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Families of Legendrian submanifolds via generating families

Joshua M. Sablo�1 and Michael G. Sullivan2

Abstract. We investigate families of Legendrian submanifolds in 1-jet spaces by develop-

ing and applying a theory of families of generating family homologies. This theory allows

us to detect an in�nite family of loops of Legendrian n-spheres embedded in the standard

contact R2nC1 (for n > 1) that are contractible in the smooth, but not Legendrian, cate-

gory.
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1. Introduction

A central motivating question in contact and symplectic topology is the search

for the boundary between �exibility (when contact objects behave like smooth

objects) and rigidity (when behavior is more restrictive). This search tends to

take the form of distinguishing or classifying contact objects (such as contact

structures or Legendrian submanifolds) up to isotopy. Phrased in terms of the

space of all such contact objects on a given manifold, investigating isotopy classes

can be thought of as trying to understand the set of path components. Flexibility

results tend to give information about higher homotopy groups as well as path

components: Eliashberg proved, for example, that there is a homotopy equivalence

between the space of overtwisted contact structures and the set of smooth 2-plane

distributions on a 3-manifold [8], and Gromov proved that there is a homotopy

equivalence between the space of Lagrangian immersions L ! .W; !/ and a

space of bundle maps TL! T W ; see [12].
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Rigidity results for higher homotopy groups are less common, though exam-

ples do exist. Bourgeois uses the cylindrical contact homology invariant to con-

struct non-trivial examples of elements in �m of the space of contact structures on

unit cotangent bundles of negatively curved manifolds [1]; see also [10]. Kálmán

uses the Chekanov–Eliashberg DGA invariant to construct a non-trivial example

in �1 of the space of Legendrian knots in standard contact R3; see [17]. Kálmán’s

example is especially interesting because his loop of Legendrian knots is con-

tractible as a loop of smooth knots.

In this article, we study the space of Legendrian submanifolds in the 1-jet space

J 1M with its canonical contact structure. The template for �nding nontrivial

elements in higher homotopy groups is the same as that used in the rigidity results

above: �rst, to an object X in the space X, associate some (graded) group H.X/

which is an invariant of the path component of X 2 X. Next, to an element


 2 �m.XIX/, associate an element ˆ.
/ 2 Endm�1.H�.X//, and attempt to

prove that this endomorphism is non-trivial. In contrast to the results above,

which use �avors of the holomorphic-curve-based contact homology, we use the

generating family homology as our invariant; see [9, 24]. Because generating

family homology is based on �nite-dimensional Morse theory, the advantage of

this choice is two-fold: �rst, our proofs do not have to deal with the technical

analysis of a holomorphic curve theory or the complicated combinatorics of

the Chekanov–Eliashberg algebra; and second, families of Morse-theory-based

homologies have been elegantly packaged in Hutchings’ language of spectral

sequences [15].

Suppose the Legendrianƒ � J 1M has a generating family f with generating

family homology GH�.f /: Let L denote the space of Legendrian embeddings in

J 1M: Let �m.LIƒ; f / denote the subgroup of �m.L; ƒ/ consisting of (homotopy

classes of) m-spheres of Legendrians based at ƒ that, up to an equivalence to

be de�ned in Section 2.2, lift to m-spheres of generating families based at f .
The main technical application of the families framework developed in this article
is the following:

Theorem 1.1. Under the conditions above, there exists a morphism

‰W�m.LIƒ; f / �! Endm�1.GH�.f //:

If m D 1, the codomain is, in fact, Aut.GH�.f //.

The domain of ‰ can be expanded to �m.L; ƒ/ if we expand its codomain.
For example, if m D 1, lifts of loops of Legendrians may result in paths of
generating families, inducing homomorphisms between the homologies of the
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generating families at the ends of the path. Thus, the codomain must expand to
endomorphisms of the direct sum of the homologies of all possible generating
families for ƒ.

For the space of Legendrian submanifolds of R2nC1, with n > 1, we �nd that
the morphism is nontrivial.

Theorem 1.2. There exists an in�nite family of Legendrian n-spheres in R
2nC1

such that for each sphere ƒ; there exists an element ˛ 2 �1.LIƒ/ which is

contractible as a smooth loop of spheres but is not contractible in the space of

Legendrian submanifolds.

We remark that recently a similar map has been announced by Bourgeois and
Brönnle. Their map counts certain holomorphic curves, and it is unclear if the
two maps are related.

In Section 2, we review generating families and generating family homology.
In Section 3, we review Hutchings’ families framework for families of Morse
functions, and adapt it to our set-up of generating families. In Section 4, we
prove the main results, �nishing by rephrasing Theorem 1.1 in slightly more general
terms. In Section 5, we apply the families framework in several ways; for example,
to computing generating family homology of higher dimensional Legendrians via
a bootstrap argument, as well as to showing how the morphism in Theorem 1.1
factors through front-spinning.

Acknowledgements. We thank Ryan Budney, Dev Sinha, Octav Cornea, and
Michael Hutchings for stimulating conversations about the work in this paper;
Ryan Budney was especially helpful in clarifying Proposition 4.6. We particularly
thank the referee for many perspicacious comments which greatly improved the
paper. The second author also thanks the Centre de Recherches Mathématiques
of Montréal for its hospitality during the preparation of this paper.

2. Background notions

In this section, we brie�y review the notion of a generating family for a Legendrian
submanifold and the (Morse theoretic) generating family homology.

2.1. Spaces of Legendrian submanifolds. Let J 1M denote the .2n C 1/-
dimensional 1-jet space of a n-dimensional smooth manifold M: We assume that
M is closed, or else di�eomorphic to R

n outside of a compact set. The 1-jet
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space is equipped with the standard contact structure. Let ƒ � J 1M be an
n-dimensional compact Legendrian submanifold. We are interested in the topol-
ogy of the space of Legendrian submanifolds, which is formed by taking the quo-
tient of the function space of Legendrian embeddings by orientation-preserving
self-di�eomorphisms of the domain. The space of submanifolds inherits the quo-
tient topology from the weak C1 topology on the function space, as in [14].
Let L denote this space of submanifolds.

2.2. Generating families for Legendrian submanifolds. Generating families
generalize the fact that the 1-jet of a function f WM ! R is a Legendrian
submanifold of J 1M . To see how, begin by considering the trivial �ber bundle
M � R

N with coordinates .x; �/. A function f WM � R
N ! R is a generating

family if 0 is a regular value of the function @�f WM �R
N ! R

N . We restrict our
attention to generating families that are linear at in�nity. The condition requires
the generating family f to agree with a nonzero linear function A.�/ outside a
compact set in M � R

N . If f is linear at in�nity, then it may be represented
as f D f0 C A, where f0 has compact support and A is linear; the support of
f is the support of f0: From here on, we assume that our functions are linear at
in�nity. Denote by FN the set of all linear-at-in�nity generating families with �ber
dimension N .

A generating family yields a Legendrian submanifold as follows: consider the
�ber critical set

†f D ¹.x; �/ 2M �R
N W @�f .x; �/ D 0º:

The Legendrian submanifold ƒf de�ned by f is then the 1-jet of f along †f :

ƒf D ¹.x; @xf .x; �/; f .x; �//W .x; �/ 2 †f º:

Said another way, the Cerf diagram for the family of functions fx parametrized
by x 2M is the front diagram for ƒf .

A given Legendrian submanifold ƒ may have many di�erent generating fam-
ilies of �ber dimension N ; call that set Fƒ

N . We will use the notation Fƒ when
we do not wish to specify the �ber dimension and the notation F when we do not
wish to �x the Legendrian submanifold. There are two operations on generating
families that preserve the Legendrian submanifold generated.

