1 < j0
2: (4.5)

Claim (?). Ri D Rj1
˘q;q�1 Rj2

:

Assume the claim (?) for the moment. �en, any k D k1k2 2 W
C occurring

in Ri must occur as a shu�e h˘ l where h � j1 occurs in Rj1
and l � j2 occurs

in Rj2
. As before, k1 cannot be a left factor of h as this would imply k D k1k2 �

j1j2 D i. We also cannot have k1 as a left factor of l unless k1 � j1 (in which

case k < i). Otherwise, write l D k1l
00. �en, jk2j D jj1j C jl

00j. While it is not

necessarily true that jl00j 2 ˆC, there exists ˇ 2 ˆC [ ¹0º and  2 ˆC such that

jj1j C ˇ 2 ˆ
C and jj1j C ˇ C  D jk2j (choose ˛r 2 … in the support of jl00j

such that jj1j C ˛r 2 ˆ
C and continue this process one simple root at a time until

arriving at ˇ such jl00j�ˇ 2 ˆC). Let s 2 LC be the unique word of degree jj1jCˇ.

Since i1 is not in the support of jl00j, it is not in the support of ˇ. Consequently,

j1i.ˇ/ > j1j2 D i. �erefore, by Proposition 4.16, it follows that s � j1 � i.ˇ/ > i.

Hence,

k2 � s � i./ > s > i:
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Appealing to Proposition 4.16 again, we see that .jk2j; jk1j/ 2 C.jij/ and k2k1 > i,

contradicting the maximality of i. But again, if k1 is not equal to a left factor

of h or l, it must contain both i1’s, contradicting the assumption that k2 ¤ ;.

�en we see that k2 D ; and k is Lyndon, in which case the claim was al-

ready proven. �erefore, we see that max.Ri1 ˘Ri2/ � i. On the other hand,

Ri D Ri1 ˘Ri2 is a nonzero element in Ujij, hence has a dominant word appearing

with nonzero coe�cient. �en by Corollary 4.17, this implies i appears with a

nonzero coe�cient and so the Lemma holds assuming (?).

Finally, we prove the claim (?) by induction on `.j2/. To begin induction,

we note that i D i1i , where i1 D j1j2
0, is the co-standard factorization and the

computation below will eventually reduce to the case where the standard and

co-standard factorization of j1j2
0 coincide (i.e. j2

0 D j1
0j with j1

0 a left factor

of j1).

We now proceed to the inductive step. Observe that, by (3.9),

Rj1
˘ i D �p.j1/p.i/q�.jj1j;˛i /i N̆ R1i

; (4.6)

since every word appearing in Rj1
is homogeneous of degree jj1j.

Now, the co-standard factorization of j2 is

j2 D .j2
0/i;

so

Rj1
˘q;q�1 Rj2

D Rj1
˘q;q�1 .Rj2

0 ˘q;q�1 i/

D Rj1
˘ .Rj2

0 ˘ i/ � Rj1
˘ .Rj2

0 N̆ i/ � Rj1
N̆ .Rj2

0 ˘ i/C Rj1
N̆ .Rj2

0 N̆ i/

D Rj1
˘ .Rj2

0 ˘ i/ � �p.j2
0/p.i/q.jj2

0j;˛i /Rj1
˘ .i ˘Rj2

0/

� �p.j2/p.i/q�.jj2
0j;˛i /Rj1

N̆ .i N̆ Rj2
0/C Rj1

N̆ .Rj2
0 N̆ i/;

where we have used (3.9) for the last equality. On the other hand, the standard

factorization of i1 is

i1 D j1j2
0:

As `.j2
0/ < `.j2/, induction applies and

Ri1 D Rj1
˘q;q�1 Rj0

2
:
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Hence,

Ri D Ri1 ˘q;q�1 i

D .Rj1
˘q;q�1 Rj2

0/˘q;q�1 i

D .Rj1
˘Rj2

0/˘ i � .Rj1
˘Rj2

0/ N̆ i � .Rj1
N̆ Rj2

0/˘ i C .Rj1
N̆ Rj2

0/ N̆ i

D .Rj1
˘Rj2

0/˘ i � �p.j1/p.i/Cp.j2
0/p.i/q.jj1jCjj2

0j;˛i /i ˘ .Rj1
˘Rj2

0/

� �p.j1/p.i/Cp.j2
0/p.i/q�.jj1jCjj2

0j;˛i /i N̆ .Rj1
N̆ Rj2

0/C .Rj1
N̆ Rj2

0/ N̆ i;

where we have used (3.9) to obtain the last equality. Finally, using Equation (4.6)

and the associativity of ˘ and N̆ , �e claim (?) follows.

Finally, we consider the remaining diagrams and orderings when U of

type F.3 j 1/ or G.3/. �ere are 6 orderings to consider in F.3 j 1/ and 2 or-

derings to consider in type G.3/. Inspection of the root systems shows that the

argument above proves that max.Ri/ D i unless jij is either ˛1C2˛2C3˛3C˛4 or

˛1 C 2˛2 C 3˛3 C 2˛4 in type F.3 j 1/, or jij is ˛1 C 3˛2 C ˛3, ˛1 C 3˛2 C 2˛3,

or ˛1 C 4˛2 C 2˛3 in type G.3/. A direct computation of Ri in these cases yields

the theorem.

5. Orthogonal PBW bases

In this section we will de�ne a basis of PBW type for U and show it is orthogonal

with respect to the bilinear form on U.

5.1. PBW bases. Let i D i.ˇ/ 2 LC for ˇ 2 ˆC. Set

dˇ D max¹j.ˇ; ˇ/j=2; 1º;

and de�ne the quantum numbers

Œn�ˇ D

8

<

:

Œn�i if .ˇ; ˇ/ D .˛i ; ˛i/ and ˇ 2 ˆC
N0
[ˆC

iso
;

¹nºi if .ˇ; ˇ/ D .˛i ; ˛i/ and ˇ 2 ˆC
n-iso:

Let i D i.ˇ/ D i1i2 D i.ˇ1/i.ˇ2/ be the co-standard factorization and set

pi D max¹p 2 Z�0 j ˇ1 � pˇ2 2 ˆ
Cº:
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De�ne �i inductively by the formula

�i D 1 if i D i 2 I

and

�i D Œpi C 1�ˇr
�i1�i2 otherwise,

where

.ˇr ; ˇr/ D min¹.ˇ1; ˇ1/; .ˇ2; ˇ2/º

(note that there is no ambiguity in this de�nition since in all cases where �i ¤ 1 and

.ˇ1; ˇ1/ D .ˇ2; ˇ2/ we have p.ˇ1/ D p.ˇ2/). Recalling the anti-automorphism

� on U from Proposition 3.10 and the Lyndon basis ¹Ri j i 2 W
Cº for U from

Proposition 4.13, we de�ne

Ei D �
�1
i �.Ri/; i 2 LC: (5.1)

We note that in the case of Lie algebras, this renormalization factor is the one

computed in [3, �eorem 4.2].

More generally, if i D i
n1

1 � � � i
nd

d
is the canonical factorization of i with

i1 > � � � > id , set

Ei D E
.nd /

id
˘ � � � ˘E

.n1/

i1
(5.2)

where, for j 2 LC, we have denoted

E
.n/

j
D E˘n

j =Œn�jŠ:

We �rst state the following theorem, which is a generalization of [23, �eo-

rem 36] and follows from Lemma 4.19.

�eorem 5.1. For all i 2 WC,

max.Ri/ D max.Ei/ D i:

Proof. It follows by Lemma 4.19 that max.Ei/ D i, for i 2 LC, since Ei is propor-

tional to �.Ri/. Now the theorem follows by applying Lemma 4.5.
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Corollary 5.2. If i 2 LC
N1

, then

Ei ˘Ei D 0:

Proof. By �eorem 5.1 and Corollary 4.6,

max.Ei ˘Ei/ < ii:

However, by [19, Lemma 5.9], ii is smaller than any dominant word of degree 2jij.

Hence, Ei ˘Ei must be 0.

Proposition 5.3. For each i 2 WC, there exists �i 2 A such that

�i D �i and Ei D �
�1
i �.Ri/:

Proof. �is is by de�nition, taking

�i D

d
Y

sD1

�is Œns�is Š: (5.3)

See (5.1) and (5.2) above.

It follows from Propositions 4.13 and 5.3 that ¹Ei j i 2 W
Cº forms a basis for

U, which will be called a PBW basis.

Proposition 5.4. For i 2 WC, we have

Ei D �
�1
i "�.i/ C

X

j>i

˛ij"�.j/; for ˛ij 2 Q.q/:

Proof. �is is immediate from Proposition 4.13 and Proposition 5.3.

�e next theorem is often referred to as the Levendorskii–Soibelman formula,

see [24].

�eorem 5.5. Suppose i; j 2 LC with i < j. �en,

Ej ˘Ei D
X

k2WC

ij�k�ji

ck
i;jEk:
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Proof. By Proposition 5.4,

Ej ˘Ei D
�

��1
j "�.j/ C

X

k>j

˛j;k"�.k/

��

��1
i "�.i/ C

X

k>i

˛i;k"�.k/

�

D
X

k2W;k>ij

ˇk
ij"�.k/

By Lemma 4.11, if k … WC, then

"�.k/ D
X

h2WC;h>k

k;h"�.h/:

�erefore,

Ei ˘Ej D
X

k2WC

ij�k

ck
i;jEk:

On the other hand, by �eorem 5.1, it follows that ck
i;j
¤ 0 only if k < ji.

