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On the asymptotic expansion

of the Kashaev invariant of the 52 knot
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Abstract. We give a presentation of the asymptotic expansion of the Kashaev invariant of

the 52 knot. As the volume conjecture states, the leading term of the expansion presents

the hyperbolic volume and the Chern–Simons invariant of the complement of the 52 knot.

Further, we obtain a method to compute the full Poincare asymptotics to all orders of the

Kashaev invariant of the 52 knot.
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1. Introduction

In [16] and [17] Kashaev de�ned the Kashaev invariant hLiN 2 C of a link L for

N D 2; 3; � � � by using the quantum dilogarithm. In [18] he conjectured that, for

any hyperbolic link L,

2� � lim
N!1

loghLiN
N

D vol.S3 � L/;

where “vol” denotes the hyperbolic volume, and gave evidence for the conjecture

for the �gure-eight knot, the 52 knot and the 61 knot, by formal calculations. In

1999, H. Murakami and J. Murakami [24] proved that the Kashaev invariant hLiN
of any link L is equal to the N -colored Jones polynomial JN .LI e2�

p
�1=N / of

L evaluated at e2�
p

�1=N , where JN .LI q/ denotes the invariant obtained as the

quantum invariant of links associated with the N -dimensional irreducible repre-

sentation of the quantum group Uq.sl2/. Further, as an extension of Kashaev’s

conjecture, they conjectured that, for any knot K,

2� � lim
N!1

log jJN .KI e2�
p

�1=N /j
N

D vol.S3 �K/;

where “vol” in this formula denotes the simplicial volume (normalized by multi-

plying by the hyperbolic volume of the regular ideal tetrahedron). This is called

the volume conjecture. As a complexi�cation of the volume conjecture, it is con-

jectured in [25] that, for a hyperbolic link L,

2�
p

�1 � lim
N!1

logJN .LI e2�
p

�1=N /
N

D cs.S3 � L/C
p

�1vol.S3 � L/ (1)

for an appropriate choice of a branch of the logarithm, where “cs” denotes the

Chern–Simons invariant. Furthermore, it is conjectured [11] (see also [3], [12],

and [46]) from the viewpoint of the SL.2;C/ Chern–Simons theory that the

asymptotic expansion of JN .KI e2�
p

�1=k/ of a hyperbolic knot K as N; k ! 1
�xing u D N=k is given by the form

JN .KI e2�
p

�1=k/ �
N;k!1

uDN=kW �xed

eN&N 3=2! �
�

1C
1
X

iD1
�i �

�2�
p

�1
N

�i�

(2)

for some scalars &; !; �i depending on K and u, though they do not discuss the

Jones polynomial in the Chern–Simons theory in the case of vanishing quantum

dimension, which is discussed in [38]. These conjectures look interesting in

the sense that they make a bridge between quantum topology and hyperbolic

geometry, and it suggests the existence of a future theory between them.
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An approach toward a proof of the volume conjecture has been known, which

is due to Kashaev [18], Thurston [35] and Yokota [42]. We brie�y review this

approach, as follows. By de�nition, the Kashaev invariant hKiN (which we review

in Section 2.1) of a knotK is given by a sum of fractions whose denominators are

product of copies of .q/n, where

q D exp
�2�

p
�1

N

�

and

.x/n D .1� x/.1� x2/ � � � .1� xn/I

for example, the Kashaev invariant h52iN of the 52 knot is given by

h52iN D
X

0�i;j
iCj<N

N 3q

.q/iCj .q/N�i�j�1.q/j . Nq/j . Nq/i
;

as shown in (7). By the approximation

.q/n � exp
� N

2�
p

�1
.Li2.1/ � Li2.e

2�n
p

�1=N //
�

;

we expect

h52iN �
‹
N 3q

X

0�i;j
iCj<N

exp
� N

2�
p

�1
{V.e2�

p
�1i=N ; e2�

p
�1j=N /

�

;

where we put

{V.x; y/ D Li2.xy/C Li2

� 1

xy

�

C Li2.y/ � Li2

� 1

y

�

� Li2

� 1

x

�

� Li2.1/:

Further, by formally replacing the sum with an integral putting t D i=N and

s D j=N , we expect that

h52iN �
‹‹
N 5q

Z

0�t;s
tCs�1

exp
� N

2�
p

�1
{V.e2�

p
�1t ; e2�

p
�1s/

�

dtds:

Furthermore, by applying the saddle point method, we expect that the asymptotic

behavior might be described by a critical value of {V . Yokota [42] showed that a

critical value of such a function {V is given by the hyperbolic volume of the knot

complement. There are problems justifying this series of arguments.



672 T. Ohtsuki

The volume conjecture has been rigorously proved for some particular knots

and links such as torus knots [19] (see also [5]1), the �gure-eight knot (by Ekholm,

see also [1]2), Whitehead doubles of .2; p/-torus knots [47], positive iterated torus

knots [37], the 52 knot [20], and some links [9], [15], [36], [37], [41], [47]; for

details see e.g. [22]. They (except for the 52 knot) have particular properties; for

example, the simplicial volumes of the complements of torus knots are 0, and

a critical point of {V for the �gure-eight knot is on the original contour of the

integral. The volume conjecture for them has been proved by using such particular

properties. In particular, the 52 knot is of a general case; the volume conjecture

for the 52 knot has been proved by Kashaev and Yokota [20] by presenting the

above mentioned sum by the residue of a certain integral.

The aim of this paper is to give a presentation of the asymptotic expansion of

the Kashaev invariant h52iN of the 52 knot rigorously (Theorem 1.1 below). Let

y0 be the unique solution with positive imaginary part of .y � 1/3 D y,

y0 D 0:3376410213 : : :C
p

�1 � 0:5622795120 : : : :

We put

x0 D 1 � 1

y0
;

& D 1

2�
p

�1

�

Li2.x0y0/C Li2

� 1

x0y0

�

C Li2.y0/

� Li2

� 1

y0

�

� Li2

� 1

x0

�

� �2

6

�

D 0:4501096100 : : :C
p

�1 � 0:4813049796 : : : ;

! D e�
p

�1=4
� y0 � 1
2y0 C 1

�1=2

D 0:0901905774 : : :�
p

�1 � 0:6499757866 : : : :

Then, we have

Theorem 1.1. The asymptotic expansion of the Kashaev invariant h52iN of the 52

knot is given by the form

h52iN D eN&N 3=2! �
�

1C
d
X

iD1
�i �

�2�
p

�1
N

�i

CO
� 1

N dC1

��

;

1 A detailed asymptotic expansion of the colored Jones polynomial for torus knots is given

in [5].

2 A detailed proof of the volume conjecture for the �gure-eight knot was given in [1] and the

term N 3=2 in (2) was also veri�ed there.
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for any d , where �i is some constant given by a polynomial in y0 with rational

coe�cients; in particular, �1 is given by

�1 D 1

.2y0 C 1/3

�37

4
y20 � 31

6
y0 C 35

8

�

C 1

D 1

12696
.1650y20 � 3498y0 C 2197/C 1

D 1:0537470859 : : :�
p

�1 � 0:1055728779 : : : :

We can numerically observe that the limit of q�1h52iN e�N&N�3=2 tends to the

above mentioned value of !.

N q�1h52iN e�N&N�3=2

200 0:0915851738 : : :�
p

�1 � 0:6519891312 : : :
500 0:0907489101 : : :�

p
�1 � 0:6507787459 : : :

1000 0:0904698237 : : :�
p

�1 � 0:6503768725 : : :

Further, we can numerically observe that the limit of

.h52iN .eN&N 3=2!/�1 � 1/N

2�
p

�1

tends to the above mentioned value of �1.

N .h52iN .eN&N 3=2!/�1 � 1/N=.2�
p

�1/

200 1:0567234007 : : :�
p

�1 � 0:0885918466 : : :
500 1:0549811019 : : :�

p
�1 � 0:0987904427 : : :

1000 1:0543713307 : : :�
p

�1 � 0:1021833710 : : :

As the conjecture (2) suggests, ! and �i ’s of (2) are expected to be invariants

of K for any hyperbolic knot K. We have computed ! and �1 for the 52 knot

in this paper. It is conjectured that 2
p

�1!2 of a hyperbolic knot is equal to the

twisted Reidemeister torsion associated with the action on sl2 of the holonomy

representation of the hyperbolic structure; see Remark 1.4 below. We discuss about

it for some knots in [28].

We give a proof of the theorem in Section 5 by justifying the above mentioned

approach. An outline of the proof is as follows. We rewrite the sum (7) by an

integral by the Poisson summation formula. When we apply the Poisson summa-

tion formula, the right-hand side of the Poisson summation formula consists of



674 T. Ohtsuki

in�nitely many summands, and we show that we can ignore them all except for

the one at 0 in the sense that they are of su�ciently small order atN ! 1 (Propo-

sition 4.6 and Lemma 5.8). Further, by the saddle point method (Proposition 3.5),

we calculate the asymptotic expansion of the integral, and obtain the presentation

of the theorem.

By the method of this paper, the asymptotic behavior of the Kashaev invariant

is discussed for the hyperbolic knots with up to 7 crossings in [27] and [26] and

for some hyperbolic knots with 8 crossings in [34].

Remark 1.2. The author has written the �rst version of this paper in August

2011. In February 2012, [2] was uploaded in the arXiv, in which Dimofte and

Garoufalidis de�ne a formal power series from an ideal tetrahedral decomposition

of a knot complement, which is expected to be equal to the asymptotic expansion

of the Kashaev invariant of the knot.

Remark 1.3. The right-hand side of (1) is equal to 2�
p

�1& , and it is called

the complex volume. It is known, see e.g. [45], that the complex volume can

be expressed by a critical value of the potential function. It is also known, see

e.g. [10], that the complex volume can be regarded as the SL.2;C/Chern–Simons

invariant.

Remark 1.4. The normalization of the above mentioned Reidemeister torsion

is the cohomological Reidemeister torsion associated with the meridian used

in [23]. We note that the twisted Reidemeister torsion in [4] is the twisted

Reidemeister torsion associated with the longitude, and it can be changed to the

twisted Reidemeister torsion associated with the meridian by [29, Théorème 4.1]

as mentioned in [23].

The paper is organized as follows. In Section 2, we review de�nitions and ba-

sic properties of the notation used in this paper. In Section 3, we calculate the

asymptotic expansion of Gaussian integrals by the saddle point method, and show

Proposition 3.5. In Section 4, we calculate the sum corresponding to the inte-

grals of Section 3 by the Poisson summation formula, and show Proposition 4.6.

In Section 5, we give a proof of Theorem 1.1 by using the Poisson summation

formula (Proposition 4.6) and the saddle point method (Proposition 3.5).

The author would like to thank Yoshiyuki Yokota for many helpful comments

on the volume conjecture and the calculation of the Kashaev invariant, and Takashi

Kumagai for many helpful comments on the calculation of the saddle point method

and the Poisson summation formula. The author would also like to thank Tudor
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Dimofte, Stavros Garoufalidis, Rinat Kashaev, Hitoshi Murakami, Toshie Takata

and Dylan Thurston for many helpful comments. He would also like to thank the

referees for careful reading of the manuscript.

2. Calculation of the Kashaev invariant of the 52 knot

In this section, we review the de�nition of the Kashaev invariant and the cal-

culation of the Kashaev invariant h52iN of the 52 knot in Section 2.1. Further,

we continue to calculate the value of h52iN toward its asymptotic expansion in

Section 2.2.

2.1. The Kashaev invariant of the 52 knot. In this section, we review the

de�nition of the Kashaev invariant of oriented knots, and review the calculation

of the Kashaev invariant h52iN of the 52 knot, which are due to Yokota [43].

The aim of this section is to show (7) which gives the value of h52iN .

Let N be an integer � 2. We put q D exp.2�
p

�1=N/, and put

.x/n D .1 � x/.1 � x2/ � � � .1 � xn/

for n � 0. It is known [24] that, for any n;m with n � m,

.q/n. Nq/N�n�1 D N; (3)

X

n�k�m

1

.q/m�k. Nq/k�n
D 1: (4)

Following Yokota [43],3 we review the de�nition of the Kashaev invariant.

We put

N D ¹0; 1; : : : ; N � 1º:

For i; j; k; l 2 N, we put

R
ij

kl
D

Nq� 1
2

Ci�k� ij
kl

.q/Œi�j �. Nq/Œj�l�.q/Œl�k�1�. Nq/Œk�i�
;

and

xRij
kl

D
Nq

1
2

Cj�l� ij
kl

. Nq/Œi�j �.q/Œj�l�. Nq/Œl�k�1�.q/Œk�i�
;

3 We make a minor modi�cation of the de�nition of weights of critical points from the

de�nition in [43], in order to make hKiN invariant under Reidemeister moves.
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where Œm� 2 N denotes the residue of m modulo N , and we put

�
ij

kl
D

8

<

:

1 if Œi � j �C Œj � l�C Œl � k � 1�C Œk � i � D N � 1;
0 otherwise.

Let K be an oriented knot. We consider a 1-tangle whose closure is isotopic to K

such that its string is oriented downward at its end points. Let D be a diagram of

the 1-tangle. We presentD by a union of elementary tangle diagrams shown in (5).

We decompose the string of D into edges by cutting it at crossings and critical

points with respect to the height function of R2. A labeling is an assignment of an

element of N to each edge. Here, we assign 0 to the two edges adjacent to the end

points of D. For example, see (6). We de�ne the weights of labeled elementary

tangle diagrams by

W

�

i j

k l

�

D R
ij

kl
; (5a)

W

�

i j

k l

�

D xRij
kl
; (5b)

W

�

k l

�

D q�1=2ık;l�1; (5c)

W

�

k l

�

D ık;l ; (5d)

W

�
i j

�

D q1=2ıi;jC1; (5e)

W

�
i j

�

D ıi;j : (5f)

Then, the Kashaev invariant hKiN of K is de�ned by

hKiN D
X

labelings

Y

crossings
ofD

W.crossings/
Y

critical
pointsofD

W.critical points/ 2 C:



On the asymptotic expansion of the Kashaev invariant of the 52 knot 677

Following Yokota [43],4 we review the calculation of the Kashaev invariant

h52iN of the 52 knot, where the 52 knot is the closure of the following 1-tangle.