� F iber-preserving diffeomorphism. Suppose that a smooth map

ˆWM � R
N �! M �R

N

has the form ˆ.x; v/ D .x; �x.v// for a family of di�eomorphisms �x. Then
f ıˆ also generates ƒf .
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� Stabilization. SupposeQWRk ! R is a non-degenerate quadratic func-
tion. Then the function

f ˚QWM �R
N Ck �! R;

de�ned by

.f ˚Q/.x; �N ; �k/ D f .x; �N /CQ.�k/;

also generates ƒf . Note that if f is linear-at-in�nity, then after a �ber-
preserving di�eomorphism, so is f ˚Q [20, Lemma 3.8].

We say that two generating families for a given Legendrian are equivalent if
they can be made equal by a succession of �ber-preserving di�eomorphisms and
stabilizations.

Let pWF ! L denote the map that sends a generating family f to the Legen-
drian submanifold ƒf that it generates. A key fact for this paper is the following

Theorem 2.1 ([16], cf. [23]). The map pWF ! L is a Serre �bration up to

equivalence. That is, if the smooth map hW�n ! L has a smooth lift H W�n ! F

and if ht is a smooth homotopy with h0 D h, then there is a smooth homotopyHt ,

with H0 D H up to equivalence, that lifts ht .

More is true. The discussion in [16, Section 3.2] and [23, Section 5] on the
persistence of the uniqueness of generating families for certain Legendrians may
be viewed as a proof that the homotopy lifting in Theorem 2.1 is unique up to
equivalence. To be precise, we have

Proposition 2.2. If the smooth homotopy ht W�n � Œ0; 1� ! L has smooth lifts

Ht ; xHt W�n � Œ0; 1� ! F with H0 D xH0, then, possibly after stabilization, there

exists a �ber-preserving isotopy ˆt such that Ht ıˆt D xHt for all t 2 Œ0; 1�.

Proof. We combine the work of [16, Section 3.2] and [23, Section 5] with the
ideas in the standard proof that a �bration has unique path lifting if every �ber has
no non-constant paths (see [22, Section 2.2], for example).

It su�ces to show that we can uniquely lift paths, up to equivalence. Let H
and xH be paths in F (possibly after stabilization) that satisfy p ıH D p ı xH and
H.0/ D xH.0/. For each t 2 Œ0; 1�, de�ne a map �W Œ0; 1�� Œ0; 1�! F by

�.s; t / D

8

<

:

H..1� 2s/t/ s 2 Œ0; 1=2�;

xH..2s � 1/t/ s 2 Œ1=2; 1�:
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Notice that for �xed t , �.s; t / is a path from H.t/ to xH.t/ whose projection to L

is a loop that is homotopic to the constant loop based at p ı H.t/ D p ı xH.t/.
As t varies, these homotopies �t together into a homotopy kW Œ0; 1�3 ! L such that
k.s; t; 0/ D p ı�.s; t / and k.s; t; 1/ D p ıH.t/. Lifting k to a mapKW Œ0; 1�3! F

(possibly after another equivalence), we obtain a path of pathsK.s; t; 1/ fromH.t/

to xH.t/, each in a single �ber. As remarked in [16, p. 909], there then exists a path
of �ber-preserving di�eomorphisms ˆt such thatH.t/ ıˆt D xH.t/, as required.

�

2.3. Generating family homology. Generating families may be used to de�ne a
Morse–Floer-type theory for Legendrian submanifolds; see [9, 24] as well as [20].
The �rst step in the de�nition of generating family homology is to introduce the
di�erence function on the �ber product of the domain of f with itself:

ıWM �R
N �R

N �! R;

.x; �; Q�/ 7�! f .x; Q�/ � f .x; �/:

The critical points of ı with positive critical values correspond to the Reeb chords
of ƒf , and we capture this geometric information with the following de�nition of
generating family homology with coe�cients in Z=2:

GHk.f / D HN C1Ck.ı
!; ı�IZ=2/;

where ! is a number larger than any critical value of ı and where there are no
critical values of ı in .0; �/.

Remark 2.3. It is not hard to prove (see [20, §3]) that the groups GHk.f / are
independent of the choices of ! and �: Nor is it hard to see that the chain com-
plexes underlying the generating family homologies associated to two equivalent
generating families are identical.

It is worth noting that 0 is a critical value for ı whose critical points form a
Morse–Bott submanifold di�eomorphic to the Legendrian itself. Further, if a gen-
erating family f is linear-at-in�nity, then, after a �berwise change of coordinates,
so is its di�erence function ı [9].

The basic invariance property of generating family homology is the following

Theorem 2.4 (Traynor [24]). If F W Œ0; 1� �M � R
N is a 1-parameter family of

generating families joining f0 to f1 that generate a Legendrian isotopy, then there

exists an isomorphism

ˆF WGHk.f0/ ' GHk.f1/:
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Combining this theorem with Theorem 2.1, we see that the set of all generating
family homologies for a Legendrian submanifoldƒ is invariant under Legendrian
isotopy.

3. Hutchings’ spectral sequence

We review Hutchings’ construction in [15, §6] of a spectral sequence for smooth
families of Morse functions and submanifolds in the context of generating fami-
lies. Up to some small modi�cations, his constructions and results apply to di�er-
ence functions of generating families. We slightly extend the theory developed in
[15, §6] to include parameter spaces that have non-empty boundary.

Our �rst task is to set notation for the family of di�erence functions we plan to
analyze using Hutchings’ scheme. Fix 0 < � � 1: Let B be a �nite-dimensional
compact manifold, thought of as a parameter space. Unlike in [15, §6], we allow
B to have nonempty boundary. Let � WZ ! B be a �ber bundle whose �ber over
b 2 B is Zb D M � R

N � R
N : Let �WZ ! R be a family of smooth functions

whose restrictions ıb to the �ber Zb satisfy the following properties.

� Genericity. In the complement of a codimension one subvariety of B , all
critical points of ıb with critical value at least � are non-degenerate.

� Linear-at- infinity. Outside a compact set in M �RN �RN , ıb agrees
with a �xed nonzero linear function on R

N �R
N .

Let r be a connection on Z ! B .
To work with Morse homology in this setting, we need to introduce metrics

and gradient �ows. We begin by introducing a Morse–Smale pair .K; gB/ on the
base space B , requiring the additional property that all critical points of ıb with
positive critical value are non-degenerate for all b 2 Crit.K/: If @B ¤ ;; we
assume that the component of the negative gradient �ow ofK with respect to gB ,
orthogonal to @B; is non-zero and points inward. Let W be the horizontal lift to
Z of this negative gradient �ow lifted using r: Let gZ denote a �berwise metric
on Z that induces a negative �berwise gradient �ow �b of ıb with respect to gZ ;
let � be the vector �eld overZ whose restriction to Zb is �b : Finally, we de�ne the
vector �eld

V D � CW; (3.1)

which we will use to de�ne di�erentials in a spectral sequence. We label this
geometric data by the tuple

Z WD .Z �! B;�;K; V /:
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The zeroes of V are pairs p D .b; x/, where b 2 B is a critical point of K and
x 2 Zb is a critical point of ıb: We will consider two complementary gradings:
the base grading i.bIK/ and the �ber grading i.xI ıb/: The total grading of a zero
p of V is i.p/ D i.bIK/C i.xI ıb/:

Hutchings proves in [15, Proposition 3.4 and p. 461] that, generically, the stable
and unstable manifolds of the zeroes of V intersect transversally under a slightly
di�erent set-up: his �ber Zb is compact, his base B cannot have boundary, and
0 is not a degenerate critical value. Even so, since Hutchings’ proof works by
examining one pair of non-degenerate critical points at a time, his proof still
applies to pairs of critical points with positive critical value in our set-up, with
the linear at in�nity condition taking the place of compactness. We say that Z is
admissible (over B) if the choices above are su�ciently generic so that the stable
and unstable manifolds of zeroes of V are transverse.

