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1. Introduction

1.1. Geometric construction of Khovanov homology. Khovanov homology is

an invariant of links, taking values in bigraded vector spaces. Khovanov [11]

originally de�ned this theory in an algebraic/combinatorial fashion. In [4] we gave

a construction of Khovanov homology in the context of geometric representation

theory. Our construction used derived categories of coherent sheaves on certain

�ag-like varieties constructed using the a�ne Grassmannian of PGL2.

Khovanov homology categori�es the Jones polynomial, which is the invari-

ant of Reshetikhin and Turaev associated to the Lie algebra sl2 and its stan-

dard representation. One of our main motivations in [4] was to �nd a setting for

Khovanov homology would generalize to other semisimple Lie algebras. This was

partially accomplished in [5, 3] where we de�ned knot homology theories cate-

gorifying the Reshetikhin–Turaev invariants for slm representations. For the case

of the standard representation our construction was more or less straightforward,

whereas for other fundamental representations, our construction used a categori-

�ed form of skew-Howe duality and the theory of categorical sln actions [7].

1.2. Batson–Seed coloured link homology. Recently, Batson and Seed [1]

de�ned a Khovanov-like homology theory for coloured links, where each com-

ponent of the link is coloured1 with a complex number. When all the components

have the same colour, their theory is the same as Khovanov homology. On the

other hand, when all the components have di�erent colours, their theory gives the

tensor product of the Khovanov homologies of the components. Moreover, they

constructed a spectral sequence from the �rst case to the second case.

1.3. Geometric coloured link homology. Batson asked us if the Batson–Seed

theory had a natural realization in our geometric framework and moreover if it

was possible to extend the construction from the case of sl2 to slm. In this paper

we answer these questions in the a�rmative.

More precisely, we do the following.

(1) We construct a kernel-valued invariant of coloured, labeled tangles (Theo-

rem 3.4). This invariant recovers our previous construction [4, 5, 3] when all

colours are equal.

1 This is not to be confused with the colouring of links by representations of slm. In this

paper, we will speak about links whose components are labeled by (fundamental) representations

and coloured by complex numbers.
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(2) Given a link K with components K1; : : : ; Kr , we construct a link invariant

‰.K/Cr taking values in the derived category of graded modules over a

polynomial ring in r variables (Proposition 5.5). From this invariant, we

obtain a spectral sequence from the doubly-graded vector space ‰.K/ to the

singly-graded vector space ‰.K1/ ˝ � � � ˝ ‰.Kr/ (Theorem 5.2).

This provides us with a coloured link homology theory and a spectral sequence

as in Batson–Seed. Moreover, as in their work, when all components have di�erent

colours our homology gives the tensor product of the homology associated to

the components. Note however, that our construction works for any slm and all

fundamental representations.

1.4. Deformation of varieties and deformation of kernels. Our constructions

[4, 5, 3] made use of iterated convolutions of spherical Schubert varieties in the

a�ne Grassmannian. More precisely, we considered the spaces of �ags of lattices

Y.
N
k/ WD ¹L0 D CŒz�m � L1 � � � � � Ln � CŒz; z�1�mW

zLi � Li�1; dim.Li=Li�1/ D kiº

Using the Beilinson–Drinfeld Grassmannian, it is easy to de�ne a deformation

Y.
N
k/Cn of this variety.

Our constructions [4, 5, 3] were based on assigning certain Fourier–Mukai ker-

nels to caps, cups, and crossings. In this paper we prove that these kernels deform

(section 5.3). This is easy to do for caps and cups and also for crossings involving

the standard representation, because in these cases the kernels are (roughly) the

structure sheaves of certain correspondences which deform.

However, when a crossing involves other fundamental representations, the

resulting kernel is constructed as a Rickard complex (also known as Chuang–

Rouquier complex) using the theory of categorical sln-actions. The terms in this

complex do not deform. Thus, it is quite surprising and non-trivial that the total

complex does deform. To prove this we identify the total complex with the push-

forward (from an open subset) of a line bundle, generalizing the main result of [2]

(see Proposition A.8). This generalization of [2] is the other main result in this

paper. In particular, Corollary A.14 can be used to show that there exists an action

of the a�ne braid group on our categories (this is not used in the current paper

but is of independent interest).

Acknowledgements. We thank Josh Batson for telling us about his work and

for raising the questions which lead to the present paper. J. Kamnitzer was sup-

ported by an NSERC discovery grant, a Sloan fellowship, and a Simons fellow-

ship. S. Cautis was supported by an NSERC discovery grant and the Templeton

Foundation.
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2. Geometric background

2.1. Notation. We will only consider schemes over C. Denote by D.Y / the

bounded derived category of coherent sheaves on a scheme Y . If Y also carries an

action of C� then we denote by DC�

.Y / the derived category of C�-equivariant

sheaves. We use Š to denote non-canonical isomorphism (if the isomorphism is

canonical, we usually write D).

All functors will be derived. So, for example, if f W Y ! X is a morphism then

f�W D.Y / ! D.X/ denotes the derived pushforward.

Warning 2.1. There is one important exception to this rule, namely if j W U ! Y is

an open embedding then j� will always denote the plain (underived) pushforward.

Recall also the terminology of Fourier–Mukai kernels [10]. Given an object

P 2 D.X � Y / (whose support is proper over X and Y ) we may de�ne the

associated transform, which is the functor

ˆPW D.X/ �! D.Y /;

F 7�! �2�.��
1 .F/ ˝ P/;

where �1 and �2 are the natural projections from X � Y . The object P is called

the kernel.

The right and left adjoints of ˆP are the transforms with respect to the kernels

P
R WD �.P_/ ˝ ��

2 !X Œdim.X/� 2 D.Y � X/

and

P
L WD �.P_/ ˝ ��

1 !Y Œdim.Y /� 2 D.Y � X/;

where � W D.X � Y / ! D.Y � X/ denotes the equivalence coming from the

canonical map � W X � Y ! Y � X . If P induces an equivalence ˆP then its

inverse is induced by PL Š PR.

We can express composition of transforms in terms of their kernels. If X; Y; Z

are varieties and ˆPW D.X/ ! D.Y / and ˆQW D.Y / ! D.Z/ are transforms,

then ˆQ ı ˆP is the transform with respect to the kernel

Q � P WD �13�.��
12.P/ ˝ ��

23.Q//:

The operation � is associative. Moreover by [10] remark 5.11, we have .Q�P/R Š

PR � QR and .Q � P/L Š PL � QL.
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2.2. The varieties. Fix an integer m � 2. We now describe the basic varieties

upon which our work is based. These varieties are indexed by sequences
N
k D

.k1; : : : ; kn/ where each 1 � ki � m � 1. Each such ki corresponds to a

fundamental weight !ki
of slm.

Fix a vector space C
m and consider the vector space C

m ˝ C.z/ and let

L0 D C
m ˝ CŒz�. We will study CŒz�-submodules L of Cm ˝C.z/ which contain

L0, and such that L=L0 is �nite-dimensional. Note that if L is such a subspace,

then zjL=L0
is a linear operator on a �nite-dimensional vector space.

For
N
w D .w1; : : : ; wn/ with wi 2 C we de�ne

Y.
N
k/

N
w WD ¹.L1; : : : ; Ln/W Li � C

m ˝ C.z/; L0 � L1 � L2 � � � � � Ln;

dim.Li=Li�1/ D ki ; and .z � wiI /Li � Li�1º:

Notice that if we vary the wi we obtain a family Y.
N
k/Cn ! C

n whose �bre at

N
w 2 C

n is Y.
N
k/

N
w .

There is a natural map Y.
N
k/

N
w ! Y.

N
k0/

N
w0 where

N
k0 and

N
w0 are obtained from

N
k and

N
w by forgetting kn and wn. It is given by forgetting Ln. This map is a �bre

bundle with �bre G.kn; m/. To see this, suppose that we have .L1; : : : ; Ln�1/ 2

Y.
N
k0/

N
w 0 and are considering possible choices of Ln. By de�nition we must have

Ln�1 � Ln � .z � wnI /�1.Ln�1/. Since .z � wnI /�1.Ln�1/=Ln�1 is always m

dimensional, this �bre is a G.kn; m/. Thus Y.
N
k/

N
w is an iterated �bre bundle.

The varieties Y.
N
k/

N
w carry tautological quotient vector bundles Li=Lj for any

j < i . We will use the usual convention that on Y.
N
k/

N
w � Y.