0

a k

j c

i
c C 1

b i � 1 d

l e

e C 10

(6)

We consider the above labeling. Then, it is shown by arguments in [43] that the

labelings of edges adjacent to the unbounded regions vanish, i.e.,

a D b D c D d D e D 0:

Hence, the Kashaev invariant of the 52 knot is given by

h52iN D
X

i;j;k;l

q1=2 xR000k xR0k0j xRij01 xR00i�1l xR0l01

D
X

i;j;k;l

q1=2 � Nq
1
2

�k

.q/Œ�k�. Nq/Œk�1�
� Nq

1
2

Ck�j

. Nq/Œ�k�.q/Œk�j �. Nq/Œj�1�

� Nq� 1
2

Cj

. Nq/Œi�j �.q/Œj�1�.q/Œ�i�
� Nq

1
2

�l

.q/Œ�l�. Nq/Œl�i�.q/Œi�1�
� Nq� 1

2
Cl

. Nq/Œ�l�.q/Œl�1�

D
X

i;j;k;l

N 3q

. Nq/Œ�k�.q/Œk�j �. Nq/Œj�1�. Nq/Œi�j �.q/Œj�1�.q/Œ�i�.q/Œ�l�. Nq/Œl�i�.q/Œi�1�
;

4 Our resulting formula (7) in this section is q times the corresponding formula in [43]. This

di�erence is because of the di�erence of the de�nitions of hKiN between ours and [43].
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where we obtain the last equality from (3). Further, by (4), the above formula is

rewritten

h52iN D
X

1�j�i�N

N 3q

.q/i�1.q/N�i .q/j�1. Nq/j�1. Nq/i�j

D
X

0�j�i<N

N 3q

.q/i.q/N�i�1.q/j . Nq/j . Nq/i�j

D
X

0�i;j
iCj<N

N 3q

.q/iCj .q/N�i�j�1.q/j . Nq/j . Nq/i
;

(7)

where we obtain the second equality by replacing i and j with i C 1 and j C 1,

and obtain the last equality by replacing i with i C j . Hence, we obtain the

presentation (7) of h52iN .

2.2. Calculation of h52iN toward its asymptotic expansion. In this section,

we continue to calculate the value of the Kashaev invariant h52iN of the 52 knot

toward its asymptotic expansion.

To calculate the asymptotic expansion of h52iN , we review an integral expres-

sion of .q/n. It is known [8], [40] that

.q/n D exp
�

'
� 1

2N

�

� '
�2nC 1

2N

��

;

. Nq/n D exp
�

'
�

1� 2nC 1

2N

�

� '
�

1 � 1

2N

��

:

(8)

Here, following Faddeev [6], we de�ne a holomorphic function '.t/ on the domain

¹t 2 C j 0 < Re t < 1º by

'.t/ D
Z 1

�1

e.2t�1/xdx

4x sinhx sinh.x=N/
;

noting that this integrand has poles at n�
p

�1 (n 2 Z), where, to avoid the pole

at 0, we choose the contour of the integral

 D .�1;�1�[ ¹z 2 C j jzj D 1; Im z � 0º [ Œ1;1/:

We review some properties of '.t/ in Appendix A.
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By using '.t/, we rewrite the presentation (7) of h52iN by (8) as

h52iN D N 3q
X

0�i;j
iCj<N

exp
�

N � zV
�2i C 1

2N
;
2j C 1

2N

��

;

where we put

zV.t; s/ D 1

N

�

'
�

t C s � 1

2N

�

C '
�

1 � t � s C 1

2N

�

C '.s/ � '.1 � s/

� '.1 � t / � 3'
� 1

2N

�

C 2'
�

1 � 1

2N

��

D 1

N

�

� '.1� t /� 2'.1� s/
�

� 1

2�
p

�1
�2

6

� 2�
p

�1
�1

2

�

t C s � 1

2N

�2

C 1

2
s2 � 1

2
t � s C 1

6

�

� 5

2N
logN � 3�

p
�1

4N
C �

p
�1

4N 2
:

Here, we obtain the second equality by Lemmas A.2 and A.3. Hence, by putting

V.t; s/ D zV.t; s/C 5

2N
logN

D 1

N
.�'.1� t / � 2'.1� s// � 1

2�
p

�1
�2

6

� 2�
p

�1
�1

2

�

t C s � 1

2N

�2

C 1

2
s2 � 1

2
t � s C 1

6

�

� 3�
p

�1
4N

C �
p

�1
4N 2

;

the presentation of h52iN is rewritten

h52iN D N 1=2q
X

0�i;j
iCj<N

exp
�

N � V
�2i C 1

2N
;
2j C 1

2N

��

: (9)

The range of .i=N; j=N/ in this sum is given by the domain

� D ¹.t; s/ 2 R
2 j 0 � t; 0 � s; t C s � 1º:

Further, it follows from Proposition A.1 that V.t; s/ converges to the following

function as N ! 1:

yV .t; s/ D 1

2�
p

�1

�

� Li2.e
�2�

p
�1t / � 2Li2.e

�2�
p

�1s/ � �2

6

�

� 2�
p

�1
�1

2
t2 C s2 C t s � 1

2
t � s C 1

6

�

:

(10)
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We will show that the asymptotic expansion of (9) is of order e
N&

R times

polynomial order in N , where &
R

is the real part of & which is given in the

introduction,

&
R

D Re & D 0:4501096100 : : : :

Hence, we can ignore summands of (9) in the domain where Re yV .t; s/ � &
R

� ",
since they do not contribute to the resulting expansion. Further, as we can see in

Figure 1, Re yV .t; s/� &
R

is positive only for .t; s/ in a particular subdomain of �.

In the following lemma, we consider to restrict � to a smaller domain �0 which

includes this subdomain; this restriction will be used to verify the assumptions of

the Poisson summation formula and the saddle point method later.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

�

�0

Figure 1. The domain ¹.t; s/ j Re yV .t; s/ � &
R

º.

Lemma 2.1. We put

�0 D ¹.t; s/ 2 � j 0:04 � t � 0:4; 0:05 � s � 0:4; t C s � 0:6º:

Then, the following domain

¹.t; s/ 2 R
2 j Re yV .t; s/ � &

R
� "º (11)

is included in �0 for some su�ciently small " > 0.

We give a proof of the lemma in Appendix D. we can graphically observe the

inclusion of the lemma in Figure 1.
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We put

�00 D ¹.t; s/ 2 � j 0:04 � t � 0:9; 0:05 � s � 0:9º: (12)

By Lemma B.1, V.t; s/ uniformly converges to yV .t; s/ as N ! 1 in this domain.

By this uniform convergence, we can restrict�00 to�0 later. Before this restriction,

we consider to restrict � to �00 in the following calculation of h52iN .

We consider the value of h52iN given in (7). The summand of the sum (7) is

estimated by

ˇ

ˇ

ˇ

ˇ

N 3q

.q/iCj .q/N�i�j�1.q/j . Nq/j . Nq/i

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

N 2

.q/i.q/
2
j

ˇ

ˇ

ˇ

ˇ

; (13)

where we obtain the equality by (3). Since .q/n D .1 � qn/.q/n�1 from the

de�nition of .q/n, the value of 1=j.q/nj is monotonically increasing with respect

to n for 0 � n � N
6

. Hence, for 0 � i � 0:04 �N and 0 � j � 0:05 �N , the

value of (13) is monotonically increasing with respect to i and j . Further, we can

similarly show that, for 0:9 �N � i < N and 0:9 �N � j < N , the value of (13)

is monotonically decreasing with respect to i and j . Furthermore, since V.t; s/

uniformly converges to yV .t; s/ as N ! 1 on �00 by Lemma B.1, ReV.t; s/ is

bounded by e
N.&

R
�"1/ for some "1 > 0 on @�00 by Lemma 2.1. Hence, (13) is

bounded by the order e
N.&

R
�"2/ for some "2 > 0. Therefore, by (7),

h52iN D
X

i;j2Z
.i=N;j=N/2�00

N 3q

.q/iCj .q/N�i�j�1.q/j . Nq/j . Nq/i
CO.N 2e

N.&
R

�"2//:

Hence, similarly as (9), we have that

h52iN D N 1=2q
X

i;j2Z
.i=N;j=N/2�00

exp
�

N � V
�2i C 1

2N
;
2j C 1

2N

��

CO.N 2e
N.&

R
�"2//

D eN&N 1=2q
X

i;j2Z
.i=N;j=N/2�00

exp
�

N � V
�2i C 1

2N
;
2j C 1

2N

�

�N&
�

CO.N 2e
N.&

R
�"2//:
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By Lemma 2.1, we can restrict �00 to �0, where the error term of the sum is

estimated by the order N 2e�N". Hence,

h52iN D eN&N 1=2q
�

X

i;j2Z
.i=N;j=N/2�0

exp
�

N � V
�2i C 1

2N
;
2j C 1

2N

�

�N&
�

CO.e�N"3/
�

;

(14)

for some "3 > 0. Further, by the Poisson summation formula, we will see that the

above sum is expressed by the integral

h52iN D eN&N 5=2q

�Z

�0
exp.N � V.t; s/� N&/dtds CO.e�N"4/

�

for some "4 > 0.

We will analyse this integral in Section 5 using the saddle point method and

give the proof our main Theorem 1.1 there. We will therefore devote the following

two sections to recalling the saddle point method and the Poisson summation

formula.

3. Calculation by the saddle point method

In this section, we calculate Gaussian integrals by the saddle point method.

We calculate a Gaussian integral in Proposition 3.1, a Gaussian integral with per-

turbative terms in Proposition 3.2, and multi-variable cases in Propositions 3.4

and 3.5. We use Proposition 3.5 in the proof of Theorem 1.1 in Section 5. For the

saddle point method, see e.g. [39].

Proposition 3.1. For a non-zero a 2 C, the domain ¹z 2 C j Re az2 < 0º has two

connected components. We choose z0; z1 from the two components respectively.

Let C be a path from z0 to z1 in C. .See Figure 2./ Then, there exists " > 0 such

that
Z

C

eN �az2

dz D
p
�

p�a �
p
N

CO.e�"N /;

where we choose the sign of
p�a such that Rez1

p�a > 0.

We note that " depends on z0, z1 and a.
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z0

z1
� 1p

�a

1p
�a

C

Figure 2. The domain ¹z 2 C j Reaz2 < 0º is shaded.

Proof. By replacing z with z=
p�a, we can reduce the proof to the case where

a D �1. Putting a D �1, we show that

Z z1

z0

e�Nz2

dz D
p
�p
N

CO.e�"N /:

Since
R1

�1 e�Nz2

dz D p
�=

p
N , it is su�cient to show that

Z z0

�1
e�Nz2

dz D O.e�"N /;
Z 1

z1

e�Nz2

dz D O.e�"N /:

We show the latter formula. (The former formula can be shown similarly.) The

latter formula is calculated

Z 1

z1

e�Nz2

dz D
Z Re z1

z1

e�Nz2

dz C
Z 1

Re z1

e�Nz2

dz;

and the two terms of the right-hand side are estimated

ˇ

ˇ

ˇ

ˇ

Z Rez1

z1

e�Nz2

dz

ˇ

ˇ

ˇ

ˇ

�
Z Re z1

z1

je�Nz2 j � jdzj

�
Z Re z1

z1

e�N Rez2 jdzj

�
Z Re z1

z1

e�N Rez2
1 jdzj

D j Im z1j � e�N Re z2
1

D O.e�"N /;
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and

0 �
Z 1

Rez1

e�Nz2

dz �
Z 1

Re z1

e�N.Re z1/zdz D e�N.Re z1/
2

N � Re z1
D O.e�"N /

for some " > 0. Hence, we obtain the required formula. �

We generalize Proposition 3.1 to the case where there are perturbative terms in

the exponential of the integrand.

Proposition 3.2. Let a be a non-zero complex number, and let  .z/ and r.z/ be

holomorphic functions of the form

 .z/ D az2 C r.z/; r.z/ D b3z
3 C b4z

4 C � � � ;

de�ned in a neighborhood of 0. The domain

¹z 2 C j Re .z/ < 0º (15)

has two connected components in a neighborhood of 0. We choose z0; z1

from these two components respectively. Let C be a path from z0 to z1 in C.

.See Figure 3./ Then,

Z

C

eN .z/dz D
p
�

p�a �
p
N

�

1C
d
X

kD1

�k

N k
CO

� 1

N dC1

��

;

for any d , where we choose the sign of
p�a similarly as in Proposition 3.1,

and �k’s are constants given by using coe�cients of the expansion of  .z/; such

presentations are obtained by formally expanding the formula

1C
1
X

kD1

�k

N k
D exp

�

Nr
� @

@u

��

exp
�

� u2

4Na

�ˇ

ˇ

ˇ

uD0
: (16)

In particular, �1 is given by

�1 D �15b
2
3

16a3
C 3b4

4a2
:
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z0

z1

C

Figure 3. The domain ¹z 2 C j Re .z/ < 0º is shaded.

Proof. We show the proposition modifying a proof of the saddle point method

written in [39].5 We show the proposition, for simplicity, putting a D �1 as in

the proof of Proposition 3.1. We put Or.z/ D r.z/=z2. Since Or.z/ is analytic in a

neighborhood of 0, there exists a su�ciently small ı1 > 0 such that

Or.z/ D
1
X

iD1
bkC2z

k

for jzj < ı1. Let w be a non-negative real parameter. For each �xed w, we have

that

ew Or.z/ D
1
X

kD0
Pk.w/z

k

for jzj < ı1, where Pk.w/ is a polynomial in w of degree � k. Since Or.0/ D 0,

there exist small ı2 > 0 and "1 > 0 such that j Or.x/j � "1 for �ı2 � x � ı2; we

can further assume that "1 < 1 and ı2 � ı1. For each �xed integer m > 0, we can

put

ew Or.x/ D
m
X

kD0
Pk.w/x

k CRmx
mC1 (17)

for �ı2 � x � ı2 and any w � 0, where Rmx
mC1 is the error term, which is

estimated by

j ReRmj � max
jxj�ı2

ˇ

ˇ

ˇ

ˇ

Re
dmC1

dxmC1 e
w Or.x/

ˇ

ˇ

ˇ

ˇ

; j ImRmj � max
jxj�ı2

ˇ

ˇ

ˇ

ˇ

Im
dmC1

dxmC1 e
w Or.x/

ˇ

ˇ

ˇ

ˇ

:

5 As for the 1-variable case, a proof of a more general statement of the saddle point method

is written in [39], though the multi-variable case is not written in [39]. We review (a simpler

modi�cation of) the proof of [39], in order to generalize it to the multi-variable case later

(Proposition 3.5).
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Further, since

dmC1

dxmC1 e
w Or.x/ D ew Or.x/ �

� polynomial in w and di�erentials of Or.x/
of degree � mC1

�

;

we have that

jRmj � e"1wK1.w
mC1 C 1/ � K2e

"2w (18)

for some K1; K2 > 0 and "2 < 1, which are independent of x and w (noting that

m is bounded by using d later). Further, we replace the path C with the union of

a path C1 from z0 to �ı, a path C2 from �ı to ı along the real axis, and a path C3

from ı to z1. We can assume that there exist su�ciently small ı; "3 > 0 such that

ı � ı2 and C1 and C3 are in the domain

¹z 2 C j Re .z/ � �"3º: (19)

Then, the integral of the proposition is given by
Z

C

eN .z/dz D
Z

C1

eN .z/dz C
Z

C2

eN .z/dz C
Z

C3

eN .z/dz: (20)

Since C1 and C3 are in the domain (19), we have that
Z

C1

eN .z/dz D O.e�N"3/ (21a)

and
Z

C3

eN .z/dz D O.e�N"3/: (21b)

Hence, it is su�cient to show that the integral alongC2 gives the required formula.

