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Abstract. We show that for a special alternating link diagram, the following three polyno-
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to the leading term in the Alexander polynomial; b) the h-vector for a triangulation of the

root polytope of the Seifert graph and c) the enumerator of parking functions for the planar
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1. Introduction

In this paper we report on a new kind of combinatorial phenomenon in knot the-

ory. Our research was motivated by a desire to understand what the HOMFLY

polynomial of an oriented link ‘measures,’ i.e., to �nd a natural (for example,

diagram-independent) de�nition for it. While that problem remains wide open

(with the most promising approach being the Gopakumar–Ooguri–Vafa conjec-

ture [3], [13]), we feel we did carry out an interesting case study with some sur-

prising results.

The HOMFLY polynomial P.v; z/ [6] is an invariant of oriented links that

specializes to the Conway polynomial r.z/ via the substitution r.z/ D P.1; z/.

The latter is equivalent to the Alexander polynomial �.t/ through the formula

�.t/ D r.t1=2 � t�1=2/. Note that r and � share the same leading coe�cient.

In P , on the other hand, one �nds several terms that contribute to the leading

monomial of r when we set v D 1. We will collectively refer to these as the

top of the HOMFLY polynomial. For homogeneous links [2] (which include all

alternating and positive links), the top can also be described1 as the sum of those

terms that realize the z-degree of P .

A third, perhaps most useful description �rst associates the coe�cient T .v/ of

zn�sC1 in P to an arbitrary link diagram, where n is the number of crossings and

s is the number of Seifert circles, respectively. (Here we suppress the common

z-power and write only the v-powers.) In general, T .v/ may be the empty sum,

i.e., 0 (cf. Theorem 3.2), but not for homogeneous diagrams. For those, T .v/

provides an equivalent de�nition of the top of the HOMFLY polynomial of the

link. (In particular, n � s is an invariant of the homogeneous link [2].) We recall

that Seifert circles are the simple closed curves that result when we smooth every

crossing of a link diagram in the orientation-preserving way. Seifert circles are

the vertices of the Seifert graph, in which there is an edge between two of them

for every crossing where they meet. A Seifert graph is always bipartite, which is

the reason why it can be used in the standard construction of an oriented spanning

surface for a link.

Let us brie�y recall some more terminology. A block sum of two con-

nected graphs is a one-point union and under this, each connected graph has a

unique decomposition into irreducible (a.k.a. 2-connected) ones, called its blocks.

1 This second de�nition is probably the most appropriate for the top of P of an arbitrary link.

We will remain vague on this because in this paper we only consider homogeneous links.
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The median construction on a plane graph2 gives a link (diagram) as the boundary

of a surface, which in turn is obtained by taking a small neighborhood of the

embedding and twisting it (using one of two choices) once over each edge. A priori

the link is unoriented. A special alternating link is an oriented link that has

an alternating diagram obtained by �rst applying the median construction to a

connected plane bipartite graph, and then orienting the link by letting the two

color classes spin in opposite directions (cf. [7, Figure 3]). See Figure 2 for an

example. Note that alternatingness and connectedness imply that one choice of

twisting direction determines all others. Furthermore, the orientation is such that

all crossings share the same sign, i.e., special alternating links are either positive

or negative. (Here we use the standard convention of being a positive crossing

and a negative one.) Moreover, the bipartite graph is recovered as the Seifert

graph of the diagram.

A special alternating link is a Murasugi atom if the graph in the description

above is 2-connected. An oriented link is called homogeneous if it has a diagram D

that decomposes as a star product (a.k.a. Murasugi sum) of Murasugi atoms [2].

On the level of Seifert graphs, a star product is a block sum. When constructing

the star product, �rst we draw the circle C that corresponds to the merging vertices

and then reproduce the two diagrams either on the same side of C (in which case

the result is a connected sum) or on opposite sides (when we may or may not get a

connected sum). Note the additional choices that are involved with the latter case.

Figure 1 shows two of several possible star products of the same factors.

Figure 1. Two alternating links with the same Seifert graph. The signs mean the signs of

the crossings in the Murasugi atoms.

When we decompose special alternating links, all star products follow the �rst

(‘same side’) pattern. This is because in the other pattern, being alternating forces

opposite signs for crossings on opposing sides of C . I.e., special alternating links

2 A plane graph is an isotopy class of embeddings of a graph into the plane R2 or the

sphere S2. A planar graph is an abstract graph that admits such an embedding.
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are connected sums of Murasugi atoms of uniform sign. (For example, the granny

knot is the connected sum of two positive trefoils).

Let D be a homogeneous link diagram. The aim of this paper is to describe

the top of the associated HOMFLY polynomial PD in terms of the Seifert graph

of D. A theorem of Murasugi and Przytycki [12] says that the top of the HOMFLY

polynomial (more precisely, the polynomial T .v/ of our third description above)

behaves multiplicatively under star product. Thus it su�ces for us to describe the

top of P for Murasugi atoms; we will in fact do so for special alternating links.

As for any link L and its mirror image L� we have PL�.v; z/ D PL.�v�1; z/, we

may, without loss of generality, concentrate on positive special alternating links

only.

r0

�

��

Figure 2. A plane bipartite graph G, its planar dual G�, and associated special alternating

link LG . The last panel shows the three objects together.

Hence, much of our discussion focuses on a connected plane bipartite graph G

which gives rise (via the median construction) to the positive special alternating

link LG . Alexander Postnikov [14] has recently developed a beautiful theory of

(not necessarily planar) bipartite graphs. The gist of this paper is the realization

that some of his ideas are closely related to knot theory.

Postnikov associates a root polytope QG to any bipartite graph G, constructed

as follows. Denote the color classes of G by E and3 V and take the convex hull,

in R
E ˚ R

V , of the vectors e C v for all edges ev of G. Here e 2 R
E and

v 2 R
V are the standard generators associated to e 2 E and v 2 V , respectively.

If G is connected then the result is an .jEj C jV j � 2/-dimensional polytope

so that, of course, edges of G translate to vertices of QG . It is also not hard

to show that a set of vertices of QG is a�nely independent if and only if the

corresponding edges form a cycle-free subgraph of G. In particular, there is a

one-to-one correspondence between maximal simplices formed by vertices of QG

and spanning trees of G.

3 The unusual choice os symbols is motivated by hypergraph considerations, see after Corol-

lary 1.5. For the edge set of G, we will either write C or use G itself as a stand-in.
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A triangulation of QG is a collection of maximal simplices so that their union

is the entire root polytope and any two of them intersect in a common face. (Note

how it is not allowed to introduce new vertices when we triangulate a polytope.)

Our �rst result describes a speci�c triangulation of QG in the case when G

is a plane graph. Let us orient the dual graph G� so that each of its edges has

an element of E to the right and an element of V to the left. After �xing a

root r0 (a vertex of G�) arbitrarily, we consider spanning arborescences rooted

at r0. These are those spanning trees of G� in which each edge points away from

r0. Each spanning arborescence has a dual spanning tree in G and we claim the

following.

Theorem 1.1. Let G be a connected plane bipartite graph. Fix a root r0 and

consider all spanning arborescences of G� rooted at r0, as well as the spanning

trees of G dual to them. Then, the collection of those simplices in the root

polytope QG that correspond to the latter forms a triangulation of QG .

A concrete example of this phenomenon is shown in Figure 5.

A triangulation of a polytope is an instance of a pure simplicial complex,

i.e., one in which all maximal simplices have the same dimension. To any d -

dimensional simplicial complex, it is customary to associate the f -vector4

f .y/ D ydC1 C f0 yd C f1 yd�1 C � � � C fd�2 y2 C fd�1 y C fd ;

where fk, for k � 0, is the number of k-dimensional simplices in the complex. The

h-vector of the same complex is de�ned as h.x/ D f .x � 1/. The latter notion

becomes signi�cant (for example, it is guaranteed to have positive coe�cients)

for so-called shellable complexes, that is complexes with a shelling order. Here

a shelling order of a pure simplicial complex, �1 < �2 < � � � < �fd
, lists the

maximal simplices in such a way that each �i , i � 1, intersects the set �1[� � �[�i�1

in a union of ci codimension one faces. We always have c1 D 0 but assume as

part of the de�nition that ci � 1 for i � 2. Whether such an order exists is a subtle

question, but when it does, it is not hard to show [16] that

h.x/ D f .x � 1/ D

fdX

iD1

xdC1�ci : (1)

4 The f -vector, as well as the h-vector below, may be more appropriately called a polyno-

mial. However the terminology is so common in combinatorics that we decided to keep it.
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The HOMFLY polynomial, like most knot polynomials, is usually computed

from a diagram of the link via successive applications of a skein relation. The

process is captured by a so-called computation tree. The nodes of the tree are

link diagrams, with the original diagram playing the role of root. Edges in the

tree correspond to simple local modi�cations of the diagrams. For us, the relevant

skein relation is

P D v2P C vz P ; (2)

coupled with the initial condition P D 1 for the HOMFLY polynomial of

the unknot. Thus the computation tree is a rooted binary tree in which the

two descendants of a non-leaf node result from either changing or smoothing a

crossing. A priori, the crossings that we operate on can be chosen quite freely.

The only restriction is that the leaves of the tree should be diagrams of the unknot,

or of other links whose HOMFLY polynomials are known.

Now, the main idea of the paper is to use the spanning arborescences above

to construct a computation tree T for PLG
. Smoothing a crossing is equivalent to

removing the corresponding edge from the Seifert graph. We can also keep track

of crossing changes by, say, making the corresponding edge dotted. Thus each

vertex of the tree will be described by a subgraph of G with some dotted edges.

To build T, �rst we will use a backtrack algorithm to enumerate all arborescences

(including the non-spanning ones) of G�. The subgraphs giving rise to the nodes

of T will be their duals and the tree structure (as well as the dotted edges) will

re�ect the steps in the algorithm. See Figures 3 and 4 for an example.

The leaves of the tree T arise from two kinds of subgraph: either a spanning

tree of G, which corresponds to an unknot diagram, or a subgraph so that along its

‘outside contour’ (if the root of G� is placed in the ‘outside region’ of G), every

other edge is dotted. We will not compute the HOMFLY polynomials associated

to the latter (so as far as the ‘full’ HOMFLY polynomial is concerned, T remains

incomplete), but we will prove that these leaves do not contribute to the top of

PLG
. By contrast, the spanning trees only contribute to the top. In fact, each gives

a single monomial in which the exponent of v is determined by the number of

dotted edges.

The tree T has a natural embedding in the plane by always drawing, as we

work downward from the root, the result of smoothing to the right and the result

of crossing change to the left. In particular, the leaves of T have a natural order

from right to left. As to the leaves that belong to spanning trees,

(i) by Theorem 1.1, they correspond to the maximal simplices in a triangulation

of QG and

(ii) we claim that the right-to-left order is a shelling order for the triangulation.