N
k0/

N
w0 we denote by

Li =Lj the pullback of the bundle from the �rst factor and L0
i=L0

j the pullback

from the second.

2.3. The subvarieties. If wi D wiC1 and ki C kiC1 D m, we de�ne

di � .k1; : : : ; kn/ WD .k1; : : : ; ki�1; kiC2; : : : ; kn/;

di � .w1; : : : ; wn/ WD .w1; : : : wi�1; wiC2; : : : ; wn/

and X.
N
k/i

N
w � Y.

N
k/

N
w as follows

X.
N
k/i

N
w WD ¹.L1; : : : ; Ln/ 2 Y.

N
k/

N
w W .z � wiI /LiC1 D Li�1º:

These varieties are the �bres of a family X.
N
k/i

Cn�1 de�ned over the base C
n�1 D

¹.w1; : : : ; wn/W wi D wiC1º. There exists a natural projection

qW X.
N
k/i

N
w �! Y.di �

N
k/di �

N
w

given by forgetting Li . Notice that since dim.LiC1=Li�1/ D m, the map q is a

G.ki ; m/-�bre bundle.
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Remark 2.2. Note that the varieties X.
N
k/i

N
w are not de�ned if wi ¤ wiC1. In fact,

for the purpose of de�ning the categorical sln-action from [7], it is very important

that X.
N
k/i

N
w do not deform over the locus where wi ¤ wiC1.

Now, for arbitrary
N
w and

N
k, we de�ne

si � .k1; : : : ; kn/ WD .k1; : : : ; ki�1; kiC1; ki ; kiC2; : : : ; kn/

and similarly, si �
N
w. Then we de�ne the subvariety

Z.
N
k/i

N
w WD ¹.L�; L0

�/W Lj D L0
j for j ¤ i º � Y.

N
k/

N
w � Y.si �

N
k/si �

N
w :

As before, the varieties Z.
N
k/i

N
w are the �bres of a family Z.

N
k/i

Cn ! C
n. Note that

Z.
N
k/i

Cn � Y.
N
k/Cn �Cn Y.si �

N
k/Cn where in forming the �bre product we twist the

second map by si .

Lemma 2.3. If wi ¤ wiC1 then Z.
N
k/i

N
w is the graph of an isomorphism.

Proof. Consider a point L� 2 Y.
N
k/

N
w and let .Li ; L0

i/ 2 Z.
N
k/i

N
w be a point in the �-

bre of Z.
N
k/i

N
w ! Y.

N
k/

N
w over Li . The linear operator zW LiC1=Li�1 ! LiC1=Li�1

is diagonalizable with two eigenvalues wi and wiC1. So the only choice for

L0
i 2 Z.

N
k/i

N
w is to take L0

i=Li�1 to be the wiC1-eigenspace of zjLiC1=Li�1
. Thus

the �bre has one point and so the projection Z.
N
k/i

N
w ! Y.

N
k/

N
w is an isomorphism.

Similarly, Z.
N
k/i

N
w ! Y.si �

N
k/si �

N
w is an isomorphism. �

2.4. C
� action. Consider the action of C� on C.z/ given by t � z D t2z. This

induces an action of C� on C.z/ ˝ C
m. Thus, given a subspace L � C.z/ ˝ C

m,

we can consider tL. Note that if .z � wI/L � L0, then .z � t�2wI/tL � tL0.

Hence, the C
� action on C.z/ induces a C

� action on Y.
N
k/Cn by

t � .L1; : : : ; Ln/ D .t � L1; : : : ; t � Ln/:

This action is compatible with the scaling action (with exponent -2) of C� on C
n.

In particular, this C
� does not act on Y.

N
k/

N
w for general

N
w but it does act on the

central �bre Y.
N
k/.0;:::;0/.

We denote by OY ¹pº the structure sheaf of Y with non-trivial C� action of

weight p. This means that on Y.
N
k/.0;:::;0/ we have natural maps of vector bundles

zW Li ! Li�1¹2º.
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2.5. The Beilinson–Drinfeld Grassmannian. The family Y.
N
k/Cn admits a nat-

ural interpretation using the Beilinson–Drinfeld Grasssmannian [12].

We can describe Y.
N
k/

N
w using the Beilinson–Drinfeld Grassmannian of PGLm

as follows. First if V; V 0 are rank m locally-free sheaves on P
1, then we say that

�W V ! V 0 is a Hecke modi�cation of type !k at w 2 P
1, if � is injective and

coker.�/ is isomorphic to O˚k
w . The following result is well known to experts.

Proposition 2.4. We have an isomorphism

Y.
N
k/

N
w Š ¹.V0; : : : ; Vn/; .�1; : : : ; �n/W

�i W Vi�1 �! Vi is a Hecke modi�cation of type !ki
at wi

and V0 D O
mº:

(1)

Proof. We will just give a sketch of the proof since this result is only used for

motivation.

Let .V0; : : : ; Vn/; .�1; : : : ; �n/ be a point on the right hand side. Let Li �

C.z/ ˝ C
m be the set of rational sections s of V0 such that �i ı � � � ı �1.s/ is a

regular section of Vi . This de�nes a map from the right hand side to the left hand

which is easily seen to be invertible. �

Remark 2.5. The right hand side of the isomorphism in (1) is a subvariety of

the Beilinson–Drinfeld Grassmannian of P1. From this perspective the C
� action

discussed above comes from the action of C� on the curve P
1.

3. Kernels from tangles

Consider the category CTm of oriented, coloured tangles labeled by 1; : : : ; m � 1.

More precisely, an object in CTm is a pair .
N
k;

N
w/ where

N
k D .k1; : : : ; kn/ with

ki 2 ¹1; : : : ; .m � 1/º and
N
w D .w1; : : : ; wn/ with wi 2 C.

An oriented tangle is a smooth embedding of .n1 C n2/=2 many oriented

arcs and �nitely many circles into R
2 � Œ0; 1�, such that the boundary points

of the arcs map bijectively onto the n1 C n2 points .1; 0; 0/; : : : ; .n1; 0; 0/ and

.1; 0; 1/; : : : ; .n2; 0; 1/. An oriented, coloured, labeled tangle is an oriented tangle

such that each component carries a label k 2 ¹1; : : : ; m � 1º and a colour w 2 C.

Given an oriented, coloured, labeled tangle, we can read o� the labels and

colours on its top and bottom endpoints, thus giving two objects in CTm. The

orientation of the tangle a�ects the labelling of the endpoints. If a strand labeled

by k is oriented upward, then the endpoint is labeled k; while if it is oriented

downward, then it is labeled m � k.
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Isotopy of tangles is de�ned in the usual way, except that strands carrying

di�erent colours wi ¤ wj are allowed to pass through each other.

The set of morphisms Hom..
N
k1;

N
w1/; .

N
k2;

N
w2// in CTm consists of the isotopy

classes of all tangles with these endpoints. Composition is given by concatenating

the tangles.

3.1. Generators and relations. The morphisms in CTm are generated by the

four crossings illustrated in Figure 1, their inverses, and by cups and caps. The

strands in Figure 1 are also allowed to carry arbitrary colours (which we omit for

convenience). We will give these generators the following names:

t1.
N
k/i

N
w ; t2.

N
k/i

N
w ; t3.

N
k/i

N
w ; t4.

N
k/i

N
w ; c1.

N
k/i

N
w ; c2.

N
k/i

N
w ;

and we observe the following conventions. For the crossings and cap (c1), the

labels
N
k and colours

N
w refer to the labels and colours on the bottom endpoints,

whereas for the cup (c2), the labels and colours refer to those on the top endpoints.

We are abusing notation in (at least) two respects. First, there really should be

another cap, obtained by reversing orientation and labelling — however, since

our functor will end up assigning the same value to this other generators, we will

ignore it (similar for cup). Second, in our notation we are ignoring orientations

on the other strands.

ki kiC1

t1.
N
k/i

N
w

ki kiC1

t2.
N
k/i

N
w

ki kiC1

t3.
N
k/i

N
w

ki kiC1

t4.
N
k/i

N
w

ki m � ki

c1.
N
k/i

N
w

ki m � ki

c2.
N
k/i

N
w

Figure 1. The cap and cup can have either orientation.

ki kiC1 m � ki

D

ki kiC1 m � ki

Figure 2. One of the fork relations.
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Lemma 3.1. Two tangle diagrams represent isotopic tangles if and only if one can

be obtained from the other by applying a �nite number of the following operations:

� a Reidemeister move of type 0, I, II or III,

� a pitchfork move, one of which is illustrated in Figure 2,

� an isotopy exchanging the order with respect to height of two caps, cups, or

crossings,

� passing two strands with di�erent colours through each other.