To make the intersections of the stable and unstable manifolds easier to work
with, we set some additional notation. Fix zeroes p and q of V . De�ne zM.p; q/
to be the space of �owlines u 2 C1.R; Z/ of V , i.e. smooth maps uWR ! Z

that satisfy d
dt
u.t/ D V.u.t//, with the property that limt!�1 u.t/ D p and

limt!1 u.t/ D q. We use this set to de�ne the moduli space of �owlines

M.p; q/ D ¹u 2 zM.p; q/º= �

where u � u0 if u.t/ D u0.t C �/ for some � 2 R.

Proposition 3.1. For a generic choice of V , M.p; q/ is a pre-compact manifold

of dimension i.p/ � i.q/. The boundary of the compacti�cation is given by

@ xM.p; q/ D
G

r2Crit.V /

M.p; r/�M.r; q/

Proof. This is a rephrasing of the standard argument in Morse homology. Note
that even though the spaceZ need not be compact, the linear-at-in�nity condition
on�means that V satis�es the Palais–Smale condition as set down in [21, §2.4.2].

If @B ¤ ;;we augment the standard argument as follows. Extend the family to
be over a slightly larger open base manifold B 0 where the �berZb for b 2 B 0nB is
constant in the direction orthogonal to @B: Extend the function K to K 0 such that
for a generic metric gB0

which extends gB , the negative gradient �ow projected
orthogonally to @B points towards @B � B 0 in any component of B 0 n B: Even
though B 0 is not compact, there are no negative gradient �ow lines starting at
any critical point that �ow into B 0 n B; thus, the usual arguments that show that
the moduli spaces are manifolds with corners from Morse theory, applied to B ,
hold. �
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Following Hutchings, the data Z yield a bigraded chain complex with coe�-
cients in Z=2:

�

Cl;m D Cl;m.Z; �/; d D
X

n�0

dn.Z/
�

; (3.2)

where the generators are the critical points .b; x/ of V with ıb.x/ > �. The
generator .b; x/ has bigrading .i.bIK/; i.xI ıb//. The di�erential

dnWCl;m �! Cl�n;mCn�1

counts modulo 2 the number of �ow lines of V . Speci�cally, we de�ne

dn..b; x// WD
X

.c;y/2Cl�n;mCn�1

#M..b; x/; .c; y//.c; y/: (3.3)

That the map d is a genuine di�erential follows from Proposition 3.1. We �lter the
complex C� WD

L

lCmD� Cl;m by the �rst grading, FlC� WD
L

l 0�l Cl 0;��l 0 ; and
let E�

�;� D E
�
�;�.Z; �/ be its associated spectral sequence.

The proof of Theorem 2.4 applies to the current situation, and implies that the
�berwise generating family homologies GH�.fb/ can be assembled into a local
coe�cient system, which we denote by F�.Z/:

Theorem 3.2. Consider the admissible family of generating families

Z D .Z �! B;�;K; V /:

(1) E2 term. The E2 term of the spectral sequence is

E2
l;m D Hl.Fm.Z//:

(2) Homotopy invariance. If Z is admissible over B � Œ0; 1� with the

restrictions Z0 WD Zj¹0º�B and Z1 WD Zj¹1º�B also admissible, then there

is an isomorphism of spectral sequences

E�
�;�.Z0/ D E

�
�;�.Z1/:

On the E2 term, this is the isomorphism

Hl.Fj .Z0// Š Hl.Fj .Z1//

induced by the isomorphism of local coe�cient systems

Fj .Z0/ Š Fj .Z1/

de�ned by ˆ in Theorem 2.4.
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(3) Naturality. If �W .B 0; @B 0/! .B; @B/ is su�ciently generic so that ��Z

is admissible, then the pushforward in homology

��WH�.B
0IF�.�

�Z// �! H�.BIF�.Z//

extends to a morphism of spectral sequences

E�
�;�.�

�Z/ D E�
�;�.Z/:

(4) Triviality. If .ıb; �b/ is Morse–Smale for all b 2 B , then the spectral

sequence collapses at the E2 page.

Proof. When @B D ;; the properties stated in the theorem follow with little or no
modi�cations from Hutchings’ arguments. In outline, Hutchings �rst establishes
the theorem for spectral sequences de�ned using singular chains in the base
(for any base); see Propositions 4.1, 4.3, 4.6 and Remark 1.5 in [15]. Hutchings
then extends the isomorphism from singular homology to Morse homology in [15,
Section 2.3] to an isomorphism of singular spectral sequences and Morse spectral
sequences over closed manifold base spaces in [15, Proposition 6.1].

When @B ¤ ;; we need to supplement the arguments connecting singular and
Morse homology. The key idea in the argument is that the descending manifold
of a critical point is a manifold with corners [15, equations (2.6) and (2.7)]. That
these equations extend to the case of a base manifold with boundary comes from
repeating the argument given in the proof of Proposition 3.1. �

Remark 3.3. There are several other properties of Hutchings’ spectral sequence
that we have not included in the theorem above. The most interesting is a Poincaré
duality statement, which holds in our set-up for some cases. In particular, compare
[20, Lemma 7.1] with [15, Proposition 7.1]. A more general duality principle for
generating family (co)homology is, however, unclear.

4. Algebra of homotopies

In this section, we use the ideas of Section 3 to investigate the homotopy groups
of the space of Legendrian submanifolds. In Section 4.1, we discuss how to in-
terpret a family of n-dimensional Legendrians parameterized by the m-manifold
B as a single .m C n/-dimensional Legendrian. We also discuss relationships
to the generating family homology. In Section 4.2, where B D Sm is a (based)
m-sphere, we interpret Theorem 3.2 as a morphism from the based homotopy
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groups of the space of Legendrian embeddings to the space of endomorphisms
of generating family homology. In Section 4.3, we study this morphism further
to �nd examples of loops of Legendrian embeddings which are non-contractible
as Legendrians submanifolds, but contractible as smooth submanifolds. In Sec-
tion 4.4, we construct a more general morphism from the free homotopy classes
of L:

4.1. Tracing families of Legendrian submanifolds. We begin by rephrasing
the main concept of Section 3 in the language of Legendrian submanifolds and
generating family homology.