The integral along C2 is calculated as

Z

C2

eN .z/dz D
Z ı

�ı
eN .x/dx

D
Z ı

�ı
e�Nx2

eNx
2 Or.x/dx

D
2dC1
X

kD0

Z ı

�ı
Pk.Nx

2/xke�Nx2

dx C
Z ı

�ı
R2dC1x

2dC2e�Nx2

dx;

(22)

by (17), putting w D Nx2 and m D 2d C 1. When k is odd, the summand of the

�rst term of (22) is equal to 0, since the integrand is an odd function. When k is



On the asymptotic expansion of the Kashaev invariant of the 52 knot 687

even, the summand of the �rst term of (22) is given by a sum of integrals of the

form

Z ı

�ı
.Nx2/lxke�Nx2

dx D
Z 1

�1
N lx2lCke�Nx2

dx CO.e�N"4/

D 1

N k=2
p
N

Z 1

�1
y2lCke�y2

dx CO.e�N"4/

D .2l C k � 1/ŠŠp�
2lCk=2N k=2

p
N

CO.e�N"4/;

for some "4 > 0, where we obtain the �rst equality in a similar way as in the proof

of Proposition 3.1, and obtain the second equality putting y D
p
Nx. Hence, the

�rst term of (22) is given by the form

p
�p
N

�

1C
d
X

kD1

�k

N k

�

CO.e�N"4/:

Further, by (18) putting w D Nx2, the second term of (22) is estimated by

ˇ

ˇ

ˇ

Z ı

�ı
R2dC1x

2dC2e�Nx2

dx
ˇ

ˇ

ˇ �
Z ı

�ı
jR2dC1jx2dC2e�Nx2

dx

� K2

Z ı

�ı
x2dC2e�.1�"2/Nx

2

dx

D O
� 1

N dC 3
2

�

;

where we obtain the last equality in a similar way as the above calculation. Hence,

by (22),

Z

C2

eN .z/dz D
p
�p
N

�

1C
d
X

kD1

�k

N k
CO

� 1

N dC1

��

:

Therefore, by (20) and (21), the integral of the proposition is given by the form

Z

C

eN .z/dz D
p
�p
N

�

1C
d
X

kD1

�k

N k
CO

� 1

N dC1

��

:
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In particular, �1 is concretely calculated by re�ning the above calculation, as

follows. Since

Or.z/ D b3z C b4z
2 C � � � ;

we have that

ew Or.z/ D 1C w Or.z/C 1

2
w2 Or.z/2 C � � � D 1C b3wz C

�b3

2
w2 C b4w

�

z2 C � � � :

Hence,
Z

C

eN .z/dz

D
Z 1

�1
e�Nx2

�

1C b3Nx
2 � x C

�b23
2
.Nx2/2 C b4Nx

2
�

x2 C � � �
�

dx

D
p
�p
N

�

1C
�15

16
b23 C 3

4
b4

� 1

N
CO

� 1

N 2

��

:

This is the required formula for d D 1 when a D �1.
We obtain a concrete presentation of any �k by the following formal calcula-

tion. Noting that

zm D
� @

@u

�m

euz
ˇ

ˇ

ˇ

uD0
;

we have that
Z

eNaz
2

zmdz D
Z

� @

@u

�m

eNaz
2Cuz

ˇ

ˇ

ˇ

uD0
dz

D
Z

� @

@u

�m

exp
�

Naw2 � u2

4Na

�ˇ

ˇ

ˇ

uD0
dw

D
p
�

p�a �
p
N

�
� @

@u

�m

exp
�

� u2

4Na

�ˇ

ˇ

ˇ

uD0
;

which can be justi�ed by a similar calculation as above, to be precise.Hence,

putting exp.Nr.z// D
P

m
Qbmzm,

Z

eN .z/dz D
Z

eNaz
2

exp.Nr.z//dz

D
Z

eNaz
2
�

X

m

Qbmzm
�

dz

D
p
�

p�a �
p
N

�
X

m

Qbm
� @

@u

�m

exp
�

� u2

4Na

�ˇ

ˇ

ˇ

uD0

D
p
�

p�a �
p
N

� exp
�

Nr
� @

@u

��

exp
�

� u2

4Na

�ˇ

ˇ

ˇ

uD0
;

and this gives (16). By expanding this formula formally, we obtain concrete

presentations of �k’s in terms of coe�cients of the expansion of  .z/. �
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Remark 3.3. We can extend Proposition 3.2 to the case where  .z/ depends on

N in such a way that  .z/ is of the form

 .z/ D  0.z/C  1.z/
1

N
C  2.z/

1

N 2
C � � � C  m.z/

1

Nm
C rm.z/

1

NmC1 ; (23)

where  i .z/’s are holomorphic functions independent of N , and we assume that

 0.z/ satis�es the assumption of the proposition and jrm.z/j is bounded by a

constant which is independent of N . Then, eN .z/ D �.z/eN 0.z/, where we

put

�.z/ D exp
�

 1.z/C  2.z/
1

N
C � � � C  m.z/

1

Nm�1 C rm.z/
1

Nm

�

D �0.z/C �1.z/
1

N
C �2.z/

1

N 2
C � � � C �m�1.z/

1

Nm�1 C Qrm.z/
1

Nm
:

Here, Qrm.z/ is the error term such that j Qrm.z/j is bounded by a constant which

is independent of N . As written in [39], in the same way as in the proof of

Proposition 3.2, we can show the asymptotic expansion of
R

�i .z/e
N 0.z/dz by

expanding �i .z/ at z D 0. Further, we can estimate
R

Qrm.z/eN 0.z/dz similarly

as in the proof of Proposition 3.2, noting that only values of Qrm.z/ in a su�ciently

small neighborhood of 0 contribute to the resulting expansion. In this way, we can

justify the statement of Proposition 3.2 in the case where  .z/ depends on N as

in the form (23).

We generalize Proposition 3.1 to the case ofn variables. LetA be a non-singular

symmetric complex n�n matrix, and let z be a column vector .z1; : : : ; zn/
T 2 C

n.

The domain

¹z 2 C
n j Re z

TAz < 0º (24)

is homotopy equivalent to Sn�1. LetD be an oriented n-ball embedded in C
n such

that @D is included in the domain (24), whose inclusion is homotopy equivalent.

There exists a matrix P such that �A D P TP ; we note that detP D ˙
p

det.�A/.
We choose an n-ball as a neighborhood of the origin in R

n � C
n. The matrix P�1

takes this n-ball to an n-ball satisfying the above assumption ofD. We choose the

sign of
p

det.�A/ by setting it to be detP if P takes the orientation of D to the

standard orientation of Rn, and �detP otherwise.

Proposition 3.4. Let A;D be as above. Then, there exists " > 0 such that

Z

D

eN �zTAzdz D �n=2

N n=2
p

det.�A/
CO.e�"N /;

where we put dz D dz1 � � �dzn, and we choose the sign of
p

det.�A/ as above.
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Proof. By changing the coordinate of z linearly, we can reduce the proof to the

case whereA is a diagonal matrix. Further, since d.eN �zTAzdz/ D 0, we can move

the domainD in Cn by Stokes’ theorem; we can also move @D in the domain (24)

ignoring error terms of order e�N" for some " > 0 as in the proof of Proposition 3.1.

In this way, we can move D into R
n � C

n, which means that we can reduce the

proof to the product of copies of the formula of Proposition 3.1. �

We generalize Proposition 3.4 to the case where there are perturbative terms

in the exponential of the integrand.

Proposition 3.5. Let A be a non-singular symmetric complex n�n matrix, and

let  .z/ and r.z/ be holomorphic functions of the form

 .z/ D z
TAz C r.z/; (25a)

r.z/ D r.z1; � � � ; zn/ D
X

i;j;k

bijkzizj zk C
X

i;j;k;l

cijklzizj zkzl C � � � ; (25b)

de�ned in a neighborhood of 0 2 C
n. The restriction of the domain

¹z 2 C
n j Re .z/ < 0º (26)

to a neighborhood of 0 2 C
n is homotopy equivalent to Sn�1. Let D be an

oriented n-ball embedded in C
n such that @D is included in the domain (26)

whose inclusion is homotopic to a homotopy equivalence to the above Sn�1 in

the domain (26). Then,

Z

D

eN .z/dz D �n=2

N n=2
p

det.�A/

�

1C
d
X

iD1

�i

N i
CO

� 1

N dC1

��

;

for any d , where we choose the sign of
p

det.�A/ as in Proposition 3.4, and

�i ’s are constants given by using coe�cients of the expansion of  .z/; such

presentations are obtained by formally expanding the formula

1C
1
X

iD1

�i

N i
D exp

�

Nr
� @

@u1
; : : : ;

@

@un

��

exp
�

� 1

4N
u
TA�1

u

�ˇ

ˇ

ˇ

uD0

: (27)

In particular, �1 is given by

�1 D �1
28 � 3

X

i1;i2;��� ;i6
�2S6

bi1i2i3bi4i5i6 Nai�.1/i�.2/
Nai�.3/i�.4/

Nai�.5/i�.6/

C 1

32

X

i1;i2;i3;i4
�2S4

ci1i2i3i4 Nai�.1/i�.2/
Nai�.3/i�.4/

;

where Sn is the nth symmetric group, and we put . Naij /i;j D A�1.
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Proof. Similarly as in the proof of Proposition 3.4, we can reduce the proof to the

case where A D �E, where E denotes the identity matrix of size n. Then, the

integral of the problem is rewritten
Z

D

eN �zT z exp.Nr.z//dz; (28)

where we can letD be a su�ciently small neighborhood of 0 in R
n as in the proof

of Proposition 3.4. The second exponential in the integrand of (28) is calculated as

exp
�

Nr.z/
�

D 1CNr.z/C 1

2
N 2r.z/2 C � � �

D 1CN
X

i;j;k

bijkzizj zk CN
X

i;j;k;l

cijklzizj zkzl

C 1

2
N 2

X

i1;i2;��� ;i6
bi1i2i3bi4i5i6zi1zi2zi3zi4zi5zi6 C � � � :

Hence, we can calculate the asymptotic expansion of the integral (28) similarly

as the calculation of �1 in the proof of Proposition 3.2, and we can show that the

asymptotic expansion of (28) is given by

Z

D

eN .z/dz D �n=2

N n=2

�

1C �1

N
C �2

N 2
C � � �

�

:

We estimate the remaining part “� � � ” of the above formula as in the proof of

Proposition 3.2, as follows. We can put

r.z/ D
X

i;j

zizj Orij .z/

for some Orij .z/ which satis�es that Orij .z/ D Orj i .z/. Let wij be non-negative real

parameters, and put w D .wij /. For each �xed w , we have

exp
�

X

i;j

wij Orij .z/
�

D
1
X

kD0

X

i1;:::;ik

Pi1���ik .w/zi1 � � � zik

for su�ciently small z, where Pi1���ik .w/ is a polynomial in wij ’s of degree � k.

Further, for each �xed integer m > 0, we can put

exp
�

X

i;j

wij Orij .x/
�

D
m
X

kD0

X

i1;:::;ik

Pi1���ik .x/xi1 � � �xik C
X

j1;:::;jmC1

Rj1���jmC1
xj1

� � �xjmC1
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where Rj1���jmC1
xj1

� � �xjmC1
is the error term. Similarly as in the proof of Propo-

sition 3.2, we can estimate it by

jRj1 ���jmC1
j � K exp

�

X

i;j

"ijwij

�

for some K > 0 and "ij > 0 which satis�es that "ij D "j i and E�."ij / is positive

de�nite. Further, similarly as in the proof of Proposition 3.2, putting m D 2dC1,

we can show that the error term is of order O.1=N n=2CdC1/. Hence, we can

show that the integral of the problem has the asymptotic expansion of the required

formula.

We obtain concrete presentations of �k’s by the following formal calculation.

Noting that

zi1 � � � zim D @

@ui1
� � � @

@uim
euT z

ˇ

ˇ

uD0

we have that
Z

eN �zTAzzi1 � � � zimdz

D
Z

@

@ui1
� � � @

@uim
eN �zTAzCuT z

ˇ

ˇ

uD0 dz

D
Z

@

@ui1
� � � @

@uim
exp

�

N � w
TAw � 1

4N
u
TA�1

u

�ˇ

ˇ

ˇ

uD0
dw

D �n=2

N n=2
p

det.�A/
� @

@ui1
� � � @

@uim
exp

�

� 1

4N
u
TA�1

u

�ˇ

ˇ

ˇ

uD0
:

Hence, we obtain (27) from this formula similarly as in the proof of Proposi-

tion 3.2.

The above expansion is concretely calculated as

@

@ui1
� � � @

@ui2k

exp
�

� 1

4N
u
TA�1

u

�ˇ

ˇ

ˇ

uD0

D @

@ui1
� � � @

@ui2k

1

kŠ

�

� 1

4N
u
TA�1

u

�k

D .�1/k
kŠ4kN k

X

�2S2k

Nai�.1/i�.2/
� � � Nai�.2k�1/i�.2k/

:

In particular, we obtain the presentation of �1 from such calculation. �
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Remark 3.6. Similarly as Remark 3.3, we can extend Proposition 3.5 to the case

where  .z/ depends on N in such a way that  .z/ is of the form

 .z/ D  0.z/C  1.z/
1

N
C  2.z/

1

N 2
C � � � C  m.z/

1

Nm
C rm.z/

1

NmC1 ; (29)

where  i .z/’s are holomorphic functions independent of N , and we assume that

 0.z/ satis�es the assumption of the proposition and jrm.z/j is bounded by a

constant which is independent of N .

