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A basis theorem for the a�ne oriented Brauer category

and its cyclotomic quotients
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Abstract. The a�ne oriented Brauer category is a monoidal category obtained from the

oriented Brauer category (D the free symmetric monoidal category generated by a single

object and its dual) by adjoining a polynomial generator subject to appropriate relations.

In this article, we prove a basis theorem for the morphism spaces in this category, as well

as for all of its cyclotomic quotients.
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1. Introduction

Throughout the article, k denotes a �xed ground ring which we assume is an

integral domain, and all categories and functors will be assumed to be k-linear.

We are going to de�ne and study various categories OB, AOB, and OB
f , which

we call the oriented Brauer category, the a�ne oriented Brauer category, and the

1 First author supported in part by NSF grant DMS-1161094.
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cyclotomic oriented Brauer category associated to a monic polynomial f .u/ 2

kŒu� of degree `. The �rst of these, OB, is the free symmetric monoidal category

generated by a single object " and its dual #. Then AOB is the (no longer

symmetric) monoidal category obtained from OB by adjoining an endomorphism

xW "!" subject to relations similar to those satis�ed by the polynomial generators

of the degenerate a�ne Hecke algebra. Finally OB
f is the (no longer monoidal)

category obtained from AOB by factoring out the right tensor ideal generated by

f .x/.

In our setup, the categories OB;AOB, and OB
f come equipped with some

algebraically independent parameters: one parameter � for OB, in�nitely many

parameters �1; �2; : : : for AOB, and ` parameters �1; : : : ; �` for OBf . On eval-

uating these parameters at scalars in the ground ring k, we obtain also various spe-

cializations OB.ı/, AOB.ı1; ı2; : : : /, and OB
f .ı1; : : : ; ı`/. In particular, OB.ı/

is the symmetric monoidal category denoted Rep0.GLı/ in [5, ÷3.2], which is the

“skeleton” of Deligne’s category Rep.GLı/. The other two specialized categories

AOB.ı1; ı2; : : : / and OB
f .ı1; : : : ; ı`/ are not monoidal, but they are both right

module categories over AOB.

The endomorphism algebras of objects in our various specialized categories

have already appeared elsewhere in the literature. To start with, writing "r#s for

the tensor product of r copies of " and s copies of #,

Br;s.ı/ WD EndOB.ı/."
r#s/ (1.1)

is the well-known walled Brauer algebra which was introduced independently by

Turaev [15] and Koike [8] in the late 1980s; see e.g. [4]. By analogy with this, we

de�ne the a�ne and cyclotomic walled Brauer algebras to be the endomorphism

algebras

ABr;s.ı1; ı2; : : : / WD EndAOB.ı1;ı2;::: /."
r#s/; (1.2)

Bf
r;s.ı1; : : : ; ı`/ WD End

OBf .ı1;:::;ı`/."
r#s/: (1.3)

In the last subsection of the article, we will explain how our a�ne walled Brauer

algebra is isomorphic to the algebra with the same name de�ned by generators and

(twenty-six!) relations by Rui and Su [12]; see also [14]. Similarly our cyclotomic

walled Brauer algebras are isomorphic to the ones introduced in [13].

The main goal of the article is to prove various diagrammatic basis theorems

for the morphism spaces in the categories AOB and OB
f . Rui and Su also prove

basis theorems for their algebras in [12], [13]. The tricky step in the proofs of all

of these results is to establish the linear independence. It turns out that the linear

independence in [12], [13] can be deduced quite easily from the basis theorems
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proved in the present paper. On the other hand, it does not seem to be easy to

deduce our results from those of [12], [13]. In fact we found it necessary to adopt

a completely di�erent approach.

In subsequent work [3], the �rst and last authors will investigate the represen-

tation theory of the cyclotomic quotients OB
f .ı1; : : : ; ı`/, showing for suitably

chosen parameters with k D C that they give rise to tensor product categori�ca-

tions of integrable lowest and highest weight representations of level ` for the Lie

algebra sl1. We expect that these categories are closely related to the categori�-

cations of tensor products of lowest and highest weight representations introduced

by Webster in [17].

In the remainder of the introduction, we are going to explain in detail the

de�nitions of all of these categories, then formulate our main results precisely.

The category OB. Let h"; #i denote the set of all words in the alphabet ¹"; #º,

including the empty word ¿. Given two words a D a1� � � ak ; b D b1� � �bl 2 h"; #i,

an oriented Brauer diagram of type a ! b is a diagrammatic representation of a

bijection

¹i j ai D"º t ¹i 0 j bi D#º
�

�! ¹i j bi D"º t ¹i 0 j ai D#º

obtained by placing the word a below the word b, then drawing strands connecting

pairs of letters as prescribed by the given bijection. The arrows that are the letters

of a and b then give a consistent orientation to each strand in the diagram. For

example,

is an oriented Brauer diagram of type ""####"!#""##. We say that two

oriented Brauer diagrams are equivalent if they are of the same type and represent

the same bijection. In diagrammatic terms, this means that one diagram can be

obtained from the other by continuously deforming its strands, possibly moving

them through other strands and crossings, but keeping endpoints �xed.

Given oriented Brauer diagrams of types b ! c and a ! b, we can stack the

�rst on top of the second to obtain an oriented Brauer diagram of type a ! c along

with �nitely many loops made up of strands which were connected only to letters

in b, which we call bubbles. For example, if we stack the two diagrams

and
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we obtain the following oriented Brauer diagram with bubbles:

.

Two oriented Brauer diagrams with bubbles are equivalent if they have the same

number of bubbles (regardless of orientation), and the underlying oriented Brauer

diagrams obtained by ignoring the bubbles are equivalent in the earlier sense;

again this can be viewed in terms of continuously deforming strands through other

strands and crossings. For example, the oriented Brauer diagram with bubbles

pictured above is equivalent to the following one:

.

Now we can de�ne the oriented Brauer category OB to be the category

with objects h"; #i and morphisms HomOB.a; b/ consisting of all formal k-linear

combinations of equivalence classes of oriented Brauer diagrams with bubbles of

type a ! b. The composition g ı h of diagrams is by vertically stacking g on top

of h as illustrated above; it is easy to see that this is associative. There is also a

well-de�ned tensor product making OB into a (strict) monoidal category. This is

de�ned on diagrams so that g ˝ h is obtained by horizontally stacking g to the

left of h; often we will denote g ˝ h simply by gh. There is an obvious braiding

� making OB into a symmetric monoidal category, which is de�ned by setting

�a;b D

a

a

b

b

for each a; b 2 h"; #i. Finally OB is rigid, with the dual a� of a being the word

obtained by rotating a through 180ı:

�a D "a D

a
�

a
�

a

a

and .

We refer to Section 2 for a brief review of these basic notions.
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The monoidal category OB can also be de�ned by generators and relations.

To explain this, let cW ¿ !"# (“create”), d W #"! ¿ (“destroy"), and sW ""!""

denote the following oriented Brauer diagrams:

c D d D s D .

It is easy to check that these satisfy the following fundamental relations:

." d/ ı .c "/ D"; (1.4)

.d #/ ı .# c/ D#; (1.5)

s2 D""; (1.6)

." s/ ı .s "/ ı ." s/ D .s "/ ı ." s/ ı .s "/; (1.7)

.d "#/ ı .# s #/ ı .#" c/ is invertible. (1.8)

The last of these relations is really the assertion that there is another distinguished

generator t W "#!#" that is a two-sided inverse to .d "#/ ı .# s #/ ı .#" c/,

as illustrated below:

t D D .which is inverse to .d "#/ ı .# s #/ ı .#" c/ D

The following theorem is an almost immediate consequence of a general result of

Turaev from [16] which gives a presentation for the category of ribbon tangles.

Theorem 1.1. As a k-linear monoidal category, OB is generated by the objects

"; # and morphisms c; d; s subject only to the relations (1.4)–(1.8).

The endomorphism algebra EndOB.¿/ is the polynomial algebra kŒ�� gen-

erated by a single bubble �. Moreover we have that � ˝ g D g ˝ � for each

morphism g in OB. Hence we can view OB as a kŒ��-linear monoidal category

so that � acts on morphism g by �g WD � ˝ g. Then, given a scalar ı 2 k, we let

OB.ı/ denote the symmetric monoidal category obtained from OB by specializ-

ing � at ı, i.e. OB.ı/ WD k ˝kŒ�� OB viewing k as a kŒ��-module so that � acts

as multiplication by ı. Equivalently, in terms of generators and relations, OB.ı/

is the k-linear monoidal category obtained from OB by imposing the additional

relation

d ı t ı c D ı; (1.9)

i.e. we require that the object " has dimension ı. Each morphism space

HomOB.a; b/ in OB is free as a kŒ��-module with basis given by the equivalence
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classes of oriented Brauer diagrams a ! b (now with no bubbles). Hence the

category OB.ı/ has objects h"; #i and its morphisms HomOB.ı/.a; b/ are formal

k-linear combinations of equivalence classes of oriented Brauer diagrams of type

a ! b. The composition g ı h of two diagrams in OB.ı/ is de�ned �rst by ver-

tically stacking g on top of h, then removing all bubbles and multiplying by the

scalar ın, where n is the number of bubbles removed.

The category AOB. The a�ne oriented Brauer category AOB is the monoidal

category generated by objects "; # and morphisms c; d; s; x subject to the rela-

tions (1.4)–(1.8) plus one extra relation

." x/ ı s D s ı .x "/C "" : (1.10)

Before we discuss the diagrammatic nature of this category, let us explain why we

became interested in it in the �rst place. Let g be the general linear Lie algebra

gln.k/ with natural module V . Let g -mod be the category of all g-modules and

End.g -mod/ be the monoidal category of endofunctors of g -mod, so for functors

F; G; F 0; G0 and natural transformations �W F ! F 0, �W G ! G0 we have that

F ˝ G WD F ı G and � ˝ � WD ��W F ı G ! F 0 ı G0. Finally let End.g -mod/rev

denote the same category but viewed as a monoidal category with the opposite

tensor product. Then the point is that there is a monoidal functor

RWAOB ! End.g -mod/rev (1.11)

sending the objects " and # to the endofunctors � ˝ V and � ˝ V �, respectively,

and de�ned on the generating morphisms by

R.c/W Id �! � ˝ V ˝ V �; u 7�! u ˝ !;

R.d/W � ˝ V � ˝ V �! Id; u ˝ f ˝ v 7�! f .v/u;

R.s/W � ˝ V ˝ V �! � ˝ V ˝ V; u ˝ v ˝ w 7�! u ˝ w ˝ v;

R.x/W � ˝ V �! � ˝ V; u ˝ v 7�! �.u ˝ v/;

where ! WD
Pn

iD1 vi ˝ fi assuming ¹viº and ¹fiº are dual bases for V and V �,

and � is the Casimir tensor
Pn

i;j D1 ei;j ˝ ej;i 2 g ˝ g. (One can also de�ne an

analogous functor R with g replaced by the general linear Lie superalgebra.)