5.2. Orthogonality of PBW basis. We will prove that the PBW basis de�ned in

the previous section is orthogonal with respect to the bilinear form on U.

Lemma 5.6. For i 2 LC, we have

�.Ei/ D
X

i1;i22WC

# i
i1i2

Ei2 ˝ Ei1; for # i
i1;i2
2 Q.q/;

where # i
i1;i2
D 0 unless ji1j C ji2j D jij and

(1) i1 � i, and

(2) i � i2 whenever i2 ¤ ;.

Proof. Observe by �eorem 5.1 that

Ei D
X

j�i

�ijj;

for some �ij 2 Q.q/, so

�.Ei/ D
X

j1;j2I
j1j2Dj�i

�ij.j2 ˝ j1/:

Since j1 � j � i, part (1) follows.
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We now prove (2) by induction on the length of i, the case i D i 2 I being

obvious.

To proceed to the inductive step, we need to make a few observations. First,

given i 2 LC, Ei is proportional to

�.Ri/ D �.Ri2/˘�.Ri1/ � �
p.i1/p.i2/q�.ji1j;ji2j/�.Ri1/˘�.Ri1/;

where i D i1i2 is the costandard factorization of i. In turn, the right hand side of

the equation above is proportional to

Ei2 ˘Ei1 � �
p.i1/p.i2/q�.ji1j;ji2j/Ei1 ˘Ei2

D ��p.i1/p.i2/q�.ji1j;ji2j/.Ei1 ˘q;q�1 Ei2/:

�erefore, it is su�cient to prove the lemma for Ei1 ˘q;q�1 Ei2 .

To this end, write

i1 D j and i2 D k

and note that induction applies to Ej and Ek. Observe that if

�.Ej ˘Ek/ D
X

h;l2WC

zh;l.Eh ˝ El/;

then

�.Ej ˘q;q�1 Ek/ D
X

h;l2WC

.zh;l � zh;l/.Eh ˝ El/ (5.4)

since, replacing q with q�1 in Proposition 3.11 shows that � is an algebra homo-

morphism with respect to the .q�1; �/-bialgebra structure on U˝ U:

.w ˝ x/ N̆ .y ˝ z/ D �p.x/p.y/q.jxj;jyj/.w N̆ y/˝ .x N̆ z/:

On the other hand,

�.Ej ˘q;q�1 Ek/ D �.Ek ˘Ej � �
p.j/p.k/q�.jjj;jkj/Ej ˘Ek/:

By Proposition 5.4, the transition matrix from the PBW basis to the basis

¹"�.j/ j j 2 W
Cº is triangular. �erefore, applying our inductive hypothesis,

we have

�.Ej ˘Ek/ D
X

j1�j�j2

k1�k�k2

#
j
j1j2
#k

k1k2
.Ej2
˝ Ej1

/˘ .Ek2
˝ Ek1

/

D
X

h�k2j2I
l�k1j1

‚h;lEh ˝ El



Quantum shu�es and quantum supergroups of basic type 605

and similarly

�.Ek ˘Ej/ D
X

k1�k�k2

j1�j�j2

#k
k1k2

#
j

j1j2
.Ek2

˝ Ek1
/˘ .Ej2

˝ Ej1
/

D
X

h�j2k2I
l�j1k1

‚0
h;lEh ˝ El:

Comparing these equations to (5.4) we deduce that ‚h;l ¤ 0 if and only if

‚0
h;l
¤ 0.

Now, assume zhl � zhl ¤ 0. �e previous paragraph implies that

h � max¹j2k2; k2j2º:

If j2 ¤ ;, then j ¤ ; and we obtain the inequality h � j2k2 � jk D i since j2 � j,

k2 � k and these are right factors of j and k respectively (note that if j2 is a proper

right factor, we don’t need to consider k and k2 at all). If j2 D ; and k2 ¤ ;, we

have h � k2 � k > jk since, by Lemma 4.3, k D jr j0j where r � 0, j0 is a

(possibly empty) left factor of j and j 2 I satis�es j0j > j. If both j2 D k2 D ;,

the equality jhj D jj2j C jk2j forces h D ;. �is proves part (2) and hence the

lemma.

�eorem 5.7. Let i; j 2 WC. �en,

.Ei;Ej/ D 0 unless i D j.

Moreover, if i D i
n1

1 � � � i
nd

d
, i1 > � � � > id is the canonical factorization of i into

dominant Lyndon words, then,

.Ei;Ei/ D �
�iq�ci

d
Y

lD1

.Eil ;Eil /
nl

Œnl �il Š
;

where

�i D

d
X

lD1

�
nl � 1

2

�

p.il / and ci D

d
X

lD1

�
nl

2

�
.jil j; jil j/

2
: (5.5)

Proof. We proceed by induction on the length of i, the case i D i 2 I being

trivial. We �rst show that the theorem holds when i 2 LC. Indeed, suppose j ¤ i

and let j D j1 � � � jr , where j1 � j2 � � � � jr , be the canonical factorization of j.
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�en, .Ei;Ej/ is proportional to

X

# i
i1;i2

.Ei2 ˝ Ei1 ;Ejr
˝ .Ejr�1

˘ � � � ˘Ej1
//

D
X

# i
i1;i2

.Ei2 ;Ejr
/.Ei1; .Ejr�1

˘ � � � ˘Ej1
//

(5.6)

where the sum is over i1 � i � i2 by Lemma 5.6. By assumption jjr j ¤ jij,

so we may take the sum to be over i1 < i < i2. �erefore, since jr 2 L
C has

shorter length than i, we may apply induction to conclude that the nonzero terms

in the sum above satisfy i2 D jr 2 L
C and j1 � � � jr�1 D i1. But, now we have the

inequalities

j1 � j1 � � � jr�1 D i1 < i2 D jr � j1;

which is never satis�ed. Hence, .Ei;Ej/ D 0.

Now, let i; j 2 WC
� be arbitrary and assume we have shown that ¹Ek j k 2 W

C
� º is

an orthogonal basis for U� whenever� < � in the dominance ordering onQC (the

base case � 2 … being trivial). Let i D i1 � � � is and j D j1 � � � jr be the canonical

factorizations of i and j into a nonincreasing product of dominant Lyndon words,

and assume, without loss of generality, that i1 � j1. If i 2 L
C or j 2 L

C, then

we are done, so assume that both r; s > 1. �en, .Ei;Ej/ is proportional to (up to

some suitable product of quantum factorials)

.Eis ˘ � � � ˘Ei1 ;Ejr
˘ � � � ˘Ej1

/

D .�.Eis /˘ � � � ˘�.Ei1/; .Ejr
˘ � � � ˘Ej2

/˝ Ej1
/

D
X

#i1;2;:::;is;2
.Eis;2

˘ � � � ˘Ei1;2
;Ejr
˘ � � � ˘Ej2

/.Eis;1
˘ � � � ˘Ei1;1

;Ej1
/;

(5.7)

where this sum is as in Lemma 5.6; in particular, it;1 � it , it;1 2 W
C, for all

1 � t � s (note that it;1 may be ;).

Claim (??). We have .Eis;1
˘ � � � ˘Ei1;1

;Ej1
/ D 0 unless there is a unique k such

that ik;1 D j1 and it;1 D ; for t ¤ k.

It is not necessarily the case that Eis;1
˘ � � � ˘Ei1;1

belongs to the PBW basis,

so we cannot apply earlier arguments. �erefore, suppose that k is maximal such

that ik;1 ¤ ;. �en,

.Eik;1
˘ � � � ˘Ei1;1

;Ej1
/ D

X

#
j1

j1;1;j1;2
.Eik;1

;Ej1;2
/.Eik�1;1

˘ � � �Ei1;1
;Ej1;1

/

where the sum is as in Lemma 5.6. Consider one such term in the sum above:

.Eik;1
;Ej1;2

/.Eik�1;1
˘ � � �Ei1;1

;Ej1;1
/: (5.8)
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Assume this term is nonzero. Since jik;1j � jik j < jij and jj2;1j � jj1j < jjj in the

dominance ordering on QC, induction on QC-grading implies that

.Eik;1
;Ej1;2

/ D 0 unless ik;1 D j1;2.

�erefore, j1;2 ¤ ; and j1;2 D ik;1 � ik � i1 � j1 � j1;2: Hence j1;2 D j1 and

j1;1 D ;. Since (5.8) is nonzero,

.Eik�1;1
˘ � � �Ei1;1

;Ej1;1
/ D .Eik�1;1

˘ � � �Ei1;1
; 1/ ¤ 0;

so ik�1;1 D � � � D i1;1 D ;. Claim .??/ follows.

Now, assume that

.Eis;1
˘ � � � ˘Ei1;1

;Ej1
/ ¤ 0:

�en, there is a unique k such that ik;1 D j1 and it;1 D ; for t ¤ k. Since

j1 D ik;1 � ik � i1 � j1, it follows that ik;1 D ik D i1 D j1.