See Figure 4 for an illustration. From this, the following is immediate.
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Proposition 1.2. The triangulation described in Theorem 1.1 is shellable.

Furthermore, it turns out that as we build QG simplex-by-simplex using the

shelling order, the number ci of facets along which the simplex �i is attached is

exactly the number of dotted edges in the corresponding tree. From this our �rst

main result follows:

Theorem 1.3. For any connected plane bipartite graph G with s vertices and

n edges, the top of the HOMFLY polynomial PLG
.v; z/ (of the positive special

alternating link LG) is

vnCs�1 h.v�2/;

where h is the h-vector of the triangulation of the root polytope QG in Theorem 1.1.

In general, di�erent triangulations of the same polytope can have di�erent h-

vectors. Even the number of maximal simplices, i.e., the sum of the coe�cients

in the h-vector, may vary. That can not occur for a root polytope because its

maximal simplices share the same volume [14]. In fact, much more is true: any

two triangulations of QG have the same f -vector and hence the same h-vector

[9]. (The proof is not hard. The theorems of this paper do not depend on it.)

Our other main theorem gives a third description of the two quantities that are

equated in Theorem 1.3. It is given in terms of parking functions associated to

G�, as de�ned by Postnikov and Shapiro [15]. Parking functions are also known

as superstable chip-�ring con�gurations, see for example [4]. Having �xed a root

r0 in G�, parking functions are of the form R n ¹r0º ! N D ¹ 0; 1; 2; : : :º, where

R is the vertex set of G�. See De�nition 6.1 for the details. Let us associate the

index

i.�/ D
X

r2Rn¹r0º

�.r/ (3)

to the parking function � . Let … D ….G�; r0/ denote the set of parking functions

(which is easily seen to be �nite), and let the parking function enumerator be

p.u/ D
X

�2…

ui.�/: (4)

We �nd the following connection between knot theory and the chip-�ring model.

Theorem 1.4. For any connected plane bipartite graph G with s vertices and n

edges, the top of the HOMFLY polynomial PLG
.v; z/ is equal to

vn�sC1 p.v2/;

where p is the parking function enumerator of the directed graph G�.
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A consequence of the Theorem is the (known) fact that G� is such that p.u/

is independent of the choice of r0. As a biproduct of our arguments, we obtain a

bijection between spanning arborescencesof G� rooted at r0 and parking functions

de�ned on R n ¹r0º. It has been known [15] that those two sets have the same

cardinality. Our bijection is similar to, but appears not to be a special case of,

those in the literature [1], [4]. We also obtain

Corollary 1.5. Let G be a connected plane bipartite graph on s vertices with pla-

nar dual G�. Then the h-vector h.x/ of any triangulation of the root polytope QG

and the parking function enumerator p.u/ of G� satisfy

us�1 h.u�1/ D p.u/:

The combinatorial setup used in this paper yields yet another description of the

top of PLG
, this time as the interior polynomial [8] of the hypergraph .V; E/. This

last claim is only conjecturally true5, but once it is proved, it will provide a hitherto

unknown connection between the HOMFLY polynomial and Floer homology (cf.

[7, Conjecture on p. 4]). Namely, the interior polynomial can be computed from

the so-called hypertree polytope (see [8] for de�nitions) and the latter can be

thought of as the Floer homology of a certain sutured manifold6 [7]. Due to

Theorem 1.3, the problem of reading (some) HOMFLY coe�cients out of Floer

homology is reduced to the following conjecture of Postnikov and the �rst author:

Conjecture 1.6. The h-vector h of a triangulation of the root polytope QG of

the connected bipartite graph G is equivalent to the interior polynomial I of the

hypergraph .V; E/, where V and E are the color classes of G. Namely, we have

ujE jCjV j�1 h.u�1/ D I.V;E/.u/.

The sutured manifold mentioned above is the complement of a Seifert surface.

However this surface is bounded not by LG but by a related link. One may wish

to consider instead the minimum genus Seifert surface FG for LG (produced

by the median construction) that deformation retracts to G. The sutured Floer

homology SG of the complement of FG is also a hypertree polytope (in the sense

of footnote 6) but of the wrong hypergraph, whose interior polynomial is di�erent

5 Note added in revision: a proof is now published [9]. It proceeds as described in this

paragraph, by settling Conjecture 1.6.

6 In order to be more precise, let us note that the sutured manifold in question is a handlebody,

so that the set of Spinc structures supporting the sutured Floer homology lies in an a�neZ-lattice.

This set is isomorphic to the set of lattice points in the hypertree polytope. Furthermore, at each

Spinc structure in the support, the homology group is isomorphic to Z.
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from the top of PLG
. On the other hand, the set ….G�/ of parking functions may

be thought of as a rearrangement7 of SG and thus Theorem 1.4 also becomes a

way of obtaining information on the HOMFLY polynomial from Floer homology.

We end the introduction with a statement of our main result for homoge-

neous links. As explained above, this follows directly from our other claims via

Murasugi–Przytyczki’s product formula.

Theorem 1.7. Let D be a homogeneous link diagram that is composed of k

positive and l negative Murasugi atoms. Let pi .v/, 1 � i � k and p0
j .v/,

1 � j � l be the parking function enumerators of the dual of the Seifert graph

of each atom. By Corollary 1.5, these polynomials can also be interpreted as h-

vectors.

Now if the Seifert graph G of D has altogether sC vertices and nC edges in

its positive blocks and s� vertices and n� edges in its negative blocks (here we

have nC C n� D n but vertices where blocks are attached are counted once for

each block to which they belong, whence s D sC C s� � k � l C 1) so that the

writhe of D is w.D/ D nC � n�, then the coe�cient of zn�sC1 in the HOMFLY

polynomial PD.v; z/ (which is the highest power of z occurring in P ) is

.�1/n��s�Cl � vw.D/�sCCs�Ck�l �

k
Y

iD1

p.v2/ �

l
Y

j D1

p0.v�2/:

The paper is organized as follows. We start with material on arborescences

and arrange them in a binary tree in Section 2. In Section 3, we use the binary tree

to compute the top of the HOMFLY polynomial of a special alternating link. The

proof of an important proposition will be delayed until Section 8. In Section 4,

we recall some of Postnikov’s results and prove Theorem 1.1. In Sections 5 and 6,

respectively, we use the results of Section 3 to establish Theorems 1.3 and 1.4.

In Section 7, we present some new evidence for the Conjecture made in [7]

(i.e., for Conjecture 1.6 in the planar case)8.

Acknowledgments. We are grateful to Alexander Postnikov from whom we

learned about the h-vector. The paper also bene�ted greatly from conversations

with Dylan Thurston.

7 We plan to clarify the meaning of this claim in a future joint paper with Dylan Thurston.

Here let us only note that SG and ….G�/ both have dimension jRj � 1.

8 Note added in revision: Even though Conjecture 1.6 has been proven [9], we hope that the

connections pointed out in Section 7 will be of interest to the reader.
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2. Arborescences

Most arguments in the present paper are centered around a binary tree. We will

give three mutually isomorphic descriptions of it. In this section, the binary tree

will appear as the ‘tree of arborescences.’ In the next, we will describe it as

the ‘tree of subgraphs’ and then as the ‘HOMFLY computation tree.’ But �rst,

we introduce an object which will become a distinguished leaf of the tree of

arborescences.

2.1. The clocked arborescence. All graphs that appear in this paper are �nite.

Multiple edges and loop edges are allowed. (Of course, the latter do not occur

in bipartite graphs.) A subgraph of a graph will always have the same vertex set

as the original, i.e., a subgraph will just be a subset of the edges of the graph.

A spanning tree is a connected and cycle-free subgraph.

By de�nition, the edges of any plane graph G and the edges of its planar

dual G� are in a one-to-one correspondence. This gives rise to a bijection between

subgraphs, where a set of edges of G is paired with the complementary set of the

corresponding edges of G�. Elements of such a pair will be called dual subgraphs.

If G and G� are both connected, then it is well known that a subgraph (of G or of

G�) is a spanning tree if and only if its dual is one.

De�nition 2.1. Let J be a directed graph (possibly with loop edges and multiple

edges) and let us �x a vertex r0, called the root, in J . An arborescence rooted at

r0 is a subgraph of J so that

� its connected components not containing r0 are isolated points and

� its connected component containing r0, called the root component, is a tree

in which there is a (unique) directed path from r0 to any other vertex.

A spanning arborescence is an arborescence without isolated points.

We remark that arborescences may never contain loop edges.

Let now G be a plane bipartite graph so that G� is directed as explained in

the introduction: if E and V are the color classes of G, then as we traverse each

edge of G�, we see an element of E to our right and an element of V to our left.

We may write a directed edge as an ordered pair .startpoint; endpoint/, although
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we should always keep it in mind that multiple edges may exist with the same

initial and terminal points. Let us also recall that the vertex set of G� is identi�ed

with the set R of regions of G (i.e., the set of connected components of S2 n G).

Lemma 2.2. Let G be a plane bipartite graph. There exists a directed path from

any vertex of G� to any other vertex.

Proof. Assume the contrary, i.e., that there exists a vertex r0 2 G� so that the

set R0 � R of vertices that are accessible from r0 with directed paths is not R.

Then the union of the corresponding (to elements of R0) regions of G is not the

entire sphere S2 and hence it has non-empty boundary. (By region we mean the

closure of a connected component of the complement of the embedding.) That

boundary is a collection of cycles in G and since G is bipartite, each boundary

component consists of at least two edges. It is easy to see that half of the edges

along each boundary component are such that the corresponding edge of G� points

from an element of R0 to an element of R n R0. But that is a contradiction because

by de�nition, the terminal points of these edges of G� should be in R0. �

Fix a root r0 in G� and an edge � of G so that the dual edge �� points to r0. We

will use a“greedy,” or depth-�rst, algorithm to construct a spanning arborescence

of G� determined by these data. In the process, we will select edges one-by-one

so that at each stage we have an arborescence of G�.

Let "0;1 be the �rst non-loop edge of G�, directed away from r0, that we �nd as

we turn around r0, starting from ��, in the positive (counterclockwise) direction.

Let r1 be the terminal point of "0;1. Now turn counterclockwise around r1, starting

from "0;1, until the �rst edge "1;1 is found so that together with "0;1 they form an

arborescence (i.e., "1;1 is neither a loop nor does it point to r0). Now move to

the terminal point r2 of "1;1 and turn around it counterclockwise, starting from

"1;1, until the next edge is found so that together with the �rst two, they form an

arborescence, and so on.

