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Quantum shuffles and quantum supergroups of basic type

Sean Clark, David Hill, and Weigiang Wang

Abstract. We initiate the study of several distinguished bases for the positive half of a
quantum supergroup U, associated to a general super Cartan datum (I, (-, -)) of basic type
inside a quantum shuffle superalgebra. The combinatorics of words for an arbitrary total
ordering on I is developed in connection with the root system associated to I. The mono-
mial, Lyndon, and PBW bases of U, are constructed, and moreover, a direct proof of the
orthogonality of the PBW basis is provided within the framework of quantum shuffles.
Consequently, the canonical basis is constructed for U, associated to the standard super
Cartan datum of type gl(n | 1), osp(1 | 2n), or osp(2 | 2n) or an arbitrary non-super Cartan
datum. In the non-super case, this refines Leclerc’s work and provides a new self-contained
construction of canonical bases. The canonical bases of Uy, of its polynomial modules, as
well as of Kac modules in the case of quantum gl(2 | 1) are explicitly worked out.
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1. Introduction

1.1. The Drinfeld-Jimbo quantum group associated to a simple Lie algebra
admits extremely rich structures with a wide variety of applications in represen-
tation theory, low-dimensional topology, and mathematical physics. In particular,
the positive half admits some remarkable bases with interesting geometric and
categorical interpretations, including PBW bases and canonical bases introduced
by Lusztig [26, 27, 28] (see also [14] for another approach to canonical bases from
the viewpoint of crystals).

In contrast, the quantum supergroups associated to a simple Lie superalge-
bra are not well understood beyond the foundational work of Yamane [33, 34].
As Lie superalgebras form an important extension of Lie algebras, it is natural to
ask which structural features carry over to the super setting.

Some reasons to hope such a structure exists are the recent categorification
results for quantum supergroups in [16, 12, 15, 8, 17], following earlier pioneering
works of Khovanov, Lauda, and Rouquier [18, 32]. However, due to various inter-
nal difficulties (e.g. lack of integral forms, isotropic odd roots, lack of positivity
due to super signs), no construction of a canonical basis existed or was even con-
jectured in the super setting until recently the authors [6] constructed the canonical
bases for the integrable modules and the positive half of quantum supergroups as-
sociated to the “anisotropic” super Cartan datum, meaning no isotropic odd simple
roots occur. The anisotropic super Cartan datum is distinguished among all super
Cartan datum in the sense that the corresponding Lie superalgebras and quantum
supergroups admit a semisimple category of integrable modules in parallel to the
usual Kac-Moody setting. The only anisotropic super Cartan datum of finite type
corresponds to the Lie superalgebra osp(1 | 2n).

There are many other finite-dimensional simple Lie superalgebras besides
osp(1 | 2n), among which the most important class are those of basic type. Sim-
ilar to semisimple Lie algebras, the Lie superalgebras of basic type admit non-
degenerate even bilinear forms, root systems, triangular decompositions, and so
on (cf. [13, 7]). However, there is no reasonable semisimple category of finite-
dimensional integrable modules for Lie superalgebras of basic type except for
osp(1 | 2n). Another phenomenon is the existence of non-conjugate simple sys-
tems for a general Lie superalgebra of basic type. The quantum supergroups stud-
ied in [33] are associated to these basic Lie superalgebras.

Let U, denote the positive half of a quantum supergroup of basic type. Benkart,
Kang, and Kashiwara [2] constructed the crystal (but not the global) bases for the
polynomial representations of quantum gl(m | n), and subsequently Kwon [20]
constructed crystal bases for Kac modules of quantum gl(m | n) (also cf. [21]
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in the case of osp(r | 2n) and [30] in the case of osp(1 | 2n)); none of these
authors constructed crystal bases or canonical bases for U,. As the works [6, 4]
helped us to lift the mental block on the existence of canonical bases for a class of
quantum supergroups, we are motivated to reexamine the possibilities for quantum
supergroups of basic type.

Since the basic Lie superalgebras include simple Lie algebras as limiting cases,
we require an approach toward canonical bases which would work equally well
for the usual quantum group of finite type. However, Lusztig’s geometric ap-
proach (via either perverse sheaves or quiver geometry) is not applicable for now,
while Kashiwara’s algebraic approach requires a semisimple category of inte-
grable modules and hence works well only for the anisotropic quantum super-
groups.

1.2. In this paper, we provide a first step toward the construction of canoni-
cal bases for quantum supergroups of basic type, and give a description of U,
which we believe will be useful for future studies on categorification
(cf. [19, 10, 11, 29, 3]). Our approach through quantum shuffies is inspired by the
work of Leclerc [23] which, in turn, builds on other foundational works of
M. Lothaire [25],]. A. Green [9], P. Lalonde and A. Ram [22], and M. Rosso [31]
on relations among combinatorics of words, root systems, quantum groups and
quantum shuffles. In this paper, we systematically develop a super version of the
aforementioned works, and almost always work in the most general setting of ar-
bitrary (not merely the standard) simple systems of basic type. The passage from
the classical to the super setting is highly nontrivial, due largely to the lack of
positivity in the formula for the shuffle product. Moreover, our results go beyond
those appearing in the literature, leading to new combinatorial proofs of classical
results on quantized Lie algebras.

Among other results, we construct a family of monomial bases and orthogonal
PBW bases of Uy, one for each total ordering of the index set I labeling the simple
roots. We then construct an integral form in types gl(m | n), osp(l | 2r) and
osp(2 | 2n), which yield a canonical basis for U, when the Cartan data is of
type gl(m | 1), osp(1 | 2n) and osp(2 | 2n). We are also able to obtain a bar-
invariant psuedo-canonical basis for gl(m | n). However, this basis fails to be
almost orthogonal with respect to the bilinear form and is not independent of the
chosen ordering on L.
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Unlike in the non-super setting, the PBW bases constructed here are not known
to be orthogonal a priori. To obtain this result, we generalize a main result of
Leclerc [23, Theorem 36] and prove it directly from the combinatorics of Lyndon
words (Leclerc’s proof used the orthogonality of PBW bases due to Lusztig); see
Lemma 4.19 and Theorem 5.1. In the special case of the natural ordering on I given
in Table 1, Yamane [33] constructs a PBW basis and proves that it is orthogonal
through a case-by-case analysis. Our proof is type independent for almost all or-
derings on I. Our argument applies equally well to the Cartan-Killing root datum,
yielding an independent proof of the orthogonality of the PBW bases and a new
self-contained algebraic construction of the canonical basis of the positive half of
a Drinfeld—Jimbo quantum group of finite type. After completion of this paper,
we learned of a similar construction of orthogonal PBW-type bases for Nichols
algebras appearing in [1].

1.3.  We now provide a detailed description of the main results of the paper
section by section. In the preliminary Section 2, we collect various basic results
on quantum superalgebras of basic type, most of which can be found in Yamane’s
papers [33, 34].

In Section 3, generalizing the work of Rosso [31] and Green [9], we embed the
positive half of a quantum supergroup U, associated to a general Cartan datum
(I, (-, -)) of basic type in a quantum shuffle superalgebra. This should be viewed as
a dual version to a construction of Lusztig who realized U, as a quotient of a free
algebra by the radical of a bilinear form. In the super setting we use (a variant of)
a non-degenerate bilinear form on U, constructed by Yamane [33].

The combinatorics of super words, such as dominant words (also known as
good words) and Lyndon words, is then developed systematically in Section 4.
Superizing the constructions of Leclerc [23], we construct monomial bases of Uj,.
More significantly, we develop a highest word theory for U, and establish a bi-
jection between the set of dominant Lyndon words and the reduced root sys-
tem associated to I, generalizing a fundamental result of Lalonde and Ram [22].
Finally, we construct an auxiliary Lyndon basis for U, and obtain Lemma 4.19.

In Section 5, we give a construction of PBW bases of U;. From Lemma 4.19
we deduce Theorem 5.1, prove a Levendorskii—Soibelman type formula, and prove
that these bases are orthogonal, see Theorem 5.5, Lemma 5.6 and Theorem 5.7. We
note that Lemma 5.6 can be viewed as a combinatorial analog of [29, Lemma 3.2].

In Section 6, we compute the dominant Lyndon words and root vectors ex-
plicitly for quantum supergroups of type A-D. These PBW root vectors are very
similar to those defined in [33], though we express them in the basis of words.



Quantum shuffles and quantum supergroups of basic type 557

Additionally, we compute the inner product between any two root vectors. This
information is also contained in [33, §10.3], but as our sign convention on the bilin-
ear form differs from that in loc. cit. we derive the formulas directly. Theorem 5.7
explains how to compute the norm of any PBW basis vector.

In Section 7, we introduce the integral form of U,, where we have to restrict
ourselves to the standard simple systems, and to types gl(m | n), osp(l | 2n) and
osp(2 | 2n), as well as any non-super type. In the non-super specialization, this
allows us to give a new self-contained algebraic construction of a canonical basis
of U,; more importantly, we obtain a canonical basis of U, in types gl(m | 1),
osp(1 | 2n) and osp(2 | 2n).

The case of gl(2 | 1) is studied in detail in Section 8. Explicit formulas for the
canonical basis of U, were already given in [16]. We show that the canonical basis
of U, descends to a canonical basis of every polynomial representation and every
Kac module of quantum gl(2 | 1). On the other hand, we show that the canonical
basis of U, fails to descend to a canonical basis for certain finite-dimensional
simple modules of quantum gl(2 | 1). We conjecture these phenomena hold for
general gl(m | 1) case.

Acknowledgements. Weigiang Wang is partially supported by the NSF grant
DMS-1101268. The authors thank Institute of Mathematics, Academia Sinica,
Taipei for providing an excellent working environment and support, which greatly
facilitated this research. We also thank Bernard Leclerc for helpful discussions
and clarifications regarding his paper.

2. Quantum supergroups of basic type

In this section, we review some fundamental properties of the positive half of a
quantum supergroup of basic type, including the bilinear form and defining rela-
tions.

2.1. Root data. Let g = gg @ g7 be a complex basic Lie superalgebra of rank
m+n+ 1= N of type A-G [13, 7]. Let ® = 5 LI $; be the root system for g,
and let

<I>:<I>(—,|_|<I>i:{ﬂe&>‘%ﬁ¢§>}
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be the reduced root system for g, where ®; = ® N &, for s € {0, 1}; as usual 0
and 1 here and below indicate the even and odd (roots) respectively. We will work
with ® and not ® until Section 7. Let

H=H6UH1={(X,' |i el}
be a simple system for ® which is labelled by I = Igul; ={1,...,N},and let

ot c o

be the corresponding set of positive roots. We define the parity function p(-) on I
by letting
p(i)=s fori el withs € {0,1).

Let Q be the root lattice. The monoid

Q+ = @ 1o

i€l
is Z»-graded by declaring
plai) = p(i)

and extending linearly. We further decompose
q)i = CI)iso u CI)n-iso

where @5, (resp. Pn.iso) is the set of isotropic (resp. non-isotropic) odd roots.
Decompose

HI = 1_Iiso (| 1_[n—iso

(resp. I7 = Iiso Ul In-iso) accordingly.

In Table 1 below, we list the Dynkin diagrams which arise from an arbitrary
choice of ®* (for type A-D) and label the simple roots according to the labels on
the nodes of the corresponding diagram. The diagrams labelled with (x) in types
F(3 | 1) and G(3) will be referred to as distinguished diagrams (F(3 | 1) is often
referred to as F(4) in literature). The simple roots may be even, odd isotropic,
or odd non-isotropic, and we will label the corresponding nodes O, ®, and @,
respectively. We will use the notation © to denote a simple root which may be
either odd isotropic or even, and @ for a simple root which may be either odd
non-isotropic or even.



Quantum shuffles and quantum supergroups of basic type

Table 1. Dynkin diagrams for general simple systems.

1 2 n n+1 n+2 m+n m+n+1
1 2 n n+1 n+2 m+n m+n+1
Cn+1) O0—0 '+ O——O==0
1 2 n n+1
O m+n
2 n n+1 n—+2 Om+n+1
m—+n
/
2 n n+1 n—+2 \ m4n-1
FGID (*) O——0O0==—=0—®
1 2 3 4
2 3 4 1 2 3 4
2 2
VAN AN
1 3 4 1 3 4
G(3) (x) ®—0O===0 ——@===0
1 2 3 1 2 3
2
/\
O—Q=—=0 [SE==%]
1 2 3 1 3
O2 _a . O2
—1 o
D2 1) 1 ®/ ®/
1%03 1%03
2
X
/N
(a € Z>0) F—®

559
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The basic Lie superalgebras are examples of symmetrizable contragredient
Lie superalgebras associated to (super generalized) Cartan matrices [13],
which are endowed with a non-degenerate even supersymmetric bilinear form. Let
A = (aij)i,je be a symmetrizable Cartan matrix for g. Let d;, i € 1,
be positive integers satisfying

diaij = djaj;, and gcd(d; |iel) =1
Define a symmetric bilinear form
():0xQ—17Z
by letting
(i, @) = diaij, i,j €l

In particular, we have the following basic property.

Lemma 2.1. The following are equivalent for i € 1:
(1) aii = 0;

(2) i € Iiso:

(3) (Oli,Oli) =0.

We set the notation
T =-1, (2.1)
which will be used to keep track of super-signs. Set

1 if ((X,‘,Olj) >0,
Sij = (2.2)
wif (Oli,Olj) < 0.

We call the triple (I, I1, (-, -) ) a Cartan datum of basic type.

2.2. Quantum superalgebra U,. Letg =n~ @h@dn™ be the triangular decom-
position of g. The quantized enveloping algebra U, (g) with Chevalley generators
ei, fi kl.il (i € I) has been systematically defined and studied in [33] (here we
choose to adopt a more standard version without an extra parity operator denoted
by o in loc. cit.). Let U; = Uy (n™) be the subalgebra of U, (g) generated by the
elements ¢; (i € I). By definition, Uy is a quotient of a free superalgebra on the
generators e; by the radical of the bilinear form, just as defined by [28, Part I] in
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the non-super setting. We will use a rescaling of this bilinear form; see Proposi-
tion 2.4 below.
The algebra U, is O +-graded by declaring that the degree of e; is a;:

U= P Uy

veQ+

For homogeneous u € Uy, we write |u| for the degree of u in this grading. There
is also a Z,-grading on U, by setting

pu) =pQ) ifful=v.

The next proposition is standard (see e.g. [33]); in the case of B(0,n + 1) the
novel bar involution was introduced in [12].

Proposition 2.2. The algebra U, admits the following symmetries:

(1) a Q(q)-linear anti-automorphism
t: U, — Uy
defined by
t(ej) =e;foralli € I and t(uv) = t(v)t(u). (2.3)
(2) A Q-linear automorphism
U, — Uy
(called a bar involution) defined by

_ nq— ifUgisof type B(O,n + 1),
q= 2.4)
g ! otherwise,
with
e =e¢ foralliel,

and

U=1UuU;
(3) a Q-linear anti-automorphism
o:U; — Uy
defined by
o(u) = t(u). (2.5)
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Proof. The existence of the anti-automorphism t is proved in [34, Lemma 6.3.1].
The existence of the bar involution can be proved using similar arguments to those
in [28, §1.2.12] (see also [5, Cor 1.4.4]). O

The algebra U, has the structure of a twisted bi-superalgebra with coproduct
defined on the generators by

Alei) =e; @1+ 1®e;.
The coproduct is an algebra homomorphism
AU — Uy, ® U,
with respect to the twisted multiplication on U; ® Uy:
(@ ®b)(c ® d) = 7?®P© g=bLeD e @ b,

fora,b,c,d € U; homogeneous in the (O x Z,)-grading.