Returning to the main discussion, we note by Theorem 1.1 that there is a functor

OB ! AOB sending the generators ofOB to the generators ofAOBwith the same

name. Hence we can interpret any oriented Brauer diagram with bubbles also as

a morphism in AOB. We also want to add dots to our diagrams, corresponding to



A basis theorem for AOB and OB
f 81

the new generator x which we represent by the diagram

x D .

To formalize this, we de�ne a dotted oriented Brauer diagram with bubbles to

be an oriented Brauer diagram with bubbles, such that each segment is decorated

in addition with some non-negative number of dots, where a segment means a

connected component of the diagram obtained when all crossings are deleted.

Two dotted oriented Brauer diagrams with bubbles are equivalent if one can be

obtained from the other by continuously deforming strands through other strands

and crossings as above, and also by sliding dots along strands, all subject to the

requirement that dots are never allowed to pass through crossings. For example,

here are two such diagrams which are not equivalent:

.

Any dotted oriented Brauer diagram with bubbles is equivalent to one that is a

vertical composition of elementary diagrams of the form a c b, a d b, a s b, a t b,

a x b for various a; b 2 h"; #i. Hence it can be interpreted as a morphism in AOB.

Moreover, the resulting morphism is well de�ned independent of the choices

made, and it depends only on the equivalence class of the original diagram. For

example, the following diagram x0 represents .d #/ı.# x #/ı.#c/ 2 EndAOB.#/:

x0 D .

Also the relation (1.10) transforms into the �rst of the following two diagrammatic

relations; the second follows from the �rst by composing with s on the top and

bottom:

DD CC , .

These local relations explain how to move dots past crossings in any diagram.
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A dotted oriented Brauer diagram with bubbles is normally ordered if

? all of its bubbles are clockwise, crossing-free, and there are no other strands

shielding any of them from the leftmost edge of the picture;

? all of its dots are either on bubbles or on outward-pointing boundary seg-

ments, i.e. segments which intersect the boundary at a point that is directed

out of the picture.

For example, of the two dotted oriented Brauer diagrams with bubbles displayed

in the previous paragraph, only the second one is normally ordered.

Theorem 1.2. For a; b 2 h"; #i, the space HomAOB.a; b/ is a free k-module with

basis given by equivalence classes of normally ordered dotted oriented Brauer

diagrams with bubbles of type a ! b.

By Theorem 1.2, the endomorphism algebra EndAOB.¿/ is the polynomial

algebra kŒ�1; �2; : : : � generated by the clockwise dotted bubbles

�1 D �2 D �3 D ,,, . . .

In the same way as we explained earlier for OB, one can then view AOB as a

kŒ�1; �2; : : : �-linear category with �ig WD �i ˝ g; note though that �i ˝ g and

g ˝ �i are in general di�erent for i � 2 so that the monoidal structure is not

kŒ�1; �2; : : : �-linear. Then given scalars ı1; ı2; � � � 2 k, we let AOB.ı1; ı2; : : : /

be the k-linear category obtained from AOB by specializing each �i at ıi , i.e.

AOB.ı1; ı2; : : : / D k ˝kŒ�1;�2;::: � AOB viewing k as a kŒ�1; �2; : : : �-module

so each �i acts as ıi . Theorem 1.2 implies that HomAOB.ı1;ı2;::: /.a; b/ is a free

k-module with basis given by the equivalence classes of normally ordered dotted

Brauer diagrams of type a ! b (now with no bubbles).

Remark 1.3. One can also describe EndAOB.¿/ as the algebra kŒ�0
1; �0

2; : : : �

freely generated by the counterclockwise dotted bubbles

�0
1 D �0

2 D �0
3 D ,,, . . .

The relationship between �i and �0
j is explained by the identity

�
1 C

X

i�1

�iu
�i

��
1 �

X

j �1

�0
j u�j

�
D 1; (1.12)
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which (up to some signs) is the same as the relationship between elementary and

complete symmetric functions in the ring of symmetric functions. For example,

the coe�cient of u�2 in (1.12) is equivalent to the assertion that �2 D �0
2 C�1�0

1,

which follows from the following calculation with relations:

DDD CC .

The identities corresponding to the other coe�cients of u in (1.12) follow in a

similar way.

Remark 1.4. It is instructive to compute the images of �1; �2; : : : under the func-

tor RWAOB ! End.g -mod/rev from (1.11). Since this functor maps EndAOB.¿/

to End.Id/, which is canonically identi�ed with the center Z.g/ of the universal

enveloping algebra U.g/, these are naturally elements of Z.g/:

R.�k/ D
X

1�i1;:::;ik�n
i1Dik

eik�1;ik � � � ei2;i3ei1;i2 :

(The right hand side of this formula means the scalar n in case k D 1.) Using this

and taking a limit as n ! 1, one can give an alternative proof of the algebraic

independence of �1; �2; : : : in EndAOB.¿/.

The category OB
f . Let ` � 1 be a �xed level and f .u/ 2 kŒu� be a monic

polynomial of degree `. The cyclotomic oriented Brauer category OB
f is the

quotient of AOB by the right tensor ideal generated by f .x/ 2 EndAOB."/. Note

this category is not monoidal in any natural way (except if ` D 1 when OB
f turns

out to be isomorphic toOB), although it is still a right module category overAOB.

It has the same objects as AOB while its morphism spaces are quotients of the

ones in AOB. Hence any morphism in AOB can also be viewed as a morphism in

OB
f . In particular we can interpret equivalence classes of dotted oriented Brauer

diagrams with bubbles also as morphisms in OB
f .

Theorem 1.5. For a; b 2 h"; #i, the space Hom
OBf .a; b/ is a free k-module with

basis given by equivalence classes of normally ordered dotted oriented Brauer

diagrams with bubbles of type a ! b, subject to the additional constraint that

each strand is decorated by at most .` � 1/ dots.
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This means in OB
f that any clockwise dotted bubble with ` or more dots

can be expressed in terms of �1; : : : ; �`. So there are really only ` algebraically

independent parameters that can be specialized here: for ı1; : : : ; ı` 2 k we let

OB
f .ı1; : : : ; ı`/ be the k-linear category obtained from OB

f by specializing �i

at ıi for each i D 1; : : : ; `. In other words, we impose the additional relations that

�ia D ıia for each a 2 h"; #i and i D 1; : : : ; `. Theorem 1.5 then implies that

Hom
OBf .ı1;:::;ı`/.a; b/ is a free k-module with basis arising from the normally

ordered dotted oriented Brauer diagrams with no bubbles each of whose strands

are decorated by at most .` � 1/ dots.

Remark 1.6. There is another way to specify the parameters of OBf .ı1; : : : ; ı`/

which is more symmetric. Suppose for this that we are given a pair of monic

polynomials f .u/; f 0.u/ 2 kŒu�, both of the same degree `. From these we extract

scalars ıi 2 k by setting

1 C
X

i�1

ıiu
�i WD f 0.u/=f .u/ 2 kŒŒu�1��: (1.13)

Then we introduce the alternative notation OB
f;f 0

to denote OB
f .ı1; : : : ; ı`/.

By de�nition, this is the quotient of AOB by the right tensor ideal generated by

f .x/ and �i �ıi for each i D 1; : : : ; `. Letting ı0
j 2 k be de�ned from the identity

�
1 C

X

i�1

ıiu
�i

��
1 �

X

j �1

ı0
j u�j

�
D 1 (1.14)

like in (1.12), one can check that this right tensor ideal is generated equivalently

by f 0.x0/ and �0
j � ı0

j for each j D 1; : : : ; `. Moreover it automatically contains

the elements �i � ıi and �0
j � ı0

j for all i; j > `.

2. Preliminaries

2.1. Conventions. Given an object a in some category, we write 1a for its identity

morphism. When it is unlikely to result in confusion, it will sometimes be

convenient to abuse notation in the standard way by writing a for both the object as

well as its identity morphism. We assume the reader is familiar with the de�nition

of a monoidal category found, for instance, in [10]. A relevant example of a

monoidal category is k-mod, the category of all k-modules with the usual tensor

product. We will use the term tensor functor to mean a strong monoidal functor.
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2.2. Braided monoidal categories. Recall that a braiding on a monoidal cat-

egory M is a natural isomorphism � from the identity functor on M � M to the

functor given by .a; b/ 7! .b; a/ such that �a;b˝c D .1b ˝ �a;c/ ı .�a;b ˝ 1c/ and

�a˝b;c D .�a;c ˝ 1b/ ı .1a ˝ �b;c/ for all objects a; b; c in M. The Yang-Baxter

equation holds in all braided monoidal categories; in the strict case it says that all

objects a; b; c satsify

.1c˝ �a;b/ı .�a;c˝ 1b/ı .1a˝ �b;c/ D .�b;c˝ 1a/ı .1b˝ �a;c/ı .�a;b˝ 1c/: (2.1)

The braiding is called symmetric if ��1
a;b D �b;a for all objects a; b. A monoidal

category equipped with a braiding (resp. a symmetric braiding) is called braided

(resp. symmetric). For example, k-mod is symmetric with �U;V W u ˝ v 7! v ˝ u.