Let n1 � 1 be maximal such that i1 D i2 D � � � D in1
. �en, it follows from

the previous arguments and the algebra structure on U˝ U that (5.7) becomes

.Eis ˘ � � � ˘Ei1 ;Ejr
˘ � � � ˘Ej1

/

D .1C �p.i1/q�.ji1j;ji1j/ C � � � C �.n1�1/p.i1/q�.n1�1/.ji1j;ji1j//

.Eis ˘ � � � ˘Ei2;Ejt
˘ � � � ˘Ej2

/.Ei1;Ei1/:

We may now complete by induction the computation of

.Eis ˘ � � � ˘Ei1;Ejr
˘ � � � ˘Ej1

/

and then .Ei;Ej/, which yields the formula as stated in the theorem.

Now we de�ne the dual PBW basis for U

E�
i D Ei=.Ei;Ei/; for i 2 WC: (5.9)

6. Computations of dominant Lyndon words and root vectors

In this section we will compute the dominant Lyndon words, Lyndon and (dual)

PBW root vectors explicitly for general Dynkin diagrams of type A-D. �rough-

out this section, we will setM D mCnC 1 and continue to order I D ¹1; : : : ;M º

as speci�ed in Table 1. We also remind the reader of the notation sij from (2.2).
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6.1. Type A.m; n/. A general Dynkin diagram of type A.m; n/ is of the form

ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ ˇ
1 2 n nC1 nC2 M�1 M

�e next proposition computes the set of dominant Lyndon words inductively

using Proposition 4.16.

Proposition 6.1. �e set of dominant Lyndon words is

L
C D ¹.i; : : : ; j / j 1 � i � j �M º:

Having computed LC, we compute the Lyndon basis using Proposition 4.12.

For i D .i; : : : ; j / with 1 � i � j �M , we set

$A.i/ D

j�1
Y

kDi

sk;kC1:

Proposition 6.2. For i D .i; : : : ; j / with 1 � i � j � M , the Lyndon root

vector is

Ri D �
P.jij/�j�i$A.i/.q � q

�1/j�i .i; : : : ; j /:

Proof. We proceed by induction on j � i , the case j � i D 0 being trivial.

Note that if i D .i; : : : ; j /, and i D i1i2 is the co-standard factorization of i,

then i1 D .i; : : : ; j � 1/ and i2 D j . By induction, we compute

Ri D Ri1 ˘q;q�1 Ri2

D �P.ji1j/�j�iC1$A.i1/.q � q
�1/j�i�1.i; : : : ; j � 1/˘q;q�1 j

D �P.ji1j/�j�iC1$A.i1/.q � q
�1/j�i�1..i; : : : ; j � 2/˘q;q�1 j /.j � 1/

C �P.ji1j/�j�iC1$A.i1/.q � q
�1/j�i�1

�p.i;:::;j�1/p.j /.q�. j̨ �1; j̨ / � q. j̨ �1; j̨ //.i; : : : ; j /

D �P.ji1j/�j�iC1$A.i1/.q � q
�1/j�i�1

�p.i;:::;j�1/p.j /.q�. j̨ �1; j̨ / � q. j̨ �1; j̨ //.i; : : : ; j /:

�e proof now follows by the observations

q�. j̨ �1; j̨ / � q. j̨ �1; j̨ / D �sj�1;j .q � q
�1/

and

P.ji1j/C p.i; : : : ; j � 1/p.j / D P.jij/:
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Corollary 6.3. Let i D .i; : : : ; j / with 1 � i � j �M . �en

(1) the PBW root vector is

Ei D $A.i/.q � q
�1/j�iq�N.jij/.i; : : : ; j /I

(2) .Ei;Ei/ D $A.i/.q � q
�1/j�iq�N.jij/;

(3) E�
i D .i; : : : ; j /.

Proof. �e formula (1) for Ei is clear from the de�nitions, and part (3) follows

immediately from (1) and (2). So it remains to prove (2). To this end, let i D i1i2

be the co-standard factorization of i, i1 D .i; : : : ; j � 1/, i2 D j . Note that

Ei D Ej ˘Ei1 � �
p.j /p.i1/q�. j̨ �1; j̨ /Ei1 ˘Ej :

�erefore, using Proposition 3.13,

.Ei;Ei/ D$A.i/.q � q
�1/j�iq�N.jij/.i;Ei/

D$A.i/.q � q
�1/j�iq�N.jij/.j ˝ .i; : : : ; j � 1/;Ej ˝ Ei1/

Dsj�1;j .q � q
�1/q

1
2
.2.ji1j; j̨ /�. j̨ ; j̨ //.Ej ;Ej /.Ei1;Ei1/:

�erefore, (2) follows by induction.

6.2. Type B.m; n C 1/. A general Dynkin diagram of type B.m; nC 1/ is of the

form

ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ Y>
1 2 n nC1 nC2 M�1 M

In order to facilitate computations below, we note the following properties of the

signs sij (i; j 2 I) given in (2.2).

Lemma 6.4. (1) if ai i D 0, then

si�1;i D �si;iC1I

(2) if ai i ¤ 0, then

si�1;i D si;iC1 D �si i I

(3) for any k; l 2 I with k ¤ l ,

.˛k; ˛l / 2 ¹2skl ; 0º:
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Proof. �is follows immediately using the standard "ı-notation for the root system

and the simple systems of type B; cf. [13, 7]. �e factor 2 in part (3) is due to the

normalization of .�; �/ adopted in §2.1.

Proposition 6.5. �e set of dominant Lyndon words is

L
C D ¹.i; : : : ; j / j 1 � i � j �M º

[ ¹.i; : : : ;M;M; : : : ; j C 1/ j 1 � i � j < M º:

We set

$B.i/ D

8

ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂

:̂

$A.i/ if i D .i; : : : ; j /;

for 1 � i � j �M;

$A.i; : : : j /�
p.M/ if i D .i; : : : ;M;M; : : : ; j C 1/;

for 1 � i � j < M:

Proposition 6.6. (1) For i D .i; : : : ; j /, with 1 � i � j � M , the Lyndon root

vector is

Ri D �
P.jij/�j�i$B.i/.q

2 � q�2/j�i .i; : : : ; j /:

(2) For i D .i; : : : ;M;M; : : : ; j C 1/, with 1 � i � j < M , the Lyndon root

vector is

Ri D �
P.jij/� iCj$B.i/.q

2 � q�2/2M�i�j .i; : : : ;M;M; : : : ; j C 1/:

Proof. �e proof of part (1) is same as for type A in Proposition 6.2.

We prove (2) by downward induction on j . For j D M �1, i D .i; : : : ;M;M/

and the co-standard factorization is i D i1i2 where i1 D .i; : : : ;M/ and i2 D M .

�erefore,

Ri D �
P.ji1j/�M�i$A.i1/.q

2 � q�2/M�i.i; : : : ;M/˘q;q�1 M

D �P.ji1j/�M�i$A.i1/.q
2 � q�2/M�i..i; : : : ;M � 1/˘q;q�1 M/M

C �P.ji1j/�M�i$A.i1/.q
2 � q�2/M�i

�p.i;:::;M/p.M/..i; : : :M;M/ � .i; : : : ;M;M//

D �P.ji1j/�M�i$A.i1/.q
2 � q�2/M�i..i; : : : ;M � 1/˘q;q�1 M/M

D �P.ji1j/�M�i$A.i1/.q
2 � q�2/M�i�p.i;:::;M�1/p.M/

.q�.˛M �1;˛M / � q.˛M �1;˛M //.i; : : : ;M;M/:
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�is case now follows since

q�.˛M �1;˛M / � q.˛M �1;˛M / D �sM�1;M .q
2 � q�2/

by Lemma 6.4(3) and

�P.ji1j/Cp.i;:::;M�1/p.M/ D �P.jij/Cp.M/:

We now proceed to the general case

i D .i; : : : ;M;M; : : : ; j C 1/:

Let

i D i1i2

be the co-standard factorization, with

i1 D .i; : : : ;M;M; : : : ; j C 2/

and

i2 D j C 1:

�en,

Ri D �
P.ji1j/� iCj�1$B.i1/.q

2 � q�2/2M�i�j�1

.i; : : : ;M;M; : : : ; j C 2/˘q;q�1 .j C 1/

D �P.ji1j/� iCj�1$B.i1/.q
2 � q�2/2M�i�j�1

.i; : : : ;M;M; : : : ; j C 3/˘q;q�1 .j C 1//.j C 2/

C �P.ji1j/� iCj�1$B.i1/.q
2 � q�2/2M�i�j�1

�p.jC1/p.i1/.q�.ji1j; j̨ C1/ � q.ji1j; j̨ C1//.i; : : : ;M;M; : : : ; j C 1/:

(6.1)

Using Lemma 6.4, we have that

�.ji1j; j̨C1// D �. j̨ C j̨C1 C 2 j̨C2; j̨C1/ D �2sjC1;jC2:

Also, P.ji1j/C p.j C 1/p.i1/ D P.jij/. �erefore, last term in (6.1) above is

�P.jij/�2M�i�j$B.i/.q
2 � q�2/2M�i�j�1.q2 � q�2/.i; : : : ;M;M; : : : ; j C 1/:

Hence, the proposition will follow if we can show that

..i; : : : ;M;M; : : : ; j C 3/˘q;q�1 .j C 1//.j C 2/ D 0: (6.2)
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Indeed, since .˛k ; j̨C1/ D 0 for j C 2 < k �M ,

