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mology and Szabó’s geometric spectral sequence, and construct a link invariant that gen-
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1. Introduction

In [6] Khovanov categori�ed the Jones polynomial to construct the �rst link ho-

mology theory, usually known as the Khovanov homology Kh.L/ of links L � S3.

Several variants and improvements were then constructed: the reduced version [8],

Lee’s perturbation [14], Bar-Natan’s tangle invariant [2] (yielding a Bar-Natan

perturbation similar to Lee’s), Khovanov’s tangle invariant [7], functoriality for

link cobordisms in R
3 � I [5, 2, 9], Khovanov–Rozansky’s sl.n/-homology and

HOMFLYPT homology [10, 11], Ozsváth–Rasmussen–Szabó’s odd Khovanov ho-

mology [22], Seidel–Smith’s symplectic Khovanov homology [24] equipped with

localization spectral sequences [25], to name a few. In [23] Rasmussen used Lee’s

perturbation to construct a numerical invariant s.K/ leading to the �rst combinato-

rial proof of a theorem due to Kronheimer and Mrowka [12] on the four-ball genus

of torus knots. Khovanov homology was also used by Ng to construct a bound on

the Thurston–Bennequin number of Legendrian links [19]. In [21] Ozsváth and

Szabó constructed a spectral sequence from the reduced version of the Khovanov

homology of the mirror a link to the Heegaard Floer homology of its branched

double cover. A similar spectral sequence was constructed by Bloom [3], but

abutting to the monopole Floer homology of the branched double cover. Moti-

vated by these spectral sequences, Szabó constructed the geometric spectral se-

quence [26], a combinatorial construction that shares many formal properties with

its holomorphic geometry and gauge theory counterparts. On a slightly di�erent

note, Kronheimer-Mrowka constructed a spectral sequence from Khovanov ho-

mology to the instanton knot Floer homology [13], which in turn established that

Khovanov homology detects the unknot.

In our present paper, we concern ourselves with the interplay between the Bar-

Natan perturbation in Khovanov homology, as introduced in [2] and studied fur-

ther in [18, 27], and the geometric spectral sequence constructed by Szabó in [26].

We present a brief survey of the existing constructions in Section 2. We produce

our new endomorphism and prove that it is a di�erential in Section 3. We devote

Section 4 to proving invariance and Section 5 to studying a few properties of the

new invariant. Finally in Section 6 we introduce a family of s-invariants, each

mimicking Rasmussen’s s-invariant. We summarize our construction, state a few

of its salient features, and discuss a bit on the motivation.

Construction (De�nition 3.5 and Proposition 3.4). We construct a .grh; grq/-

bigraded chain complex Ctot over F2ŒH; W �, with H and W in bigradings .0; �2/

and .�1; �2/ and the di�erential in bigrading .1; 0/. The chain group is freely

generated (over F2ŒH; W �) by the Khovanov generators coming from some link
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diagram. Setting W D 0 recovers the Bar-Natan theory, while setting H D 0

recovers Szabó’s geometric spectral sequence. For link diagrams equipped with a

single basepoint, one can construct two reduced versions, the minus version C�
tot

as a subcomplex and the plus version CC
tot as the corresponding quotient complex.

Properties. We list a few key properties of these new invariants.

� (Proposition 4.2 and Corollary 4.3) The chain homotopy type of Ctot over

F2ŒH; W � is a link invariant, while the chain homotopy type of the reduced

versions (along with the maps to and from the unreduced theory) are invariants

of links equipped with a single basepoint.

� (Proposition 5.4) For an l-component link, the homology of the localized ver-

sion ¹H º�1Ctot D Ctot ˝F2ŒH;W �F2ŒH; H �1; W � is 2l copies of F2ŒH; H �1; W �,

with the copies corresponding to the 2l possible orientations of L.

� (Proposition 6.7) Half the absolute value of each of the new s-invariants from

De�nition 6.4 is a lower bound for the four-ball genus of knots.

Motivation. One of the main motivations behind this construction is the Seidel–

Smith symplectic Khovanov homology [24], which is conjecturally isomorphic

to Khovanov homology (the conjecture has been veri�ed over characteristic 0

(see [1]), although it remains open over other characteristics, in particular, over

characteristic 2). To expound a bit, after viewing the link L as a plat closure of

a 2n-braid, and letting pWC ! C denote the degree-2n polynomial whose zeroes

are the 2n points of the braid, Seidel and Smith consider the complex variety

C ..D ¹.u; v; z/ 2 C
3 j u2 C v2 D p.z/º

and de�ne symplectic Khovanov homology to be the Lagrangian Floer homology

in the nth symmetric product Symn.C / (or rather, in a certain open subsetY of the

Hilbert scheme Hilbn.C / which is a smooth resolution of Symn.C /, see [16] for

more details), with each Lagrangian being a product of n disjoint spheres in C ;

one of the Lagrangians is standard, coming from the n plats at either end, while

the other comes from applying the braid group action.

There is a Z=2-action induced by .u; v/
�

! .u; �v/, and its �xed points can be

identi�ed with the complex curve

C � ..D ¹.u; z/ 2 C
2 j u2 D p.z/º

which, along with the ˛ and ˇ curves (which are the �xed points of the spheres

on C ), is easily seen to be a Heegaard diagram (in the sense of [20]) for the double
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branched cover of L; and the �xed points of the Lagrangians can be identi�ed with

the Lagrangian tori from Heegaard Floer homology. The �xed points Y� may be

viewed as the complement of a certain divisor in Symn.C � /; therefore, there is a

spectral sequence relating the Floer homology in Symn.C � / andY� , which is con-

jecturally trivial. The Seidel–Smith localization theorem [25] produces a chain

complex over H �.BZ=2IF2/ D F2Œw1� inducing a spectral sequence relating

the symplectic Khovanov homology (which is conjecturally isomorphic to Kho-

vanov homology) and Lagrangian Floer homology in Y� (which is conjecturally

isomorphic to Heegaard Floer homology, namely Lagrangian Floer homology in

Symn.C �/); and the spectral sequence conjecturally equals the Ozsváth-Szabó

spectral sequence and the Szabó geometric spectral sequence.

On the other hand, we may also consider the S1-action

.u; v/
�

ei�

�! .u cos � � v sin �; u sin � C v cos �/;

whose �xed points are the 2n zeroes of p

C � ..D ¹z 2 C j p.z/ D 0º:

The �xed points Y� is the subspace of Symn.C �/ consisting of distinct points.

Furthermore, each Lagrangian is a product of n zero-spheres in C �; one corre-

sponds to the matching of the 2n points induced by the plats, while the other

is the matching gotten by applying the braid group action. It is easily seen that

the Lagrangians intersect in 2l points, where l is the number of link components

of L, and therefore the Lagrangian Floer homology in the discrete space Y� is

2l -dimensional. If there were a Seidel–Smith localization theorem for S1-actions,

it would have produced a chain complex over H �.BS1IZ/ D ZŒc1� inducing a

spectral sequence from the symplectic Khovanov homology (over Z) to Z
2l

, and

it is conceivable that this spectral sequence would equal the Bar-Natan spectral

sequence.

The two actions described above actually combine to induce an O.2/ action.

Therefore, one might expect that the above two theories can be combined into

a single theory: over F2, we should expect a chain complex over F2Œw1; w2� Š

H �.BO.2/IF2/, so that the specialization w2 D 0 produces the Szabó chain

complex while the specialization w1 D 0 produces the Bar-Natan chain complex.

In this paper, we construct such a theory where W plays the role of w1 and H

plays the role of w2. The gradings also work out: symplectic Khovanov homology

carries a single grading, which is conjectured to equal grh � grq on the Khovanov

side; the universal Stiefel-Whitney classes w1 and w2 live in gradings 1 and 2,

respectively, while the formal variables W and H live in .grh; grq/-bigradings

.�1; �2/ and .0; �2/, respectively.
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2. Background

Before we de�ne our complex, let us �rst review the Khovanov chain complex,

the Bar-Natan theory, and the Szabó geometric spectral sequence. All the three

existing variants and our new fourth variant are de�ned in similar settings, partic-

ularly if we are working over F2, which we are. The relevant aspects are presented

below in an enumerated list and a few de�nitions.