2.3. Bilinear forms on U,;. The goal of this section is to establish the existence
of the bilinear form described in Proposition 2.4, a variant of which first appeared
in [33]. Indeed, let (-,-)sgn be the form appearing in loc.cit.. This form satis-
fies Conditions (B1)—(B3) in the statement of Proposition 2.4 below, but with the

(q, )-bialgebra structure on U, ® U, replaced by a (¢!, r)-bialgebra structure
and with the bilinear form satisfying

x'@x"y® y//)sgn = ”p(x//)p(y/)(x/, y/)sgn(x”, )//)sgn- (2.6)

In order to deduce the proposition, we begin with some general comments
about rescaling of bilinear forms. To this end, let

1: 0" x 0" — Q)"
be a function such that
t(A,v) =t(v,A),

t(A+v.m) =1, ntv,n),
t(A,v+n) =t(A,v)t(A,n).
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Lemma 2.3. Assume we have a bilinear form {-,-} on U, such that

(1) forall w # vin Q7,
{Uq,ua Uq,v} = 0;

(2) foralli €],
{I,1} =1 and {ej,ei} #O0;

(3) forallx,y,z € Uy,

{xy,z} ={x ®y,A2)},
where

{x®y.x' @y} =t(yl, [x'Dix. x"Hy. ¥}

Then there is a symmetric bilinear form (-,-) on Uy such that

(a) forall u # v,
(Uq,u’ Uq,v) = 0;

(b) foralli €1,
(1,1)=1 and (ej,e;) #0;

(c) forall x,y,z € Uy,

(xy,2) = (x ® y, A(2)),
where

xr®y.x'®y)=(xx)r ).
Specifically, the bilinear form is given by

(x, ¥) = t(lx)™Hax, v

where
l‘((X,‘l + ...+ Ol,'n) = 1_[ l‘(()lir,()lis).

r<s
Proof. Note that f(o;, + ... + «;,) defined above does not depend on the or-
der because ¢ is symmetric. Since this rescaling is well defined on each weight
space, it suffices to show that the given bilinear form satisfies the required proper-

ties. (a) and (b) are trivially true, and the form (-, -) is clearly symmetric. For (c),
let x, y, z be homogeneous and

A(z) = Zzl ® 5.
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Then
(xy,z) = t(x| + [yD™" {xy, 2}

=t(]x| + YD Hx @ y, A2)}

= t(Ix[+ YD) eyl Iz {x 21} @ (. 22}

= t(Ix[ + [y Y eyl IxDe(xDe(yDex, 21) ® (3, 22).

Observing that
t(x], [yDedxDe(yD = (x| + [y])

finishes the proof. O
The following is a variant of a theorem due to Yamane [33, Section 2].

Proposition 2.4. There exists a unique nondegenerate symmetric bilinear form
() Ug xUg — Q(q)
satisfying
B (1,) =1
(B2) (ei.ej) =6, foralli, j €l
B3) (x,yz2) =(Ax),y®z), forall x,y,z € Uy.
Here we have used
(X' ®x", ¥y ®y") = (X, y )", ).

Proof. Let (-, -)sgn be the bilinear form appearing in [33, Section 2]. This bilinear
form was shown to satisfy the 3 properties in the proposition with respect to (2.6).
Take

t(w,v) = gPWrE)

and

{x’y}:()z’)_))sgn’ x’yqu'

Then the bilinear form (-,-) obtained from {:,-} satisfies the same properties,
by Lemma 2.3. U
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In [12, Proposition 3.3], the authors showed directly that the unsigned version
of the bilinear form for U, of type B(0,n) (and other anisotropic Kac-Moody
types) is well-defined. Our preference for this form is due to the fact that it agrees
with a bilinear form arising from categorification.

Proposition 2.5. Let
el:U; — Uy

denote the adjoint of left multiplication by e; with respect to the binear form:
(eju,v) = (u, e;(v)).
Then, e; satisfies

(1) ej(ej) = 8ij;
(2) for homogenous u,v € Uy,

el (uv) = ej(u)v + np(“)p(i)q_(“i"“l)ue{(v);
(3) for homogeneous u € Uy,
e/(u)y =0foralli €l < |u|=0.

Proof. Property (1) is obvious from the definition. To prove Property (2), let
x € Uy and write

A(x) = le ® X3.
Then,

(x, e} (uv)) = (eix,uv)
=((e; @1+ 1R¢e)A(x),u ®v)
= Z(eixl Rx, U R U) + Znp(xl)P(i)q—(ainlD(xl ®eixr, U U)

= Z(eixl, u)(x2,v) + Znp(xl)p(i)q_(“i’lxl|)(x1, u)(ejxa, v).

Note that if a summand of the second sum in the last line above is nonzero, then
|x1| = |u| and p(x1) = p(u). Therefore,

(x.ej(uv)) = Y (erx1.u)(x2.v) + Y wPWPOG=@0D () y)(eixy.v)
=Y (1, ef ) (x2,0) + Y wPPO =MD (e ) (3, €] (v))
= Z(xl ® X2, el (u) ® v 4 wPWPO) g=@iluDy @ ol (1))
= (x. e, (u)v + wPPD g=Ciluly ol (yy),

Since the form is nondegenerate, (2) follows.
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Finally, to prove (3), note that if |u| = v, then |e/(u)| = v — o;. In particular,
if lu| = 0, then e/(u) = 0 for all i € I. Conversely, if e](u) = 0 for all i, then we
have (e;, ---e;,,u) =0forallij,...,ig €landd > 1. As these monomials span
D, -0 Ug,v» and the form is nondegenerate, we must have |u| = 0. U

Corollary 2.6. The subalgebra € of Endg,)(Uy) generated by the e; fori € I is
isomorphic to Uy under the identification e; — e;.

Proof. Since the bilinear form is nondegenerate, the map e; — e; defines an anti-
isomorphism between U, and €; Composing with the map t defined in Proposi-
tion 2.2 yields the desired isomorphism. O

2.4. Defining relations for U,;. Define the g-commutator on homogeneous
u,v € Uy by

adgu(v) = [u, v]y = uv — np(”)p(”)q(l"l’l”l)vu.

Define the usual quantum integer and its super analogue for n € Zx:

qn _ q—n
[n] = —=
q9—dq
and
n,n _ ,—n
(n) = M_
g —q~
More generally, fori € I, set
g =q%.
;= np(i)’
and define
n n__ —n
%i g qil ifi € In—iso,
Tiqi —(q;
[i=9 ,
q; —d4; .
e otherwise,
q4i — 4;

m liln — 1) In =k + 1],
k),

N [];! ’

where n € Z and k € Z>y.
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Proposition 2.7 ([33, 34]). The algebra Uy satisfies the following relations when-
ever the given Dynkin subdiagram appears:

(Iso) eie; = —eje; fori, j €Iy with a;j = 0;
(N-Iso) fori € I U ln.iso and i # j,
N .
> (—1)’715’(’"”)[ +r|a”|].e,~rejef -0,

4

r+s=1+la;;|
where .
pii.jin = () p@)+rp@)p0):
(AB) for
O—Q@——0O  (sij # Sjk)
i J k
or
@=Q—O0
i J k
adge;j o adger o adgej(e;) = 0;
(CD1) for
O=——8—®
i J k
adge; o ad,(adge;(ex)) o adge; o adge; (ex) = 0;
(CD2) for
O—O0——®=—=<=0
i J k l
adgey o adgej o adgey o adge; o adgex o adgej(e;) = 0;
(D) for
J
i ®<I
k
adger o adgej(e;) = adge; o adgex(e;);
(FD) for
O=Q@=<=0—-=20
1 2 3 4
adgE oady E o adgeq o adge3 o adger =0,
where

E = adg(adge;(e2)) o adges(e);
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(F2) for
O=—=Q@—<=0—-"0
1 2 3 4

adq (adqel (62)) o adq (adqe3 (62)) o adq e3 (64)

= ad,(adges(ez)) o ady(adgeq(e2)) o adges(es);

(F3) for

Q=—Q=—=<=0

1 3 4

adges o adgeq o adges(es) = 0;
(F4) for
2
VAN
1 ®/:® 3
[3]adge; o adgej(ex) + [2]adge; o adge;(ex) = 0;

(G)) for

R——R==0

1 2 3

ad,E oadyE oad, E oadgez(er) =0,
where

E = adges(e3);
(G2) for

0—QR==0

1 2 3

adges oadges o adges o adger(er) = adges o adges o adges o adger(er);

(G3) for
&
1 ®/E\® 3
adge; o adgez(e3) — [2]adgez o adgei(e3) = 0;
(Da) for
é o
oL

[ + 1]adge; o adges(ez) + [a]adges o adgei(ez) = 0.
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Theorem 2.8 ([33, Proposition 10.4.1]). If the Dynkin diagram for Uy is of type
A-D, or the distinguished diagram in types F and G, then the relations given in
Proposition 2.7 are defining relations for Uy,.

3. Quantum shuffle superalgebras

In this section, we formulate a quantum shuffle superalgebra associated to a Cartan
datum of basic type, and construct an embedding of the half-quantum superalge-
bra U, into a quantum shuflle superalgebra. These form super generalizations of
constructions of Green [9] and Rosso [31].

3.1. The homomorphism ¥, 1. Let (I, IT, (;, -)) be a Cartan datum of basic type.
Let

F=F()

be the free associative superalgebra over Q(g) generated by I, with parity pre-
scribed by p(-) on L. Let W = I_Idzold be the set of words in F, i.e., the monoid
generated by 1. The identity element is the empty word @, and a general word will
be denoted by

i= (1,00 ....0q) =i1iz-ig.

Fori € I and k € IN, we will use the notation

Note that F has a weight space decomposition

F=EPFr

veQt

by setting

|(i1,...,id)|20li1 + ...ty

and extending linearly. We define

W, =WnNF,. (3.1)
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Finally, define the length function
LW — Zso
as
iy, ...,ig) =d. (3.2)
Let v € Q(g). We define the v-quantum shuffle product
Oy: FXF—F
inductively by the formula
(xi)ou(y)) = (xou ()i + mPTPOPD =A@ (xiyo, y) j, - (3.3)

and xou0 = Poy,x = x, for homogenous x,y € Fand i, j € . The quantum
shuffle products of interest will be those for v = ¢ or v = ¢~ !, so when there is
no chance of confusion we will write

o =04 and & =0, 1.
Iterating (3.3) above, we obtain

(i1s - eria) O Gatts - oviarn) = Y7y, ig@in),  (34)
o

where the sum is over minimal coset representatives in S, 15/S, X Sp,

e0)= Y plice)plis). and e(@) = Y (g ). (3.5)

r<a<s r<a<s

o(r)<ao(s) a(r)<a(s)
We call each
(io)s - -+ lo(a+h))
in (3.4) a shuffle of (i1, ...,isz) and (ig+1, - - -,iq+»). More generally, given x, y €
F such that

X = chw and y = Zdww,

we say that a word z € W occurs as a shuffle in x ¢ y if z is a shuffle of words
w1, w2 € W such that

Cw, dw, # 0.
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Proposition 3.1. The shuffle product is associative and satisfies
xoy = gPOPO =UxLyhy 5
where we have used the notation
o = <>q—1.

Proof. 'The proof is straightforward using (3.4). U

We call (F, ¢) the quantum shuffle (super)algebra associated to I.

We now describe the bialgebra structure on F with respect to the concatenation
product, and explain the relationship with the shuffie product. Equip F ® F with
the associative product

(wx)(y®z) = nP(X)p(y)q—(lxl,lyl)(wy) ® (xz),
where we use the concatenation product on each tensor factor. Then,
§:F—FQF

given by
i) =i®l1+1®i

is an algebra homomorphism with respect to the concatenation product on both
sides.

Lemma 3.2. The algebra F admits a symmetric bilinear form (-, -) such that

(L) =1,
and
(i,j)=20ij, fori,jel
(ij.k) = i®j.8(k), forijew,
where

(i1 ®1i2,J1 ® j2) = (i1, j1) (12, J2)-

Proof. 'This can be proved by a standard argument; cf. [28, 5]. U
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Note that there is an obvious surjective algebra homomorphism
Yv:F— U

given by

i —> e,
moreover,
Aoy =y ®@y)od,
and hence by Proposition 2.4,
i.j) =W, vQ).
Suppose thati =iy ---i,. Foranya < b € N, set
[a.bl={a,a+1,....,b—1,b}.
Then for any subset P = {k; < ... < ky,} of [1.n], define
ip =ik, ik,
so that ip is a word of length m < n. We have

siy= [] 8@ = [] Gr@®1+1®ir).

ke[1.n] ke[1.n]

where this non-commuting product is taken in the order k = 1,...,n

product can be expanded as a sum

Y. (P,

PC[1.n]
where
zZ(P)=121...2p
with
Zx=ir®1 ifkeP
and

k=1Q®ip ifk € P¢=[ln]\P.

. The last
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Now expanding z (P) using the tensor multiplication rule gives us
Z(P) = ES(O’P)q—e(UP)iP R ipe,
where op is the minimal coset representative in Sy, /Sy—m X Sy, satisfying
op([n—m+1n])=P

and e(op) and e(op) are defined in (3.5). Hence, for a word i € W of length n,
we have
si)y= > 7°Pg7Pip @ipe. (3.6)
PC[1.n]

Let F* be the graded dual of F. Then for any word i in F, we set f; to be the
dual basis element:
fi(G) = &, foralli,jew.

We endow F* with an associative algebra structure with multiplication defined by
(fe)(x) = (g ® f)((x)), for fgeF" x€F
Lemma 3.3. The map
¢: F* — (F,0), fir—i
is an isomorphism of algebras.

Proof. 1t is clear that the given map is a vector space isomorphism; it remains to
show the products match. Leti = (i1,...,iy) and j = (j1, ..., jm), and suppose
that k has weight [i| 4 |j|. Then by (3.6) we have

(k) = Z j-[S(UP)q—e(UP)kP ® kpe.
PC[1.n+m]

Then we see that
M= (f® HEK) =Y xtor)gmeor),
where the sum is over P C [1.n + m] such that
kp=j and kpe =i
Therefore,

fifi =Y A fie (3.7)
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On the other hand, by (3.4) that

ioj=Y 7¢Oy, lonim).
g

where
l.] = (ll’ cee ,lm—l—n),
0 € Sp4m/Sn X Sy is a minimal coset representative, and

P={on+1),....0n+m)}.

Let kK € Wjjyjj. Then Kk appears as a summand of i¢j if and only if
kK = (Iz(1)s - - -+ lo(n+n)) for some o such that Kg (n41.0+m] = J and Ko (1., = L
In particular, o satisfies

o=0cp forP =0o(n+1ln+m).