Let ¹ƒb � J 1M W b 2 Bº be a smooth family of n-dimensional Legendrian
submanifolds parameterized by a compact manifold B , possibly with boundary.
Assume there is a family F WB �M �R

N ! R of generating families. De�ne

�WB �M �R
N �R

N �! R

by
�.b;m; �; Q�/ D F.b;m; �/ � F.b;m; Q�/: (4.1)

Here and later in the article, we denote by fb and ıb the restrictions of F and �
to the �ber over b 2 B . Let ƒ � J 1.B �M/ be the .nC dim.B//-dimensional
Legendrian trace; that is, the front of ƒ over the point b is the front of ƒb: As in
Section 3, let KWB ! R be a generic function on the base, let V be the vector
�eld from equation (3.1), and let Z D .Z D B �M �R

N �R
N ; �;K; V /:

Lemma 4.1. The function F is a generating family for ƒ: If K is a su�ciently

C 2-small Morse function and Z is admissible, then

GHk.F / D
M

iCj DkCN C1

E1
i;j .Z/:

Proof. This result is straightforward after making two observations. First, in
local coordinates, the di�erential of the �ber derivative of F at .b; m; �/ contains
the di�erential of the derivative of fb as a full-rank submatrix. Thus, F also
satis�es the transversality condition for generating families. Second, the quasi-
isomorphism type (which determines its homology) ofCM�..�CK/

!; .�CK/�/

is independent of the choice of generic K, assuming K is C 2-small, and hence
perturbing by K does not change the topology of the level � sublevel set. �

We next consider two examples. The �rst will be used in Sections 4.2 and 4.3,
while the second appears in Section 4.4.
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Example 4.2 (based m-sphere). Let ƒ � J 1M be an n-dimensional Legendrian
submanifold with generating family f . Let � be a smooth Sm-family of Legen-
drian submanifolds with the properties that Œ�� 2 �m.LIƒ; f / and that for a small
contractible neighborhood U of b 2 Sm; we have �.U / D ƒ: Construct a Morse
function KWSm ! R that has two critical points, a maximum at a 2 U and a
minimum at b. Assume that kKkC 2 < � as in Lemma 4.1. Let ƒ� be the trace of
this m-isotopy and de�ne a generating family F and di�erence function � for ƒ�

as in equation (4.1). Perturb V if necessary so that

Z D .Z �! Sm; �;K; V /

is an admissible family.

Example 4.3 (based homotopy). Let ƒ � J 1.M/ be an n-dimensional Legen-
drian submanifold with generating family f . Let Q�W Œ0; 1�m ! L be a smooth
Œ0; 1�m-family of Legendrian submanifolds such that �.0; : : : ; 0/ D ƒ: Extend Q� to
�W Im WD Œ�1; 1�m! L by smoothing the function

�.b1; : : : ; bm/ D Q�.max.b1; 0/; : : : ;max.bm; 0//:

Assume that Q�j@Œ0;1�m�1�bm
is independent of bm: De�ne the Morse function on

the base to be

KW Im ! R; K.b1; : : : ; bm/ D �

m
X

iD1

.bi C 1/
2.bi � 1/

2; (4.2)

where 0 < � � � � 1: Note that for any metric, the negative gradient of K
projects to the outward normal direction on @Im:

Let ƒ be the trace of this m-isotopy and de�ne a generating family F and its
di�erence function � as in equation (4.1). Perturb V if necessary such that

Z D .Z �! Im; �;K; V /

is an admissible family.

4.2. From homotopy groups of the space of Legendrians to generating family

homology. We revisit the map �WSm ! L from Example 4.2, using it to relate
the homotopy groups of L to morphisms of generating family homology.

If f is a generating family for the basepoint ƒ, then we will construct a
morphism

‰W�m.LIƒ; f / �! Endm�1.GH�.f //:
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Recall from Remark 2.3 that “up to equivalence” su�ces to completely specify
the generating family chain complex over the basepoint ƒ. For this reason, we
will stop making remarks about our lifts to the space of generating families being
well-de�ned only up to equivalence.

To de�ne the map ‰, construct the generating family F as in Example 4.2.
Lemma 4.1 implies that the di�erential of the generating family chain complex
GC�.F / in degree l can be written as d D

PlC1
kD0 dk.Z/, as in equations (3.2)

and (3.3). For an element c 2 Crit.K/; and a generator .e; p/ 2 GC�.F /; de�ne
h.e; p/; ci to be p 2 GC�.fc/ if e D c and 0 otherwise. (Recall that fc D F jc :)
Extend this pairing bilinearly.

Finally, de�ne a map  �WGC�.f /! GC�Cm�1.f / by

 �.x/ D

8

<

:

hdm.a; x/; bi C x; m D 1;

hdm.a; x/; bi ; m > 1:
(4.3)

We can now restate (and prove) Theorem 1.1 in more detail.

Proposition 4.4. The map  � de�ned above has the following properties.

(1) The map induces a homomorphism

‰�WGH�.f / �! GH�Cm�1.f /:

(2) If � and �0 are homotopic through maps that send U � Sm to ƒ, then

‰�D‰�0 . In particular, given Œ��2�m.LIƒ;f /, we may refer to the map‰Œ��.

(3) The map � 7! ‰� induces, for m > 1, a morphism from �m.LIƒ; f /

to Endm�1.GH�.f // or, for m D 1, from �1.LIƒ; f / to Aut.GH�.f //.

In particular, we have

‰Œ��Œ�� D ‰Œ��‰Œ�� if m D 1;

‰Œ��CŒ�� D ‰Œ�� C‰Œ�� if m > 1:

For the m D 1 case, the equation above and the fact that ‰ŒId� is the identity

imply that ‰Œ�� is invertible.

Proof. The general principle of this proof is outlined in [15]. For the convenience
of the reader, we present some of the details here when considering generating
families.
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To prove the �rst property, note that d2.c; x/D0 if and only if hd2.c; x/; eiD0

for all e 2 Crit.K/: Since the base function K has critical points of index 0 and
m only, we see that dk D 0 unless k D 0;m. In particular, for all x 2 Crit.ıa/;

we have

0 D hd2.a; x/; bi D h.d0dm C dmd0/.a; x/; bi:

Thus,  � is a chain map and induces a map

‰�WGH�.fa/ �! GH�Cm�1.fb/:

Next, we take two homotopic maps �; �0WSm ! L which lift to Sm-families
of generating families with admissible data Z and Z0; respectively. Combining
Examples 4.2 and 4.3 and Proposition 2.2, we construct an admissible ZŒ�1; 1�

over I � Sm D Œ�1; 1� � Sm such that Zj�1 D Z D Zj0 and Zj1 D Z0: We then
apply Lemma 4.1 to de�ne d D d.ZŒ�1; 1�/:Denote by F I and�I the generating
family and di�erence function of the trace of this homotopy. There are six critical
points of the di�erence function over I � Sm, which we denote by .n; c/ where
n 2 ¹�1; 0; 1º and c 2 ¹a; bº: Since the base indices lie in the set ¹0; 1; m;mC 1º,
the equation d2 D 0 now implies

0 D h.d0dmC1 C dmC1d0 C d1dm C dmd1/..0; a/; x/; .1; b/i: (4.4)

Since we are working with a based homotopy between � and �0, Proposition 2.2
implies the map d1 corresponds to the identity map; in particular, we have

d1..c; 0/; x/ D ..c; 1/; x/C ..c;�1/; x/

for c 2 ¹a; bº and x 2 Crit.ıI
.c;0/

/ D Crit.ıI
.c;˙1/

/: Thus, equation (4.4) indicates
that the map

H WGC�.f
I

.a;0// �! GC�Cm�2.f
I

.b;1//

de�ned by

H.x/ D hdmC1..a; 0/; x/; .b; 1/i ;

is a chain homotopy between  � and  �0 .
The proof of the third statement for m � 2 essentially appears in [15, Exam-

ple 1.9], as Hutchings’ proof relies on a based homotopy similar to the one we just
explicitly constructed.