(a) A crossing c. (b) The 0-resolution

at c.

(c) The 1-resolution

at c.

˛c

(d) The 0-resolution

at c along with the

surgery arc ˛c .

Figure 2.1. A crossing, its 0-resolution, its 1-resolution, and its 0-resolution along with

the surgery arc. If we forget the surgery arc, we get the 0-resolution; and if we perform

embedded surgery along it, we get the 1-resolution.

(X-1) L � R
3 is a link represented by an n-crossing link diagram D � R

2 D

R2 � ¹0º � R3; let nC (respectively, n�) denote the number of positive

(respectively, negative) crossings in D. Sometimes we work with a pointed

link, that is, a link along with a single basepoint on it, and we represent it

by a pointed link diagram .D; p/ where p is some basepoint on D.

(X-2) Let C be the set of crossings in D. For any subset u � C, let Du be the

following complete resolution of D: resolve a crossing c by the 0-resolution

if c … u, and resolve it by the 1-resolution otherwise, see Figure 2.1a–2.1c;

let Z.Du/ denote the set of circles in Du.
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(X-3) The Khovanov chain group Cu at u is the exterior algebra generated by the

circles in Du; i.e., if Z.Du/ D ¹x1; : : : ; xkº, then Cu D ^�
F2hx1; : : : ; xki;

in particular, Cu has a distinguished basis Bu consisting of the square-free

monomials in xi . If .D; p/ is a pointed link diagram, let B�
u � Bu be the

subset consisting of the monomials where the circle containing p appears;

and let BC
u D Bu n B�

u . The minus and the plus Khovanov chain groups,

C�
u and CC

u , are the F2-vector subspaces of Cu generated by B�
u and BC

u ,

respectively.

(X-4) A Khovanov generator is a pair .u; x/ where u � C and x 2 Bu. The Kho-

vanov generators are endowed with a bigrading .grh; grq/; the homological

grading grh and a quantum grading grq are given by

grh..u; x// D �n� C juj ;

grq..u; x// D nC � 2n� C juj C jZ.Du/j � 2 deg.x/:

The so-called delta grading grı is de�ned as grh � grq=2. The set of

all Khovanov generators forms a basis for the total .grh; grq/-bigraded

Khovanov chain group C D
L

u�C

Cu.

(X-5) When working with a pointed link diagram, a minus (respectively, plus)

Khovanov generator is a pair .u; x/ where u � C and x 2 B�
u (respectively,

x 2 BC
u ). The set of all minus (respectively, plus) Khovanov generators

forms a basis for the total minus (respectively, plus) Khovanov chain group

C� D
L

u�C

C�
u (respectively, CC D

L

u�C

CC
u ). The grq-gradings are shifted

by �1 (respectively, 1) for the minus (respectively, plus) theory; that is,

C� is a subspace of C¹�1º, while CC is a subspace of C¹1º where ¹ º denotes

the grading shift operator for the second grading (with the usual convention

C ¹aºi;j Š C i;j Ca for any bigradedF2-vector space C , any bigrading .i; j /,

and any shift a for the second grading).

De�nition 2.1. A resolution con�guration R consists of a set Z.R/ of smoothly

embedded disjoint circles in R
2 and a set A.R/ of properly embedded disjoint arcs

in .R2; Z.R//.

(1) The number of arcs in A.R/ is called the index of the resolution con�guration.

(2) If the arcs in A.R/ are all oriented, then R is called an oriented resolution

con�guration.
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(3) Two (oriented) resolution con�gurations are equivalent if there is an isotopy,

or equivalently, an orientation-preserving di�eomorphism of S2 DR
2[¹1º,

that carries one to the other.

(4) The mirror m.R/ of a resolution con�guration R is obtained from R by

re�ecting it along the line ¹0º � R.

(5) The reverse r.R/ of an oriented resolution con�guration R is obtained from

R by reversing the orientation of all the arcs in A.R/.

(6) The dual of an index-k (oriented) resolution con�guration R is another index-

k (oriented) resolution con�guration R�, so that the circles in Z.R�/ are

obtained from the circles in Z.R/ by performing embedded surgeries along

the arcs in A.R/, and the arcs in A.R�/ are obtained by rotating the arcs in

A.R/ by 90ı counter-clockwise.

(7) The circles in Z.R/ are called the starting circles of R, and the circles in

Z.R�/ are called the ending circles of R.

(8) The circles in Z.R/ that are disjoint from all the arcs in A.R/ are called the

passive circles; the rest of the circles are called the active circles. Note, the

passive circles of R are in natural correspondence with the passive circles

of R�.

(9) A labeled resolution con�guration .R; x; y/ is a resolution con�guration R

along with a square-free monomial x in the starting circles ¹xiº of R and

a square-free monomial y in the ending circles ¹yiº of R. When we draw a

labeled resolution con�guration, we label the starting circles 0 or 1: a starting

circle appears in the monomial x if it is labeled 1, and does not appear in x

if it is labeled 0; and we draw the ending circles solid red or dashed blue: an

ending circle appears in the monomial y if it is solid and colored red, and

does not appear in y if it is dashed and colored blue.

(10) The dual .R�; y�; x�/ of a labeled resolution con�guration .R; x; y/ is de-

�ned as follows: a starting circle of R� appears in the monomial y� if and

only if the corresponding ending circle of R does not appear in y; and an end-

ing circle of R� appears in the monomial x� if and only if the corresponding

starting circle of R does not appear in x. See Figure 2.2 for an oriented la-

beled resolution con�guration and its dual.
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1

0
0

0

(a) An oriented labeled resolution con�g-

uration .R; x; y/.

1
0

1

(b) The dual oriented labeled resolution

con�guration .R�; y�; x�/.

Figure 2.2. An oriented labeled resolution con�guration and its dual. Recall, a starting

circle appears in the monomial if it is labeled 1 and does not appear in the monomial if it

is labeled 0; and an ending circle appears in the monomial if it is solid red and does not

appear in the monomial if it is dashed blue.

De�nition 2.2. For nested subsets u � v � C with jvj � juj D k, let Dv
u denote

the following index-k resolution con�guration: resolve a crossing c by the 0-

resolution if c … v, resolve it by the 0-resolution and add the surgery arc ˛c if

c 2 v n u, and resolve it by the 1-resolution otherwise; see Figure 2.1. Note, the

starting circles of Z.Dv
u/ are the circles in Z.Du/ and the ending circles of Z.Dv

u/

are the circles of Z.Dv/.

A decoration is a choice of an orientation of all the arcs in A.DC

¿
/. We

specify a decoration by drawing an arrowhead near each crossing of the link

diagram D so that the arcs in A.DC

¿
/ are oriented in accord with the arrowheads.

A decoration induces an orientation of all arcs in all resolution con�gurations Dv
u,

see Figure 2.3.

c1 c2

c3

c4

(a) A decorated link diagram D with

C D ¹c1; : : : ; c4º.

(b) The oriented resolution con�guration

D
¹c1;c2;c3º

¹c1º
.

Figure 2.3. A decorated link diagram for the �gure eight knot, and one of the induced

oriented resolution con�gurations.
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De�nition 2.3. A contribution function f is a function from the set of all oriented

labeled resolution con�gurations to F2.

(1) f satis�es the naturality rule if it is preserved under equivalence. That is, if

there is an isotopy of S2 carrying .R; x; y/ to .R0; x0; y0/, then f..R; x; y// D

f..R0; x0; y0//.

(2) f satis�es the conjugation rule if it is preserved under reversing. That is, for

any .R; x; y/, f..R; x; y// D f..r.R/; x; y//.

(3) f satis�es the disoriented rule if it is preserved under an arbitrary re-orienta-

tion of arcs. That is, if R and R0 di�er only in the orientation of their arcs,

then f..R; x; y// D f..R0; x; y//.

(4) f satis�es the duality rule if it is preserved under dualizing and taking mirrors.