Therefore,
ioj=Y > xrgerk="3 Ak
k PcC[l.n+m] k
kp=j, kpc=i
Comparing this to (3.7) shows that ¢ is an algebra isomorphism. O

Corollary 3.4. There exists an algebra embedding
V:U; — (F,0g)
such that
W(e;) =i.
Proof. The epimorphism
V. F— U
induces an injective homomorphism of graded duals
v U — F
But since (-, -) on U, is nondegenerate,
Uy = Uy;

on the other hand, we just proved that F* =~ (F, ¢), and so the composition

v, Sur e S F o)

is the desired map. O
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Define
U=w(ly)

to be the subalgebra of (F, ¢ ) generated by 1.

3.2. The homomorphism ¥, II. In the case where the diagram for U, in Table 1
is of type A-D or the distinguished diagram in types F and G, we give an alternate
description of the homomorphism W above. This new description of W and then
U is suitable for computations later on.

For x, y € F, introduce the notation

XOg Y = XOgy — X0 ). (3.8)
Then Proposition 3.1 can be rephrased as
xoy— ”P(x)P(y)q(lxlalyl)y OX = X0y ,-1), (3.9)
for x, y € F homogeneous. We denote

i =io-0i
~————

r times

below, and recall s;; from (2.2).

Lemma 3.5. The following identities hold in F whenever the indicated Dynkin
subdiagram associated to U, appears:

(Iso) fori,j €1; with a;; =0,
ioj+joi=0;
(N-Iso) ifi # jandi € I U Lo,

N .
> (—1)’nf(lsf,r>[ +|“”|] %70 joi =0
i

r
r+s=1+la;;|
(A/B) for
O—QR——0O  (sij # Sjk)
i J k
or
@0
i J k

j Qq,q—l (k <>q,q_1 (] <>q,q_1 l)) = 0;
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(CDY) for
O=—0—=
i J k
j <>q,q_1 ((] Oq,q—l k) Oq,q—l (l <>q,q—1 (] Oq,q—l k))) = 0:
(CD2) for

O——0O0—8=<=0
i J k 1

koga1(joga-1koy—1(lo,,~1(koy,—1(joy,-11))))=0;

(D) for
J
,- (E
k
k <>q,q_1 (] <>q,q—l l) = ] <>q’q—l (k Oq’q—l l),
(F1) for
O=Q@=—==0—-"0
1 2 3 4
Eog g1 (E0g -1 (40,1 (30,,-12)) =0,
where

€= (10gq-12) 0441 304412
=(¢°+q%—q 2 —q %) (3122 + 1322) + (¢ — ¢~ 2)(1232);

(F2) for
O=Q=<=0—"0
1 2 3 4
(1 g4 2) g1 (3 g4 2) g4 3 g4 4))
=(3044-12) 0441 (104 4-12)0, ;~1 (30, ,-14));
(F3) for
R—Q=<=0
1 3 4

3 g4 (1 Og.q—] 3 Og.q-1 4)) = 0;
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(F4) for
2
VAN
1 ®/:® 3
[31( 0g.0-1 (J ©4.4-15)) + [21(J 044-1 (i 0441 k) =0;
(GD) for
Q=—=Q==0
1 2 3
€04 q-1(E054-1(E04 -1 (20,,-11)) =0,
where
&= (204,13 = ~(¢° —q)23);
(G2) for
0——QR==0
1 2 3
20454104 -1030,,-1(20,,-11)))
=30,4-120,,-130,54-1(20,,-11)));
(G3) for
2
/O
1 ®/E\® 3
10,,-1(204,-13)=[2](20, -1 (10,,-13)) =0;
(Da) for
2
®
1 ®_1_a® 3

[+ 1](1 0 41 (304 4-12)) + [l (30441 (16, 4-12)) = 0.

Proof. This follows from Corollary 3.4 and the corresponding relations for U,
given in Proposition 2.7. These can also be deduced directly by tedious (but
straightforward) computer calculation, which we omit. U
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Lemma 3.6. For eachi €1, define the Q(q)-linear operator

g:F—F

ei(it, .o ovig) = 68iiy(i1yevnvig—1)
and

(%) = 0.

Then, the endomorphisms & satisfy

&;(j) = 8ij
and
gi(xoy) =ei(x) oy + aPEPOg=@ilxD o ¢l (),
Proof. 'This is immediate from the definition and (3.3). O
Giveni = (i1,...,ig) € 19, define
e;=ej e el and & =¢ e g . (3.10)

Define a Q(g)-linear map

v:U, —F
by letting
W(u) = Z el(w)i, forueUy,y. (3.11)
iew,

(Here we have abused the same notation W as before, as it follows immediately by
Proposition 3.7 below that they coincide.) Since

ei(u) € U0 = Q(9),
this map is well defined. By Proposition 2.5, ¥ is injective and

V() =i foriel
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Proposition 3.7. When the diagram for U, is of type A-D or the distinguished
diagram in types F and G, the map

V:U; — (F, 0)

given by (3.11) is an injective algebra homomorphism (and hence coincides with
the W given in Corollary 3.4).

Proof. We have just seen the injectivity of W above. In the cases we are con-
sidering, we have by Lemma 3.5 and Theorem 2.8 that there exists an algebra
homomorphism

Y:U, — (F. o)

such that
Y(e;) =i foralli el

Using Lemma 3.6, this map satisfies
Y oej(u) =g} oY (u).
Letu € U;,,, and i € W,. Set y;(u) to be the coefficient of i in Y (). Then,
yi(u) = &0 T(u) = Y o ef(u) = ej) V(1) = ] (u).

where

Hence
Y(u) = Y(u)

and so W is an algebra homomorphism.
The W here and the W given in Corollary 3.4 coincide since both are algebra
homomorphisms satisfying W(e;) =i fori € L. O

Let I be the Dynkin diagram associated to U and let (I') be the set of subdia-
grams inducing relations associated to (AB)—(D) in Lemma 3.5. Then using (3.9),
we may rewrite the relation corresponding to I'” € (T") in the form

Y @)oo 0ig) =0, for i (i) € Q(g). (3.12)

i=@1,..., ig)EW
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Example 3.8. Let U be associated to the diagram

O—@—0O (sij = —1#sj=1).
i J k

The only subdiagram causing a relation of the form (AB)—(D) is the whole diagram
(which corresponds to (AB)) so

(T) =i j. k}

(where we identify the subdiagram with its set of labels). We have

o |-a ifie ik, jikjh,
ARV
g ifie tkijj: jkij).

0 otherwise.

Proposition 3.9. Let U be associated to a diagram of type A-D, or to the distin-
guished diagram of type F or G. The element

x=Y ykeF

kew
belongs to U if and only if the following statements hold for all h,h’ € W.

(1) Foralli, j € liso with ajj = 0,
)’h-ij-h’(x) + Yh-ji-h (x) =0;

(2) Foralli € I3 Ul o and j € Lwithi # j,

i [1+ laij]
Z (_1)rnip(l J )|: v ] )/h.,-r.j.,-s.h/(x) = 0;
r+s=1+la;;| ’ i

(3) Forall T’ € (T'), and with V1 defined as in (3.12),

Z V() yhin (x) = 0.

iew
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Proof. LetV be the subspace of F spanned by those elements that satisfy the state-
ments (1)—(3). Let

x=¥w= Y ykkel,

kew,|k|=v

be the image of some u € Uy. Then, fork = (ky, ..., kg),

]/(k) = el/((u) = (ekl "'ekd,u)

by definition. Then by Corollary 2.6, x € V.
Conversely, note that by Lemma 3.5 x € F satisfies (1)-(3) exactly when x is
orthogonal to a subspace of F* isomorphic to the kernel of the algebra surjection

F —s (F, o).

Therefore, we see that
V, =F, NV

has the same dimension as U,,,. As W is injective,
dimVU, = dimV,,

and therefore

3.3. Automorphisms of U. For

V= ZC,‘(X,‘ € Q+,

iel
we set

NQ) = %((V, V) — Zci (Oli,Oli)) (3.13a)
and “

P(v) = %(p(\))2 - Zcip(ai)), (3.13b)

iel

where here we interpret p(c;) € {0,1} and p(v) = ) ;cip(e;) as integers.
Below we realize certain automorphisms of U, whose counterparts for U,
were given in Proposition 2.2, as restrictions of simple linear maps on F (com-
pare [23, Proposition 6]).
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Proposition 3.10. (1) Let

T:F—F

be the Q(q)-linear map defined by
‘E(il, . ..,id) = (id, . .,il).

Then,
t(xoy)=1t(y)ot(x) forallx,y €F.

In particular,
tW(u) =VYr(u) forallu e Uy,

see (2.3).

(2) Let

XX

be the Q-linear map F — F such that

{nq‘l if Uy is of type B(0,n + 1),

‘ g ! otherwise,
and
m — gls<t p(is)p(iz)q—Zs<z(ais,ai,)(id’ o
Then,
X0y =Xx90y
and
W) =W@@) forallue Uy.
(3) Let

o.F—F
be the Q-linear map defined by

o(x) = 1(x).
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Then,
oW(u) =VYo(u) forallueU,
and for
V= Zciai € QJr
i€l
andieW,,
o(i) = 7 PWg=NOj,

Proof. First note that

Ploiy + ... +oi,) =Y plis)p(is)

and
N(aiy + ...+ a;,) = Z(ais,ait),

s<t

so (3) follows from (1) and (2). We need only check (1) and (2) when x,y € W.
Note that (1) is clear from (3.4). To prove (2), proceed by induction. Suppose (2)
holds provided £(x) + £(y) < n (the case n = 1 being trivial). Applying 7 to the
expression for (z(y)j) ¢ (z(x)i) given by (3.3), we have

(ix)o (jy) = nP(i)(P(Y)+P(j))q_(‘¥ia|Y|+‘¥j)l'(x o (jy)) + j((ix) o y).

Therefore, assuming
Lxi)+4L(yj)=n+1,

we have

(ix) o (jy)

= np(i)(P(y)‘l'P(j))q_(ai=|y|+0lj)l'(x o jy) + jlixoy)

= gPOPE) =@ XD (577
+ g PDEE)Fei+pO) =@ i +xXI+HYD G5y

— 7 POPE+PNPO) =@ D= 0D (5 o 5 )i

4 7 POPE+PDPO) PP+ g (@i~ i +x+ D (57 o 5y j
= gPOPE)+P(NPO) =i lxD=@ YD (5 o § )
= (ixojy).

This proves (2). ]
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3.4. The bialgebra structure of U. We now transport the bilinear form from U,
to U via W.

Proposition 3.11. Let

A:F—FQF
be the map
Alir.....ig) = Y (ikg1e---nia) ® (i1, k).
0<k=<d
Then,

Alx oy) = A(x) o A(y),
where we define the shuffle product on F ® F by
WRx)o(y®z) = np(X)p(y)q—(IXI,lyl)(w oY) ® (x o 2).

In particular,
AV = (U V)A.

Proof. For x € W, we write
Ax) = sz ® x1.
Then, for any i € 1,
Ai) =AX) - (@D +1®xi =Y x2i @ x1 + 1 ® xi,
where we have used the associative multiplication
w®x) (yRz) =wy ®xz.

Let x,y € Wandi,j € I. Assume the proposition is proved provided
£(x) 4+ £(y) < n (the case n = 1 being trivial). Suppose

Lxi)+L(yj)=n+1.
Write

A(x) = sz ® x1

and

A(y) = Z)’z @ y1.
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We compute
Axi 0 yj) = A(x o yj)i + 7 @P@TPOIPGD) g=(xl+ai0) (v o ) )
=Axoyj)-(i®1)
+1®((xoyj)i
+ g @@ TrOPG) g=(xlteia)) (A(xi o y) - (j ® 1)
+1®((xioy)j).
By induction, this equals
(Ax) o A(yj)-( ®1)
+ g PO+P@P() y=(x+eia)) (A(xi) o A(y)) - (j ® 1)
+1® (xioyj)

=[(Xwmexn)o(Xrnien+iey)|-ien

n ,,(p(x)+p(i))p<j)q—(|x|+a,-,a,-)[(ZW- ®x1+1® x,-)

o(Xwen)|-Gen
+1Q® (xioyj)
— Z j-[P(xl)(P()’Z)‘i‘P(j))q_ﬂxl I,Iyzl-i-otj)(x2 0 y2j)i ® (x10 1)

+ Y X2l ® (x1 0 y))

+ jT(P(x)+P(i))P(j)q_(|x|+‘1is‘lj)

Znp(xl)p(yz)q—(lxlI,Iyzl)(x2l- o y2)j ® (x10 y1)

+ jT(P(x)+P(i))P(j)q_(|x|+‘1is‘lj)

Zn(p(x)+p(i))p(yz))q—(|x|+ai,Iyzl)y2j ® (xi ¢ y1)

+1Q®((xioy))
— Z np(xl)(p(yz)+p(j))q—(|x1 |,|yz|+0tj)((x2 o y2j)i
+ j.[(p(xz)-i-l?(i))p(j)q—(lx2|+ai,aj)(XZZ- ©¥2)j) ® (x1 ¢ 1)

+ szi ® (x1 0 y;)

+ Z 7 @E)+pEN(p(»2)+p()) = x|+ y2+a;

q )y2j & (xi © y1)
+1® (xi 0yj)
= A(xi) o A(yj).

This completes the proof. O
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Remark 3.12. The formulas in this paper differ slightly from those appearing
in [19], where multiplication and comultiplication correspond to induction and
restriction at the categorified level. If we regard the shuffle product in this paper
as a map

me:U®U — U,

then the precise relationship with induction and restriction in a categorification of
U will be

[Ind]=7t0ome o(r® 1)
and

[Res] = (t®1)0o Ao,

As a consequence of Proposition 3.11, we obtain the following counterpart of
Proposition 3.11 via the algebra isomorphism

v:U; — U.
Proposition 3.13. There exists a symmetric nondegenerate bilinear form
():U®U— Q)
satisfying
O @ H=1L

(2) fori,j el (i,j) = éij;
3) (x,yoz)=(A(x),y®2z), forx,y,zel.

4. Combinatorics of words

In this section, we will develop word combinatorics for the g-shuffle superalgebra
following closely [23, Section 3] (which was in turn built on [25, 22]).

4.1. Dominant words and monomial bases. We now fix a total ordering <
on L. Let W = (W, <) be the ordered set with respect to the corresponding lexico-
graphic order:

i= (1 ....i0) < (1o Ji) =1

if there exists an r such thati, < j, andiy = jsfors < r,orifd < k and iy = j;
fors =1,...d (i.e.,iis a proper left factor of j).
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For x € F, we set
max(x) =i
if kj # 0 in the expansion x = Zjew kjj (where «j € Q(q)) and kj = 0 unless

i>]j. Awordi € W is called dominant (also called good in [23]) if i = max(u)
for some u € U, and let WT denote the subset of dominant words of W.

The following proposition proves that the set W* labels bases of U, and U.
The proof proceeds exactly as in [23, Proposition 12].

Proposition 4.1. (1) There exists a unique basis of homogeneous vectors
{mj | j e W}

in U such that
g(mp) =& if lil = ljl,
where 8; is defined in Lemma 3.6 and (3.10).
(2) The set

{ei=ej e, |[i=0(i1,...,iq) € wt)
is a basis (called monomial basis) of U,.
Fori = (i1,...,ig) € W, define
g =1010 - 0ig = Y(e).
Define the monomial basis for U to be
{ei|ieWT). 4.1)
The next lemma generalizes [22] (cf. [23]).

Lemma 4.2. Every factor of a dominant word is dominant.