..i; : : : ;M;M; : : : ; j C 3/˘q;q�1 .j C 1//.j C 2/

D ..i; : : : ; j C 2/˘q;q�1 .j C 1//.j C 3; : : : ;M;M; : : : ; j C 2/

D ..i; : : : ; j C 1/˘q;q�1 .j C 1//.j C 2; : : : ;M;M; : : : ; j C 2/

C �p.jC1/.p.i/C���Cp.jC2//.q�.˛i C���C j̨ C2; j̨ C1/ � q.˛i C���C j̨ C1; j̨ C1//

.i; : : : ; j C 2; j C 1; j C 3 : : : ;M;M; : : : ; j C 2/:

But, using Lemma 6.4 again, we have .˛i C � � � C j̨C2; j̨C1/ D 0, so

..i; : : : ;M;M; : : : ; j C 3/˘q;q�1 .j C 1//.j C 2/

D ..i; : : : ; j C 1/˘q;q�1 .j C 1//.j C 2; : : : ;M;M; : : : ; j C 2/

D ..i; : : : ; j /˘q;q�1 .j C 1//.j C 1; : : : ;M;M; : : : ; j C 2//

C �p.i;:::;jC1/p.jC1/.q�. j̨ C j̨ C1; j̨ C1/ � q. j̨ C j̨ C1; j̨ C1//

.i; : : : ; j C 1; j C 1; : : : ;M;M; : : : ; j C 2/

D ..i; : : : ; j � 1/˘q;q�1 .j C 1//.j; : : : ;M;M; : : : ; j C 2//

C �p.i;:::;j /p.jC1/.q�. j̨ ; j̨ C1/ � q. j̨ ; j̨ C1//

.i; : : : ; j C 1; j C 1; : : : ;M;M; : : : ; j C 2/

C �p.i;:::;jC1/p.jC1/.q�. j̨ C j̨ C1; j̨ C1/ � q. j̨ C j̨ C1; j̨ C1//

.i; : : : ; j C 1; j C 1; : : : ;M;M; : : : ; j C 2/:

Obviously,

.i; : : : ; j � 1/˘q;q�1 .j C 1/ D 0

since .˛iC : : :C j̨�r ; j̨C1/ D 0 for r � 1. To treat the last two summands above,

note that either p.j C 1/ D 0, or ajC1;jC1 D 0. If p.j C 1/ D 0, then

�p.i;:::;jC1/p.jC1/ D �p.i;:::;j /p.jC1/;

.q�. j̨ ; j̨ C1/ � q. j̨ ; j̨ C1// D �.q�. j̨ C j̨ C1; j̨ C1/ � q. j̨ C j̨ C1; j̨ C1//;

and hence (6.2) holds. If ajC1;jC1 D 0, then

�p.i;:::;jC1/p.jC1/ D �p.i;:::;j /p.jC1/C1;

.q�. j̨ ; j̨ C1/ � q. j̨ ; j̨ C1// D .q�. j̨ C j̨ C1; j̨ C1/ � q. j̨ C j̨ C1; j̨ C1//;

and hence (6.2) still holds. �e proposition is proved.
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Corollary 6.7. �e following formulas hold for 1 � i � j �M :

(1) for i D .i; : : : ; j /, the PBW root vector is

Ei D $B.i/.q
2 � q�2/j�iq�N.jij/.i; : : : ; j /I

for i D .i; : : : ;M;M; : : : ; j C 1/, the PBW root vector is

Ei D $B.i/.q
2 � q�2/2M�i�jq�N.jij/Œ2��1M .i; : : : ;M;M; : : : ; j C 1/I

(2) we have

.Ei;Ei/ D

8

ˆ̂
ˆ̂

<̂

ˆ
ˆ̂
ˆ̂
:

$B.i/.q
2 � q�2/j�iq�N.jij/;

if i D .i; : : : ; j /;

$B.i/.q
2 � q�2/2M�i�jq�N.jij/Œ2��2N ;

if i D .i; : : : ; N;N; : : : ; j C 1/I

(3) we have

E�
i D

8

<

:

.i; : : : ; j /; if i D .i; : : : ; j /;

Œ2�M .i; : : : ;M;M; : : : ; j C 1/; if i D .i; : : : ;M;M; : : : ; j C 1/:

Proof. Parts (1) and (3) are proved in the same way as in the type A case.

It remains to prove (2), the case i D .i; : : : ; j / also being the same as in type

A.m; n/. Assume that i D .i; : : : ;M;M/. �en i D i1i2 is the co-standard factor-

ization where i1 D .i; : : : ;M/ and i2 DM . We have

.Ei;Ei/ D Œ2�
�1
M .Ei;M ˘Ei1 � �

p.M/Ei ˘M/

D $B.i/.q
2 � q�2/M�iC1q�N.jij/Œ2��2M .i;M ˘Ei1 � �

p.M/Ei1 ˘M/

D $B.i/.q
2 � q�2/M�iC1q�N.jij/Œ2��2M .M ˝ i1;M ˝ Ei1/

D $B.i/.q
2 � q�2/M�iC1q�N.jij/Œ2��2M .i1;Ei1/

D sM�1;Mq
�N.jij/CN.ji1j/Œ2��2M .EM ;EM /.Ei1 ;Ei1/

D $B.i/.q
2 � q�2/M�iC1q�N.jij/Œ2��2M :

Finally, assume that i D .i; : : : ;M;M; : : : ; j C 1/ with i � j < M � 1. �en,

i D i1i2 is the co-standard factorization, where i1 D .i; : : : ;M;M; : : : ; j C 2/ and

i2 D j C 1. Hence,

.Ei;Ei/ D .Ei; .j C 1/˘Ei1 � �
p.i1/p.jC1/q�.ji1j; j̨ /Ei1 ˘ .j C 1//

D $B.i/.q
2 � q�2/2M�i�jq�N.jij/Œ2��1M .EjC1;EjC1/.i1;Ei1/

D sj;jC1.q
2 � q�2/q�N.jij/CN.ji1j/.Ei1 ;Ei1/:

�erefore, (2) follows by induction.
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6.3. Types C.M/ and D.m; n C 1/, I. We regard the type C.M/ as a limiting

case of the type D.m; n C 1/ with m D 1 (and M D n C 2), and will treat

them simultaneously. �e Dynkin diagrams arise in two di�erent shapes, with or

without a branching node. We separate the discussion into 2 parts, according to

the shape of the Dynkin diagrams. Here we consider a general Dynkin diagram

without a branching node of the form

ˇ ˇ � � � ˇ ˇ̌ #<
1 2 M�1 M

�e root system is given in [7, Chapter 1] and [33, ÷3]. We have the following

properties regarding the system of signs.

Lemma 6.8. (1) We have

sM�1;M D 1I

(2) if ai i D 0, then

si�1;i D �si;iC1I

(3) if ai i ¤ 0, then

si�1;i D si;iC1 D �si i I

(4) for any k; l 2 I with k ¤ l ,

.˛k ; ˛l/ 2 ¹.1C ıkN C ılN /skl ; 0º:

Proof. �e lemma can be checked readily case-by-case by using the standard

"ı-notation for root systems and simple systems.

�e set of dominant Lyndon words are computed in the usual way.

Proposition 6.9. �e set of dominant Lyndon words is

L
C D ¹.i; : : : ; j / j 1 � i � j �M º

[ ¹.i; : : : ;M; : : : ; j C 1/ j 1 � i � j < M º

[ ¹.i; : : : ;M � 1; i; : : : ;M/ j 1 � i < M and p.i; : : : ;M � 1/ D 0º:



Quantum shu�es and quantum supergroups of basic type 615

Note the parity condition p.i; : : : ;M � 1/ D 0 above corresponds to the fact

that there is no non-isotropic odd root for type C and D. Set

$C .i/ D

8

ˆ̂
ˆ̂
ˆ
<

ˆ
ˆ̂
ˆ
:̂

$A.i/ if i D .i; : : : ; j /

for 1 � i � j �M;

$A.i; : : : ; j C 1/ if i D .i; : : : ;M; : : : ; j C 1/

for 1 � i < j < M � 1:

Proposition 6.10. �e Lyndon root vectors are given as follows:

(1) for i D .i; : : : ; j / with j < M ,

Ri D �
P.jij/�j�i$C .i/.q � q

�1/j�i .i; : : : ; j /I

(2) for i D .i; : : : ;M/,

Ri D �
P.jij/�M�i$C .i/.q � q

�1/M�i�1.q2 � q�2/.i; : : : ;M/I

(3) for i D .i; : : : ;M; : : : ; j C 1/,

Ri D �
P.jij/� iCjC1$C .i/.q�q

�1/2M�i�j�1.q2�q�2/.i; : : : ;M; : : : ; jC1/I

(4) for i D .i; : : : ;M � 1; i; : : : ;M/,

Ri D q
�1.q � q�1/2M�2i�1.q2 � q�2/..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M:

Proof. �e proof of (1)–(3) are similar to the cases treated in types A and B , and

we omit the details.

We prove (4). To this end, note that .i; : : : ;M � 1/˘ .i; : : : ;M � 1/ 2 U since

.i; : : : ;M � 1/ 2 U by (1). Now, by Proposition 3.9, we deduce that

x D ..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M 2 U:

Evidently, max.x/ D i and, therefore, max.x/ D max.Ri/ by Lemma 4.19. Hence,

we may express x as

x D
X

j�i

�jRj:

But, by Corollary 4.17, i is the smallest dominant word of its degree, so x D �iRi.
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We now compute the coe�cient �i. To this end, note that the co-standard

factorization of i is i D i1i2, where i1 D .i; : : : ;M � 1/ and i2 D .i; : : : ;M/.