4. Calculation by the Poisson summation formula

In this section, we calculate the sums corresponding to the integrals of the propo-

sitions in the previous section by the Poisson summation formula. Corresponding

to Propositions 3.1, 3.2, 3.4 and 3.5 in the previous section, we show Proposi-

tions 4.1, 4.2, 4.5, and 4.6 in this section. We use Proposition 4.6 in the proof of

Theorem 1.1 in Section 5. We remark that the Poisson summation formula has also

been used in the study of large level asymptotics of quantum invariants of Seifert

3-manifolds [13], [14], [30], [31], [32].

Recall (see e.g. [33]) that the Poisson summation formula states that

X

m2Zn

f .m/ D
X

m2Zn

Of .m/ (30)

for a continuous integrable function f on R
n which satis�es that

jf .z/j � C.1C jzj/�n�ı ; (31a)

and

j Of .z/j � C.1C jzj/�n�ı (31b)

for some C; ı > 0, where Of is the Fourier transform of f de�ned by

Of .w/ D
Z

Rn

f .z/e�2�
p

�1wT zdz:
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Proposition 4.1. Let a; c be complex numbers satisfying that

Rea < 0; j Im cj < ��
2

Re
1

a
:

We put

ƒ D
° k

N
C c 2 C

ˇ

ˇ

ˇ k 2 Z; b0 � k

N
� b1

±

and

C D ¹t C c 2 C j t 2 R; b0 � t � b1º

for some b0; b1 2 R and "0 > 0 satisfying that Re.b0 C c/ < 0 < Re.b1 C c/ and

Re a.bi C c/2 < �"0 .i D 0; 1/; see Figure 4. Then, there exists " > 0 such that

1

N

X

z2ƒ
eN �az2 D

Z

C

eN �az2

dz CO.e�"N /:

We note that " depends on a, c and "0.

b0 C c

b1 C c

ƒ

Figure 4. The domain ¹z 2 C j Re az2 < 0º is shaded.

Proof. By Proposition 3.1, the required formula is rewritten

X

k2Z
b0�k=N�b1

eN �a.k=NCc/2 D
p
� �

p
Np�a CO.e�"N /:



On the asymptotic expansion of the Kashaev invariant of the 52 knot 695

Since

X

k2Z
k=N<b0

eN �a.k=NCc/2 D O.e�"N /;

and
X

k2Z
b1<k=N

eN �a.k=NCc/2 D O.e�"N /;

for some " > 0, it is su�cient to show that

X

k2Z
eN �a.k=NCc/2 D

p
� �

p
Np�a CO.e�"N /: (32)

In order to apply the Poisson summation formula (30), we put

f .z/ D eN �a.z=NCc/2 :

Then, its Fourier transform is

Of .�/ D
Z 1

�1
eN �a.z=NCc/2�2�

p
�1�zdz

D
Z 1

�1
e.a=N/.zCcN��

p
�1�N=a/2dz � eN�2�2=aC2�

p
�1cN�

D
p
� �

p
Np�a eN�

2�2=aC2�
p

�1cN� ;

where we obtain the last equality by Proposition 3.1. These f .z/ and Of .�/ satisfy

the assumption (31) of the Poisson summation formula. Hence, by the Poisson

summation formula (30),

X

k2Z
eN �a.k=NCc/2 D

p
� �

p
Np�a
X

m2Z
eN�

2m2=aC2�
p

�1cNm:

The summand atm D 0 gives the right-hand side of (32). Whenm ¤ 0, the power

of the summand is

N � �m2
��

a
C 2

p
�1c
m

�

;

and its real part is negative by the assumption of the proposition. Hence, the

summands at m ¤ 0 are of order e�"N for some " > 0. Therefore, we obtain (32).

�
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We generalize Proposition 4.1 to the case where there are perturbative terms in

the exponential of the summand.

Proposition 4.2. We put

ƒ D
° k

N
C c 2 C

ˇ

ˇ

ˇ k 2 Z; b0 � k

N
� b1

±

;

and

C D ¹t C c 2 C j t 2 R; b0 � t � b1º

for some b0; b1 2 R and c 2 C. Let a be a complex number whose real part is

negative, let ı0 be a real positive number, and let  .z/ be a holomorphic function

of the form

 .z/ D az2 C b3z
3 C b4z

4 C � � � ;

de�ned in a neighborhood of 0 including the ı0-neighborhood of C . The do-

main (15) has two connected components in a neighborhood of 0. We assume that

b0Cc and b1Cc are in these two components respectively, and Re .biCc/ < �"0
.i D 0; 1/ for some "0 > 0. .See Figure 5./ Further, we assume that

b0 C c and b1 C c are in the same connected component of

¹w C ı
p

�1 2 C j w 2 C; ı 2 Œ0; ı0�; Re. .w C ı
p

�1/ � 2�ı/ < 0º;
(33)

and

they are in the same connected component of

¹w � ı
p

�1 2 C j w 2 C; ı 2 Œ0; ı0�; Re. .w � ı
p

�1/ � 2�ı/ < 0º:
(34)

Then,

1

N

X

z2ƒ
eN .z/ D

Z

C

eN .z/dz CO.e�N"/

for some " > 0.

We note that " depends on  .z/, c, ı0 and "0; in particular, " directly depends on

"0
2 of (39) in the proof of the proposition.
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b0 C c

b1 C c

ƒ

Figure 5. The domain ¹z 2 C j Re .z/ < 0º is shaded.

Proof. The sum of the left-hand side of the required formula is rewritten

X

k2Z
b0�k=N�b1

exp
�

N �  
� k

N
C c

��

: (35)

In order to apply the Poisson summation formula (30), we put

f .z/ D g
� z

N
C c

�

exp
�

N �  
� z

N
C c

��

;

where g is a di�erentiable function on R C c satisfying that

g.w/ D
´

1 if w 2 C;
0 if w … N.C/;

0 � g.w/ � 1 if w 2 N.C/ � C:

Here,N.C/ is a neighborhood of C in RCc such thatN.C/�C is included in the

domain ¹z 2 C j Re .z/ < �"0=2º. Then, the Fourier transform of f is given by

Of .�/ D
Z

R

g
� z

N
C c

�

exp
�

N �  
� z

N
C c

��

e�2�
p

�1�zdz

D N

Z

RCc
g.w/eN. .w/�2�

p
�1�.w�c//dw;

where we put

w D z=N C c:
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Further,

�2 Of .�/ D � 1

4�2N

Z

RCc
g.w/eN .w/

�� d

dw

�2

e�2�
p

�1N�.w�c/
�

dw

D � 1

4�2N

Z

RCc

�� d

dw

�2

g.w/eN .w/
�

e�2�
p

�1N�.w�c/dw

D � 1

4�2N

Z

RCc
h.w/eN .w/e�2�

p
�1N�.w�c/dw;

where we put

h.w/ D g00.w/C 2g0.w/ 0.w/C g.w/. 00.w/C  0.w/2/:

Since the above integral is bounded independently of �, Of .�/ satis�es the as-

sumption (31) of the Poisson summation formula. Further, f .z/ also satis�es (31).

Therefore, by the Poisson summation formula (30),

(35) D
X

m2Z

Of .m/:

When m ¤ 0, we have that

Of .m/ D � 1

4�2N
� 1

m2

Z

RCc
h.w/eN. .w/�2�

p
�1m.w�c//dw

D � 1

4�2N
� 1

m2

Z

C

. 00.w/C  0.w/2/eN. .w/�2�
p

�1m.w�c//dw (36)

� 1

4�2N
� 1

m2

Z

N.C/�C
h.w/eN. .w/�2�

p
�1m.w�c//dw; (37)

since h.w/ D  00.w/C 0.w/2 for w 2 C and h.w/ D 0 for w 2 .RC c/�N.C/.
Further, since Re .w/ < �"0=2 for w 2 N.C/ � C ,

X

m¤0
(37) D O.e�N"1/

for some "1 > 0. Furthermore, whenm > 0, by pushing the contourC to a contour

C 0 in the domain of (34), we can show that
Z

C

. 00.w/C  0.w/2/eN. .w/�2�
p

�1m.w�c//dw

D
Z

C 0
. 00.w/C  0.w/2/eN. .w/�2�

p
�1m.w�c//dw

D O.e�N"2/

(38)
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for some "2 > 0, which we can choose independently of m, since there exists

"0
2 > 0 such that

Re. .w/� 2�
p

�1.w � c// < �"0
2 (39)

for any w 2 C 0. Hence,
X

m>0

(36) D O.e�N"2/:

When m < 0, by pushing the contour C into the domain of (33), we similarly

obtain
X

m<0

(36) D O.e�N"3/

for some "3 > 0. Therefore,

X

m¤0

Of .m/ D O.e�N"4/

for some "4 > 0. Hence,

(35) D Of .0/CO.e�N"4/ D N

Z

C

eN .w/dw CO.e�N"5/

for some "5 > 0, and this implies the required formula. �

Remark 4.3. The assumptions (33) and (34) of Proposition 4.2 can be replaced

with the condition that there exist positive integers m0; m1 and positive real

numbers ı0; ı1 such that for any integer m satisfying that �m0 < m < 0 or

0 < m < m1,
Z

C

eN. .w/�2�
p

�1m.w�c//dw D O.e�N"/

for some " > 0, and

b0 C c and b1 C c are in the same connected component of

¹w C ı
p

�1 2 C j w 2 C; ı 2 Œ0; ı1�; Re. .w C ı
p

�1/ � 2�ım1/ < 0º;

and

they are in the same connected component of

¹w � ı
p

�1 2 C j w 2 C; ı 2 Œ0; ı0�; Re. .w � ı
p

�1/ � 2�ım0/ < 0º:

Proposition 4.2 for this assumption can be proved by modifying the above proof

of Proposition 4.2.
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Remark 4.4. Proposition 4.2 can naturally be extended to the case where the

holomorphic function  .z/ depends on N , if  .z/ uniformly converges

to  0.z/ as N ! 1, and  0.z/ satis�es the assumption of the proposition, and

j 00.z/ C  0.z/2j is bounded by a constant which is independent of N . In this

case, (39) holds for su�ciently large N , and hence, (38) holds. Therefore, Propo-

sition 4.2 also holds in this case, where we note that we can choose " independently

of N .

We generalize Proposition 4.1 to the case of n variables.

Proposition 4.5. For c 2 C
n and an oriented n-ball D0 in R

n, we put

ƒ D
° 1

N
k C c 2 C

n
ˇ

ˇ

ˇ k 2 Z
n;

1

N
k 2 D0

±

;

and

D D ¹z C c 2 C
n j z 2 D0 � R

nº:

Let A be a non-singular symmetric complex n�n matrix such that Re.A�1/ is

negative de�nite. We assume that @D is included in the domain (24). Further, we

assume that

.Im c/Tm < ��
2

m
T � Re.A�1/ � m

for any m 2 Z
n�¹0º. Then

1

N n

X

z2ƒ
eN �zTAz D

Z

D

eN �zTAzdz CO.e�N"/;

for some " > 0.

Proof. By Proposition 3.4, the required formula is rewritte

X

z2ƒ
eN �zTAz D �n=2N n=2

p

det.�A/
CO.e�"N /: (40)

Further, in a similar way as in the proof of Proposition 4.1, putting

f .z/ D eN �.z=NCc/TA.z=NCc/;

we can show that

Of .�/ D �n=2N n=2

p

det.�A/
eN�

2�TA�1�C2�
p

�1NcT �
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by using Proposition 3.4. Hence, we obtain

X

k2Zn

eN �.k=NCc/TA.k=NCc/ D �n=2N n=2

p

det.�A/
X

m2Zn

eN�
2mTA�1mC2�

p
�1NcT m

by the Poisson summation formula (30). By the assumption of the proposition,

the real part of

N�2mTA�1
m C 2�

p
�1Nc

T
m

is negative for any m 2 Z
n�¹0º. Therefore, only the summand at m D 0 survives,

and we obtain (40) from it. �

We generalize Proposition 4.5 to the case where there are perturbative terms in

the exponential of the summand. Let e1; e2; : : : ; en be the standard basis vectors

of Cn,

e1 D .1; 0; � � � ; 0/T ; e2 D .0; 1; 0; � � � ; 0/T ; : : : ; en D .0; � � � ; 0; 1/T :

Proposition 4.6. For c 2 C
n and an oriented n-ball D0 in R

n, we put

ƒ D
° 1

N
k C c 2 C

n
ˇ

ˇ

ˇ k 2 Z
n;

1

N
k 2 D0

±

;

and

D D ¹z C c 2 C
n j z 2 D0 � R

nº:

Let A be a non-singular symmetric complex n � n matrix, and let

 .z/ be a holomorphic function of the form (25) de�ned in a neighborhood

of 0 2 C
n including D. We assume that @D is included in the domain

®

z 2 C
n j Re .z/ < �"0

¯

for some "0 > 0. Further, we assume that there

exist ıi ; ı
0
i > 0 .i D 1; � � � ; n/ such that

@D is null-homotopic in

¹w C ı
p

�1ei 2 C
n j w 2 D; ı 2 Œ0; ıi �; Re. .w C ı

p
�1ei / � 2�ı/ < 0º;

(41)

and

@D is null-homotopic in

¹w � ı
p

�1ei 2 C
n j w 2 D; ı 2 Œ0; ı0

i �; Re. .w � ı
p

�1ei / � 2�ı/ < 0º;
(42)

for i D 1; � � � ; n, assuming that  is holomorphic in these domains. Then

1

N n

X

z2ƒ
eN .z/ D

Z

D

eN .z/dz CO.e�N"/;

for some " > 0.
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We note that " depends on  .z/, c, ıi , ı
0
i and "0.