That is, if m.R�; y�; x�/ denotes the mirror of the dual of .R; x; y/, then

f.m.R�; y�; x�// D f..R; x; y//.

(5) f satis�es the extension rule if it only depends on the active part of the

resolution con�guration. That is, given .R; x; y/, let Ra (respectively, xa, ya)

be the active part of R (respectively, x, y) and let Rp (respectively, xp, yp) be

the passive part of R (respectively, x, y) so that R D Ra

`

Rp (respectively,

x D xaxp, y D yayp); then

f..R; x; y// D

´

f..Ra; xa; ya// if xp D yp,

0 otherwise.

(6) f satis�es the �ltration rule if it does not contribute whenever there is some

point p such that the starting circle containing p is in the starting monomial,

but the ending circle containing p is not in the ending monomial. That is, if

f..R; x; y// ¤ 0, then, every starting circle that appears in x is disjoint from

every ending circle that does not appear in y.

A contribution function f satisfying the naturality rule de�nes an endomorphism f

of the Khovanov chain group C coming from a decorated link diagram as follows.

Given Khovanov generators .u; x/ and .v; y/,

hf ..u; x//; .v; y/i D

´

f..Dv
u; x; y// if u � v,

0 otherwise.

Clearly, if the contribution function f satis�es the disoriented rule, then the en-

domorphism f does not depend on the choice of decoration of the link diagram.

Also, if f satis�es the �ltration rule, and we are working with a pointed link dia-

gram, then f restricts to an endomorphism of C�.
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With these concepts in place, we are ready to recall the de�nitions of the Kho-

vanov di�erential, the Bar-Natan di�erential, and the Szabó di�erential, although

not entirely in their original forms.

De�nition 2.4 ([6, Section 4.2]). The Khovanov contribution function k satis�es

the naturality rule, the disoriented rule (and hence the conjugation rule), the

duality rule, the extension rule, and the �ltration rule. A labeled resolution

con�guration .R; x; y/ has non-zero contribution in k if and only if x and y

agree on the passive circles, and the active part is equivalent to one of the four

con�gurations in Figure 2.4.

In the Merge con�gurations, there are two starting circles with a single arc

between them. In the Merge-A con�guration, both the starting and the ending

monomials are 1, while in the Merge-B con�guration, the starting monomial and

the ending monomial each contains exactly one circle. The Split-A con�guration

and the Split-B con�guration are the duals of the Merge-A con�guration and the

Merge-B con�guration, respectively.

Starting with a link diagram, the Khovanov di�erential ıKh D d1 is the .1; 0/-

graded endomorphism on C induced by k,

hd1..u; x//; .v; y/i D

´

k..Dv
u; x; y// if u � v,

0 otherwise.

It is indeed a di�erential, i.e., .ıKh/2 D 0, and the Khovanov chain complex is

de�ned as

CKh D .C; ıKh/:

Since k satis�es the �ltration rule, for a pointed link diagram, ıKh restricts to

an endomorphism on C�. Therefore, we get a subcomplex C�
Kh generated by C�

and a quotient complex CC
Kh generated by CC, which �t into a short exact sequence

0 �! C�
Kh¹1º �! CKh �! CC

Kh¹�1º �! 0:

Merge-A Merge-B Split-A Split-B

0 0 00 1 1

Figure 2.4. The labeled con�gurations that contribute to the function k.
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Merge-C Split-C

1 1 0

Figure 2.5. The labeled con�gurations that contribute to the function b.

De�nition 2.5 ([2, Section 9.3]). The Bar-Natan contribution function b satis�es

the naturality rule, the disoriented rule (and hence the conjugation rule), the

duality rule, the extension rule, and the �ltration rule. A labeled resolution

con�guration .R; x; y/ has non-zero contribution in b if and only if x and y

agree on the passive circles, and the active part is equivalent to one of the two

con�gurations in Figure 2.5.

In the Merge-C con�guration, there are two starting circles with a single arc

between them, and both the starting and the ending monomials contain all the

circles; the Split-C con�guration is the dual of the Merge-C con�guration.

Starting with a link diagram, the Bar-Natan perturbation h1 is the .1; 2/-graded

endomorphism on C induced by b,

hh1..u; x//; .v; y/i D

´

b..Dv
u; x; y// if u � v,

0 otherwise.

The Bar-Natan di�erential is the .1; 0/-graded endomorphism ıBN D d1CHh1 on

C ˝ F2ŒH �, with H being a formal variable in .grh; grq/-bigrading .0; �2/. Once

again, this is a di�erential, i.e., .ıBN/2 D 0, and the Bar-Natan chain complex is

de�ned as

CBN D .C ˝ F2ŒH �; ıBN/:

Clearly, CKh is obtained from CBN by setting H D 0. The �ltered and the localized

versions are de�ned as

CfBN D CBN=¹H D 1º D .C; d1 C h1/

¹H º�1CBN D CBN ˝F2ŒH� F2ŒH; H �1� D .C ˝ F2ŒH; H �1�; ıBN/:

Once again, since both k and b satisfy the �ltration rule, for a pointed link

diagram, we get a subcomplex C�
BN generated by C� and a quotient complex CC

BN
generated by CC �tting into a short exact sequence over F2ŒH �

0 ! C�
BN¹1º ! CBN ! CC

BN¹�1º ! 0:
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0 0

(a) Type-A con�guration.

1 1

1

(b) Type-B con�guration.

0

(c) Type-C con�guration.

1

1 1 1

1

1

(d) Type-D con�guration.

1

1

0

1

1

(e) Type-E con�guration.

1

1

0

1

1

(f) Type-E con�guration.

Figure 2.6. The oriented labeled con�gurations that contribute to the function d.

De�nition 2.6 ([26, Section 3–4]). The Szabó contribution function d satis�es

the naturality rule, the conjugation rule (but not the disoriented rule), the duality

rule, the extension rule, and the �ltration rule. An oriented labeled resolution

con�guration .R; x; y/ has non-zero contribution in d if and only if x and y agree

on the passive circles, and the active part is equivalent to a con�guration from one

of the �ve families in [26, Figure 3] or Figure 2.6.

In a Type-A con�guration (Figure 2.6a), there are two starting circles, with

some (at least one) parallel arcs between them; both the starting and the end-

ing monomials are 1. A Type-B con�guration (Figure 2.6b) is the dual of a

Type-A con�guration. In a Type-C con�guration (Figure 2.6c), there is a sin-

gle starting circle, with some (at least one) parallel arcs inside, and some (at

least one) parallel arcs outside, so that the inside arcs and the outside arcs are

linked, and the orientations are as shown; both the starting and ending monomi-

als are 1. A Type-D con�guration (Figure 2.6d) is the mirror of the dual of a

Type-C con�guration. The Type-E con�gurations are slightly harder to describe.
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In the Type-E con�guration from Figure 2.6e, there is exactly one circle, call it the

special starting circle, that does not appear in the starting monomial; and there is

exactly one circle, call it the special ending circle, that does appear in the ending

monomial. All the non-special starting circles are incident to exactly one arc; and

all the non-special ending circles are incident to exactly one dual arc. The arcs

either run from the non-special starting circles to the special starting circle, or

run from the special starting circle to itself; in the latter case, they are oriented

as shown (depending on whether they are inside or outside of the special start-

ing circle). We also impose the condition that the index of the con�guration is at

least one. The Type-E con�guration from Figure 2.6f is the reverse of the Type-E

con�guration from Figure 2.6e.

Working with a decorated link diagram, the induced endomorphism d of C,

de�ned as

hd..u; x//; .v; y/i D

´

d..Dv
u; x; y// if u � v,

0 otherwise,

increases the homological grading grh by at least one, and increases delta grad-

ing grı D grh � grq=2 by exactly one; therefore, d can be (uniquely) written

as
P1

iD1 di , where di increases grh by exactly i and increases grq by exactly

2i �2. Indeed, d1 is independent of the initial decoration, and is the Khovanov dif-

ferential from De�nition 2.4. The Szabó geometric di�erential is the .1; 0/-graded

endomorphism ıSz D d1 C W d2 C W 2d3 C � � � on C ˝ F2ŒW � with W being a

formal variable in .grh; grq/-bigrading .�1; �2/. It is shown in [26, Section 6]

that this is a di�erential, i.e., .ıSz/
2 D 0, and the Szabó chain complex is de�ned

as

CSz D .C ˝ F2ŒW �; ıSz/:

The Khovanov chain complex CKh can be recovered from CSz by setting W D 0.