If at any point in the process we select the edge "i;j D .ri ; rk/ but complete

a full turn around rk without �nding a suitable next edge, then we move back to

ri and continue turning counterclockwise around it from "i;j until an edge "i;j C1

is found which forms an arborescence with the previously chosen ones. If this

does not exist either, then we move back to the starting point rl of the unique

edge "l;m D .rl ; ri/ in our arborescence which ends at ri and continue searching

for a suitable edge "l;mC1 by turning counterclockwise around rl , starting from

"l;m, and so on.
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The edge-selecting algorithm terminates when a full turn has been completed

around all vertices of G� that we visited in the process (including r0). We claim

that the �nal arborescence A is spanning. Indeed, if there was an isolated point r

in A then �nd a directed path in G� from r0 to r (cf. Lemma 2.2). Tracing this

path backward from r , the �rst edge that is in A is preceded by an edge that could

be added to A to form a larger arborescence (if A and the path are disjoint, then

the same can be said about the �rst edge along the path). Moreover, when we

were turning around the startpoint of this edge, we would have selected it into our

arborescence, which is a contradiction.

De�nition 2.3. Let G be a connected plane bipartite graph with dual graph G�.

The spanning arborescence of G� constructed above will be called the clocked

arborescence (relative to the vertex r0 of G� and the edge � of G).

2.2. The tree of arborescences. We start with a technical digression. We stress

that (say, smooth) embeddings of the graphs G and G� into the sphere S2 have

been �xed. Let C denote the set of intersection points between edges of G and G�.

With a slight abuse of notation, we will also speak of C as the edge set of either

G or G�. Likewise, we use the symbol R both for the set of regions of G and for

the set of vertices of G�. The regions of G� have their boundary oriented either

clockwise or counterclockwise. These two sets of regions are identi�ed with the

color classes E and V , respectively, of G.

Now, let us �x smooth arcs connecting each vertex r 2 R to the vertices of

G that lie along the boundary of the region r (but otherwise avoiding G and G�).

Together with G and G�, these arcs form a triangulation TR of S2. More precisely,

the set of 0-cells is E [ V [ R [ C and the 1-cells are the arcs above along with

the half-edges of G and G� emanating from elements of C . Let us also �x a

barycentric subdivision B of TR.

De�nition 2.4. The regular neighborhood NA of an arborescence A in G� is

the union of those (closed) 2-cells of B that have a common point with the root

component of A.

In combinatorial topology, a regular neighborhood is usually de�ned using a

second barycentric subdivision. However for our purposes, De�nition 2.4 will

su�ce and so we will use it to avoid unnecessary complication.

Next, we shall describe an algorithm that enumerates all arborescences of G�

rooted at r0 and arranges them in a binary tree A. The construction will depend

on the same edge � of G as in the previous subsection. The nodes of the binary
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tree will actually be pairs of the form .arborescence; set of skipped edges/ so that

the skipped edges are edges of G�, not in the arborescence, each of which has

its startpoint in the root component. The nodes of A have either no descendant

or exactly two, which we will refer to as the right and left descendants. Here we

imagine the descendants of each node to be ‘below’ it (with the root of the tree at

the ‘top’) and slightly to the right or left. For practical reasons, in Figures 3 and 4

the root appears at the top left instead and the tree is distorted accordingly.

Our �rst arborescence, the root of the binary tree, is the one with no edges

and no skipped edges. The right descendant of the root has the unique edge

"0;1 D .r0; r1/ that appeared in the construction of the clocked arborescence. It

has no skipped edges. The left descendant of the root still has no edges, but it has

the skipped edge "0;1. The following is the general description of our process.

De�nition 2.5. Suppose that .A; S/ has been chosen as a node of the tree A, and

let NA denote the regular neighborhood of A. Let k be the intersection point of the

boundary @NA and the edge �� (which can never be in A, hence k exists). Now,

let us move counterclockwise around @NA starting from k until we reach the �rst

edge ı of G� that is not in S and which is such that A[¹ıº is an arborescence. We

will refer to ı as the augmenting edge of .A; S/. If such a ı does not exist, then the

node .A; S/ will have no descendants in A. Otherwise, let the right descendant of

.A; S/ be .A [ ¹ıº; S/ and let its left descendant be .A; S [ ¹ıº/.

Example 2.6. Figure 3 shows the tree of arborescences for the complete bipartite

graph G D K3;2. The embedding of G (and G�), the root r0, and the edge � are

shown in Figure 2.

Lemma 2.7. Along any path inA that starts from the root, both the arborescences

and the sets of skipped edges form an increasing sequence.

Proof. Obvious from the construction. �

It is easy to see that the rightmost branch of A, i.e., the path when we always

pass to the right descendant, leads to the clocked arborescence (with no skipped

edges). As to other potential terminal nodes, we make the following observation.

Lemma 2.8. The node .A; S/ of A has no descendants if and only if either

I. A is a spanning arborescence or

II. the set R0 of vertices in the root component of A is a proper subset of R but

all edges of G� from an element of R0 to an element of R n R0 belong to S .
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type I

type I

type I

type IItype IItype II

Figure 3. The tree of arborescences A for the directed graph in Figure 2. For each node

.A; S/, solid edges represent A and dotted edges represent S .

With regard to the above, we will speak of type I and type II leaves of A.

Proof. A spanning arborescence is also a spanning tree of G� and hence it con-

tains exactly jRj � 1 edges. Other arborescences have fewer edges. Consequently,

spanning arborescences can not be extended as arborescences and so cannot have

descendants in A. If .A; S/ �ts the second description then it has no augmenting

edge and hence no descendants, either.

As to the converse, let now .A; S/ be so that A is not spanning and let ˛ be an

edge from the root component to an isolated point of A. Such an edge necessarily

intersects the boundary @NA of the regular neighborhood of A and hence it will

be detected by the process described in De�nition 2.5. Thus if .A; S/ has no

descendants in A then any possible ˛ belongs to S . �

Lemma 2.9. All spanning arborescences of G� appear at a unique node (a type I

leaf ) of A.

Proof. Let A be a spanning arborescence of G. We will construct a path in A

that starts from the root and ends at .A; S/ for an appropriate S . Assume that

the path has already been constructed until the node .A0; S 0/ and let ı be the

augmenting edge of .A0; S 0/. If ı is an edge in A, then continue the path to the right

descendant .A0 [ ¹ıº; S 0/. Otherwise, move to the left descendant .A0; S 0 [ ¹ıº/.
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We claim that the last node . zA; zS/ along our path cannot be a leaf of type II.

Since zA � A by construction, if zA ¤ A, then there has to be an edge of A going

from a vertex of the root component of zA to an isolated point of zA. As our process

never skips edges of A, this edge cannot be in zS either, but that contradicts the

de�nition of a type II leaf. Hence . zA; zS/ is a type I leaf which implies zA D A.

Regarding uniqueness, assume that there exists another path P in A from the

root to a leaf involving A. Let .A0; S 0/ be the node where the two paths (P and

the one constructed above) separate. Since .A0; S 0/ cannot be a leaf, it has an

augmenting edge ı. Now the next node .A00; S 00/ along P after .A0; S 0/ is such that

either

� ı 62 A but ı 2 A00 (if P takes a step to the right at .A0; S 0/) or

� ı 2 A but ı 2 S 00 (if P takes a step to the left).

As both scenarios prevent the endpoint of P from involving A, we have a contra-

diction and the proof is complete. �

If the arborescence A is not spanning then it may appear at multiple nodes of

A, as the example of the root and its left descendant already shows.

3. The computation tree

In this section we describe two more incarnations of the binary treeA and we spell

out their relation to the top of the HOMFLY polynomial PLG
.

It is a fairly straightforward matter to transform the tree A of arborescences in

G� into the isomorphic tree G of (decorated) subgraphs of G. Both trees depend

on the same choice of edge �. If .A; S/ is a node in A, then we replace it with the

dual subgraph A� of G. The edges of G that correspond to elements of S are in

A� and we will refer to them as the dotted edges. We may keep the same symbol S

for the set of dotted edges. The tree structures of A and G are the same, that is,

De�nition 2.5 serves to describe G as well. However it is useful to translate that

description to subgraph terms.

De�nition 3.1. Let G be a connected plane bipartite graph. The nodes of the tree

of subgraphs G are pairs .B; S/ where B is a subgraph of G, that is a subset of the

graph’s edges, and S � B is a further subset. The root of G is .G; ¿/.

If .B; S/ is already a node of G then we walk along � from its endpoint in V

to the one in E and continue walking on edges of B so that on our left we always

see the same region of B . We look for the �rst instance when an edge " 2 B n S
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is traversed from its endpoint in E to its endpoint in V and " is such that B n ¹"º

is a connected subgraph of G (for example, it has no isolated points).

If such an " is found then we let the right descendant of .B; S/ be .B n ¹"º; S/

and let the left descendant be .B; S [ ¹"º/. Else .B; S/ has no descendants in G.

We may refer to the region of G marked with r0 as the ‘initial outside region.’

At each stage of the process described above, we look for a non-dotted edge " of G

to ‘puncture’ (i.e., remove) so that the outside region grows larger but its interior

remains simply connected. In the right descendant of the subgraph, " is removed.

In the left descendant, the subgraph is the same but " becomes dotted, so that it

can not be punctured any more along the current branch of G. A trivial induction

proof shows that all nodes .B; S/ of G satisfy � 2 B n S and that �, as well as all

elements of S , are adjacent to the outside region.

A node of G can become a leaf in two ways. Either the only region of the

subgraph is the outside region, i.e., the subgraph is a tree – these are the type I

leaves. Or else, the (closed) outside region is not the entire sphere S2 but along

each boundary component, dotted and non-dotted edges alternate. In this case,

that is in the case of a type II leaf, we say that the subgraph has an alternating

contour. Note that no condition is imposed on edges that are incident on both

sides with the outside region. Figure 4 shows three subgraphs (in the bottom row)

with alternating contours.

Finally, in order to turnG into the computation tree T, we replace each subgraph

with an oriented link diagram using the median construction. Here we use negative

half-twists for non-dotted edges and positive ones for dotted edges. We orient

the link by letting its arcs circle elements of E clockwise and elements of V

counterclockwise. This way, crossings coming from non-dotted edges become

positive while those coming from dotted edges are negative, cf. Figures 2 and 4.

The link diagram at the root of T is that of LG . In terms of these diagrams, passing

to a right descendant means smoothing a crossing and passing to a left descendant

is equivalent to changing a crossing (from positive to negative).

Smoothing and changing of crossings play a crucial role in the de�nition of the

HOMFLY polynomial P.v; z/, as we explained on page 210 of the Introduction.

Let us quote the following well known result.

Theorem 3.2 (Morton [11]). If an oriented link diagram contains n crossings and

s Seifert circles, then in any term of the corresponding HOMFLY polynomial, the

exponent of z is at most n � s C 1.
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The estimate is well known to be sharp for homogeneous link diagrams. This

claim also follows from our main result on special alternating links (as stated in

Theorems 1.3 and 1.4, although the statement in Theorem 3.5 su�ces as well) and

the following fact.