Proof. The sum of the left-hand side of the required formula is rewritten,

X

k2Zn

k=N2D0

exp
�

N �  
� 1

N
k C c

��

: (43)

In order to apply the Poisson summation formula (30), we put

f .z/ D g
� 1

N
z C c

�

exp
�

N �  
� 1

N
z C c

��

;

where g is a di�erentiable function on R
nC c satisfying that

g.w/ D
´

1 if w 2 D;
0 if w … N.D/;

0 � g.w/ � 1 if w 2 N.D/ �D:

Here, N.D/ is a neighborhood of D in R
nC c such that N.D/ � D is included

in the domain
®

z 2 C
n j Re .z/ < �"0=2

¯

. Then, the Fourier transform of f is

given by

Of .�/ D
Z

Rn

g
� 1

N
z C c

�

exp
�

N �  
� 1

N
z C c

��

e�2�
p

�1�T zdz

D N n

Z

RnCc

g.w/eN. .w/�2�
p

�1�T .w�c//dw ;

where we put w D z=N C c. Further, for an integer l > n=2,

j�j2l Of .�/

D
�

n
X

iD1
�2i

�l Of .�/

D N n
� �1
4�2N

�l
Z

RnCc

g.w/eN .w/
��

n
X

iD1

@2

@w2i

�l

e�2�
p

�1N�T .w�c/
�

dw

D N n
� �1
4�2N

�l
Z

RnCc

��

n
X

iD1

@2

@w2i

�l

g.w/eN .w/
�

e�2�
p

�1N�T .w�c/dw

D N n
� �1
4�2N

�l
Z

RnCc

h.w/eN .w/e�2�
p

�1N�T .w�c/dw ;

where h.w/ is some polynomial in derivatives of g.w/ and  .w/. Since the above

integral is bounded independently of �, Of .�/ satis�es the assumption (31) of the
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Poisson summation formula. Further, f .z/ also satis�es (31). Therefore, by the

Poisson summation formula (30),

(43) D
X

m2Zn

Of .m/:

When m ¤ 0, we have

Of .m/ D N n
� �1
4�2N

�l

� 1

jmj2l
Z

RnCc

h.w/eN. .w/�2�
p

�1mT .w�c//dw

D N n
� �1
4�2N

�l

� 1

jmj2l
Z

D

‰.w/eN. .w/�2�
p

�1mT .w�c//dw (44)

CN n
� �1
4�2N

�l

� 1

jmj2l
Z

N.D/�D
h.w/eN. .w/�2�

p
�1mT .w�c//dw ; (45)

where‰.w/ is some polynomial in (at most the 2l th) derivatives of .w/. Further,

since Re .w/ < 0 for w 2 N.D/ �D,
X

m¤0

(45) D O.e�N"1/

for some "1 > 0. Furthermore, when m1 > 0, pushing the contour D into the

domain of (42), we obtain
X

m2Zn

m1>0

(44) D O.e�N"2/

for some "2 > 0, similarly as in the proof of Proposition 4.2. Similarly we obtain
X

m2Zn

m1<0

(44) D O.e�N"3/

for some "3 > 0, from the assumption (41). Hence,
X

m¤0

(44) D
X

m¤0

m1D0

(44) CO.e�N"4/

for some "4 > 0. By repeating this argument for m2; : : : ; mn, we obtain
X

m¤0

(44) D O.e�N"5/

for some "5 > 0. Therefore,

(43) D Of .0/CO.e�N"6/ D N n

Z

D

eN .w/dw CO.e�N"6/

for some "6 > 0, and this implies the required formula. �
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Remark 4.7. The assumptions (41) and (42) of Proposition 4.6 can be modi�ed

similarly as in Remark 4.3.

Remark 4.8. Similarly as in Remark 4.4, Proposition 4.6 can naturally be ex-

tended to the case where the holomorphic function  .z/ depends on N , if  .z/

uniformly converges to  0.z/ as N ! 1, and  0.z/ satis�es the assumption of

the proposition, and j‰.z/j is bounded by a constant which is independent of N .

Similarly as in Remark 4.4, we can also choose " independently of N in this case.

5. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. In Section 5.1, we give a proof of

the theorem by using lemmas proved in Sections 5.2, 5.3, and 5.4. In Section 5.2,

we show lemmas which calculate the asymptotic expansion. In Section 5.3,

we show a lemma which veri�es the assumption of the saddle point method.

In Section 5.4, we show a lemma which veri�es the assumption of the Poisson

summation formula.

5.1. Proof of Theorem 1.1. In this section, we give a proof of Theorem 1.1, which

presents the asymptotic expansion of the Kashaev invariant h52iN of the 52 knot.

To obtain the asymptotic expansion, as mentioned in Section 2.2, we rewrite

the sum (14) of h52iN by using an integral by the Poisson summation formula

(Proposition 4.6) and calculate the asymptotic expansion of the integral by the

saddle point method (Proposition 3.5).

Proof of Theorem 1.1. We recall that h52iN is presented by the sum (14). By Propo-

sition 4.6 (Poisson summation formula) (see also Remark 4.8 and Appendix B),

this sum is expressed by the integral

h52iN D eN&N 5=2q

�Z

�0
exp.N � V.t; s/�N&/dtds CO.e�N"4/

�

(46)

for some "4 > 0, noting that we verify the assumptions of Proposition 4.6 in

Lemma 5.8 below.

In order to apply the saddle point method (Proposition 3.5, see also Remark 3.6

and Appendix B) to (46), we consider a critical point of yV .t; s/. From the
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de�nition of yV .t; s/, a critical point is a solution of the equations

@

@t
yV .t; s/ D � log.1� e�2�

p
�1t / � 2�

p
�1
�

t C s � 1

2

�

D 0; (47a)

@

@s
yV .t; s/ D �2 log.1� e�2�

p
�1s/ � 2�

p
�1.t C 2s � 1/ D 0: (47b)

Hence, putting x D e2�
p

�1t and y D e2�
p

�1s ,

�

1� 1

x

�

xy D �1;
�

1� 1

y

�2

xy2 D 1:

Therefore,

x D 1 � 1

y
; .y � 1/3 D y:

Let .x0; y0/ be the solution of these equations mentioned in the introduction.

We consider the critical point .t0; s0/ such that

.Re t0;Re s0/ 2 �0 and .e2�
p

�1t0 ; e2�
p

�1s0/ D .x0; y0/:

It is numerically given by

t0 D 0:22404487 : : :�
p

�1 � 0:04475430 : : : ;

s0 D 0:16393269 : : :C
p

�1 � 0:06713145 : : : :

Let .tc; sc/ be the critical point of V.t; s/ which goes to .t0; s0/ as N ! 1.

We consider to apply Proposition 3.5 to V.t�tc; s�sc/. We consider the expansion

V.t; s/ D V.tc; sc/C
1

2
Vt t �.t�tc/2CVts �.t�tc/.s�sc/C

1

2
Vss �.s�sc/2C� � � (48)

at the critical point, where we put

Vt t D @2V

@t2
.tc; sc/; Vts D @2V

@t@s
.tc; sc/; Vss D @2V

@s2
.tc; sc/:

As we show in Section 5.3, we can make a concrete homotopy which moves�0 to

a new domain containing the above critical point in such a way that it satis�es

the assumption of the saddle point method.6 Hence, we obtain the following

6 That is, the new domain is in the area Re yV .t; s/ � &
R

�" except for a neighborhood of the

above critical point. In order to obtain this new domain, it is su�cient to push the shaded part in

Figure 1 into the imaginary direction by .�
p

�1 � 0:04475430 : : : ;
p

�1 � 0:06713145 : : :/. For

details, see Section 5.3.



706 T. Ohtsuki

expansion by applying Proposition 3.5 (see also Remark 3.6 and Appendix B)

to (46):

h52iN D N 5=2q exp
�

NV.tc ; sc/
�

�2�
N
.Vt tVss�V 2ts/�1=2

�

1C
d
X

iD1
�i„iCO.„dC1/

�

;

(49)

where �i ’s are given in the proposition, noting that we verify the assumptions of

Proposition 3.5 in Lemma 5.7 below. Here, we also note that eN& � O.e�N"4/

in (46) is included in exp.NV.tc; sc// � O.„dC1/ in (49); see Lemma 5.2 below

for the behavior of exp.NV.tc; sc//.

We calculate the concrete form of (49), for simplicity, when d D 1.

By Lemmas 5.2, 5.3, and 5.4 below, (49) is rewritten

h52iN D N 5=2q � eN&e��
p

�1=4.1 � y0/1=2.1C .C1 C C2/„ CO.„2//2�
N

1

2�
p

�1
.�2y0 � 1/�1=2.1C C3„ CO.„2//.1C .C4 C C5/„ CO.„2//

D eN&N 3=2e�
p

�1=4
�2y0 C 1

y0 � 1

��1=2

.1C „.1C C1 C C2 C C3 C C4 C C5/CO.„2//;

where the constants C1; : : : ; C5 are given in the lemmas. In particular, �1 of the

theorem is given by

�1 D 1C C1 C C2 C C3 C C4 C C5

D 1

184
.�16y20 C 33y0 C 9/C 1

24
.2y20 � 5y0/C 1

46
.8y20 � 17y0 C 9/

C 1

92
.2y20 C 15y0/ � 1

3174
.197y20 C 127y0 C 227/C 1

D 1

12696
.1650y20 � 3498y0 C 2197/C 1:

Hence, we obtain the required formula for d D 1.

For general d , each �i of the expansion (49) is given by a linear sum of higher

coe�cients of the expansion (48) by Proposition 3.5 (see also Remark 3.6 and

Appendix B). In the same way as the above case of d D 1, such coe�cients are

given by some polynomials in y0 with rational coe�cients. Hence, each �i of the

theorem can be given by some polynomial in y0 with rational coe�cients. �
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5.2. Calculation of the asymptotic expansion. In this section, we show some

lemmas used in the proof of Theorem 1.1.

Let .t0; s0/ and .tc; sc/ be the critical points of yV .t; s/ and V.t; s/ given in the

previous section. We put x0 D e2�
p

�1�t0 , y0 D e2�
p

�1�s0 , and xc D e2�
p

�1�tc ,

yc D e2�
p

�1�sc . In order to show Lemma 5.2 below, we calculate .xc ; yc/ in terms

of .x0; y0/, as follows. We show a proof of the following lemma in Appendix C.

Lemma 5.1. We can put xc D x0 C x1„ C O.„2/ and yc D y0 C y1„ C O.„2/
for some x1; y1 2 C in a su�ciently small neighborhood of .x0; y0/ .i.e., for

su�ciently large N/. Here,O.„2/ means that the absolute value of the error term

is bounded by C„2 with a constant C which is independent of N .

We calculate x1 and y1, as follows. We put x D e2�
p

�1�t and y D e2�
p

�1�s.
From the de�nition of V.t; s/ and Proposition A.1, we have

@

@t
V .t; s/ D � log

�

1� 1

x

�

� 2�
p

�1
�

t C s � 1

2
� 1

2N

�

CO.„2/; (50a)

and

@

@s
V .t; s/ D �2 log

�

1� 1

y

�

� 2�
p

�1
�

t C 2s � 1� 1

2N

�

CO.„2/: (50b)

Then, since .tc ; sc/ is a critical point of V.t; s/,
8

ˆ

ˆ

<

ˆ

ˆ

:

�

1� 1

xc

�

.�q�1=2xcyc/ D 1CO.„2/;
�

1� 1

yc

�2

q�1=2xcy2c D 1CO.„2/:

These are rewritten,
8

<

:

.1 � xc/yc D q1=2 CO.„2/;
q1=2yc D .yc � 1/2.yc � q1=2/CO.„2/:

Hence, putting xc D x0Cx1„CO.„2/ and yc D y0Cy1„CO.„2/ by Lemma 5.1,

we have
8

<

:

x0 D 1 � 1

y0
;

y0 D .y0 � 1/3;

8

ˆ

<

ˆ

:

� x1

1� x0
C y1

y0
D 1

2
;

y1 C 1

2
y0 D .y0 � 1/2

�

3y1 � 1

2

�

:

Therefore, we obtain

y1 D y20
2.2y0 C 1/

; x1 D � y0 C 1

2y0.2y0 C 1/
:
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Further, in order to show Lemmas 5.2, 5.3 and 5.4 below, we calculate the

expansion (48) concretely, as follows. Putting Lt D t � tc , we expand '.1 � t /=N

at tc as follows:

'.1 � t /
N

D '.1� tc/
N

� '0.1 � tc/
N

Lt C 1

2

'00.1� tc/
N

Lt2

� 1

6

'.3/.1� tc/

N
Lt3 C 1

24

'.4/.1� tc/
N

Lt4 C � � � ;

where we can calculate '.k/.1 � tc/=N concretely by Proposition A.1. Hence,

putting Lt D t � tc and Ls D s� sc , we can show by concrete calculation that V.t; s/

is expanded at a critical point .tc; sc/ in the form

V.t; s/ D V.tc; sc/C .degree 2 part/C .degree 3 part/

C .degree 4 part/C .degree � 5 part/;
(51)

where

.degree 2 part/ D 2�
p

�1
� Lt2
2

1

1� xc
C Ls2
2

1C yc

1� yc
� .Lt C Ls/2

2

�

CO.„2/; (52)

.degree 3 part/ D .2�
p

�1/2.y0 � 1/
� Lt3
6

� y0 C Ls3
6

� 2
�

CO.„/; (53)

.degree 4 part/ D .2�
p

�1/3
� Lt4
24
.x20 C x0/y

3
0 � Ls4

24
2.y0 C 1/

�

CO.„/: (54)

Now, we show lemmas used in the proof of Theorem 1.1.