For m D 1, we are unaware how to apply Theorem 3.2 to prove that ‰Œ��Œ�0� D

‰Œ��‰Œ�0�: Instead, this follows from the traditional “broken-curves” argument of
the well-studied continuation methods in Morse–Floer theory. �
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4.3. A constructive proof of Theorem 1.2. In this section, we prove Theo-
rem 1.2, namely that for every n > 1, there is an in�nite family of Legendrian
submanifolds, ƒn;r � R

2nC1 parametrized by su�ciently large r 2 N so that
�1.L

nIƒn;r/ is non-trivial. Further, the non-trivial homotopy classes we produce
in �1.L

nIƒn;r/ are trivial in the smooth category.
We begin by constructing ƒn;r . Consider the Legendrian link in R

3 whose
front projection appears in Figure 1. This link, which is isotopic to the Hopf link,
has a generating family f WR � R

N ! R with a di�erence in index of r C 2

between the critical points generating the top strand of the top component and
the bottom strand of the bottom component. Spin the front about its central axis
into R

nC1 as in [11] to get two Legendrian spheres. Then perform a 0-surgery
along the horizontal dotted 1-disk in Figure 1 to get a connected Legendrian sphere
zƒn;r . That the spinning and surgery constructions yield Legendrian surfaces with
generating families is a simple generalization of facts proven in [2].

x

z

r

Figure 1. By spinning this front around the central z axis and then performing a 0-surgery
along the dotted horizontal disk, we obtain the Legendrian surface zƒ2;r :

To constructƒn;r itself, we take two copies of zƒn;r , positioned su�ciently far
apart along the x1 axis so that the pair can be generated by a single generating
family that is equal to a linear function in � in a neighborhood of the hyperplane
x1 D 0; see [20, §3.3]. Finally, perform another 0-surgery to connect the two
copies along their topmost cusps; once again, the result has a generating family
which we will call f n;r . It is important that the three 0-surgeries performed thus
far line up as in Figure 2.
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To compute the generating family homology of ƒn;r , we �rst assume that
r � nC 2. We begin by computing the generating family homology of the Hopf
link. The Hopf link has

�

4
2

�

D 6 Reeb chords, which correspond to generators of
degrees

r; nC 1 � r; n; n; nC r; nC r C 1:

The computation of degrees comes from the fact that the index of a critical point of
the di�erence function may be computed to be the sum of N , the index di�erence
of the generating family between the top and bottom strands, and the index of
a function that measures the distance in z heights between the top and bottom
strands; see the proof of Proposition 3.2 in [20]. The fact that r � n C 2

implies that the generators in degrees r; nC 1� r; n; nmust survive in homology.
On the other hand, the Duality Exact Sequence of [20] and the fact that we are
working over a �eld tells us that dim GHnCr .f / D dim GH�r�1.f / D 0; a similar
argument, or a simple consequenceof the de�nition of a chain complex, shows that
dim GHnCrC1.f / D 0 as well. Thus, we obtain:

GHm.f / D

8

ˆ

ˆ

<

ˆ

ˆ

:

Z=2˚ Z=2 m D n;

Z=2 m D r; nC 1� r;

0 otherwise.

The generating family homologies for Qf n;r and f n;r may then be computed
using the Cobordism Exact Sequence [20, Theorem 1.1], which states that when
there exists a generating family-compatible Lagrangian cobordism1 L between
.ƒ�; f�/ and .ƒC; fC/, then there exists a long exact sequence

� � � �! HkC1.L;ƒC/ �! GHk.fC/ �! GHk.f�/ �! � � � : (4.5)

Since HkC1.L;ƒC/ is nonzero only for k C 1 D n when attaching a 1-handle,
we see that

GHm. Qf
n;r/ D

8

<

:

Z=2 m D n; r; nC 1 � r;

0 otherwise.

Taking two copies of zƒn;r in the construction yields the direct sum of two
copies of the groups above for the generating family homology. Applying the

1 A precise de�nition of “generating family-compatible Lagrangian cobordism” is not neces-
sary for this paper; we need only note that the surgery constructions in [2] produce such objects.
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Cobordism Exact Sequence again to the last 0-surgery gives us

GHm.f
n;r / D

8

ˆ

ˆ

<

ˆ

ˆ

:

Z=2 m D n;

Z=2˚ Z=2 m D r; nC 1� r;

0 otherwise.

It is easy to see from the computation that the group GHr.f
n;r / is generated by

two chains ˇL and ˇR, each of which is arises from a sum of critical points that
lie in exactly one of the copies of zƒn;r .

!

x1

x2

Figure 2. The three 0-surgeries in the construction of ƒ2;r must line up as in the �gure.

With the Legendrian spheres ƒn;r in hand, we proceed to construct a non-
contractible loop in L based at ƒn;r . The idea is to e�ect a rotation by � in the
�rst two coordinates of the base manifold R

n, which yields a loop in L because of
the symmetry ofƒn;r . To be more precise, �x � � 1 and choose a smooth function
� W Œ0; 2�� ! Œ0; �� with the properties that � is non-decreasing, ��1¹0º D Œ0; � �,
and ��1¹�º D Œ� � �; 2��. De�ne a path �W Œ0; 2�� ! SO.n/ of rotations of the
base R

n to be the identity except for the following elements of SO.2/ in the upper
left corner:

�

cos �.s/ sin �.s/
� sin �.s/ cos �.s/

�

:

Finally, let fs D f n;r ı ��1.s/, where we have implicitly extended � to be the
identity on the �ber component. The symmetry of the function f n;r implies that
this is actually a smooth family of generating families over the baseS1 even though
� does not descend to a smooth function on S1. In particular, we obtain a smooth
loop O� of Legendrian spheres with a loop of generating families, i.e., an element
in �1.LIƒ

n;r ; f n;r/.
To place the construction above in the families context, consider the following

geometric data Z: Z D S1 � R
nC2N is the trivial bundle over S1I ıs is the �ber-

wise di�erence function; K is the base function as constructed in Example 4.2
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with maximum at 0 and minimum at � I W is the lift of �rK to Z via the trivial
connection; �s is the negative �ber-wise gradient �ow of ıs I � is the vector �eld
whose restriction to Zs is �s I and V D W C �:

Proposition 4.5. The loop O� based at ƒn;r is not contractible in Ln.

Proof. It su�ces to show that ‰ O� is not the identity.

Let �0 be the �ber-wise gradient of ı0: In equation (4.6) below, a � b denotes
matrix multiplication of a and b; ab denotes scalar multiplication where a is a
scalar, and aT denotes the transpose of a: We abuse notation in the equation,
treating W.s/ �rst as a vector �eld in T .S1�RnC2N / and then as a scalar. De�ne

xV.s; x; �; Q�/ D W.s/CW.s/�0.s/ � .��1.s/ � .x; �; Q�/T /

C �.s/ � �0.�
�1.s/ � .x; �; Q�/T /:

(4.6)

The de�nition of � in the construction of �, above, implies that xV and V agree
in an open neighborhood of their (identical) sets of critical points. Note that if
we replace V with xV in the computation of the di�erential, we still get a bigraded
complex .Cl;m; d

xV / where the Cl;m is same one as yielded by the data Z above.
(Review equation (3.2) and its accompanying discussion for a description of the
bigrading.) In particular, we can de�ne a d xV

1 -map as introduced in equation (3.3).