The �ltered version is de�ned as

CfSz D CSz=¹W D 1º D .C; d1 C d2 C d3 C � � � / D .C; d/:

As before, since d satis�es the �ltration rule, for a pointed decorated link

diagram, we get a subcomplex C�
Sz generated by C� and a quotient complex CC

Sz
generated by CC �tting into a short exact sequence over F2ŒW �

0 �! C�
Sz¹1º �! CSz �! CC

Sz¹�1º �! 0:
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Therefore, to summarize the existing story, we have a .1; 2/-graded endomor-

phism h1, and for all i > 0, .i; 2i � 2/-graded endomorphisms di for C, satisfying

.d1 C h1/2 D d2 D 0, where d D .d1 C d2 C d3 C � � � /. From grading consider-

ations, this breaks up into the following equations,

h2
1 D 0; Œh1W d1� D 0; d2

1 D 0;

Œd1W d2� D 0;

Œd1W d3� C d2
2 D 0;

:::

Therefore, the Khovanov chain complex, the Bar-Natan chain complex, and the

Szabó geometric chain complex can be de�ned as the following objects, respec-

tively:

CKh D .C; ıKh
..D d1/;

CBN D .C ˝ F2ŒH �; ıBN
..D d1 C Hh1/;

CSz D .C ˝ F2ŒW �; ıSz
..D d1 C W d2 C W 2d3 C � � � /:

Here H and W are formal variables carrying .grh; grq/-bigradings .0; �2/ and

.�1; �2/, respectively, so that above complexes are also bigraded with the di�er-

ential being of grading .1; 0/.

In the next section, we will extend the de�nition of h1 to construct .i; 2i/-

graded endomorphisms hi for all i . Setting h D .h1 C h2 C h3 C � � � /, it will

satisfy h2 D ŒhW d � D 0. Expanding along gradings, we will get equations

h2
1 D 0 Œh1W d1� D 0;

Œh1W h1� D 0 Œh1W d2� C Œh2W d1� D 0;

Œh1W h3� C h2
2 D 0 Œh1W d3� C Œh2W d2� C Œh3W d1� D 0;

:::
:::

and we will de�ne our chain complex as

Ctot D .C ˝ F2ŒH; W �;

ıtot
..D d1 C W d2 C W 2d3 C � � � C Hh1 C HW h2 C HW 2h3 C � � � /:

with the di�erential lying in grading .1; 0/. Clearly, CBN and CSz can be obtained

from Ctot by setting W D 0 and H D 0, respectively, while CKh can be obtained

by setting both to zero; therefore, Ctot will be the master chain complex.
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The endomorphism d was de�ned from a contribution function d, and di was

simply the graded part of d that increased the homological grading by i . We will

also de�ne the endomorphism h from some contribution function h, and hi will

be graded part of h that increases the homological grading by i . Therefore, in

order to introduce our chain complex, all that remains is to de�ne the contribution

function h. We turn to this in the next section.

3. Construction

De�nition 3.1. A tree is a labeled resolution con�guration of some index k � 0,

with exactly .k C 1/ starting circles, exactly one ending circle, and no passive

circles, and with all the starting circles appearing in the starting monomial, and

the ending circle appearing in the ending monomial.

De�nition 3.2. The contribution function h is de�ned as follows: It is non-zero

for a labeled resolution con�guration .R; x; y/ if only if .R; x; y/ is a disjoint

union of trees and dual trees, and the index of R is at least one. See Figure 3.1 for

a resolution con�guration that contributes to h.

0

0

0

1 1

1

1

1 1

1

1

1

1

1
1

Figure 3.1. A labeled con�guration that contributes to h.

Lemma 3.3. The contribution function h satis�es the naturality rule, the disori-
ented rule (and hence the conjugation rule), the duality rule, the extension rule,
and the �ltration rule. The induced endomorphism h of C coming from some link
diagram D (or of C˙ coming from some pointed link diagram .D; p/), de�ned as

hh..u; x//; .v; y/i D

´

h..Dv
u; x; y// if u � v,

0 otherwise,

increases the homological grading grh by at least one, and preserves the delta
grading grı D grh � grq=2; therefore, h can be (uniquely) written as

P1
iD1 hi ,

where hi increases grh by i and increases grq by 2i . Furthermore, h1 is the Bar-
Natan perturbation from De�nition 2.5.

Proof. This is immediate from the de�nitions. �
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Proposition 3.4. The endomorphism d C h is a di�erential on C.

The main aim of this section is to prove the above statement, and we will give

the proof at the very end. In the meantime, Proposition 3.4 allows us to de�ne the

following chain complex.

De�nition 3.5. Starting from a decorated link diagram, our chain complex is

de�ned over F2ŒH; W � as

Ctot D .C ˝ F2ŒH; W �;

ıtot D d1 C W d2 C W 2d3 C � � � C Hh1 C HW h2 C HW 2h3 C � � � /

with H and W being formal variables lying in grading .0; �2/ and .�1; �2/,

and the di�erential being of grading .1; 0/. Setting H D 0 recovers the Szabó

geometric chain complex from De�nition 2.6, while setting W D 0 recovers

the Bar-Natan chain complex from De�nition 2.5. Some �ltered versions and a

localized version are de�ned as

Cftot D Ctot=¹H D W D 1º

D .C; d C h/

D .C; d1 C d2 C � � � C h1 C h2 C � � � /;

CfHtot D Ctot=¹H D 1º

D .C; .d1 C h1/ C W.d2 C h2/ C W 2.d3 C h3/ C � � � /;

¹H º�1Ctot D Ctot ˝F2ŒH;W � F2ŒH; H �1; W �

D .C ˝ F2ŒH; H �1; W �; ıtot/:

For a pointed decorated link diagram, C�
tot (respectively, CC

tot) is de�ned to be the

subcomplex (respectively, quotient complex) generated by C� (respectively, CC);

they �t into a short exact sequence over F2ŒH; W �

0 �! C�
tot¹1º �! Ctot �! CC

tot¹�1º �! 0:

Example 3.1. Consider the decorated link diagram for the trefoil and its cube

of resolutions in Figure 3.2. We have numbered the three crossings from left

to right as c1; c2; c3; the complete resolution at u � C has been labeled by the

corresponding vertex Nu 2 ¹0; 1º3, where Nui D 1 i� ci 2 u. Furthermore, the circles

in each individual resolution are also numbered (usually left to right, sometimes

top to bottom); let x Nu
i be the circle labeled i in the resolution at u. We will use the

superscript Nu for the Khovanov generators living over u.
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The complex Ctot is freely generated over F2ŒH; W � by the thirty Khovanov

generators. The di�erential ıtot is the following:

ıtot.1
000/ D 1100 C 1010 C 1001 C W.1110 C 1101 C 1011/ C W 21111;

ıtot.x
000
1 x000

2 / D Hıtot.x
000
1 / D Hıtot.x

000
2 / D H.x100

1 C x010
1 C x001

1 /;

ıtot.1
100/ C x011

1 C x011
2 C H1011

D ıtot.1
010/ C x101

1 C x101
2 C H1101

D ıtot.1
001/ C x110

1 C x110
2 C H1110

D x110
1 C x110

2 C x101
1 C x101

2 C x011
1 C x011

2

C H.1110 C 1101 C 1011/ C HW 1111;

ıtot.x
100
1 / C x011

1 x011
2 D ıtot.x

010
1 / C x101

1 x101
2

D ıtot.x
001
1 / C x110

1 x110
2

D x110
1 x110

2 C x101
1 x101

2 C x011
1 x011

2 ;

ıtot.1
110/ C x111

2 D ıtot.1
101/ C x111

1

D ıtot.1
011/ C x111

3

D x111
1 C x111

2 C x111
3 C H1111;

ıtot.x
110
1 / C x111

1 x111
3 D ıtot.x

101
2 / C x111

2 x111
3

D ıtot.x
011
1 / C x111

1 x111
2

D 0;

ıtot.x
110
2 / C x111

1 x111
3 C Hx111

2 D ıtot.x
101
1 / C x111

2 x111
3 C Hx111

1

D ıtot.x
011
2 / C x111

1 x111
2 C Hx111

3

D x111
1 x111

2 C x111
1 x111

3 C x111
2 x111

3 ;

ıtot.x
110
1 x110

2 / D ıtot.x
101
1 x101

2 /

D ıtot.x
011
1 x011

2 /

D x111
1 x111

2 x111
3 ;

and it is zero on the other (eight) Khovanov generators.
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We will now spend the rest of the section working towards a proof of

Proposition 3.4. Towards that end, we construct a decomposition of h, generalize

the notion of trees and dual trees, and prove some relevant lemmas.