More precisely, we have the following relations and those obtained from these

by re�ection, etc. (We have generally suppressed the colours
N
w and the labels

N
k

from the notation to make it simpler):

� Reidemeister 0, ci
1 ı ciC1

2 D id D ciC1
1 ı ci

2;

� Reidemeister I, ci
1 ı t i

2 D ci
1 and ci

1 ı t i
3 D ci

1;

� Reidemeister II, t i
1; t i

2; t i
3; t i

4 are invertible;

� Reidemeister III, t i
l1

ı t iC1
l2

ı t i
l3

D t iC1
l3

ı t i
l2

ı t iC1
l1

,

� changing height isotopies, such as

ci
1 ı ciCk

1 D ciCk�2
1 ı ci

1 for k � 1;

� pitchfork move, ciC1
1 ı t i

1 D ci
1 ı .t iC1

2 /�1,

� passing two strands with di�erent colours through each other,

t1.si �
N
k/i

si �
N
w ı t1.

N
k/i

N
w D id if wi ¤ wiC1.

3.2. From tangles to kernels. We now de�ne a functor ‰WCTm ! Var from the

category of oriented, labeled, coloured tangles to the category Var whose objects

are varieties and whose morphisms are isomorphism classes of kernels.

At the level of objects we map .
N
k;

N
w/ to Y.

N
k/

N
w . At the level of morphisms we

have to explain where all the generators are mapped.

3.2.1. Caps and cups. We begin with caps and cups. Let
N
k;

N
w be such that

ki C kiC1 D m and wi D wiC1. We de�ne

‰.c1.
N
k/i

N
w/ D C1.

N
k/i

N
w WD OX.

N
k/i

N
w

;

‰.c2.
N
k/i

N
w/ D C2.

N
k/i

N
w WD �.OX.

N
k/i

N
w

˝ det.Li=Li�1/m�ki ˝ det.LiC1=Li /
�ki /:

Here X.
N
k/i

N
w is viewed as a subvariety of Y.

N
k/

N
w �Y.di �

N
k/di �

N
w , so that C1.

N
k/i

N
w is a

kernel on Y.
N
k/

N
w �Y.di �

N
k/di �

N
w whereasC2.

N
k/i

N
w is a kernel on Y.di �

N
k/di �

N
w �Y.

N
k/

N
w .
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3.2.2. Crossings with di�erent labels. To describe where to take the crossings

we have two cases, depending on whether or not wi and wiC1 are the same.

If wi ¤ wiC1 then we de�ne

‰.tl .
N
k/i

N
w/ D Tl.

N
k/i

N
w WD OZ.

N
k/i

N
w

˝ � for l D 1; 2; 3; 4. (2)

Here � is the line bundle

� D det.LiC1=Li /
ki ˝ det.L0

iC1=L0
i /

�kiC1

on Y.
N
k/

N
w � Y.si �

N
k/si �

N
w . In this case Z.

N
k/i

N
w is the graph of an isomorphism so

these kernels are invertible. So we can map the four reversed crossings to the

corresponding inverses.

3.2.3. Crossings with the same labels. If wi D wiC1 then the maps are a little

more di�cult to describe. Without loss of generality (and to simplify notation) let

us assume wi D wiC1 D 0 and that ki � kiC1. We let N WD min.ki C kiC1; m/.

Then Z.
N
k/i

N
w consists of N � kiC1 C 1 components denoted

Zs.
N
k/i

N
w D ¹.L�; L0

�/ 2 Z.
N
k/i

N
w W dim.ker zjLiC1=Li�1

/ � kiC1 C s and

dim..Li \ L0
i /=Li�1/ � ki � sº;

(3)

where s D 0; : : : ; N �kiC1. Since span.Li ; L0
i/=Li�1 � ker zjLiC1=Li�1

it follows

that

dim.ker zjLiC1=Li�1
/ C dim..Li \ L0

i /=Li�1/ � ki C kiC1

in Z.
N
k/i

N
w . We de�ne the open subscheme

Zo.
N
k/i

N
w WD ¹.L�; L0

�/ 2 Z.
N
k/i

N
w W

dim.ker zjLiC1=Li�1
/ C dim..Li \ L0

i /=Li�1/ � ki C kiC1 C 1º:

(4)

and

Zo
s .

N
k/i

N
w WD Zs.

N
k/i

N
w \ Zo.

N
k/i

N
w :

We denote by j the open embedding of Zo.
N
k/i

N
w into Z.

N
k/i

N
w . The intersections

Do
s;C WD Zo

s .
N
k/i

N
w \ ZsC1.

N
k/i

N
w

and

Do
s;� WD Zo

s .
N
k/i

N
w \ Zs�1.

N
k/i

N
w

are divisors in Zo
s .

N
k/i

N
w .
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Lemma 3.2. There exists a line bundle L.
N
k/i

N
w on Zo.

N
k/i

N
w uniquely determined

by the property that when restricted to each component Zo
s .

N
k/i

N
w it is isomorphic to

OZo
s .

N
k/i

N
w

.ŒDo
s;C�/ ˝ det.LiC1=Li /

�s ˝ det.L0
i=Li�1/s ˝ �

where, as before, � D det.LiC1=Li /
ki ˝ det.L0

iC1=L0
i /

�kiC1 .

Proof. This follows from Proposition A.8. �

We now de�ne the functor on the four crossings in Figure 1 by

‰.tl .
N
k/i

N
w/ D Tl.

N
k/i

N
w WD j�L.

N
k/i

N
w ˝ � (5)

for l D 1; 2; 3; 4. Proposition A.8 implies that these kernels are invertible. So we

map the four reverse crossings to the corresponding inverses.

Remark 3.3. This de�nition of a crossing when wi D wiC1 is necessarily more

complicated because, as noted by Namikawa in [13] (in the closely related context

of cotangent bundles to Grassmannians), the sheaf OZ.
N
k/i

N
w

does not induce an

equivalence of categories if m D 4; ki D kiC1 D 2 and wi D wiC1. This means

that Reidemeister II cannot hold. More generally one expects that OZ.
N
k/i

N
w

fails to

induce an equivalence if wi D wiC1 and ki ; kiC1 … ¹1; m � 1º.

Finally, to make ‰WCTm ! Var well de�ned with respect to Reidemeister

I we shift the image of a tangle T in Var by Œ
P

k dkk.m � k/� where dk is the

number of positive minus the number of negative crossings in T involving two

strands labeled by k (in Figure 1 crossings t2 and t3 are positive while t1 and t4

are negative). Without this shift Reidemeister I would state that a positive curl

involving a strand labeled k can be undone at the cost of shifting by Œ�k.m � k/�.

Theorem 3.4. The maps above describe a well de�ned functor ‰WCTm ! Var .

4. Proof of Theorem 3.4

We must prove that the relations from Lemma 3.1 hold.

4.1. Strands coloured the same. When wi D wiC1, then the kernels used to

de�ne the cups, caps and crossings come from the categorical sln action from [3,

Section 8] (which di�ers from that in [7] by conjugation with a line bundle, see

Remark A.6). For cups and caps, this is clear and for crossings this is proved in

Proposition A.8.
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Thus the results from [3] show that when all strands have the same colour, then

these kernels satisfy all the relations from Lemma 3.1.

4.2. Strands coloured di�erently. It remains to show these relations when at

least two of the strands are coloured di�erently. In this case there is no version of

Reidemeister move 0 or I. Reidemeister move II is easy since Z.
N
k/i

N
w is the graph

of an isomorphism. Reidemeister III involves two cases depending on whether or

not all three strands are coloured di�erently.

4.2.1. Reidemeister III. If all three strands are coloured di�erently then each

crossing is given by the graph of an isomorphism so this is easy to check. We now

prove the case when the three strands are coloured by wi D wiC1 ¤ wiC2

(the cases wi D wiC2 ¤ wiC1 and wi ¤ wiC1 D wiC2 are dealt with similarly).