2.3. Ideals and quotients. Suppose M is a monoidal category. A right tensor

ideal I of M is the data of a submodule I.a; b/ � HomM.a; b/ for each pair of

objects a; b in M, such that for all objects a; b; c; d we have h ı g ı f 2 I.a; d/

whenever f 2 HomM.a; b/, g 2 I.b; c/, h 2 HomM.c; d/, and g ˝ 1c 2

I.a ˝ c; b˝ c/ whenever g 2 I.a; b/. One can similarly de�ne left and two-sided

tensor ideals.

The quotient M=I of M by right tensor ideal I is the category with the same

objects asM and morphisms given by HomM=I.a; b/ WD HomM.a; b/=I.a; b/. The

tensor product on M induces a bifunctor M=I � M ! M=I which gives M=I the

structure of a right module category over M in the sense of [6, De�nition 2.5]

(see also [11, De�nition 2.6]). In general, M=I does not inherit the structure of a

monoidal category from M. However if M is braided then

1c ˝ g D �b;c ı .g ˝ 1c/ ı ��1
a;c 2 I.c˝ a; c˝ b/

whenever g 2 I.a; b/, hence every right tensor ideal in a braided monoidal

category is a two-sided tensor ideal. It is straightforward to check that the quotient

of a monoidal category by a two-sided tensor ideal inherits the structure of a

monoidal category. Moreover, such quotients of a braided (resp. symmetric)

monoidal category are again braided (resp. symmetric).

2.4. Duality. A right dual of an object a in a monoidal category consists of an

object a� together with a unit morphism �aW1 ! a ˝ a
� and a counit morphism

"aW a
� ˝a ! 1 such that .1a˝"a/ı.�a˝1a/ D 1a and ."a˝1a�/ı.1a� ˝�a/ D 1a�

(here we are omitting associativity and unit isomorphisms). There is also a notion

of left duals. A monoidal category in which every object has both a left and right

dual is called rigid. In a symmetric monoidal category, an object has a right dual
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a
� if and only if it has a left dual �

a, in which case there is a canonical isomorphism

a
� Š �

a. We will only consider right duals for the remainder of the article.

If a; b; c are objects in a monoidal category M and a� is a right dual to a, then

the assignment h 7! .1a ˝ h/ ı .�a ˝ 1b/ is a bijection

HomM.a� ˝ b; c/ �! HomM.b; a˝ c/ (2.2)

with inverse g 7! ."a ˝ 1c/ ı .1a� ˝ g/. Similarly, h 7! .1c ˝ "a/ ı .h ˝ 1a/ is a

bijection

HomM.b; c˝ a
�/ �! HomM.b˝ a; c/ (2.3)

with inverse g 7! .g ˝ 1a�/ ı .1b ˝ �a/.

Lemma 2.1. If a is an object of a braided monoidal category M possessing a

right dual a�, then the morphism

."a ˝ 1a ˝ 1a�/ ı .1a� ˝ �a;a ˝ 1a�/ ı .1a� ˝ 1a ˝ �a/W a
� ˝ a �! a˝ a

�

is invertible.

Proof. By Mac Lane’s Coherence Theorem (see e.g. [10]) we may assume M is

strict. Then we claim that ."a ˝ 1a ˝ 1a�/ ı .1a� ˝ �a;a ˝ 1a�/ ı .1a� ˝ 1a ˝ �a/ D

��1
a;a� , which is clearly invertible. To see this, �rst notice since M is strict that

�a;1 D �a;1˝1 D �a;1 ı �a;1, which implies �a;1 D 1a. Hence,

."a˝1a ˝ 1a�/ ı .1a� ˝ �a;a ˝ 1a�/ ı .1a� ˝ 1a ˝ �a/

D ��1
a;a� ı �a;a� ı ."a ˝ 1a ˝ 1a�/ ı .1a� ˝ �a;a ˝ 1a�/ ı .1a� ˝ 1a ˝ �a/

D ��1
a;a� ı ."a ˝ 1a� ˝ 1a/ ı .1a� ˝ 1a ˝ �a;a�/

ı .1a� ˝ �a;a ˝ 1a�/ ı .1a� ˝ 1a ˝ �a/

D ��1
a;a� ı ."a ˝ 1a� ˝ 1a/ ı .1a� ˝ �a;a˝a�/ ı .1a� ˝ 1a ˝ �a/

D ��1
a;a� ı ."a ˝ 1a� ˝ 1a/ ı .1a� ˝ �a ˝ 1a/ ı .1a� ˝ �a;1/

D ��1
a;a� :

The lemma is proved. �

2.5. Gradings and �ltrations. By a graded k-module, we mean a k-module V

equipped with a k-module decomposition V D
L

i2Z Vi . If V and W are two

graded k-modules, we write Homk.V; W /i for the space of all linear maps from

V to W that are homogeneous of degree i , i.e. they send Vj into WiCj for each

j 2 Z. We write k -gmod for the category of all graded k-modules with

Homk -gmod.V; W / WD
M

i2Z

Homk.V; W /i :
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There is a natural monoidal structure on this category de�ned so that .V ˝W /i WDL
j 2Z Vj ˝ Wi�j .

By a �ltered k-module we mean a k-module V equipped with a k-module

�ltration � � � � V�i � V�iC1 � � � � such that
T

i2Z V�i D 0 and
S

i2Z V�i D V .

If V and W are two �ltered k-modules, we write Homk.V; W /�i for the space of

all k-module homomorphisms that are of �ltered degree i , i.e. they send V�j into

W�iCj for each j . We write k -fmod for the category of all �ltered k-modules

with

Homk -fmod.V; W / WD
[

i2Z

Homk.V; W /�i :

Again this category has a natural monoidal structure. If V is a �ltered k-module,

the associated graded module gr V is
L

i2Z V�i=V�i�1; then for �ltered V and

W each f 2 Homk.V; W /�i induces gri f 2 Homk.gr V; gr W /i in an obvious

way. Conversely, if V is a graded k-module, it can naturally be viewed as a �ltered

k-module by setting V�i WD
L

j �i Vj ; the associated graded module gr V to this

is naturally identi�ed with the original graded module V .

By a graded category, we mean a category enriched in the monoidal category

consisting of all graded k-modules with morphisms being the homogeneous linear

maps of degree zero. In other words, C is graded if each Hom space is graded in

a way that is compatible with composition. A graded functor F WC ! D between

graded categories is a functor that maps HomC.a; b/i to HomD.F.a/; F.b//i for

each pair of objects a, b in C and each i 2 Z. A graded monoidal category is a

monoidal category that is graded in such a way that deg.g˝h/ D deg.g/Cdeg.h/

whenever g and h are homogenous.

A �ltered category is a category enriched in the monoidal category consisting

of all �ltered k-modules with morphisms being the linear maps of �ltered degree

zero. There is a notion of a �ltered functor between �ltered categories, and of a

�ltered monoidal category. Given a �ltered category C, the associated graded

category grC is the graded category with the same objects as C, morphisms

de�ned by setting HomgrC.a; b/i WD HomC.a; b/�i= HomC.a; b/�i�1 for each

i 2 Z, and the obvious composition law induced by the composition on C. Given

a �ltered functor F WC ! D, we write gr F W grC ! grD for the graded functor

induced by F in the obvious way.

The categories k-gmod and k-fmod give examples of graded and �ltered

monoidal categories, respectively. The associated graded category gr.k -fmod/

is not the same as k -gmod. However there is a faithful functor

GW gr.k-fmod/ �! k-gmod (2.4)
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which sends a �ltered module V to the associated graded module gr V , and a

morphism f C Homk.V; W /�i�1 2 Homk.V; W /�i= Homk.V; W /�i�1 to gri f .

2.6. Generators and relations. Let M be a monoidal category. Suppose we are

given a presentation of M as a k-linear monoidal category. Let G denote the set

of all generating morphisms, and R denote the relations. On a couple occasions it

will be useful to forget the monoidal structure, and describeM as merely a k-linear

category via generators and relations. To do so, �rst note that

yG WD ¹1a ˝ g ˝ 1b j g 2 G; a; b 2 ob.M/º (2.5)

is a generating set of morphisms for M as a k-linear category. To obtain a full set

of relations, every relation in R can be written in the form

X

i2I

�ih
.i/
1 ı � � � ı h.i/

ni
D 0 (2.6)

where I is some �nite set, �i 2 k and h
.i/
j 2 yG. Hence, for each a; b 2 ob.M/ we

have the relation

X

i2I

�i .1a ˝ h
.i/
1 ˝ 1b/ ı � � � ı .1a ˝ h.i/

ni
˝ 1b/ D 0: (2.7)

The collection of relations (2.7) for all a; b 2 ob.M/ as (2.6) ranges over all

relations in R does not form a full set of relations for M as a k-linear category.

However, it is an easy exercise to show that a full set yR of relations can be obtained

from this by adding the following commuting relations

.1a˝g˝1c˝d.2/˝e/ı.1a˝b.1/˝c˝h˝1e/ D .1a˝b.2/˝c˝h˝1e/ı.1a˝g˝1c˝d.1/˝e/

(2.8)

for all objects a; c; e in M and all morphisms gW b.1/ ! b
.2/, hW d.1/ ! d

.2/ in G.

3. Oriented Brauer Categories

3.1. Proof of Theorem 1.1. We are just going to translate some existing results

from the literature which are phrased in the context of ribbon categories. There

are several di�erent presentations for ribbon tangles, going back to [15] and [18].

It will be convenient for us to refer to the generators and relations found in [16], so

our terminology for ribbon tangles will be consistent with loc. cit.. Consider the

category of colored ribbon tangles de�ned in [16, §2.3]. Fix a band color, and let

RIB denote the subcategory consisting of all ribbon tangles whose bands have that



A basis theorem for AOB and OB
f 89

color. Finally, let RIBk denote the k-linearization of RIB, i.e. the category with

the same objects as RIB and morphisms that are formal k-linear combinations of

morphisms in RIB.

There is an obvious functor RIBk ! OB which maps a ribbon tangle to the

oriented Brauer diagram with bubbles obtained by replacing each band with a

strand (forgetting the number of twists in each band) and projecting onto the plane

(forgetting all over/under crossing information). It is easy to see that this functor is

full. In fact, with this functor in mind, it is apparent that one could de�ne oriented

Brauer diagrams with bubbles as certain equivalence classes of ribbon tangles.

