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Abstract. Eisermann has shown that the Jones polynomial of a n-component ribbon link

L � S3 is divided by the Jones polynomial of the trivial n-component link. We improve this

theorem by extending its range of application from links in S3 to colored knotted trivalent

graphs in #g.S2 � S1/, the connected sum of g > 0 copies of S2 � S1.

We show in particular that if the Kau�man bracket of a knot in #g.S2 � S1/ has a

pole in q D i of order n, the ribbon genus of the knot is at least nC1
2

. We construct some

families of knots in #g.S2 � S1/ for which this lower bound is sharp and arbitrarily big.

We prove these estimates using Turaev shadows.
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1. Introduction

Thirty years after its discovery, we know only a few relations between the Jones

polynomial JL of a link L and its topological properties. A notable one is Eis-

ermann’s Theorem [9] which connects the Jones polynomial to four-dimensional
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smooth topology. The theorem states that the Jones polynomial of a n-component

ribbon link is divided by the Jones polynomial of the trivial n-component link.

Another four-dimensional object related to the Jones polynomial is Turaev’s

shadow. In this paper we reprove Eisermann’s Theorem using shadows, and

extend its range of application from links in S3 to colored trivalent graphs in

#g.S2 � S1/.

In this introduction, we �rst show how we re-prove Eisermann’s theorem for

links in S3, and later explain its extension to graphs in #g.S2 � S1/.

1.1. Shadows. Shadows are simple two-dimensional polyhedra locally-�atly em-

bedded in four-manifolds. They were de�ned by Turaev [23, 24] and then consid-

ered by various authors, see for instance [2, 3, 7, 8, 12, 14, 16, 21, 22, 25].

In this paper, a shadow X is a (simple, locally-�at) collapsible spine of D4.

Being a collapsible spine is a quite restrictive requirement: we want

(1) that D4 collapses to X (i.e. X is a spine of D4),

(2) that X collapses to a point (i.e. X is collapsible).

If we use the symbols & and � to indicate collapsing and a point, we may

summarize that by writing

D4 & X & �

Recall that a ribbon surface is a properly embedded surface S � D4 that can

be put into Morse position with only minima and saddle points (no maxima). The

surface S may be disconnected and non-orientable. We will start by proving the

following purely topological fact:

Theorem 1.1. Every ribbon surface is contained in some shadow.

We single out a couple of examples.

Example 1.2. Consider the trivially embedded annulus S � D4 as in Figure 1.

A shadow X containing S is constructed by attaching a disc D to its core. Note

that indeed D4 & X & �. See Example 2.4.

Example 1.3. The trivial ribbon disc (with one minimum and no saddles) is itself

a shadow of D4. However, a non-trivial ribbon disc D � D4 is not a shadow:

it collapses to a point, but it fails to be a spine of D4, see Proposition 2.5. The

shadow containing D may be rather complicate.
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Figure 1. If S � D4 is the trivially embedded annulus bounding the unlink @S , a shadow

X D S [D is obtained by attaching a disc D to its core.

The hypothesis that the surface is ribbon is crucial here: there are surfaces

(for instance, discs) that are not contained in any shadow. Indeed the following

implications hold for a properly embedded surface S � D4:

S ribbon H) S contained in a shadow H) S homotopically ribbon:

Recall that S is homotopically ribbon if the inclusion S3 n @S ,! D4 n S induces

a surjective homomorphism on fundamental groups. It is easy to construct discs

that are not homotopically ribbon, and hence are not contained in any shadow, see

Section 2.5.

The question whether every homotopically ribbon surface S is actually ribbon

is, to the best of our knowledge, open: the requirement that S is contained in some

shadow lies between these two properties and breaks this question in two parts.

Question 1.4. Can we reverse any of the two implications above?

1.2. Quantum invariants. We then turn to quantum invariants. A shadow X for

a link L � S3 is a shadow X � D4 such that X \ S3 D L. An easy homological

argument shows that X contains a unique surface S with @S D L. The surface S is

possibly disconnected and non-orientable, but it contains no closed components.

Instead of the Jones polynomial JL we prefer to use the Kau�man bracket

hLi that is more adapted to our purposes. The Kau�man bracket is a Laurent

polynomial in q that di�ers from JL only by some re-parametrization.

The shadow X can be used to calculate hLi via Turaev’s state-sum formula

[23, 24], and by analyzing carefully that formula we prove the following:

Theorem 1.5. Let X be a shadow for a link L � S3 and S � X be the unique

surface with @S D L. The Kau�man bracket hLi vanishes at least �.S/ times at

q D i .



252 A. Carrega and B. Martelli

The theorem provides some information only when �.S/ > 0. The two

theorems we stated imply Eisermann’s Theorem [9]:

Corollary 1.6. If a link L � S3 bounds a ribbon surface S then hLi vanishes at

least �.S/ times at q D i .

Proof. There is a shadow X for L that contains S by Theorem 1.1. Theorem 1.5

implies that hLi vanishes at least �.S/ times at q D i . �

Again, this corollary is relevant only when �.S/ > 0. Recall that a n-

component link L � S3 is ribbon if it bounds a ribbon surface that consists of

n discs. The interesting corollary is of course the following.

Corollary 1.7. If L � S3 is a n-component ribbon link then hLi vanishes at least

n times at q D i .

It is an immediate consequence of its de�nition that the Kau�man bracket hLi
of any link L � S3 vanishes at q D i at least once, and hence Eisermann’s

Theorem actually provides some information only when n > 2. In particular,

unfortunately it says nothing about knots in S3.

1.3. Links in some other manifolds. The techniques we used to prove Theo-

rems 1.1 and 1.5 extend naturally in two directions. The �rst consists in varying the

ambient manifold.

Costantino [4] has de�ned the Kau�man bracket hLi of a framed link

L � #g.S2 � S1/

in a connected sum of any g > 1 copies of S2 � S1. The Kau�man bracket hLi
is now a rational function on q

1
2 which may have poles at some roots of unity,

including the value q D i we are interested in. So we de�ne

ordi hLi 2 Z [ ¹C1º

to be the maximum integer k such that hLi

.q�i/k�1 vanishes in q D i . This is the �rst

exponent of the Laurent expansion of hLi at q D i .

The notion of ribbon surface extends naturally to any closed 3-manifold M : a

ribbon surface is a properly embedded surface in Morse position inside M � Œ0; 1�,

with boundary in M � 0, and without maxima. Equivalently, it is an immersed

surface in M having only ribbon singularities, see Section 2.1. We generalize

Eisermann’s theorem as follows:
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Theorem 1.8. If a link L � #g.S2 � S1/ bounds a ribbon surface S then

ordi hLi > �.S/:

This theorem is potentially stronger in #g.S2 � S1/ than in S3 because now

ordi hLi can be an arbitrarily small negative number. In particular it provides non-

trivial informations also for knots, as the following example shows.

Example 1.9. The framed knot K � #g.S2 � S1/ drawn in Figure 2 has

hKi D .�1/1�gq� 3g
2

.1C q2 C q4 C q6/g

.q C q�1/2g�1

and hence ordi hKi D g�.2g�1/ D 1�g. Therefore K bounds no ribbon surface

S with �.S/ > 1 � g. In particular, it is not a ribbon knot.

Figure 2. A knot K in #g.S2 � S1/. To get #g.S2 � S1/ simply double the handlebody

in the picture. We draw here the case g D 3, the general case is obvious from the picture.

Note that the knot is null-homotopic.

The ribbon genus of a knot K is the minimum genus of an orientable connected

ribbon surface S with @S D K. As a consequence, the ribbon genus of the knot

K shown in Figure 2 is at least g
2
. In general we get:

Corollary 1.10. Let K � #g.S2 � S1/ be a knot. Then:

� if hKi does not vanish at q D i , the knot is not ribbon,

� if hKi has a pole at q D i of order n > 0, the ribbon genus of K is at least
nC1

2
.

The following example illustrates a family of knots for which this lower bound

on the ribbon genus is sharp and arbitrarily big.
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Example 1.11. Let S be a compact orientable surface with boundary. The bound-

ary of the four-manifold S�D2 is di�eomorphic to #g.S2�S1/ for g D 1��.S/.

The link L D @S inside #g.S2 � S1/ has

hLi D .�q � q�1/�.S/

and hence ordi hLi D �.S/. Therefore S is a ribbon surface of maximal Euler

characteristic (among those having L as boundary). The lower bound given by

Theorem 1.8 is sharp on these links. We can choose L to be a knot by picking a

surface S with one boundary component, and we can choose �.S/ to be arbitrarily

small by increasing the genus of S .

Remark 1.12. Similar lower bounds for the slice genus of the knots and links

considered in Examples 1.9 and 1.11 can be constructed by other methods, see

Remark 5.9: these basic examples were chosen primarily because their Kau�man

bracket can be easily calculated by hand.