De�nition 3.6. For each non-empty subset ¿ ¤ s � C, de�ne the following

endomorphism hs of C.

hhs..u; x//; .v; y/i D

´

hh..u; x//; .v; y/i if v D u
`

s,

0 otherwise.

It is clear that

h D
X

¿¤s�C

hsI

indeed,

hi D
X

s�C

jsjDi

hs :

De�nition 3.7. In a similar vein to De�nition 3.1, let a potted tree denote a part

of a labeled resolution con�guration consisting of k initial circles and .k �1/ arcs

that are arranged as a tree (with k � 1), such that there is exactly one additional

arc joining these k circles to the rest of the resolution con�guration; furthermore,

all these k circles appear in the starting monomial, and the unique ending circle

they correspond to, appears in the ending monomial. A potted dual tree is part of

a labeled resolution con�guration whose dual is a potted tree.

Lemma 3.8. For any non-empty subsets s; t of C,

hsht D

´

hs
`

t if s \ t D ¿,

0 otherwise.

Proof. We want to show hhsht ..u; x//; .v; y/i D hhs
`

t ..u; x//; .v; y/i for all

disjoint non-empty subsets s; t , and for all Khovanov generators .u; x/ and .v; y/.

Either can be non-zero only if v D u
`

s
`

t , so we may assume u is disjoint from

s and t , and v D u
`

s
`

t . Let w D u
`

t .

The contribution hhs
`

t ..u; x//; .v; y/i is non-zero if and only if .Dv
u; x; y/

is a disjoint union of trees and dual trees. Since graph minors of forests are

also forests, for a unique monomial z on Z.Dw/, both .Dw
u ; x; z/ and .Dv

w ; z; y/

are disjoint unions of trees and dual trees. Therefore, ht ..u; x// D .w; z/ and

hs..w; z// D .v; y/, and hence hhsht ..u; x//; .v; y/i ¤ 0.
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Conversely, if hhsht ..u; x//; .v; y/i ¤ 0, let .w; z/ D ht ..u; x// (note,

ht evaluated on a Khovanov generator can have at most one non-zero term).

Then both .Dw
u ; x; z/ and .Dv

w ; z; y/ are disjoint unions of trees and dual trees.

In other words, the resolution con�guration .Dv
u; x; y/ is obtained from

.Dw
u ; x; z/ by adding a bunch of potted trees and potted dual trees. There-

fore, .Dv
u; x; y/ is a disjoint union of trees and dual trees as well, and hence

hhs
`

t ..u; x//; .v; y/i ¤ 0. �

Corollary 3.9. For any non-empty subsets s; t of C,

Œhs W ht � D 0:

Therefore, for any non-empty subset s of C, Œhs W h� D 0I and h2 D 0:

Lemma 3.10. Let D and D0 be two decorated link diagrams, which di�er in the
choice of decorations at precisely the crossings in some subset S � C, but are
otherwise identical. Let d and d 0 be the respective endomorphisms of C de�ned
via the contribution function d. Then,

d 0 D d C
X

¿¤s�S

ŒhsW d � C
X

¿¤s;t�S

s\tD¿

hsdht

D d C
X

¿¤s�S

ŒhsW d � C
X

¿¤s;t�S

hsdht :

Proof. The second and the third expressions agree because hsdht D 0 if s\t ¤¿.

Therefore, it is enough to prove that the �rst and the second expressions agree.

We do it by induction on the number of elements in S.

The base case, when S consists of a single crossing, is essentially [26, The-

orem 5.4]. So we only need the induction step. Let D00 be the decorated link

diagram obtained from D by changing the decoration at a single crossing c 2 S,

and let d 00 be the corresponding endomorphism. From the base case,

d 00 D d C Œh¹cºW d �;

and from the induction step,

d 0 D d 00 C
X

¿¤s�Sn¹cº

ŒhsW d 00� C
X

¿¤s;t�Sn¹cº

s\tD¿

hsd 00ht :
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Combining (and using Lemma 3.8), we get

d 0 D d C Œh¹cºW d �

C
X

¿¤s�Sn¹cº

Œhs W d C Œh¹cºW d ��

C
X

¿¤s;t�Sn¹cº

s\tD¿

hs.d C Œh¹cºW d �/ht

D d C Œh¹cºW d �

C
X

¿¤s�Sn¹cº

.Œhs W d � C Œhs
`

¹cºW d �/

C
X

¿¤s�Sn¹cº

.hsdh¹cº C h¹cºdhs/

C
X

¿¤s;t�Sn¹cº

s\tD¿

.hsdht C hs
`

¹cºdht C hsdht
`

¹cº/

D d C
X

¿¤s�S

Œhs W d � C
X

¿¤s;t�S

s\tD¿

hsdht : �

Lemma 3.11. Let D and D0 be two decorated link diagrams, which might di�er
in the choice of decorations, but are otherwise identical. Let d and d 0 be the
respective endomorphisms of C. Fix k � 1. If

hŒhW d �..u; x//; .v; y/i D 0

for all pairs of Khovanov generators .u; x/ and .v; y/ with jvj � juj < k, then

hŒhW d �..u; x//; .v; y/i D hŒhW d 0�..u; x//; .v; y/i

for all pairs of Khovanov generators .u; x/ and .v; y/ with jvj � juj D k.

Proof. Let S be the set of crossings where the decorations of D and D0 di�er.

By Lemma 3.10,

d 0 � d D
X

¿¤s�S

Œhs W d � C
X

¿¤s;t�S

hsdht ;

and hence (with the aid of Corollary 3.9),

ŒhW d 0 � d � D
X

¿¤s�S

ŒhW ŒhsW d �� C
X

¿¤s;t�S

ŒhW hsdht �

D
X

¿¤s�S

Œhs W ŒhW d �� C
X

¿¤s;t�S

hs ŒhW d �ht :
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Therefore, for any .u; x/ and .v; y/ with grh..v; y// � grh..u; x// D jvj� juj D k,

hŒhW d 0 � d �..u; x//; .v; y/i

D
X

¿¤s�S

hŒhs W ŒhW d ��..u; x//; .v; y/i C
X

¿¤s;t�S

hhs ŒhW d �ht ..u; x//; .v; y/i

D
X

s;.w;z/

¿¤s�S

jwj�jujDk�jsj

hhs..w; z//; .v; y/ihŒhW d �..u; x//; .w; z/i

C
X

s;.w;z/

¿¤s�S

jvj�jwjDk�jsj

hŒhW d �..w; z//; .v; y/ihhs..u; x//; .w; z/i

C
X

s;t;.w1;z1/;.w2;z2/

¿¤s;t�S

jw1j�jujDjt j

jw2j�jw1jDk�jsj�jt j

hhs..w2; z2//; .v; y/ihŒhW d �..w1; z1//; .w2; z2/ihht ..u; x//; .w1; z1/i

D 0

by the hypothesis. �

Let us now de�ne �ve families of labeled resolution con�gurations that will

be of relevance very soon.