Theorem 3.3 (Murasugi–Przytyczki [12]). Let D1 and D2 be oriented link di-

agrams so that they have n1 and n2 crossings, as well as s1 and s2 Seifert cir-

cles, respectively. Let us form a star product D1 ? D2 of D1 and D2. Then

D1 ? D2 has n1 C n2 crossings and s1 C s2 � 1 Seifert circles, and the coe�-

cient of zn1Cn2�.s1Cs2�1/C1 in PD1?D2
.v; z/ is the product of the coe�cients of

zn1�s1C1 in PD1
.v; z/ and that of zn2�s2C1 in PD2

.v; z/.

De�nition 3.4. For a link L that can be presented with a homogeneous diagram

with n crossings and s Seifert circles, the top of the HOMFLY polynomial is the

polynomial T .v/ in v that is the coe�cient of zn�sC1 in PL.v; z/.

Here n � s, and hence T .v/, does not depend on the homogeneous diagram

used. When we combine the next theorem with Theorem 3.3, it follows that for

any homogeneous link, all coe�cients in the top of the HOMFLY polynomial have

the same sign. In particular, they do not cancel when we pass to the Alexander

polynomial �.t/ D P.1; t1=2 � t�1=2/, rather their sum becomes the leading

coe�cient.

Theorem 3.5. Let G be a connected plane bipartite graph with s vertices and

n edges, and let T denote one of its computation trees that we constructed above.

Then the top of the HOMFLY polynomial PLG
.v; z/ is the sum to which each type I

leaf of T with k negative crossings (which appear as skipped edges in A and as

dotted edges in G) contributes the monomial vn�sC1C2k.

Proof. From the skein relation (2), it is obvious that if we label each edge of T

connecting a node to its right descendant with vz and each edge leading to a left

descendant with v2, then T can be used to compute the HOMFLY polynomial

associated to its root LG as the sum of the following terms: For each leaf, take the

HOMFLY polynomial of the corresponding link and multiply it with the product

of the edge labels along the unique path between the leaf and the root.

Type I leaves, where the corresponding subgraph is a spanning tree of G, are

diagrams of the unknot. Therefore, since P D 1, type I leaves contribute a single

monomial, namely the product of the appropriate edge labels. Each spanning tree

contains s�1 edges. So in order to reach a type I leaf, one needs to remove n�sC1

edges, that is, on the way from the root to the leaf, one has to take a step to the right
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exactly n�sC1 times. If the link diagram at the leaf contains k negative crossings,

that means that we took a step to the left k times. Hence the contribution of the

leaf to the HOMFLY polynomial is .vz/n�sC1.v2/k D vn�sC2kC1zn�sC1.

The Theorem will obviously follow once we make sure that the type II leaves

of T do not contribute to the top of PLG
. This is a consequence of the following.

Proposition 3.6. Let the oriented link diagram D contain n crossings and s Seifert

circles. Assume that there exists a region r in the complement S2 n D with the

following property: The arcs of D bounding r , of which there are at least two, are

alternately oriented clockwise and counterclockwise so that at each crossing along

@r , the counterclockwise arc passes under the clockwise one. We also assume

that near each crossing along @r , only one quadrant formed by D belongs to r .

(See Figure 16.) Then, in any term of the corresponding HOMFLY polynomial

PD.v; z/, the exponent of z is at most n � s � 1.

Indeed, along any path from the root of T to a node in the tree, the exponent

of z in the product of the corresponding edge labels is the number of steps taken

to the right. That number agrees with the amount n � n0 by which the number of

crossings decreased along the path. The number s of Seifert circles is constant

throughout T. Hence in order for the node to contribute terms containing zn�sC1

to PLG
, the HOMFLY polynomial associated to the node has to contain terms with

zn0�sC1 in them. The estimate in Proposition 3.6 rules that out for type II leaves.

Note that the main assumption in the Proposition is satis�ed by link diagrams

that arise after (in the description of G at the beginning of this section) an alternat-

ing contour in the subgraph has been achieved. There is however an extra assump-

tion in the Proposition, namely that the outside region at this stage does not touch

itself over an edge of G. General type II leaves of T are obtained by connecting

diagrams described in the Proposition in a tree-like fashion. Here by connecting,

we mean joining the corresponding (embedded) Seifert graphs by paths of edges

(some of which may be dotted). In terms of link diagrams, that translates to join-

ing by a sequence of (0 or more) bigons, which is just a complicated way of taking

a connected sum. Because the HOMFLY polynomial is multiplicative under con-

nected sums, the estimate discussed in the previous paragraph follows for general

type II leaves from Proposition 3.6 by a short inductive argument (it even gets

stronger as the number of components in the alternating contour increases). �

Proposition 3.6 is just a slight improvement on Morton’s upper bound in

Theorem 3.2, yet it turns out to be where most of the di�culty in this paper

is concentrated. Notice that we did not make any assumption on the crossings
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not adjacent to r , even though when we apply Proposition 3.6 in the proof of

Theorem 3.5, away from @r the diagram D is still alternating. Likewise, it is not

assumed that D be special. We delay the proof of the Proposition until Section 8.

v2

v2

v2

v2

v2

vz

vz

vz

vz

vz

Figure 4. The tree of subgraphs G, partially superimposed with the computation tree T, in

our running example. The semicircular arc indicates the right-to-left order of type I leaves.

Example 3.7. For the complete bipartite graph G D K3;2 of Figure 2, the link LG

consists of three �bers of the Hopf �bration. Its diagram has n D 6 crossings and

s D 5 Seifert circles, so the top of the HOMFLY polynomial is at z-exponent

n � s C 1 D 2. The three type II leaves of the computation tree T (derived from

Figure 3, shown in Figure 4) are two two-component unlinks with the HOMFLY

polynomial .v�1 � v/=z and a distant union of a Hopf link with an unknot, with

P D

�
vz

Cvz�1 �v3z�1

�

�
v�1 � v

z
:

(These values are well known and easy to check. We write the HOMFLY polyno-

mial in a slightly unconventional way to emphasize its bigraded nature.) Hence
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PLG
.v; z/ D 2v5z � .v�1z�1 � vz�1/ C v4 �

 

1 �v2

Cz�2 �2v2z�2 Cv4z�2

!

„ ƒ‚ …

type II leaves

C .v2z2 C 2v4z2/ � 1
„ ƒ‚ …

type I leaves

D
v2z2 C2v4z2

C3v4 �3v6

Cv4z�2 �2v6z�2 Cv8z�2:

(5)

In particular, the top of PLG
is T .v/ D v2 C 2v4. Notice how, in accordance

with the proof of Theorem 3.5, contributions to the top came from type I leaves

only. The Conway polynomial is rLG
.z/ D PLG

.1; z/ D 3z2 and the Alexander

polynomial is �LG
.t / D rLG

.t1=2 � t�1=2/ D 3t � 6 C 3t�1.

Remark 3.8. If one color class of G consists of valence 2 points, that is if G is

obtained from a (plane) graph by placing an extra vertex at the midpoint of each

edge, then (as in the previous example) the Conway polynomial rLG
.z/ is a single

monomial. This follows, for example, from a result of Jaeger [5].

4. Triangulations of the root polytope

In order to relate our results on arborescences to a di�erent kind of combinatorics,

we need to review some of Postnikov’s results [14]. This section also contains the

proof of Theorem 1.1.

Let G be an abstract bipartite graph. That is, we do not assume an embedding

of G into the plane. Let us denote the color classes of G with E and V . The

graph G may have multiple edges but they do not a�ect the following construction.

For e 2 E and v 2 V , let e and v, respectively, denote standard generators of

R
E ˚ R

V . Let the root polytope of G be

QG D Conv¹ e C v j ev is an edge in G º;

where Conv denotes the usual convex hull.

Lemma 4.1 ([14, Lemma 12.5]). Let G be a connected bipartite graph on s ver-

tices. The dimension of QG is s �2. A set of vertices of QG is a�nely independent

if and only if the corresponding edges in G form a cycle-free subgraph. In partic-

ular, maximal (i.e., .s �2/-dimensional) simplices in QG correspond to spanning

trees of G. Furthermore, the volumes of such maximal simplices agree.
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De�nition 4.2. A collection of maximal simplices in QG (so that their vertices

are also vertices of the root polytope) is a triangulation if its union is QG and if

every two of its members intersect in a common face.

Studying these triangulations reveals many a subtle phenomenon, see [14].

First let us quote the translation, to subgraph terms, of the second condition of

the de�nition.

Lemma 4.3 ([14, Lemma 12.6]). Let �1 and �2 be spanning trees in G. The

following two statements are equivalent.

I. The simplices in QG that correspond to the �i intersect in a common face.

II. There does not exist a cycle "1; "2; : : : ; "2k of edges in G, where k � 2, so

that all odd-index edges are from �1 and all even-index edges are from �2.

The proofs of the previous two lemmas are short and elementary. From the

last assertion in Lemma 4.1, it follows that each triangulation of QG consists of

the same number of simplices. Postnikov also expresses that value in terms of G.

Theorem 4.4 (Postnikov [14]). Let G be a connected bipartite graph with color

classes E and V . The number of simplices in each triangulation of the root

polytope QG is the number of possible valence distributions, taken at elements

of E, of spanning trees of G.

There is an obvious sense in which .V; E/ is a hypergraph [8] and in that context

it is fairly natural to rename (essentially) the valence distributions above as follows.

De�nition 4.5. Let G be a connected bipartite graph with color classes E and V .

A function fW E ! N is called a hypertree (in the hypergraph .V; E/) if G has a

spanning tree with valence f.e/ C 1 at each e 2 E.

With this, Theorem 4.4 says that the number of simplices needed to triangulate

QG is the number of hypertrees in .V; E/. Of course, the same can be claimed

regarding the ‘abstract dual’ (a.k.a. transpose) hypergraph .E; V / as well.

Proof of Theorem 1.1. Even though all the necessary ingredients are included in a

previous paper [8], we spell out a proof for completeness and in order to elaborate

on some details. As usual, let us denote the color classes of G by E and V .

Let us consider a pair A1, A2 of arborescences in G� (both rooted at r0).

Assume that their dual trees �1, �2 violate the condition in Lemma 4.3, that is,

there exists a cycle ˆ in G of length at least 4, composed of edges alternately from
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�1 and �2. The root r0 does not lie along ˆ because neither A1 nor A2 has edges

ending at r0. Let ˆ bound the disks U and U 0 in S2. Since elements of E and

V alternate along ˆ, it easily follows that all edges of A1 that cross ˆ do so from

one side to the other, say from U to U 0. The same is true for edges of A2 crossing

ˆ, but those travel from U 0 to U . But then, the fact that r0 cannot be in U and in

U 0 simultaneously prevents one of A1 and A2 from being an arborescence: If, say,

r0 2 U , then A2 is not an arborescence because the startpoints of its edges crossing

ˆ (which exist because A2 is connected) cannot be reached by an oriented path

from r0.

Now that we have seen that all pairs of simplices resulting from our arbores-

cences satisfy the compatibility condition in De�nition 4.2, we just have to make

sure that there are enough of them so that their union is the entire root polytope.