Since the lower bound furnished by the Kau�man bracket is non-trivial on

these simple examples, it might hopefully say something relevant on more elabo-

rate ones: we brie�y discuss the slice/ribbon conjecture and its possible extensions

in Section 7.4.

1.4. Knotted trivalent graphs. The second extension consists of taking trivalent

graphs instead of just links. The Kau�man bracket hGi is de�ned for colored

framed knotted trivalent graphs G in S3 and more generally in #g.S2�S1/. These

objects are often called ribbon graphs, but we do not use this terminology here to

avoid confusion with ribbon surfaces.

The coloring of G is the assignment of a non-negative integer to every edge

or knot component of G, such that at every vertex v 2 G the colors a; b; c of the

incident edges ful�ll the triangle inequalities and have even sum aCbCc. Thanks

to these admissibility conditions, the numbers

aC b � c

2
;

b C c � a

2
;

c C a � b

2

are non-negative integers. We say that the vertex v is red if at least two of these

integers are odd. The edges in G having an odd color form a sublink L � G called

the odd sublink.

The Kau�man bracket hGi of G is still a rational function in q
1
2 . The following

theorem generalizes Theorem 1.8 from links to graphs.
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Theorem 1.13. Let G be a colored framed knotted trivalent graph in S3 or

#g.S2 � S1/ and L � G be its odd sublink. If L bounds a ribbon surface S

then

ordi hGi > �.S/� r

2

where r is the number of red vertices in G.

The theorem applies in particular to colored links:

Corollary 1.14. Let G be a colored framed link in S3 or #g.S2 �S1/ and L � G

be its odd sublink. If L bounds a ribbon surface S then

ordi hGi > �.S/:

Hence in particular Eisermann’s Theorem holds as is for links colored with

odd numbers.

1.5. Proofs. The proof of Theorem 1.13 splits into two parts: the topological

Theorem 1.1, and the more technical Theorem 1.5, both extended from links in S3

to graphs in #g.S2 � S1/.

While the topological side of the story is a one-page proof, the technical part

needs a long case-by-case analysis that we would have never pursued if we were

not aware of Eisermann’s Theorem. We easily localize the proof of Theorem 1.13

to the case where G is one of the three planar graphs

; ;

in S3. The graph is a well-known building block in quantum topology (closely

related to the quantum 6j -symbols) and its Kau�man bracket is a quite complicate

rational function in q, see Section 3.4.

To prove Theorem 1.13 we examine carefully this rational function near q D i

for all possible parities of the six numbers coloring the edges of the graph, and

check that the inequality ordi > �.S/ � r
2

is ful�lled (quite miraculously) in

all cases (and it is almost always an equality!). The addendum r
2

in the formula is

absolutely necessary, as the following shows.

Example 1.15. The Kau�man bracket of the graph G D 2;2;2 colored with

2; 2; 2 is

hGi D � .q3 C q C q�1 C q�3/.q2 C 1C q�2/

.q C q�1/2
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and has a pole in q D i of order 1, i.e. ordi .G/ D �1. The odd sublink of G

is empty and hence bounds the empty ribbon surface S that has �.S/ D 0. The

formula ordi .G/ > �.S/� r
2

holds because both vertices of G are red and hence

r D 1, giving �1 > 0 � 1.

1.6. Structure of the paper. We de�ne ribbon surfaces and shadows in Sec-

tion 2, where we also prove the topological Theorem 1.1. In Section 3 we introduce

the Kau�man bracket and recall Turaev’s formula that computes it as a state-sum

on a shadow. In Section 4 we prove the more technical Theorem 1.5. In Section 5

we generalize everything from S3 to #g.S2 � S1/. In Section 6 we re-prove Tu-

raev’s state-sum formula. Section 7 is devoted to some open questions for further

research.

1.7. Acknowledgements. We would like thank Francesco Costantino, Paolo

Lisca, and Dylan Thurston for many helpful conversations.

2. Shadows and ribbon surfaces

We introduce ribbon surfaces and shadows, and then prove Theorem 1.1 which says

that every ribbon surface is contained in some shadow.

2.1. Ribbon surfaces. A properly embedded smooth surface S � D4 is ribbon

if one of the following equivalent conditions holds:

� the surface S may be isotoped to an immersed surface in S3 having only

“ribbon” singularities as in Figure 3;

Figure 3. A ribbon singularity
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� the surface S may be isotoped in D4 into Morse position, with only minima

and saddle points (no maxima) as in Figure 4.

Figure 4. A ribbon disc in D4 in Morse position with two minima and one saddle. Each

regular level gives a link in S3.

Every ribbon surface S can be constructed from a planar diagram as in Fig-

ure 5, consisting of some disjoint circles and some arcs connecting them in space.

Figure 5. Every ribbon surface can be constructed from a planar diagram with some disjoint

circles representing the minima and some edges connecting them representing the saddles

(left). The surface is obtained by �lling the circles (yellow) and thickening the edges to

(orange) bands.

2.2. Shadows. A simple polyhedron X is a 2-dimensional compact polyhedron

where every point has a neighborhood homeomorphic to one the �ve types (1-5)

shown in Figure 6. The �ve types form subsets of X whose connected components

are called vertices (1), interior edges (2), regions (3), boundary edges (4), and
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boundary vertices (5). The points (4) and (5) altogether form the boundary @X

of X . An edge is either an open segment or a circle; a region is a (possibly non-

orientable) connected surface.

Figure 6. Neighborhoods of points in a simple polyhedron.

De�nition 2.1. A shadow for D4 is a simple polyhedron X � D4 such that the

following holds:

� X is properly embedded, that is @X D X \ S3,

� X is locally �at: every point p 2 X has a neighborhood U in D4 di�eomor-

phic to B3 � .�1; 1/ with U \X contained in B3 � 0 as in Figure 6,

� X collapses onto a point,

� D4 collapses onto X .

The �rst two conditions are just reasonable requirements one assumes when

considering simple polyhedra inside four-manifolds; on the other hand, the last

two conditions are quite restrictive and can be summarized by writing

D4 & X & �

where � indicates a point.

2.3. Knotted trivalent graphs. A knotted trivalent graph is a smooth graph in

S3 where every vertex has valence 3, and knot components are also admitted. So

in particular a link is a knotted trivalent graph without vertices.
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The boundary G D @X of a shadow X � D4 is a knotted trivalent graph in S3,

and we say that X is a shadow of G. Although the de�nition of shadow seems very

restrictive, it turns out that every knotted trivalent graph has at least one shadow

(and in fact, in�nitely many):

Proposition 2.2 (Turaev). Every knotted trivalent graph G � S3 has a shadow.

Proof. This result was �rst proved by Turaev [23] in a more general context; here

we follow the proof contained in [7, Theorem 3.14]. Pick a diagram for G as in

Figure 7-(left). We suppose that there is a smallest closed disc D containing the

diagram like the yellow one in Figure 7-(right). This is equivalent to ask that the

diagram is connected and no vertex of the diagram disconnects it: these conditions

can be easily achieved using Reidemeister moves.

Figure 7. A knotted trivalent graph (left) and its shadow (right). The shadow contains three

interior vertices (green).

If we push the yellow disc D entirely inside D4, we obviously get D4 &D&�.
We enlarge D by adding a cylinder above G as sketched in Figure 7-(right). The

resulting object X is a shadow for G: we still have D4 & X & �, and X is easily

seen to be a properly embedded locally �at simple polyhedron with @X D G. �

2.4. Ribbon surfaces in shadows. We are ready to prove Theorem 1.1:

Theorem 2.3. Every ribbon surface S is contained in a shadow X with @X D @S .
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Proof. Construct S from a planar diagram G as in Figure 5-(left). Via Reidemeis-

ter moves we may suppose that there is a smallest closed disc containing G. The

diagram G identi�es a knotted trivalent graph and we construct a shadow X for

G using the algorithm described in the proof of Proposition 2.2.

Note that X contains the yellow discs of Figure 5-(right). To complete the

construction, we simply add to X the orange bands shown in Figure 5-(right), and

then push their interior a bit inside D4. We end up with a shadow X containing

the whole of S and with @X D @S . �

Example 2.4. Figure 8 illustrates the construction in a simple case. The ribbon

surface S � D4 is a trivially embedded annulus with boundary L D @S the

unlink with two components; the annulus S in Morse position has one minimum

and one saddle, and it is hence a ribbon surface constructed from the graph G

shown in Figure 8-(top-right): a circle (the minimum) with a diameter (encoding

the saddle). A shadow for G is shown in Figure 8-(bottom-left). By adding a band

we obtain a shadow X for L containing S , and X is just S with a disc attached to

its core. Note that indeed X is a spine of D4 that collapses to a point.

