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Fourier transform for quantum D-modules

via the punctured torus mapping class group
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Abstract. We construct a certain cross product of two copies of the braided dual zH of

a quasitriangular Hopf algebra H , which we call the elliptic double EH , and which we

use to construct representations of the punctured elliptic braid group extending the well-

known representations of the planar braid group attached to H . We show that the elliptic

double is the universal source of such representations. We recover the representations of

the punctured torus braid group obtained in [15], and hence construct a homomorphism

from EH to the Heisenberg double DH , which is an isomorphism if H is factorizable.

The universal property of EH endows it with an action by algebra automorphisms of

the mapping class group BSL2.Z/ of the punctured torus. One such automorphism we call

the quantum Fourier transform; we show that when H D Uq.g/, the quantum Fourier

transform degenerates to the classical Fourier transform on D.g/ as q ! 1.
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1. Introduction

Let .H;R/ be a quasi-triangular Hopf algebra, and let zH denote the braided dual

– also known as the re�ection equation algebra – of H [8, 9, 10, 17]. This is the

restricted dual vector spaceH ı, but the multiplication is twisted from the standard

one by the R-matrix (see Section 2 for details).

Let ¹eiº and ¹eiº denote dual bases of H and zH , respectively. Then the

canonical element X D
P
ei ˝ ei 2 zH ˝ H is known to satisfy the following

relation in zH ˝H˝2:

X0;12 WD .id ˝�/.X/ D .R1;2/�1X0;2
R

1;2X0;1 (1.1)

Here, zH has index 0 in the tensor product, and � denotes the coproduct of H .

1 We are grateful to D. Ben–Zvi, and to all three authors of [6], for their many helpful

discussions and encouragement, and to P. Roche for bringing the article [2] to our attention.
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There is a canonical action of the planar braid group Bn.R
2/ on the nth

tensor V ˝n power of any H -module V . Given modules M for zH and V for H ,

equation (1.1) allows one to de�ne a similarly canonical action of the punctured

planar braid group Bn.R
2ndisc/ on M ˝ V ˝n, and moreover to show that zH is

universal for this action.

Theorem 1.1 ([8], Proposition 10). Let B be an algebra, and suppose that XB 2

B˝H satis�es relation (1.1). Then there is a unique homomorphism �B W zH ! B

such that .�B ˝ id/.X/ D XB .

The main goal of this paper is to de�ne elliptic analogs of the re�ection

equation algebra. The punctured elliptic braid group Bn.T
2ndisc/ is the free

product of two copies of Bn.R
2ndisc/, modulo certain relations. In Section 3

we construct an algebra EH as a certain crossed product of two copies of zH ,

mimicking the cross relations of Bn.T
2ndisc/. We de�ne canonical elements

X; Y 2 EH ˝H by

X D
X

.ei ˝ 1/˝ ei ; Y D
X

.1˝ ei /˝ ei ;

and characterize the cross relations on EH as follows:

Theorem 1.2. The cross relations of EH are equivalent to the following commu-

tation relation in EH ˝H˝2 for X; Y;R:

X0;1
R

2;1Y 0;2 D R
2;1Y 0;2

R
1;2X0;1

R
2;1: (1.2)

We prove the following elliptic analog of Theorem 1.1.

Theorem 1.3. Let B be an algebra, and XB ; YB 2 B ˝ H satisfying (1.1)

individually, and (1.2) together. Then there exists a unique algebra morphism

�B WEH �! B

such that XB D .�B ˝ id/.X/ and YB D .�B ˝ id/.Y /. Explicitly, �B is given by

�B.x ˝ 1/ D .id ˝x/.XB/ �B.1˝ x/ D .id ˝x/.YB/:

Equation (1.2) can be used to de�ne representations of Bn.T
2ndisc/ in the

same way as (1.1) is used for Bn.R
2ndisc/; see Theorem 4.3. Recall that

Bn.T
2ndisc/ carries a natural action of the punctured torus mapping class group,

which is isomorphic to a certain central extension BSL2.Z/ of SL2.Z/. In the case

H is a ribbon Hopf algebra, we show that this extends to an action of BSL2.Z/

on EH .
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When H D Uq.g/, we produce degenerations of EH to the algebras of

di�erential operators on G and, upon further degeneration, on g. Recall that the

algebra of di�erential operators on an algebraic group G can be constructed as a

semi-direct product

D.G/ D U.g/ ËO.G/;

where the action of U.g/ on O.G/ is induced by that of g on G by left invariant

di�erential operators. This construction can be extended to any Hopf algebra

and is known as the Heisenberg double [20]. This is a semi-direct product

DH D H ËH ı, where H acts on its dual by the right coregular action.