A set of generators and relations for the category of colored ribbon tangles as

a monoidal category is given in [16, Lemma 3.1.1 and Lemma 3.3]. Restricting to

bands of just one color, one easily extracts from this a presentation for the category

RIBk as a k-linear monoidal category. Including the obvious additional relations

to forget twists in bands and over/under crossing information, we are left with a

presentation ofOB given by the generators and relations prescribed by Theorem 1.1

along with the additional relation

.d "/ ı .# s/ ı .t "/ ı .c "/ D";

where t is the inverse of the morphism in (1.8). To �nish the proof, we must show

that this extra relation is a consequence of the other relations. In fact, the following

computation uses only (1.4) and the de�nition of t :

.d "/ ı .# s/ ı .t "/ ı .c "/

D .d "/ ı .# s/ ı .#"" d/ ı .#" c "/ ı .t "/ ı .c "/

D ." d/ ı .d "#"/ ı .# s #"/ ı .#" c "/ ı .t "/ ı .c "/

D ." d/ ı .c "/

D" :

This completes the proof of Theorem 1.1.

Corollary 3.1. Suppose M is a symmetric monoidal category and a is an object

of M possessing a right dual a�. Then the assignment on objects "7! a, #7! a
�

and morphisms c 7! �a, d 7! "a, s 7! �a;a prescribes a tensor functor OB ! M.

Proof. By Theorem 1.1 it su�ces to verify that the images of (1.4)-(1.8) hold in M.

By Mac Lane’s Coherence Theorem we may assume M is a strict monoidal cate-

gory. The images of (1.4), (1.5), and (1.6) hold by the de�nitions of duals and sym-

metric braidings. The image of (1.7) follows from the Yang-Baxter equation (2.1).

Finally, the image of (1.8) follows from Lemma 2.1. �
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3.2. Reversed orientations. It is obvious from the diagrammatic de�nition of

OB that there is a self-inverse tensor functor

OB �! OB; g 7�! g0 (3.1)

de�ned by switching the objects " and # and reversing the orientations of all

the strands in a diagram. Applying this to the generators and relations from

Theorem 1.1 yields an alternative presentation ofOB with the following generating

morphisms:

c0 D d 0 D s0 D .

In terms of the original generating morphisms, these alternative generators are

given explicitly by

c0 D tıc; d 0 D dıt; s0 D .d ##/ı.# d "##/ı.## s ##/ı.##" c #/ı.## c/:

(3.2)

The relations that they satisfy are obtained from (1.4)–(1.8) by reversing all orien-

tations:

.# d 0/ ı .c0 #/ D #; (3.3)

.d 0 "/ ı ." c0/ D "; (3.4)

s02 D ##; (3.5)

.# s0/ ı .s0 #/ ı .# s0/ D .s0 #/ ı .# s0/ ı .s0 #/; (3.6)

.d 0 #"/ ı ." s0 "/ ı ."# c0/ is invertible. (3.7)

We remark that it is not at all trivial to derive these primed relations directly from

(1.4)–(1.8) and (3.2) (i.e. without going via diagrams). This nicely illustrates the

substance of Turaev’s results exploited in the proof of Theorem 1.1.

We use the same notation c0; d 0; s0 for the images in AOB of these morphisms

under the functor OB ! AOB; explicitly one can take (3.2) as the de�nition of

c0; d 0; s0 in AOB. Also recall the morphism x0 WD .d #/ ı .# x #/ ı .# c/ 2

EndAOB.#/ from the introduction. Note that

.# x0/ ı s0 D s0 ı .x0 #/� ## : (3.8)

The sign here is di�erent from in (1.10), making it clear that reversing orientations

does not in general de�ne a self-equivalence of AOB. Nevertheless, the elements

c0; d 0; s0; x0 give an alternative set of generators for AOB subject only to the

relations (3.3)–(3.8).
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3.3. Jucys-Murphy morphisms. Given a word a 2 h"; #i of length k, and

distinct integers 1 � p; q � k, let .p; q/a 2 EndOB.a/ be the morphism whose

diagram is either the crossing of the pth and qth strands if ap D aq, or minus the

cap-cup pair joining the pth and qth letters if ap ¤ aq, with all other strands going

straight through. For example, if a D"#"## then

.1; 4/a D � .2; 4/a Dand .

Then for �xed a and p, the corresponding Jucys-Murphy morphism is de�ned as

JM a

p WD
X

0<q<p

.p; q/a 2 EndOB.a/:

In particular, JM a

1 D 0 for all a.

Lemma 3.2. Suppose a; b; c; d 2 h"; #i and let k; l denote the lengths of the words

a; c respectively.

(i) .g " h/ ı JM
a"b
kC1

D JM
c"d
lC1

ı .g " h/ for any morphisms gW a ! c and

hW b ! d.

(ii) JM
a""b
kC2

ı .a s b/ D .a s b/ ı JM
a""b
kC1

C a "" b.

Proof. We leave this as an exercise for the reader. Note by Theorem 1.1 that one

only needs to verify part (i) for those g which are tensor products of identity

morphisms and a single c; d; s or t . �

The following theorem is an easy consequence of Theorems 1.2 and 1.5 from

the introduction, and actually it will never be needed in our proofs of those results.

Nevertheless we include a self-contained proof right away since we found it to be

quite instructive.

Theorem 3.3. Suppose that f .u/ D u � m 2 kŒu� is monic of degree one. Then

the functor OB ! OB
f de�ned as the composite �rst of the functor OB ! AOB

then the quotient functor AOB ! OB
f is an isomorphism.

Proof. It is easy to see that the morphism spaces in OB
f are spanned by all

oriented Brauer diagrams with bubbles (no dots). For example:

DD �� D m .

Hence the given composite functor GWOB ! OB
f is full.
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To show that it is faithful, we will construct a functor F WOBf ! OB such

that F ı G D Id. This depends on a description of the k-linear category OB
f

via generators and relations. To get this, we �rst forget the monoidal structure to

get a description of AOB as a k-linear category via generators and relations as

explained in §2.6. Doing so yields the following set of generating morphisms for

AOB: a c b; ad b; a s b; a t b, a x b where a and b range over all words in h"; #i.

This set also generates the morphisms in OB
f . A full set of relations for OBf is

obtained from the relations for the k-linear category AOB by adding

x a D m." a/ for all a 2 h"; #i: (3.9)

Now, it is clear how to de�ne the desired functor F on all generators except those

involving x; for them we set F.a x b/ WD JM
a"b
kC1

C m.a " b/ where k denotes

the length of a. To see that this is well de�ned we must show that F preserves the

relations for OBf . Again this is obvious for relations not involving x. Then part

(i) of Lemma 3.2 guarantees that F preserves all commuting relations involving

x. Also F preserves (3.9) since JM
"a
1 D 0 for all a 2 h"; #i. The only relations

left to check are

.a " x b/ ı .a s b/ D .a s b/ ı .ax " b/ C a "" b for all a; b 2 h"; #i: (3.10)

These follow by Lemma 3.2(ii). �

Corollary 3.4. The functor OB ! AOB is faithful.

3.4. Associated graded categories. There is one more relevant category of ori-

ented Brauer diagrams which, like OB, is most easily de�ned diagrammatically

from the outset. The graded oriented Brauer category GOB is the monoidal cat-

egory with objects h"; #i and morphisms HomGOB.a; b/ consisting of k-linear

combinations of equivalence classes of normally ordered dotted oriented Brauer

diagrams with bubbles of type a ! b. The rules for vertical and horizontal

composition are by stacking diagrams as usual. Both may produce diagrams

that are no longer normally ordered; to convert the resulting diagrams into nor-

mally ordered ones, it is now permissible to move dots past crossings; so one

simply translates all (possibly dotted) bubbles into clockwise ones at the left

edge, and slides all other dots past crossings so that they are on outward-pointing

segments. For example, the �rst dotted oriented Brauer diagram displayed in

the introduction gets transformed directly in this way into the second (normally

ordered) one. It is quite obvious that the compositions de�ned in this way

are associative, and make GOB into a well-de�ned k-linear monoidal category.
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It is also rigid and symmetric, with duals and braiding de�ned in the same way as

we did for the category OB in the introduction.

Theorem 3.5. As a k-linear monoidal category, GOB is generated by objects "; #

and morphisms c; d; s; x subject only to the relations (1.4)–(1.8) plus

." x/ ı s D s ı .x "/: (3.11)

Proof. Let C denote the category de�ned by the generators and relations in the

statement of the theorem. Identifying c; d; s; t; x with the morphisms in GOB

associated to the (by now) familiar diagrams, it is clear that the relations (1.4)–(1.8)

and (3.11) hold in GOB. Hence we have a functor F WC ! GOB. This functor is

bijective on objects. As noted already in the introduction, every dotted oriented

Brauer diagram with bubbles is equivalent to a vertical composition of diagrams

of the form a s b, a t b, a c b, a d b, a x b. Hence F is full. Finally to see that F is

an isomorphism it remains to show that we have enough relations in C. In view of

Theorem 1.1, this amounts to checking that there are enough relations in C to move

dots past crossings. This follows by (3.11) and the relation obtained from that by

composing with s on the top and bottom. �

Corollary 3.6. Suppose M is a symmetric monoidal category, a is an object of

M possessing a right dual a�, and g 2 EndM.a/. Then the assignment on objects

"7! a, #7! a
� and morphisms c 7! �a, d 7! "a, s 7! �a;a, x 7! g prescribes a

tensor functor GOB ! M.

Proof. By Theorem 3.5 and Corollary 3.1, it su�ces to show the image of (3.11)

holds in M, which follows from the fact that � is a natural transformation. �

Let F denote the free k-linear monoidal category generated by objects " and

# and morphisms cW ¿ !"#, d W #"! ¿, sW ""!"", t W "#!#" and xW "!".

We put a monoidal grading on F by setting c; d; s and t in degree 0 and x in

degree 1 (see §2.5). Since the relations (1.4)–(1.8) and (3.11) are all homogenous

with respect to this grading, Theorem 3.5 implies that GOB inherits a grading

from F in which the degree of each dotted diagram is the number of dots in that

diagram. On the other hand, since (1.10) is not homogeneous,AOBmerely inherits

a �ltration from F. Since (1.10) reduces to (3.11) in the associated graded category

grAOB, there is a graded tensor functor

‚WGOB �! grAOB: (3.12)

The �ltered degree i part of each morphism space in AOB is spanned by the

morphisms arising from normally ordered dotted oriented Brauer diagrams with
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bubbles having at most i dots. This makes it clear that the functor ‚ is full.