We now construct a �ltered chain homotopy equivalence between the two
bigraded complexes using standard continuation methods, following the outline
in [15, §6]. Let ˇW Œ0; 1�! R be a smooth function such that ˇ.t/ � 0; ˇ�1.0/ D

¹0; 1º; ˇ0.0/ > 0 and ˇ0.1/ < 0: Let Vt be a smooth (in t ) family of vector �elds
on S1 �R

nC2N such that V0 D V , V1 D xV; and Vt is independent of t in a
neighborhood of ¹0; �º �R

nC2N :De�ne a vector �eld V on S1 � Œ0; 1�t �R
nC2N

by V D �ˇ.t/@tCVt : It is not hard to see that V then determines the desired chain
map; the chain map is �ltered since its projection to the base S1 is parallel to
�rK:

The existence of V implies that d xV
1 D d1 where d1 is determined by V and

determines ‰ O�: The vector �eld xV constructed in equation (4.6) is designed so
that a �ow line 
.t/ D .
S .t /; 
R.t // 2 S

1 �R
nC2N has the following properties:

(1) the component 
S .t / satis�es the decoupled one-dimensional equation

 0

S .t / D W.
S .t //;

(2) the component 
R.t / is of the form 
R.t / D �.
S .t //�.t / for some �ow line
�.t/ of the vector �eld �0.
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To see this how this second statement follows from equation (4.6), note that


 0
R
.t / D 
 0

S .t /�
0.
S .t // � �.t/C �.
S .t // � �

0.t /

D 
 0
S .t /�

0.
S .t // � .�
�1.
S .t // � 
R.t //

C �.
S.t // � �0
�

��1.
S .t // � 
R.t /
�

:

So we see that .
 0
S .t /; 


0
R
.t // D xV.
S .t /; 
R.t //:

Condition (1) and the gradings of the generators on GHr .f
n;r / imply that the

rigid �ow lines that compute the map‰ O� on GH�.f
n;r / send a class of GH�.f

n;r/

represented by critical points with x1 < 0 to the symmetric class represented
by critical points with x1 > 0. Condition (2) implies that the component 
R.t /
is constant, hence there is a unique �ow between this class at x1 < 0 and its
symmetric one at x1 > 0. By construction, this map is not the identity in degree r ,
and hence the loop O� is not contractible. �

While the loop O� is non-trivial in �1.LIƒ
n;r/, it is smoothly trivial. More

precisely, we have the following

Proposition 4.6. The loop O� is null-homotopic in the space of smooth embedded

n-spheres in R
2nC1.

Proof. The null-homotopy is constructed in two stages. First, note that the space
of long n-knots in R

2nC1 is connected for n > 1 [3]. Further, as noted in [3,
De�nition 1], the space of long n-knots in R

2nC1 is homotopy equivalent to the
space of embeddings of Dn into D2nC1 that agree with a �xed linear function on
the boundary. Thus, there is a smooth isotopy of the left lobe ofƒn;r that satis�es
the following:

(1) it �xes the attaching region of the 0-surgery joining the left to the right lobes;

(2) it is supported in the left half-space of R2nC1; and

(3) it takes the left lobe to a �ying saucer.

Performing this isotopy on the left lobe and its rotation on the right, we obtain a
smooth isotopy H that takes ƒn;r down to a �ying saucer; note that this isotopy
is symmetric about the z axis.

We are now ready for the �rst stage of the homotopy ‚W Œ0; 2� ! L2 that
connects � to the identity. We work entirely with the front diagram. At time
t D 0, we simply take ‚ to be �. As t increases to 1, for each �xed t , we perform
H.x; 3s/ to gradually transform ƒ2;r into the �ying saucer over s 2 Œ0; t

3
�, then

rotate the result by � , and then perform the reverse homotopy H.x; 3.1 � s// for
s 2 Œ1� t

3
; 1�. See Figure 3 for a schematic picture of this construction. At t D 1,
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the loop � has been transformed into a loop that starts by doing H over Œ0; 1
3
�,

then �xes the �ying saucer over Œ1
3
; 2

3
�, and then undoes H over Œ2

3
; 1�. This loop

is clearly null-homotopic, and we append this null homotopy to the homotopy
constructed above. �

xH

H

�

Figure 3. A schematic picture of the �rst part of the homotopy between � and the constant
loop in Ln.

Propositions 4.5 and 4.6 together imply Theorem 1.2.
The proof above shows that the element Œ O�� 2 �1.LIƒ

n;r/ has order at least
two. We can modify the construction to produce elements O�m 2 �1.LIƒ

n;r/ that
have order at leastm for anym > 1. Instead of connecting two copies of zƒ2;r with
a 0-surgery, we begin with a central �ying saucer centered on the z axis. We then
take m copies of zƒn;r , arrayed as in Figure 4, and let �m;r be a rotation about the
z axis by 2�

m
.

Figure 4. The fundamental group of L2 based at this surface has an element of order at
least 6.
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The computations of the generating family homology have the same form as
those for ƒn;r , and a slight generalization of the proof of Proposition 4.5 shows
that all powers �m;r ; .�m;r/2; : : : ; .�m;r/m�1 are nontrivial maps. In fact, this
argument proves the following

Proposition 4.7. For any subgroupG < SO.n/ that acts transitively and without

�xed points on a �nite set S � Sn�1, there exists an n-dimensional Legendrian

submanifold ƒG � R
2nC1 such that there is an injection G ,! �1.LIƒG/.

4.4. Free homotopies. One can also consider relative versions of the map ‰:
instead of m-spheres of Legendrians up to basepoint-preserving homotopy, con-
sider m-cubes of Legendrians up to homotopy relative to their boundary.
One way to algebraically package this, before passing to homology, is as a fun-

damental 1-groupoid, which we sketch below. This groupoid is an example of
a so-called .1; 0/-category. Essentially, an .1; 0/-category is a category with
objects, 1-morphisms between objects, 2-morphisms between 1-morphisms, etc.
The “.�; 0/”-label indicates that all k-morphisms for k > 0 have homotopy in-
verses. The “.1; �/”-label indicates that operations and relations, such as the com-
position of two composable 1-morphisms and associativity of composition, only
hold up to “homotopy.” For a rigorous de�nition of an .1; 0/-category in terms
of Kan complexes and simplicial sets, see [19, Remark 1.1.2.3 and Example 1.1.2.5]

Example 4.8. As mentioned, an example of an .1; 0/-category is ��1.X/;

the fundamental1-groupoid of a topological space X: The objects of ��1.X/

are the points in X: The 1-morphisms Mor1.x; y/ are the (possibly empty set of)
paths from x to y: Composition of composable 1-morphisms is concatenation of
paths. Note that we are unconcerned with how to parameterize the composite
path since all choices are homotopic. This leads to the 2-morphisms Mor2.˛; ˇ/

between paths ˛; ˇwhich start and end at x; y 2 X W they are the based homotopies
connecting ˛; ˇ: Note that all .� 1/-morphisms have homotopy inverses.

Example 4.9. We de�ne another .1; 0/-category, GH.L/; based on the generat-
ing family chain complexes of points in L: The objects are GC�.Z/ WD GC�.f /

with di�erentials d D d.Z/:Note ifGC�.Z/ D GC�.Z
0/; but the Legendrians that

f and f 0 generate are not the same, the chain complexes are considered the same
object in this category. Given a Legendrian isotopy ƒb; �1 � b � 1 which is
constant for �1 � b � 0; let Z be the admissible family associated to the trace ƒ:
(See Section 4.2.) De�ne a 1-morphisms

˛ D ˛.Z/ 2 Mor1.GC�.f�1/; GC�.f1//; ˛.x/ WD hd1.0; x/; 1i:
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(using the notation of the proof of Proposition 4.4). Note that when de�ning
Mor1.GC�.Z/; GC�.Z

0//, we are considering all families ZŒ�1; 1� between all

pairs Z and Z0 (as in the proof of Proposition 4.4) such that GC�.Z/ D GC�

and GC�.Z
0/ D GC 0

�. We continue in this manner, de�ning the 2-morphisms
with the d2-map, et cetera.