We need to show that

Tl3
.siC1si �

N
k/i

siC1si �
N
w � Tl2

.si �
N
k/iC1

si �
N
w � Tl1

.
N
k/i

N
w

Š Tl1
.sisiC1 �

N
k/iC1

si siC1�
N
w � Tl2

.siC1 �
N
k/i

siC1�
N
w � Tl3

.
N
k/iC1

N
w :

For simplicity we omit the
N
k,

N
w; li and assume all li D 1. On the left hand side

the right most Ti is j�L.
N
k/i

N
w while the subsequent Ti � TiC1 are both given

(up to tensoring by line bundles) by the graphs of isomorphisms as in Lemma 2.3.

In particular, the left hand side is supported on the variety

Z WD ¹.L�; L0
�/W Lj D L0

j for j ¤ i; i C 1º � Y.
N
k/

N
w � Y.sisiC1si �

N
k/si siC1si �

N
w :

This variety is isomorpic to Z.
N
k/i

N
w using the same argument as in Lemma 2.3.

Namely, to recover Z.
N
k/i

N
w from Z we need to recover L0

i . This can be done by

taking L0
i inside Z.

N
k/i

N
w to be the wi -eigenspace of zjL0

iC1
=Li�1

inside Z. One can

similarly recover Z from Z.
N
k/i

N
w .

It then follows that the left hand side is isomorphic to j 0
�L.

N
k/i

N
w where j 0 is the

embedding of Zo.
N
k/i

N
w inside Z under the isomorphism Z Š Z.

N
k/i

N
w mentioned

above. One can similarly show that the right hand side is induced by the same

kernel j 0
�L.

N
k/i

N
w .

4.2.2. Other relations. Next one needs to prove the fork moves (such as the one

in Figure 2) when the two strands are coloured di�erently. This is straightforward

to do because the images of the crossings are the structure sheaves of the graphs

of isomorphisms.
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The isotopy relations are clear because the de�nitions of the kernels only

involve nearby strands. Finally, if wi ¤ wiC1 then we need to show that

Tl.si �
N
k/i

si �
N
w � Tl.

N
k/i

N
w Š O�:

This is because on the left hand side, L00
i =Li�1 is the wi -eigenspace of LiC1=Li�1

and hence equal to Li=Li�1. Moreover, the line bundles on the left hand side are

isomorphic to

.det.LiC1=Li /
ki ˝ det.LiC1=L0

i /
�kiC1/

˝ .det.LiC1=L0
i /

kiC1 ˝ det.LiC1=L00
i /�ki /;

which is trivial (since Li D L00
i ). This shows that strands with di�erent colours

pass through each other which completes the proof of Theorem 3.4.

5. Link homology theory

5.1. Equivariant enhancement. Let K be a link with r components K1; : : : ; Kr

coloured with w1; : : : ; wr . Theorem 3.4 associates to K a kernel ‰.K/
N
w belonging

to D.pt/ (i.e. a complex of vector spaces).

Suppose that
N
w D

N
0 D .0; : : : ; 0/. In this case, all the varieties involved carry

an action of C
� and we can work in the categories of C

�-equivariant kernels.

To do this we must modify our above de�nitions as follows:

‰.c1.
N
k/i

N
0/ D C1.

N
k/i

N
0 WD OX.

N
k/i

N
0
I

‰.c2.
N
k/i

N
0/ D C2.

N
k/i

N
0I

WD �.OX.
N
k/i

N
0

˝ det.Li=Li�1/m�ki ˝ det.LiC1=Li /
�ki /¹ki.m � ki /ºI

‰.t1.
N
k/i

N
0/ D T1.

N
k/i

N
0 WD j�L.

N
k/i

N
0I

‰.t2.
N
k/i

N
0/ D T2.

N
k/i

N
0 WD j�L.

N
k/i

N
0¹�kiºI

‰.t3.
N
k/i

N
0/ D T3.

N
k/i

N
0 WD j�L.

N
k/i

N
0¹�m C kiC1ºI

‰.t4.
N
k/i

N
0/ D T4.

N
k/i

N
0 WD j�L.

N
k/i

N
0¹kiC1 � kiº:

Remark 5.1. As before, to make ‰.K/
N
0 invariant under Reidemeister I we shift

the de�nition above by Œ
P

k dkk.m � k/�¹�
P

k dkk.m � k/º where dk is the

number of positive minus the number of negative crossings in K involving two

strands labeled k.
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Using the same arguments as before, but keeping track of the C
� equivari-

ance, it is straightforward to check that with these de�nitions give a tangle invari-

ant (when all strands coloured 0). In fact, the somewhat strange looking grad-

ing shifts above are uniquely determined by requiring that all the fork moves

and Reidemeister II moves hold. The resulting link invariant ‰.K/
N
0 belongs to

DC�

.pt/ (i.e. a complex of graded vector spaces) and recovers our earlier doubly

graded homology from [4, 5, 3].

5.2. Family of homology theories. On the other hand, if all wi are distinct, then

‰.K/
N
w Š ‰.K1/w1

˝� � �˝‰.Kr/wr
because strands of di�erent colours can pass

through each other.

The doubly graded homology theory at the central �bre and the singly graded

homology theory at the general �bre are related as follows.

Theorem 5.2. There exists a spectral sequence which starts at ‰.K/
N
0 and con-

verges to ‰.K1/w1
˝ � � � ˝ ‰.Kr /wr

.

The key to proving Theorem 5.2 is realizing that ‰.K/
N
w actually gives us

a family of homologies. In other words, using the notation above, there exists

‰.K/Cr 2 DC�

.Cr/ which specializes to ‰.K/
N
w for each

N
w 2 C

r .

5.3. Kernels in families. Recall that our varieties Y.
N
k/

N
w come in families

Y.
N
k/Cn ! C

n. Moreover, one can show that all the generating kernels we de-

�ned also live in families.

More precisely, let
N
k be such that ki C kiC1 D m. We de�ne

C1.
N
k/i

Cn�1 WD OX.
N
k/i

Cn�1
2 DC�

.Y.
N
k/Cn�1 �Cn�2 Y.di �

N
k/Cn�2/:

Here in the de�nition of the �bre product Y.
N
k/Cn�1 �Cn�2 Y.

N
k/Cn�2 , the map from

the �rst factor is uses di . Similarly, we de�ne

C2.
N
k/i

Cn�1 WD �.OX.
N
k/i

Cn�1
˝det.Li=Li�1/m�ki ˝det.LiC1=Li /

�ki /¹ki.m�ki /º:

For crossings, the situation is a little bit more complicated, since we originally

de�ned T.
N
k/i

N
w using a complicated sheaf when wi D wiC1.

Let
N
k be any sequence (for notational convenience suppose ki � kiC1). Recall

that we have the correspondence Z.
N
k/i

Cn � Y.
N
k/Cn �Cn Y.si �

N
k/Cn . We de�ne

Zo.
N
k/i

Cn � Z.
N
k/i

Cn to be the open locus given by the condition

ki C kiC1 C 1 � dim.ker.z � wiI /jLiC1=Li�1
/ C dim..Li \ L0

i /=Li�1/:

Let j W Zo.
N
k/i

Cn ! Z.
N
k/i

Cn denote the inclusion.
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The restriction of Z.
N
k/i

Cn to wi D wiC1 gives us a scheme with N � kiC1 C 1

components where N D min.ki CkiC1; m/. These components, denoted Zs.
N
k/i

Cn

for s D 0; : : : ; N � kiC1, are given by

wi D wiC1; dim.ker.z � wiI /jLiC1=Li�1
/ � kiC1 C s and

dim..Li \ L0
i /=Li�1/ � ki � s:

We also let

Zo
s .

N
k/i

Cn WD Zs.
N
k/i

Cn \ Zo.
N
k/i

Cn :

Finally, we de�ne

T1.
N
k/i

Cn WD j�L.
N
k/i

Cn 2 DC�

.Y.
N
k/Cn �Cn Y.si �

N
k/Cn/

where L.
N
k/i

Cn is the C
� equivariant line bundle on Zo.

N
k/i

Cn de�ned by

L.
N
k/i

Cn WD OZo.
N
k/i

Cn

� N �kiC1
X

sD0

�

s C 1

2

�

ŒZo
s .