In [15], canonical functors are constructed from the category of modules over

the Heisenberg double of a quasi-triangular Hopf algebra to the category of

modules over the (unpunctured) torus braid group. This relies upon an alternate

construction – due to Varagnolo and Vasserot [21] – of the Heisenberg double of

a quasi-triangular Hopf algebra, which uses the braided dual zH in place of H ı.

This presentation for the Heisenberg double also yields an isomorphism with the

handle algebras introduced by Alekseev in [1] and studied further in [2, 3, 19]

(see Remark 3.5).

Lifting the constructions of [15] to the unpunctured torus braid group, they can

easily be re-interpreted as producing canonical elements X and Y in DH ˝ H ,

satisfying equations (1.1) and (1.2). Hence, Theorem 1.3 yields a unique homo-

morphismˆWEH ! DH , compatible with the representations of theBn.T
2ndisc/

on both sides. The map ˆ is an isomorphism if, and only if, H is factorizable.

Since the quantum groupUq.g/ is factorizable, we may identify the elliptic double

EUq .g/ with the algebraDq.G/ WD DUq.g/ of quantum di�erential operators onG.

In particular we obtain an BSL2.Z/ action on Dq.G/ by the above considera-

tions. One such automorphism ofDq.G/ we call the quantum Fourier transform;

its classical limit upon an appropriate degeneration is the classical Fourier trans-

form on the Weyl algebraD.g/. We expect that our quantum Fourier transform for

Dq.G/ will be compatible with that on the braided dual of Uq.g/ de�ned in [16],

realizing the braided dual as an BSL2.Z/-equivariantDq.G/-module. Studying this

category of BSL2.Z/-equivariant Dq.G/-modules more generally is an interesting

direction of future research.

This paper is a companion to [5], in which we compute the value of a cer-

tain category valued 2-dimensional topological �eld theory attached to H -mod,

and show that its value on a punctured torus is the category of H -equivariant

EH -modules.
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2. The braided dual and its relatives

Let .H;R/ be a quasi-triangular Hopf algebra, and denote by

� H e D H coop ˝H where H coop is H with opposite comultiplication

� H Œ2� the Hopf algebra which is H ˝ H as an algebra, and with coproduct

given by
z�.x ˝ y/ D .R2;3/�1.�2;3 ı�.x ˝ y//R2;3

where �.a˝ b/ D b ˝ a. Recall that the twist HF of H by an invertible element

F 2 H ˝H is the Hopf algebra with the same multiplication, and with coproduct

given by

�F .x/ D F �1�.x/F:

In order for HF to be co-associative, F must satisfy two conditions:

F 12;3F 1;2 D F 1;23F 2;3; .� ˝ id/.F / D .id ˝�/.F / D 1:

Two twists F; F 0 are equivalent if there exists an invertible element x 2 H , such

that �.x/ D 1 and

F 0 D �.x/F.x�1 ˝ x�1/:

The following is standard (see [12]).

Proposition 2.1. A twist induces a tensor equivalence H -mod ! HF -mod.

Equivalent twists leads to isomorphic tensor functors.

It is easily checked that F D R
1;3

R
1;4 2 .H e/˝2 is a twist, and that

H Œ2�;coop D .H e/F :

Let D be the “double braiding” R
2;1

R
1;2. Since D�.x/ D �.x/D for all x,

we have

HD D H

as Hopf algebras. Similarly, H Œ2�;coop is in fact equal to .H e/F .D1;3/k

for any

k 2 Z, with F as above.