Since the normally ordered diagrams are linearly independent in GOB by its

de�nition, we see further that Theorem 1.2 from the introduction is equivalent

to the following.

Theorem 3.7. The functor ‚WGOB ! grAOB is an isomorphism.

There is also a natural candidate for the associated graded category to OB
f ,

assuming now that f .u/ 2 kŒu� is monic of degree `. Consider the tensor ideal in

GOB generated by x`. Its morphism spaces are spanned by diagrams in which

at least one strand has at least ` dots. The graded oriented Brauer category

of level ` is the quotient GOB` of GOB by this tensor ideal. Normally ordered

diagrams with fewer than ` dots on each strand give a basis for each Hom space

in GOB
`. Moreover, since GOB is symmetric, GOB` inherits the structure of a

rigid symmetric monoidal category from GOB (see §2.3). The truncation GOB
`

inherits a grading fromGOB, whileOBf inherits a �ltration fromAOB. Moreover

the functor ‚ induces a functor

‚f WGOB` �! grOBf : (3.13)

Like in the previous paragraph, this functor is full, and Theorem 1.5 from the

introduction is equivalent to the following.

Theorem 3.8. The functor ‚f WGOB` ! grOBf is an isomorphism.

Finally �x also some scalars ı D ı1; : : : ; ı` 2 k. The �ltration onOB
f induces

a �ltration on the specialized categoryOB
f .ı1; : : : ; ı`/. Moreover the functor ‚f

specializes to a full functor

‚f .ı1; : : : ; ı`/WGOB`.ı/ �! grOBf .ı1; : : : ; ı`/; (3.14)

where GOB
`.ı/ is the graded rigid symmetric monoidal category obtained from

GOB
` by evaluating the undotted bubble of degree zero at ı and all of the dotted

bubbles of positive degree at zero. Given the truth of Theorem 3.8, it follows easily

that this specialized functor is also an isomorphism. In the remainder of the article,

we are going to argue in the opposite direction, �rst showing that the specialized

functor is an isomorphism on su�ciently many Hom spaces assuming that k is an

algebraically closed �eld of characteristic zero, then deducing Theorem 3.8 and

the other main theorems by some density/base change arguments.
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4. Representations

4.1. Combinatorial data. In this section we are going to de�ne various rep-

resentations. These depend on some data which will be �xed throughout the

section. To start with let ` � 1 and pick scalars m1; : : : ; m` 2 k. Next let

� D .�1; : : : ; �`/ be a unimodular sequence of positive integers, i.e. we have that

1 � �1 � � � � � �k � � � � � �` � 1 for some 1 � k � `. Set n WD �1 C � � � C �`.

We identify � with a pyramid-like array of boxes with �j counting the number of

boxes in the j th column (numbering columns from left to right). For example, the

pyramid for � D .2; 3; 2; 1; 1/ is the following:

5 6 7 8 9

2 3 4

1

.
(4.1)

As pictured above, we number the boxes in the pyramid 1; : : : ; n along the rows

starting at the top. We write col.i/ for the column number of the i th box. For

instance, in the pyramid pictured above col.6/ D 2. Finally introduce the monic

polynomials of degree `:

f .u/ WD .u � m1/ � � � .u � m`/; (4.2)

f 0.u/ WD .u C �1 � m1/ � � � .u C �` � m`/: (4.3)

To these polynomials, we associate scalars ı1; ı2; � � � 2 k via the generating

function identity (1.13). Explicitly,

ık D
X

iCj Dk

hi .m1; : : : ; m`/ej .�1 � m1; : : : ; �` � m`/ (4.4)

where hi and ej denote complete and elementary symmetric polynomials, respec-

tively. Note in particular that ı WD ı1 is equal to the integer n.

4.2. A representation ofOB.ı/. Let V be the freek-module on basis v1; : : : ; vn,

and f1; : : : ; fn be the dual basis for V � WD Homk.V;k/. It will be conve-

nient to set V " WD V , V # WD V �, v
"
i WD vi and v

#
i WD fi . Then, for each

a D a1 � � � ak 2 h"; #i, the k-module

V.a/ WD V a1 ˝ � � � ˝ V ak (4.5)

is free with a basis consisting of the monomials va
i

WD v
a1

i1
˝ � � � ˝ v

ak

ik
for all

k-tuples i D .i1; : : : ; ik/ of integers with 1 � i1; : : : ; ik � n.
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Note that V � is a right dual of V in the sense of §2.4 with "V W V �˝V ! k given

by evaluation f ˝ v 7! f .v/ and �V Wk ! V ˝ V � given by 1 7!
Pn

iD1 vi ˝ fi .

Applying Corollary 3.1 to this data, we get a tensor functor

‰WOB ! k-mod (4.6)

which sends object a to V.a/. Given a morphism gW a ! b in OB, ‰.g/ is a linear

map V.a/ ! V.b/; we often denote the image of u 2 V.a/ under this map simply

by gu. For example, if a D""##, then using the notation set up in §3.3 we have

that

.1; 2/avai D va.i2;i1;i3;i4/ and .2; 4/avai D

8
ˆ̂<
ˆ̂:

�

nX

j D1

va.i1;j;i3;j / if i2 D i4I

0 if i2 6D i4:

Finally we observe that ‰ maps the bubble � to the scalar ı (which we recall is

equal to the dimension n D dim V ), hence it factors through the quotient OB.ı/

to induce a tensor functor

‰.ı/WOB.ı/ �! k-mod: (4.7)

4.3. Modi�ed transpositions. Fix a word a 2 h"; #i of length k and distinct

integers 1 � p; q � k such that ap D". De�ne scalars ˇi ;j 2 k from the equation

.p; q/ava
j

D
P

i ˇi ;j va
i
. Then de�ne a linear map

.p; q/a�W V.a/ �! V.a/ (4.8)

by setting .p; q/a
�
va

j
D

P
i i ;j va

i
where

i ;j D

8
ˆ̂<
ˆ̂:

ˇi ;j if p > q and col.ip/ � col.jp/I

�ˇi ;j if p < q and col.ip/ < col.jp/I

0 otherwise:

For example, the action of .p; q/a
.n/

agrees with the action of .p; q/a when p > q,

but .p; q/a
.n/

acts as zero when p < q. For a more explicit example, let � be the

pyramid pictured in §4.1 and take a D""##. Then we have

.1; 2/a�va.7;6;5;6/ D �va.6;7;5;6/ and .2; 4/a�va.7;6;5;6/ D va.7;2;5;2/ C va.7;5;5;5/:

The maps .p; q/a
�

just de�ned will be a key ingredient for de�ning a representation

of AOB in ÷4.5. The remainder of this subsection is devoted to recording several

technical formulae involving .p; q/a
�

which will be needed later. They can all be

proved in a straightforward manner using the de�nition of .p; q/a
�
. We leave the

details as an exercise for the reader.
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Lemma 4.1. Suppose p and r are distinct positive integers and a 2 h"; #i satis�es

ap D ar D".

(i) .p; r/a
�

ı .r; p/a
�

D 0.

(ii) .p; q/a
�

ı .r; q/a
�

D .r; q/a
�

ı .p; r/a
�

C .r; p/a
�

ı .p; q/a
�

whenever aq D".

(iii) .p; q/a
�

ı .r; q/a
�

C .p; r/a
�

ı .r; q/a
�

C .p; q/a
�

ı .r; p/a
�

D 0 whenever aq D#.

(iv) .p; q1/a
�

ı .r; q2/a
�

D .r; q2/a
�

ı .p; q1/a
�

whenever p; r; q1; q2 are pairwise

distinct.

For the next three lemmas, let a; b 2 h"; #i, let k denote the length of a, and

let p be a positive integer such that the pth letter in the word a ## b is ".

Lemma 4.2. (i) ‰.a c b/ ı .p; q/ab
�

D .p; q/
a"#b
�

ı ‰.a c b/ whenever p; q � k.

(ii) ‰.a c b/ı.p; q�2/ab
�

D .p; q/
a"#b
�

ı‰.a c b/ whenever p � k and q > kC2.

(iii) ‰.a c b/ ı .p � 2; q/ab
�

D .p; q/
a"#b
�

ı ‰.a c b/ whenever p > k C 2 and

q � k.

(iv) ‰.a c b/ ı .p � 2; q � 2/ab
�

D .p; q/
a"#b
�

ı ‰.a c b/ whenever p; q > k C 2.

(v) .p; k C 1/
a"#b
�

ı ‰.a c b/ C .p; k C 2/
a"#b
�

ı ‰.a c b/ D 0.

Lemma 4.3. (i) ‰.a d b/ ı .p; q/
a#"b
�

D .p; q/ab
�

ı ‰.a d b/ whenever p; q � k.

(ii) ‰.a d b/ ı .p; q/
a#"b
�

D .p; q � 2/ab
�

ı ‰.a d b/ whenever p � k and

q > k C 2.

(iii) ‰.a d b/ ı .p; q/
a#"b
�

D .p � 2; q/ab
�

ı ‰.a d b/ whenever p > k C 2 and

q � k.

(iv) ‰.a d b/ ı .p; q/
a#"b
�

D .p � 2; q � 2/ab
�

ı ‰.a d b/ whenever p; q > k C 2.

(v) ‰.a d b/ ı .p; k C 1/
a#"b
�

C ‰.a d b/ ı .p; k C 2/
a#"b
�

D 0.

Lemma 4.4. (i) ‰.a s b/ ı .p; q/
a""b
�

D .p; q/
a""b
�

ı ‰.a s b/ whenever q � k or

q > k C 2.

(ii) ‰.a s b/ ı .p; k C 1/
a""b
�

D .p; k C 2/
a""b
�

ı ‰.a s b/.

(iii) ‰.a s b/ ı .p; k C 2/
a""b
�

D .p; k C 1/
a""b
�

ı ‰.a s b/.