N
k/i

Cn�

�

˝ �¹ki.kiC1 � ki � 1/º

where � D det.LiC1=Li /
ki ˝ det.LiC1=L0

i /
�kiC1 . Similarly, we de�ne

T2.
N
k/i

Cn WD j�L.
N
k/i

Cn¹�kiº;

T3.
N
k/i

Cn WD j�L.
N
k/i

Cn¹�m C kiC1º;

T4.
N
k/i

Cn WD j�L.
N
k/i

Cn¹kiC1 � kiº

Lemma 5.3. (1) Let
N
k be such that ki C kiC1 D m and let

N
w be such that

wi D wiC1. We have that

C1.
N
k/i

Cn�1jY.
N
k/

N
w�Y.di �

N
k/di �

N
w

Š C1.
N
k/i

N
w :

A similar statement holds for C2.

(2) Let
N
k be any sequence. For any

N
w, we have that

T1.
N
k/i

CnjY.
N
k/

N
w�Y.si �

N
k/si �

N
w

Š T1.
N
k/i

N
w :

Moreover, the kernelT1.
N
k/i

Cn is invertible. A similar statement holds forT2;T3;T4.

Remark 5.4. In this Lemma, when
N
w ¤

N
0, we mean an isomorphism of non-

equivariant sheaves, whereas when
N
w D

N
0, we mean an isomorphism of C�-equi-

variant sheaves.

Proof. The case of the cups and caps is clear. The invertibility of the kernel

T1.
N
k/i

Cn follows from Theorem A.10. The isomorphism also follows from The-

orem A.10 using the fact that if wi ¤ wiC1 then the restriction of the line bundle

OZo.
N
k/i

Cn
.ŒZo

s .
N
k/i

Cn �/ is trivial. �
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5.4. The de�nition of the coloured link homology. As before, let K be a link

with r components K1; : : : ; Kr . Choose a generic projection of the link. As usual,

consider horizontal slices of the link such that between any two horizontal slices,

we see only one generator of the tangle category. Fix a particular slice, and

suppose it cuts n strands of K. Let j1; : : : ; jn 2 ¹1; : : : ; rº denote the link

components that the strands belong to (reading from left to right). This data

de�nes a map C
r ! C

n and we can form the base change Y.
N
k/Cr of Y.

N
k/Cn

along this map.

Now consider two neighbouring slices with n and n0 strands (necessarily we

have n0 2 ¹n; n�2; nC2º) labeled
N
k;

N
k0 respectively. We have maps Cr ! C

n and

C
r ! C

n0

and so we can form Y.
N
k/Cr �Cr Y.

N
k0/Cr , by making the base change

along the maps from C
r followed by the �bre product. To this pair of neighbouring

slices, we will now associate a kernel in DC�

.Y.
N
k/Cr �Cr Y.

N
k0/Cr /.

The two slices di�er by a crossing, a cap, or a cup. The kernel we assign will be

the one from the previous section pulled back to Y.
N
k/Cr �Cr Y.

N
k0/Cr . For example,

if it is a crossing of type 1 (this forces n0 D n and
N
k0 D si �

N
k) then we assign the

kernel f �T1.
N
k/i

Cn , where

f W Y.
N
k/Cr �Cr Y.si �

N
k/Cr �! Y.

N
k/Cn �Cn Y.si �

N
k/Cn :

Now that we have associated a kernel to each pair of neighbouring slices, we

compose them (relative to C
r ) to obtain ‰.K/Cr 2 DC�

.Cr/. Finally, to obtain

invariance under Reidemeister I, we shift this by

h

X

k

dkk.m � k/
i°

�
X

k

dkk.m � k/
±

where dk is the number of positive minus the number of negative crossings in K

involving two strands labeled k (c.f. Remark 5.1).

Proposition 5.5. If K is a link with r components then ‰.K/Cr 2 DC�

.Cr/ is a

link invariant. Moreover, for any
N
w 2 C

r , ‰.K/Cr j
N
w Š ‰.K/

N
w .

Remark 5.6. As before, in this proposition, when
N
w ¤

N
0, we mean an isomor-

phism in the derived category of vector spaces, whereas when
N
w D

N
0, we mean

an isomorphism in the derived category of graded vector spaces.

Proof. To check this is a link invariant we need to check the relations from

Lemma 3.1. Let us prove the Reidemeister III move (the other relations are proved

similarly). For simplicity of notation, let us assume we are dealing with type 1
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crossings and we supress the labels
N
k from the notation. Thus we would like to

prove

T
i
CnT

iC1
Cn T

i
Cn.TiC1

Cn /�1.Ti
Cn/�1.TiC1

Cn /�1 Š O� 2 DC�

.Y.
N
k/Cn �Cn Y.

N
k/Cn/ (6)

where there are n strands. We know this relation holds if we restrict to any
N
w 2 C

n.

More generally, since this relation only involves three strands (strands i; i C 1 and

i C 2) it also holds if we restrict to any C
i�1 � .wi ; wiC1; wiC2/ � C

n�i�2 � C
n.

Since the deformation along
N
w D .w; : : : ; w/ is trivial we may further assume that

wi C wiC1 C wiC2 D 0. Relation (6) now follows from Lemma 5.7 where we take

B D C
2 Š ¹.wi ; wiC1; wiC2/ W wi CwiC1 CwiC2 D 0º. This concludes the proof

of Reidemeister move III.

All the other moves from Lemma 3.1 are either clear (isotopy moves) or involve

at most three strands (so the argument above applies).

The fact that ‰.K/
N
w specializes correctly follows from Lemma 5.3. �

Lemma 5.7. Suppose � W zY ! B is a proper, �at family with dim.B/ � 2 and

Pic.B/ trivial. For M;N 2 D. zY / suppose that N is a sheaf which remains a

sheaf when restricted to any �bre zYp. Assume also that End0.Nj zYp
/ Š C and that

Mj zYp
Š Nj zYp

for any p 2 B . Then M Š N.

Proof. Since M is a sheaf when restricted to any �bre zYp it must be a sheaf on zY .

Now consider A WD Hom.M;N/ 2 D.B/ where the Hom is taken relative to the

base (another way of saying this is ��.M_ ˝ N/ 2 D.B/). By base change we

know

Ajp Š Hom.Mj zYp
;Nj zYp

/ Š End�.Nj zYp
/

which is a complex, supported in positive degrees, with the degree zero piece

being one dimensional.

Now, using that dim.B/ � 2, the spectral sequence computing Ajp from

Hi .A/jp shows that H0.A/jp is supported in degree zero. This means that

H0.A/ D Hom0.M;N/ is �at over B .

Any �at sheaf over a local ring is free which implies that a �at sheaf over any

Noetherian scheme is locally free. This means that H0.A/ is a vector bundle.

Moreover, since dim H 0.Ajp/ D 1 this vector bundle is one dimensional. Finally,

since Pic.B/ is trivial we must have H0.A/ Š OB . This means that there is

a section f WM ! N which, when restricted to any point p 2 B induces an

isomorphism. It follows that Cone.f / when restricted to any zYp is zero. Thus

Cone.f / D 0 and hence f is an isomorphism. �
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5.5. Proof of Theorem 5.2. Restricting ‰.K/Cr 2 DC�

.Cr/ to the line through

N
0 D .0; : : : ; 0/ and

N
w D .w1; : : : ; wr/ gives us an object ‰.K/C 2 DC�

.C/. The

�bre of ‰.K/C over zero is isomorphic to ‰.K/
N
0 whereas the general �bre is

isomorphic to ‰.K/
N
w Š ‰.K1/w1

˝ � � � ˝ ‰.Kr /wr
.

Standard arguments now give us the required spectral sequence. More pre-

cisely, we can write ‰.K/C as a complex where the terms are free CŒx�-modules

and the maps are C
�-equivariant. Then we can �lter this complex with respect to

the standard �ltration onCŒx� by degree. The associated graded is then isomorphic

to ‰.K/
N
0 which gives us the spectral sequence.

Appendix A. Equivalences

In this section, to simplify notation, we will restrict to the case when we have two

strands. In this case we have the variety

Z.k; l/ WD Z.k; l/1
.0;0/

D
°

L0

k
�!�!

l

L1

L0
1

l
�!�!

k

L2W zL2 � L1; zL2 � L0
1; zL1 � L0; zL0

1 � L0

±

� Y.k; l/ � Y.l; k/:

In [7], we used the theory of geometric categorical sl2 actions to construct a natural

equivalence T.k; l/W DC�

.Y.k; l//
�
�! DC�

.Y.l; k// induced by a kernel T.k; l/.

The purpose of this section is to describe this kernel more explicitly in terms of

Z.k; l/. We follow the argument from [2] where this was done for T �
G.k; m/

which is an open subset of Y.k; m � k/.