LetH ı be the restricted Hopf algebra dual ofH . It has a naturalH -bimodule

structure, hence a H e left module structure given by:

.x ˝ y/ B f WD f .S�1.x/ � y/

where S is the antipode of H and we use the fact that S�1 is a Hopf algebra

isomorphism H coop ! Hop. It turns H ı into an algebra in H e -mod.
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Remark 2.2. Remember that the antipode of an Hopf algebra need not to be

invertible in general, but this is implied by quasi-triangularity.

Remark 2.3. We use the inverse of the antipode rather than the antipode itself

because it is convenient to consider the canonical element as an invariant element

of H ı ˝H , the image of 1 2 C under the evaluation map k ! H ı ˝H , which

means that H ı really denotes the left dual of H in the rigid monoidal category

of H -modules. This is slightly di�erent from the convention used in [8, 15] but it

allows us to label tensor factors from left to right.

De�nition 2.4. The kth twisted braided dual zHk is the algebra image ofH ı via the

tensor functorH e -mod ! H Œ2�;coop -mod given by the twist F.D1;3/k. Explicitly,

this is H ı as a vector space, with multiplication given by

x � y D m.R1;3
R

1;4.D1;3/k B .x ˝ y//

wherem is the multiplication ofH ı. This is an algebra in the category ofH Œ2�;coop-

module with the same action as above, namely

.x ˝ y/ B f D .u 7�! f .S�1.x/uy//:

Remark 2.5. The algebra zH0 is usually called the re�ection dual, the braided dual

or the re�ection equation algebra in the literature.

Let X be the canonical element of zHk ˝ H , that is the image of 1 under the

coevaluation map k ! zHk ˝ H . If ei is a basis of H and ei the dual basis of
zHk Š H ı, then X D

P
ei ˝ ei . If H is in�nite dimensional then X lives in an

appropriate completion of the tensor product.

Proposition 2.6. The element X satis�es

X0;12 D Dk.R1;2/�1X0;2
R

1;2X0;1 (2.1)

in zHk ˝H˝2. This implies that X satis�es the re�ection equation

R
2;1X0;2

R
1;2X0;1 D X0;1

R
2;1X0;2

R
1;2

in zHk ˝H˝2.

The braided dual is in fact universal for this property in the following sense.
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Proposition 2.7. Let B be an algebra and XB 2 B ˝H satisfying equation (2.1)

in B ˝H˝2 for some k 2 Z. Then there exists a unique algebra morphism

�B W zHk �! B

such that .�B ˝ id/.X/ D XB . Explicitly, �B is given by

H ı Š zH 3 f 7�! .f ˝ id/.X/:

Propositions 2.6 and 2.7 are proved in [8] in the case k D 0. The general proof

is similar. Note that the fact that these axioms all leads to the same re�ection

equation, regardless of the value of k, essentially follows from the fact that the

left hand side of (2.1) is invariant under conjugation by D.

Let u D m..S ˝ id/.R2;1// where m is the multiplication of H . Then

� D uS.u/ is central and satis�es

�.�/ D D�2.� ˝ �/

implying that

Dk�2 D �.�/Dk.��1 ˝ ��1/

meaning that Dk�2 and Dk are equivalent. Therefore, they lead to isomorphic

tensor functors, from which follows Proposition 2.8.

Proposition 2.8. For any k 2 Z, the algebras zHk and zHkC2 are isomorphic.

Therefore, it is enough to consider zH0 and zH1. Moreover, ifH is a ribbon Hopf

algebra, then by de�nition � admits a central square root implying by a similar

argument.

Proposition 2.9. If H is a ribbon Hopf algebra then all the zHk are isomorphic.

Remark 2.10. For any k, equation (2.1) plays the same role in the re�ection

equation, as the hexagon axiom in the Yang-Baxter equation, encoding some

kind of compatibility with the tensor product of H -modules. Topologically, it

corresponds to a “strand doubling” operation for the additional generator of the

braid group of the punctured plane. Formally, such an operation depends on

the choice of a framing, while a ribbon element removes the dependence on the

framing.
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3. The elliptic double

Let T denote the following element in .H Œ2�;coop/˝2, which we identify as a vector

space with H˝4:

T D .R3;2/�1.R3;1/�1.R4;2/�1
R

1;4:

Proposition 3.1. The element T satis�es the hexagon axioms

.id ˝�H Œ2�;coop/T D T 1;3T 1;2 .�H Œ2�;coop ˝ id/T D T 1;3T 2;3

in .H Œ2�;coop/˝3.