Figure 8. How to build a shadow X containing a given ribbon surface S . We show here the

construction for the ribbon annulus S .

When the ribbon surface S is a disc, it collapses to a point, and hence one might

wonder whether we could simply take X D S as a shadow. We show that this

works only in the trivial case (the trivial ribbon disc is the one with one minimum

and no saddle, having the trivial knot as boundary).
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Proposition 2.5. A properly embedded disc D � D4 is a shadow if and only if

D is isotopic to the trivial ribbon disc (and hence @D is the unknot).

Proof. The disc D collapses to a point, so D is a shadow of D4 if and only if

D4 & D. This holds if and only if D4 is a regular neighborhood of D. A regular

neighborhood of D is a product bundle D � D2, hence D4 & D if and only

D4 D D �D2. This holds precisely when D is trivial. �

We have proved that every ribbon disc D is contained in a shadow X , but X

may in fact be quite complicated.

2.5. Non-ribbon surfaces. One may wonder whether every surface S is con-

tained in a shadow. We now show that this is not true: indeed being contained in

a shadow is quite restrictive. Recall that a properly embedded surface S � D4 is

homotopically ribbon if the inclusion

.S3 n @S/ ,�! .D4 n S/

induces an epimorphism on fundamental groups

�1.S3 n @S/ �� �1.D4 n S/:

For a general surface S , the following implications hold:

S ribbon H) S contained in a shadow H) S homotopically ribbon: (1)

We have already proved the �rst implication, so we now turn to the second.

Proposition 2.6. If S is contained in a shadow X then it is homotopically ribbon.

Proof. The shadow X contains S and is hence obtained from S by adding cells

of index 0, 1, or 2. Therefore a regular neighborhood N.X/ of X is obtained from

a regular neighborhood N.S/ of S by adding handles of index 0, 1, or 2. Since X

is a spine of D4, we can take N.X/ D D4.

By turning handles upside-down we get that D4 n N.S/ is obtained from a

collar of S3 n N.@S/ by adding handles of index 4, 3, or 2. Since there are no

1-handles, the inclusion

S3 nN.@S/ ,�! D4 n N.S/

induces a surjection on fundamental groups. �
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We do not know if any of the two implications in (1) can be reversed. It is

easy to construct some surface S that is not homotopically ribbon, and such an

S cannot be contained in a shadow. The following example is certainly known to

experts and we include it for completeness.

Proposition 2.7. The trivial knot bounds some disc that is not homotopically

ribbon.

Proof. Pick a knotted sphere S2 � S4 whose complement has non-cyclic funda-

mental group G, for instance a spun knot [20, Chapter 3.J].

By tubing one such knotted sphere with a trivial properly embedded disc we

get a disc D2 � D4 such that �1.D4 nD2/ D G. Since @D2 is the trivial knot,

the complement S3 n @D2 is a solid torus and has cyclic �1. The map

�1.S3 n @D2/ �! �1.D4 nD2/

cannot be surjective since the left group is cyclic and the right one is not. �

2.6. Enlargement. We prove here a stronger version of Theorem 2.3:

Theorem 2.8. Let S � D4 be a ribbon surface and G � S3 a knotted trivalent

graph containing @S . There is a shadow X of G containing S .

Proof. The ribbon surface S is obtained from some planar diagram containing

circles and edges as in Figure 6-(left), and the link L D @S � G is as in Figure 6-

(right).

The graph G contains L and up to isotopy we may suppose that GnL is attached

to L only at the circles. Then we can proceed exactly as in the proof of Theorem 2.3

to get a shadow X of G containing S . �

3. Shadows and the Kau�man bracket

We introduce the Kau�man bracket and Turaev’s shadow formula.

3.1. Kau�man bracket. The Kau�man bracket hLi of a framed link L � S3

is a polynomial in ZŒA; A�1� de�ned using the skein relations shown in Figure 9.

The variables q D A2 or t D A4 are often used instead of A: the famous Jones

polynomial of an oriented (but unframed) link is obtained from the Kau�man

bracket simply by taking t D A4 and assigning to the oriented link its Seifert

framing. We will work with the variable q D A2.
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Figure 9. The Kau�man bracket relations.

3.2. Eisermann Theorem. Eisermann has proved in [9] the following fact.

Theorem 3.1 (Eisermann). If S � D4 is ribbon then h@Si has a zero in q D i of

order at least �.S/.

The theorem provides some information only when �.S/ > 0. A n-component

link L is ribbon if it bounds a ribbon surface consisting of n discs.

Corollary 3.2. If a n-component link L is ribbon then hLi has a zero at q D i of

order n.

Eisermann has shown that this is the maximum order one can achieve: for

every n-component link we have

1 6 ordi hLi 6 n

and both extremes may arise. In particular, when n D 1 we always get ordi hLi D 1

and hence Corollary 3.2 gives no information on knots.

Note that if we modify the framing of L the Kau�man bracket hLi changes by

a power of A D q
1
2 and hence its vanishing order at q D i is una�ected: therefore

we can neglect the framing in our investigation.

The Kau�man bracket of a link may also be calculated using shadows via

a state-sum formula. To explain this construction, due to Turaev, we need to

introduce some objects.

3.3. Colored ribbon graphs. A framed knotted trivalent graph G � S3 is a

knotted trivalent graph equipped with a framing, i.e. an oriented surface thick-

ening of the graph considered up to isotopy. An admissible coloring of G is the

assignment of a natural number (a color) at each edge of G such that the three

numbers i; j; k coloring the three edges incident to a vertex satisfy the triangle

inequalities, and their sum i C j C k is even.
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There is a standard way to de�ne the Kau�man bracket hGi of a colored framed

knotted trivalent graph G � S3, which agrees with the above de�nition on framed

links with all components colored by 1. The bracket hGiwill be a rational function

in q
1
2 and not a Laurent polynomial in general – although it turns out a posteriori

to be very close to a polynomial, see [5].

To de�ne hGi we must introduce the quantum integer

Œn� D qn � q�n

q � q�1
D q�nC1 C q�nC3 C � � � C qn�3 C qn�1:

The Jones-Wenzl projector is a linear combination of framed arcs, de�ned recur-

sively in Figure 10. The admissibility requirements on colors allow to associate

uniquely to G a linear combination of framed links by putting the kth Jones-Wenzl

projector at each edge colored with k and by substituting vertices with bands as

shown in Figure 11.

Figure 10. The .nC 1/th Jones-Wenzl projector is de�ned recursively with this formula.

Figure 11. A colored framed knotted trivalent graph determines a linear combination of

framed links: replace every edge with a Jones-Wenzl projector, and connect them at every

vertex via non intersecting strands contained in the depicted bands. For instance there are

exactly iCj �k
2

bands connecting the projectors i and j .

3.4. Three important planar graphs. Three basic planar framed trivalent

graphs , , and in S3 are shown in Figure 12. Their Kau�man brack-

ets are some rational functions in q that we now describe.
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Figure 12. Three important planar colored framed trivalent graphs in S3.

We recall the usual factorial notation

Œn�Š D Œ1� � � � Œn�

with the convention Œ0�Š D 1. Similarly we de�ne the generalized multinomials:

"

m1; : : : ; mh

n1; : : : ; nk

#

D Œm1�Š � � � Œmh�Š

Œn1�Š � � � Œnk �Š
:

When using these generalized multinomials we will always suppose that

m1 C � � � Cmh D n1 C � � � C nk :

The evaluations of , , and are:

a D .�1/aŒaC 1�;

a;b;c D .�1/
aCbCc

2

�

aCbCc
2
C 1; aCb�c

2
; bCc�a

2
; cCa�b

2

a; b; c; 1

�

;

D
�

�i �4j

a; b; c; d; e; f

�

�
min �i
X

zDmax 4j

.�1/z

�

z C 1

z �4j ; �i � z; 1

�

:

In the latter equality, triangles and squares are de�ned as follows:

41 D
aC b C c

2
; 42 D

aC e C f

2
;

43 D
d C b C f

2
; 44 D

d C e C c

2
;

�1 D
aC b C d C e

2
; �2 D

aC c C d C f

2
; �3 D

b C c C e C f

2
:
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The indices in the formula vary as 1 6 i 6 3 and 1 6 j 6 4, so the term

�i � 4j indicates 3 � 4 D 12 numbers. The formula for was �rst proved by

Masbaum and Vogel [17]. These formulas are all rational functions in q that may

have poles in 0,1, and at some root of unity, sometimes including the value q D i

we are interested in.

3.5. Gleams. Let X � D4 be a shadow of a framed knotted trivalent graph

G�S3. Every region R � X is equipped with a gleam, a half-integer that gener-

alizes the Euler number of closed surfaces embedded in oriented four-manifolds.