Proposition 4.10. There is a functor from ��1.Ln.J
1M// to GH.Ln.J

1M//:

Proof. The proposition follows from almost identical arguments to the proof of
Proposition 4.4. �

5. Further applications

In this section, we examine several explicit constructions of families of Legendrian
submanifolds with generating families, teasing out the implications of the families
machinery of Section 3 for each construction.

5.1. Product families. Suppose that ƒ � J 1M is a Legendrian submanifold
with generating family f . Given a closed manifold B , we form the product family

ƒ�B � J 1.M �B/ simply by taking the generating family F with �ber fb D f .
This construction, together with a choice of a C 2-small Morse function K on B
and a metric g on M � R

N , induces a family .Z ! B;�;K; V /. We then use
Theorem 3.2 to compute the generating family homology of the constant family F
on the total space ƒ�B using a Künneth-type formula. Note that our techniques
are not necessary to make this computation, as one can apply the (topological)
Künneth theorem directly to the sublevel sets of the di�erence function, but the
following proposition is a good �rst application of Theorem 3.2.

Proposition 5.1. The generating family homology of the total space of a product

family is computed by

GHk.F / D

dim B
M

lD0

GHl .f /˝Hk�l .B/:

Proof. The E2 property of Theorem 3.2 implies that

E2
i;j D Hi.BIGHj .f //:

The triviality property of Theorem 3.2 implies that the spectral sequence E�
�;�

collapses at the E2 page, and we recover the generating family homology of the
family F as in the statement of the theorem. �
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Corollary 5.2. Suppose that the Legendrian submanifolds ƒ1; ƒ2 � J
1M have

di�erent sets of generating family homologies. If B is any closed manifold, then

ƒ1 � B and ƒ2 � B are not Legendrian isotopic in J 1.M � B/:

While the result of this corollary has been obtained when M D R
n and B is

the k-torus [5], this is a new result for all other cases.

To see an application of the corollary, one may take any pair of twist knots
in J 1

R that Chekanov distinguished using linearized Legendrian contact homol-
ogy [4]. In this case, since the twist knots have only one possible linearized contact
homology group, it is easy to use Fuchs and Rutherford’s results in [9] to show
that Chekanov’s twist knots have di�erent generating family homology.

Remark 5.3. The product families construction is a special case of Lambert-
Cole’s Legendrian product construction [18]. The 1-jet of F in J 1B is a Leg-
endrian ƒB isotopic to the zero section, and the product above is then Lambert-
Cole’s Legendrian product ƒ �ƒB .

5.2. Front spinning. In the next few subsections, we bring the front spinning
constructions of [6, 11], their adaptation to generating families [2], and their
generalization to twist spinning [2] into the families context.

For the simplest version of this construction, suppose that a Legendrian sub-
manifold ƒ � R

2nC1 is contained in the half-space H de�ned by xn > 1. This
can always be achieved via a translation in the xn direction, which is a Legendrian
isotopy. Suppose further thatƒ has a linear-at-in�nity generating family f whose
support (Section 2.3) also lies in the half-space H . As alluded to in Section 2.3,
we may also assume that ı is linear-at-in�nity, i.e. that ı D ı0 C A where A is
linear and ı0 has compact support in the half-spaceH . Moreover, we can assume
that the support lies in the set de�ned by xn > 1; see [20].

We de�ne a new generating family for an .n C m/-dimensional Legendrian
in R

2.nCm/C1 as follows: let .�; �/ denote generalized spherical coordinates
on R

mC1; hence, we may represent a point in R
nCm D R

n�1 � R
mC1 by

.x1; : : : ; xn; �; �/. De�ne the generating family for the spun Legendrian by

F†;m.x1; : : : ; xn�1; �; �; �/ D f .x1; : : : ; xn�1; �; �/: (5.1)

It is straightforward to check, as noted in [2], that F†;m is still a generating
family. We call the new Legendrian the m-spinning of ƒ and denote it by †mƒI

it clearly has the di�eomorphism type of ƒ � Sm.
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A small generalization of the proof of Proposition 5.1 yields:

Proposition 5.4. The generating family homology of them-spun generating family

F†;m may be computed as

GHk.F
†;m/ D GHk.f /˚GHk�m.f /:

Proof. The proof is structured around a relative Mayer–Vietoris argument in the
domain of �†;m, where we take the set Ah to consist of points .x; �; �; �/ 2
R

nCm � R
2N with � < 1 and �†;m < h and the set Bh to consist of points with

� > 1
2

and �†;m < h. Since �†;m is a linear function for � < 1, we see that the
pairs .A!; A�/ and .A! \B! ; A� \B�/ are both acyclic. Thus, a Mayer–Vietoris
argument shows that GH�.F

†;m/ is isomorphic to H�CN C1.B
! ; B�/, which, by

examination of equation 5.1, is precisely the generating family homology of the
product family ƒ � Sm constructed in the previous section. �

We conclude, as in the previous section, that if two Legendrians may be dis-
tinguished by their generating family homology, then their m-spins are so distin-
guished as well; see [5, Section 5] for a comparable computation for Legendrian
Contact Homology when m D 1.

5.3. Twist spinning. To generalize the spinning construction of Section 5.2,
consider a representative ˛ of an element in �m.LIƒ/. Suppose that ƒ has a
generating family f , and let f� denote the lift of ˛ to the set of generating
families for ƒ� starting at f . As before, we explicitly assume that the lifting
procedure yields an m-sphere of generating families, that is, ˛ 2 �m.LIƒ; f /:

As a common generalization of [2] and [11], and in parallel to [7] for m D 1, we
de�ne a generating family for the twist-spun Legendrian .nCm/-submanifold ƒ˛

by

F ˛.x1; : : : ; xn�1; �; �; �/ D f�.x1; : : : ; xn�1; �; �/: (5.2)

Front spinning is obviously a special case of twist spinning: simply twist-spin the
constant isotopy.

To compute GH�.F
˛/, we return to the setup in Example 4.2, where the base

function KWSm ! R has a maximum at a 2 Sm, a minimum at b 2 Sm, and no
other critical points. Theorem 3.2 implies that theE2 term of the families spectral
sequence for the family f� is GH�.f / ˚ GH�.f /Œm� 1� with the di�erential
de�ned as follows. If x is a generator of GH�.f /, then in the notation of Sections 3
and 4, the generators of theE2 term are of the form .a; x/ and .b; x/. The de�nition
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of the map ‰ then implies that the di�erential is

d.a; x/ D

´

.b; ‰Œ˛�.x/C x/ m D 1;

.b; ‰Œ˛�.x// m > 1;

d.b; x/ D 0:

Proposition 5.5. The generating family homology GH�.F
˛/ is independent of

the choice of representative of ˛ and may be computed from the chain complex

.GH�.f /˚GH�.f /Œ1�m�; d/ described above.

Proof. The proof is parallel to that of Proposition 5.4, above, with the construction
of ‰ in equation (4.3) and Proposition 4.4 taking the place of Proposition 5.1. �

The theorem above can give us information in two ways: �rst, it allows us to use
distinct elements of �m.LIƒ0; f / to produce pairs of distinct .nCm/-dimensional
Legendrian submanifolds. For example, twist-spinning the Legendrian ƒ con-
structed in Section 4.3 by the non-trivial element in �1.LIƒ0; f / yields a Legen-
drian .nC 1/-submanifold distinct from the ordinary spin of ƒ.

The theorem above also provides a potential mechanism to distinguish ele-
ments of �m.LIƒ; f /: if the twist-spins of two loops of Legendrian with a com-
mon base point have di�erent generating family homology, then the di�erence
must have arisen from the ‰ maps. Thus, if one can compute the generating fam-
ily homology by some other means — surgery [20] or a generating family version
of the Mayer–Vietoris sequence of [13], for example — then one has a chance
of �nding new examples of non-trivial elements of �m.LIƒ; f / without directly
computing the ‰ maps directly. Unfortunately, as of this writing, we know of no
implementations of this technique.