Proof. This follows from the fact that U is stable under the action of ¢, and
e/ = te;r,i € 1. See [23, Lemma 13]. O
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4.2. Lyndon words

4.21. Awordi= (i1,...,ig) € W is called Lyndon if it is smaller than any of
its proper right factors:

i< (p,...,ig), forl<r<d. 4.2)

Let L denote the set of Lyndon words in W.

Leti € L. Call the decomposition i = i;i, the co-standard factorization of i if
i1, ip # 0,1; € L, and the length of i; is maximal among all such decompositions.
In this case, it is known that i, € L as well, see [25, Chapter 5]. Call the decom-
position i = i;i, the standard factorization if i;,1, # @, i, € L, and the length of
i, is maximal among all such decompositions. As above, we have i; € L as well.

We will frequently use the following lemma.

Lemma 4.3 ([23, Lemma 14]). Leti € L, and let i = iiy be its co-standard
factorization. Then,

i = ijii,
where r > 0, i} is a (possibly empty) proper left factor of i1, and i}i > i;.

We also have the following converse to this lemma.

Lemma 4.4. Ifi € Land j = i"Vi wherer > 1,1 is a (possibly empty) proper left
factor of i, and i < 1'i, then
jeL

Proof. It is enough to prove the statement when r = 1, the general case being

similar. To this end, assume i = (i1,...,iy) € L and j = ii’i satisfies the condi-
tions of the lemma. Then j = (iy,...,ig4,i1,...,ik,i). If j” is a right factor of j
then either

(1) j// = (ir,...,id,il,...,ik,i),or

Q) j" = (Gr,....0ig,0).
In case (1), we have

i= (il,...,id) <(ir,...,id)
sincei € L. As £(iy,...,ig) < £(i) we my conclude that j < j”. For case (2),
we have

i< (ir,...,id) < (ir,...,ik,i),

50 j < j” as well. This completes the proof. O
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Let L be the set of dominant Lyndon words in W. Note that
LF=Lnwt cwh cw.

It is well known [25] that every word i € W has a canonical factorization as a
product of non-increasing Lyndon words:

i=ip--ig, ip,...dgel, i > >iy. 4.3)

Lemma 4.5. Leti € Land j € W. Assume that i > j, and further assume i # j if
li| € Q7 is isotropic odd. Then

max(i¢ j) = ij.
Proof. We will prove a slightly stronger statement. Namely, we will prove that
max(ioj) <ij
and
(1) ifi > j, then the coefficient of ij in i ¢ j is 7 ?®2@ g—UiLliD apd,

(2) ifi = j, then the coefficient of i in i o i is 1 + 7?® gLl

Leti = (i1,...,ig) and j = (j1,...,jx). We prove this statement by a
double induction on £(i) = d and £(j) = k. To this end, suppose £(i) = 1,
ie.i=iy =i el Ifi > j theni > jj, soclearly max(i ¢ j) = ij and ij occurs
with the coefficient given in (1). If j =i, then j = j; =i and

ioi=(1+nPDg=@ie)(j).

Hence (2) follows.
Now, suppose that £(j) = 1,s0j = j; = j € L. The casei = j is treated above,
so assume thati > j. Then, j < i;. Assume

k:(klvskd-‘rl):(ll!7lr—lyjslrysld)

is any word occurring as a nontrivial shuffle ini¢ j. Then, k, = j < i; < i;,
so k <ij and (1) holds.
We now proceed to the inductive step.
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Cask 1:i > j. Leti = i;i, be the co-standard factorization of i and recall that i,

is of the form i, = i]i}7, see Lemma 4.3. Then, if k occurs as a nontrivial shuffle

in i ¢ j, there exists a factorization j = j1j, such that k occurs in (i; ¢ j1)(i2 © j2).
Ifi; > ji, then by induction on £(i), max(i; ¢ j;) < i1j;. It now follows that

k <iiji max(iz ¢ j2).

Since j < i < i, induction on £(i) implies that max(i, ¢ j) = i,j and any nontrivial
shuffle is strictly smaller. Now, since any word occurring in j; (i ¢ j») is a proper
shuffle in i, ¢ (j1j2) = iz ¢ j, we have

k < i1j1 max(iz <>j2) <i max(iz <>J) = lJ

Assume i; < j;. Since i > j, we must have j; = i,j} with jij> < i,. Note that
any shuffle occurring in i; ¢ j; must occur in (i;; ¢i;)(i12 ¢ j}) for some factor-
ization i; = ij1i12. By induction, max(iy; ¢i;) < ijijq, so

k <ijipg max(ilz <>J/1) max(iz <>j2).

Any word occurring in i;;(i12 ¢ j}) must also occur in i; ¢ j}, and any word
occurring in iy (i; ¢ j})(i2 ¢ j») also occurs in iy (i ¢ (j}j2))-

Seth = j{j». If h < i, then induction on £(j) implies that max(i o h) = ih and
any proper shuffle is strictly smaller. Hence,

k <ijipp maX(i12 <>J/1) max(iz <>j2) <i max(i<>h) = lll;_Hl/llh <i< lJ
We may, therefore, assume that h > i.

Recall thath < i, = i}i}i. If h <ili|, then h < i since i}i] is a left factor of i.
This contradicts our assumption, leaving us to consider the case where h > ifi}.

Since h < iy, it follows that h = ii}h’, where h’ < i. Suppose for the moment
thath’ = j € I,ie. h =ili}j, j <i. Since h > i, i} > i; and, therefore,
h € L by Lemma 4.4. Since £(h) < £(i) we may apply induction to conclude that
max(ih) < hi. Hence,

k <iyifijji <i=1i"i <ij.
More generally, whenh’ = jh” is not a letter, any word in i; (i ¢ h) can be obtained
by first shuffling i}i} j into i to obtain a word i1 = i;(l; j1»), and then shuffling h”
into ;. Since we already have proved that the maximum of the i;1; j1, appearing
this way is i7T1i, ji, i77'¥}j <iand £(i;"'¥|j) = £(i), the same holds in general.
This finishes Case 1 and proves (1).
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Caske 2:1i = j. This case is almost identical to Case 1 except in the last step where
now h = ifi}i. From this we see that there are exactly two ways in which ii occurs
ini¢iand (2) follows. O

The next statement follows immediately from the proof above.
Corollary 4.6. Assume thati € L and |i| = v is isotropic odd, then
max(i¢oi) < ii.
The next proposition now follows as in [23, Proposition 16].

Proposition 4.7. Leti € Lt and j € WT with i > j, and further assume i # j if
li| € Q7 is isotropic odd. Then,

ijew.
Theorem 4.8. The map
i— i
defines a bijection from Lt to ®. Moreover, i € W if and only if its canonical

factorization is of the form i = iy ---i,, where iy, ... i, € LT satisfyi, > ... > i,
and iy appears only once whenever |is| is isotropic odd.

Proof. We prove both statements simultaneously by induction. Let
LF={iel™ | €@ =n),
@) ={f " |ht(B) =n}

and let W® be the set of words in W satisfying the conditions of the theorem.
By Proposition 4.7,
we cwt.

Assume that for » < n there is a bijection
LF — oF,

and
W® = w*  whenever ht(v) < n
v — Yy .

The base case is the bijection

Lf =1<«— 1 = of.
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We now proceed to the inductive step. Let < be an arbitrary total ordering on
®*. Forv e O, let
d(v) =dimUy,,

and define
d'(w)={(Br.....0a) € (@D |d =2, pr= - = Ba. P+ ...+ Ba = V}I.
Then, by the PBW theorem for U, (cf. [33]),
dw)=1+d'(v) ifvedt
and
d(v) =d'(v) otherwise.
Assume thati € L}, |i| = v € Q. By induction,
WP\{i} > d'(v).
Since W& c W, and |[W}| = d(v),
dw) = |WH > W8 > 1+d'(v) > d(v).
This forces
dw)=1+4d'(v)

and, therefore, v € dD,J[ . Moreover, it follows that i € W,Jj is the unique Lyndon
word of its degree. Hence, the map L — @ is injective and W® = W whenever
ht(v) = n and L # 0.

We now prove this map is surjective. To this end, let 8 € ®;. By induction
|W§9| > d'(B) and |W§9| > d’(p) if and only if L; # @ (in which case there is a
unique i(B) € L;). Suppose that the map is not surjective; that is, |W§| = d’(B).
Then, there exists j € W;\W? with j = ji---j, with i = j; = js+1 odd isotropic
for some s. If j # ii, then ii € W by Lemma 4.2. Since £(ii) < £(j), Wgam = W;rlil
and so ii € W®, contradicting the definition of W®. But, the only alternative is
j = ii, which implies both 2]i| = B and |i| are in ®, contradicting the fact that
@7 is reduced. It now follows that

WP =d(v) = W]

for all v € QF, which completes the proof of both statements of the theorem. [
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4.3. Bracketing and triangularity. For homogeneous x, y € F, define

@) p(») (le,lyl)yx_ 4.4)

[x.ylg = xy —n” q
When i € LT, we define [i]T € F inductively by

[t =i ifi=icel
and

[i]t = [i1,i2]; otherwise,

where i = i1, is the co-standard factorization of i.
The next two propositions are proved exactly as in [23, Propositions 19 and 20].

Proposition 4.9. Foric LT,
[t =i+,
where x is a linear combination of words j € WY satisfying
j> i

Now, fori e W, leti = iy ---i,, where iy,...,i, e LT andi; > ... > i,, be its
canonical factorization. Define

{" = []* -7
Proposition 4.10. The set {[i]* | i € W} is a basis for F.

Now, let
E:(F,-)— (F, ¢)

be the algebra homomorphism defined by
E(il,...,id) =010 0lg.

Obviously, we have E(F) = U. The next lemma generalizes [23, Lemma 21] with
an identical proof.

Lemma 4.11. A word i € W is dominant if and only if it cannot be expressed
modulo ker B as a linear combination of words j > i.
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4.4. Lyndon bases. Foriec W' we define
R; = E({i]").

Proposition 4.12. Leti € LT and i = i,iy be the co-standard factorization of i.
Then,

Ri = Ri1 Oq’q—l Riz-

Proof. Observe that iy, iy € LT by Lemma 4.2 and §4.3. Therefore, we compute
that

Ri = E([]*. 2] "]0)
= E([]") 0 B(fia] ) — w? PR WD E ([i]7) 0 B ([T

=R;, oR;, — j.[P(il)P(iz)q—(lilI,Iizl)RiZ oRyj,.
The proposition now follows by applying Proposition 3.1. O

Recall the monomial basis from (4.1). The next result generalizes [23, Propo-
sition 22].

Proposition 4.13. Fori € W, we have

Ri=¢ + Z Xij €j,
jewt, j>i

for some xij € Q(q). In particular, the set {R; | i € WT} is a basis for U.

Proof. By Lemma 4.11 we have

[T ei+ D yijj +kerE,
jewt,j>i

for some yj; € Zlg,q~']. Therefore, the first statement follows by applying E.
The second statement follows since the transition matrix from the monomial basis
is triangular. U

Call the basis {R;j | i € WT} the Lyndon basis for U. The following theorem
is an analogue of [23, Theorem 23] and is immediate from Theorem 4.8 and the
definitions.
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Proposition 4.14. The Lyndon basis has the form

ip,...,ip € L+,
Rij, ¢ - oRy, |i1 = -+ > iy, and
1 k
ig_1 > 15 > iy if |is| € CID%L is isotropic

4.5. Computing dominant Lyndon words. Giveni € L, write
i=i"(8)
if B € ®* is the image of i under the bijection LT — &7 (i.e. |i| = B).

Proposition 4.15. Let B1, B> € ® be such that B1 + B> = B € ®T. Suppose
that it (B1) < it (Ba). Then

it (BDIT(B2) <17 (B).

Proof. 'This proof essentially proceeds as in [23, Proposition 24]. Indeed, write

iy =it (B1).

i =i"(82)
and

i=i"(p).
We have that
Ri] <>Ri2 = Z Zj Rj,
jewt, j=iria

where zj € Z[q, ¢~ "]. It is therefore necessary to show that z; # 0.
For this, we appeal to [33, Theorem 10.5.8] which provides a specialization
x +— x from Uy, to U(n). Write

si= VI (Ry) forjewT,

Then s; € n being an iterated bracket of Chevalley generators. We have that
si = [si;, Si,] belongs to the B-weight space of n, which is I-dimensional and
spanned by s;. Therefore,

Siy Siy = nP(il)p(iz)sﬁsl_i_Aﬁe U(n)

for some nonzero A € Z. It now follows that z; # 0 and hence i > i;i,. O
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This yields an inductive method for computing dominant Lyndon words as
described in [23, §4.3]. We recall it here. Let

C(B) ={(B1.B2) € T x ®1 | B1 + B> = Bandit (B1) <it(B2)}.

Then, the next proposition is a super-analogue of [23, Proposition 25].
Proposition 4.16. For f € ™,

i"(B) = max{iT (BI* (B2) | (B1. p2) € C(P)).

Moreover, if (B1, B2) € C(B) achieves the maximum, then

it(B) =it (Bt (B2)

is the co-standard factorization of it (B).

Corollary 4.17 ([23, Corollary 27]). For B € ®%, it (B) is the smallest dominant
word of its degree.

4.6. Further properties of Lyndon bases

Lemma 4.18. Leti = (iy,...,ig) € L*. Then, i, is a left factor of every word
appearing in the expansion of R;.

Proof. Proceed by induction on the length of i, the case i = i; € I being trivial.

For the inductive step, let i = ijiy be the costandard factorization of i.
By [23, Lemma 14], i, = i}iji where r > 0, i} is a (possibly empty) left fac-
tor of i; and i € Iis such thati}i > i;. By Proposition 4.12,

Ri = Rj, ¢, 41 Rj,.

By induction, iy is a left factor of every word in the expansion of R;,.
If i, = i}i}7 with either r > 0 or i} # @, then i; is a left factor of every word in
the expansion of R;, and therefore the same holds for R;. Otherwise, i» = i, and,
if K = (i1,k2,...,kg—1) is a word appearing in the expansion of R;, then

koi = gP00PO =@ (k. kg_y)oi) + ik.

In particular, i, is a left factor of every word appearing in k ¢, ,—1 i. This proves
the lemma. O
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Lemma 4.19. Fori € Lt, we have max(R;) = i.

Proof. We proceed by induction on the length £(i), the case i = i € I being clear.
For the inductive step, let i = iji, be the co-standard factorization of i € L.
Induction applies to iy and i, so max(R;,) = i; and max(R;,) = i». In particular,
max(R;j, ¢Rj,) < max(i; ¢iy). Since i; < i, and the words appearing as shuffles
in i; ¢, are the same as the words appearing as shuffles in i; ¢ i, and i, ¢ iy,
Lemma 4.5 implies that

max(R;j) = max(Rj, ¢, ,~1 Rj,) < i2iy.

Now i»i; only appears in R;, ¢ R;, as a summand of i; ¢ i, and using 3.4 we see
that it appears with coeflicient equal to 1, hence

max(R;) < izij.

We will prove that if k € W™ occurs as a shuffle in Rj, ©Rj,, and
iji; < k < iy, then k = i;i,. To this end, we use Lemma 4.3, which says
that i, = i]i}i where r > 0, i} is a (possibly empty) left factor of i; and i € I'is
such that i}i > i;.