Lemma 5.2. Under the notation in the proof of Theorem 1.1,

exp.NV.tc ; sc// D eN&e��
p

�1=4.1� y0/1=2.1C .C1 C C2/„ CO.„2//;

where we put

C1 D 1

184
.�16y20 C 33y0 C 9/; C2 D 1

24
.2y20 � 5y0/:

Proof. We put tc D t0 C t1=N C � � � and sc D s0 C s1=N C � � � . Recalling that

xc D e2�
p

�1�tc and yc D e2�
p

�1�sc , we have

t1 D x1

x0
D � y0 C 1

2.y0 � 1/.2y0 C 1/
; s1 D y1

y0
D y0

2.2y0 C 1/
:
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Putting Lt D �t1=N and Ls D �s1=N in the degree 2 part (52) of the expansion (51),

we have

V.t0; s0/ D V.tc; sc/C2�
p

�1
� t21
2N 2

1

1 � x0
C s21
2N 2

1C y0

1� y0
� .t1 C s1/

2

2N 2

�

CO.„3/:

Hence,

NV.tc; sc/ D NV.t0; s0/C C1„ CO.„2/;

where we put

C1 D �1
2

�

t21
1

1 � x0
C s21

1C y0

1� y0
� .t1 C s1/

2
�

D 1

184
.�16y20 C 33y0 C 9/:

Hence,

exp.NV.tc; sc// D exp.NV.t0; s0// � .1C C1„ CO.„2//: (55)

Further, we calculate V.t0; s0/, as follows. From the de�nition of V.t; s/,

we have

V.t0; s0/ D 1

N
.�'.1� t0/ � 2'.1� s0// � 1

2�
p

�1
�2

6

� 2�
p

�1
�1

2

�

t0 C s0 � 1

2N

�2

C 1

2
s20 � 1

2
t0 � s0 C 1

6

�

� 3�
p

�1
4N

C �
p

�1
4N 2

:

Since this goes to yV .t0; s0/ as N ! 1, we have

yV .t0; s0/

D 1

2�
p

�1

�

� Li2
� 1

x0

�

� 2Li2
� 1

y0

�

� �2

6

�

� 2�
p

�1
�1

2
.t0 C s0/

2 C 1

2
s20 � 1

2
t0 � s0 C 1

6

�

D 1

2�
p

�1

�

Li2.x0y0/C Li2

� 1

x0y0

�

C Li2.y0/ � Li2

� 1

y0

�

� Li2

� 1

x0

�

� �2

6

�

D &:
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Hence, by Proposition A.1,

V.t0; s0/ D & C 2�
p

�1t0 C s0

2N
� 3�

p
�1

4N

C 2�
p

�1
N 2

� 1

24.x0 � 1/ C 1

12.y0 � 1/
�

CO
� 1

N 3

�

:

Therefore,

exp.NV.t0; s0// D eN&e� 3
4
�

p
�1.x0y0/

1=2.1C C2„ CO.„2//

D eN&e��
p

�1=4.1 � y0/1=2.1C C2„ CO.„2//;
where we put

C2 D 1

24.x0 � 1/ C 1

12.y0 � 1/ D 1

24
.2y20 � 5y0/:

Hence, from the above formula and (55), we obtain the required formula. �

Lemma 5.3. Under the notation in the proof of Theorem 1.1,

Vt tVss � V 2ts D �4�2.�2y0 � 1/.1� 2C3„ CO.„2//;

.Vt tVss � V 2ts/�1=2 D 1

2�
p

�1
.�2y0 � 1/�1=2.1C C3„ CO.„2//;

where we put

C3 D 1

46
.8y20 � 17y0 C 9/:

Proof. From the degree 2 part (52) of the expansion (51), we have

Vt t D @2V

@t2
.tc ; sc/

D 2�
p

�1
� 1

1 � xc
� 1

�

CO.„2/

D 2�
p

�1 � xc

1� xc
CO.„2/;

Vts D @2V

@t@s
.tc; sc/ D �2�

p
�1CO.„2/;

Vss D @2V

@s2
.tc ; sc/

D 2�
p

�1
�1C yc

1 � yc
� 1

�

CO.„2/

D 2�
p

�1 � 2yc

1� yc
CO.„2/
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Hence,

Vt tVss � V 2ts D �4�2
� xc

1 � xc
� 2yc

1� yc
� 1

�

CO.„2/

D �4�2
�2q�1=2xcy2c

1� yc
� 1

�

CO.„2/

D �4�2
�

� 2yc � 1� q�1=2yc
1 � yc

� 1
�

CO.„2/

D �4�2
�

� yc
�

2C y0

1� y0
„
�

� 1
�

CO.„2/

D �4�2.�2y0 � 1/
�

1� y20 .y0 C 2/

.y0 � 1/.2y0 C 1/2
„
�

CO.„2/

D �4�2.�2y0 � 1/.1� 2C3„/CO.„2/;

where

C3 D y20 .y0 C 2/

2.y0 � 1/.2y0 C 1/2
D 1

46
.8y20 � 17y0 C 9/:

Therefore, we obtain the required formulas. �

Lemma 5.4. Under the notation in the proof of Theorem 1.1,

�1 D C4 C C5;

where we put

C4 D 1

92
.2y20 C 15y0/

and

C5 D � 1

3174
.197y20 C 127y0 C 227/:

Proof. We show the lemma by using Proposition 3.5. As shown in Proposition 3.5,

�1 consists of two contributions from the degree 3 part and the degree 4 part of

the expansion (51).

We calculate the contribution from the degree 4 part of the expansion (51), as

follows. As in (54), the degree 4 part of this expansion is given by

.2�
p

�1/3
� Lt4
24
.x20 C x0/y

3
0 � Ls4

24
2.y0 C 1/

�

CO.„/: (56)
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As explained in Proposition 3.5, the contribution from Lt4 is calculated as

N �
� @

@u1

�4

exp

�

� 1

4N

�

u1

u2

�T

A�1
�

u1

u2

��ˇ

ˇ

ˇ

ˇ

u1Du2D0

D 1

2
N �

� @

@u1

�4
�

� 1

2N

�

u1

u2

�T�
Vt t Vts

Vts Vss

��1�
u1

u2

��2

D 1

8N.Vt tVss � V 2ts/2
� @

@u1

�4

.Vssu
2
1 � 2Vtsu1u2 C Vt tu

2
2/
2

D 1

8N.Vt tVss � V 2ts/2
� 4Š � V 2ss

D 4Š

8N.2�
p

�1/2.2y0 C 1/2

� 2y0

1� y0

�2

CO.„/;

by using Lemma 5.3 and formulas in the proof of Lemma 5.3. Similarly, the

contribution from Ls4 is calculated as

1

8N.Vt tVss � V 2ts/
2

� @

@u2

�4

.Vssu
2
1 � 2Vtsu1u2 C Vt tu

2
2/
2

D 1

8N.Vt tVss � V 2ts/2
� 4Š � V 2tt

D 4Š

8N.2�
p

�1/2.2y0 C 1/2

� x0

1� x0

�2

CO.„/:

Hence, the contribution from (56) is equal to

2�
p

�1
8N.2y0 C 1/2

�

.x20 C x0/y
3
0

� 2y0

1� y0

�2

� 2.y0 C 1/
� x0

1 � x0

�2�

D C4„;

where we put

C4 D 1

8.2y0 C 1/2

�

.x20 C x0/y
3
0

� 2y0

1 � y0

�2

� 2.y0 C 1/
� x0

1� x0

�2�

D 1

92
.2y20 C 15y0/:

We calculate the contribution from the degree 3 part of the expansion (51), as

follows. As in (53), the degree 3 part of this expansion is given by

.2�
p

�1/2.y0 � 1/
� Lt3
6

� y0 C Ls3
6

� 2
�

CO.„/;
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and, hence, the corresponding degree 6 part is given by

1

2
.2�

p
�1/4.y0 � 1/2

� Lt3
6

� y0 C Ls3
6

� 2
�2

CO.„/

D 1

2
.2�

p
�1/4.y0 � 1/2

� Lt6
62

� y20 C Ls6
62

� 4C
Lt3 Ls3
62

� 4y0
�

CO.„/:
(57)

The contribution from Lt6 is calculated as

N 2 �
� @

@u1

�6

exp

�

� 1

4N

�

u1

u2

�T

A�1
�

u1

u2

��
ˇ

ˇ

ˇ

ˇ

u1Du2D0

D 1

6
N 2 �

� @

@u1

�6
�

� 1

2N

�

u1

u2

�T�
Vt t Vts

Vts Vss

��1�
u1

u2

��3

D �1
48N.Vt tVss � V 2ts/3

� @

@u1

�6

.Vssu
2
1 � 2Vtsu1u2 C Vt tu

2
2/
3

D �1
48N.Vt tVss � V 2ts/3

� 6Š � V 3ss

D 6Š

48N.2�
p

�1/3.2y0 C 1/3

� 2y0

1� y0

�3

CO.„/;

by using Lemma 5.3 and formulas in the proof of Lemma 5.3. Similarly, the

contribution from Ls6 is calculated as

�1
48N.Vt tVss � V 2ts/

3

� @

@u2

�6

.Vssu
2
1 � 2Vtsu1u2 C Vt tu

2
2/
3

D �1
48N.Vt tVss � V 2ts/3

� 6Š � V 3tt

D 6Š

48N.2�
p

�1/3.2y0 C 1/3

� x0

1� x0

�3

CO.„/:

Similarly, the contribution from Lt3 Ls3 is calculated as

�1
48N.Vt tVss � V 2ts/3

� @

@u1

�3� @

@u2

�3

.Vssu
2
1 � 2Vtsu1u2 C Vt tu

2
2/
3

D �1
48N.Vt tVss � V 2ts/3

� 6Š �
�2

5
.�Vts/3 C 3

5
Vt tVss.�Vts/

�

CO.„/

D 6Š

48N.2�
p

�1/3.2y0 C 1/3

�2

5
C 3

5

x0

1 � x0
2y0

1� y0

�

;
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by using Lemma 5.3 and formulas in the proof of Lemma 5.3. Hence, the contri-

bution from (57) is equal to

5 � 2�
p

�1.y0�1/2
24N.2y0 C 1/3

�

y20

� 2y0

1�y0

�3

C4
� x0

1�x0

�3

C4y0
�2

5
C 3

5

x0

1�x0
2y0

1�y0

��

DC5„

where we put

C5 D 5.y0 � 1/2
24.2y0 C 1/3

�

y20

� 2y0

1 � y0

�3

C 4
� x0

1 � x0

�3

C 4y0

�2

5
C 3

5

x0

1 � x0
2y0

1 � y0

��

D � 1

3174
.197y20 C 127y0 C 227/:

Therefore, we obtain the required formula of the lemma. �

5.3. Verifying the assumption of the saddle point method. In this section,

in Lemma 5.7, we verify the assumption of the saddle point method (Proposi-

tion 3.5, see also Remark 3.6 and Appendix B) when we apply Proposition 3.5

and Remark 3.6 to (46). The arguments of this section are due to Yokota [44].

Let V.t; s/ and yV .t; s/ be as in Section 2.2. As shown in Appendix B,

V.t; s/ uniformly converges to yV .t; s/ on �0 as N ! 1. Hence, as men-

tioned in Remarks 3.3 and 3.6 and Appendix B, the saddle point method of the

problem can be reduced to the saddle point method of an integral of the form
R

�.t; s/eN
yV .t;s/dtds. Therefore, we verify the assumption of the saddle point

method for yV .t; s/. We recall that the di�erentials of yV .t; s/ are given in (47).

In order to show Lemma 5.7 below, we calculate the behavior of the function

ft;s.ı1; ı2/ D Re yV .t C ı1
p

�1; s C ı2
p

�1/ � &
R
:

The di�erentials of this function are given by

@

@ı1
ft;s.ı1; ı2/ D Re.

p
�1 @
@t

yV .t C ı1
p

�1; s C ı2
p

�1//

D � Im
�

� log
�

1� 1

x

�

� 2�
p

�1
�

t C s � 1

2

��

D Arg
�

1 � 1

x

�

C 2�
�

t C s � 1

2

�

;

(58)

@

@ı2
ft;s.ı1; ı2/ D Re

�p
�1 @
@s

yV .t C ı1
p

�1; s C ı2
p

�1/
�

D � Im
�

� 2 log
�

1 � 1

y

�

� 2�
p

�1.t C 2s � 1/
�

D 2
�

Arg
�

1� 1

y

�

C 2�
�1

2
t C s � 1

2

��

;

(59)

where x D e2�
p

�1.tCı1

p
�1/ and y D e2�

p
�1.sCı2

p
�1/.
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Lemma 5.5 (Yokota [44]). Fixing .t; s/ 2 �0 and ı2 2 R, we regard ft;s.X; ı2/

as a function of X 2 R.

(1) If t C s � 1
2
, then ft;s.X; ı2/ is monotonically increasing for X 2 R.

(2) If t C s < 1
2
, then ft;s.X; ı2/ has a unique minimal point at X D g1.t; s/,

where

g1.t; s/ D 1

2�
log

sin 2�.t C s/

sin 2�s
;

i.e., ft;s.X; ı2/ is monotonically decreasing for X < g1.t; s/, and is mono-

tonically increasing for X > g1.t; s/.

Proof. We put x D e2�
p

�1.tCX
p

�1/. Then, 1=x D e2�Xe�2�
p

�1t . We put

� D Arg.1� 1
x
/ in this proof. Since t < 1

2
, � is in the range

0 < � < 2�
�1

2
� t
�

:

When t C s � 1
2
, we show the lemma, as follows. By (58),

@

@X
ft;s.X; ı2/ D � C 2�

�

t C s � 1

2

�

> 0:

Therefore, ft;s.X; ı2/ is monotonically increasing, and (1) holds.

When t C s < 1
2
, we show the lemma, as follows. In this case, by (58),

@

@X
ft;s.X; ı2/

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

> 0 if � > 2�
�1

2
� t � s

�

;

D 0 if � D 2�
�1

2
� t � s

�

;

< 0 if � < 2�
�1

2
� t � s

�

:

Further, � and X are related as shown in the following picture.

1
0 1

2�t �

e2�X

1=x
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Hence, X is monotonically increasing as a function of � , and they satisfy

e2�X

sin �
D 1

sin.� � 2�t � �/ :

This is rewritten

X D 1

2�
log

sin �

sin.� � 2�t � �/
:

Therefore,

@

@X
ft;s.X; ı2/

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

> 0 if X > g1.t; s/;

D 0 if X D g1.t; s/;

< 0 if X < g1.t; s/;

where we put

g1.t; s/ D 1

2�
log

sin 2�.1
2

� t � s/
sin 2�s

D 1

2�
log

sin 2�.t C s/

sin 2�s
:

Hence, (2) holds. �

Lemma 5.6 (Yokota [44]). Fixing .t; s/ 2 �0 and ı1 2 R, we regard ft;s.ı1; Y /

as a function of Y 2 R.

(1) If t C 2s � 1, then ft;s.ı1; Y / is monotonically increasing for Y 2 R.

(2) If t C 2s < 1, then ft;s.ı1; Y / has a unique minimal point at Y D g2.t; s/,

where

g2.t; s/ D 1

2�
log

sin�.t C 2s/

sin�t
;

i.e., ft;s.ı1; Y / is monotonically decreasing for Y < g2.t; s/, and is mono-

tonically increasing for Y > g2.t; s/.