Hence, since p.M/ D p.i; : : : ;M � 1/ D 0 and sM�1;M D 1,

Ri D Ri1 ˘q;q�1 Ri2

D ��P.ji1j/CP.ji2j/$C .i1/$C .i2/.q � q
�1/2M�2i�2

.q2 � q�2/.i; : : : ;M � 1/˘q;q�1 .i; : : : ;M/

D �.q � q�1/2M�2i�2.q2 � q�2/..i; : : : ;M � 2/˘q;q�1 .i; : : : ;M//.M � 1/

� .q � q�1/2M�2i�2.q2 � q�2/

.q�.˛i C���C˛M �1;˛M /..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M

� q�.˛i C���C˛M �1;˛M /..i; : : : ;M � 1/ N̆ .i; : : : ;M � 1//M/:

By the argument in the previous paragraph,

..i; : : : ;M � 2/˘q;q�1 .i; : : : ;M//.M � 1/ D 0:

�erefore, applying the identity

.i; : : : ;M � 1/ N̆ .i; : : : ;M � 1/

D q.˛i C���C˛M �1;˛i C���C˛M �1/.i; : : : ;M � 1/˘ .i; : : : ;M � 1/;

and Lemma 6.8, we see that

Ri D �.q � q
�1/2M�2i�2.q2 � q�2/

.q�.˛M �1;˛M / � q.˛M �1;˛M /C.˛i C���C˛M �1;˛i C���C˛M �1//

..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M

D �.q � q�1/2M�2i�2.q2 � q�2/.q�2 � 1/

..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M

D q�1.q � q�1/2M�2i�1.q2 � q�2/..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M:

�is completes the proof.
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Corollary 6.11. (1) �e PBW root vectors are given as follows:

(a) for i D .i; : : : ; j / with j < M ,

Ei D $C .i/.q � q
�1/j�iq�N.jij/.i; : : : ; j /I

(b) for i D .i; : : : ;M/,

Ei D $C .i/.q � q
�1/M�i�1.q2 � q�2/q�N.jij/.i; : : : ;M/I

(c) for i D .i; : : : ;M; : : : ; j C 1/,

Ei D $C .i/.q � q
�1/2M�i�j�1.q2 � q�2/q�N.jij/.i; : : : ;M; : : : ; j C 1/I

(d) for i D .i; : : : ;M � 1; i; : : : ;M/,

Ei D �
P.ji1j/q.q � q�1/2M�2iq�N.jij/..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M;

where i1 D .i; : : : ;M � 1/I

(2) the values of .Ei;Ei/ are given by

8

ˆ
ˆ̂
ˆ
<̂

ˆ̂
ˆ
ˆ̂
:

$C .i/.q � q
�1/j�i�ıjM q�N.jij/; if i D .i; : : : ; j /

for 1 � i � j �M;

$C .i/.q � q
�1/2M�i�j�1.q2 � q�2/q�N.jij/; if i D .i; : : : ;M; : : : ; j C 1/;

�P.ji1j/.q � q�1/2M�2iq�N.jij/; if i D .i; : : : ;M � 1; i; : : : ;M/;

where i1 D .i; : : : ;M � 1/I

(3) the dual PBW root vectors are given by

E�
i D

8

ˆ
ˆ̂
ˆ
<̂

ˆ̂
ˆ
ˆ̂
:

.i; : : : ; j /; if i D .i; : : : ; j /

for 1 � i � j �M;

.i; : : : ;M; : : : ; j C 1/; if i D .i; : : : ;M; : : : ; j C 1/;

q ..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M; if i D .i; : : : ;M � 1; i; : : : ;M/:
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Proof. �e formulas in (1) follow directly from the de�nitions.

We prove (2). Note that for

i 2 ¹.i; : : : ; j / j i � j º [ ¹.i; : : : ;M; : : : ; j C 1/ j i � j < M º

the computations are similar to those performed in types A and B , and we omit

the details. �erefore, assume that i D .i; : : : ;M � 1; i; : : : ;M/. We have

�...i; : : : ;M � 1/˘ .i; : : : ;M � 1//M/

D .�.i; : : : ;M � 1/˘�.i; : : : ;M � 1//.M ˝ 1/

C 1˝ ..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M

and, therefore, .Ei;Ei/ is equal to

�P.ji1j/q.q � q�1/2M�2i�1.q2 � q�2/

q�N.jij/Œ2��1.Ei; ..i; : : : ;M � 1/˘ .i; : : : ;M � 1//M/

D �P.ji1j/q.q � q�1/2M�2i�1.q2 � q�2/q�N.jij/Œ2��2

.Ei2 ˝ Ei1 ; .�.i; : : : ;M � 1/˘�.i; : : : ;M � 1//.M ˝ 1//

D �P.ji1j/q.q � q�1/2M�2i�1.q2 � q�2/q�N.jij/Œ2��2

.Ei2 ˝ Ei1 ; .q
�2 C 1/.i; : : : ;M/˝ .i; : : : ;M � 1//

D �P.ji1j/q.q � q�1/q�N.jij/CN.ji1j/CN.ji2j/

Œ2��2.q�2 C 1/.Ei1;Ei1/.Ei2;Ei2/

D �P.i1/.q � q�1/2M�2i�1.q2 � q�2/q�N.jij/Œ2��1

D �P.i1/.q � q�1/2M�2iq�N.jij/:

�is proves (2). Finally, (3) immediately follows from (2).

6.4. Type C.M/ and D.m; n C 1/, II. In this subsection, we consider the

remaining simple systems of type C.M/ and D.m; nC 1/, which correspond to

Dynkin diagrams with a branching node as follows:

ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ

#✈✈✈
ˇ

#
❍❍

❍

1 2 n nC1 nC2

M�1

M

and

ˇ ˇ � � � ˇ ˇ̌ ˇ � � � ˇ
✈̋✈✈

ˇ

˝
❍❍

❍

˝

˝1 2 n nC1 nC2

M�1

M
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Proposition 6.12. �e set of dominant Lyndon words is

L
C D ¹.i; : : : ; j / j i � j �M � 1º

[ ¹.i; : : : ;M � 2;M/ j i �M � 2º

[ ¹.i; : : : ;M � 2;M;M � 1; : : : ; j C 1/ j i � j �M � 2º

[ ¹.i; : : : ;M � 1; i; : : : ;M � 2;M/ j i < M � 1; p.i; : : : ;M � 1/ D 1º:

Set

$D.i/ D

8

ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
<

ˆ
ˆ̂
ˆ
ˆ̂
ˆ̂
:

$A.i/ if i D .i; : : : ; j /;

i � j �M � 1;

$A.i; : : : ;M � 1/ if i D .i; : : : ;M � 2;M/;

$A.i; : : : j C 1/ if i D .i; : : : ;M � 2;M; : : : ; j C 1/;

i < j < M � 1:

Proposition 6.13. �e Lyndon root vectors are given as follows:

(1) for i D .i; : : : ; j /, j �M � 1,

Ri D �
P.jij/�j�i$D.i/.q � q

�1/j�i .i; : : : ; j /I

(2) for i D .i; : : : ;M � 2;M/,

Ri D �
P.jij/�M�i�1$D.i/.q � q

�1/M�i�1.i; : : : ;M � 2;M/I

(3) for i D .i; : : : ;M � 2;M;M � 1; : : : ; j C 1/,

Ri D �
P.jij/� iCj$D.i/.q � q

�1/2M�i�j�2

..i; : : : ;M � 1;M;M � 2 : : : ; j C 1/

C .i; : : : ;M � 2;M;M � 1; : : : ; j C 1//I

(4) for i D .i; : : : ;M � 1; i; : : : ;M � 2;M/,

Ri D �.q � q
�1/2M�2i�2.q2 � q�2/..i; : : : ;M � 2/˘ .i; : : : ;M � 1//M:
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Proof. Formulas (1)–(3) can be obtained in the same way as in previous types and

we omit the details.