The gleam is de�ned as follows.

The boundary @R of R consists of some closed curves, see Figure 13. If R is

disjoint from G, the shadow X provides an interval bundle over @R as shown in

the �gure, which is an interval sub-bundle of the normal bundle of @R in D4. If R

is incident to some edge of G, the interval bundle is provided by the framing of G.

(The boundary @R is actually only immersed in general, but all these de�nitions

work anyway.)

R

Figure 13. A region R in a shadow X . The shadow X induces on every component of @R

an interval sub-bundle of the normal bundle in D4, painted here in yellow.

Let R0 be a generic small perturbation of R with @R0 lying in the interval bundle

at @R. The surfaces R and R0 intersect only in isolated points, and we count them

with signs:

gl.R/ D 1

2
#.@R \ @R0/C #.R \R0/ 2 Z

2

The half-integer gl.R/ is the gleam of R and does not depend on the chosen R0.

Note that the contribution of #.@R \ @R0/ above one component of @R is even or

odd, depending on whether the interval bundle above it is an annulus or a Möbius

strip.
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3.6. Shadow formula. Finally, we recall how to compute the Kau�man bracket

of a colored framed knotted trivalent graph G � S3 using shadows.

Let X be a shadow for G. An admissible coloring � for X is the assignment of

a color to each region of X , such that for every interior edge of X the colors of the

three incident regions form an admissible triple. We also require that � extends

the given coloring of G, i.e. a region R � X incident to an edge e of G must be

given the same color as e.

The evaluation of the coloring � is the following function:

hX� i D
Q

f
�.f /

f
qf

Q

v
�.v/
v

Q

v@

�.v@/
v@

Q

e
�.e/
e

Q

e@

�.e@/
e@

: (2)

Here the product is taken on all regions f , interior edges e, interior vertices v,

boundary edges e@, and boundary vertices v@. The symbols

f ; e; v; v@
; e@

indicate the Kau�man bracket of these graphs, colored respectively as f or as the

regions incident to e; v; v@; e@.

The phase qf is the following monomial in q
1
4 :

qf D .
p
�1/2gcq� gc

2
.cC2/

where g and c are the gleam and the color of f , respectively.

The Euler characteristic �.v/ and �.v@/ of vertices are obviously 1 and are

included only for aesthetic reasons.

Theorem 3.3 (Turaev). Let G � S3 be a colored framed knotted trivalent graph

and X any shadow for G. We have

hGi D
X

�

hX� i

where the sum is taken on all colorings � of X that extend that of G.

We give a complete proof of this formula in Section 6.

4. Estimates at q D i

We prove all the needed estimates at q D i . The main result of this section is

Theorem 4.4, which is the technical core of the paper.
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4.1. Subsurfaces. We will need the following.

Proposition 4.1. Let X be a shadow of a trivalent knotted graph G � S3. There

are natural 1–1 correspondences:

²

properly embedded

surfaces S � X

³

 ! H2.X; GIZ2/ ! H1.GIZ2/ !
²

links

L � G

³

:

The correspondence sends S to L D @S . The empty surface is included.

Proof. The morphism @WH2.X; GIZ2/! H1.GIZ2/ is an isomorphism because

X is contractible and hence Hi.X IZ2/ D ¹eº for i D 1; 2. Using cellular

homology, every Z2-homology class in .X; G/ is realized by a unique cycle, and

that cycle is a surface since X has simple singularities. �

Let now � be an admissible coloring for X . Its reduction modulo 2 is a cycle

in H2.X; GIZ2/ because the admissibility relation around every interior edge of

X reduces to i C j C k � 0 (mod 2). This cycle gives a surface S� � X that

consists of all regions in X having an odd color: we call S� the odd surface of � .

Analogously, an admissible coloring for G determines an odd link L � G

consisting of all edges with odd colors. Proposition 4.1 implies the following:

Corollary 4.2. Let G � S3 be a colored framed knotted trivalent graph and X be

any shadow for G. The odd surface S� � X of a coloring � that extends that of G

is the unique surface whose boundary @S� is the odd sublink of G. In particular

S� does not depend on � .

4.2. Red vertices. Let .a; b; c/ be an admissible triple. Consider the following

integers:

aC b � c

2
;

b C c � a

2
;

c C a � b

2
: (3)

All the de�nitions we introduce are standard, except the following one which

is new. We say that the triple .a; b; c/ is red if at least two of the three integers

in (3) are odd numbers.

De�nition 4.3. Let G be a colored framed knotted trivalent graph. A vertex is

red if the colors of the three incident edges form a red triple.
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4.3. The main technical theorem. Given a meromorphic function f .q/ de�ned

in a neighborhood of q0, we denote by

ordq0
f 2 Z [ ¹C1º

the maximum integer k such that f .q/=.q � q0/k�1 vanishes in q0. If ordq0
f D

C1 the function f vanishes in a neighborhood of q0, otherwise it has a Laurent

expansion

f .q/ D �.q � q0/ordq0
f C o..q � q0/ordq0

f /

for some � ¤ 0. We will be interested in the case q0 D i . We want to prove the

following:

Theorem 4.4. Let X be a shadow colored by � . We have

ordi hX� i > �.S�/ � r

2

where r is the number of red vertices in @X .

This theorem and the topological Theorem 2.3 form altogether the core of this

paper. In contrast with the topological one, this theorem has a long technical proof,

to which we devote the rest of this section.

Before starting with the proof we single out some corollaries.

Corollary 4.5. Let G � S3 be a colored framed knotted trivalent graph. If the

odd link L � G bounds a ribbon surface S � D4 then

ordi hGi > �.S/� r

2

where r is the number of red vertices in G.

Proof. The ribbon surface S is contained in a shadow X of G by Theorem 2.8.

We have

hGi D
X

�

hX� i

which implies

ordi hGi > min
�
¹ordi hX� iº:

Every coloring � of X extends the one of G and hence its odd surface S� � X

has boundary @S� D L. Such a surface is unique by Proposition 4.1 and hence

necessarily S� D S . Now Theorem 4.4 says that

ordi hX� i > �.S/� r

2

for all � . �
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A coloring of a link is odd if each component is colored with an odd number.

Corollary 4.6. If a link L � S3 bounds a ribbon surface S then

ordi hLi > �.S/

for any framing and any odd coloring on L.

Eisermann’s Theorem corresponds to the case where all colorings are 1.

Corollary 4.7. Let G be a colored framed knotted graph. If the odd link L � G

is ribbon, then

ordi hGi > jLj � r

2

where jLj denotes the number of components of L and r is the number of red

vertices in G.

Proof. By hypothesis L bounds a ribbon surface S consisting with jLj discs and

hence �.S/ D jLj. �

The following case includes the graphs , , and :

Corollary 4.8. Let G � R2 be a colored planar graph. We have

ordi hGi > jLj � r

2

where jLj denotes the number of components of the odd (un-)link L � G and r is

the number of red vertices in G.

Proof. The odd link L is planar, hence trivial, hence ribbon. �

4.4. Localization of Theorem 4.4. We now localize the proof of Theorem 4.4,

by reducing it to the building blocks , , and . The following lemma will

be proved in the next section.

Lemma 4.9. Let G be a colored ; , or . We have

ordi hGi > jLj � r

2

where L is the odd (un-)link L � G and r is the number of red vertices in G.

If G D or then the equality holds.
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Note that for G D ; ; we have:

� jLj D 1 if G contains some odd-colored edges,

� jLj D 0 otherwise.

We postpone the proof of Lemma 4.9 to the next section, and we now deduce

Theorem 4.4 from it.

Proof of Theorem 4.4 from Lemma 4.9. We have

hX� i D
Q

f
�.f /

f
qf

Q

v v

Q

v@
v@

Q

e
�.e/
e

Q

e@

�.e@/
e@

The phase qf is a monomial in q and hence does not contribute to ordi hX� i.
We get

ordi hX� i D
X

f

�.f / � ordi f C
X

v

ordi v C
X

v@

ordi v@

�
X

e

�.e/ � ordi e �
X

e@

�.e@/ � ordi e@
:

We now use Lemma 4.9. Note that for every colored ; ; involved, we

have jLj D 1 precisely when the corresponding stratum (vertex, edge, or region)

is contained in S� , otherwise we get jLj D 0. We denote by r.G/ the number of

red vertices in G and we get:

ordi hX� i >

X

f �S�

�.f /C
X

v2S�

1C
X

v@2S�

1�
X

e�S�

�.e/�
X

e@�S�

�.e@/

�
X

v

r.v/

2
�

X

v@

r.v@/

2
C

X

e

r.e/

2

D �.S�/ �
X

v

r.v/

2
�

X

v@

r.v@/

2
C

X

e

r.e/

2
:

Let e be an interior edge. The two vertices of e are colored by the same triple

.a; b; c/: hence e has either zero or two red vertices. If an interior vertex v

of X is adjacent to e, then v has a corresponding vertex colored by .a; b; c/.