Proof. We put y D e2�
p

�1.sCY
p

�1/. Then, 1=y D e2�Y e�2�
p

�1s . We put

� D Arg
�

1 � 1
y

�

in this proof. Since s < 1
2
, � is in the range

0 < � < 2�
�1

2
� s

�

:

When t C 2s � 1, we show the lemma, as follows. By (59),

@

@Y
ft;s.ı1; Y / D 2.� C �.t C 2s � 1// > 0:

Hence, ft;s.ı1; Y / is monotonically increasing, and (1) holds.
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When t C 2s < 1, we show the lemma, as follows. In this case, by (59),

@

@Y
ft;s.ı1; Y /

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

> 0 if � > 2�
�1

2
� 1

2
t � s

�

;

D 0 if � D 2�
�1

2
� 1

2
t � s

�

;

< 0 if � < 2�
�1

2
� 1

2
t � s

�

:

Further, similarly as in the proof of Lemma 5.5, � and Y are related by

Y D 1

2�
log

sin �

sin.� � 2�s � �/ :

Since Y is monotonically increasing as a function of � ,

@

@Y
ft;s.ı1; Y /

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

> 0 if Y > g2.t; s/;

D 0 if Y D g2.t; s/;

< 0 if Y < g2.t; s/;

where we put

g2.t; s/ D 1

2�
log

sin 2�
�1

2
� 1

2
t � s

�

sin
�

� � 2�s � 2�
�1

2
� 1

2
t � s

��

D 1

2�
log

sin�.t C 2s/

sin�t
:

Hence, we obtain the lemma. �

Lemma 5.7 (Yokota [44]). When we apply Proposition 3.5 .saddle point method/

to .46/, the assumption of Proposition 3.5 holds.

Proof. We show that there exists a homotopy �0
ı

(0 � ı � 1) between �0
0 D �0

and �0
1 such that

.tc; sc/ 2 �0
1; (60)

�0
1 � ¹.tc; sc/º � ¹.t; s/ 2 C

2 j Re yV .t; s/ < &
R

º; (61)

@�0
ı � ¹.t; s/ 2 C

2 j Re yV .t; s/ < &
R

º: (62)
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For a su�ciently large R > 0, we put

Og1.t; s/ D

8

<

:

max¹�R; g1.t; s/º if t C s < 1
2
;

�R if t C s � 1
2
;

Og2.t; s/ D

8

<

:

max¹�R; g2.t; s/º if t C 2s < 1;

�R if t C 2s � 1:

We note that, since g1.t; s/ ! �1 as t C s ! 1
2
, Og1.t; s/ is continuous, and

similarly, since g2.t; s/ ! �1 as t C 2s ! 1, Og2.t; s/ is continuous. We put

�0
ı D ¹.t C ı � Og1.t; s/

p
�1; s C ı � Og2.t; s/

p
�1/ 2 C

2 j .t; s/ 2 �0º:

We show (62), as follows. From the de�nition of �0,

@�0 � ¹.t; s/ 2 C
2 j Re yV .t; s/ < &

R
º:

Further, by Lemmas 5.5 and 5.6,

Re yV .t C ı � Og1.t; s/
p

�1; s C ı � Og2.t; s/
p

�1/ � yV .t; s/

for any ı 2 Œ0; 1� and any .t; s/ 2 �0. Hence, (62) holds.

We show (60) and (61), as follows. Consider the functions

F.t; s; X; Y / D Re yV .t CX
p

�1; s C Y
p

�1/;

h.t; s/ D F.t; s; Og1.t; s/; Og2.t; s//:

When t C 2s � 1, �h.t; s/ is su�ciently large (because we let R be su�ciently

large), and (61) holds in this case. When tC2s < 1, it is shown from the de�nitions

of g1.t; s/ and g2.t; s/ that @F
@X

D 0 at X D g1.t; s/ and @F
@Y

D 0 at Y D g2.t; s/.

Hence, Im @ yV
@t

D Im @ yV
@s

D 0 at .t C g1.t; s/
p

�1; s C g2.t; s/
p

�1/. Further,
@h
@t

D Re @
yV
@t

and @h
@s

D Re @
yV
@s

at .t C g1.t; s/
p

�1; s C g2.t; s/
p

�1/. There-

fore, when .t; s/ is a critial point of h.t; s/, .t C g1.t; s/
p

�1; s C g2.t; s/
p

�1/
is a critical point of yV . It follows that h.t; s/ has a unique maximal point at

.t; s/ D .Re tc;Re sc/. Therefore, (60) and (61) hold. �

5.4. Verifying the assumption of the Poisson summation formula. In this

section, in Lemma 5.8, we verify the assumption of the Poisson summation

formula (Proposition 4.6, see also Remark 4.8 and Appendix B) when we apply

Proposition 4.6 and Remark 4.8 to (14). As in the previous section, we consider
yV .t; s/ instead of V.t; s/ in this section.
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We calculate a critical point .tr ; sr/ 2 �0 of Re yV .t; s/, as follows. Putting

x D e2�
p

�1�t and y D e2�
p

�1�s, we have

@

@t
Re yV .t; s/ D Re

�

� log
�

1 � 1

x

��

;

@

@s
Re yV .t; s/ D Re

�

� 2 log
�

1 � 1

y

��

;

since t; s 2 R. Hence, putting xr D e2�
p

�1�tr and yr D e2�
p

�1�sr ,

jxr � 1j D jyr � 1j D 1;

noting that jxr j D jyr j D 1. Therefore, xr D yr D e2�
p

�1=3, and ReV.t; s/ has a

unique maximal point
�

1
6
; 1
6

�

on �0. Its maximal value is given by

Re yV
�1

6
;
1

6

�

� &
R

D Re
1

2�
p

�1
.Li2.e

�
p

�1=3/ � 2Li2.e
��

p
�1=3// � &

R

D 0:03448931080 : : : :

Hence,

Re yV .t; s/� &
R

� 0:03448931080 : : : ; (63)

for any .t; s/ 2 �0.

Lemma 5.8. When we apply Proposition 4.6 to .14/, the assumptions of Proposi-

tion 4.6 hold.

Proof. We verify the assumptions (41) and (42) for i D 1 in Lemmas 5.9 and 5.10

below, and verify the assumptions for i D 2 in Lemmas 5.11 and 5.12 below. The

other assumptions of Proposition 4.6 can be veri�ed easily. �

Lemma 5.9. The assumption .41/ holds for i D 1.

Proof. As for the assumption (41) for i D 1, we show that @�0 is null-homotopic

in

¹.t C ı
p

�1; s/ 2 C
2 j .t; s/ 2 �0; ı � 0; ReV.t C ı

p
�1; s/ < &

R
C 2�ıº:

To show it, we show that the following disk bounds @�0 in the above domain:

¹.t C ı0
p

�1; s/ 2 C
2 j .t; s/ 2 �0º

[ ¹.t C ı
p

�1; s/ 2 C
2 j .t; s/ 2 @�0; ı 2 Œ0; ı0�º:
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We put

Ft;s.ı/ D ReV.t C ı
p

�1; s/ � &
R

� 2�ı

in this proof. Then, it is su�cient to show that

Ft;s.ı0/ < 0 for any .t; s/ 2 �0; (64)

and

Ft;s.ı/ < 0 for any .t; s/ 2 @�0 and ı 2 Œ0; ı0�; (65)

for some ı0 > 0.

To show these, we estimate the di�erential of Ft;s.ı/, as follows. The di�er-

ential of Ft;s.ı/ is given by

d

dı
Ft;s.ı/ D Re

�p
�1 @
@t

yV .t C ı
p

�1; s/
�

� 2�

D � Im
�

� log
�

1� 1

x

�

� 2�
p

�1
�

t C s � 1

2

��

� 2�

D Arg
�

1 � 1

x

�

C 2�
�

t C s � 3

2

�

;

where we put x D e2�
p

�1.tCı
p

�1/. Since 0:04 � t � 0:4, it is shown that

Arg.1 � 1
x
/ is in the range

0 < Arg
�

1 � 1

x

�

< �:

Therefore, since t C s � 0:6,

d

dı
Ft;s.ı/ < 2�

�1

2
C 0:6 � 3

2

�

D �2� � 0:4:

We show (64), as follows. We have

Ft;s.ı0/ D Ft;s.0/C
Z ı0

0

d

dı
Ft;s.ı/dı < Ft;s.0/ � 2� � 0:4 � ı0:

Further, by (63),

Ft;s.0/ D Re yV .t; s/ � &
R

� 0:03448931080 : : : :

Hence, (64) is satis�ed for a su�ciently large ı0.

We show (65), as follows. From the de�nition of �0, we have that Ft;s.0/ < 0

for any .t; s/ 2 @�0. Since d
dı
Ft;s.ı/ < 0 as shown above, it is shown similarly as

above that Ft;s.ı/ < 0 for any ı � 0. Hence, (65) is satis�ed. �
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Lemma 5.10. The assumption .42/ holds for i D 1.

Proof. We put

Ft;s.ı/ D ReV.t � ı
p

�1; s/ � &
R

� 2�ı

in this proof. Similarly as the proof of Lemma 5.9, it is su�cient to show that

there exists " > 0 such that
d

dı
Ft;s.ı/ < �"; (66)

for any .t; s/ 2 �0.
We calculate this as

d

dı
Ft;s.ı/ D Re

�

�
p

�1 @
@t

yV .t � ı
p

�1; s/
�

� 2�

D Im
�

� log
�

1� 1

x

�

� 2�
p

�1
�

t C s � 1

2

��

� 2�

D � Arg
�

1� 1

x

�

� 2�
�

t C s C 1

2

�

;

where we put x D e2�
p

�1.t�ı
p

�1/. Since 0:04 � t � 0:4, it is shown that

Arg.1 � 1
x
/ is in the range

0 < Arg
�

1 � 1

x

�

< �:

Therefore, since t C s � 0:09,

d

dı
Ft;s.ı/ < �2�

�

0:09C 1

2

�

D �2� � 0:59;

and (66) is satis�ed. �

Lemma 5.11. The assumption .41/ holds for i D 2.

Proof. We put

Ft;s.ı/ D ReV.t; s C ı
p

�1/ � &
R

� 2�ı

in this proof. Similarly as the proof of Lemma 5.9, it is su�cient to show that

there exists " > 0 such that
d

dı
Ft;s.ı/ < �"; (67)

for any .t; s/ 2 �0.
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To show these, we calculate the di�erential of Ft;s.ı/ as

d

dı
Ft;s.ı/ D Re

�p
�1 @
@s
V .t; s C ı

p
�1/

�

� 2�

D � Im
�

� 2 log
�

1� 1

y

�

� 2�
p

�1.t C 2s � 1/
�

� 2�

D 2Arg
�

1 � 1

y

�

C 2�.t C 2s � 2/;

where we put y D e2�
p

�1.sCı
p

�1/. Since 0:05 � s � 0:4, it is shown that

Arg
�

1� 1
y

�

is in the range

0 < Arg
�

1 � 1

y

�

< 2�
�1

2
� s

�

:

Therefore, since t � 0:4,

d

dı
Ft;s.ı/ < 2 � 2�

�1

2
� s

�

C 2�.t C 2s � 2/ D 2�.t � 1/ � �2� � 0:6;

and (67) is satis�ed. �

Lemma 5.12. The assumption (42) holds for i D 2.

Proof. We put

Ft;s.ı/ D ReV.t; s � ı
p

�1/ � &
R

� 2�ı
in this proof. Similarly as the proof of Lemma 5.9, it is su�cient to show that

there exists " > 0 such that
d

dı
Ft;s.ı/ < �"; (68)

for any .t; s/ 2 �0.
We calculate this as

d

dı
Ft;s.ı/ D Re

�

�
p

�1 @
@s
V .t; s � ı

p
�1/

�

� 2�

D Im
�

� 2 log
�

1 � 1

y

�

� 2�
p

�1.t C 2s � 1/
�

� 2�

D �2Arg
�

1 � 1

y

�

� 2�.t C 2s/;

where we put y D e2�
p

�1.s�ı
p

�1/. Since 0:05 � s � 0:4, it is shown that

Arg.1 � 1
y
/ is in the range

0 < Arg
�

1 � 1

y

�

< �:
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Therefore, since t C s � 0:09 and s � 0:05,

d

dı
Ft;s.ı/ < �2�.0:09C 0:05/ D �2� � 0:14;

and (68) is satis�ed. �

Appendixes

A. Properties of '.t/

In this appendix, we review some basic properties of '.t/.

We put „ D 2�
p

�1=N , and put

ˆd .z/ D Li2.z/C
X

1�k�d
„2kc2k �

�

z
d

dz

�2k�2 z

1 � z ;

where we de�ne c2k by

y=2

sinh.y=2/
D
X

k�0
c2ky

2k :

Proposition A.1. We �x any su�ciently small ı > 0 and any M > 0. Let d be

any non-negative integer. Then, in the domain

¹t 2 C j ı � Re t � 1� ı; j Im t j � M º; (69)

'.t/ and '.k/.t / are presented by

'.t/ D N

2�
p

�1
ˆd .e

2�
p

�1t /CO
� 1

N 2dC1

�

; (70)

'.k/.t / D N

2�
p

�1

� d

dt

�k

ˆd .e
2�

p
�1t /CO

� 1

N 2dC1

�

; (71)

for each k > 0, where O.1=N 2dC1/ means the error term whose absolute value

is bounded by C=N 2dC1 for some C > 0, which is independent of t (but possibly

dependent on ı).