By Theorem 4.4, it su�ces to show that any hypertree in .V; E/ is realized by a

spanning tree of G that is dual to a spanning arborescence of G�. But that is part

of the statement of Theorem 10.1 in [8]. �

r0 r1 r2

v0

v1

e0 e1 e2

�

e0 C v0

e0 C v1

e1 C v0

e1 C v1e2 C v0

e2 C v1

Figure 5. Left: The graph G D K3;2 with color classes E D ¹ e0; e1; e2 º and V D

¹ v0; v1 º, and its dual G�. Middle: The spanning arborescences in G� (relative to the

root r0), their dual spanning trees in G, and the corresponding maximal simplices in QG .

Right: The three simplices triangulate QG .

Example 4.6. The root polytope of the complete bipartite graph G D K3;2

is the product of an interval and a triangle. (In general, QG is obtained from

the product �E � �V of the .jEj � 1/-dimensional unit simplex �E and the

.jV j � 1/-dimensional unit simplex �V by truncating vertices corresponding to

non-edges of G.) In Figure 5, we show the triangulation of QG corresponding to

the arborescences found in Example 2.6.
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5. The HOMFLY polynomial and the root polytope

In this section we prove Theorem 1.3. As explained in the Introduction, the type I

leaves of the binary tree A have a natural order from right to left (see Figure 4 for

an example). The �rst (smallest) element in the order is the clocked arborescence

of subsection 2.1. The de�nition of shelling order was given on page 209 of the

Introduction.

Theorem 5.1. Let G be a connected plane bipartite graph. Let us choose a root r0

and adjacent edge � to triangulate the root polytope QG as in Theorem 1.1. Then,

the order on the set of maximal simplices induced by the right-to-left order of

the corresponding spanning arborescences is a shelling order. In particular, the

triangulations of QG described in Theorem 1.1 are shellable.

Proof. As always, let us �x the root r0 and the edge � that are used to construct

the tree A. Recall that the vertex set of QG is identi�ed with the set C , which in

turn can be viewed both as the edge set of G and as the edge set of G�.

Let A and B be spanning arborescences so that A < B , i.e., the unique leaf

of A that involves A (cf. Lemma 2.9) is to the right of the leaf involving B . We

have to �nd a third spanning arborescence A0 (allowing for A0 D A) so that the

corresponding simplices �A; �A0 ; �B � QG (with vertex sets identi�ed with C nA,

C n A0, and C n B , respectively) satisfy

(i) �B \ �A0 is a codimension one face, i.e., A0 and B di�er in exactly one edge

(ii) �B \ �A � �A0 , that is, A0 � A [ B

(iii) �A0 precedes �B , i.e., A0 < B in the right-to-left order.

Let us �nd the node .A0; S0/ of A that is the last common node along the paths

connecting the root to A and B , respectively. Let ı be the augmenting edge of

.A0; S0/. Then by Lemma 2.7, ı is an element of A and it is a skipped edge for

B . We construct A0 by adding ı to B and removing the edge of B with the same

terminal point. By [8, Lemma 9.8], this procedure is well de�ned and results in a

spanning arborescence A0. (Furthermore, A0 is the unique spanning arborescence

that contains ı and all but one edge of B .) Let us check that A0 satis�es our

requirements.

The condition (i) is obviously true by construction. The only edge of A0 that

is not an edge of B is ı; since that is an edge of A, (ii) holds as well. Finally, we

claim that the leaf of A involving A0 (cf. Lemma 2.9) is either a descendant of the

right descendant N D .A0 [ ¹ ı º; S0/ of .A0; S0/, or else, the path from the root
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to A0 separates from the path to N so that at some node, the former goes to the

right and the latter to the left. This implies (iii) immediately.

Indeed, if the path from the root to A0 separated from the path to N when

taking a step to the left, then an edge of A0 [ ¹ ı º (namely the augmenting edge

at the parting of the paths) would be a skipped edge for A0 (cf. Lemma 2.7). But

since A0 [ ¹ ı º � A0 (note that A0 � B and the unique edge in B n A0 cannot be

in A0 because it shares terminal points with the augmenting edge ı of A0), this is

impossible and the proof is complete. �

Theorem 5.2. When we compute the h-vector of the triangulation in Theorem 1.1

using the shelling of Theorem 5.1, the contribution ci (cf. (1)) of each simplex �i

is equal to the number of skipped edges for the corresponding type I leaf of A.

Proof. In the proof of Theorem 5.1, a spanning arborescence A0 was constructed

for any spanning arborescence B and skipped edge ı 2 SB . (Here SB is the set

of skipped edges for the unique leaf of A involving B , cf. Lemma 2.9. Indeed, A0

depended on A only through the choice of ı.) Since A0\SB D ¹ıº by construction,

it is clear that di�erent choices of ı yield di�erent arborescences A0. By (i) and

(iii) of the proof, we then see that for any spanning arborescence B , the number cB

of maximal simplices that precede the corresponding simplex �B in the shelling

order and share a common facet with it, is at least jSB j.

To prove the converse inequality, �x B and let A be a spanning arborescence

that precedes B in the right-to-left order so that A only di�ers from B in one edge.

As in the proof of Theorem 5.1, let .A0; S0/ be the last common node of A along

the paths from the root of A to A and B , respectively. Then, since A < B , it

is clear that the path toward A passes through the right descendant of .A0; S0/

and the path toward B passes through the left descendant. Therefore, if ı is the

augmenting edge of .A0; S0/, then ı 2 A but ı is a skipped edge for B . As A and

B do not otherwise di�er, it is clear that A coincides with the arborescence A0 (for

the ı we have just chosen) of the previous paragraph. �

Proof of Theorem 1.3. Using the description (1) of the h-vector and the fact that

the dimension of QG is d D jEj C jV j � 2 D s � 2, we have

top of PLG
D vn�sC1

X

type I leaves

v2k D vn�sC1
X

maximal simplices

v2ci

D vnCs�1
X

maximal simplices

v�2.s�1/C2ci D vnCs�1h.v�2/;

where the �rst equation is the statement of Theorem 3.5 and the second follows

from Theorem 5.2. �
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Example 5.3. In Figure 4, we indicated the right-to-left order of the type I leaves

of the computation tree for the graph K3;2. In the middle panel of Figure 5, we �nd

the three corresponding simplices arranged from bottom (smallest) to top. That is

a shelling order for the triangulation so that c1 D 0 and c2 D c3 D 1. Hence the

h-vector is h.x/ D x4 C 2x3. This, when compared to (5), con�rms Theorem 1.3

in this case.

6. The HOMFLY polynomial and parking functions

The goal of this section is to prove Theorem 1.4. The following de�nition is due

to Postnikov and Shapiro [15]. The only modi�cation we made was to replace

(relative) out-degree with in-degree, which is equivalent to an overall reversal of

orientation in the directed graph.

De�nition 6.1. Let J D .R; C / be a directed graph with root r0 2 R. For a non-

empty subset R0 � R n ¹r0º and r 2 R0, de�ne the relative in-degree degR0.r/ of

r as the number of edges in C with endpoint r and startpoint outside of R0.

A function � W R n¹r0º ! N is called a parking function of J with respect to r0

if any non-empty subset R0 � Rn¹r0º contains a vertex r so that �.r/ < degR0.r/.

Let us denote the set of parking functions with … and introduce the polynomial

p.u/ D
X

�2…

u

�
P

r2Rn¹r0º
�.r/

�

;

which we call the parking function enumerator.

Example 6.2. We determine parking functions for the directed graph G� of our

running example (see the left panel of Figure 5 for notation). If r0 plays the role

of root, then the values �.r1/; �.r2/ are subject to three conditions. The single

element of ¹riº has relative in-degree 2 (i D 1; 2), which implies 0 � �.ri / � 1.

Both elements of ¹ r1; r2 º have relative in-degree 1 and hence for any parking

function � , one of �.r1/; �.r2/ has to be 0.

There are three solutions for .�.r1/; �.r2//: .0; 0/, .1; 0/, and .0; 1/. Therefore

the parking function enumerator for G� is p.u/ D 1 C 2u and, by comparing this

to (5), we see that Theorem 1.4 holds in this case.

For any directed graph J and root r0, the set of parking functions is ‘closed

downward’: if � is a parking function and 0 � �.r/ � �.r/ for all r 2 R n ¹r0º,

then � is a parking function too. The identically 0 function is a parking function
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(i.e., … is non-empty) if and only if any subset of Rn¹r0º has edges of J reaching it

from the outside. Our directed graphs J D G� have this property by Lemma 2.2.

Let us now investigate whether the next simplest candidates are parking functions.

Lemma 6.3. If G is a connected plane bipartite graph and r0 is an arbitrary

vertex of G�, then the following two statements are equivalent.

(a) For all non-root vertices r 2 R n ¹r0º of G�, the indicator function i¹rº is a

parking function with respect to r0.

(b) The graph G does not have multiple edges.

Proof. a H) b. Let us assume that G has a pair of parallel edges "1 and "2. They

bound two bigons on S2, one of which does not contain r0. Let us denote the set

of regions of G (i.e., vertices of G�) in this bigon with R0. (Note that R0 does not

have to consist of a single point.) The set R0 has a single incoming edge and we

may assume it is the dual "�
1 of "1 with the terminal point r 2 R0. (Then "�

2 is

the single outgoing edge of R0.) Now it is easy to see that the function i¹rº and

the set R0 fail to satisfy the condition in De�nition 6.1, hence the former is not a

parking function.

b H) a. If i¹rº is not a parking function, then there exists a set R0 � R n ¹r0º

with either no incoming edges (which would contradict Lemma 2.2) or with a

single incoming edge "� whose terminal point is r . Since each vertex of G� has

the same in-degree as out-degree (in fact, for each region q of G, elements of E

and V alternate along @q and hence incoming and outgoing edges alternate around

the corresponding vertex of G�), it follows that R0 also has a single outgoing edge

ı�.

Let us now turn clockwise around r , starting from "�, until we �nd the next

edge of G� adjacent to r . It is necessarily such that its initial point is r . At the

terminal point of this edge, let us again turn clockwise until we �nd the next edge

and so on. This way, a directed path is constructed which we follow until its

next edge, which is necessarily ı� at that stage, leaves R0. On the left side of

each edge of the path, as well as on the left side of "� and ı�, we see the same

region of G�, marked by a vertex v from the color class V of G. (This observation

also shows why our path has to be �nite: because the initial point of "� is not in

R0, it is not possible to keep turning around v without leaving R0.) By turning

counterclockwise instead of clockwise, we may construct an analogous path from

r to the initial point of ı� and this shows that on their right side, "� and ı� are

adjacent to the same vertex e from the color class E of G. This means that the

dual edges " and ı of G both connect e and v, which concludes our argument. �
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It is well known that parking functions of J with respect to r0 are in a one-to-

one correspondence with spanning arborescences of J rooted at r0 [15]. Several

bijections have been given between the two sets (see [1], [4], and references

therein). In the next theorem we describe another identi�cation that is special

to the case when J D G� for a connected plane bipartite graph G. Recall that the

tree A constructed in Section 2 is such that for any choice of auxiliary data r0; �,

and for any spanning arborescence A of G� rooted at r0, there is a unique set S of

skipped edges so that .A; S/ becomes a type I leaf of A.