�e proof of (4) is very similar to the long roots in type C and we only outline

the proof, leaving the details to the interested reader. Indeed, let

i D .i; : : : ;M � 1; i; : : : ;M � 2;M/

and let

i D i1i2

be the co-standard factorization of i. As in the type C case, we deduce from

Proposition 3.9 that

x D ..i; : : : ;M � 2/˘ .i; : : : ;M � 1//M 2 U:

Moreover, since max.x/ D i, it follows that Ri is proportional to x. To compute

the coe�cient, note that P.ji1j/ D P.ji2j/ and $D.i1/ D $D.i2/, so

Ri D .q � q
�1/2M�2i�2.i; : : : ;M � 1/˘q;q�1 .i; : : : ;M � 2;M/

D .q � q�1/2M�2i�2�p.M/.q.i; : : : ;M � 1/˘ .i; : : : ;M � 2/

� q�1.i; : : : ;M � 1/ N̆ .i; : : : ;M � 2//M

D �.q � q�1/2M�2i�2.q2.i; : : : ;M � 2/ N̆ .i; : : : ;M � 1/

� q�2.i; : : : ;M � 2/˘ .i; : : : ;M � 1//M;

where we have used the fact that

p.M/C p.i; : : : ;M � 2/ D 1 D p.i; : : : ;M � 1/

to obtain the factor � after the last equality. Finally, the computation follows upon

observing that

.i; : : : ;M � 2/˘ .i; : : : ;M � 1/ D .i; : : : ;M � 2/ N̆ .i; : : : ;M � 1/:

�is last statement can be proved as follows: �rst, we have

i ˘ .i; : : : ; k/ D i N̆ .i; : : : ; k/ for any k > i;

by induction on k, and

.i; : : : ; j /˘ .i; : : : ; k/ D .i; : : : ; j / N̆ .i; : : : ; k/ for i � j < k,

by induction on j .
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Corollary 6.14. (1) �e PBW root vectors are:

(a) for i D .i; : : : ; j /, j �M � 1,

Ei D $D.i/.q � q
�1/j�iq�N.jij/.i; : : : ; j /I

(b) for i D .i; : : : ;M � 2;M/,

Ei D $D.i/.q � q
�1/M�i�1q�N.jij/.i; : : : ;M � 2;M/I

(c) for i D .i; : : : ;M � 2;M;M � 1; : : : ; j C 1/,

Ei D $D.i/.q � q
�1/2M�i�j�2

q�N.jij/..i; : : : ;M � 1;M;M � 2 : : : ; j C 1/

C .i; : : : ;M � 2;M;M � 1; : : : ; j C 1//I

(d) for i D .i; : : : ;M � 1; i; : : : ;M � 2;M/,

Ei D .q � q
�1/2M�2i�2.q2 � q�2/Œ2��1

q�N.jij/..i; : : : ;M � 2/˘ .i; : : : ;M � 1//M I

(2) �e values of .Ei;Ei/ are given by

8

ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
:

$D.i/.q � q
�1/j�iq�N.jij/;

if i D .i; : : : ; j / .j �M � 1/ or i D .i; : : : ;M � 2;M/;

$D.i/.q � q
�1/2M�i�j�2q�N.jij/;

if i D .i; : : : ;M � 2;M;M � 1; : : : ; j C 1/;

.q � q�1/2M�2i�1q�N.jij/

q C q�1
;

if i D .i; : : : ;M � 1; i; : : : ;M � 2;M/I

(3) the dual PBW root vectors are

(a) for i D .i; : : : ; j /, j �M � 1,

E�
i D .i; : : : ; j /I

(b) for i D .i; : : : ;M � 2;M/,

E�
i D .i; : : : ;M � 2;M/I
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(c) for i D .i; : : : ;M � 2;M;M � 1; : : : ; j C 1/,

E�
i D .i; : : : ;M � 1;M;M � 2 : : : ; j C 1/

C .i; : : : ;M � 2;M;M � 1; : : : ; j C 1//I

(d) for i D .i; : : : ;M � 1; i; : : : ;M � 2;M/,

E�
i D .q C q

�1/..i; : : : ;M � 2/˘ .i; : : : ;M � 1//M:

6.5. Type F.3 j 1/. Associated to the distinguished diagram

# ## #> # ˝
1 2 3 4

we have the following table of dominant Lyndon words.

Height Dominant Lyndon Words

1 1; 2; 3; 4

2 .12/; .23/; .34/

3 .123/; .233/; .234/

4 .1233/; .1234/; .2343/

5 .12332/; .12343/

6 .123432/

7 .1234323/

8 .12343234/

6.6. Type G.3/. Associated to the distinguished diagram

# #<˝ #

1 2 3

we have the following table of dominant Lyndon words.

Height Dominant Lyndon Words

1 1; 2; 3

2 .12/; .23/

3 .123/; .223/

4 .1232/; .2223/

5 .12322/; .22323/

6 .123223/

7 .1232233/
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7. Canonical bases

In this section, we shall formulate and construct the canonical basis of type

A.m; 0/, B.0; n C 1/, and C.n C 1/ for the standard simple system. Table 2

below compiles a list of standard simple systems for Lie superalgebras of basic

type, with D.2 j 1I ˛/ omitted.

Table 2. Dynkin diagrams for standard simple systems.

A.m; n/ # # � � � # ˝̋ # � � � # #

Nn n�1 N1 0 1 m�1 m

B.m; nC 1/ # # � � � # ˝̋ # � � � # #>

Nn n�1 N1 0 1 m�1 m

B.0; nC 1/ # # � � � # ##  >

Nn n�1 N1 0

C.nC 1/ ˝ # � � � # ## #<
N0 N1 n�1 Nn

D.m; nC 1/ # # � � � # ˝̋ # � � � #

#✈✈✈
#

#
❍❍

❍

Nn n�1 N1 0 1

m�1

m

F.3 j 1/ ˝ ## #< # #

0 N1 N2 N3

G.3/ # #<˝ #

0 N1 N2
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7.1. Integral forms. We start with some general discussions of root systems of

basic type in order to de�ne suitable integral forms of Uq .

We will restrict our attention to the standard simple systems in Table 2, and �x

the ordered set

.I;�/ D ¹Nn < � � � < N1 < 0 < 1 < � � � < mº:

Following Lusztig, we call i 2 I and ˛i 2 … special if ci � 1 in the expansions

of every root ˇ in ẑC in terms of …, ˇ D
P

j2I cj j̨ : We will call a Dynkin

diagram (or the corresponding U) appearing in Table 2 special if any i 2 Iiso

(which is unique if it exists) is special. Note that we take into account the entire

(positive) root system ẑC as opposed to the reduced one. By inspection we have

the following.

Proposition 7.1. �e Dynkin diagrams in Table 2 are special if and only if they

are of type A.m; n/, B.0; nC 1/, and C.nC 1/.

Let A D ZŒq; q�1� and de�ne UA to be the A-subalgebra of Uq generated by

ei (i 2 Iiso) and the divided powers

e
.k/
i D e

k
i =Œk�i Š (i 2 IN0 t In-iso, k � 1).

Set

U �
A
D ¹u 2 Uq j .u; v/ 2 A for all v 2 UAº:

Denote by W
0 the subset of words in i 2 W of the form i D i

n1

1 � � � i
nd

d
, where

ik ¤ ikC1 for all 1 � k < d and nl 2 ¹0; 1º whenever il 2 Iiso. For such i 2 W0,

we set

&i D Œn1�i1 Š � � � Œnd �id Š

and write

ei D e
n1

i1
� � � e

nd

id
:

�en, &�1
i
ei is a product of divided powers. Consider the free A-module

FA D
M

i2W0

A&ii

and de�ne

U
�
A
D FA \ U: (7.1)

We have the following analogue of [23, Lemma 8] with an entirely similar

proof.
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Lemma 7.2. We have

U
�
A
D ‰.U �

A
/:

Proof. Any u 2 Uq belongs to U �
A

if and only if .u; &�1
i
ei/ 2 A for all i 2 W0. �is

holds if and only if ‰.u/ is a linear combination of elements &ii for i 2 W0, which

is true if and only if ‰.u/ 2 FA.

Corollary 7.3. �e free A-module U �
A

is an A-subalgebra of Uq .

Proof. It is clear from the de�nitions that .FA; ˘ / is an A-subalgebra of .F; ˘ /

and, therefore, so is U�
A

. By Lemma 7.2, U �
A

is an A-subalgebra of Uq .

Let UPBW be the A-lattice spanned by the PBW basis ¹Ei j i 2 W
Cº, and U�

PBW

the A-lattice spanned by the dual PBW basis ¹E�
i
j i 2 WCº in (5.9).

Proposition 7.4. Assume that U is special. �en

U
�
PBW D U

�
A

and UPBW D UA:

Proof. �e two identities are equivalent, and we shall prove that U�
PBW D U

�
A

.

To this end, note that by the computations in Section 6, E�
i
2 U�

A
for all i 2 LC.

By Corollary 7.3, it follows that

U
�
PBW � U

�
A
:

We will now prove that equality holds when U is special. To this end, suppose that

X

i2WC

�iE
�
i 2 U

�
A
:

We will prove that all �i 2 A by induction on j¹i 2 WC j �i ¤ 0ºj.

First, suppose that �iE
�
i 2 U

�
A

. Suppose that i D .i
a1

1 ; : : : ; i
ad

d
/ 2 LC

N0
t LC

n-iso,

ir ¤ irC1. Note that the coe�cient of i in Ei is &i (except for the long roots

in type C , where we instead consider the word i0 D .i; i; i C 1; i C 1; : : : ;M �

1;M � 1;M/ whose coe�cient is &i0). For n � 1, let

i.n/ D .i
na1

1 ; : : : ; i
nad

d
/:
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Since the diagram for U is special, the coe�cient of i.n/ in .E�
i
/˘n is nonzero, and

(up to a power of q) equals

&ni

�
na1

a1; : : : ; a1

�

i1

� � �

�
nad

ad ; : : : ; ad

�

id

D &i.n/

where, for r � 1, �
nar

ar ; : : : ; ar

�

ir

D
Œnar �ir Š

.Œar �ir Š/
n

is the quantum multinomial coe�cient.