If an exterior vertex v@ is adjacent to e, then both vertices of v@
are colored as

.a; b; c/. From this we get

X

e

r.e/ D
X

v

r.v/C
X

v@

r.v@/

2
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and therefore

ordi hX� i > �.S�/ �
X

v@

r.v@/

4
D �.S�/ � r

2

because r.v@/ equals 2 when v@ is red and 0 otherwise. �

4.5. Order of generalized multinomials. It remains to prove Lemma 4.9, and

to do so we will need the following.

Proposition 4.10. We have

ordi Œn� D
´

0 if n is odd;

1 if n is even;

ordi Œn�Š D
�

n

2

�

;

ordi

�

m1; : : : ; mh

n1; : : : ; nk

�

D
�

#
®

odd ni

¯

2

�

�
�

#
®

odd mj

¯

2

�

:

Proof. The function

Œn� D qn � q�n

q � q�1
D q�n

q � q�1
.q2n � 1/

has simple zeroes at the .2n/th roots of unity (except q D ˙1), hence at q D i

when n is even. The equality ordi Œn�Š D bn
2
c follows. On the multinomial, recall

that m1 C � � � Cmh D n1 C � � � C nh D N by hypothesis. We get

ordi

"

m1; : : : ; mh

n1; : : : ; nk

#

D
X

i

�

mi

2

�

�
X

j

�

nj

2

�

D
�

N

2

�

�
�

#
®

odd mi

¯

2

�

�
�

N

2

�

C
�

#
®

odd nj

¯

2

�

D
�

#¹odd niº
2

�

�
�

#¹odd mj º
2

�

: �

We can now evaluate ; , and at q D i .
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4.6. Orders of the circle, theta, and tetrahedron

Proof of Lemma 4.9. If G D then ordi a D ordi ŒaC 1� equals 1 if a is odd

and 0 if a is even: the odd link L is respectively G and ;, therefore ordi a D jLj
in any case.

If G D we have

ordi a;b;c D ordi

�

aCbCc
2
C 1; aCb�c

2
; bCc�a

2
; cCa�b

2

a; b; c; 1

�

D
�

#
®

odd a; b; c; 1
¯

2

�

�
�

#
®

odd aCbCc
2
C 1; aCb�c

2
; bCc�a

2
; cCa�b

2

¯

2

�

D jLj � r

2
:

To prove the last equality, note that the �rst addendum is 0 if a; b; c are even and

1 otherwise (there are either zero or two odd numbers in a; b; c by admissibility),

and L � G is respectively empty or a circle. Concerning the second addendum,

note that

aC b C c

2
C 1 D aC b � c

2
C b C c � a

2
C c C a � b

2
C 1

and hence one easily sees that the second addendum equals

�

#
®

odd aCb�c
2

; bCc�a
2

; cCa�b
2

¯

2

�

which is 1 if the triple is red and 0 otherwise, by de�nition.

For G D we do a long case-by-case analysis. We recall the formula

D
�

�i �4j

a; b; c; d; e; f

�

�
min �i
X

zDmax 4j

.�1/z

�

z C 1

z �4j ; �i � z; 1

�

:

with

41 D
aC b C c

2
; 42 D

aC e C f

2
;

43 D
d C b C f

2
; 44 D

d C e C c

2
;

�1 D
aC b C d C e

2
; �2 D

aC c C d C f

2
; �3 D

b C c C e C f

2
:
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Note that

aC b C c C d C e C f D
X

i

�i D
X

j

4j :

We now estimate the factor

min �i
X

zDmax 4j

.�1/z

�

z C 1

z �4j ; �i � z; 1

�

(4)

in terms of the parity of the �j ’s and the4i ’s.

We �rst consider the case a C b C c C d C e C f is even. In that case the

number of odd �i ’s is 0 or 2, while the number of odd 4j ’s is 0, 2, or 4. Using

Proposition 4.10 we easily see that

ordi

�

z C 1

z �4j ; �i � z; 1

�

is a number that depends on the parity of z, on the number 0; 2 of odd �i ’s and

0; 2; 4 of odd4j ’s according to the tables:

z even

0 �i 2 �i

04j 0 1

24j 1 2

44j 2 3

z odd

0 �i 2 �i

04j 4 3

24j 3 2

44j 2 1

By taking the minimum we get that the order at q D i of (4) is at least:

0 �i 2 �i

04j 0 1

24j 1 2

44j 2 1

(5)

The case aC b C c C d C e C f odd is treated analogously: now the number of

odd �i ’s is 1 or 3, and the number of odd4i ’s is 1 or 3. We get

z even

1 �i 3 �i

14j 1 2

34j 2 3

z odd

1 �i 3 �i

14j 3 2

34j 2 1
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The order at q D i of (4) is hence at least:

1 �i 3 �i

14j 1 2

34j 2 1

(6)

We now turn to the factor
�

�i �4j

a; b; c; d; e; f

�

: (7)

The 12 numbers �i �4j are of type mCn�p
2

where .m; n; p/ are the colors of the

edges incident to some vertex: there are 4 vertices and 3 such expressions at each

vertex; the 12 numbers correspond to the 12 red arcs in the picture

where the red arc corresponding to mCn�p
2

is the one parallel to the edges m; n

and opposite to p. The parities of these 12 numbers determine the parities of all

the quantities �i ;4j ; a; b; c; d; e; f , and hence also jLj and r
2
. The possible con-

�gurations (considered up to symmetries of the tetrahedron) are easily classi�ed

and are shown in Tables 1 and 2.

As the tables show, the needed inequality

ordi ..4//C ordi ..7// > jLj C r

2

is veri�ed for all the con�gurations, except one bad case: when the �i ’s are all

even and the4j ’s are all odd we need to prove that

ordi ..4//C ordi ..7// > �2

but we only get > �4. This bad case holds for instance when a D b D c D d D
e D f D 2 and hence �i D 4 and 4j D 3. If we look more carefully at this

example we �nd

D
�

1 � � �1
2; 2; 2; 2; 2; 2

�

�
4

X

zD3

.�1/z

�

z C 1

z � 3; 4� z; 1

�

D 1

Œ2�6
� .�Œ4�ŠC Œ5�Š/

D Œ4�Š

Œ2�6
� .Œ5�� 1/:
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Table 1. For each case: the number of odd �i ’s, of odd 4j ’s, the red arcs, the order of the

�rst factor (7), of the second (4) estimated in (5), the number of components of the odd link

jLj, and r
2
. If (7) + (4) > jLj � r

2
then the estimate works (last column).

odd �i ’s odd 4j ’s red arcs ordi

�

.7/
�

ordi

�

.4/
�

jLj r
2

works?

0 0 0 > 0 0 0 yes

0 2 �1 > 1 1 1 yes

0 4 �6 > 2 0 2 no

2 0 �2 > 1 1 2 yes

2 2 �1 > 2 1 1 yes

2 2 �3 > 2 0 1 yes

2 4 0 > 1 1 0 yes
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Table 2. For each case: the number of odd �i ’s, of odd4j ’s, the red arcs, the order of the

�rst factor (7), of the second (4) estimated in (6), the number of components of the odd link

jLj, and r
2
. If (7) + (4) > jLj � r

2
then the estimate works (last column).

odd �i ’s odd 4j ’s red arcs ordi

�

.7/
�

ordi

�

.4/
�

jLj r
2

works?

1 1 �1 > 1 1 1 yes

1 3 �2 > 2 1 1 yes

3 1 �3 > 2 1 2 yes

3 3 0 > 1 1 0 yes

Now it turns out that the di�erence

Œ5�� 1 D q4 C q2 C q�2 C q4 D .q C q�1/.q3 C q�3/ D Œ2�.Œ4�� Œ2�/

has order 2 at q D i : this di�erence produces a cancellation that increases the

order of (4) at q D i by two, giving overall the desired �4 instead of the > �2

expected by the tables.