Proof. This is a straightforward computation with the Yang-Baxter equation. The

computation is depicted in braids in Figure 1. �

=

Figure 1. A braid diagram proof of .id ˝�/.T / D T1;3T1;2.

Corollary 3.2. The vector space zH˝2
k

carries an associative multiplication, in

which zHk ˝ 1 and 1˝ zHk are sub-algebras, and the cross relations are given by

.1˝ g/.f ˝ 1/ D T B .f ˝ g/:

While this is well known, we include a proof here for the reader’s convenience.
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Proof. It su�ces to check associativity on pure tensors in zHk , as these span all

ofE
.k/
H . Since zHk is an associative algebra, the only types of expressions on which

it remains to check associativity are of the form .1˝ g/˝ .1˝ h/˝ .f ˝ 1/ and

.1˝ g/˝ .h˝ 1/˝ .f ˝ 1/. Write T D
P
ti ˝ t 0i . For the �rst case, we have

.m ı .m˝ id//..1˝ g/˝ .1˝ h/˝ .f ˝ 1//

D
X

i

X

j

..ti tj / B f /˝ .t 0i B g/.t 0j B h/

D
X

..ti B f /˝�.ti/ B gh/;

so that associativity follows from the second equation in Proposition 3.1. The

second case follows similarly. �

De�nition 3.3. We denote by E
.k/
H the algebra given by Corollary 3.2.

Choose a basis .ei /i2I of H and de�ne X; Y 2 E
.k/
H ˝H by

X D
X

ei ˝ 1˝ ei ; Y D
X

1˝ ei ˝ ei ;

where we use the vector space identi�cation E
.k/
H Š zH˝2. The main result of this

section is the following theorem.

Theorem 3.4. The cross relations of EH are equivalent to the commutation

relation in EH ˝H˝2 for X; Y;R:

X0;1
R

2;1Y 0;2 D R
2;1Y 0;2

R
1;2X0;1

R
2;1:

Proof. By de�nition every element f 2 zHk can be written as

f D
X

eif .ei /

hence the product gf in E
.k/
H is obtained by applying .id

E
.k/
H

˝f ˝ g/ to

Y 0;2X0;1

and fg by applying the same element to

X0;1Y 0;2:
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Therefore all commutations relation can be gathered into a “matrix” equation

Y 0;2X0;1 D T B0 X
0;1Y 0;2 (3.1)

where T acts on the E
.k/
H (i.e. 0th) component. We recall the following identities:

R
�1 D .S ˝ id/.R/ D .id ˝S�1/.R/: (3.2)

Applying S�1 to the �rst factor of the relation .S ˝ id/.R/R D 1, setting

R D
P
r1 ˝ r2 D

P
r 0

1 ˝ r 0
2 – using apostrophes to distinguish between copies

of R – one has the following useful identity (note the order of the terms):

X
S�1.r1/r

0
1 ˝ r 0

2r2 D 1: (3.3)

Then equation (3.1) reads, in coordinates,

..1˝ ej /.ei ˝ 1//˝ ei ˝ ej

D ..r2r
0
1 ˝ r 0000

2 r 00
2 ˝ S.r 0000

1 /S.r1/˝ S.r 00
1 /r

0
2/ B ei ˝ ej /˝ ei ˝ ej :

(3.4)

The left H Œ2� action on zHk is by de�nition dual to the right H Œ2� action onH ,

therefore X
..x ˝ y/ B ei/˝ ei D

X
ei ˝ S�1.x/eiy

Using this, equation (3.4) can be rewritten

..1˝ej /.ei ˝1//˝ei ˝ej D ei ˝ej ˝S�1.r 0
1/S

�1.r2/eir
0000
2 r 00

2 ˝r1r
0000
1 ejS.r

00
1 /r

0
2:

Then, using theR-matrix relations (3.2) and (3.3) to move elements from the right

hand side to the left hand side (and reassigning apostrophes for the sake of clarity)

we obtain

�
.1˝ ej /.ei ˝ 1/

�
˝ r2r

0
1eir

00
2 ˝ r1ej r

0
2r

00
1 D ei ˝ ej ˝ eir2 ˝ r1ej

which is exactly (1.2). �

Remark 3.5. If H is semi-simple, then as a vector space zHk Š H ı has a Peter-

Weyl decomposition
zHk D

M
V � ˝ V

where the sum is over representatives of �nite dimensional simple H -modules.

Under this identi�cation, the relations of Theorem 3.4 coincide with those of the

graph algebra of the punctured torus of [1, Def. 12].

Equation (1.2) is a de�ning relation for E
.k/
H , in the following sense.
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Corollary 3.6. Let B be an algebra, and XB ; YB 2 B ˝ H satisfying both the

axiom (2.1) and equation (1.2) (with X and Y replaced by XB and YB). Then

there exists a unique algebra morphism

�B WE
.k/
H �! B

such that XB D .�B ˝ id/.X/ and YB D .�B ˝ id/.Y /. Explicitly, �B is given by

�B.x ˝ 1/ D .id ˝x/.XB/; �B.1˝ x/ D .id ˝x/.YB/:

4. Braid group and mapping class group actions

In this section we construct representations of the punctured torus braid group

from E
.k/
H . First, we have

De�nition 4.1. The punctured elliptic braid group Bn.T
2ndisc/ is the fundamen-

tal group of the con�guration space of n points in T 2ndisc.

Proposition 4.2. The group Bn.T
2ndisc/ is generated by

X1; : : : ; Xn; Y1; : : : ; Yn; �1; : : : ; �n�1;

with relations

� the Xi ’s (resp. Y 0
i s) pairwise commute,

� the planar braid relation for the �i ’s,

� the following cross relations:

XiC1 D �iXi�i YiC1 D �iYi�i ; (4.1)

X1Y2 D Y2X1�
2
1 : (4.2)

The results of the previous section easily imply the following theorem.

Theorem 4.3. There exists a unique group morphism

�WBn.T
2ndisc/ �! .E

.k/
H ˝H˝n/� Ì Sn

given by

X1 7�! X0;1; Y1 7�! Y 0;1; �i 7�! .i; i C 1/Ri;iC1:
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Proof. The �rst two set of cross relations can obviously be taken as a de�nition

of Xi ; Yi for i > 1. That these operators pairwise commute follows from the re-

�ection equation and the Yang-Baxter equation. The last cross relation is nothing

but the de�ning equation (1.2) of E
.k/
H . �

Let BSL2.Z/ denote the group generated by A;B;Z with relations

A4 D .AB/3 D Z; .A2; B/ D 1:

Clearly, Z is central, so this is a central extension,

1 �! Z �! BSL2.Z/ �! SL2.Z/ �! 1:

Proposition 4.4. The group BSL2.Z/ acts on Bn.T
2ndisc/ in the following way:

A � �i D �i ; B � �i D �i ;

A � X1 D Y1; A � Y1 D Y1X
�1
1 Y �1

1 ;

B � X1 D X1; B � Y1 D Y1X
�1
1 :

Proposition 4.5. Let B be an algebra and .XB ; YB/ 2 B ˝ H satisfying equa-

tion (1.2) and axioms (2.1) with k D 1. Then, so does .XB ; YBX
�1
B / and

.YB ; YBX
�1
B Y �1

B /.