Now, if i 2 WC and i D i
n1

1 � � � i
nr
r , i1 > � � � > ir ,

is D .i
as1

s1 ; : : : ; i
asds

sds
/ 2 LC;

then the coe�cient of

ı̃ WD i
.n1/
1 � � � i.nr /

r

in E�
i

is nonzero (again, because the diagram is special) and (up to a power of q)

equals
r

Y

sD1

&
ns

is

dsY

tD1

�
nsast

ast ; : : : ; ast

�

ist

D

r
Y

sD1

&
i
.ns/
s
D &ı̃:

(Above, we make the appropriate adjustments in type C as in the last paragraph).

Hence, if �iE
�
i
2 U�

A
, then �i&ı̃ 2 A&ı̃ which forces �i 2 A as required.

We now proceed to the inductive step. Let

j D max¹i j �i ¤ 0º:

�en, the coe�cient of ȷ̃ in E�
j

(making the appropriate adjustments in type C )

is &ȷ̃. Moreover, ȷ̃ does not occur in E�
i

for i < j. It follows that �j 2 A, and

induction applies to
X

i¤j

�iE
�
i D

� X

i

�iE
�
i

�

� �jE
�
j 2 U

�
A
:

�is completes the proof.

Example 7.5. It is not true that UPBW D UA for non-special standard Dynkin

diagrams in general. Indeed, consider type B.1; 1/:

˝ #
1 2
>

�e root ˇ D ˛1 C ˛2 non-isotropic. We have i.ˇ/ D .12/, E�
.12/
D .12/, and

E�
.1212/ D q

�1E�
.12/ ˘E�

.12/ D .�q C q
�1/.1212/:

In particular, 1
¹2º

E.1212/ 2 U
�
A

showing that U�
PBW ¤ U

�
A

.
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7.2. Pseudo-canonical and canonical bases

Lemma 7.6. For i 2 WC, write

Ei D
X

j2WC

aijEj; for aij 2 Q.q/: (7.2)

�en,

aii D 1 for all i 2 WC

and

aij D 0 if i > j.

Proof. �is proof is identical to that of [23, Lemma 37]. By Propositions 5.3

and 5.4 we have

"�.i/ D
X

j�i

ˇijEj

with

ˇii D ˇii D �i:

As "�.i/ D "�.i/, substituting (7.2) into the equation above yields

aij D
X

i�k�j

˛ik ˇkj:

�erefore, aij D 0 if i > j and aii D ˛iiˇii D �
�1
i
�i D 1 by Proposition 5.3.

Lemma 7.7. Suppose that U is special. �en, the coe�cients aij in (7.2) belong

to A.

Proof. �is is immediate since UPBW D UA by Proposition 7.4 and UA is clearly

bar invariant.

It is well known that Lemmas 7.6 and 7.7 imply the existence of a unique basis

of the form

bi D Ei C
X

j>i

�ijEj (7.3)

such that

�ij 2 qZŒq� and bi D bi:

We call the basis ¹bi j i 2 W
Cº a pseudo-canonical basis for UA or for U.
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A pseudo-canonical basis will be called a canonical basis if it is almost

orthogonal in the sense that there exists � 2 ¹1;�1º such that, for all i; j 2 WC,

(1) .bi; bj/ 2 ZŒq��, and

(2) .bi; bj/ D �
�ıij (mod q�) for some � 2 ¹0; 1º.

�eorem 7.8. When U is special it admits a pseudo-canonical basis. In types

A.m; 0/,A.0; n/,B.0; nC1/ andC.nC1/ the pseudo-canonical basis is canonical.

Proof. It has already been explained that U has a pseudo-canonical basis when it is

special. By the computations in Section 6 to verify that in types A.m; 0/, A.0; n/,

B.0; n C 1/ and C.n C 1/ one checks that the PBW basis is almost orthogonal.

Hence, the pseudo-canonical basis is canonical.

Remark 7.9. �e constructions in this paper (see Lemma 4.19, and �eorems 5.1,

5.7, and 7.8) work equally well for Uq associated to semisimple Lie algebras, pro-

viding a new self-contained approach to the canonical basis in the non-super set-

ting.

Remark 7.10. For typeB.0; n/, a canonical (sign) �-basis for Uq was constructed

in [6] via a crystal basis approach. �e canonical basis B for Uq of type B.0; n/

constructed in this paper is an honest basis. We expect that the associated �-basis

B[�B will be independent of the orderings and coincides with the one constructed

in [6].

Given a (pseudo-)canonical basis B D ¹biºi2WC , let B� D ¹b�
i
ºi2WC be the dual

(pseudo) canonical basis satisfying .b�
i
; bj/ D ıij: �en, as in [23, Proposition 39,

�eorem 40] we have the following.

�eorem 7.11. �e vector b�
i

is characterized by the following two properties:

(1) b�
i �E�

i is a linear combination of vectors E�
j , j < i, with coe�cients in qZŒq�I

(2) �e coe�cients of b�
i

in the word basis W of F are symmetric in q and q�1.

In particular,

max.b�
i / D i; for all i 2 WC,

and

b�
i D E�

i if i 2 LC.
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8. Canonical bases in the gl.2 j 1/ case

8.1. Canonical basis for U C

q .gl.2 j 1//. We now compute canonical bases aris-

ing from quantum gl.2 j 1/ and its modules. �e root datum in this case is given

by

# ˝;
1 2

ˆC D ¹˛1; ˛2; ˛1 C ˛2º :

�e algebra Uq D UC
q .gl.2 j 1// is generated by ‰�1.E1/; ‰

�1.E2/, with

‰�1.E2/ odd. Abusing notation slightly, we will identify these elements with E1

and E2, respectively. We note that by (5.1),

E.12/ WD E2E1 � qE1E2:

�en, since E22 D 0,

E2.12/ D 0;

E2E.12/ D �qE.12/E2;

E1E.12/ D qE.12/E1;

E.12/E2 D E2E1E2:

Moreover, we can verify that, for r; s � 1,

E
.r/
1 E2E1E2 D E2E1E2E

.r/
1 ; (8.1)

E2E
.r/
1 D q

rE
.r/
1 E2 C E

.r�1/
1 E.12/;

E
.r/
1 E2E

.s/
1 D

�
r C s � 1

s

�

E
.rCs/
1 E2 C

�
r C s � 1

r

�

E2E
.rCs/
1 : (8.2)

Formula (8.2) is the same as for quantum sl.3/, see [26]. One checks that

E2E
.rC1/
1 E2 D E

.r/
1 E.12/E2 D E

.r/
1 E2E1E2 D E2E1E2E

.r/
1 : (8.3)

Now note that the Lyndon words are 2 > 12 > 1, and so relative to this ordering

we see that the PBW basis for Uq is

¹E
.r/
1 Eb.12/E

a
2 j 0 � a; b � 1; r � 0º:

�ey span a ZŒq�-lattice L of UC
q .

�e following has appeared in [16], who works with quantum gl.1 j 2/ instead.
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Proposition 8.1. UC
q .gl.2 j 1// admits the following canonical basis:

E
.r/
1 ; E

.r/
1 E2; E2E

.rC1/
1 ; E2E

.rC1/
1 E2

for all r � 0

Proof. Now the �rst two elements E
.r/
1 ;E

.r/
1 E2 are already bar-invariant PBW

basis elements, whence pseudo-canonical basis elements. Similarly, the element

E2E
.rC1/
1 E2 is bar-invariant and also a PBW element by (8.3), whence a pseudo-

canonical basis element. One writes the remaining PBW elements as

E2E
.rC1/
1 D qrC1E

.rC1/
1 E2 C E

.r/
1 E.12/; for r � 0.

Hence E2E
.rC1/
1 is a bar-invariant element, which equals a PBW element mod-

ulo qL, whence a pseudo-canonical basis element.

Clearly the elements as in the proposition form a basis of the lattice L,

by comparing to the PBW basis, hence this is the promised pseudo-canonical ba-

sis. On the other hand, computing the norms of these elements proves that they

are actually a canonical basis.

Remark 8.2. In contrast to Proposition 8.1, E2E1E2 is not a canonical basis

element for the positive half of quantum sl.3/.

Remark 8.3. When multiplying any canonical basis element for UC
q .gl.2 j 1//

with E
.s/
1 or E2 (either on the left or on the right) and then expanding as a linear

combination of the canonical basis, the coe�cients are always in Z�0Œq; q
�1�.

Denote by

B D ¹F
.r/
1 ; F2F

.r/
1 ; F

.rC1/
1 F2; F2F

.rC1/
1 F2 j r � 0º

the canonical basis of U�
q , which consists of the images of the elements in Propo-

sition 8.1 under the anti-isomorphism UC
q ! U�

q de�ned by Ei 7! Fi . Below we

often use the identi�cations

F2F
.rC1/
1 F2 D F2F.12/F

.r/
1

and

F.12/ D F1F2 � qF2F1:



Quantum shu�es and quantum supergroups of basic type 631

8.2. Canonical basis for Kac modules. �e subalgebra U 0q of Uq is generated

by

K1 D q
e11; K2 D q

e22 ; K3 D q
e33 :

Let U
2;1
q be the subalgebra of Uq generated by U 0q , E1, and F1, and let Pq be the

subalgebra generated by U
2;1
q and E2. Denote by ¹ı1; ı2; "1º the dual basis for

¹e11; e22; e33º. Let

� D aı1 C bı2 C c"1;

with a � b 2 Z�0. Set L0.�/ to be the simple U
2;1
q -module of highest weight �.