We now prove that this kind of cancellation holds in general, provided that the

�i ’s are all even and the 4j ’s are all odd. The sum

min �i
X

zDmax 4j

.�1/z

�

z C 1

z �4j ; �i � z; 1

�

goes from the odd z D max4j to the even z D min �i and so contains an even

number of terms. Two subsequent terms z D 2k � 1 and z D 2k give

�
�

2k

2k � 1�4j ; �i � 2k C 1; 1

�

C
�

2k C 1

2k �4j ; �i � 2k; 1

�
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that may be rewritten as

�
�

2k

2k � 1 �4j ; �i � 2k; 1; 1; 1; 1

�

�
� 1

Q

i Œ�i � 2k C 1�
� Œ2k C 1�

Q

j Œ2k �4j �

�

:

The left factor has order 2 as prescribed by Table 1. Quite surprisingly, the second

factor
Q

j Œ2k �4j �� Œ2k C 1� �
Q

i Œ�i � 2k C 1�
Q

i Œ�i � 2k C 1� �
Q

j Œ2k �4j �
:

has order at least 2: note that all the quantum integers in the formula are quan-

tum odd numbers; the denominator is a non-zero constant at q D i , while the

numerator has order > 2 thanks to the following lemma.

Lemma 4.11. Let x1; : : : ; xn; y1; : : : ; ym be odd non-negative integers with
X

j

.yj � 1/ �
X

i

.xi � 1/ .mod 4/:

Then

ordi

�

Y

i

Œxi � �
Y

j

Œyj �
�

> 2:

Proof. We set f .q/ D
Q

i Œxi � �
Q

j Œyj � and write
p
�1 instead of i to avoid

confusion. Now

Œ2k C 1�.
p
�1/ D .�1/k

gives

f .
p
�1/ D .�1/

1
2

P

i .xi �1/ � .�1/
1
2

P

j .yj �1/ D 0

since 1
2

P

i .xi � 1/ and 1
2

P

j .yj � 1/ have the same parity by hypothesis. This

gives ordif > 1. We now calculate the derivative f 0 of f . Note that

Œn�0 D n.qn�1 C q�n�1/.q � q�1/ � .1C q�2/.qn � q�n/

.q � q�1/2
:

vanishes when q D
p
�1 and n is odd, since both qn�1 C q�n�1 and 1C q�2 do.

Therefore the derivatives of
Q

Œxi � and
Q

Œyj � both vanish at q D
p
�1 and hence

f 0.
p
�1/ D 0. Therefore ordif > 2. 4

To conclude the proof of Lemma 4.9 we must verify that
X

j

.2k �4j � 1/ � 2k C
X

i

.�i � 2k/ .mod 4/

and apply Lemma 4.11. This is equivalent to
P

j 4j �
P

i �i which is true since

actually
P

j 4j D
P

i �i . �
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5. Other manifolds

We extend everything from S3 to #g.S2�S1/. We prove in particular Theorems 1.8

and 1.13.

5.1. Ribbon surfaces. The notion of ribbon surface extends naturally from S3 to

every closed 3-manifold M . A properly embedded smooth surface S �M � Œ0; 1�

with @S �M � 0 is ribbon if one of the following equivalent conditions holds:

� the surface S may be isotoped to an immersed surface in M having only

“ribbon” singularities as in Figure 3,

� the surface S may be isotoped in M � Œ0; 1� into Morse position, with only

minima and saddle points (no maxima) as in Figure 4.

Every ribbon surface S can be constructed from a graph embedded in M as

in Figure 5, consisting of some disjoint circles bounding discs (the minima), and

some arcs connecting them in space (the saddles).

5.2. Shadows. Our de�nition of shadow is very restrictive and designed for D4,

and it cannot be extended harmlessly to manifolds other than S3.

Costantino has proposed in [4] a de�nition when Mg D #g.S2 � S1/ is a

connected sum of some g > 1 copies of S2�S1. In that case Mg is the boundary

of the oriented four-dimensional handlebody H 4
g made of one 0-handle and g one-

handles.

De�nition 5.1. A shadow for H 4
g is a simple polyhedron X � H 4

g such that the

following holds:

� X is properly embedded, that is @X D X \Mg ,

� X is locally �at,

� X collapses onto a graph Y ,

� H 4
g collapses onto X .

The last two conditions can be summarized by writing

H 4
g & X & Y:

The boundary G D @X of a shadow X � H 4
g is a knotted trivalent graph G �Mg ,

and we say that X is a shadow of G.

Proposition 5.2 (Costantino [4]). Every knotted trivalent graph G � Mg has a

shadow X � H 4
g .
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Proof. Same proof as in Proposition 2.2, with a small variation. We set H 4
g D

Dg�D2 where Dg is a disc with g holes. Up to isotopy we can see G as a diagram

in the interior of Dg . Up to some Reidemeister move we can suppose that there

is a smallest closed disc with g holes D0
g � Dg containing G such that Dg nD0

g

is a collar of @Dg . We clearly have H 4
g & D0

g & Y for some graph Y � D0
g .

We enlarge D0
g by adding a cylinder above G and we get a shadow X for G. �

5.3. Ribbon surfaces in a shadow. We can now extend Theorem 1.1 from S3 to

Mg . A ribbon surface in a 4-manifold like H 4
g is just a ribbon surface in a collar

of its boundary.

Theorem 5.3. Every ribbon surface S � H 4
g is contained in a shadow X with

@X D S .

Proof. We proceed as in the proof as in Theorem 2.3. We construct S from a graph

G � #g.S2 � S1/ as in Figure 5 made of circles and arcs. Up to Reidemeister

moves we suppose that G is contained in a smallest disc with holes and we build a

shadow X for G as described in the proof of Proposition 5.2. Then we add bands

and push them inside H 4
g . �

5.4. Kau�man bracket. The Kau�man bracket is also de�ned in Mg , thanks to

result of Hoste-Przytycki [13, 19] and (with di�erent techniques) to Costantino [4].

We brie�y recall its de�nition.

Let M be an oriented 3-manifold. Consider the �eld Q.A/ of all complex

rational functions with variable A and the abstract Q.A/-vector space V generated

by all framed links in M , considered up to isotopy. The skein vector space K.M/

is the quotient of V by all the possible skein relations as in Figure 9. An element

of K.M/ is called a skein.

Proposition 5.4. The skein vector space K.Mg/ of Mg is isomorphic to Q.A/ and

generated by the empty skein ;.

Proof. This is due to Hoste and Przytycki [13, 18, 19], see also [10, Proposition 1].

�

A colored framed knotted trivalent graph G determines a skein G 2 K.M/

and as such it is equivalent to hGi � ; for a unique coe�cient hGi 2 Q.A/. This

coe�cient is by de�nition the Kau�man bracket hGi of G.
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Remark 5.5. There is an obvious canonical linear map K.M/ ! K.M#N /

de�ned by considering a skein in M inside M#N . The linear map K.Mg/ !
K.MgC1/ sends ; to ; and hence preserves the bracket hGi of a G �Mg .

This shows in particular that if G is contained in a ball, the bracket hGi is the

same that we would obtain by considering G inside S3.

5.5. Shadow formula. The shadow formula works also in this context.

Theorem 5.6 (Shadow formula). Let G � Mg be a colored framed knotted

trivalent graph and X � H 4
g any shadow for G. We have

hGi D
X

�

hX� i

where the sum is taken on all colorings � of X that extend that of G.

A crucial observation [4, Lemma 3.6] is that the number of colorings � extend-

ing that of G is �nite, because X collapses to a graph Y : hence the sum makes

sense (see Proposition 6.1). We prove Theorem 5.6 in Section 6.

Remark 5.7. Costantino [4] uses the shadow formula to de�ne hGi and then

employs Turaev’s theory of shadows and Reshetikhin-Turaev invariants to prove

that the result does not depend on the shadow chosen. Costantino’s de�nition

agrees with ours up to a slightly di�erent normalization: he wants to extend the

Jones polynomial, while we prefer to extend the Kau�man bracket.

5.6. Main theorem. We can �nally prove Theorem 1.13:

Theorem 5.8. Let G be a colored framed knotted trivalent graph in S3 or

#g.S2 � S1/ and L � G be its odd sublink. If L bounds a ribbon surface S

then

ordi hGi > �.S/� r

2

where r is the number of red vertices in G.

Proof. We know that L has a shadow X containing S by Theorem 5.3. The proof

of Theorem 2.8 extends as is from D4 to H 4
g and furnishes a shadow X of G

containing S . The shadow formula says that

hGi D
X

�

hX� i:
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The surface S is the unique subsurface in X with boundary equal to L: if there

were another one S 0, then S C S 0 would be a non-trivial element in H2.X IZ2/ D
¹eº. Therefore for every coloring � of X extending that of G, the odd surface

S� coincides with S . Now Theorem 4.4 applies for each state hX� i and we are

done. �

5.7. Examples. We show a couple of examples. The �rst one is pretty simple:

let S be a compact orientable surface with boundary. The four-manifold S �D2

is di�eomorphic to H 4
g and its boundary is #g.S2 � S1/ with g D 1 � �.S/. The

surface S is a shadow for the link L D @S . It consists of one region S with gleam

zero.