Theorem 6.4. For a connected plane bipartite graph G, root r0 2 G�, and

adjacent edge � 2 G, let .A; S/ be a type I leaf of the tree of arborescences A.

For every vertex r ¤ r0 of G�, let �.r/ be the number of edges in S that point

to r . Then � is a parking function with respect to r0.

Furthermore, every parking function ( for the graph G� with root r0) arises

from a unique spanning arborescence in the manner described above.

Proof. Let � be derived from A as in the Theorem. Fix a non-empty set R0 �

Rn¹r0º. Regarding the unique path in A from the root .¿; ¿/ to .A; S/, let .A0; S 0/

be the �rst node along the path so that the root component of A0 has a vertex,

say r , from R0. We have A0 � A and S 0 � S by Lemma 2.7. All edges of S that

end at r actually belong to S 0 because once r is in the root component, no edges

that end there can enlarge the arborescence and therefore they will never serve as

augmenting edges. It is also clear that all edges in S 0 ending at r , as well as the

edge of A0 that ends at r , have their startpoint in R n R0. Hence �.r/ < degR0.r/,

which proves our �rst claim.

Let us now �x an arbitrary parking function � W Rn¹r0º ! N. We will construct

the corresponding spanning arborescence by �nding the path in A that leads to it

from the root. The root .¿; ¿/ is obviously such that the number of skipped edges

ending at any vertex r 2 R n ¹r0º is at most �.r/. Suppose that we have already

built a path in A ending at the node .A; S/ that also has the property that

each vertex r 2 R n ¹r0º has at most �.r/ elements of S pointing to it. (6)

Let the augmenting edge of .A; S/ be ı D .q; r/. If �.r/ is strictly more

than the number of edges in S pointing to r , then we pass to the left descendant

.A; S [ ¹ıº/ of .A; S/. If �.r/ equals the number of elements of S ending at r ,

then we go to the right descendant .A [ ¹ıº; S/. In either case, the new node of

A has property (6), so we may continue along our path until we arrive at a leaf

.A� ; S�/ in A.
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We claim that .A� ; S�/ cannot be a type II leaf. Indeed, assume for contradic-

tion that the set R00 of isolated points of A� is non-empty. Since � is a parking

function, there exists a vertex r 2 R00 so that the number of edges starting in

the root component of A� and ending at r is more than �.r/. But because by

Lemma 2.8 all of those edges belong to S� , this contradicts (6).

By the previous paragraph, A� is a spanning arborescence. It is clear from the

construction that its associated parking function is �: for each r 2 R n ¹r0º, we

did select an edge pointing to r into A� and we did so when exactly �.r/ skipped

edges lead to r . After that, no more edges with terminal point r get skipped.

Finally, we argue that spanning arborescences A0 ¤ A� may not induce � .

Let the paths in A that lead from the root to .A� ; S�/ and to .A0; S 0/, respectively

(for the appropriate set S 0), part ways at the node .A; S/. Let .A; S/ have the

augmenting edge ı D .q; r/. If our earlier choice (leading to .A� ; S�/) was the

left descendant of .A; S/ then the right descendant, along with all its subsequent

descendants including .A0; S 0/, is such that the number of skipped edges pointing

to r is less than �.r/ (they “reach r too soon”). On the other hand, if earlier

we chose the right descendant, then along the branch of A corresponding to the

left descendant, we have more than �.r/ skipped edges ending at r (i.e., those

arborescences “reach r too late”). This completes the proof. �

Proof of Theorem 1.4. We will describe parking functions in terms of spanning

arborescences as in Theorem 6.4. Since every skipped edge for the spanning ar-

borescence A has its unique terminal point in Rn¹r0º, the number of skipped edges

for A is the same as the sum of the values (i.e., the index) of the corresponding

parking function. Thus by Theorem 3.5 and the de�nition of the parking function

enumerator (cf. (3), (4)), we have

top of PLG
D vn�sC1

X

type I leaves

v2k

D vn�sC1
X

parking functions

v2i.�/ D vn�sC1p.v2/;

which completes the proof. �

7. HOMFLY and interior polynomials

It has long been conjectured9 by the �rst author that for a connected plane bipartite

graph G of color classes E and V , the top of the HOMFLY polynomial PLG
is

9 Note added in revision: a proof is now available [9].
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equivalent to the interior polynomial I of the hypergraph H D .V; E/. This is

what motivated the development of the interior polynomial [8] in the �rst place.

If the conjecture was proved then, among other things, we would obtain a way

of deriving certain HOMFLY coe�cients from Floer homology. (See [7] and

the Introduction to this paper for an explanation.) We expect the conjecture to

be resolved via the h-vector, as explained in the Introduction. However in this

section, we point out several ways in which our results on parking functions also

support the conjecture.

First, we note that in the case when the directed graph J is derived from a

connected undirected graph K by replacing each edge with a pair of oppositely

oriented edges between the same two vertices, the parking function enumerator

pJ is related to the Tutte polynomial TK via the formula

pJ .u/ D ub1.K/TK.1; 1=u/;

where b1.K/ is the �rst Betti number of K (viewed as a one-dimensional com-

plex). To see this, one has to note the (quite direct) connection [15] between

parking functions and critical con�gurations of the abelian sandpile model (a.k.a.

chip-�ring game), and then apply a formula of Merino [10].

Figure 6. The two edges of G adjacent to the valence 2 point e 2 E are shown vertically in

red. Their union can be viewed as an edge of the graph K�. The two horizontal segments

together form an edge of K. The dotted edges parallel to it belong to G�.

Let us now consider a plane bipartite graph G so that one of its color classes,

say E, contains only degree 2 vertices. In other words, G is obtained from some

plane graph K� by subdividing its edges. (We may formally write K� D .V; E/.)

Now the planar dual K of K� induces a directed graph J as above and it turns out

that J D G�; see Figure 6. Finally, the duality formula of the Tutte polynomial

implies

pG�.u/ D ub1.K/TK.1; 1=u/ D ujV j�1TK�.1=u; 1/ D I.V;E/.u/;
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cf. [8, equation (9)], where I is the interior polynomial of the (hyper)graph

K� D .V; E/. Thus, Theorem 1.4 recon�rms the equivalence of the top of the

HOMFLY polynomial and the interior polynomial in this case. Of course, for this

kind of graph G the equivalence is also a consequence of Jaeger’s formula [5].

Returning to the case of general connected plane bipartite graphs, if n is the

number of edges in G and s D jEjCjV j is the number of its vertices, then it is not

hard to show that the coe�cient of .vz/n�sC1 in PLG
and the constant term in I

agree, namely they are both equal to 1. The argument below will re-establish this

fact, and it will provide information on the coe�cient of vn�sC3zn�sC1 as well.

First we show that the presence of multiple edges in G does not a�ect either

the interior polynomial or the top of PLG
. The former is obvious because edge

multiplicities do not in�uence the structure of H at all.

Lemma 7.1. Increasing the multiplicity of an existing edge in the connected plane

bipartite graph G changes the top T .v/ of the HOMFLY polynomial of LG by

a multiplicative factor of v for each new edge. In particular, the sequence of

HOMFLY coe�cients along the top remains the same.

Proof. Assume that G contains n edges and s vertices. Let " be an edge of G and

let us construct G0 by adding a parallel copy "0 of " to G, so that G0 has n C 1

edges but still only s vertices. (Note that " and "0 do not necessarily bound an

empty bigon of S2.) We apply the skein relation (2) to LG0 and the crossing c that

corresponds to "0. Smoothing c results in LG and the coe�cient vz ensures that

v times the top of PLG
is part of the top of of PLG0 . Changing c gives a diagram

that admits a link isotopy called a �ype. If we carry out the �ype, the number of

crossings decreases to n � 1 but the number of Seifert circles remains the same.

Since the corresponding coe�cient is v2, Theorem 3.2 implies that we get no new

contributions to the top of PLG0 . �

The bipartite graph BipH of [8], associated to H, is G with edge multiplicities

reduced to 1. Hence if G has no multiple edges, which we may now assume

without loss of generality, then the coe�cient of the linear term in IH is the �rst

Betti number of G [8, Theorem 6.3]. The constant term of IH is easily seen to

be 1. (Unfortunately, beyond the �rst two, individual coe�cients of I do not have

similar easy descriptions10.) From Lemma 6.3 and Theorem 1.4, we see that the

second coe�cient along the top of PLG
(that is, the coe�cient of vn�sC3zn�sC1)

is again the �rst Betti number of G. From either Theorem 1.3 or 1.4, it is easy to see

10 Note added in revision: In [9, Proposition 5.5], a formula is found for the third (quadratic)

coe�cient. It is easy to equate that number to the number of parking functions with index 2.
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that the �rst coe�cient is 1. Hence we may conclude that the �rst two coe�cients

in the top of the HOMFLY polynomial PLG
and in the interior polynomial IH

agree.

8. An improvement on Morton’s inequality

This section adds the last remaining piece to establish our results. Namely, our

present goal is to prove that type II leaves in the computation tree of Section 3 do

not a�ect the top of the HOMFLY polynomial. We have seen how this boils down

to Proposition 3.6, an important technical result that slightly strengthens Morton’s

inequality for a speci�c kind of link diagram.

First, we establish several lemmas on oriented curves immersed in the plane.

We assume these immersions to be generic, i.e., to have no self-tangencies or triple

points. Since that is exactly the class of curves that we get if we forget the crossing

information in an oriented link diagram, we will refer to our immersed curves as

link projections. It is useful for us to study them because the numbers of crossings

and of Seifert circles in a link diagram (and thus the upper bound that we are

seeking in Proposition 3.6) only depend on the corresponding link projection. We

may apply Reidemeister moves in this context as well.

De�nition 8.1. We introduce the following terms for certain isotopies of link

projections.11

� A Reidemeister I-a move removes a kink of a link projection (see Figure 7).

Here, either orientation is allowed.

Figure 7. Reidemeister I-a move

� We call the move shown in Figure 8 (Figure 9, respectively) a cyclic Reide-

meister II-a move (noncyclic Reidemeister II-a move, respectively).

11 A note on terminology: ‘b’ moves would be the inverses of the ‘a’ moves below, but those

will not play a role in our treatment.
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Figure 8. Cyclic Reidemeister II-a move

Figure 9. Noncyclic Reidemeister II-a move

� The isotopy shown in Figure 10 is called a global noncyclic Reidemeister II-a

move. Here, the shaded region may contain arcs from the link projection.

A noncyclic Reidemeister II-a move is a special case of a global noncyclic

Reidemeister II-a move.