A.1. The varieties Zs.k; l/. For simplicity we suppose k � l . Following earlier

notation we denote N D min.k C l; m/. The variety Z.k; l/ contains N � l C 1

components given by

Zs.k; l/ D ¹.L0; L1; L0
1; L2/ 2 Z.k; l/W dim.ker zjL2=L0

/ � l C s and

dim..L1 \ L0
1/=L0/ � k � sº:

We de�ne the open subscheme

Zo.k; l/ WD ¹.L0; L1; L0
1; L2/ 2 Z.k; l/W

dim.ker zjL2=L0
/ C dim..L1 \ L0

1/=L0/ � k C l C 1º

� Z.k; l/
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and

Zo
s .k; l/ WD Zs.k; l/ \ Zo.k; l/:

Abusing notation slightly, we denote all the open inclusions

j W Zo
s .k; l/ �! Zs.k; l/:

Lemma A.1. Each Zs.k; l/ has a natural partial resolution

Z0
s.k; l/ WD

°

L0
k�s
��! W1

s
����!����!
l�kCs

L1

L0
1

l�k
��!��!

k

L2W

zL2 � W1; zL1 � L0; zL0
1 � L0

±

�s
�! Zs.k; l/;

where �s forgets W1. Zo
s .k; l/ is smooth and the restriction of �s to the preimage of

Zo
s .k; l/ is an isomorphism. The complements of Zo

s .k; l/ in Z0
s.k; l/ and Zs.k; l/

have codimension at least 3 and 4 repectively.

Proof. Zs.k; l/ has a natural resolution given by

Z00
s .k; l/ WD

°

L0
k�s
��! W1

s
�! l � k C s

L1

L0
1

l�kCs
����!����!

s

W2
k�s
��! L2W

zL2 � W1; zW2 � L0

±

:

Now Zo
s .k; l/ � Zs.k; l/ is de�ned by the open condition

dim.ker zjL2=L0
/ C dim..L1 \ L0

1/=L0/ � k C l C 1:

Since dim.ker zjL2=L0
/ � l C s and dim..L1 \ L0

1/=L0/ � k � s there are two

cases: either dim.ker zjL2=L0
/ D l C s or dim..L1 \ L0

1/=L0/ D k � s. In the

�rst case we recover W2 as the kernel of z and W1 as the image of z while in the

second case we recover W1 as L1 \ L0
1 and W2 as span.L1; L0

1/. Thus � is an

isomorphism over Zo
s .k; l/ (and in particular, this means Zo

s .k; l/ is smooth).

Now, the complement Z0
s.k; l/ n Zo

s .k; l/ is covered by three pieces:

� dim..L1 \ L0
1/=L0/ � k � s C 2 (where s � 2),

� dim..L1 \ L0
1/=L0/ � k � s C 1 and dim.ker zjL2=L0

/ � l C s C 1

(where s � 1),

� dim.zjL2=L0
/ � l C s C 2 (where s � k � 1).
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The dimension of the �rst piece can be computed as the dimension of its resolution

°

L0
k�s
��! W1

2
�! W 0

1

s�2
������!
������!
l�kCs�2

L1

L0
1

l�kCs
����!
����!

s
W2

k�s
��! L2W zL2 � W1; zW2 � L0

±

:

This variety is a sequence of iterated Grassmannian bundle and its dimension

can be calculated to be k.m � k/ C l.m � l/ � 4. The dimension of Zs.k; l/ is

k.m � k/ C l.m � l/ so the codimension of the �rst piece is 4.

The codimensions of the second and third pieces are computed similarly.

For the second piece we use the resolution

°

L0
k�s
��! W1

1
�! W 0

1

s�1
������!
������!
l�kCs�1

L1

L0
1

l�kCsC1
������!
������!

sC1

W2
k�s�1
����! L2W

zL2 � W1; zW2 � L0

±

which has dimension k.m � k/ C l.m � l/ � 3 (codimension 3).

For the third piece we use the resolution

°

L0
k�s
��! W1

s
����!����!
l�kCs

L1

L0
1

l�kCsC2
������!������!

sC2

W2
k�sC2
����! L2W zL2 � W1; zW2 � L0

±

which has dimension k.m � k/ C l.m � l/ � 4 again.

To show that the codimension of Zs.k; l/ n Zo
s .k; l/ � Zs.k; l/ is at least four

the same argument as above works except in the second case. There one needs to

use the resolution

°

L0
k�sC1
����! W1

s�1
������!������!
l�kCs�1

L1

L0
1

l�kCsC1
������!������!

sC1

W2
k�s�1
����! L2W zL2 � W1; zW2 � L0

±

which again has dimension k.m � k/ C l.m � l/ � 4. �

Corollary A.2. �s�OZ0
s.k;l/ Š j�OZo

s .k;l/.

Proof. This is an immediate consequence of Lemma A.1 (see [2, Corollary 3.2]).

�
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Remark A.3. By Lemma A.1 we can identify Zo
s .k; l/ with

°

L0
k�s
��! W1

s
����!����!
l�kCs

L1

L0
1

l�kCs
����!����!

s

W2
k�s
��! L2W

zL2 � W1; zW2 � L0; dim.ker zjL2=L0
/ C dim..L1 \ L0

1/=L0/ � k C l C 1
±

;

where the isomorphism to Zo
s .k; l/ is obtained by forgetting W1 and W2.

Lemma A.4. Using the identi�cation of Zo
s .k; l/ from Remark A.3, the intersec-

tion

Do
s;C WD Zo

s .k; l/ \ ZsC1.k; l/

D ¹.L�; L0
�/ 2 Zo

s .k; l/W dim.ker zjL2=L0
/ D l C s C 1 and

dim..L1 \ L0
1/=L0/ D k � sº

is a divisor in Zo
s .k; l/ which is the locus where zW L2=W2 ! L1=L0¹2º is not an

isomorphism. Thus

OZo
s .k;l/.ŒD

o
s;C�/ Š OZo

s .k;l/ ˝ det.L2=W2/_ ˝ det.W1=L0/¹2.k � s/º: (7)

Similarly, the intersection

Do
s;� WD Zo

s .k; l/ \ Zs�1.k; l/

D ¹.L�; L0
�/ 2 Zo

s .k; l/W dim.ker zjL2=L0
/ D l C s and

dim..L1 \ L0
1/=L0/ D k � s C 1º

is a divisor in Zo
s .k; l/ which is the locus where L1=W1 ,! W2=L0

1 is not an

isomorphism. Thus

OZo
s .k;l/.ŒD

o
s;��/ Š OZo

s .k;l/ ˝ det.L1=W1/_ ˝ det.W2=L0
1/: (8)

Finally, Zo
s .k; l/ \ Zs0.k; l/ D ; if js � s0j > 1.

Proof. The proof is precisely the same as that of [2, Lemma 3.4] where L2 plays

the role of CN . �

Corollary A.5. We have

OZo
s .k;l/.ŒD

o
s;C� � ŒDo

s;��/ Š OZo
s .k;l/ ˝ det.L2=L1/_ ˝ det.L0

1=L0/¹2.k � s/º:

Proof. This is a direct consequence of Lemma A.4 since

det.L2=W2/_ ˝ det.W1=L0/ ˝ det.L1=W1/ ˝ det.W2=L0
1/_

Š det.L2=L1/_ ˝ det.L0
1=L0/: �
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A.2. The kernel T.k; l/. Following [7] we consider the complex

‚N �l �! ‚N �l�1 �! � � � �! ‚1 �! ‚0;

where ‚s D F.l�kCs/ � E.s/Œ�s�¹sº. Here

E
.s/ D OW s ˝ det.V=L0/s ˝ det.L1=V /�kCs¹s.k � s/º;

F
.l�kCs/ D OW l�kCs ˝ det.L2=L0

1/�lCk�s ˝ det.L0
1=V /k¹k.l � k C s/; º

and

W s D ¹L0
k�s
��! V

s
�! L1

l
�! L2; zL2 � V and zL1 � L0º;

W l�kCs D ¹L0
k�s
��! V

l�kCs
����! L0

1

k
�! L2; zL2 � V and zL0

1 � L0º:

Notice that

E
.s/ 2 DC�

.Y.k; l/ � Y.k � s; l C s//

and

F
.l�kCs/ 2 DC�

.Y.k � s; l C s/ � Y.l; k//:

The complex ‚� has a unique (right) convolution Conv.‚�/. We denote

T.k; l/ WD Conv.‚�/¹�kº 2 DC�

.Y.k; l/ � Y.l; k//:

The main results of [8, 9] show that this kernel induces an equivalence T.k; l/.