Proof. Equation (1.2) is exactly one of the de�ning relation of B1
1;n so that it is

satis�ed follows from the previous proposition. So we just have to check that

YBX
�1
B and YBX

�1
B Y �1

B satis�es (2.1) with k D 1. This is a direct computation:

.YBX
�1
B /0;12

D R
2;1Y

0;2
B R

1;2Y
0;1

B .X
0;1
B /�1.R1;2/�1.X

0;2
B /�1.R2;1/�1

D R
2;1Y

0;2
B R

1;2Y
0;1

B .R1;2/�1.X
0;2
B /�1.R2;1/�1.X

0;1
B /�1

R
2;1.R2;1/�1

D R
2;1Y

0;2
B R

1;2.R1;2/�1.X
0;2
B /�1

R
1;2Y

0;1
B R

2;1.R2;1/�1.X
0;1
B /�1

D R
2;1Y

0;2
B .X

0;2
B /�1

R
1;2Y

0;1
B .X

0;1
B /�1;

where at lines 2 and 3 we use the re�ection equation and the elliptic commutation

relation respectively. The second part is proved by doing the exact same compu-

tation replacing YB by YBX
�1
B and XB by YB . �
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Corollary 4.6. There is an action of BSL2.Z/ on E
.1/
H , uniquely determined by its

action on canonical elements X; Y as follows:

A � X D Y; A � Y D YX�1Y �1;

B � X D X; B � Y D YX�1:

Moreover, the action is compatible with the BSL2.Z/-action on Bn.T
2ndisc/,

Proof. This follows from Proposition 4.5 together with the universal property

stated in Corollary 3.6. �

5. Relation with the Heisenberg double and quantum Fourier transform

Since zH0 is a H Œ2�;coop-module algebra, one can form the semi-direct product
zH ÌH Œ2�;coop. It is easily checked thatH ˝ 1 � H Œ2�;coop is a coideal subalgebra,

hence the following de�nition makes sense.

De�nition 5.1. The Heisenberg double DH is the subalgebra zH0 Ì .H ˝ 1/.

Remark 5.2. The standard de�nition of the Heisenberg double involves H e and

the usual dual, instead of H Œ2� and the braided dual. However, it is shown in [21]

that these two algebras are isomorphic.

Clearly, the double braiding R2;1R1;2 satis�es axiom (2.1) with k D 0. This

is a manifestation of the embedding of the cylinder braid group on n strands into

the ordinary braid group on nC 1 strands. Let �H be the factorization map

�H W zH0 �! H;

f 7�! .f ˝ id/.R2;1
R

1;2/:

.

Theorem 5.3 ([15]). The canonical element X 2 DH ˝ H together with the

image of the double braiding under the inclusion H ˝H ! DH ˝H satisfy the

commutation relation (1.2).

Corollary 5.4. There exists a canonical algebra map from the elliptic double to

the Heisenberg double, given by the identity on the �rst zH0 component and de�ned

on the second component by the factorization map �H .

Proof. It follows from the universal property of Corollary 3.6. �
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De�nition 5.5. A quasi-triangular Hopf algebra is called factorizable if �H is

injective.

Let IH be the image of �H and letD0
H be the subalgebra zH Ì .IH ˝1/ ofDH .

Theorem 5.6. If H is a factorizable Hopf algebra, then D0
H is isomorphic as an

algebra to E
.0/
H .

Proof. The algebra map E
.0/
H ! DH is given by id ˝�H . SinceH is factorizable

this map is injective, and its image is D0
H by de�nition. �

Let G be a reductive algebraic group, g its Lie algebra and U D Uq.g/ the

corresponding quantum group. Recall (see e.g. [7, Chapter 9]) that this is a quasi-

triangular Hopf algebra1 over C.q/ for q a variable which deform the enveloping

algebra of g. Denote by U 0 D Uq.g/
0 its ad-locally �nite part.

Theorem 5.7 ([4, 18]). U is a factorizable ribbon Hopf algebra, and the image of

the factorization map .U �/ ! U is U 0.

Let Dq.G/ be the subalgebra zU Ì U 0 of the Heisenberg double of U .

It is a deformation of the algebra of di�erential operators on G. Thanks to the

above theorem, Dq.G/ is isomorphic to E
.0/
U which is itself isomorphic to E

.1/
U .

Altogether this implies the following result.

Corollary 5.8. The isomorphism Dq.G/ Š E
.1/
U together with the formulas of

Corollary 4.6 yield an action of BSL2.Z/ on Dq.G/ by algebra automorphism.