If we color the components of L with di�erent colors, no coloring of S can

extend them: so there are no states, and hLi D 0. In this case Theorem 5.8 gives

no information. If we color each component of L with the same n, there is a single

coloring � for S extending it and we get

hLi D hS� i D �.S/
n D ..�1/nŒnC 1�/�.S/:

When n is odd, this function has a pole in q D i of order ��.S/. Therefore S

is the ribbon surface with smallest ��.S/ for L, and the lower bound given by

Theorem 5.8 is sharp on these links. This proves Example 1.11.

Remark 5.9. It is in fact obvious that there cannot be any subsurface S 0 � S�D2

with @S 0 D @S and �.S 0/ > �.S/, because there is no map S 0 ! S that sends @S 0

homeomorphically to @S . (If we cap the surfaces we get a degree-one map from

a lower-genus closed surface to a higher-genus one.)

As another example we compute the Kau�man bracket of the framed knot

K �Mg drawn in Figure 2, considered with its blackboard framing. We construct

a shadow following the algorithm of Proposition 5.2. To compute the gleam of the

regions, we add some ˙1
2

around each crossing as follows:

and then we add all the contributions contained in each region, see [7, 24].
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As a result we get the shadow X shown in Figure 14. The shadow X has a large

region R with � D �2gC 1 and gleam g, and g discs D1; : : : ; Dg with gleam �1.

Figure 14. A shadow for the knot K drawn in Figure 2. The g discs have gleam �1 and the

large region has gleam g.

We give K the color 1. Every edge is circular and incident to Di ; R; R.

If Di is colored by c, then .c; 1; 1/ must be an admissible triple: this holds only

for c D 0; 2. Therefore each Di can be colored by wither 0 or 2. Thus a coloring

� for X is determined by a vector � D .�1; : : : ; �g/ 2 ¹0; 2ºg .

The circular edges e have �.e/ D 0 and hence do not contribute to the formula

for hX� i. Hence the only contributions come from the regions of X . Recall that a

region f with gleam g and color c contributes with a factor

�.f /
c qf D ..�1/cŒc C 1�/�.f /.

p
�1/2gcq� gc

2
.cC2/:

The large region R contributes with

�.R/
1 qR D .�Œ2�/�2gC1.�1/gq�

3g
2 D .�1/1�g q� 3g

2

.q C q�1/2g�1
:

A disc Di contributes according to its color 0 or 2 respectively as

0qDi
D 1; 2qDi

D Œ3�q4 D q2 C q4 C q6:

Set j� j D
P

i
�i

2
. We get:

hKi D
X

�

hX� i

D
X

�

.�1/1�g q� 3g
2

.q C q�1/2g�1
� .q2 C q4 C q6/j�j

D .�1/1�g q� 3g
2

.q C q�1/2g�1

X

�

.q2 C q4 C q6/j�j

D .�1/1�gq� 3g
2

.1C q2 C q4 C q6/g

.q C q�1/2g�1

D .�1/1�gq
3g
2

Œ4�g

Œ2�2g�1
:
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Therefore:

ordi hKi D g � ordi Œ4�� .2g � 1/ � ordi Œ2� D g � .2g � 1/ D 1� g:

This proves Example 1.9.

6. The state-sum formula

We prove here the shadow state-sum formula for hGi, namely Theorems 3.3

and 5.6. Recall that Mg D #g.S2 � S1/ when g > 1, and we extend this notation

by setting M0 D S3. We also set H 4
0 D D4, so that Mg D @H 4

g for all g > 0.

The shadow state-sum formula was �rst proved by Turaev [24] in S3 and hence

extended by Costantino [4] in Mg . We include here for completeness a proof that

uses skein theory and avoids Reshetikhin-Turaev invariants.

6.1. Fusions and sphere intersections. We recall a couple of skein equalities.

The �rst is the well-known fusion rule shown in Figure 15, which takes place inside

a ball, see [15, Figure 14.15]

Figure 15. The fusion rule. Recall that all framings are orientable, i.e. they form an

orientable surface that thickens the knotted trivalent graph. We suppose here that the two

bands in the left are oriented coherently, so that the right knotted trivalent graph is also

orientable.

A second kind of move is shown in Figure 16-(left) and takes place in the

neighborhood of a two-dimensional sphere S , drawn as a 0-framed circle in the

picture. If G intersects S transversely in exactly one point, then Figure 16-(left)

applies. The move says that if the edge of G crossing S has a positive coloring
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i > 1, then G D 0 as skeins. See [1, Lemma 1] for a proof. Note that after applying

the move we can surger along the sphere without a�ecting hGi, see Remark 5.5.

By combining the two moves we also get a third one that applies when G

intersects S transversely into two points, see Figure 16-(right).

D ıi;0 D ıi;j

Figure 16. Sphere intersection.

6.2. Simple polyhedra that collapse onto graphs. It might be non-obvious in

general to determine whether a polyhedron collapses onto a graph. Luckily, on

simple polyhedra there is a nice criterion.

Proposition 6.1 (Costantino). Let X be a connected simple polyhedron. The

following facts are equivalent:

(1) X collapses onto a graph,

(2) X does not contain a simple polyhedron without boundary,

(3) every coloring of @X extends to �nitely many colorings on X .

Proof. See [4, Lemma 3.6]. �

Corollary 6.2. Let X be a simple polyhedron that collapses to a graph. Every

connected simple subpolyhedron X 0 � X also collapses onto a graph.

Proof. The polyhedron X does not contain any simple sub-polyhedron without

boundary, hence X 0 also does not. �

Corollary 6.3. Each move in Figure 17 transforms a simple polyhedron that

collapses to a graph into one or two simple polyhedra that collapse to a graph.
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Figure 17. A simple polyhedron X that collapses onto a graph reduces to a �nite union of

atomic polyhedra after �nitely many moves of this type. The bold exterior lines are portions

of @X .

A simple polyhedron X is atomic if it is the cone over ; , or , that is

X is as in Figure 6-(3,2,1). We will use the following.

Proposition 6.4. Let X be a simple polyhedron that collapses onto a graph. The

polyhedron reduces to a �nite union of atomic polyhedra after a �nite combination

of moves as in Figure 17.

Proof. We say that a region of X is exterior if it is incident to @X , and interior

otherwise. Suppose X contains some interior regions. There is an edge e that

is adjacent to one interior region and to two exterior regions: if not, the interior

regions would form a simple sub-polyhedron contradicting Proposition 6.1. The

move in Figure 17-(bottom) applied to e transforms the interior region into an

exterior one: after �nitely many such moves we kill all the interior regions.

Now we can use Figure 17-(center) to cut every interior edge in two halves, and

then Figure 17-(top) to cut every region into discs that are incident to @X only in

one arc or circle. We are left with atomic pieces. �

6.3. Moves on shadows. If we apply one of the moves of Figure 17 to a shadow X

of some graph G �M , we get a new simple polyhedron X 0 that can be interpreted

as a shadow of some graph G0 in some manifold M 0. We show this fact for each

move.
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We start by examining Figure 17-(top). The yellow strip thickens to a

D3� Œ�1; 1�, with boundary S2� Œ�1; 1�. The two-sphere S D S2�0 intersects G

transversely into two points. Topologically, the move corresponds to surgerying

M along the two-sphere S2� 0 and modifying G as in Figure 16-(right). We get a

new graph G0 inside a new manifold M 0, with a new shadow X 0. If S is separating,

these objects actually split into two components.

The move in Figure 17-(center) is analogous, the only di�erence being that now

S intersects G in three points. The move in Figure 17-(bottom) is the fusion shown

in Figure 15.

Remark 6.5. In the moves of Figure 17, some region R � X is cut into two

regions R1; R2 � X 0. The gleams g1 and g2 of these new regions sum to give the

gleam g D g1C g2 of R. The gleams of all the other regions of X do not change.

6.4. The shadow formula. We are now ready to prove the shadow formula.

Recall that Mg D @H 4
g and we use the convention M0 D S3 and H 4

0 D D4.

Theorem 6.6. Let G be a colored framed knotted trivalent graph in Mg and X

be a shadow for G, contained in H 4
g . We have

hGi D
X

�

hX� i

where � varies among all colorings of X extending that of G.

Proof. We recall that

hX� i D
Q

f
�.f /

f
qf

Q

v
�.v/
v

Q

v@

�.v@/
v@

Q

e
�.e/
e

Q

e@

�.e@/
e@

: (8)

The formula holds when X is atomic with zero gleams: there is a single coloring

� on X extending that of G, and we get hX� i D hGi. To prove that, note that

the contribution of every non-closed e@ or v@ cancels with the contribution of the

incident f or e. Therefore:

� if G D we get obviously ,

� if G D everything cancels except 2
v@

= e D e,

� if G D everything cancels except v.