Assume k = k; - -k, is the canonical factorization of k into a nonincreasing
product of dominant Lyndon words. Write iy = (i1, ...,iz) and iy = (i1,...,i,).
If k occurs in Rj, <>Ri/1,~, then by Lemma 4.18, k; = (iy,...). Asi; is Lyndon,
we have i; < is for any s < d. In particular, the inequality k; > k; now implies
that k;, = (i1, ...) forall 7.

Assume until the last paragraph of this proof that if U of type F(3 | 1) in Table 1
we consider only its distinguished diagram and 3 € I is not minimal, or if U is of
type G(3) in Table 1 we consider only its distinguished diagram and 2 € I is not
minimal. Here, 3 € I (resp. 2 € I) refer to the labels appearing in Table 1 for the
distinguished diagrams marked by (x).

An inspection of the root systems of basic Lie superalgebras implies thatn < 3
since |k| € ®%, and no;, appears in its support. It follows that if i1 occurs only
once in i, then k = k; is Lyndon. Since |k| = [i| we must have k = i as i is the
unique dominant Lyndon word of its degree. The n = 3 case can only occur in
type G(3) (see [33, p.45]) and corresponds to |i| being a root of the Lie algebra of
type G, where the result can be verified by inspection of [23, §5.5.4].

Let us now consider the case where i; appears twice in [i| and suppose
k = k;k is the canonical factorization of a word k € W* appearing in R, o R;,.
We want to show that k, = @, so suppose otherwise. By the assumption in the
cases of F(3 | 1) and G(3), we have i = i;i,, where i, = i}i and i’ is a left factor
of i; (now, possibly empty or equal to i).
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Suppose first that i{ # @. Let h be any word occurring as a summand in R;, ,
let 1 be any word occurring as a summand in R;,, and assume that kK occurs as a
shuffle in h ¢ 1. First observe thath = (i1, /2, ..., hy) andl = (i1, 14, ..., [l.) with
iy < hyand iy < [, for all s, . Note K; # h unless h = i; and, since k, € L+
is the unique dominant Lyndon word of weight |i| — |i1|, k, = i, = 1. Similarly,
k; # lunless 1 = iy and k, = i; = h. The case k; = 1 contradicts the fact that
k < i»iy, and the case k; = 1 contradicts k; > Kk,. So in either case, we arrive at
a contradiction.

Next, observe that k; is not a proper left factor of h. If it were, then ki k, <
h <i; <ijip, sincekiky = (i1, ha, ..., hy,i1,...) forsomer < d and iy < h, 41,
which is a contradiction with the choice of k. Similarly, k; is not a proper left
factor of l. If it were, then it would be less-than-or-equal-to the corresponding left
factor of i. As i, = i}i, any proper left factor of i, is a left factor of i;. Hence,
following the analysis of left factors of h, we arrive at a contradiction. But then if
k; is not equal to a left factor of h or 1, it must contain both i;’s, contradicting the
assumption that k, # @.

We are, therefore, left to consider the case where i{ = @, soi = i;i. Then,
i1 = jij, where i = jij» is the standard factorization of i and j, = j,i (ie.
Jj2 is a Lyndon word of maximal length). We clearly have j; and j, of the form
j1 = (1,...) and j» = (i1,...) and, since i is Lyndon, j; < j,. In fact, since
jij, =iy is Lyndon,

j1 <5 4.5)

Claim (). R; = Rj, 0, ,—1 Rj,.

Assume the claim (x) for the moment. Then, any k = k;k, € W' occurring
in R; must occur as a shuffle h o1 where h < j; occurs in R, and 1 < j, occurs
in Rj,. As before, k; cannot be a left factor of h as this would imply k = k{k; <
jijo = 1. We also cannot have k; as a left factor of 1 unless k; < j; (in which
case k < i). Otherwise, write | = k41”. Then, |k,| = [j1| + [I”|. While it is not
necessarily true that [1”| € ®T, there exists 8 € ®T U {0} and y € ® such that
li1] + B € @t and |ji| + B + y = |Kkz| (choose a, € I in the support of |I”|
such that |j;| + «, € ®* and continue this process one simple root at a time until
arriving at 8 such [I”|—8 € ®*). Lets € L™ be the unique word of degree |j; |+ B.
Since i; is not in the support of [I”], it is not in the support of 8. Consequently,
j1i(B) > jijo = i. Therefore, by Proposition 4.16, it follows that s > j; - i(8) > i.
Hence,

k, >s-i(y) >s>1.
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Appealing to Proposition 4.16 again, we see that (|k»|, |k;|) € C(|i|) and k k; > i,
contradicting the maximality of i. But again, if k; is not equal to a left factor
of h or 1, it must contain both i;’s, contradicting the assumption that k, # @.
Then we see that k, = @ and k is Lyndon, in which case the claim was al-
ready proven. Therefore, we see that max(R;j, ¢ Rj,) < i. On the other hand,
R; = Rj, ©R;, is a nonzero element in Uj;, hence has a dominant word appearing
with nonzero coefficient. Then by Corollary 4.17, this implies i appears with a
nonzero coefficient and so the Lemma holds assuming (x).

Finally, we prove the claim (x) by induction on £(j,). To begin induction,
we note that i = i,i, where i; = jij»’, is the co-standard factorization and the
computation below will eventually reduce to the case where the standard and
co-standard factorization of jij,’ coincide (i.e. j,' = ji’j with j;’ a left factor
of ji).

We now proceed to the inductive step. Observe that, by (3.9),

Rj, oi = nP(jl)P(i)q_(UIL‘xi)l' SRy, (4.6)

since every word appearing in R;, is homogeneous of degree |ji .
Now, the co-standard factorization of j, is

2 = (2D,
)
Rj 0441 Ry

= Rji 0441 Ry, 0g4-11)

=Rj, ¢ Ry ©i) —Rj, ¢ (R ¢1) =R, ¢ (R, ©1) + Ry, ¢ Ry i)

=Rj, ¢ (Rjz’ i) — ”P(iz/)P(i)q(ljz’l,ai)le o (i <>Rj2’)

_ ”p(iz)p(i)q—(ljz’l,wi)le (i 3Ry,) + Ry, 8 (R, 51),

where we have used (3.9) for the last equality. On the other hand, the standard
factorization of i is

i =juj2.
As £(j2") < £(j»), induction applies and

Rj; = Rj, 0441 Rj/z'
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Hence,

Ri =Ry 04411

= (Rj, Cg.q—] Rjz’) Oqq—11
= (Rj, oRy) ¢i = (R}, oRj,) i — (Rj, o Ry, ) oi + (R, o Ry /) i
= (R;, <>Rj Noi— nP(il)P(i)-i-P(iz/)P(i)q(ljl|+|j2/|,f¥i)i o (Rj, <>Rj )
2 2
_ ”P(jl)P(”“‘P(jz/)P(i)q—(Lil|+|j2/|7‘1i)l' 3 (R}, <_>Rj2’) + (R}, <_>Rj2’) S,
where we have used (3.9) to obtain the last equality. Finally, using Equation (4.6)
and the associativity of ¢ and <, The claim (x) follows.

Finally, we consider the remaining diagrams and orderings when U of
type F(3 | 1) or G(3). There are 6 orderings to consider in F(3 | 1) and 2 or-
derings to consider in type G(3). Inspection of the root systems shows that the
argument above proves that max(R;) = i unless |i| is either oy + 205 + 303 + a4 Or
a1 + 205 + 303 + 204 intype F(3 | 1), or [i] is o1 + 302 + a3, o1 + 32 + 203,
or a1 + 4oy + 2a3 in type G(3). A direct computation of R; in these cases yields
the theorem. O

5. Orthogonal PBW bases

In this section we will define a basis of PBW type for U and show it is orthogonal
with respect to the bilinear form on U.

5.1. PBW bases. Leti = i(8) € L* for 8 € ®*. Set

dg = max{|(8, B)|/2. 1},

and define the quantum numbers

[2];  if (B, B) = (@i, ;) and B € DF U

[n]g = . ° iso’
{n};i if(B,B) = (o,a;)and B € O, .

Leti = i(8) = iip = i(B1)i(B2) be the co-standard factorization and set

pi=max{p € Zzo | f1 — pB2 € ®*}.
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Define «; inductively by the formula
ki=1 ifi=iel
and
ki = [pi + 1]p, ki ki, otherwise,
where
(Br. Br) = min{(B1. B1). (B2. B2)}

(note that there is no ambiguity in this definition since in all cases where «; # 1 and
(B1,B1) = (B2, B2) we have p(B81) = p(B2)). Recalling the anti-automorphism
o on U from Proposition 3.10 and the Lyndon basis {R; | i € W*} for U from
Proposition 4.13, we define

Ei =« 'oRy), ielt. 5.1)

We note that in the case of Lie algebras, this renormalization factor is the one
computed in [3, Theorem 4.2].

More generally, if i = i}’ "'i';d is the canonical factorization of i with
ip > --- >y, set
E;=E'"" o ... oE" (5.2)

where, for j € LT, we have denoted
E( =E" /[n];!.

We first state the following theorem, which is a generalization of [23, Theo-
rem 36] and follows from Lemma 4.19.

Theorem 5.1. Forallie WT,
max(R;) = max(E;) = i.

Proof. It follows by Lemma 4.19 that max(E;) = i, for i € L™, since E; is propor-
tional to o (R;j). Now the theorem follows by applying Lemma 4.5. O
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Corollary 5.2. Ifi € LT, then
EioE; = 0.
Proof. By Theorem 5.1 and Corollary 4.6,
max(E; ¢ E;) < ii.

However, by [19, Lemma 5.9], ii is smaller than any dominant word of degree 2|i|.
Hence, E; ¢ E; must be 0. [l

Proposition 5.3. For eachi € W, there exists ki € A such that
Ki=ki and E;= Ki_l o (Ry).

Proof. 'This is by definition, taking

d
ki = [ | iy [nshiy - (5.3)
s=1

See (5.1) and (5.2) above. O

It follows from Propositions 4.13 and 5.3 that {E; | i € W'} forms a basis for
U, which will be called a PBW basis.

Proposition 5.4. Foric W™, we have

Ei =5 ey + Y oijee(p).  Jor g € Q(9).

j=>i
Proof. 'This is immediate from Proposition 4.13 and Proposition 5.3. U

The next theorem is often referred to as the Levendorskii—Soibelman formula,
see [24].

Theorem 5.5. Supposei,j € LT withi < j. Then,

o B = k

E_] <>El - Z Cl,JEk
kew™
ij<k<ji
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Proof. By Proposition 5.4,

Ej o Ej = (Kj_lgr(i) +) “j,kgr(k)) (Ki_ ey + Y “i’k‘gf(k))
k>j k>i

= D Fiew

Kkew k>ij

By Lemma 4.11, if k ¢ W, then

Er(k) = Z VYk,h€z(h)-
hewt h>k
Therefore,
EioEj= )  cfEk.
kewt
ij<k
On the other hand, by Theorem 5.1, it follows that Cilfj # 0 only if k < ji. O

5.2. Orthogonality of PBW basis. We will prove that the PBW basis defined in
the previous section is orthogonal with respect to the bilinear form on U.

Lemma 5.6. Forie L, we have

AB) = Y 9 ,E, @B, for ¥} ; €Q@).

i, irewt
where 19}1 i, = Ounless [iy| + [iz] = [i| and
(1) iy <1i, and
(2) i <ip wheneveri, # 0.
Proof. Observe by Theorem 5.1 that
Ei =) i,
j=i
for some ¢jj € Q(q), so
AB) = Y ijlia ®Jv).
s
Jx=j=i

Since j; < j <1, part (1) follows.
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We now prove (2) by induction on the length of i, the case i = i € I being
obvious.

To proceed to the inductive step, we need to make a few observations. First,
given i € LT, E; is proportional to

O(R) = 0(Ry,) 00 (Ry,) — w7 PERg= =D Ry)) 0 0 (R, ),

where i = i;i, is the costandard factorization of i. In turn, the right hand side of
the equation above is proportional to

Ej, o B, — n?002@) = (ill2DE; o F,
— _7.[1)(i1)1?(i2)q—(|i1I,Iizl)(Eil O g1 Ei,).
Therefore, it is sufficient to prove the lemma for E;; ¢, ,—1 Ei,.
To this end, write
i1 =j and i2 =k
and note that induction applies to E;j and Eg. Observe that if
ABjoBy) = > zni(En ® Ep),
h,lew+

then

ABjo, -1 E) = Y (zn1—Zn)(En ® Ep) (5.4)

h,lew+

since, replacing ¢ with ¢g~!
morphism with respect to the (¢

in Proposition 3.11 shows that A is an algebra homo-
~1, )-bialgebra structure on U ® U:

WRx)d(y®z)= nP(X)P(Y)q(|x|s|)’|)(w 3Y)® (x32).
On the other hand,
A(Ej 0, 41 Bx) = A(Eg 0 Ej — n?@P® 4 =ULIKDE, o By).

By Proposition 5.4, the transition matrix from the PBW basis to the basis
{exg) | j € WT} is triangular. Therefore, applying our inductive hypothesis,
we have

AEBjoB) = Y ¥ 4, (Ej, ®Ej) 0 (B, ® Ey,)
J1=<i<j2
ki <k<k>
= ) OnEn®E

h>k»j>;
1=K j;
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and similarly

A(Ex ¢ Ej) = Z ﬁllzlkzﬁjgljz(Ekz ® Ek,) o (B, ® Ej))

ki <k<ka
J1=<i<ij2
= > ©,,En®E.
h>joks;
1>k

Comparing these equations to (5.4) we deduce that ®n) # 0 if and only if

@;1,1 # 0.
Now, assume zp) — zp1 # 0. The previous paragraph implies that

h > maX{jzkz, kzjz}.

If j» # 0, then j # @ and we obtain the inequality h > j,k, > jk = isince j, > j,
k, > k and these are right factors of j and k respectively (note that if j, is a proper
right factor, we don’t need to consider k and k, at all). If j, = @ and k, # @, we
have h > k, > k > jk since, by Lemma 4.3, k = jj'j where r > 0, is a
(possibly empty) left factor of j and j € I satisfies j/j > j. If both j, = k, = @,
the equality |h| = |j2| + |kz| forces h = @. This proves part (2) and hence the
lemma. ]

Theorem 5.7. Leti,j € W, Then,

(Ei,Ej) =0 unlessi=j.

e on n . . . . . . o .
Moreover, ifi = i)' ---i)7, iy > -+ > ig is the canonical factorization of i into

dominant Lyndon words, then,

d
. e (Ei/s Ei/)n[

(E’E) — T[Elq (41 | |
is Bj e [n1]3,!

’

where

d d c
Ei:Z(mz_l)P(il) and clzz(g)w (5.5)

=1 =1

Proof. We proceed by induction on the length of i, the case i = i € I being
trivial. We first show that the theorem holds when i € L. Indeed, suppose j # i
and let j = j;---jr, where j; > j>--- > jr, be the canonical factorization of j.
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Then, (E;, E;) is proportional to
> 0 i, (Bi, ® i, Ej, ® (Bj,_, o -+~ oEj)))

= Z 19111 ,i2 (EiZ’ E,]r)(Ell ’ (Ejr—l Ot O E.]l))

where the sum is over iy < i < i, by Lemma 5.6. By assumption [j,| # |i,
so we may take the sum to be over iy < i < ip. Therefore, since j, € L* has
shorter length than i, we may apply induction to conclude that the nonzero terms
in the sum above satisfy i, = j, € LT and j; ---j,—; = i;. But, now we have the
inequalities

(5.6)

hi<jijrm1=i1 <2 =jr <j1,
which is never satisfied. Hence, (E;, Ej) = 0.