De�nition 3.12. A Type-˛ con�guration (Figure 3.3a after ignoring the orienta-

tions) is obtained from a Type-A con�guration by forgetting the orientation of the

arcs, and adding some number (possibly zero) of potted dual trees on the two initial

circles. A Type-ˇ con�guration (Figure 3.3b after ignoring the orientations) is the

dual of a Type-˛ con�guration; therefore, it is obtained from a Type-B con�gura-

tion by forgetting the orientation of the arcs, and adding potted trees on the initial

circles. A Type-
 con�guration (Figure 3.3c after ignoring the orientations) is ob-

tained from a Type-C con�guration by forgetting the orientation of the arcs, and

adding potted dual trees on the initial circle. A Type-ı con�guration (Figure 3.3d

after ignoring the orientations) is the dual of a Type-
 con�guration; therefore, it

is obtained from a Type-D con�guration by forgetting the orientation of the arcs,

and adding potted trees on the initial circles. A Type-" con�guration (Figure 3.3e

after ignoring the orientations) is obtained by adding potted trees and potted dual

trees on a single circle, and requiring that the index of the resulting resolution

con�guration be at least one.
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0 0

(a) Type-˛ con�guration.

1

1

1

1
1

1

1

1
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1

1

11

1
1

1

1

1

1
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1

1

(b) Type-ˇ con�guration.

0

(c) Type-
 con�guration.

Figure 3.3. After ignoring the orientations of the arcs, these are the labeled resolution

con�gurations from De�nition 3.12.
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(d) Type-ı con�guration.
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(e) Type-" con�guration.

Figure 3.3. After ignoring the orientations of the arcs, these are the labeled resolution

con�gurations from De�nition 3.12.

Lemma 3.13. If .u; x/, .v; y/ and .w; z/ are Khovanov generators such that
hd..u; x//; .w; z/i ¤ 0 and hh..w; z//; .v; y/i ¤ 0, then, .Dv

u; x; y/, after for-
getting the orientations of the arcs, is equivalent to a disjoint union of trees, dual
trees and exactly one con�guration from one of the �ve families in De�nition 3.12.

Proof. The proof is a fairly straightforward case analysis. Since hd..u; x//; .w; z/i

¤ 0, the active part of the resolution con�guration .Dw
u ; x; z/ must be in one of the

�ve families described in Section 3 or Figure 2.6, and since hh..w;z//;.v;y/i¤0,

the resolution con�guration .Dv
w ; z; y/ must be a disjoint union of trees and dual

trees. Therefore, we need to show that the union of the following is a con�guration

from one of the �ve families in De�nition 3.12:
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(i) the active part of .Dw
u ; x; z/;

(ii) the arcs of Dv
w that are in the same connected component (of Dv

w) as some

active ending circle of Dw
u ; and

(iii) the starting circles of .Dv
w ; z; y/ that are passive as ending circles of Dw

u but

are in the same connected component (of Dv
w) as some active ending circle

of Dw
u .

If the active part of .Dw
u ; x; z/ is a Type-A con�guration, then adding the

relevant portion from .Dv
w ; z; y/ has the e�ect of adding some (possibly zero)

more parallel arcs between the two active starting circles of Dw
u , followed by

adding some potted dual trees; consequently, we get a Type-˛ con�guration.

If the active part of .Dw
u ; x; z/ is a Type-B con�guration, then adding the

relevant portion from .Dv
w ; z; y/ could achieve one of the following two things.

If the new arcs and circles do not connect the two active ending circles of Dw
u ,

then we get a Type-ˇ con�guration; and if the new arcs and circles do connect the

two active ending circles of Dw
u , then we get a Type-ı con�guration.

If the active part of .Dw
u ; x; z/ is a Type-C con�guration, then adding the

relevant portion from .Dv
w ; z; y/ has the e�ect of adding some (possibly zero)

number of arcs parallel to inside or outside arcs of Dw
u , followed by adding some

potted dual trees; therefore, we get a Type-
 con�guration.

If the active part of .Dw
u ; x; z/ is a Type-D con�guration, then adding the

relevant portion from .Dv
w ; z; y/ is simply the addition of some potted trees, and

we get a Type-ı con�guration.

Finally, if the active part of .Dw
u ; x; z/ is a Type-E con�guration, then adding

the relevant portion from .Dv
w ; z; y/ is same as adding some potted trees and potted

dual trees, and therefore, we get a Type-" con�guration. �

Lemma 3.14. If .u; x/, .v; y/ and .w; z/ are Khovanov generators such that
hh..u; x//; .w; z/i ¤ 0 and hd..w; z//; .v; y/i ¤ 0, then, .Dv

u; x; y/, after for-
getting the orientations of the arcs, is equivalent to a disjoint union of trees, dual
trees and exactly one con�guration from one of the �ve families in De�nition 3.12.

Proof. This follows immediately from Lemma 3.13. Since both the contribution

functions d and h satisfy the duality rule, the resolution con�guration .Dv
u; x; y/

must be dual to some resolution con�guration from Lemma 3.13. Therefore, it

must be dual to a disjoint union of trees, dual trees, and exactly one con�guration

from De�nition 3.12. However, the resolution con�gurations from De�nition 3.12

are closed under taking duals; namely, Type-˛ con�gurations are dual to Type-ˇ

con�gurations, Type-
 con�gurations are dual to Type-ı con�gurations, and

Type-" con�gurations are self-dual. �
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We are �nally ready to embark upon the proof of our main result for this

section.

Proof of Proposition 3.4. We want to show .d C h/2 D 0 on C. Since d increases

grı by one, and h preserves it, this is equivalent to the following three statements,

arranged in the increasing order of di�culty:

h2 D 0 ŒhW d � D 0 d2 D 0:

Corollary 3.9 already takes care of the easiest of these three statements; and the

hardest is proved in [26, Section 6]. Therefore, we will merely prove ŒhW d � D 0.

Certain formulas for certain counts take a simpler form if we write them for the

equivalent statement

Œh C IdW d � D 0;

and so that is what we will prove.

We prove the above equation by induction on the index. The base case when

the index is zero, is vacuous; hence we only prove the induction step. We assume

hŒh C IdW d �..u; x//; .v; y/i D 0

for all pairs of Khovanov generators .u; x/ and .v; y/ with

grh..v; y// � grh..u; x// < k;

and for any decoration of the original link diagram D. Then �x Khovanov

generators .u; x/ and .v; y/ with u � v and grh..v; y// � grh..u; x// D k, and

�x some decoration on D. We will prove that

hŒh C IdW d �..u; x//; .v; y/i D 0

holds for that decoration.

Thanks to Lemma 3.11, it is enough to prove this for some decoration; that is,

after �xing .u; x/ and .v; y/, we are free to choose our decoration. By Lemma 3.13

and Lemma 3.14, we may assume that .Dv
u; x; y/ is a disjoint union of trees, dual

trees, and exactly one con�guration from De�nition 3.12. These con�gurations are

shown in Figure 3.3, with some of the arcs being oriented; assume the number of

oriented arcs is `. Choose some decoration on D so that those ` arcs are oriented

as in Figure 3.3. We will �nish the proof by analyzing each of the con�gurations

from Figure 3.3.
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If .Dv
u; x; y/ is equivalent to a disjoint union of trees, dual trees and the

con�guration from Figure 3.3a, then it breaks up in the following ways.

� We �rst use all the arcs except the ` oriented ones to get a con�guration that

contributes to .hCId/; and we follow it by the ` oriented arcs to get a Type-A

con�guration which contributes to d .

� We use a non-empty subset of the ` oriented arcs to get a Type-A con�gu-

ration that contributes to d ; and we follow it by the rest of the arcs to get a

con�guration that contributes to .h C Id/.

Therefore, we get a total of 1C .2` �1/ contributions to ŒhW d �, and hence are done

with this case.

If .Dv
u; x; y/ is equivalent to a disjoint union of trees, dual trees and the

con�guration from Figure 3.3b, then it is dual to the previous case, and therefore

follows from the previous case since all the relevant contribution functions satisfy

the duality rule.