(iv) ‰.a s b/ ı .k C 1; q/
a""b
�

D .k C 2; q/
a""b
�

ı ‰.a s b/ whenever q � k or

q > k C 2.

(v) .k C 2; k C 1/
a""b
�

ı ‰.a s b/ D ‰.a s b/ ı .k C 1; k C 2/
a""b
�

C 1V.a""b/.
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4.4. A graded representation of GOB
`.ı/. We now put a Z-grading on the

k-modules V and V � from ÷4.2 by declaring that deg.vi / D � col.i/ and

deg.fi/ D col.i/. We get an induced grading on V.a/ for each a 2 h"; #i. Let

e 2 Endk.V / be the homogeneous linear transformation of degree one that maps

basis vector vi to vi�1 if the i th box of the pyramid � is not the leftmost box in its

row, or to zero otherwise. Clearly this is nilpotent with Jordan block sizes equal

to the lengths of the rows of the pyramid �; in particular e` D 0.

Applying Corollary 3.6 we get a tensor functor

ˆ�WGOB �! k-gmod (4.9)

sending " to V , # to V �, and x to e. This functor is obviously graded. Moreover,

since e` D 0, it factors through the quotient GOB` to induce

ˆ`
�WGOB` �! k-gmod: (4.10)

Finally we observe that ˆ`
�

maps the undotted bubble of degree zero to the scalar

ı, and it sends all other dotted bubbles to zero. Hence it factors again to induce a

graded tensor functor

ˆ`
�.ı/WGOB`.ı/ �! k-gmod: (4.11)

In particular, given a word a D a
.1/ " a

.2/ with a.1/ of length .p � 1/, this functor

sends the morphism a
.1/ x a.2/ to the linear map

epW V.a/ �! V.a/ (4.12)

de�ned by applying e to the pth tensor position.

Lemma 4.5. Let a; b 2 h"; #i be words whose average length is � min.�/.

Then the linear map Hom
GOB`.ı/.a; b/ ! Homk.V .a/; V .b// induced by ˆ`

�
.ı/

is injective.

Proof. We �rst prove this in the special case that a D b D"m for some

m � min.�/. Then it is obvious that the algebra End
GOB`.ı/.a/ is the smash

product
�
kŒx1; : : : ; xm�=.x`

1; : : : ; x`
m/

�
Ì Sm, where xi WD"i�1 x "m�i and Sm is

the symmetric group generated by the transpositions sj WD"j �1 s "m�j �1. In par-

ticular it has a basis consisting of monomials x
k1

1 � � � xkm
m w for 0 � k1; : : : ; km < `

and w 2 Sm. Let i D .i1; : : : ; im/ be a tuple consisting of the numbers of the boxes

in the rightmost column and the bottom m rows of the pyramid �. The assumption

on m means that each of these rows contains ` boxes. Then

ˆ`
�.ı/.x

k1

1 � � � xkm
m w/.vai / D e

k1

1 � � � ekm
m .vaw.i//
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where w.i / WD .iw�1.1/; : : : ; iw�1.m//. These vectors for all 0 � k1; : : : ; km < `

and w 2 Sm are clearly linearly independent. The desired injectivity follows.

Now for the general case, take any words a; b 2 h"; #i. Suppose that a involves

p "’s and q #’s, while b involves r "’s and s #’s. We may assume that pCs D rCq,

since otherwise Hom
GOB`.ı/.a; b/ D 0. This number is the average length m of

the words a and b, so m � min.�/. Consider the following diagram:

Hom
GOB`.ı/.a; b/ ����! Hom

GOB`.ı/.#
q"p; "r#s/ ����! End

GOB`.ı/."
m/

ˆ`
�

.ı/

??y ˆ`
�

.ı/

??y
??yˆ`

�
.ı/

Homk.V .a/; V .b// ����! Homk.V .#q"p/; V ."r#s// ����! Endk.V ˝m/:

The �rst horizontal maps are the bijections de�ned in an obvious way using the

symmetric braidings. Since the tensor functor ˆ`
�
.ı/ preserves the braidings,

the left hand square commutes. The second horizontal maps are the bijections

obtained using (2.2) and (2.3). Since ˆ`
�
.ı/ preserves right duals, the right hand

square commutes. Finally the right hand vertical map is injective according to the

previous paragraph, hence the left hand vertical map is too. �

4.5. A �ltered representation of OB
f .ı1; : : : ; ı`/. In this subsection we are

going to construct a �ltered functor ‰
f

�
.ı1; : : : ; ı`/ W OBf .ı1; : : : ; ı`/ ! k-fmod

which we will see is a deformation of the graded functor ˆ`
�
.ı/ from (4.11). The

de�nition of this functor will likely seem quite unmotivated; we will say more

about its origin in ÷4.6. We begin by de�ning a functor

‰�WAOB �! k-fmod: (4.13)

Note this is not going to be a tensor functor. However, on forgetting the �ltrations,

it is going to agree with the tensor functor ‰WOB ! k-mod from (4.6) on objects

and on all undotted diagrams. First, for a 2 h"; #i, we set ‰�.a/ WD V.a/ viewed

as a �ltered vector space with V.a/�i WD
L

j �i V.a/j . This is the same underlying

vector space as ‰.a/. On morphisms, it su�ces to de�ne ‰� on a
.1/ c a.2/,

a
.1/ d a.2/, a.1/ s a.2/, a.1/ t a.2/ and a

.1/ x a.2/ for each a
.1/; a.2/ 2 h"; #i, since

these morphisms generate AOB as a k-linear category. For all but the last of these

generating morphisms, we take the same linear map as given by the functor ‰

from ÷4.2. It remains to de�ne ‰�.a.1/ x a.2//. Let a WD a
.1/ " a

.2/ and assume

that a.1/ is of length .p � 1/. Then we set

‰�.a.1/ x a.2//.vai / WD ep.vai / C mcol.ip/v
a

i C
X

q 6Dp

.p; q/a�vai ; (4.14)

where ep is the map from (4.12).
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Lemma 4.6. The functor ‰�WAOB ! k -fmod is well de�ned.

Proof. We must check that ‰� respects the relations between the generating

morphisms for AOB as a k-linear category which arise in the manner explained

in §2.6. All of the relations which do not involve dots follow from Corollary 3.1.

The relations (3.10) are easy to check using parts (iv) and (v) of Lemma 4.4.

The commuting relations involving x and s can be checked using parts (i)-(iii)

of Lemma 4.4. The commuting relations involving x and c (resp. x and d ) can

be checked using Lemma 4.2 (resp. Lemma 4.3). It just remains to check the

commuting relations involving two x’s. Say a D a
.1/ " a

.2/ D b
.1/ " b

.2/ where

a
.1/ is of length .p � 1/ and b.1/ is of length .r � 1/ for p ¤ r . Then we need to

show that

‰�.a.1/ x a.2//.‰�.b.1/ x b.2//.vai // D ‰�.b.1/ x b.2//.‰�.a.1/ x a.2//.vai //

(4.15)

for all i . For this, we naively expand both sides using the de�nition (4.14); each

side becomes a sum of nine terms. Then we observe that

.r; p/a� ı ep D �er ı .p; r/a�;

as is straightforward to verify from the de�nitions of the maps (4.8) and (4.12). It

follows that the terms on the left and right hand sides of the expansion of (4.15)

that involve e’s are both equal to

ep.er .vai //Cmcol.ip/er .vai /Cmcol.ir /ep.vai /C
X

q 6Dp;r

..p; q/a�er .vai /C.r; q/a�ep.vai //:

Of the remaining terms, if col.ip/ D col.ir / and we set m D mcol.ip/ D mcol.ir /,

then one can show the terms on the left and right hand sides of (4.15) involving

m’s but no e’s are both equal to

m2vai C m
X

q 6Dp

.p; q/a�vai C m
X

q 6Dr

.r; q/a�vai :

On the other hand, if col.ip/ 6D col.ir / then .r; p/a
�
va

i
D �.p; r/a

�
va

i
. Using this, it

follows that the terms on the left and right hand sides of (4.15) involving m’s but

no e’s are both

mcol.ip/mcol.ir /v
a

i C mcol.ir /

X

q 6Dp;r

.p; q/a�vai C mcol.ip/

X

q 6Dp;r

.r; q/a�vai :
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It just remains to observe that the terms on both sides involving no m’s and no e’s

are equal. This follows from the identity

X

q1 6Dp
q2 6Dr

.p; q1/a� ı .r; q2/a� D
X

q1 6Dp
q2 6Dr

.r; q2/a� ı .p; q1/a�;

which is a consequence of Lemma 4.1. �

Lemma 4.7. Given any a 2 h"; #i and 1 � k � `, let g denote the image of

.x a� mk." a// ı .x a� mkC1." a// ı � � � ı .x a� m`." a// under the functor ‰�.

Then for any i , the vector g.v
"a
i

/ is contained in the subspace of V." a/ spanned

by all v
"a
j

with col.j1/ < k. In particular if k D 1 then g D 0.

Proof. This follows from (4.14) using downward induction on k D `; : : : ; 1. �

Lemma 4.8. Fix 1 � i; j � n. For each k � 0, let �
.k/
i;j denote the coe�cient of

vi ˝ fi in ‰�.x #/k.vj ˝ fj /. Then

�
.k/
i;j D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

.mcol.i//
k if i D j ;

kX

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�r.mp0
; : : : ; mpr

/�p1
� � � �pr�1

if col.i/ < col.j /;

0 otherwise.

Proof. As a special case of (4.14) we have that

‰�.x #/.vj ˝ fj / D e.vj / ˝ fj C mcol.j /vj ˝ fj C
X

col.i/<col.j /

vi ˝ fi : (4.16)

It follows that �
.k/
i;j D 0 unless i D j or col.i/ < col.j /, and that �

.k/
i;i D mk

col.i/
.