In particular, 1
N
'.t/ uniformly converges to 1

2�
p

�1 Li2.e
2�

p
�1t / in the do-

main .69/, and 1
N
'0.t / uniformly converges to � log.1 � e2�

p
�1t / in the do-

main .69/.
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Proof. We show (70). We have

'.t/ D
Z 1

�1

Ne.2t�1/x

4x2 sinhx
� x=N

sinh.x=N/
dx D

Z 1

�1

Ne.2t�1/x

4x2 sinhx

X

k�0
c2k

�2x

N

�2k

dx:

(72)

We put the “kD0” part of (72) to be

f .t/ D
Z 1

�1

Ne.2t�1/x

4x2 sinh x
dx:

To calculate f .t/, we consider the contour

h

�
�

mC 1

2

�

�;�1
i

[ ¹z 2 C j jzj D 1; Im z � 0º

[
h

1;
�

mC 1

2

�

�
i

[
°

z 2 C

ˇ

ˇ

ˇ jzj D mC 1

2
; Im z � 0

±

:

Then, the integrand has poles at n�
p

�1 (n D 1; 2; : : : ; m) in the region bounded

by the contour. Hence,

f .t/ D lim
m!1

m
X

nD1
2�

p
�1 Res

xDn�
p

�1

Ne.2t�1/x

4x2 sinhx

D 2�
p

�1
1
X

nD1

�N
4�2

.e2�
p

�1t /n

n2

D N

2�
p

�1
Li2.e

2�
p

�1t /:

Further, for general k > 0, the “k” part of (72) is calculated as

c2k

N 2k
f .2k/.t / D N

2�
p

�1
� c2k
N 2k

� d

dt

�2k

Li2.e
2�

p
�1t /

D N

2�
p

�1
� „2kc2k

�

z
d

dz

�2k�2 z

1 � z :

Therefore, we can put

'.t/ D N

2�
p

�1
ˆd .e

2�
p

�1t /CRd ;

where Rd is the error term. We estimate it, as follows. Since j.y=2/= sinh.y=2/j
is bounded for y 2 R, there exists M0 > 0 such that

ˇ

ˇ

ˇ

ˇ

1

y2dC2

� y=2

sinhy=2
�

d
X

kD0
c2ky

2k
�

ˇ

ˇ

ˇ

ˇ

� M0
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for any y 2 R. Hence, putting y D 2x=N ,

jRd j D
ˇ

ˇ

ˇ

ˇ

'.t/� N

2�
p

�1
ˆd .e

2�
p

�1t /

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z 1

�1

Ne.2t�1/x

4x2 sinhx

� x=N

sinh.x=N/
�

d
X

kD0
c2k

�2x

N

�2k�

dx

ˇ

ˇ

ˇ

ˇ

�
Z 1

�1

ˇ

ˇ

ˇ

ˇ

Ne.2t�1/x

4x2 sinh x

ˇ

ˇ

ˇ

ˇ

�M0

ˇ

ˇ

ˇ

ˇ

2x

N

ˇ

ˇ

ˇ

ˇ

2dC2
dx

D 22dM0

N 2dC1

 

Z 1

1

e.2Re t�1/x

j sinhxj x2ddx

C
Z �1

�1

e.2Re t�1/x

j sinhxj x2ddx

C
Z

jzjD1
Imz�0

eRe..2t�1/z/

j sinh zj jdzj
!

:

(73)

For x � 1, the integrand of (73) is bounded by M1e
�2ıxx2d for some M1 > 0.

For x � �1, the integrand of (73) is bounded by M2e
2ıxx2d for some M2 > 0.

For jzj D 1, the integrand of (73) is bounded by a constant. Hence, the values

of the integrals of (73) is bounded by a constant. Therefore, jRd j is bounded by

C=N 2dC1 for some C > 0, which is independent of t . Hence, we obtain (70).

We obtain (71) by similar arguments for '.k/.t /. �

Lemma A.2. For any t 2 C with 0 < Re t < 1,

'.t/C '.1� t / D 2�
p

�1
�

� N

2

�

t2 � t C 1

6

�

C 1

24N

�

:

Proof. By de�nition,

'.t/C '.1 � t / D
Z



e.2t�1/x C e.1�2t/x

4x sinhx sinh.x=N/
dx:

Since this integrand is an odd function, if the contour was R, the integral would

vanish. In this case, since the contour  avoids the pole at x D 0, the contribution

from the residue at this pole survives. By expanding the numerator and the

denominator of the integrand as power series of x concretely, we can calculate

this residue, and obtain the required formula. �
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Lemma A.3 (Kashaev). We have

'
� 1

2N

�

D N

2�
p

�1
�2

6
C 1

2
logN C �

p
�1
4

� �
p

�1
12N

and

'
�

1 � 1

2N

�

D N

2�
p

�1
�2

6
� 1

2
logN C �

p
�1
4

� �
p

�1
12N

:

Proof. It is su�cient to show that

'
� 1

2N

�

C '
�

1 � 1

2N

�

D 2�
p

�1
�

� N

12
C 1

4
� 1

12N

�

; (74)

and

'
� 1

2N

�

� '
�

1� 1

2N

�

D logN: (75)

We obtain (74) from Lemma A.2 by putting t D 1=2N .

We show (75), as follows. By (3) and (8),

exp
�

'
� 1

2N

�

� '
�

1 � 1

2N

��

D N: (76)

Further, from the de�nition of '.t/,

'
� 1

2N

�

� '
�

1 � 1

2N

�

D
Z



e.1�1=N/x � e.1=N�1/x

4x sinh x sinh.x=N/
dx:

By a similar argument as in the proof of Lemma A.2, we can see that the residue

of this integrand at 0 vanishes. Hence, the value of this integral is real, and we

obtain (75) from (76). �

B. Convergence of V.t; s/ to yV .t; s/

When we apply the saddle point method and the Poisson summation formula to

V.t; s/, it is necessary to note how V.t; s/ converges to yV .t; s/ as N ! 1. In this

appendix, we verify that this convergence is suitable in those applications.

We recall that in Section 2.2 we put V.t; s/ and yV .t; s/ by

V.t; s/ D 1

N
.�'.1� t / � 2'.1� s// � 1

2�
p

�1
�2

6

� 2�
p

�1
�1

2

�

t C s � 1

2N

�2

C 1

2
s2 � 1

2
t � s C 1

6

�

� 3�
p

�1
4N

C �
p

�1
4N 2
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and

yV .t; s/ D 1

2�
p

�1

�

� Li2.e
�2�

p
�1t / � 2Li2.e

�2�
p

�1s/ � �2

6

�

� 2�
p

�1
�1

2
t2 C s2 C t s � 1

2
t � s C 1

6

�

:

Lemma B.1. Let m be any non-negative integer. Then, in the domain �00 of .12/,

V.t; s/ is presented by the form

V.t; s/ D yV .t; s/CV1.t; s/
1

N
CV2.t; s/

1

N 2
C� � �CVm.t; s/

1

Nm
CRm.t; s/

1

NmC1

where Vi .t; s/’s are holomorphic functions independent of N , and jRm.t; s/j is

bounded by a constant which is independent of N .

In particular, V.t; s/ uniformly converges to yV .t; s/ in the domain �00.

Proof. We obtain the required presentation by applying Proposition A.1 to V.t; s/.

In particular, by Proposition A.1, 1
N
'.t/ uniformly converges to the value

1

2�
p

�1 Li2.e
2�

p
�1t / as N ! 1 in the domain �00. Hence, we obtain the

lemma. �

Lemma B.2. Let i and j be any non-negative integers. Then, in the domain �00,
ˇ

ˇ

@iCj

@i t@j s
V.t; s/

ˇ

ˇ is bounded by a constant which is independent of N .

Proof. By Proposition A.1,
ˇ

ˇ

@iCj

@i t@j s
V.t; s/

ˇ

ˇ uniformly converges to
ˇ

ˇ

@iCj

@i t@j s
yV .t; s/

ˇ

ˇ

as N ! 1 in the domain �00. Since �00 is compact,
ˇ

ˇ

@iCj

@i t@j s
yV .t; s/

ˇ

ˇ is bounded in

�00. Hence, we obtain the lemma. �

When we apply the saddle point method, we need to show that V.t; s/ satis�es

the condition of Remark 3.6, noting that yV .t; s/ satis�es the assumption of the

saddle point method as shown in Section 5.3. In fact, we can show the condition

of Remark 3.6 for V.t; s/ by Lemma B.1.

When we apply the Poisson summation formula, we need to show that V.t; s/

satis�es the condition of Remark 4.8, noting that yV .t; s/ satis�es the assumption

of the Poisson summation formula as shown in Section 5.4. In fact, we can show

the condition of Remark 4.8 for V.t; s/ by Lemmas B.1 and B.2.
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C. Critical points of V.t; s/ and yV .t; s/

In this appendix, we show a proof of Lemma 5.1.

We put „ D 2�
p

�1=N , and use the notation in Section 5.2. By Proposi-

tion A.1, we can put

1

N
'0.1 � t / D � log.1 � e�2�

p
�1t /C r.t; „/„2

for some smooth function r.t; „/ of t and „. Then, from the de�nition of V.t; s/,

we have

@

@t
V .t; s/ D � log

�

1 � 1

x

�

� 2�
p

�1
�

t C s � 1

2
� 1

2N

�

C r.t; „/„2;

@

@s
V .t; s/ D �2 log

�

1 � 1

y

�

� 2�
p

�1
�

t C 2s � 1 � 1

2N

�

C 2r.s; „/„2:

Hence, a critical point of V.t; s/ is a solution of

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�

1 � 1

x

�

.�q�1=2xy/ D er.t;„/„
2

;

�

1 � 1

y

�2

q�1=2xy2 D e2r.s;„/„
2

:

This is rewritten as
8

<

:

.1 � x/y D q1=2er.t;„/„
2

;

x.y � 1/2 D q1=2e2r.s;„/„
2

:

Further, by putting

F.t; s; „/ D .1� x/y � q1=2er.t;„/„2

;

G.t; s; „/ D x.y � 1/2 � q1=2e2r.s;„/„2

;

the above system of equations is rewritten as

´

F.t; s; „/ D 0;

G.t; s; „/ D 0:
(77)

We note that .t0; s0; 0/ is a solution of (77).
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Proof of Lemma 5.1. It is su�cient to show that there exists a smooth solution

.f .„/; g.„/; „/ of (77) in a su�ciently small neighborhood of .t0; s0; 0/. Hence,

by the implicit function theorem, it is su�cient to show

det

0

B

B

@

@

@t
F.t0; s0; 0/

@

@s
F.t0; s0; 0/

@

@t
G.t0; s0; 0/

@

@s
G.t0; s0; 0/

1

C

C

A

¤ 0: (78)

Since x D e2�
p

�1t ,

d

dt
D 2�

p
�1x d

dx
:

Similarly,

d

ds
D 2�

p
�1y d

dy
:

Therefore, from the de�nitions of F.t; s; „/ and G.t; s; „/, we have

1

2�
p

�1
@

@t
F.t0; s0; 0/ D x

@

@x
..1 � x/y/j„D0 D �x0y0;

1

2�
p

�1
@

@s
F.t0; s0; 0/ D y

@

@y
..1� x/y/j„D0 D .1 � x0/y0;

1

2�
p

�1
@

@t
G.t0; s0; 0/ D x

@

@x
.x.y � 1/2/j„D0 D x0.y0 � 1/2;

1

2�
p

�1
@

@s
G.t0; s0; 0/ D y

@

@y
.x.y � 1/2/j„D0 D 2x0y0.y0 � 1/:

Hence, the determinant of (78) is calculated as

� 4�2 � det

� �x0y0 .1� x0/y0
x0.y0 � 1/2 2x0y0.y0 � 1/

�

D 4�2 � x0y0.y0 � 1/.x0y0 C x0 C y0 � 1/

D 4�2 � .2y0 C 1/.y0 � 1/3=y0 D 4�2 � .2y0 C 1/

¤ 0;

since x0 D 1 � 1=y0 and .y0 � 1/3 D y0. Therefore, we obtain (78), completing

the proof of the lemma. �
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D. Proof of Lemma 2.1

In this appendix, we give a proof of Lemma 2.1.

Proof of Lemma 2.1. We put

ƒ.t/ D Re
� 1

2�
p

�1
Li2.e

2�
p

�1t /
�

for t 2 R. We note that this function has period 1, and ƒ.�t / D �ƒ.t/. Since

ƒ0.t / D � log.2 sin�t/

for 0 < t < 1, the behavior of ƒ.t/ is as follows.

t 0 � � � 1
6 � � � 1

2 � � � 5
6 � � � 1

ƒ.t/ 0 ! ƒ.1
6
/ ! 0 ! �ƒ.1

6
/ ! 0

Here, ƒ.1
6
/ D 0:161533 : : : . See Figure 6 for the graph of ƒ.t/.

0.60.2 0.4 0.8

−

−

−

0.05

0.05

0.10

0.10

0.15

0.15

1.0

Figure 6. The graph of ƒ.t/ for 0 � t � 1.

We consider the domain

¹.t; s/ 2 R
2 j Re yV .t; s/ � &

R
º: (79)

For t; s 2 R,

Re yV .t; s/ D �ƒ.�t / � 2ƒ.�s/ D ƒ.t/C 2ƒ.s/:

Since 2ƒ
�

1
6

�

� &
R

D �0:127043 : : : < 0, the values of ƒ.t/ and ƒ.s/ must be

positive when .t; s/ is in the domain (79). Hence, the domain (79) is included in

the area
®

.t; s/ 2 R
2
ˇ

ˇ 0 � t � 0:5; 0 � s � 0:5
¯

:

We assume that 0 � t � 0:5 and 0 � s � 0:5 in the following of this proof.
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We consider the minimal value tmin of t such that .t; s/ is in the domain (79).

It satis�es that ƒ.tmin/C 2ƒ
�

1
6

�

D &
R

. Since

ƒ.0:04/C 2ƒ
�1

6

�

� &
R

D �0:031768 : : : < 0;

we have that 0:04 < tmin. Hence, the domain (11) is included in the area 0:04 � t

for some su�ciently small " > 0. Further, in similar ways, we can show that the

domain (11) is included in the area

¹.t; s/ 2 R
2 j 0:04 � t � 0:4; 0:05 � s � 0:4º

for some su�ciently small " > 0. We assume that .t; s/ is in the above area in the

following of this proof.

By expanding ƒ.t/ at t D 0:3, we can show that

ƒ.t/ � ƒ.0:3/Cƒ0.0:3/.t � 0:3/:

If .t; s/ is in the domain (79),

&
R

� ƒ.t/C 2ƒ.s/

� ƒ.0:3/Cƒ0.0:3/.t � 0:3/C 2.ƒ.0:3/Cƒ0.0:3/.s � 0:3//:

Hence,

t C 2s �
&
R

� 3ƒ.0:3/
ƒ0.0:3/

C 0:9:

Further, since t � 0:4,

t C s � 1

2

�&
R

� 3ƒ.0:3/
ƒ0.0:3/

C 1:3
�

D 0:571668 : : : < 0:6:

Therefore, the domain (11) is included in �0 for some su�ciently small " > 0,

as required. �
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