Next assume that .Dv
u; x; y/ is equivalent to a disjoint union of trees, dual trees

and the con�guration from Figure 3.3c; assume the number of oriented arcs inside

(respectively, outside) the starting circle is `1 (respectively, `2) with ` D `1 C `2.

The con�guration breaks up in the following ways.

� We �rst use all except the `1 oriented arcs inside to get a con�guration that

contributes to .h C Id/; and we follow it by the `1 oriented arcs to get a

Type-A con�guration that contributes to d .

� We �rst use all except the `2 oriented arcs outside to get a con�guration that

contributes to .h C Id/; and we follow it by the `2 oriented arcs to get a

Type-A con�guration that contributes to d .

Note, we have chosen the orientations of the ` arcs in such a way that we do

not have to encounter Type-C con�gurations. Therefore, we get a total of 1 C 1

contributions to ŒhW d �, and once again we are done.

If .Dv
u; x; y/ is equivalent to a disjoint union of trees, dual trees and the

con�guration from Figure 3.3d, then it is dual to the previous case, and therefore

follows from it.

Finally assume that .Dv
u; x; y/ is equivalent to a disjoint union of trees, dual

trees and the con�guration from Figure 3.3e. Assume the number of potted trees

on the special starting circle is `1, and the number of potted dual trees on the

special starting circle is `2, with `1 C `2 D ` � 1. There are the following

subcases.



598 S. Sarkar, C. Seed, and Z. Szabó

(1) `1 ¤ 0, `2 D 0. The con�guration breaks up in the following ways.

� We �rst use all except the `1 oriented arcs to get a con�guration that

contributes to .h C Id/; and we follow it by the `1 oriented arcs to get

a Type-E con�guration that contributes to d .

� We use a non-empty subset of the `1 oriented arcs to get a Type-E

con�guration that contributes to d ; and we follow it by the rest of the

arcs to get a con�guration that contributes to .h C Id/.

(2) `1 D 0, `2 ¤ 0. The con�guration breaks up in the following ways.

� We �rst use all the `2 oriented arcs to get a Type-E con�guration that

contributes to d ; and we follow it by the rest of the arcs to get a

con�guration that contributes to .h C Id/.

� We use all the non-oriented arcs and a proper subset of the `2 oriented

arcs to get a con�guration that contributes to .h C Id/; and we follow it

by the remaining arcs to get a Type-E con�guration that contributes to

d .

(3) `1 ¤ 0, `2 ¤ 0. The con�guration breaks up in the following ways.

� We use all the non-oriented arcs and all of the `2 oriented arcs to get a

con�guration that contributes to .h C Id/; and we follow it by the rest

of the arcs to get a Type-E con�guration that contributes to d .

� We use all the `2 oriented arcs to get a Type-E con�guration that

contributes to d ; and we follow it by the rest of the arcs to get a

con�guration that contributes to .h C Id/.

Therefore, we have the following number of contributions to ŒhW d �,

`1 D 0 `1 � 1

`2 D 0 1 C .2`1 � 1/

`2 � 1 1 C .2`2 � 1/ 2

thus concluding the proof. �
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4. Invariance

We now turn to invariance. The master invariant that we study is the bigraded

chain homotopy type of the inclusion �W C�
tot¹1º ,! Ctot over the ring F2ŒH; W �.

All the other variants that we have considered can easily be recovered from this

variant. For example, if one wishes to recover the plus version of the �ltered

Szabó geometric chain complex, one can obtain it by taking the mapping cone of

the inclusion C�
tot¹1º ,! Ctot, then setting H D 0 and W D 1, and then shifting

the quantum grading by 1.

CC
Sz ' Cone.�/=¹H D 0; W D 1º¹1º:

De�nition 4.1. Consider the bigraded polynomial ringF2ŒH; W � with H and W in

bigradings .0; �2/ and .�1; �2/ respectively. Let Kom.F2ŒH; W �/ be the category
of chain complexes overF2ŒH; W �. The objects are bigraded chain complexes over

F2ŒH; W � with the di�erentials in bigrading .1; 0/, and the morphisms are .0; 0/-

graded F2ŒH; W �-module chain maps. For C 2 Ob.Kom.F2ŒH; W �/ and integer

a, de�ne C ¹aº 2 Ob.Kom.F2ŒH; W �/ by shifting the second grading by a.

Let K.F2ŒH; W �/ be the homotopy category over F2ŒH; W �. The objects are

same as the objects of Kom.F2ŒH; W �/. The morphisms are equivalence classes

of morphisms in Kom.F2ŒH; W �/; we declare f1; f2 2 HomKom.F2ŒH;W �/.A; B/

equivalent if there is a .�1; 0/-graded F2ŒH; W �-module map hW A ! B such that

f1 � f2 D dB ı h C h ı dA:

Let Kp.F2ŒH; W �/ be the homotopy category of pairs over F2ŒH; W �, de�ned

as follows. The objects are triples

.A; B; �/; where A; B 2 ObKom.F2ŒH;W �/;

and � 2 HomKom.F2ŒH;W �/.A; B/:

Morphisms from .A1; B1; �1/ to .A2; B2; �2/ are pairs

.f; g/; where f 2 HomKom.F2ŒH;W �/.A1; A2/

and g 2 HomKom.F2ŒH;W �/.B1; B2/

such that the following diagram

A1
�1 //

f

��

B1

g

��
A2

�2 // B2;
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commutes modulo the following equivalence relation. We declare .f1; g1/ equiv-

alent to .f2; g2/ if there are .�1; 0/-graded F2ŒH; W �-module maps hW A1 ! A2

and kW B1 ! B2 such that the following commutes

A1
�1 //

h

��

B1

k

��
A2

�2 // B2;

and

f1 � f2 D dA2
ı h C h ı dA1

;

g1 � g2 D dB2
ı h C h ı dB1

:

Proposition 4.2. Let .D; p/ and .D0; p0/ be two pointed decorated link diagrams
representing isotopic pointed links in S3. Then the objects .C�

tot.D; p/¹1º; Ctot.D/;

�.D; p// and .C�
tot.D

0; p0/¹1º; Ctot.D
0/; �.D0; p0// are isomorphic in the homotopy

category of pairs Kp.F2ŒH; W �/.

Corollary 4.3. Let D and D0 be two decorated link diagrams representing iso-
topic links in S3. Then the objects Ctot.D/ and Ctot.D

0/ are isomorphic in the
homotopy category K.F2ŒH; W �/.

We will basically check invariance under the three Reidemeister moves from

Figure 4.1, following the standard arguments. Along the way, we will need the

following well-known (and heavily used) cancellation principle.

De�nition 4.4. Fix a link diagram D. A 5-tuple .C0; u; v; c; a/ is called a cancel-
lation data if u ¨ ¹cº [ u D v � C0 � C, and one of the following holds.

(1) The surgery arc ˛c joins two di�erent circles in Du, the complete resolution

of D corresponding to u, and a 2 Z.Du/ is one of the two circles connected

by ˛c , and a is disjoint from ˛c0 for all c0 2 C n C0. In this case, for any

w � CnC0, there is a natural bijection between Z.Du[w/n¹aº and Z.Dv[w/,

and we call Khovanov generators .u [ w; x/ and .v [ w; y/ to be a canceling
pair if a does not appear in the monomial x, and the monomials x and y are

related by the above bijection.
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(2) The arc ˛c has both its endpoints on the same circle in Du, and a 2 Z.Dv/

is one of the two circles obtained by surgering that circle along ˛c , and a

is disjoint from ˛c0 for all c0 2 C n C0. In this case, for any w � C n C0,

there is a natural bijection between Z.Du[w/ and Z.Dv[w/ n ¹aº, and we

call Khovanov generators .u [ w; x/ and .v [ w; y/ to be a canceling pair if

a appears in the monomial y, and the monomials x and a�1y are related by

the above bijection. (This is the dual of the above case.)

Lemma 4.5. Let .C0; u; v; c; a/ be a cancellation data. For any w; w0 � C n C0,
and any Khovanov generators .u [ w; x/ and .v [ w0; y/,

hıtot..u [ w; x//; .v [ w0; y/i

D

´

1 if w D w0 and .u [ w; x/ and .v [ w; y/ is a canceling pair,

0 otherwise.