We now treat the case that col.i/ < col.j / by induction on k. The base case k D 0

is clear. For k � 1, we have by (4.16) that

�
.k/
i;j D mcol.j /�

.k�1/
i;j C

X

col.h/<col.j /

�
.k�1/

i;h

D mcol.j /�
.k�1/
i;j C mk�1

col.i/ C
X

col.i/<col.h/<col.j /

�
.k�1/

i;h
:
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Then using induction we get

�
.k/
i;j D mcol.j /

k�1X

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/�p1
� � � �pr�1

C mk�1
col.i/

C
X

col.i/<col.h/<col.j /

k�1X

rD1

X

col.i/Dp0<���<pr Dcol.h/

hk�1�r .mp0
; : : : ; mpr

/�p1
� � � �pr�1

D

k�1X

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/mcol.j /�p1
� � � �pr�1

C mk�1
col.i/

C
X

col.i/<p<col.j /

k�1X

rD1

X

col.i/Dp0<���<pr Dp

hk�1�r .mp0
; : : : ; mpr

/�p1
� � � �pr�1

�p

D

k�1X

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/mcol.j /�p1
� � � �pr�1

C mk�1
col.i/

C

k�1X

rD1

X

col.i/Dp0<���<prC1Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/�p1
� � � �pr

D

k�1X

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/mcol.j /�p1
� � � �pr�1

C

k�1X

rD0

X

col.i/Dp0<���<prC1Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/�p1
� � � �pr

D

k�1X

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/mcol.j /�p1
� � � �pr�1

C

kX

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�r .mp0
; : : : ; mpr�1

/�p1
� � � �pr�1

D

kX

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�r .mp0
; : : : ; mpr

/�p1
� � � �pr�1

:

This is what we wanted. �

Lemma 4.9. The image under ‰� of the clockwise bubble �k with .k � 1/ dots is

equal to the scalar ık from (4.4).
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Proof. Since �k D d 0 ı .x #/ı.k�1/ ı c, it follows from Lemma 4.8 that

‰�.�k/ D
X

i;j

�
.k�1/
i;j D

X

i

�
.k�1/
i;i C

X

col.i/<col.j /

�
.k�1/
i;j

D
X

i

mk�1
col.i/ C

k�1X

rD1

X

col.i/Dp0<���<pr Dcol.j /

hk�1�r .mp0
; : : : ; mpr

/�p1
� � � �pr�1

D
X

1�p0�`

hk�1.mp0
/�p0

C

k�1X

rD1

X

1�p0<���<pr �`

hk�1�r .mp0
; : : : ; mpr

/�p0
� � � �pr

D

k�1X

rD0

X

1�p0<���<pr �`

hk�1�r .mp0
; : : : ; mpr

/�p0
� � � �pr

D

kX

rD1

X

1�p1<���<pr �`

hk�r .mp1
; : : : ; mpr

/�p1
� � � �pr

: (4.17)

Now we look at the formula for ık from (4.4). Viewing it as a polynomial in

indeterminates �1; : : : ; �`, it is clear that it is a linear combination of mono-

mials of the form �p1
� � � �pr

for 1 � p1 < � � � < pr � ` and r � 0. To

compute the coe�cient of �p1
� � � �pr

, let q1 < � � � < q`�r be de�ned so that

¹p1; : : : ; pr ; q1; : : : ; q`�rº D ¹1; : : : ; `º. Then it is easy to see from (4.4) that the

�p1
� � � �pr

-coe�cient of ık is equal to
X

iCj Dk�r

.�1/j hi .m1; : : : ; m`/ej .mq1
; : : : ; mq`�r

/:

But now, by a standard identity (e.g. see [1, (2.4)]), this is zero in case r D 0, while

for r > 0 it simpli�es to hk�r .mp1
; : : : ; mpr

/. This is the same as the coe�cient

in (4.17), so the lemma is proved. �

Theorem 4.10. The functor ‰�WAOB ! k -fmod factors through the quotient

OB
f .ı1; : : : ; ı`/ to induce a functor

‰
f

�
.ı1; : : : ; ı`/ W OBf .ı1; : : : ; ı`/ ! k -fmod : (4.18)

Moreover, this functor is �ltered, and the associated graded functor �ts into the

following commuting diagram:

GOB
`.ı/

ˆ`
�

.ı/

�����������! k -gmod

‚f .ı1;:::;ı`/

??y
x??G

grOBf .ı1; : : : ; ı`/ ����������!
gr ‰

f

�
.ı1;:::;ı`/

gr.k -fmod/;

where G is the canonical functor from (2.4).
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Proof. The last assertion of Lemma 4.7 implies that the functor ‰� annihilates

the right tensor ideal of AOB generated by f .x/. Hence it factors through the

quotient OBf of AOB to induce a functor

‰
f

�
WOBf �! k -fmod : (4.19)

By Lemma 4.9 this functor maps �k to ık , so it factors further through the

specialization OB
f .ı1; : : : ; ı`/ as desired.

To see that ‰
f

�
.ı1; : : : ; ı`/ is a �ltered functor, the action of OB is clearly

homogeneous of degree zero. Also the three terms on the right hand side of (4.14)

are graded maps of degrees one, zero, and zero, respectively. Hence the action

of x is in �ltered degree one. Finally to see that the given diagram commutes, it

su�ces to check it on each of the generating morphisms of GOB`.ı/ in turn. This

is clear for the generators of degree zero. It just remains to observe that the degree

one term on the right hand side of (4.14) is exactly the map from (4.12). �

Corollary 4.11. Let a; b 2 h"; #i be words whose average length is � min.�/.

Then the linear map Hom
GOB`.ı/.a; b/ ! HomgrOBf .ı1;:::;ı`/.a; b/ induced by

‚f .ı1; : : : ; ı`/ is an isomorphism.

Proof. We already observed that this map is surjective at the end of the previous

section. It is injective thanks to the commutative diagram from Theorem 4.10

together with Lemma 4.5. �

Corollary 4.12. Let a; b 2 h"; #i be words whose average length is � min.�/.

Then Hom
OBf .ı1;:::;ı`/.a; b/ is a free k-module with basis arising from the equiv-

alence classes of normally ordered dotted oriented Brauer diagrams of type a ! b

such that there are at most .` � 1/ dots on each strand.

Proof. It su�ces to show that the graded morphisms de�ned by these diagrams

give a basis for the associated graded Hom space HomgrOBf .ı1;:::;ı`/.a; b/. This

follows from Corollary 4.11, since the corresponding morphisms clearly give a

basis for Hom
GOB`.ı/.a; b/ by the de�nition of the category GOB

`.ı/. �

4.6. Remarks about the connection to �nite W -algebras. The material in

this subsection is not needed elsewhere in the article. The goal is give a brief

sketch of the origin of the functor ‰�WAOB ! k -fmod. We assume that k is an

algebraically closed �eld of characteristic zero.
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Let us start with some more discussion of the graded picture. Let g WD gln.k/

with natural module V and dual natural module V �. De�ne a Z-grading

g D
M

d2Z

gd

by declaring that the ij -matrix unit ei;j is of degree col.j / � col.i/. The gradings

on V and V � from ÷4.4 make them into graded g-modules, as are all of the tensor

products V.a/. Let e 2 g1 be the nilpotent matrix from ÷4.4. Its centralizer ge

is a graded subalgebra of g. Let ge -gmod denote the graded monoidal category

consisting of all graded ge-modules, with morphisms de�ned like we did for the

category k -gmod in ÷2.5. The graded functor ˆ�WGOB ! k -gmod from ÷4.4

should really be viewed as a graded functor x̂
�WGOB ! ge -gmod. Then, letting

F W ge -gmod ! k -gmod be the obvious forgetful functor, the following diagram

commutes:

GOB
ˆ� //

x̂
�

��

k -gmod

ge -gmod

F

88
r
r
r
r
r
r
r
r
r
r

: (4.20)

The next theorem is a reformulation of a result of Vust proved in [9, ÷6].

Theorem 4.13. The functor x̂
�WGOB ! ge -gmod is full.

Proof. We must show for all a; b 2 h"; #i that it maps HomGOB.a; b/ surjectively

onto Homge .V .a/; V .b//. In the case that a D b D"m for some m � 0, this follows

from Vust’s theorem as formulated e.g. in [2, Theorem 2.4]. For the general case,

suppose that a involves p "’s and q #’s, while b involves r "’s and s #’s. There

is nothing to prove unless m WD p C s D r C q, as both Hom spaces are zero if

that is not the case. Then we get done by the special case just treated using the

following commuting diagram with bijective rows:

HomGOB.a; b/ ����! HomGOB.#q"p; "r#s/ ����! EndGOB."m/

x̂
�

??y x̂
�

??y
??y x̂

�

Homge .V .a/; V .b// ����! Homge .V .#q"p/; V ."r#s// ����! Endge .V ˝m/:

This is de�ned in exactly the same way as the similar looking diagram from the

proof of Lemma 4.5. �
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The universal enveloping algebra U.ge/ admits a certain �ltered deformation

U.g; e/, namely, the �nite W -algebra associated to the nilpotent matrix e. This

algebra is naturally �ltered in such a way that the associated graded algebra

gr U.g; e/ is identi�ed with U.ge/, as is explained in detail in [2, ÷3.1]. Let

U.g; e/ -fmod be the category of �ltered U.g; e/-modules, with morphisms de�ned

like we did for the category k -fmod from ÷2.5. Note for any M 2 U.g; e/ -fmod

that the associated graded module gr M is naturally a graded ge-module. Hence

there is a canonical faithful functor GW gr.U.g; e/ -fmod/ ! ge -gmod de�ned in

the same way as (2.4). Writing F W U.g; e/ -fmod ! k -fmod for the forgetful

functor, the following diagram obviously commutes:

gr.U.g; e/ -fmod/
gr F

����! gr.k -fmod/

G

??y
??yG

ge -gmod ����!
F

k -gmod :

(4.21)

Now the point is that there is a �ltered functor x‰�WAOB ! U.g; e/ -fmod

making the following diagram commute:

AOB
‰� //

x‰�

��

k -fmod

U.g; e/ -fmod

F

77
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

: (4.22)

In other words, for each a 2 h"; #i, there is a natural �ltered action of U.g; e/ on

V.a/ (which is ‰�.a/), and the functor ‰� takes morphisms in AOB to U.g; e/-

module homomorphisms. Without going into details, this arises by using an

analog of [2, (3.9)] to identify V.a/ with a naturally occurring U.g; e/-module.