6. Relation to classical Fourier transform

In this section we show how the Weyl algebra of g and the classical Fourier trans-

form can be obtained both directly as the elliptic double of a certain Hopf algebra

and via an appropriate degeneration of the elliptic double of the corresponding

quantum group. Let U¯.g/ be the “formal” version of the quantum group. This

a topological quasi-triangular Hopf algebra over CŒŒ¯��, where ¯ is a formal vari-

able, deforming the enveloping algebra of g and whose de�nition can be found,

e.g., in [7, Chapter 6]. Since directly taking the classical (i.e. „ D 0) limit of the

elliptic commutation relation gives the commutative algebra S.g/˝2 we will have

to consider a slightly more complicated degeneration.

1 This is not quite true since the R-matrix does not belong to Uq.g/˝2 but only to a certain

completion of it, but it is still enough for our purposes.
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Let S.g/ denote the symmetric algebra on g, equipped with its standard co-

product �.X/ D X ˝ 1C 1˝X for X 2 g, making it a commutative, cocommu-

tative Hopf algebra. Let r 2 g
˝2 denote the quasi-classical limit of the R-matrix

of U¯.g/, i.e.,

R D 1C ¯r CO.¯2/:

Then, in a straightforward way, the completion of the symmetric algebra .bS.g/,
R0 D exp.r// is a quasi-triangular, factorizable Hopf algebra2. Let t D rC r2;1 2

S2.g/g and let C denote the corresponding Casimir element, i.e. C D m.t/where

m is the multiplication of S.g/. Then �0 D exp.�C=2/ is a ribbon element.

Since R0 62 S.g/˝2, S.g/ is not strictly speaking a ribbon Hopf algebra, but the

construction of the elliptic double is still well de�ned in this situation.

Let D.g/ be the algebra of di�erential operators on g, i.e. the Weyl algebra.

As a vector space it is S.g�/˝2, the two copies of S.g�/ are subalgebras and the

cross relations are

Œf ˝ 1; 1˝ g� D hf; gi for all f; g 2 g
�; (6.1)

where h ; i is the pairing on g
� induced by t . The �rst result of this section is the

following proposition.

Proposition 6.1. The 0th elliptic double of .S.g/;R0/ is isomorphic to the Weyl

algebra D.g/ and the action of the generator A of BSL2.Z/ coincides with the

classical Fourier transform. That is, on generators .f; g/ 2 g
� � g

� � D.g/,

we have,

A.f; g/ D .�g; f /:

The operator B acts by

B.f; g/ D .f � g; g/:

Proof. Let E be the 0th elliptic double of .S.g/;R0/. Let ei be a basis of g, ei the

dual basis of g� and de�ne x; y 2 E ˝ U.g/ by

x D
X

ei ˝ 1˝ ei ; y D
X

1˝ ei ˝ ei :

The restricted dual of S.g/ is S.g�/ and the images of the corresponding canonical

elements in E ˝ S.g/ are X D exp.x/ and Y D exp.y/ respectively. Since S.g/

is commutative, equation (2.1) reduces to the standard relation,

.id ˝�/.X/ D X0;1X0;2

2 Here the tensor product is the topological one, i.e. bS.g/˝2 WD bS.g � g/
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in .S.g�/˝ 1/˝S.g/˝2 � E˝S.g/˝2, hence the braided dual and the restricted

dual coincide. Likewise, the de�ning equation of the elliptic double reduces to

.X0;1; Y 0;2/ D R
2;1
0 R

1;2
0

in E ˝ S.g/˝2, where .a; b/ D aba�1b�1. Since

Œx0;1; t1;2� D Œy0;2; t1;2� D 0;

this equation is equivalent to

Œx0;1; y0;2� D t1;2:

Applying f and g to the �rst and second components, respectively, of the above

equation gives the de�ning relations (6.1) of D.g/.

Since .S.g/;R0/ is ribbon, E
.0/

S.g/
is isomorphic to E

.1/

S.g/
. Pulling back the

action of the A generator of BSL2.Z/ through this isomorphism, we �nd

x 7�! y; y 7�! Y �1.�x C .1˝ C//Y:

It is easily seen that the cross relations of D.g/ implies

Y �1xY D x C .1˝ C/:

Hence A maps x to y and y to �x.