5.4. Factoring ‰ through spinning. In this section, we study the relationship
between the morphism ‰ and the 1-spinning construction. Unlike in Section 5.2,
we need the analyze the chain complex more closely, but along the way, we reprove
Proposition 5.4 in the 1-spun case.

First, we adapt a technique useful for gradient �ow trees and holomorphic
disks in Legendrian Contact Homology [6, 13] to generating family homology. We
state the lemma more generally than is needed in this article for possible future
applications. Let g be a metric on M � R

N � R
N ; S � M be a submanifold,

and N�.S/ �M be the �-neighborhood of S: Let ı be the di�erence function of a
generating family f WM�RN ! R:Let V be a (negative) gradient-like vector �eld
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for ı used to de�ne the di�erential in GC.f /: Assume the support of V agrees
with the support of ı:

Lemma 5.6. For all su�ciently small � > 0; and for all .x; �; Q�/ such that

x 2 @N�.S/ and ı.x; �; Q�/ > 0; assume one of the following holds: either

the component of V normal to @N�.S/ is non-vanishing and points inwards;

or, .x; �; Q�/ is not in the support of ı: Fix points p; q 2 M � R
N � R

N with

ı.p/ > ı.q/ > 0 and negative gradient-like �ow line 
 of ı connecting them.

(1) When S is a hypersurface, 
 does not cross S �R
N �R

N :

(2) If both p and q lie in S � R
N � R

N , then 
 sits entirely in S �R
N �R

N :

(3) If fS is the restriction of f to S�RN , thenGC.fS/ is naturally a subcomplex

of GC.f /:

If we replace “inwards” with “outwards” in the �rst assumption, then the �rst and

second statements above still hold.

Proof. Note that if 
 exits the support of V; it then stays within a single �ber
¹xº � R

N � R
N . Thus, for the �rst statement, it su�ces to observe that the

hypotheses imply that V is everywhere tangent to S � R
N � R

N .
For the second statement, since the normal component of V always points into

T .S �R
N �R

N / at p, or vanishes, even if p is a critical point of ı, the �ow line
cannot leave any � neighborhood of S � R

N � R
N . Thus, the �rst observation

implies that 
 lies entirely in S �R
N �R

N : A similar proof, based at q, holds if
we replace the “inwards” assumption by “outwards”.

For the third statement, note that the vanishing normal component of V along
S � R

N � R
N implies that there is a one-to-one correspondence between the

critical points of ı and those of ıS . The equality of di�erentials then follows from
the argument for the second statement which prevents a �ow line from leaving
S � R

N � R
N : �

We now study the interaction of spinning and Proposition 4.4. Fix a Legendrian
submanifold ƒ � ¹� WD xn > 1º � J 1

R
n with generating family f whose

support lies in ¹� > 1=2º � R
n � R

N : A 1-spin produces a Legendrian †1ƒ �

J 1
R

nC1 with generating family F†;1 as in equation (5.1). Choose a smooth
monotonic function �.�/ such that �jŒ0;1=2� D 0 and �jŒ1;1/ D 1: Fix a small
� > 0, and let V be the gradient vector �eld of the di�erence function with a
C 2-small perturbation:

F†;1.x1; : : : ; xn; �; �; �/� F
†;1.x1; : : : ; xn; �; �; Q�/C ��.�/ sin.�/:
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All critical points of the gradient-like vector �eld V have coordinates
� > 1 and � D ��=2 or �=2; which we distinguish by labeling as cŒ�� and cŒC�;
respectively, where c is a critical point of the di�erence function of f . This in-
duces a decomposition of the di�erential d†;1 ofGC.F†;1/ D GCŒ��˚GCŒC�:

d†;1 D

�

d�� d�C

dC� dCC

�

:

We �rst prove a lemma which implies Proposition 5.4 for the 1-spin case.

Lemma 5.7. For all critical points b; c of the di�erence function of f , we have

d�CcŒ�� D 0;

dC�cŒC� D 0;

hd��cŒ��; bŒ��i D hdc; bi D hdCCcŒC�; bŒC�i;

where d is the di�erential of GC.f /:

Proof. By the symmetry of V under the re�ection through the x1 � � �xn�1z plane,
any elements in any rigid moduli space M0.cŒC�; bŒ��/ appear in pairs; thus,
dC� D 0:

Let S � R
n�1 � R

2 be the open hypersurface satisfying � D ��=2 and
� > 1=2: We see that the hypotheses (with “inward” speci�cation) of Lemma 5.6
hold; therefore, the third statement of the lemma implies

d�C D 0 and hd��cŒ��; bŒ��i D hdc; bi:

Finally, let S 0 � R
n�1 � R

2 be the hypersurface de�ned by � D �=2 and
� > 1=2: The identity hdCCcŒC�; bŒC�i D hdc; bi now follows from the second
statement of Lemma 5.6 (with the “outward” hypothesis). �

Proposition 5.8. Let‰ be the map from Proposition 4.4. Let Pr˙ be the projection

map de�ned on generators as

Pr˙WGH.F†;1/ �! GH.f /; cŒ˙� �! c; cŒ�� �! 0:

De�ne the map i W�m.L.J
1
R

n/Iƒ; f / ! �m.L.J
1
R

nC1/I†1ƒ;F†;1/ induced

by 1-spinning Sm families of Legendrians. Then i is well-de�ned, and ‰ factors

through 1-spinning, i.e. the following diagram commutes:

�m.L.J
1
R

n/Iƒ; f / Endm�1.GH�.f //

�m.L.J
1
R

nC1/I†1ƒ;F†;1/ Endm�1.GH�.F
†;1//:

 

!
‰

 !i

 

!
‰

 !Pr˙
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Proof. Since the 1-spin of a homotopy of two Legendrian Sm-families is a ho-
motopy of two 1-spun Legendrian Sm-families, 1-spinning induces a morphism
�m.L.J

1
R

n/Iƒ/ ! �m.L.J
1
R

nC1/I†1ƒ/: Since equation 5.1 (for m D 1) can
be extended to Sm families (for m � 1), the above induced morphism restricts to
show that the map

i W�m.L.J
1
R

n/Iƒ; f / �! �m.L.J
1
R

nC1/I†1ƒ;F†;1/

is well-de�ned.
Let dm be the chain map which induces the upper arrow ‰ in the proposition,

and d†;1
m be the chain map which induces the lower ‰; both as in equation (4.3).

Using the notation of Lemma 5.7, it su�ces to show that

hd†;1
m cŒ��; bŒ��i D hdmc; bi D hd

†;1
m cŒC�; bŒC�i: (5.3)

We prove the �rst equality, as the second one follows from identical reasoning.
Let ƒ.t/; t 2 Sm; represent an arbitrary element in �m.L

nIƒ; f / and †1ƒ.t/

be its front-spun counterpart. Recall the Sm-family described in Example 4.2.
For t 2 Sm; choose (smoothly in t ) the half-hyperplane S.t/ from the proof of
Lemma 5.7 (rotated according to t ) which “cuts out” a copy ofƒ.t/ from †1ƒ.t/:

This de�nes a hypersurface S in Sm � R
nC1: Like in the proof of Lemma 5.7,

we see that the hypotheses of Lemma 5.6 are satis�ed. Equation (5.3) follows
from the second statement of Lemma 5.6. �
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