We will now identify T.k; l/ more explicitly.

Remark A.6. In comparison to earlier work, the kernels we use here have all been

conjugated by the line bundle det.L2=L0/l ˝ det.L1=L0/k on Y.k; l/. Since we

try to emphasize the similarities with the results in [2] we will subsequently see

the line bundle � WD det.L2=L1/k ˝ det.L2=L0
1/�l on Y.k; l/ � Y.l; k/ show up.

Proposition A.7. We have

‚s Š j�OZo
s .k;l/ ˝ det.L2=L1/�s ˝ det.L0

1=L0/s ˝ �Œ�s�¹kl � .k � s/2 C sº

as a sheaf on Y.k; l/ � Y.l; k/.
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Proof. Ignoring the grading shift we have

‚s Š �13�.��
12OW s ˝ ��

23OW l�kCs ˝ det.V=L0/s

˝ det.L1=V /�kCs ˝ det.L2=L0
1/�lCk�s ˝ det.L0

1=V /k/;

where �13 forgets V . One can check as in the proof of [2, Proposition 3.7] that

��1
12 .W s/ and ��1

23 .W l�kCs/ intersect in the expected dimension to give Z0
s.k; l/.

Thus we get

‚s Š �13�.OZ0
s.k;l/ ˝ det.L2=L1/�s ˝ det.L0

1=L0/s ˝ �/

Š j�OZo
s .k;l/ ˝ det.L2=L1/�s ˝ det.L0

1=L0/s ˝ �:

Finally, the grading shift is equal to s.k�s/Ck.l�kCs/Cs D kl�.k�s/2Cs. �

Proposition A.8. We have T.k; l/ Š j�L.k; l/ where L.k; l/ is the line bundle on

Zo.k; l/ uniquely determined by the restrictions

L.k; l/jZo
s .k;l/ Š OZo

s .k;l/.ŒD
o
s;C�/ ˝ det.L2=L1/�s

˝ det.L0
1=L0/s ˝ �¹kl � .k � s/.k � s � 1/º

and j is the open inclusion j W Zo.k; l/ ! Z.k; l/.

Proof. This follows by precisely the same argument used to proof Theorem [2,

Theorem 3.8]. �

This proposition shows that T.k; l/ is isomorphic to the kernel T1.k; l/1

N
0

de�ned in the main part of the paper.

A.3. The deformed kernel T.k; l/C. Recall the deformation

Z.k; l/C2 WD Z.k; l/1
C2

D
°

0
k

�!�!
l

L1

L0
1

l
�!�!

k

L2W .z � w1I /jL2=L1
D 0; .z � w2I /jL2=L0

1
D 0;

.z � w2I /jL1=L0
D 0; .z � w1I /jL0

1
=L0

D 0
±

:

We denote by Z.k; l/C its restriction to .w; �w/ (we restrict to this locus for

convenience and because the deformation in the direction w1 D w2 is trivial).

Inside Z.k; l/C we have the open subscheme Zo.k; l/C de�ned as the locus where

k C l C 1 � dim.ker.z � wI/jL2=L0
/ C dim..L1 \ L0

1/=L0/:

Notice that Zo.k; l/C contains all the �bres of Z.k; l/C over any w ¤ 0 since in

this case we have L1 \ L0
1 D L0.
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Remark A.9. The scheme Z.k; l/C is now irreducible. The subschemes Zs.k; l/

are divisors though not necessarily Cartier. However, things are much nicer inside

Zo.k; l/C where each Zo
s .k; l/ � Zo.k; l/C is Cartier. We denote by j the

inclusions j W Zo.k; l/C ! Z.k; l/C.

Theorem A.10. The kernel T.k; l/C WD j�L.k; l/C 2 DC�

.Y.k; l/C �C Y.l; k/C/

is invertible, where

L.k; l/C WD OZo.k;l/C

� N �l
X

sD0

�

s C 1

2

�

ŒZo
s .k; l/�

�

˝ �¹k.l � k � 1/º:

Moreover, T.k; l/C restricts to T.k; l/ over Y.k; l/�Y.l; k/, which is the �bre over

w D 0.

Proof. This follows in exactly the same way as [2, Theorem 4.1]. �

A.4. Inverses. We will now identify explicitly the left adjoints T.k; l/L and

T.k; l/L
C

.

Theorem A.11. We have

T.k; l/L
C

Š �.j�L
0.k; l/C/ 2 DC�

.Y.l; k/C �C Y.k; l/C/;

where

L
0.k; l/C WD OZo.k;l/C

� N �l
X

sD0

�

s

2

�

ŒZo
s .k; l/�

�

˝ det.L1=L0/l ˝ det.L0
1=L0/�k¹k.l � k C 1/º:

Remark A.12. The kernel T.k; l/L is induced by the restriction of T.k; l/L
C

to

Y.k; l/ � Y.l; k/.

Proof. We will use that

T.k; l/L
C

D �.j�.!Zo.k;l/C ˝ L.k; l/_
C

˝ ��
1 !_

Y.k;l/C
/ ˝ ��1/:

The proof will follow that of [2, Theorem 5.3] by showing that �.T.k; l/L
C

/ and

j�L
0.k; l/C restrict to the same thing on every �bre.
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On a �bre over w ¤ 0 this is easy to see. Now consider the �bre over w D 0.

By Proposition A.16 we have that !Zo.k;l/C ˝ L.k; l/_
C

is isomorphic to

OZo.k;l/C

�

N �l
X

sD0

s2ŒZo
s .k; l/�

�

˝ L.l�k/ ˝ det.L2=L0/m¹aº

˝ OZo.k;l/C

� N �l
X

sD0

�

�

s C 1

2

�

ŒZo
s .k; l/�

�

¹bº

Š OZo.k;l/C

� N �l
X

sD0

�

s

2

�

ŒZo
s .k; l/�

�

˝ L.l�k/

˝ det.L2=L0/m¹�2m.k C l/ � k.k C l � 1/ � 2º

where

L D det.L2=L1/_ ˝ det.L0
1=L0/;

a D �2k2 � 2m.k C l/ � 2 and b D �k.l � k � 1/:

Now

!Y.k;l/C jY.k;l/ Š !Y.k;l/ ˝ OY.k;l/.�ŒY.k; l/�/

Š OY.k;l/ ˝ det.L2=L0/m¹�2m.k C l/ � 2kl � 2º;

where we use that

OY.k;l/C.ŒY.k; l/�/ Š OY.k;l/C¹2º

and that

!Y.k;l/ Š det.L2=L0/m¹�2m.k C l/ � 2klº

(see [7, Lemma 5.7]). Moreover,

Ll�k ˝ ��1 Š det.L1=L0/l ˝ det.L0
1=L0/�k :

Hence

�.T.k; l/L
C

/jY.k;l/�Y.l;k/ Š j�.OZo.k;l/C

� N �l
X

sD0

�

s

2

�

ŒZo
s .k; l/�

�

jY.k;l/�Y.l;k/

˝ det.L1=L0/l ˝ det.L0
1=L0/�k¹k.l � k C 1/º

Š j�L
0
C.k; l/jY.k;l/˝Y.l;k/:

This is what we need to prove. �
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Corollary A.13. We have

T.k; l/L
C

Š �.T.k; l/C ˝ det.L1=L0/kCl�1 ˝ det.L0
1=L0/�l�k�1

˝ det.L2=L0/l�kC1/:

Proof. Using Lemma A.15 we have

T.k; l/C Š j�OZo.k;l/C

� N �l
X

sD0

�

s

2

�

ŒZo
s .k; l/�

�

˝ det.L2=L1/_

˝ det.L0
1=L0/ ˝ �¹k.l � k � 1/ C 2kº:

On the other hand,

�.T.k; l/L
C

/ Š j�OZo.k;l/C

� N �l
X

sD0

�

s

2

�

ŒZo
s .k; l/�

�

˝ det.L1=L0/l

˝ det.L0
1=L0/�k¹k.l � k C 1/º:

The result follows. �

Finally, we have the following identity. Although we do not use it in this paper

it will be useful elsewhere in order to prove that the a�ne braid group acts.