Now, leti, j € Wi be arbitrary and assume we have shown that {Eg | k € W:[} is
an orthogonal basis for U, whenever 1+ < v in the dominance ordering on O (the
base case v € II being trivial). Leti = i; ---iy and j = j; - - - j» be the canonical
factorizations of i and j into a nonincreasing product of dominant Lyndon words,
and assume, without loss of generality, that i; < j;. Ifi € L™ or j € LT, then
we are done, so assume that both r, s > 1. Then, (E;, E;) is proportional to (up to
some suitable product of quantum factorials)

(Eis O oeee OEilijr Qe <>Ej1)
= (A(Ej) ¢ --- o A(E;), (Ej, ¢ -+ ©E},) ® Ej))

= Z Dy 2peis 2 (B, © o oEj ,.Ej, 0 --- 0Ej,)(Ei;, o --- oEj | Ej)),
(5.7)
where this sum is as in Lemma 5.6; in particular, i;; < i, i;; € W™, for all

1 <t < s (note that i;,; may be 9).

Claim (xx). We have (E;, , o --- o E;, |, Ej;) = O unless there is a unique k such
thatiy; = ji andi,, = @ fort # k.

It is not necessarily the case that E; |, ¢ --- ¢ E;, | belongs to the PBW basis,
so we cannot apply earlier arguments. Therefore, suppose that k is maximal such
that iy ; # 0. Then,

_ 1 . . . . .
(Eip, o - OEil,l’Ejl) = Zﬁjl’l,jl’z(Elk,l’EJ1.2)(E1k—1,1 © "'E11,1’EJ1,1)
where the sum is as in Lemma 5.6. Consider one such term in the sum above:

(Eik.l ) Ejl,z)(Eik—l.l O 'Eil.l ) Ejl.l)' (5.8)
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Assume this term is nonzero. Since |ix,1| < |ix| < |i| and [j2,1| < [j1| < |j| in the
dominance ordering on O, induction on Q *-grading implies that

(Ei - Ej,,) =0 unlessit; = ji2.

Therefore, ji,» # @ and ji,» = k1 < i < i1 <ji < ji,2. Hence ji» = ji and
J1,1 = 0. Since (5.8) is nonzero,

(Eik—l,l < "'Eil,l’Ejl,l) = (Eik—l.l o-Ey . 1) # 0,

SO ig—1,1 = -+ =1i1,1 = 0. Claim (x«) follows.
Now, assume that
(Eis_1 (o] OEil,l’Ejl) 75 0.

Then, there is a unique k such thatiy; = j; andi;; = @ fort # k. Since
j1 =ik <ig <iy <j1, it follows that i ; = iy = i1 = ji.

Let n; > 1 be maximal such thati; = i, = -+ = i,,. Then, it follows from
the previous arguments and the algebra structure on U ® U that (5.7) becomes

(Eis (R OEil’Ejr (RN <>Ej1)
=1+ nP(il)q—(ﬁlHilD 4t n(”l—l)P(il)q—(nl—l)(“l|7|i1|))

(Eis o - 0oFE Ejz O e OEjz)(Eil,Eil).

i
We may now complete by induction the computation of
(Ei; © --- ©E;;,Ej. 0 -+ 0Ej))

ig
and then (E;, E;), which yields the formula as stated in the theorem. ]
Now we define the dual PBW basis for U

Ef = Ei/(Ei,E), foriew®, (5.9)

6. Computations of dominant Lyndon words and root vectors

In this section we will compute the dominant Lyndon words, Lyndon and (dual)
PBW root vectors explicitly for general Dynkin diagrams of type A-D. Through-
out this section, we will set M = m +n + 1 and continue to order I = {1,..., M}
as specified in Table 1. We also remind the reader of the notation s;; from (2.2).
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6.1. Type A(m,n). A general Dynkin diagram of type A(m, n) is of the form

O—0 - O—0O0—=0 - O—0
1 2 n n+1 n+2 M-1 M

The next proposition computes the set of dominant Lyndon words inductively
using Proposition 4.16.

Proposition 6.1. The set of dominant Lyndon words is
LY ={G,.... )| 1=i=<j=M}

Having computed L+, we compute the Lyndon basis using Proposition 4.12.
Fori=(i,...,j)withl <i <j <M, we set

j—1
wal®) = [ [ sekr1-
k=i
Proposition 6.2. Fori = (i,...,j)with1 < i < j < M, the Lyndon root
vector is
Ri = "W/~ wa(i) g —q7") G0 ).

Proof. We proceed by induction on j — i, the case j —i = 0 being trivial.
Note that if i = (i,..., ), and i = i;i, is the co-standard factorization of i,
theni; = (i,...,j — 1) and i = j. By induction, we compute

Ri =Rj, 0,41 Ri,
= g PN/ = ey i) (g — g7 7 G = Doy g1 )
= w P/ = g ) (g — g7 NG =D g1 DG = 1)

+ P =i i) (g — g 1) 7
”P(i,.-.,j—l)p(j) (q_(aj—la(xj) _ q(aj_l’aj))(i, o, ])
= 7P e, ) (g — g7 !
Plsess j—l)p(j)(q—(aj_1,aj) _ q(aj_l,aj))(i’ )
The proof now follows by the observations

q @) — g @) = gy (g —q7h)

and
P(lil]) + pG,....J = Dp(j) = P(li). 0
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Corollary 6.3. Leti= (i,...,j)withl <i < j <M. Then
(1) the PBW root vector is

Ei = wali)(g — ¢~ ")/ g VWG, L))
(2) (Ei.Ei) = wa(i)(g — g~ 1)/ 1g=NUiD,
3) Ef =(i.....J)

Proof. 'The formula (1) for E; is clear from the definitions, and part (3) follows
immediately from (1) and (2). So it remains to prove (2). To this end, leti = iji,
be the co-standard factorization of i,i; = (i,..., j — 1), i, = j. Note that

E; = E; 0 B, — PP ~@-1a)E; ;.
Therefore, using Proposition 3.13,
(Bi, Bi) =wa(i)(q —q~") "¢ VG, Ep
=wa(i) ¢ —¢") NG @G, j - D.E ®F)
=sj-1,j(q — ¢ g CUleN = @D (E; E))(E;, Ey,).
Therefore, (2) follows by induction. O

6.2. Type B(m,n + 1). A general Dynkin diagram of type B(m,n + 1) is of the
form

O—0 ' O—O0—0 +: O=—=0
1 2 n n+l n+2 M-1 M

In order to facilitate computations below, we note the following properties of the
signs s;; (i, j € I) givenin (2.2).

Lemma 6.4. (1) ifa;; =0, then
Si—1,i = TTSi,i+1;

(2) ifai; #0, then

Si—1,i = Si,i+1 = TSii;
(3) forany k,l € Twith k # [,

(o, ) € {2541, 0}
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Proof. 'This follows immediately using the standard e§-notation for the root system
and the simple systems of type B; cf. [13, 7]. The factor 2 in part (3) is due to the
normalization of (-, -) adopted in §2.1. O

Proposition 6.5. The set of dominant Lyndon words is

LF ={G...../)|1<i<j<M)
U{G@,....M\M,....j+1)|1<i<j<M}

We set

wa(i) ifi=(@,....J)),
) forl <i<j<M,
wp(l) =
wali, ... )nPM ifi=(@G,... .M M,....j+1),

forl <i<j<M.
Proposition 6.6. (1) Fori = (i,...,j), withl <i < j < M, the Lyndon root

vector is
Ri = 7P i~ ey (q® — g2~ G, ..., j).

) Fori=(@G,....M\M,...,j+1),withl <i < j < M, the Lyndon root
vector is

Ri = n P it e (i)(g® — g™ )*M I (G,... ., M, M, ..., j +1).

Proof. The proof of part (1) is same as for type A in Proposition 6.2.

We prove (2) by downward inductionon j. For j = M —-1,i=(,...,M, M)
and the co-standard factorization is i = i;i, wherei; = (i,..., M) andi, = M.
Therefore,

R; = nPWD e M=igs ) (q® — g~ MG, ..., M) Ogq—1 M
= g PN Mg () (g2 — DM (... M = 1) 0y 01 M)M
+ a P M= (1) (g% — g~ HM ™
g PP (M M) — (i, ..., M, M))
= 7P M i (1) (g% = g M7 (G M = 1) 0y g1t MM
— JTP(lil |)7TM—iw_A(i1)(q2 _ q—2)M—inP(i ----- M-1)p(M)

(q_(“M—ls“M) _ q((xM—ls“M))(l" M. M).
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This case now follows since

q—(aM—laaM) _ q(“M—laaM) — 7TSM—1,M(¢]2 _ q—Z)

by Lemma 6.4(3) and

7 PUDA+pG M=Dp(M) _ - P(iD+p(M).

We now proceed to the general case
i=G... MM, . .. j+1).
Let
i=1ii,
be the co-standard factorization, with
h=G...MM,...,j+2)
and
ib=j+1
Then,
Ri — JTP(lill)JTi+j_IWB(i1)(q2 _q—2)2M—i—j—l
(oo . MM, ..., j+2)0,,1(j+1)

— o PUinD i+j—1 g~2)PM-i-i-1

wB(il)(qz_
G,....M\M,...,jJ +3)<>q,q_1 G+ +2)

+ 7TP(|il|)7Ti+j_1WB(i1)(q2 _ q—2)2M—i—j—1

611

nP(J'-i-l)P(il)(q—(lil|,06j+1) _ q(lillaij+1))(l" MM, L+ ).
(6.1)
Using Lemma 6.4, we have that
(il j+1)) = —(0j + i1 + 20542, Aj41) = —28j41,j+2-

Also, P(li1]) + p(j + 1)p(i1) = P(]i]). Therefore, last term in (6.1) above is

a P 2M=i=i g (i) (g% — g~ )M 7T g* — 7). . M. M, ..

Hence, the proposition will follow if we can show that

(e MM, +3) 01 (G4 D) +2) = 0.

Lj+ D).

(6.2)
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Indeed, since (ak,aj+1) =0for j +2 <k <M,

(e MM, +3) 0001 (G4 D) +2)
= (e J+20q 1 GHG +3. . MM, [ +2)
= (e J+ D 0ggr GHG +2, . MM, j +2)

+ 7PUHDPO++p(+2)) (q_(“i+"'+aj+2:aj+l) _ q(ai+"'+aj+1=aj+l))
G ....j+2,j+1Lj+3.... MM, ....,j+2).
But, using Lemma 6.4 again, we have («; + -+ + 42, 2j+1) = 0, so

(oo MM, +3) 0001 (G + D) +2)
= (s A D) 0gqr GG +2,0 MM, .. j+2)

= ((l.,...,j)oq’q—l G+ +1,....MM,....j+2))
+ j.[p(i,---,j+1)17(j+1)(q—(txj+t¥j+1,Otj+1) _ q(“j+0‘j+ls0‘j+l))

Goootsj+ 1,7+, M M,....j+2)

=((,...,.j— 1)<>q’q_1 G+O)y,....M,M,...,j+2))
+ Pl j)p(j+l)(q—((¥j,aj+1) _ q(aj7aj+l))

(oonj+ 1L, j+1.. . MM, ....j+2)
+ Pl j+1)p(j+1)(q—(aj+aj+1,aj+1) _ q(aj+°‘j+l7“j+l))

(yoocnj+ 1L j+1,.. .MM, ....j+2).

Obviously,

(s j=Dog 1 (j+1)=0
since (a; +...+aj—r, 1) = Oforr > 1. To treat the last two summands above,
note that either p(j + 1) =0,0raj41,;+1 =0.1f p(j +1) =0, then

7Pl i+ DPG+Y) — PG )PG+D) ,

(q_(o‘j’o‘j-i-l) _ q("‘ja"‘j-i-l)) — n(q—(“j+“j+1ﬂj+1) _ q(“j+‘¥j+1s“j+1)),

and hence (6.2) holds. If aj1,;4+1 = 0, then

Pl FDPGHD = 1Pl DG+
(q—(aj=aj+1) _ q(aj=aj+1)) — (q—(“j+“j+17“j+1) _ q(“j+“j+17“j+1)),

and hence (6.2) still holds. The proposition is proved. O
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Corollary 6.7. The following formulas hold for 1 <i < j < M:
(1) fori=(,...,J), the PBW root vector is
Ei = wp)(¢® —¢7 "MW,
fori=(,....,.M,M,...,j+ 1), the PBW root vector is
Ei = wp(i)(q® —q )M g NI G, oM M, L)

(2) we have
wp(i)(g? —q~2) g~ N,
ifi=G,....J),
(Ei.E;) = o .
wp(i)(g* — g2~ g~ N2,
ifi=G,....N,N,....j+ 1)
(3) we have
Iy.oos ), ifi=G,....,Jj),
- ( 7) if i=( J)

RlpG,.... M, M,....j+1), ifi=(G....MM,. ...j+1).

Proof. Parts (1) and (3) are proved in the same way as in the type A case.

It remains to prove (2), the casei = (i, ..., j) also being the same as in type
A(m,n). Assume thati = (i,..., M, M). Then i = i;1, is the co-standard factor-
ization wherei; = (i,..., M) and i, = M. We have

(Ei, Ei) = 213/ (Bi, M o E;, — nPME; o M)
= wp(i)(q*> — ¢ HM g NP2 M o By — n7DE; o M)
= wp(i)(q® —q HM g NI 2(M ® i1, M ® E;))
= wp(i)(q> — ¢ HM g NI R2G E))
= sp—1,mq NV IDTNED 12y, Ep) (B, i)
= wp(i)(q> — ¢~ HM g N2,

Finally, assume thati = (i,..., M, M,...,j + 1) withi < j < M — 1. Then,
i = i;i, is the co-standard factorization, wherei; = (i,..., M, M,...,j +2) and
i, = j + 1. Hence,

(Ei. Ei) = (Bi. (j + 1) 0 By — n?0PUFD (e, o (j 4 1))
= wp(i)(q* — ¢~ )M g~V (E) 41, Ej 1) (1, Eiy)
= 5j,j+1(q% — g g NNV ED(E; E; ).

Therefore, (2) follows by induction. ]
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6.3. Types C(M) and D(m,n + 1), I. We regard the type C(M) as a limiting
case of the type D(m,n + 1) withm = 1 (and M = n + 2), and will treat
them simultaneously. The Dynkin diagrams arise in two different shapes, with or
without a branching node. We separate the discussion into 2 parts, according to
the shape of the Dynkin diagrams. Here we consider a general Dynkin diagram
without a branching node of the form

O—0 * O—0O=<=0
1 2 M-1 M

The root system is given in [7, Chapter 1] and [33, §3]. We have the following
properties regarding the system of signs.

Lemma 6.8. (1) We have

sM—1.m = 1;
(2) ifa;; =0, then
Si—1,i = TSii+1;
3) ifai; 75 0, then
Si—1,i = Si,i+1 = TSii;

@) forany k,l € I withk #1,
(ak, o) € {(1 + Sk + Sin)ski, 0}

Proof. The lemma can be checked readily case-by-case by using the standard
ed-notation for root systems and simple systems. U

The set of dominant Lyndon words are computed in the usual way.