This U.g; e/-module is the image under the so-called Skryabin equivalence of a

certain in�nite dimensional generalized Whittaker module for g (depending on the

scalars m1; : : : ; m`) tensored with the �nite dimensional g-module V.a/. Then the

actions of c; d; s and x arise naturally by pushing the endomorphisms de�ned by

(1.11) through Skryabin’s equivalence. We used this point of view to discover the

functor ‰� in the �rst place; the formula (4.14) was computed by mimicking the

proof of [2, Lemma 3.3].

Remark 4.14. Using Theorems 3.7 and 4.10 plus the de�nition of the functor
x‰�, one can show that (4.22) is a �ltered deformation of (4.20). Formally, this

means that there is a commuting triangular prism of functors with top face being

obtained from (4.22) by applying gr, bottom face being (4.20), one of the side
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faces being (4.21), and the remaining vertical edge being the isomorphism ‚ from

Theorem 3.7. Combined with Theorem 4.13, one can deduce from this that the

functor x‰� is full too. This assertion generalizes the second equality from [2,

Theorem 3.7].

5. Main results

5.1. Proof of Theorem 1.5 assuming k is an algebraically closed �eld of char-

acteristic zero. Let k be an algebraically closed �eld of characteristic zero and

f .u/ 2 kŒu� be an arbitrary monic polynomial of degree `. We can factor

f .u/ D .u�m1/ � � � .u�m`/ for m1; : : : ; m` 2 k. For a; b 2 h"; #i, let D`.a; b/ be

a set of representatives for the equivalence classes of normally ordered dotted ori-

ented Brauer diagrams of type a ! b such that there are at most .`�1/ dots on each

strand. View Hom
OBf .a; b/ as a module over the polynomial algebra kŒt1; : : : ; t`�

so that ti acts on a morphism by tensoring on the left with the clockwise dotted

bubble �i with .i � 1/ dots. We have observed already that the morphisms aris-

ing from the diagrams in D`.a; b/ span Hom
OBf .a; b/ as a kŒt1; : : : ; t`�-module.

To complete the proof of Theorem 1.5 we need to show that these morphisms are

linearly independent over kŒt1; : : : ; t`�. Take a kŒt1; : : : ; t`�-linear relation

X

g2D`.a;b/

pg.t1; : : : ; t`/g D 0

in Hom
OBf .a; b/. We need to show that all of the polynomials pg .t1; : : : ; t`/ are

identically zero.

To see this, suppose that � D .�1; : : : ; �`/ is any unimodular sequence such

that all of its parts are greater than or equal to the average length of the words a

and b. De�ne ı D ı1; : : : ; ı` 2 k according to (4.4). Specializing each �k at ık,

we deduce that X

g2D`.a;b/

pg.ı1; : : : ; ı`/g D 0

in Hom
OBf .ı1;:::;ı`/.a; b/. Hence by Corollary 4.12 we have that pg.ı1; : : : ; ı`/ D

0 for all g. It just remains to apply the following lemma.

Lemma 5.1. As .�1; : : : ; �`/ varies over all unimodular sequences of length `

having all parts greater than or equal to the average length r of the words a and

b, the set of points .ı1; : : : ; ı`/ de�ned by the equation (4.4) is Zariski dense in k
`.
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Proof. The set of unimodular sequences of length ` having all parts greater than

or equal to r is Zariski dense in k
`. Hence it su�ces to show that the morphism

k
` ! k

`; .�1; : : : ; �`/ 7! .ı1; : : : ; ı`/

de�ned by (4.4) is dominant. To prove this, we just need to check that the

determinant of the Jacobian matrix J D
�

@ıi

@�j

�
1�i;j �`

is non-zero. Each ıi is a

polynomial of degree i in kŒ�1; : : : ; �`�, and the homogeneous component of ıi of

this top degree is equal to ei .�1; : : : ; �`/. Hence each @ıi

@�j
is a polynomial of degree

.i�1/ with top homogeneous component ei�1.�1; : : : ; b�j ; : : : ; �`/. We deduce that

the top homogeneous component of det J is equal to the determinant of the matrix�
ei�1.�1; : : : ; b�j ; : : : ; �`/

�
1�i;j �`

. This is a variation on Vandermonde, equal toQ
1�i<j �`.�i � �j /, which is non-zero. �

5.2. Proof of Theorem 1.5 assuming k is an integral domain of characteristic

zero. Let k be a domain of characteristic zero and K be the algebraic closure of

its �eld of fractions. Let f .u/ 2 kŒu� � KŒu� be a monic polynomial of degree

`. To prove Theorem 1.5 in this case, we just need to compare the category OB
f
k

de�ned over the ground ring k to the category OB
f
K

de�ned over the algebraically

closed �eld K. There is an obvious k-linear functor OB
f
k

! OB
f
K

mapping

generators to generators. It sends the morphisms in Hom
OB

f

k

.a; b/ de�ned by

the equivalence classes of diagrams from the statement of Theorem 1.5 to the

analogous morphisms in Hom
OB

f
K

.a; b/. The latter are known already to be K-

linearly independent by the previous subsection. Hence the given morphisms

in Hom
OB

f
k

.a; b/ are k-linearly independent, and they obviously span. This

completes the proof.

5.3. Proof of Theorem 1.5 in general. Finally we let k be an integral domain

of positive characteristic and f .u/ 2 kŒu� be a monic polynomial of degree `. By

some general nonsense (e.g. see [7, ÷3.1]), there exists an integral domain O of

characteristic zero and a maximal ideal m C O so that k embeds into the �eld

K WD O=m. Let Of .u/ 2 OŒu� be a monic polynomial whose image in KŒu� is equal

to the image of f .u/. By the previous subsection, we have proved Theorem 1.5

already for the category OB
Of
O

. Base change gives us a category K ˝O OB
Of
O

in

which the images of the morphisms from the statement of Theorem 1.5 are K-

linearly independent. Considering the obvious functor OB
f
k

! K ˝O OB
Of
O

, we

deduce that the corresponding morphisms in OB
f
k

are k-linearly independent, as

required to complete the proof of Theorem 1.5 in general. As discussed in ÷3.4,
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Theorem 3.8 follows too, as does the fact that the functor (3.14) is an isomorphism

in all cases.

5.4. Proof of Theorem 1.2. We just need to show that the morphisms from the

statement of Theorem 1.2 are linearly independent. Suppose for a contradiction

that we are given some non-trivial linear relation between some of these mor-

phisms. Choose ` so that each strand of each of the diagrams involved in this

linear relation has less than ` dots on it. Then pick any monic f .u/ 2 kŒu� of

degree ` and apply the quotient functor AOB ! OB
f to the given relation. The

result is a non-trivial linear relation between morphisms inOB
f which are already

known by Theorem 1.5 to be linearly independent. This contradiction completes

the proof of Theorem 1.2. Theorem 3.7 also follows.

5.5. Identi�cation with the algebras of Rui and Su. We have now proved

all of the main results stated in the introduction. To conclude the article, we

explain in more detail how to see that the a�ne and cyclotomic walled Brauer

algebras ABr;s.ı1; ı2; : : : / and B
f
r;s.ı1; : : : ; ı`/ from (1.2)–(1.3) are isomorphic to

the algebras with the same names de�ned in [12], [13].

Consider �rst the a�ne walled Brauer algebra ABr;s.ı1; ı2; : : : /. Let Ba�
r;s be

the algebra from [12, De�nition 2.7] over the ground ring k taking the parameters

!0 and !1 there to be ı1 and �ı2, respectively. This means that Ba�
r;s is de�ned

by generators e1; x1; Nx1; si .i D 1; : : : ; r � 1/; Nsj .j D 1; : : : ; s � 1/; !k .k � 2/

and N!k .k � 0/, subject to the relations that all !k and N!k are central plus twenty-

six more. It is an exercise in checking relations to see that there is a well-de�ned

homomorphism Ba�
r;s ! ABr;s.ı1; ı2; : : : / de�ned by

e1 7�!

x1 7�! � Nx1 7�! ı1C

1 i r

si 7�!

1 i r

si 7�!
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!k 7�! .�1/kıkC1 N!k 7�!

kX

lD0

�
k

l

�
ıl

1ı0
kC1�l

where ı0
j is de�ned from the

identity (1.14).

This homomorphism factors through the quotient yBr;s of Ba�
r;s by the additional

relations !k D .�1/kıkC1 for each k, which is precisely the specialized algebra

appearing in [12, Theorem 4.16]. Then one checks easily using our basis from

Theorem 1.2 that the spanning set for yBr;s de�ned in [12, Theorem 4.16] maps to

a basis for ABr;s.ı1; ı2; : : : /. Hence yBr;s Š ABr;s.ı1; ı2; : : : /. (This also gives

another proof of the linear independence in [12, Theorem 4.16].)

Finally we discuss the cyclotomic walled Brauer algebra. Let f .u/ DP`
iD0 aiu

`�i be monic of degree ` as usual and !0; : : : ; !`�1 2 k be some

given scalars. For k � ` de�ne !k recursively from the equation !k D

�.a1!k�1 C � � � C a`!k�`/: Also let Qf .u/ WD .�1/`f .�u/ and ıkC1 WD .�1/k!k

for each k � 0. In [13, De�nition 2.1], Rui and Su de�ne their cyclotomic

walled Brauer algebra B`;r;s to be the quotient of the algebra yBr;s from the pre-

vious paragraph by the additional relations that f .x1/ D g. Nx1/ D 0, where

g.u/ is another monic polynomial de�ned explicitly via the identity [13, (2.6)].

Using Remark 1.6, one can check that the composition of the isomorphism
yBr;s

�
! ABr;s.ı1; ı2; : : : / from the previous paragraph with the natural quotient

map ABr;s.ı1; ı2; : : : / � B
Qf

r;s.ı1; : : : ; ı`/ sends both f .x1/ and g. Nx1/ to zero.

Hence it factors through B`;r;s to induce a surjection B`;r;s � B
Qf

r;s.ı1; : : : ; ı`/.

On comparing the spanning set for B`;r;s derived in the proof of [13, Theorem

2.12] with our basis for B
Qf

r;s.ı1; : : : ; ı`/ arising from Theorem 1.5, it follows that

this surjection is actually an isomorphism. Hence our cyclotomic walled Brauer

algebra is the same as the one in [13].
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