Figure 10. Global noncyclic Reidemeister II-a move

� We call the move shown in Figure 11 a noncyclic Reidemeister III move.

Figure 11. Noncyclic Reidemeister III move

For a link projection D, let n.D/ and s.D/ denote the number of crossings and

Seifert circles, respectively. Let us analyze how the value n.D/ � s.D/, which is

essentially our desired upper bound, changes under the moves of De�nition 8.1.

De�nition 8.2. If an isotopy (either of a link projection or of a link diagram)

reduces n � s, then we call it a good move. If the isotopy preserves n � s, then we

call it a fair move.
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Lemma 8.3. A Reidemeister I-a move is a fair move, a cyclic Reidemeister II-a

move is a good or fair move, a (local or global) noncyclic Reidemeister II-a move

is a good move, and a noncyclic Reidemeister III move is a fair move.

Proof. From the left panel in Figure 12 (where the dashed curves indicate Seifert

circles) one sees immediately that a Reidemeister I-a move decreases both the

number of Seifert circles and the number of crossings by one. So a Reide-

meister I-a move is a fair move.

Figure 12. Seifert circles before a Reidemeister I-a and a cyclic II-a move.

Let us consider the case of a cyclic Reidemeister II-a move. Before the move,

either three or two Seifert circles are adjacent to the two crossings involved in

the move. (In Figure 12, right panel, the Seifert circle leaving at the top-right

point may or may not re-emerge at the top-left point.) In the �rst case, the move

decreases the number of Seifert circles by two, and in the second case, the number

of Seifert circles remains the same. Since the number of crossings is reduced by

two, a cyclic Reidemeister II-a move is either a good or a fair move.

Under a (global) noncyclic Reidemeister II-a move, the con�guration of Seifert

circles does not change. As the number of crossings gets reduced by two, a (global)

noncyclic Reidemeister II-a move is a good move.

Since neither the number of Seifert circles nor the number of crossings changes

under a noncyclic Reidemeister III move, it is a fair move. �

If one of the good moves above is applied to a link diagram, then the value of

n�s actually drops by 2. Hence if a link diagram admits a good Reidemeister move

(or in fact, any good move), then (by the invariance of the HOMFLY polynomial)

Theorem 3.2 implies Proposition 3.6 for that case. It is also easy to see the

following.

Lemma 8.4. If we are able to apply a fair or good move to a link diagram and

the estimate of Proposition 3.6 holds after it, then it also holds before the move.

However for now, we are still working in the category of link projections.

As our next intermediate step, we will establish a way of handling certain self-

intersections. By a domain of a link projection, let us mean a connected set that is
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a union of several regions. Note that domains are closed. By emptying a domain

of a link projection (or diagram), we mean an isotopy that leaves the boundary arcs

of the domain �xed so that at the end, the interior of the domain is disjoint from

the projection/diagram. (I.e., after the isotopy the domain becomes a region.)

Lemma 8.5. Any monogon in a link projection can be emptied by a �nite sequence

of fair and good moves.

Proof. We will mostly rely on Reidemeister I-a moves, cyclic Reidemeister II-a

moves, (global) noncyclic Reidemeister II-a moves, and noncyclic Reidemeis-

ter III moves, cf. Lemma 8.3. In addition, we may sometimes move a connected

component of a link projection from one region (of the rest of the projection) to

another, which is obviously a fair move.

By starting with an innermost one, we may assume that the monogon contains

no other monogons. In other words, we assume that no arc inside the monogon

intersects itself.

We proceed by induction on the number of crossings inside and on the bound-

ary of the monogon. If this number is 1, then the monogon only contains disjoint

simple closed curves and those can always be moved out of it by fair moves. Our

goal is to show that if our number of crossings is at least 2, then a sequence of the

speci�ed moves can be performed to reduce it.

If a global noncyclic Reidemeister II-a move is possible, then we can achieve

our goal immediately. That is the case if the monogon contains a simple closed

curve within the link projection that is intersected by another arc. Hence from

now on, we may assume that the monogon does not contain closed curves at all,

only (directed, non-self-intersecting) arcs that connect two of its boundary points.

Furthermore, we may assume that any bigon formed by our arcs (including the

monogon’s boundary) is cyclic.

Let 0 be the arc in the monogon whose exit point occurs last along the bound-

ary. (We may assume without loss of generality that the monogon is clockwise

oriented as in Figure 13.) Let B0 be the bigon determined by 0 and the monogon.

Let us also put ˛0 D @B0 n 0 for the monogon arc that bounds B0.

For the remaining part of the proof, most bigons inside our monogon will be

considered with their two boundary arcs designated as upper and lower. For the

bigon B0 of the previous paragraph, ˛0 is the lower arc and 0 is the upper one.

By our choice of 0, we see that B0 has the property that

no arc exits the bigon through its lower boundary arc. (7)
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0

B0
˛0

Figure 13. Monogon with arcs that form cyclic bigons with it.

We will use a recursive procedure to de�ne a nested sequence of bigons B0; B1; : : :,

all of which will satisfy property (7). All bigons in the sequence will of course be

cyclic and have their boundary oriented the same way (i.e., clockwise).

Keeping in mind our assumption that all bigons are cyclic, it is easy to see

that if a bigon has property (7), then there can only be two kinds of arcs crossing

it. The two cases are depicted in Figure 14, and will be referred to as cutting and

biting arcs, respectively.

Figure 14. Cutting (left) and biting (right) arcs in a bigon.

Let now Bi be a bigon with upper arc i and lower arc ˛i so that property (7)

holds. Assume that Bi has a biting arc. Let ˛iC1 denote the biting arc whose

exit point from Bi is �rst along i . Let B 0
i be the bigon formed by i and ˛iC1,

see Figure 15. If no arc (inside Bi ) crosses ˛iC1 downward, then B 0
i , bounded by

lower arc ˛iC1 and upper arc iC1 D i (the latter appropriately shortened) has

property (7) and we denote it by BiC1 D B 0
i . Otherwise, let pi denote the last

point along ˛iC1 where an arc iC1 exits B 0
i .

We claim that the portion of iC1 in B 0
i may only be arranged as in the rightmost

panel of Figure 15. The reasons for this are as follows. Let qi denote the point

where iC1 enters B 0
i for the last time before leaving at pi .
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i˛iC1

˛i

i
˛iC1

piqi

Figure 15. Hypothetical positions of the arc iC1. Only the last option can be reconciled

with our assumptions.

� The point qi may not be on ˛iC1 and before pi because then ˛iC1 and iC1

would form a noncyclic bigon.

� Assuming that qi is on i , we consider the point ri where iC1 leaves Bi for

the �rst time after passing through pi . By property (7), ri is on i .

� The point ri may not occur on i before @B 0
i because of the way that ˛iC1

was chosen.

� The point ri may not be on @B 0
i and (with respect to the orientation of i )

before qi because in order to get there, iC1 would have to form a noncyclic

bigon with ˛iC1. (See Figure 15, middle panel. Recall that iC1 does not

intersect itself. Hence it would have to intersect the portion of ˛iC1 that

starts at pi and ends at i . Consider the �rst such intersection point along

iC1 after pi . This and pi are the vertices of the desired bigon.)

� The point ri may not be after qi along i because then iC1 and i would

form a noncyclic bigon.

In this case, then, we let the bigon BiC1 be bounded by the lower arc ˛iC1 and the

upper arc iC1. Because of the way pi was chosen, BiC1 satis�es property (7).

We continue constructing the sequence B0; B1; : : : until we arrive at a bigon BN

(with lower boundary arc ˛N and upper boundary arc N ) that has no biting

arcs. It can of course have cutting arcs and, unfortunately, those may still form

cyclic bigons inside BN . Those bigons do not necessarily satisfy property (7), but

nonetheless the following argument is valid.

If BN is empty then we eliminate it by a (cyclic) Reidemeister II-a move and

by doing so we reduce the number of crossings in the original monogon by 2.

Otherwise, consider the cutting arc � in BN that has the last entry point along

˛N . To the left of � (‘left’ being de�ned in terms of the orientation of �) there is

a triangular part T of BN into which arcs can enter only through �. If � bounds

some (of course cyclic) bigons to its left, then consider those bigons among them

that are minimal with respect to containment. Now from these minimal bigons,

take the one that is ‘farthest along’ � (i.e., the arc that forms the bigon with � has

the last entry point into T along �). Let us declare (the appropriate portion of) �

as the lower boundary arc for this bigon. Then the bigon satis�es condition (7)
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and hence it can be the starting element in a new nested sequence of bigons, just

like B0 was the starting element of the �rst sequence (the only di�erence is that

the new bigons have counterclockwise oriented boundary). So we go back to that

part of the argument and iterate.

If � does not bound bigons on its left side, then all arcs crossing it have to do

so from right to left and from there they have to proceed through the triangle T to

N . If no arcs cross � then we ‘pull � out’ of BN by applying a noncyclic Reide-

meister III move to T and then repeat the procedure from the beginning of the

previous paragraph12. If some arcs do cross � then consider the one with the �rst

crossing point and call it �1. On the portion of �1 between � and N , we can use

the same reasoning as above to conclude that either �1 is not crossed by any other

arc, or it is only crossed from right to left, or that �1 bounds a bigon satisfying

property (7). In the latter two cases we may iterate the ideas we presented so far.

In particular in the middle case, when �1 is crossed but only from right to

left, we consider the arc �2 with the �rst crossing point. We argue that �2 exits T

through N without further intersecting �1 and apply the rest of the same reasoning

that we used for � and �1, too. If this case keeps coming up, i.e., if we never loop

back to the case of a (smaller) bigon with property (7), then eventually there will

be an arc �M with no intersection points on it (between �M �1 and N , that is). To

simplify notation in the next part of the argument, we may as well assume that

M D 1, that is that �1 is void of intersection points with other arcs (which was the

�rst of the three cases at the end of the previous paragraph).

We return to � and continue along it beyond the startpoint of �1 to the next

crossing point (which, if it exists, is again from right to left). We follow this new

arc to N and apply the same separation of cases to it as we did with �1. (A

crossing from left to right leads to a bigon with property (7) – recall that �1 has

no intersection points on it. The �rst crossing from right to left gives us a new

arc to investigate. If that does not exist, then look for the next intersection point

along �.) Eventually, after exhausting all possible bigons and intersection points,

what we �nd is an empty triangle with one of its sides along N (recall that BN

has no biting arcs). It is noncyclic because its other two sides are cutting arcs.

To explain the last step in the proof of the Lemma, it su�ces to assume that the

triangle bounded by �, �1, and N is already empty.