Proposition 6.9. The set of dominant Lyndon words is

LF ={G...../)|1<i<j<M)}
U{@.....M—-1i,....M)|1<i<Mandp(i,. ., M-—1)=0}
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Note the parity condition p(i,..., M — 1) = 0 above corresponds to the fact
that there is no non-isotropic odd root for type C and D. Set

w4 (i) iti=@G,....J)
. forl<i<j=<M,
wc (i) = )
wpl,...,j+1) ifti=G....M,....j+1)
forl <i<j<M-—1.
Proposition 6.10. The Lyndon root vectors are given as follows:

() fori=G,...,j)withj <M,

Ri = 2P/~ me(iyg — g 7 G, .., ));

2) fori=(@,..., M),

Ri = 7P xM e Gy (g — g HM 7N q? — g7, ..., M);

3) fori=(G,....M,....j+1),

Ri = 7P it e () (g—g )M g2 D), M, )

@ fori=(G,....M—1,i,..., M),

Ri=¢ ' qg—q¢g HM2=1 4?2 —¢72)(G,.... M =) o(,.... M — 1)) M.

Proof. The proof of (1)—(3) are similar to the cases treated in types A and B, and
we omit the details.

We prove (4). To this end, note that (i,...,M —1)o (i,...,M — 1) € U since
(i,...,M —1) € Uby (1). Now, by Proposition 3.9, we deduce that

x=((,....M =1 o(@,.... M —1))M € .

Evidently, max(x) = i and, therefore, max(x) = max(R;) by Lemma 4.19. Hence,
We may express x as
X = Z AjRj.

j<i

But, by Corollary 4.17, i is the smallest dominant word of its degree, so x = AjR;.
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We now compute the coefficient A;. To this end, note that the co-standard
factorization of i is i = ijip, wherei; = (i,...,.M — 1) andi, = (i,...,M).
Hence, since p(M) = p(i,...,M —1) =0and spy—1,m = 1,

Ri = Ri] <>q,q—1 Riz

= g PUiD+P(i2) —1)2M—2i—2

wc(inwc(iz)(q —q
@=q, ... M= 1) o 41 Gy, M)
=== M =g M =2) 0g o1 (G, MM — 1)
_ (q _ q—l)ZM—Zi—Z(qZ _ q—2)
(@it rem—a) (G M —1)o(.....M—1)M
— g Citrem—en) (G M —1)3(i,.... M — 1)M).

By the argument in the previous paragraph,
(@ ....M =2)0, ;1 (i,..., M))(M —1) =0.
Therefore, applying the identity

G,...M—1)3G,....M—1)

= g@itrtrem—aitetem—0G M 1) o(i,...,M—1),

and Lemma 6.8, we see that

Ri=—(g—q )M -¢7)
(q—(aM_l,aM) _ q(aM_1,aM)-l-(Ot,-+---+0tM_1,ai+---+0tM—1))
Gy s M =D o (i, M —1)M
=—(q—qa M -qHgT -
Gyoo s M =)o (iy.... M —1)M

=q¢ Y g—qg HYM21 G2 — ¢ (G,.... M =)o (,....M —1))M.

This completes the proof. O
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Corollary 6.11. (1) The PBW root vectors are given as follows:

(@) fori=(,...,j)withj <M,

Ei = we()(g—q )/ g7V, ... )

) fori=(@,..., M),

Ei=wc()(g—q HM 1 g?* — ¢ g VDG, ... M);

©) fori=(G,....M,...,j+1),

Ei=wc()(q—q )M g?—qgHg VWG, ... M, ..

@ fori=(G,....M—1,i,..., M),

E; = JTP(lill)C](q _ q—l)ZM—Ziq—N(lil)((l-’ B

wherei; = (i,...,M —1);
(2) the values of (E;, E;) are given by

we(i)(g — g1 7 0m g =N,

we(i)(g — g )M (g2 — g72)g=N D,

7P D(q _ q—l)zM—ziq—N(|i|)’

whereiy = (i,...,M —1);

(3) the dual PBW root vectors are given by

..., J),

MG+,
g, ....M =1 o(,....M —1)M,

LJj+1);

A M=1o(,....M—1)M,

ifi=G,....J)
forl1<i<j<M,
ifi=G,....M,....,j+1),
ifi=G,....M—1,i,..., M),
fi=(0,....J)

forl1 <i<j<M,
ifi=G,....,M,....,j+1),
ifi=G,....M—1,i,...,M).
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Proof. The formulas in (1) follow directly from the definitions.
We prove (2). Note that for

ie{(,..../) i <jyu{G,....M,....j+1)|i<j<M)}

the computations are similar to those performed in types A and B, and we omit

the details. Therefore, assume thati = (i,...,M —1,i,..., M). We have
AG,.... M —=Do(,.... M —1))M)

=(AG,... M —1)oAG,....M — 1) (MR 1)
+1® (... M —1)o(,....M —1))M

and, therefore, (E;j, E;) is equal to

7P —12M-2i-1,2 72y

q9(q —q
g NP YE (G,.... M=) oG,....,M —1)M)
— Pl (g — g=1)2M—2i=1 (42 _ q—z)q—N(lil)[z]—z
(Ei, ® Ei,, (AGG,....M —1) o AG,...,M — 1))(M ® 1))
— 2Pl g (g — g=1)2M—2i=1 (42 _ =2~ N(iD )2
(Ei, ®Ei, @2+ DG, ....M)® (i,...,M — 1))

(1) —N(iD+N (i D+N(liz])

q(q—q ")q
[217%(g~> + 1)(Ei, . Ei))(Ei,. Ei,)
— JTP(il)(q _q—1)2M—2i—1(q2 _q—2)q—N(|i|)[2]—l

— JTP(il)(q _ q—l)zM—Ziq—N(lil)‘

This proves (2). Finally, (3) immediately follows from (2).

O

6.4. Type C(M) and D(m,n + 1), II. In this subsection, we consider the
remaining simple systems of type C(M) and D(m,n + 1), which correspond to

Dynkin diagrams with a branching node as follows:

O M-1
O—0 - O—0O0—0 - O
1 2 n n+l  n+2 O M

/N

and

% M—1
O—0 " O—O0—0 O
1 2 n n+1 n+2 N M
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Proposition 6.12. The set of dominant Lyndon words is

" ={G.....»)[i<j=M-1}
U{G,....M—=2,M)|i <M -2}
U{G,....M -2, MM —1,....j+1)]i<j<M-2}
u{G,....M—1,i,.... M =2, M)|i<M—1,pGi,....M—1) =1

Set
wa(i) ifi=(G,....J),
wD(i): wA(i,...,M—l) ifi:(i,...,M—Z,M),

wali,...j] +1) ifi=G,....M—-2,M,....,j+1),
i<j<M-1.

Proposition 6.13. The Lyndon root vectors are given as follows:
) fori=G,....Jj), j<M-—1,

Ri = "W ri = mp)(g — g ) 7 (... )

2) fori=(@G,....M -2, M),

R; = n P M ==l iy (g — g HM 71, ..., M —2, M);

(3) fori=(G,....M =2, M, M —1,....j +1),
Ry = nPWDri T ey (i) (g — g~ 1)?M 1772
((l,,M_lngM_27.]+l)
+ G, M =2, MM —1,....j+1));

@) fori=(@,....M—1,i,...,M —2,M),

Ri=n(g—q¢g H*M222 — ¢ (G,....M =2) o (i,....M — 1)) M.
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Proof. Formulas (1)-(3) can be obtained in the same way as in previous types and
we omit the details.

The proof of (4) is very similar to the long roots in type C and we only outline
the proof, leaving the details to the interested reader. Indeed, let

i=G... M—1,i,....M -2, M)
and let

=1,

be the co-standard factorization of i. As in the type C case, we deduce from
Proposition 3.9 that

x=((,....M =2)o(i,.... M —1))M € .

Moreover, since max(x) = i, it follows that R; is proportional to x. To compute
the coeflicient, note that P(|i;|) = P(|iz|) and wp(i;) = wp(iz), so

Ri=(q—q )M 22G,... . M—1) o, (G,....M—2,M)
=(q—q )M A2 g M=1)oG,....M —2)
—qYi,... M-1)3(G,....M =2)M
=n(g—q )M 2220, M =2)5(,....M—1)
—q720,... M =2 o(,....M —1))M,
where we have used the fact that
p(M)+pG,....M—=2)=1=p(@i,....M—1)

to obtain the factor r after the last equality. Finally, the computation follows upon
observing that

iG....M-2)o(,... M—1)=(@G,.... M —=2)o(@,....,.M —1).
This last statement can be proved as follows: first, we have
io(@,....,k)=io(,...,k) foranyk >1i,
by induction on k, and
i,....J)o0G,....0)=(,....j)o(,....k) fori <j <k,

by induction on ;. U
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Corollary 6.14. (1) The PBW root vectors are:
@ fori=(,....j), ] <M-—1,

Ei = wp()g—q ") g VWG, ... )
®) fori=(G,....M -2, M),
Ei = wp(i)(g— g HM " 1g NG .. M —2, M);

) fori=@G,... M =2, M, M—1,....j+1),

Ei = wp(i)(g — ¢ )M 7772

g NG M1, MM=2...,j+1)
+ (e M =2 M M—1,.... )+ 1))

@ fori=G,....M—1,i,....M =2, M),
Bi=(q—q )M —q !
g NG, M =2 eG,.... M —1)M;
(2) The values of (Ej, E;) are given by
~N (D,

wp(i)(g—q7") q
ifi=G,....))G<M—-1ori=(,....M—2,M),

w_D(i)(q _ q—l)ZM—i—j—Zq—N(m)’
fi=@,...M=2MM—1,....j+1),
(q— q—l)zM—zi—lq—N(Iil)
q+q" ’

ifi=G.,...M—1,i,....M—2 M);

(3) the dual PBW root vectors are
@ fori=(,....j), ] <M-—1,

Ef=(i...../):
(b) fori= (i,....M —2, M),

Ef =(,....M—2,M);
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() fori=(G,.... M =2, M, M—1,....j+1),

Ef=(G,...M—1.M.M—2....j+1)
F M =2, MM —1,....j + 1))

@ fori=G,....M—1,i,....M =2, M),
Ef=(@+q¢ "G . ....M=2)0G,....M —1))M.
6.5. Type F(3 | 1). Associated to the distinguished diagram
O—O0=—=—0—=®
1 2 3 4

we have the following table of dominant Lyndon words.

| Height | Dominant Lyndon Words |

1 1,2.3.4
(12),(23), (34)
(123), (233), (234)
(1233), (1234), (2343)
(12332), (12343)
(123432)
(1234323)
(12343234)

03N Nk~ W

6.6. Type G(3). Associated to the distinguished diagram

@——0O==0
1 2 3

we have the following table of dominant Lyndon words.

| Height | Dominant Lyndon Words |
1 1,2,3
(12),(23)
(123), (223)
(1232), (2223)
(12322),(22323)
(123223)
(1232233)

NN kW
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7. Canonical bases

In this section, we shall formulate and construct the canonical basis of type
A(m,0), B(0,n + 1), and C(n + 1) for the standard simple system. Table 2
below compiles a list of standard simple systems for Lie superalgebras of basic
type, with D(2 | 1; @) omitted.

Table 2. Dynkin diagrams for standard simple systems.

A(m,n) O——0O - O ® Q e O
il n—1 1 0 1 m—1 m
i n—1 1 0 1 m—1 m
n n—1 1 0
Cn+1) ®—0 + O——O==0
0 1 n—1 7
O m—1
n n—1 1 0 1 \O m
F@311) ®@——O==—=0—0
0 1 2 3
G@(3) ®——O0==0
0 1 2




624 S. Clark, D. Hill, and W. Wang

7.1. Integral forms. We start with some general discussions of root systems of
basic type in order to define suitable integral forms of Uj,.

We will restrict our attention to the standard simple systems in Table 2, and fix
the ordered set

I < :{ﬁ<---<i<0<1<---<m}.

Following Lusztig, we call i € I and «; € I special if ¢; < 1 in the expansions
of every root B in ®* in terms of I1, B = > jerciej. We will call a Dynkin
diagram (or the corresponding U) appearing in Table 2 special if any i € I
(which is unique if it exists) is special. Note that we take into account the entire
(positive) root system ®* as opposed to the reduced one. By inspection we have

the following.

Proposition 7.1. The Dynkin diagrams in Table 2 are special if and only if they
are of type A(m,n), B(0,n + 1), and C(n + 1).

Let A = Z[g,q~ '] and define U4 to be the A-subalgebra of U, generated by
e; (i € Iiso) and the divided powers

e® = ek /)it (i e T5 UTnisor k > 1).
Set
Ur={uelUy| (u,v)eAforallve Uy}

Denote by W’ the subset of words in i € W of the form i = i} ---isd , where
ix #ixsr foralll <k < d and n; € {0, 1} whenever i; € Iiso. For suchi € W/,
we set

i = [m1]i !+ [nali,!
and write

nqg

+ = nl...
e = e e

Then, gi_lei is a product of divided powers. Consider the free A-module
F A = @ .Ag ii
iew
and define

U* =FaNU. (7.1)

We have the following analogue of [23, Lemma 8] with an entirely similar
proof.
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Lemma 7.2. We have
Uy = w(Uy).
Proof. Any u € U, belongs to U if and only if (u, gi_lei) € Aforalli € W. This

holds if and only if W (u) is a linear combination of elements g;i for i € W/, which
is true if and only if W(u) € F4. ]

Corollary 7.3. The free A-module U} is an A-subalgebra of Uy.

Proof. 1t is clear from the definitions that (F4, ¢ ) is an A-subalgebra of (F, ¢)
and, therefore, so is U%. By Lemma 7.2, U7 is an A-subalgebra of U,,. O

Let Uppw be the A-lattice spanned by the PBW basis {E; | i € W}, and Urgw
the A-lattice spanned by the dual PBW basis {E;" | i € Wt}in (5.9).

Proposition 7.4. Assume that U is special. Then
U;BW = U;l and UPBW = UA.
Proof. The two identities are equivalent, and we shall prove that Upg,, = U%.
To this end, note that by the computations in Section 6, E € U7, for all i € L*.
By Corollary 7.3, it follows that
Upgw C U%.

We will now prove that equality holds when U is special. To this end, suppose that

Z AiEi* S Ujl'

iewt

We will prove that all ; € A by induction on |{i € W' | A; # 0}].

First, suppose that A;E € U%. Suppose thati = (if",...,i7*) € LT ULT,,
ir # ir4+1. Note that the coefficient of i in E; is ¢; (except for the long roots
in type C, where we instead consider the word i’ = (i,i,i + 1,i +1,...,M —

1,M — 1, M) whose coefficient is ¢y ). For n > 1, let

R (N



626 S. Clark, D. Hill, and W. Wang

Since the diagram for U is special, the coefficient of i® in (Ei*) ®™ s nonzero, and
(up to a power of ¢) equals

n na, nag B
g] PP _S‘i(n)
al,...,al il ad,...,ad id

nay B [na,li,!
|:ar,...,arj|ir ~ (as]i, )"

is the quantum multinomial coefficient.
Now, ifi e Wt andi=1i]"---i}", i1 > -+ > i,

where, forr > 1,

is = (" igt) e Lt
then the coefficient of

Ti=i" .0

in E{* is nonzero (again, because the diagram is special) and (up to a power of )
equals

r dg r
ns Nglgt
Siy [ } = | ] S =S
SI:II ! tl:II Asty ..., Ust igt Sl:ll Is '
(Above, we make the appropriate adjustments in type C as in the last paragraph).
Hence, if L;E]" € U7, then Aig; € Agy which forces A; € A as required.
We now proceed to the inductive step. Let
j = max{i| A; # 0}.