Corollary A.14. We have

T.l; k/ � �� det.L1=L0/_ � T.k; l/ Š �� det.L2=L1/_:

Proof. The kernel T.l; k/ 2 DC�

.Y.l; k/ � Y.k; l// is given by

Conv.‚0
N �l �! � � � �! ‚0

1 �! ‚0
0/¹�kº

where

‚0
s D F

.s/ � E
.l�kCs/Œ�s�¹sº:

Here

E
.l�kCs/ D OW l�kCs ˝ det.V=L0/l�kCs ˝ det.L0

1=V /�kCs¹.k � s/.l � k C s/º

and

F
.s/ D OW s ˝ det.L2=L1/�s ˝ det.L1=V /l¹slº;

with W s and W l�kCs the same varieties as before. A similar calculation as that

in Proposition A.7 shows that

‚0
s Š i�j�OZo

s .k;l/ ˝ det.L2=L1/�s ˝ det.L0
1=L0/s ˝ �0Œ�s�¹kl � .k � s/2 C sº
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where

�0 D det.L1=L0/l ˝ det.L0
1=L0/�k:

It follows that, as objects in DC�

.Y.k; l/ � Y.l; k//,

�.‚0
s/ Š ‚s ˝ ��1 ˝ �0

Š ‚s ˝ det.L1=L0/kCl ˝ det.L0
1=L0/�k�l ˝ det.L2=L0/l�k:

Thus we obtain

�.T.l; k// Š T.k; l/ ˝ det.L1=L0/kCl ˝ det.L0
1=L0/�k�l ˝ det.L2=L0/l�k:

Putting this together with Corollary A.13 we obtain

T.l; k/ Š T.k; l/L ˝ det.L1=L0/ ˝ .L0
1=L0/ ˝ det.L2=L0/�1

from which the result follows. �

A.5. Some technical calculations. The rest of this section contains some tech-

nical computations that we used in earlier sections.

Lemma A.15. We have

OZo.k;l/C ˝ det.L2=L1/_ ˝ det.L0
1=L0/

Š OZo.k;l/C

�

N �l
X

sD1

sŒZo
s .k; l/�

�

¹�2kº:
(9)

Proof. The natural inclusion map L0
1=L0 ! L2=L1 on Zo.k; l/C is an isomor-

phism over any �bre over w ¤ 0 because L1 \ L0
1 D L0 in this case. Hence (9)

holds when restricted to a general �bre.

Since every line bundle on the base C is trivial it remains to show that

OZo.k;l/ ˝ det.L2=L1/_ ˝ det.L0
1=L0/

Š OZo.k;l/C

�

N �l
X

sD1

sŒZo
s .k; l/�

�

¹�2kºjZo.k;l/:

It su�ces to show that for every t

OZo
t .k;l/ ˝ det.L2=L1/_ ˝ det.L0

1=L0/

Š OZo.k;l/C

�

N �l
X

sD1

sŒZo
s .k; l/�

�

jZo
t .k;l/¹�2kº:
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Now we have

OZo.k;l/C

�

N �l
X

sD1

sŒZo
s .k; l/�

�

jZo
t .k;l/¹�2kº

Š OZo.k;l/C..t � 1/ŒZo
t�1.k; l/� C t ŒZo

t .k; l/�

C .t C 1/ŒZo
tC1.k; l/�/jZo

t .k;l/¹�2kº

Š OZo.k;l/C.�ŒZo
t�1.k; l/� C ŒZo

tC1.k; l/�/jZo
t .k;l/¹2t � 2kº

Š OZo
t .k;l/.�ŒDo

t;�� C ŒDo
t;C�/¹2.t � k/º

Š OZo
t .k;l/ ˝ det.L2=L1/_ ˝ det.L0

1=L0/;

where the �rst isomorphism uses that

Zo
t .k; l/ \ Zo

t 0.k; l/ D ; if jt � t 0j > 1,

the second uses that

OZo.k;l/C

�

N �l
X

sD0

ŒZo
s .k; l/�

�

Š OZo.k;l/C¹2º;

while the last uses Corollary A.5. �

Proposition A.16. The dualizing sheaf of Zo.k; l/C is

!Zo.k;l/C Š OZo.k;l/C

�

N �l
X

sD0

s2ŒZo
s .k; l/�

�

˝ L.l�k/

˝ det.L2=L0/m¹�2k2 � 2m.k C l/ � 2º;

(10)

where L D det.L2=L1/_ ˝ det.L0
1=L0/.

Proof. Away from the central �bre Z.k; l/C is isomorphic to Y.k/ � Y.l/. Over

such a �bre we have L2=L1 Š L0
1=L0. So, ignoring the C

�-equivariance, the

right hand side of (10) restricts on this general �bre to give det.L2=L0/m which is

indeed the canonical bundle. It remains to show that !Zo.k;l/ is isomorphic to

�

OZo.k;l/C

�

N �l
X

sD0

s2ŒZo
s .k; l/� C ŒZo.k; l/�

�

˝ L.l�k/

˝ det.L2=L0/m¹�2k2 � 2m.k C l/ � 2º
�

jZo.k;l/:
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Now OZo.k;l/C.ŒZo.k; l/�/ Š OZo.k;l/C¹2º. Also, Zo.k; l/ is the union of N �l C1

smooth components Zo
t .k; l/ where Zo

t .k; l/ \ Zo
t 0.k; l/ D ; if jt � t 0j > 1. Thus

!Zo.k;l/jZo
t .k;l/ Š !Zo

t .k;l/.ŒD
o
t;�� C ŒDo

t;C�/

so it su�ces to show that

!Zo
t .k;l/.ŒD

o
t;�� C ŒDo

t;C�/

Š
�

OZo.k;l/C

�

N �l
X

sD0

s2ŒZo
s .k; l/�

�

˝ L.l�k/

˝ det.L2=L0/m¹�2k2 � 2m.k C l/º
�

jZo
t .k;l/

(11)

for every t D 0; : : : ; N � l . Now

OZo.k;l/C.ŒZo
t .k; l/�/ Š OZo.k;l/C

�

X

s¤t

�ŒZo
s .k; l/�

�

¹2º;

so the right hand side of (11) equals

OZo
t .k;l/..�2t C 1/ŒDo

t;�� C .2t C 1/ŒDo
t;C�/ ˝ L.l�k/

˝ det.L2=L0/m¹�2k2 C 2t2 � 2m.k C l/º

Š OZo
t .k;l/.ŒD

o
t;�� C ŒDo

t;C�/ ˝ L.l�kC2t/

˝ det.L2=L0/m¹4t.k � t / � 2k2 C 2t2 � 2m.k C l/º

where we used Corollary A.5 to get the last isomorphism. By Lemma A.17 this

equals the left hand side of (11). �

Lemma A.17. The dualizing sheaf of Zo
s .k; l/ is

!Zo
s .k;l/ Š .det.L2=L1/_ ˝ det.L0

1//.l�kC2s/

˝ det.L2=L0/m¹�2m.k C l/ � 2.k � s/2º:

Proof. As in the proof of Lemma A.1, Zs.k; l/ has a natural resolution

Z00
s .k; l/ WD

°

L0
k�s
��! W1

s
����!
����!
l�kCs

L1

L0
1

l�kCs
����!
����!

s
W2

k�s
��! L2W zL2 � W1; zW2 � L0

±

;

where the map � W Z00
s .k; l/ ! Zs.k; l/ is an isomorphism over Zo

s .k; l/. Hence

!Zo
s .k;l/ Š !Z00

s .k;l/jZo
s .k;l/.
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Now consider the projection map

pW Z00
s .k; l/ !

®

L0
k�s
��! W1

l�kC2s
�����! W2

k�s
��! L2W zL2 � W1; zW2 � L0

¯

(12)

which forgets L1 and L0
1. This is a G.s; W2=W1/ �G.l � k C s; W2=W1/ �bration

so the relative cotangent bundle is

!p Š .det.L1=W1/l�kCs ˝ det.W2=L1/�s/

˝ .det.L0
1=W1/s ˝ det.W2=L0

1/�lCk�s/

Š .det.L2=L1/_ ˝ det.L0
1//l�kC2s

˝ .det.L2=W2/_ ˝ det.W1//�lCk�2s :

On the other hand, the canonical bundle of the right hand side of (12) is

det.L2=L0/m˝det.L2=W2/�lCk�2s ˝det.W1=L0/l�kC2s¹�2m.kCl/�2.k�s/2º

(see [7, Lemma 5.7]). Putting this together we get the result. �
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