Indeed if that is the case, then we can apply a noncyclic Reidemeister III move

to the triangle. That does not change the number of cutting arcs but it removes

the intersection of � and �1 from BN , so that if we return to BN now and run our

12 An inductive argument on the number of cutting arcs is suppressed here. It is fairly obvious

and we felt that the proof was complicated enough as is.
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‘simpli�cation-searching algorithm’ on it again, we have one less crossing (that is

to say, a ‘quanti�able simpler situation,’ which can be made precise with another

trivial inductive loop) to deal with. This completes the proof of the Lemma. �

So far in this paper we treated skein computation trees from the point of view

of the Seifert graph. There is however an older approach, based on the notion of

a descending diagram [2]. We will borrow some ideas from that context to prove

an equivalent version of Proposition 3.6, which is the main result of this section.

Figure 16. An alternating contour with k D 6 outer over-arcs and outer under-arcs.

Theorem 8.6. Let D be a link diagram containing the part shown in Figure 16,

and L the associated link. That is, outside of the dashed circle, there is no piece

of D other than the 2k arcs shown, where k � 1. Then Morton’s inequality

(Theorem 3.2) is not sharp; in fact, we have

maxdegz.PL.v; z// � n.D/ � s.D/ � 1: (8)

Proof. We will refer to the link diagrams described in the Theorem (and in

Proposition 3.6) as having an alternating contour. A diagram with an alternating

contour is manifestly not alternating, but we are con�dent that this will not lead

to confusion. This notion is related to plane graphs with an alternating contour

(cf. Section 3), but it is best to treat the two concepts as separate.
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Let us call the k arcs passing over the other arcs appearing in Figure 16 outer

over-arcs, while the k arcs passing under the outer over-arcs are the outer under-

arcs. Let us denote the dashed circle shown in the diagram, along which the 4k

endpoints of all outer arcs lie, with C .

We are going to use induction on the number N of crossings that the diagram D

has inside C . When that number is 0, we will �rst argue that outer over-arcs and

outer under-arcs may not lie along the same component of L. Let us number the

4k points of C \D counterclockwise around C . A quick examination of Figure 16

shows that the modulo 4 remainder class of each point tells exactly if it is a start- or

an endpoint and whether of an over-arc or an under-arc. For any arc of D across the

interior of C that is obtained by continuing an outer over-arc, its endpoint minus

its startpoint has to equal 1 modulo 4: the di�erence has to be 1 or 3 so that the

other arcs across C may complete a crossingless matching of the 4k points, but

3 is ruled out if we consider the prescribed orientations. This means that the arc

leaves C at another over-arc and the claim follows.

Now the previous paragraph implies that when N D 0, the link L is an

unlink of at least 2 components: The components containing the outer over-

arcs form an unlink (with a crossingless diagram, no less), the same is true for

the components through the under-arcs, and the two unlinks are separated by

a copy of S2. In addition, L may have components that project onto disjoint

simple closed curves in the interior of C . Let the number of the latter be m.

Since the HOMFLY polynomial of a c-component unlink is .v�1z�1 � vz�1/c�1,

we have maxdegz.P / � �m � 1 in our case. Hence it su�ces to show that

�m � 1 � n.D/ � s.D/ � 1 D 2k � s.D/ � 1. But as every Seifert circle of

D (in the N D 0 case) is either a trivial connected component or it has to pass

through the midpoint of at least one outer arc, this follows easily.

As to the inductive step, let us start with a general observation. Let the triple

.LC; L�; L0/ be a skein triple and suppose that LC (or L�) and L0 satisfy the

inequality (8):

maxdegz.PL˙
.v; z// � n.D˙/ � s.D˙/ � 1I

maxdegz.PL0
.v; z// � n.D0/ � s.D0/ � 1:

Since s.DC/ D s.D�/ D s.D0/ and n.DC/ D n.D�/ D n.D0/ C 1, we obtain

the inequalities

maxdegz.PL˙
.v; z// � n.D�/ � s.D�/ � 1;

maxdegz.PL0
.v; z// � n.D�/ � s.D�/ � 2:
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On the other hand, as PL�.v; z/ D v�2PL˙
.v; z/ � zv�1PL0

.v; z/ from (2),

we have

maxdegz.PL�.v; z// � max¹ maxdegz.PL˙
.v; z//; maxdegz.PL0

.v; z// C 1 º:

Therefore we see that

maxdegz.PL�.v; z// � n.D�/ � s.D�/ � 1:

This means that if L0 and one member of the pair LC, L� satisfy (8), then so does

the other member.

Let us now �x k and assume that we have a diagram D as in the Theorem, with

N crossings inside C , as well as that (8) holds whenever the number of crossings

inside C is less than N . Because in a skein triple, L0 always has one less crossing

than LC or L�, the observation above means that it su�ces to show the following:

For every diagram D as in the Theorem, with 2k outer arcs,

it is possible to change some of the N crossings inside C so

that (8) holds for the link thus obtained.

(9)

We wish to apply isotopies and to rely on Lemma 8.4 to prove (9). If a Rei-

demeister move is possible for the corresponding link projection, then it becomes

possible for the diagram as well after changing at most one crossing. None of

the Reidemeister moves listed in Lemma 8.3 and used in the proof of Lemma 8.5

increases the number of crossings.

A special note is in order on global noncyclic Reidemeister II-a moves. When

we apply such a move to a link diagram, �rst we change crossings along the

boundary of the bigon (including at most one of the vanishing crossings). This is

done while the total number of crossings inside C is N or less, so that we can rely

on the inductive hypothesis. Then, ‘during’ the isotopy, the number of crossings

may temporarily exceed N but that is �ne since no crossing change is necessary

at those stages.

Thus, with the help of Lemma 8.5 and the fact that a Reidemeister I-a move is

fair, (9) reduces to

for every diagram D as in the Theorem with 2k outer arcs and at most

N crossings inside C , so that arcs inside C do not self-intersect, it is

possible to change some of the crossings inside C so that (8) holds

for the resulting link.

(10)

We keep insisting on making changes inside C only so that our main induction

can proceed. We �rst establish (10) in two special cases.
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A. We assume that there exists an outer over-arc in D whose endpoints are joined

by another arc ˛ inside the dashed circle. See Figure 17. By changing some

crossings along ˛, let us ‘�oat to the top’ the unknot component arising from

our assumption, and then let us separate it from the rest of the diagram as in

the right panel of Figure 17. We denote the resulting diagram with zD.

˛

ab

c d

ab

c d

Figure 17. Left: The diagram D in case A. The dashed arcs indicate pieces of components

of D0. Right: The diagram zD, with several pieces of its Seifert circles.

We will show that n.D/ � s.D/ � n. zD/ � s. zD/ C 2, i.e., that (10) for D

follows from applying Morton’s inequality to zD. Let N˛ be the number of

crossings of D along ˛ (in particular, inside C ). Let D0 be the diagram that

results from smoothing all N 0 crossings of D away from ˛ and inside C , as

well as the 2k crossings outside of C . Let s0 be the number of components

in D0. Then we have

n.D/ � s.D/ � 2k C N˛ C N 0 � .s0 C N˛/ D 2k C N 0 � s0;

because every time we smooth one of the remaining N˛ crossings of D0, the

number of components changes by ˙1. On the other hand we have

n. zD/ � s. zD/ � 2k � 2 C N 0 � s0;

from which our claim follows. To see why there are at least s0 Seifert circles in
zD, notice that those components of D0 that do not pass through the points a,

b, c, or d of Figure 17 are found in zD as well. There are 1 or 2 components

of D0 that do pass through those points and zD has at least 2 components (the

unknot we pulled out, and the one through, say, a) to account for them.
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B. We assume that as we continue each outer over-arc of D through the interior

of C , we emerge at an outer under-arc. Let ˛0 be one of the arcs that we have

just described. The terminal point of ˛0 is adjacent along C to the initial

point b1 of an outer over-arc. If we follow D backward from b1, then we hit

either C or ˛0 �rst. In the latter case, a noncyclic bigon is formed so that

one of its corners is outside of C but its other corner, as well as each arc of

D inside the bigon, is inside C . Therefore it is possible to change crossings

inside C so that a global noncyclic Reidemeister II-a move becomes possible

for D. Hence in this case, we are done by Lemma 8.3 and Theorem 3.2.

In the case when the arc through C that ends at b1 is disjoint from ˛0, let us

call the arc ˛1 and note that by our assumption in case B, the initial point a1

of ˛1 has to be the terminal point of an outer under-arc. Now a1 is adjacent

along C to the terminal point a2 of an outer over-arc. Notice that a2 and ˛0

are on opposite sides of ˛1. From here we iterate our argument: If the arc of

D that starts at a2 hits ˛1 before C , then a noncyclic bigon and hence a good

move can be found. Otherwise, follow the arc to its terminal point b2 on C ,

which is necessarily on an outer under-arc, denote the arc a2b2 with ˛2, take

the point b3, adjacent along C to b2, where an outer over-arc starts, note that

˛2 separates ˛1 and b3, and continue the iteration.

Our argument above produces a sequence ˛0; ˛1; : : : of parallel, disjoint

chords in C that are arranged monotonously. Since such a sequence cannot

be in�nite, it is guaranteed that after �nitely many steps we �nd a global

noncyclic Reidemeister II-a move, which completes the proof of case B.

In the rest of the proof, we are going to verify (10) by a secondary induction on

k (keeping N �xed). When k D 1, the diagram D falls under one of the cases A

and B above.

Let us now assume that (10) holds whenever the number of outer over-arcs is

less than k and let D be a link diagram with an alternating contour and k outer

over-arcs. Having established cases A and B, we may assume that there exists

an outer over-arc in D which, when continued across C , meets a di�erent outer

over-arc. Let this arc across C be called ˛.

Given a diagram D as in the left panel of Figure 18, let s0 be the number of

components in the diagram D0 that results from smoothing all crossings in D

except for those along ˛. Let N˛ be the number of crossings on ˛ and let N 0 be

the number of crossings of D inside C that are not on ˛. Then there is a total of

2k C N˛ C N 0 crossings in D and the number of Seifert circles is at most s0 C N˛
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˛

Figure 18. Left: Diagram D with an alternating contour. Dashed arcs indicate components

of D0. Right: the diagram zD.

by the same reason as before. Hence we have

2k C N 0 � s0 � n.D/ � s.D/:

After changing crossings if necessary, let us pull ˛ out as in the right panel of

Figure 18 and call the resulting diagram zD. Then the number of crossings in zD

is 2k � 2 C N 0 and the number of Seifert circles is at least s0 � 2. (It is possible

that the arcs of D0 indicated in the left panel of Figure 18 belong to three di�erent

components, whereas the arcs of zD indicated on the right might belong to just

one component. But it is easy to see that nothing worse than that can happen.)

Therefore we have

n. zD/ � s. zD/ � 2k C N 0 � s0;

meaning that the isotopy from D to zD was at least a fair move. But since zD is also

a diagram with an alternating contour but with less than k outer over-arcs, we are

done by Lemma 8.4 and the inductive hypothesis.

This completes the secondary induction (on k), thus we have proved (10) and

hence the inductive step in our main induction (on N ) is now also established. �
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