Pulling back the B action through this isomorphism one get

x 7�! x; y 7�! log.eye�xe1˝C=2/:

Since

Œx; y� D 1˝ C

and since 1˝C commutes with x and y, the Baker–Campbell–Hausdor� formula

implies that

log.eye�xe1˝C=2/ D y � x

as required. �

Remark 6.2. Since A4 acts as the identity, the above action of BSL2.Z/ on D.g/

factors through an action of SL2.Z/. It coincides with the one coming from

an homomorphism SL2.Z/ ! Sp.g ˚ g/, the latter being the group of linear

symplectomorphisms of the vector space g ˚ g, equipped with the symplectic

form coming from the Killing form.
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Remark 6.3. It is interesting to ask whether the action of BSL2.Z/ on Dq.G/

can be degenerated to an action on D.G/, not just to D.g/. The degeneration

procedure for obtaining D.G/ from Dq.G/ is not compatible, however, with the
BSL2.Z/-action; hence, a naïve attempt at re-creating the procedure for D.g/ will

not work. This is not surprising, as there is not a good notion of Fourier transform

on D.G/, essentially because the cotangent bundle T �G D G � g
� has fewer

symplectomorphisms than T �
g D g � g

� Š g ˚ g.

Let U¯2.g/ be the CŒŒ¯��-Hopf algebra obtained by formally replacing ¯ by ¯2

in the de�nition of the product, the coproduct and the R-matrix of U¯.g/. Denote

by ın the map .id ��/˝n ı �n where � is the counit of U¯2.g/. Denote by bU the

quantum formal series Hopf algebra (QFSHA) attached to U¯2.g/, i.e. the sub-

algebra

bU D ¹x 2 U¯2.g/; ın.x/ 2 ¯nU¯2.g/; for all n � 0º

It is known [11, 14] that bU is a �at deformation of bS.g/. Hence, choose a CŒŒ¯��-

module identi�cation

 W bU �! bS.g/ŒŒ¯��

which is the identity modulo ¯, and let U � bU be the preimage under  of

S.g/ŒŒ¯��.

Proposition 6.4. We have the following:

(a) U is a Hopf algebra;

(b) there is a canonical bialgebra isomorphisms:

bU=.¯/ Š bS.g/; U=.¯/ Š S.g/I

(c) the R-matrix of U¯2.g/ belongs to bU˝2 and its image in bS.g/˝2 is R0.

One can therefore consider the 0th elliptic double of U . A direct consequence

of the above proposition is then the following corollary.

Corollary 6.5. The algebraEU is a �at deformation of the Weyl algebraD.g/, and

the BSL2.Z/-action on EU degenerates to the BSL2.Z/-action on D.g/.

In particular, the quantum Fourier transform degenerates to the classical one.
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Proof of Proposition 6.4. All of this can be checked explicitly. A more conceptual

argument is as follows: recall that .g; �; ı; r/ is a quasi-triangular Lie bialgebra,

where we denote by � its bracket and by ı its co-bracket. The quantum group

U¯2.g/ is obtained by applying an Etingof–Kazhdan quantization functor [13] to

the CŒŒ¯��-quasi-triangular Lie bialgebra .gŒŒ¯��; �; ¯2ı; ¯2r/. On the other hand,
bU is the quasi-triangular Hopf algebra obtained by applying the same functor to

the quasi-triangular Lie bialgebra .gŒŒ¯��; ¯�; ¯ı; r/. The QFSHA construction is

the lift of the inclusion,

.gŒŒ¯��; ¯�; ¯ı; r/ �! .gŒŒ¯��; �; ¯2ı; ¯2r/;

given by x 7! ¯x (since r 2 g
˝2, its image is indeed ¯2r).

One can show that the product, the coproduct and the antipode on bU restrict

to a well-de�ned Hopf algebra structure on U . By construction, the reduction

modulo ¯ of bU is the quantization of the C-quasi-triangular Lie bialgebra,

.gŒŒ¯��; ¯�; ¯ı; r/=.¯/Š .g; 0; 0; r/;

which is easily seen to be .bS.g/;R0/. �
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