�en L0.�/ is a Pq-module with trivial E2-action. �e Kac module

K.�/ WD Uq ˝Pq
L0.�/

over Uq is �nite dimensional and has a simple quotient L.�/. Moreover,

dimK.�/ D 4 dimL0.�/:

Denote by v� the highest weight vector of K.�/ and by vC
� the image of v�

in L.�/. Note that

K.�/ Š L0.�/˚ F2L
0.�/˚ F.12/L

0.�/˚ F2F.12/L
0.�/: (8.4)

Hence, when applying elements in B to v�, the resulting elements are nonzero

exactly when 0 � r � a � b, thanks to F
.a�bC1/
1 v� D 0.

Proposition 8.4. Let

� D aı1 C bı2 C c"1; with a � b 2 Z�0.

�en

¹uv� j uv� ¤ 0; u 2 Bº

D ¹F
.r/
1 v�; F2F

.r/
1 v�; F

.rC1/
1 F2v�; F2F.12/F

.r/
1 v� j 0 � r � a � bº;

and this set forms a basis of the Kac module K.�/. It is canonical in the sense

that it descends from the canonical basis.

Proof. �e equality of the two sets in the proposition follows by the two identities

F
.a�bC1/
1 v� D 0 and F

.a�bC2/
1 F2v� D 0:

Note that F
.r/
1 v0� with 0 � r � a � b forms a basis of L0.�/. �en by (8.4),

the elements

¹F
.r/
1 v�; F2F

.r/
1 v�; F.12/F

.r/
1 v�; F2F.12/F

.r/
1 v� j 0 � r � a � bº

form a basis of K.�/. Since the transition matrix from this basis to the set given

in the proposition is upper-unitriangular, this set must form a basis of K.�/.
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8.3. Canonical basis for simple modules. Recall that the Weyl vector for

gl.2 j 1/ is

� D �ı2 C "1:

A weight � is called typical if h˛; �C �i ¤ 0 for all ˛ 2 ˆC
N1

; otherwise, we say

the weight is atypical.

Let� D aı1Cbı2Cc"1, with a�b 2 Z�0. �en� is typical only if a ¤ �c�1

and b ¤ �c. If � is typical, then K.�/ is irreducible.

Corollary 8.5. If � is typical, then L.�/ has a canonical basis given by Propo-

sition 8.4.

�erefore, it remains to consider L.�/ when � is atypical. �e �rst step is to

determine when canonical basis vectors are zero in L.�/.

Lemma 8.6. Assume that

� D aı1 C bı2 C c"1; where a � b 2 Z�0,

is atypical; that is,

a D �c � 1 or b D �c:

�en the following statements hold in L.�/:

(1) F
.r/
1 v

C
� ¤ 0 () 0 � r � a � bI

(2) if a D �1� c, then

F2F
.r/
1 v

C
� ¤ 0 () 0 � r � a � bI

if b D �c, then

F2F
.r/
1 v

C
� ¤ 0 () 1 � r � a � bI

(3) .Œr C b C c�F
.r/
1 F2 � Œb C c�F2F

.r/
1 /v

C
� D 0 for all r � 0I

(4) F2F
.rC1/
1 F2v

C
� D F2F.12/F

.r/
1 v

C
� D F

.r/
1 F2F1F2v

C
� D 0 for all r � 0I

(5) F
.rC1/
1 F2v

C
� ¤ 0 () b ¤ �c and 0 � r � a � b.
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Proof. We will use repeatedly the fact that a �-weight vector in L.�/ with � ¤ �

which is annihilated by E1 and E2 must be zero.

(1) It follows from the representation theory of Uq.sl2/ generated by E1 and F1.

(2) By a direct computation we have that

E2F2F
.r/
1 v

C
� D Œr C b C c�F

.r/
1 v

C
� :

If a D �1 � c, then r C b C c D 0 implies that r D a � b C 1, and so

F2F
.r/
1 v

C
� ¤ 0 if 0 � r � a � b. Note that F2F

.a�bC1/
1 vC

� D 0 since this

vector is annihilated by E1 and E2 simultaneously.

If b D �c, then r C b C c D 0 implies that r D 0, and so F2F
.r/
1 vC

� ¤ 0 if

1 � r � a � b. Note that F2v
C
� D 0 since F2v

C
� is annihilated by E1 and E2

simultaneously.

Hence (2) is proved when we take (1) into account.

(3) �is is trivial for b D �c, since F2v
C
� D 0. So, we may assume a D �1� c.

We shall proceed by induction, with the case r D 0 being trivial. Set

d D b C c:

�en (3) follows by the following computations (and by inductive assump-

tion):

E1.Œd C r�F
.r/
1 F2 � Œd �F2F

.r/
1 /v

C
�

D �Œd C r�.Œd C .r � 1/�F
.r�1/
1 F2 � Œd �F2F

.r�1/
1 /F2v

C
�

D 0;

and

E2.Œd C r�F
.r/
1 F2 � Œd �F2F

.r/
1 /v

C
�

D Œd �.Œd C r�� Œd C r�/F1v
C
�

D 0:

(4) By an F-version of (8.1), we have

F2F
.rC1/
1 F2v

C
� D F2F.12/F

.r/
1 v

C
� D F

.r/
1 F2F1F2v

C
� :

It remains to show that F2F1F2v
C
� D 0. �is follows from the computations

below which use (4) in the second line:

E1F2F1F2v
C
� D F2E1F1F2v

C
� D 0;

E2F2F1F2v
C
� D .Œb C 1C c�F1F2 � Œb C c�F2F1/v

C
� D 0:
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(5) Note that b ¤ �c if and only if F2v� ¤ 0. As in (1) the claim follows from

the representation theory of Uq.sl2/ generated by E1 and F1 (when applied

to the highest weight vector F2v
C
� ).

�eorem 8.7. Assume that � D aı1C bı2C c"1, where a� b 2 Z�0, is atypical;

that is, a D �c � 1 or b D �c.

(1) If b D �c or b D a D �c � 1, then ¹uvC
� j uv

C
� ¤ 0; u 2 Bº forms a

(canonical) basis of L.�/. In particular, dimL.�/ D 2.a � b/C 1.

(2) It b ¤ a D �c � 1, then ¹uvC
� j uv

C
� ¤ 0; u 2 Bº is linearly dependent in

L.�/, but the subset ¹F
.r/
1 v

C
� .0 � r � a�b/; F

.r/
1 F2v

C
� .0 � r � a�bC1/º

is a basis for L.�/. In particular, dimL.�/ D 2.a � b/C 3.

Proof. For (1), there are two cases. If b D �c, then Lemma 8.6 shows that

®

uvC
� j u 2 B; uvC

� ¤ 0
¯

D ¹F
.r/
1 v

C
� .0 � r � a � b/; F2F

.r/
1 v

C
� .1 � r � a � b/º:

If b D a D �1 � c, then Lemma 8.6 implies

¹uvC
� j u 2 B; uvC

� ¤ 0º D ¹v
C
� ; F2v

C
� ; F1F2v

C
� º:

In either case, the set ¹u 2 B j uvC
� ¤ 0º spans L.�/; it is indeed a basis since

each vector lies in a di�erent weight space.

For (2), Lemma 8.6 implies that

¹uvC
� j u 2 B; uvC

� ¤ 0º D ¹F
.r/
1 v

C
� ; F

.rC1/
1 F2v

C
� ; F2F

.r/
1 v

C
� j 0 � r � a � bº:

All of these elements lie in di�erent weight spaces except for F
.r/
1 F2 and F2F

.r/
1

for 0 � r � a � b. Now .� � r˛1 � ˛2/-weight space is spanned by F
.r/
1 F2v

C
�

and F2F
.r/
1 v

C
� . However, Lemma 8.6(4) shows that these vectors are linearly de-

pendent. �en we may choose one of the vectors as a basis element, and (2) fol-

lows.

We call L.�/ a polynomial representation of Uq if

� D aı1 C bı2 C c"1

with

.a; b; 1; : : : ; 1
„ ƒ‚ …

c

/

being a partition (�is is analogous to the polynomial representations of the Lie

superalgebra gl.m j n/; see [7]). Note that a polynomial representation L.�/

is atypical if and only if b D c D 0. We have the following corollary from

�eorem 8.7(1) and Corollary 8.5.
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Corollary 8.8. �e set ¹uvC
� j uv

C
� ¤ 0; u 2 Bº forms a canonical basis for every

polynomial representation L.�/.

In a setting similar to Proposition 8.4, �eorem 8.7(1), Corollarys 8.5 and 8.8,

we will simply say that the canonical basis of U�
q descends to the canonical bases

of the corresponding Uq-modules.

We end with formulating some general conjectures regarding canonical basis

for representations of quantum supergroup of gl.mC1 j 1/. let U�
q be the negative

half of quantum gl.m C 1 j 1/ of type A.m; 0/, for m � 1. We transport the

canonical basis of the positive half quantum supergroup Uq (see �eorem 7.8) to

that for U�
q via an (anti-)isomorphism sending Ei to Fi for all i .

Conjecture 8.9. For type A.m; 0/, the canonical basis of U�
q descends to the

canonical bases of the Kac modules as well as those of polynomial representations

of Uq.

For type C.n/, we also conjecture that the canonical basis of the negative half

quantum supergroup descends to the canonical bases of the Kac modules.
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