Suppose now X is atomic with arbitrary gleams. We modify the gleams using the

following moves:
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(1) add a gleam ˙1 on a region: this corresponds to a full twist of the corre-

sponding framed edge of G;

(2) add a gleam ˙1
2

to the three regions incident to an interior edge of X : this

corresponds to a half-twist to each of the three edges of G incident to a vertex

of G.

Using �nitely many such moves we can reduce all gleams to zero. To show that,

color in green the regions having a half-integer (but non-integer) gleam. Recall

that the framing of G is orientable: this implies that every sub-circle C � G

intersects an even number of green faces, and it is easy to check that with moves

(2) we can transform all gleams into integers. Then we reduce them to zero using

(1).

Let G0 be obtained from G by (1) or (2). We recall from [15, Figures 14.1

and 14.14] that:

hG0i D .�1/cq� c
2

.cC2/hGi;

hG0i D .�1/
aCbCc

2 q� a
4

.aC2/� b
4

.bC2/� c
4

.cC2/hGi

corresponding respectively to moves (1) and (2). In the formula (8) the contribu-

tion of the phases

qf D .
p
�1/2gcq�

gc
2

.cC2/

changes exactly in the same way: this proves the theorem for any atomic shadow X .

A more general X decomposes into atoms via �nitely many moves as in

Figure 17. Let n.X/ be the number of moves necessary to atomize X : we prove

the theorem by induction on n.X/.

Pick a move transforming X into a X 0 with n.X 0/ < n.X/. The polyhedron X 0

is a shadow of some graph G0 in some manifold M 0. The objects X 0 and M 0 may

have two components, but the following arguments work anyway. We suppose by

induction that the theorem holds for X 0 and G0, and we prove it for X and G.

Consider the move in Figure 17-(top). The pair .M 0; G0/ is obtained from

.M; G/ via the move shown in Figure 16-(right), with G0 inheriting the coloring

of G. Therefore

hGi D 1

R

hG0i

where R is the yellow region that we have cut. There is an obvious correspondence

between colorings of X and X 0, and the formula (8) says that for each coloring �

we have

hX� i D
1

R

hX 0
� i:
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(We use here Remark 6.5 to show that the phases of X� and X 0
� are the same.)

The theorem holds for the pair .X 0; G0/, and hence holds also for .X; G/.

The move in Figure 17-(center) is treated analogously. Using a fusion and

Figure 16 we �nd easily that

hGi D 1

e

hG0i

where e is the edge cut in Figure 17-(center). There is an obvious correspondence

between colorings of X and X 0, and for each such coloring � we have

hX� i D
1

e

hX 0
� i:

Finally, the move in Figure 17-(bottom) is a fusion. The fusion formula says

hGi D
X

c

c

a;b;c

hG0
ci

where the coloring G0
c on G0 varies on the new edge c. Every coloring of X

induces one of X 0 and we get

hX� i D c

a;b;c

hX 0
� i:

This proves the theorem. �

7. Open questions

A list of stimulating open questions is contained in the last section of Eisermann’s

paper [9], which is overall very nice and enjoyable to read. Here we add more

questions to that list.

7.1. Ribbon genus of knots in S 3. We have seen that the Kau�man bracket hKi
of a knot K � #g.S2 � S1/ may produce non-trivial (sometimes sharp) lower

bounds for the ribbon genus of K, see Examples 1.9 and 1.11.

The situation in S3 is more disappointing because of the following:

Proposition 7.1. Let L � S3 be a colored framed link. If at least one component

of L has an odd coloring, the bracket hLi vanishes at q D i .
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Proof. We prove it by induction on the maximum color c on L. If c D 1, this is

the standard case: we choose a diagram for L and use the �rst Kau�man bracket

relation to transform hLi into a linear combination of unlinks with coe�cients in

ZŒA˙1�. The second bracket relation says that the bracket of each unlink vanishes

at q D i .

If some component K of L has a color c > 1, we modify K via the well-known

skein move shown in Figure 18 that takes place in a solid torus neighborhood of

K and is an immediate consequence of Figure 10. Each of the new two addenda

is a colored link with at least one odd-colored component. We perform this move

on all components with maximum color c and we conclude by induction. �

Figure 18. A skein move on a framed colored knot.

Therefore ordi hKi > 1 for every odd-colored knot K � S3 and if we apply

Theorem 1.13 to hKi we get no relevant information. One could try however to

choose a colored knotted trivalent graph G � S3 containing the knot K as its odd

sublink. We do not know if some relevant information may be obtained for K in

that case:

Question 7.2. Is there a colored framed knotted trivalent graph G � S3 whose

odd sub-link K � G is a knot, such that

ordi hGi C
r

2
6 0 ‹

One such example would imply that K is not ribbon.

Remark 7.3. As far as we know, it might be that ordi hGi C r
2

> 0 for all colored

trivalent G � S3 having a non-empty odd sub-link. See for instance [5] where it

is shown that hGi is a polynomial up to a little renormalization.

More generally, we do not know if by passing from links to graphs we gain

more obstructions for the existence of ribbon surfaces, because we tested only very

few examples. Computing the Kau�man bracket of a colored knotted trivalent
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graph G � S3 by hand can be tedious: it would be nice to have a computer

program where the user can draw a diagram of G and get ordi hGi as a result. We

have computed by hand a couple of examples (the Hopf link and the trefoil knot

with an additional arc) and found no improvement there.

7.2. More manifolds. The notion of ribbon surface applies to any kind of

3-manifold M , but the Jones polynomial does not. To de�ne hKi as a rational

function we need the Kau�man space K.M/ to be one-dimensional.

Question 7.4. For which closed 3-manifolds M the space K.M/ is one-dimen-

sional?

When K.M/ is not one-dimensional, quantum invariants survive only at the

roots of unity: these are the well-known Reshetikhin-Turaev-Witten invariants.

These invariants can also be calculated using shadows, so it might be that some

of the techniques used here extend to that context:

Question 7.5. Can we relate the ribbon genus of a link to RTW invariants, for

instance by taking roots of unity q converging to q ! i? Does the fact that a knot

is ribbon in�uence the asymptotic of the RTW invariants as q ! i?

7.3. Ribbon surfaces and shadows. We have discovered that being contained

in a shadow is a property that lies in the middle, between being ribbon and being

homotopically ribbon. It is then natural to ask Question 1.4, which splits into two

questions. Let S be a properly embedded surface in D4:

Question 7.6. If S is contained in a shadow, is it ribbon?

Question 7.7. If S is homotopically ribbon, is it contained in a shadow?

7.4. Slice-ribbon conjecture. The famous slice-ribbon conjecture states that a

knot in S3 is slice (i.e. it bounds a smooth disc in D4) if and only if it is ribbon.

It is worth mentioning that this conjecture extends naturally at least in three ways:

from knots to links, from discs to more general surfaces, and also from S3 to

more general 3-manifolds. Since we have not seen it in the literature, we state this

three-fold generalization as a question:

Question 7.8. Let M be any 3-manifold. Let L � M be a link in M D M � 0

that bounds a compact properly embedded surface S �M � Œ0; 1�. Does L bound

a ribbon surface S 0 di�eomorphic to S?
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We may de�ne the slice genus gs.K/ of a null-homologous knot K � M as

the smallest genus of a properly embedded orientable surface S in M � Œ0; 1� with

@S D K, and the ribbon genus gr .K/ as the smallest genus of a ribbon surface S

for K. When M D S3 these are the standard slice and ribbon genera, since every

surface in D4 can be pushed inside S3 � Œ0; 1�.

Of course we have gr .K/ > gs.K/, and the previous question specializes to

the following.

Question 7.9. Does the equality gr.K/ D gs.K/ hold for every possible null-

homologous knot K �M in every 3-manifold M?

The lower bounds for the ribbon genus proved in this paper might in principle

be used to �nd a counterexample in M D #g.S2 � S1/.

7.5. Other roots of unity. Let X be a simple spine of a 3-manifold M . Roughly,

a simple spine is just a shadow with all gleams zero: spines are used for instance

in Turaev-Viro invariants [26]. For instance, X might be the dual of an ideal

triangulation for M .

A coloring � for X gives rise to a rational function hX� i that may have poles

in q D 0;1, and at some roots of unity. The coloring � de�nes a spinal surface

F� �M , and we get

ord0hX� i > ��.F�/

by a nice result of Frohman and Kania-Bartoszynska [11] that connects quantum

invariants near q D 0 to normal surfaces theory. This result was used extensively

for instance in [6]. Here we have proved that

ordi hX� i > �.S�/

where S� is the odd surface contained in X . Note that the two inequalities concern

di�erent surfaces, and have opposite signs!

Question 7.10. Do we get any similar inequalities for ordqhX� i when q is a root

of unity di�erent from ˙i?
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