Then, the coefficient of J in EJ* (making the appropriate adjustments in type C)
is g5. Moreover, j does not occur in E for i < j. It follows that 4; € A, and
induction applies to

Z)LiE;k = (ZA,E:) —AjEjk € Uj{'
i£j i
This completes the proof. O

Example 7.5. It is not true that Upgw = U4 for non-special standard Dynkin
diagrams in general. Indeed, consider type B(1, 1):

®==0
1 2
The root § = &1 + a» non-isotropic. We have i(8) = (12), Eflz) = (12), and

Ef12 =4 'Ef12) 0By = (mq + ¢71)(1212).

In particular, éE(lzlz) € U% showing that Uy, # U%.
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7.2. Pseudo-canonical and canonical bases

Lemma 7.6. Forie W™, write

Ei= ) ayBj.  foraj € Q@) (7.2)
jew+
Then,
aii=1 forallie wt
and

aij=0 lfi>j.

Proof. 'This proof is identical to that of [23, Lemma 37]. By Propositions 5.3
and 5.4 we have

exi) = Y BiEj

j=i
with
Bii = Bii = ki.
AS g7() = &), substituting (7.2) into the equation above yields

aij = Z ik Bkj-

i<k<j
Therefore, a;; = 0 if i > j and aj; = @;iBii = Ki_lfci = 1 by Proposition 5.3. |

Lemma 7.7. Suppose that U is special. Then, the coefficients asj in (7.2) belong
to A.

Proof. 'This is immediate since Upgw = U4 by Proposition 7.4 and U4 is clearly
bar invariant. O

It is well known that Lemmas 7.6 and 7.7 imply the existence of a unique basis
of the form

b;j = E; + Z 0iiE;j (7.3)
j>i

such that
by € qZ]q] and b_l = b;.

We call the basis {b; | i € W} a pseudo-canonical basis for U4 or for U.
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A pseudo-canonical basis will be called a canonical basis if it is almost
orthogonal in the sense that there exists € € {1, —1} such that, for all i, j € W+,

(1) (bi,by) € Z[g], and
(2) (bi,bj) = 798 (mod ¢€) for some 6 € {0, 1}.

Theorem 7.8. When U is special it admits a pseudo-canonical basis. In types
A(m,0), A(0,n), B(0,n+1) and C(n+1) the pseudo-canonical basis is canonical.

Proof. Ithas already been explained that U has a pseudo-canonical basis when it is
special. By the computations in Section 6 to verify that in types A(m, 0), A(0, n),
B(0,n + 1) and C(n + 1) one checks that the PBW basis is almost orthogonal.
Hence, the pseudo-canonical basis is canonical. O

Remark 7.9. The constructions in this paper (see Lemma 4.19, and Theorems 5.1,
5.7, and 7.8) work equally well for U, associated to semisimple Lie algebras, pro-
viding a new self-contained approach to the canonical basis in the non-super set-
ting.

Remark 7.10. For type B(0, n), a canonical (sign) 7-basis for U, was constructed
in [6] via a crystal basis approach. The canonical basis B for U, of type B(0, n)
constructed in this paper is an honest basis. We expect that the associated w-basis
BUn B will be independent of the orderings and coincides with the one constructed
in [6].

Given a (pseudo-)canonical basis B = {bj}jey+, let B* = {b;"};cyy+ be the dual
(pseudo) canonical basis satisfying (b}, bj) = &;;. Then, as in [23, Proposition 39,
Theorem 40] we have the following.

Theorem 7.11. The vector b is characterized by the following two properties:
(1) b —E{ is alinear combination of vectors Ef', j < i, with coefficients in qZ[q];
(2) The coefficients of b} in the word basis W of F are symmetric in q and g L.

In particular,

max(bf) =i, forallie W,

and
ifiel™.
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8. Canonical bases in the gl(2 | 1) case

8.1. Canonical basis for Uq"' (gl(2 ] 1)). We now compute canonical bases aris-
ing from quantum g[(2 | 1) and its modules. The root datum in this case is given
by

0—®, Ot = {o1, 22,01 + a2}
1 2

The algebra U, = U, (gl(2 | 1)) is generated by W' (E;), ™! (E,), with
U~ (E,) odd. Abusing notation slightly, we will identify these elements with E;
and E,, respectively. We note that by (5.1),

E(2) := E2E; — ¢EEs.
Then, since E3 = 0,
E{ ) =0,
EzE(12) = —gE@2)Ea2,
Ei1Eu2) = ¢Eu2)Es.
E@2)E2 = E2E Ea.
Moreover, we can verify that, for r, s > 1,
EVE,EE, = E;E{E,E\", (8.1)
EzEY) = CIrE(lr)Ez + E(lr_l)E(lz),
EVE,EY = [’ +j - 1]E§’+S)E2 + [r +‘: - 1]E2E§’+S’. (8.2)
Formula (8.2) is the same as for quantum sl(3), see [26]. One checks that
E,EV"VE, = EVE(12)Es = EVE,E E; = E,EE,EV. (8.3)

Now note that the Lyndon words are 2 > 12 > 1, and so relative to this ordering
we see that the PBW basis for Uy is

(BBl B [0 <a.b < 1.r >0}

They span a Z[g]-lattice £ of U,
The following has appeared in [16], who works with quantum gl(1 | 2) instead.
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Proposition 8.1. Uq+ (gl(2 | 1)) admits the following canonical basis:
EV. EVE, E;E'™Y, E,EVTVE,

forallr >0

Proof. Now the first two elements EY),EY)EZ are already bar-invariant PBW
basis elements, whence pseudo-canonical basis elements. Similarly, the element
EZEYH)EZ is bar-invariant and also a PBW element by (8.3), whence a pseudo-
canonical basis element. One writes the remaining PBW elements as

E;EV Y = ¢"HEVTVE, + E{Eq,), forr > 0.

Hence EZEYH) is a bar-invariant element, which equals a PBW element mod-
ulo ¢ £, whence a pseudo-canonical basis element.

Clearly the elements as in the proposition form a basis of the lattice £,
by comparing to the PBW basis, hence this is the promised pseudo-canonical ba-
sis. On the other hand, computing the norms of these elements proves that they
are actually a canonical basis. U

Remark 8.2. In contrast to Proposition 8.1, E;E E, is not a canonical basis
element for the positive half of quantum s((3).

Remark 8.3. When multiplying any canonical basis element for Uq+ (al2 | 1)

with Eﬁs) or E, (either on the left or on the right) and then expanding as a linear
combination of the canonical basis, the coefficients are always in Z>o[q, ¢~ '].

Denote by
B = {F, K", FV VR, F,FVTVE, | r >0}

the canonical basis of U,", which consists of the images of the elements in Propo-
sition 8.1 under the anti-isomorphism Uq+ - U, defined by E; — F;. Below we
often use the identifications

FF TV, = FoF ()R
and

Fa2) = FiF, — gF>F;.
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8.2. Canonical basis for Kac modules. The subalgebra U; of Uy is generated
by

Ky =q°", K,=q%, K;3=q°.
Let Uq2’1 be the subalgebra of U, generated by U;’, E;, and Fy, and let P; be the
subalgebra generated by qu’l and E,. Denote by {61, 62, €1} the dual basis for

{e11, €22, e33}. Let
W =ady + bd, + ceq,

with a — b € Zs. Set L%(u) to be the simple U,f’l—module of highest weight L.
Then LO(u) is a P,-module with trivial Ex-action. The Kac module

K(u) := Uy ®p, L°(1)
over Uy is finite dimensional and has a simple quotient L (w). Moreover,
dim K () = 4dim L°().

Denote by v, the highest weight vector of K(u) and by v:[ the image of v,
in L(u). Note that

K(1) = L°(n) ® F2 L% (1) ® Faz)L® (1) ® FaFz) L0 (). (8.4)
Hence, when applying elements in B to v, the resulting elements are nonzero
exactly when 0 < r < a — b, thanks to F*" "1y = 0.
Proposition 8.4. Let

W =ad; +béy + ce1, witha —b € Zxy.
Then
{uvy, | uv, # 0,u € B}
= {F" v, F,F v, FC Y E, 0, FoF1)F v, |0 < r <a — b},

and this set forms a basis of the Kac module K(u). It is canonical in the sense
that it descends from the canonical basis.

Proof. The equality of the two sets in the proposition follows by the two identities
Fe?™y, =0 and F¢?*?Eu, =0.

Note that Fl(r)vg with 0 < r < a — b forms a basis of L°(x). Then by (8.4),
the elements

(FPv,,. F.Fv, FuayF v, FaFanF v, |0 < r < a —b)

form a basis of K(u). Since the transition matrix from this basis to the set given
in the proposition is upper-unitriangular, this set must form a basis of K(x). [



632 S. Clark, D. Hill, and W. Wang

8.3. Canonical basis for simple modules. Recall that the Weyl vector for
gl(2]1)is
p=—0+e¢r.

A weight A is called typical if (@, A + p) # Oforall o € CD;; otherwise, we say
the weight is atypical.

Letu = ab1+béy+cer, witha—b € Zs¢. Then pis typical only ifa # —c—1
and b # —c. If p is typical, then K(u) is irreducible.

Corollary 8.5. If u is typical, then L(u) has a canonical basis given by Propo-
sition 8.4.

Therefore, it remains to consider L () when w is atypical. The first step is to
determine when canonical basis vectors are zero in L ().

Lemma 8.6. Assume that
W =ady + bdy +ce1, wherea—b € Zsy,

is atypical; that is,

a=—c—1 or b=—c.
Then the following statements hold in L(i):
(1) FPvl#£0 < 0<r<a-b

2) ifa =—1—c, then
FZF(lr)v:[ #0 < 0<r <a-—b;
if b = —c, then
FFvt #£0 &= 1<r<a-b;
3) ([r + b+ JFVE, — [b + (JEF )t = 0 forall r > 0

@) BF Bt = BFoF vt = FVRF Ff = 0forall r > 0;

35 F(er)sz:[;éO & b#—cand0<r <a-—b.
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Proof. We will use repeatedly the fact that a v-weight vector in L (i) with v # p
which is annihilated by E; and E, must be zero.

(1) It follows from the representation theory of U, (sl,) generated by E; and F;.

(2) By adirect computation we have that

ExFoF vl = [r + b + cJF v

Ifa =—-1—c,thenr +b + ¢ = 0 implies that r = @ — b + 1, and so
FZF(lr)v:[ # 0if 0 < r < a — b. Note that FZF(I“_bH)v:[ = 0 since this
vector is annihilated by E; and E, simultaneously.

If b = —c, thenr + b + ¢ = 0 implies that r = 0, and so FzF(r) +#£0if
1 <r <a—b. Note that sz;’ = 0 since szl‘f is annihilated by E1 and E,
simultaneously.

Hence (2) is proved when we take (1) into account.

(3) This is trivial for b = —c, since sz:[ = 0. So, we may assumea = —1 —c.
We shall proceed by induction, with the case r = 0 being trivial. Set
d=>b+c.
Then (3) follows by the following computations (and by inductive assump-
tion):
Ei([d + rIFE; — [d]E2F v

= —[d + r)([d + (= DIFY"VFa — [d]FoF ") Favf

=0,
and

E([d + r|F{F, — [d|FF yort
= [dI([d +r]—[d +rDFiv;
=0.
(4) By an F-version of (8.1), we have
F2F§r+1)F2U; = FzF(lz)FY)vl]L = FY)FzFlev;:.

It remains to show that F>oFF, v;[ = 0. This follows from the computations
below which use (4) in the second line:

EleFlevl'f = F2E1F1F2UI = 0,
E2F2F1F2UI = ([b + 14 C]F1F2 — [b + C]FzFl)UI =
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(5) Note that b # —c if and only if Fv, # 0. As in (1) the claim follows from
the representation theory of U, (sl,) generated by E; and F; (when applied
to the highest weight vector Fov}). O

Theorem 8.7. Assume that . = a8y + bd, + ce1, where a —b € Zsy, is atypical;

thatis,a = —c—1orb = —c.

() Ifb = —corb = a = —c — 1, then {uv} | uv}f # 0,u € B} forms a
(canonical) basis of L(u). In particular, dim L(u) = 2(a — b) + 1.

() Itb # a = —c — 1, then {uv;} | uv;" # 0,u € B} is linearly dependent in
L(), but the subset {F” v (0 < r < a—b), FFut (0<r <a—b+1)}
is a basis for L(w). In particular, dim L() = 2(a — b) + 3.

Proof. For (1), there are two cases. If b = —c, then Lemma 8.6 shows that
{uvl'f | u € B, uv/i' # O} = {Fgr)vli'(O <r<a-b), FzF(lr)v;f(l <r <a->b)}.
If b =a = —1 —c, then Lemma 8.6 implies

{uv |u e Biuvl # 0} = {v}, Fovt, FiFou ).

In either case, the set {u € B | uv;[ # 0} spans L(u); it is indeed a basis since
each vector lies in a different weight space.
For (2), Lemma 8.6 implies that

1
{uv;r |u e B,uv;r #0} = {F(lr)v:[,F(lrJr )FZUI,FZF({)UI |0 <r <a-—b}.

All of these elements lie in different weight spaces except for FY)FZ and FZFY)
for0 < r <a—b. Now (u — ra; — az)-weight space is spanned by F(lr)sz;f
and FzFY )v/j. However, Lemma 8.6(4) shows that these vectors are linearly de-
pendent. Then we may choose one of the vectors as a basis element, and (2) fol-
lows. O

We call L(u) a polynomial representation of U, if
uw=ady +béy + ce;

with
(a,b,1,...,1)
c
being a partition (This is analogous to the polynomial representations of the Lie
superalgebra gl(m | n); see [7]). Note that a polynomial representation L(u)
is atypical if and only if » = ¢ = 0. We have the following corollary from
Theorem 8.7(1) and Corollary 8.5.
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Corollary 8.8. The set {uv,; | uv,; # 0,u € B} forms a canonical basis for every
polynomial representation L(u).

In a setting similar to Proposition 8.4, Theorem 8.7(1), Corollarys 8.5 and 8.8,
we will simply say that the canonical basis of U, descends to the canonical bases
of the corresponding U,-modules.

We end with formulating some general conjectures regarding canonical basis
for representations of quantum supergroup of gl(m+1 | 1). let U~ be the negative
half of quantum gl(m + 1 | 1) of type A(m,0), for m > 1. We transport the
canonical basis of the positive half quantum supergroup U, (see Theorem 7.8) to
that for U, viaan (anti-)isomorphism sending E; to F; for all ;.

Conjecture 8.9. For type A(m,0), the canonical basis of U, descends to the
canonical bases of the Kac modules as well as those of polynomial representations

of Uy.

For type C(n), we also conjecture that the canonical basis of the negative half
quantum supergroup descends to the canonical bases of the Kac modules.
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