In particular, if S is the subset of the Khovanov generators consisting of all the
canceling pairs for .C0; u; v; c; a/, then the subquotient complex spanned by S is
isomorphic to the trivial object in K.F2ŒH; W �/.

Proof. Let us assume the cancellation data .C0; u; v; c; a/ corresponds to Case (1)

of De�nition 4.4. Case (2), being the dual, should follow.

The coe�cient hıtot..u [ w; x//; .v [ w0; y/i can be non-zero only if w � w0,

and the resolution con�guration .Dv[w 0

u[w ; x; y/ either has a non-zero contribution

in d or a non-zero contribution in h. To have a non-zero contribution in d, x and

y must agree on the passive circles, and the active part of .Dv[w 0

u[w ; x; y/ must be

equivalent to one of the �ve families described in De�nition 2.6. The circle a

is one of the active starting circles, has only one arc incident to it, and does not

appear in the starting monomial x. A quick glance at Figure 2.6 implies the active

part of the con�guration must be an index-1 Type-A or Type-E con�guration. This

occurs when w D w0, and .u [ w; x/ and .v [ w; y/ form a canceling pair. These

are precisely the con�gurations that contribute to the Khovanov di�erential d1;

see also [26, Proof of Theorem 7.2].

In order to have a non-zero contribution in h, .Dv[w 0

u[w ; x; y/ must be equivalent

to disjoint union of trees and dual trees, as in De�nition 3.2. However, since

the arc ˛c joins the circle a to another circle, and a does not appear in the

starting monomial x, it cannot be a part of either a tree or a dual tree. Therefore,

.Dv[w 0

u[w ; x; y/ can never contribute to h. Consequently, the only contributions

come from d, and as analyzed earlier, they are exactly of the form as described

in the lemma. �
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Now we are almost set to prove invariance under Reidemeister moves. The

standard strategy is to delete certain canceling pairs to simplify the chain complex,

at the cost of adding new zigzag di�erentials. For an example of how these zigzag

di�erentials work, assume we have a chain complex freely generated over some

ring R with four generators a1; a2; b1; b2, and the di�erential is

ıa1 D b1c11 C b2c12 ıa2 D b1c21 C b2c22;

and assume c11 is a unit. Then we may perform a change of basis

a0
1 D a1 a0

2 D a2 � a1c�1
11 c21 b0

1 D b1 C b2c12c�1
11 b0

2 D b2;

and then the chain complex breaks up into two direct summands, generated by

¹a0
1; b0

1º and ¹a0
2; b0

2º. The former is acyclic, so we may cancel it, and then

we are left with a complex with just two generators a0
2 and b0

2 with di�erential

ıa0
2 D b0

2.c22 � c12c�1
11 c21/. This operation may be viewed as simply canceling

the arrow a1 ! b1 in the original chain complex and adding an extra zigzag arrow

a2 ! b2 with coe�cient .�c12c�1
11 c21/:

0

B

B

B

B

B

@

a1 a2

b1 b2

c11

c12 c21
c22

1

C

C

C

C

C

A

Š

0

B

B

B

B

B

B

@

a1 a2 � a1c�1
11 c21

b1 C b2c12c�1
11 b2

c11 c22 � c12c�1
11

c21

1

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

@

a0
1

b0
1

c11

1

C

C

C

C

C

C

A

˚

0

B

B

B

B

B

B

@

a0
2

b0
2

c22�c12c�1
11

c21

1

C

C

C

C

C

C

A

:

(4.1)

Proposition 4.6. Assume that the decorated pointed link diagram .D0; p/ is
obtained from the decorated pointed link diagram .D; p/ by doing a positive
Reidemeister-I stabilization away from the basepoint p, see Figure 4.1a, and by
extending the decoration arbitrarily on the extra crossing. Then .C�

tot.D; p/¹1º;

Ctot.D/; �.D; p// and .C�
tot.D

0; p/¹1º; Ctot.D
0/; �.D0; p// are isomorphic in

Kp.F2ŒH; W �/.
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//

(a) RI.

//

(b) RII.

//

(c) RIII.

Figure 4.1. The three Reidemeister moves. The orientations of the strands are arbitrary.

For RI and RII, the decorations at the new crossings are also arbitrary; for RIII, the

decorations are as shown.

Proof. Let C.D/ and C.D0/ be the set of crossings for D and D0, respectively, and

let ¹cº D C.D0/ n C.D/. Doing the 0-resolution at c produces a complete circle,

say a, contained in the neighborhood of c where the Reidemeister-I stabilization

takes place. Then .¹cº; ¿; ¹cº; c; a/ constitute a cancellation data for D0 as in

De�nition 4.4, see also [6, Section 5.1].

Consider the union of all the canceling pairs for this cancellation data. They

span a subcomplex of Ctot.D
0/, and the corresponding quotient complex is natu-

rally isomorphic to Ctot.D/. Since the subcomplex spanned by the canceling pairs

is trivial (from Lemma 4.5), and p … a, we get .C�
tot.D

0; p/¹1º; Ctot.D
0/; �.D0; p//

is isomorphic to .C�
tot.D; p/¹1º; Ctot.D/; �.D; p// in Kp.F2ŒH; W �/. �

Proposition 4.7. Assume that the decorated pointed link diagram .D0; p/ is ob-
tained from the decorated pointed link diagram .D; p/ by adding a pair of cross-
ings via a Reidemeister-II move away from the basepoint p, see Figure 4.1b,
and by extending the decoration arbitrarily on the two extra crossings. Then
.C�

tot.D; p/¹1º; Ctot.D/; �.D; p// and .C�
tot.D

0; p/¹1º; Ctot.D
0/; �.D0; p// are iso-

morphic in Kp.F2ŒH; W �/.

Proof. The argument is similar to the previous one. Let ¹c1; c2º D C.D0/ nC.D/,

numbered top to bottom (as per Figure 4.1b). Then the subquotient complex of

Ctot.D
0/ spanned by the Khovanov generators that live over the 0-resolution at

c1 and the 1-resolution at c2 is naturally isomorphic (after the correct bi-grading

shifts) to Ctot.D/.
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Doing the 1-resolution at c1 and the 0-resolution at c2 produces a complete

circle, say a, contained in the neighborhood of ¹c1; c2º where the Reidemeister-II

move takes place. Then both

.¹c1; c2º; ¿; ¹c1º; c1; a/ and .¹c1; c2º; ¹c1º; ¹c1; c2º; c2; a/

are cancellation data for D0, see also [6, Section 5.3].

Using Lemma 4.5, we can �rst cancel the subcomplex of Ctot.D
0/ spanned by

all the canceling pairs for .¹c1; c2º; ¹c1º; ¹c1; c2º; c2; a/, and then cancel the quo-

tient complex spanned by the canceling pairs of .¹c1; c2º; ¿; ¹c1º; c1; a/.

After all the cancellations, we will be left with the subquotient complex iso-

morphic to Ctot.D/, and (and since p … a) this establishes the isomorphism

between .C�
tot.D; p/¹1º; Ctot.D/; �.D; p// and .C�

tot.D
0; p/¹1º; Ctot.D

0/; �.D0; p//

in Kp.F2ŒH; W �/. See also Figure 4.2. �

//

�� ��

+3

Figure 4.2. The partial cube of resolutions of D0 for the RII invariance. We cancel along

the double arrows leaving a subquotient complex isomorphic to the complex for D.

Proposition 4.8. Assume that the decorated pointed link diagram .D0; p/

is obtained from the decorated pointed link diagram .D; p/ by performing a
Reidemeister-III move aways from the basepoint p, with the decorations being
consistent, as shown in Figure 4.1c. Then .C�

tot.D; p/¹1º; Ctot.D/; �.D; p// and
.C�

tot.D
0; p/¹1º; Ctot.D

0/; �.D0; p// are isomorphic in Kp.F2ŒH; W �/.
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//

�� ��

//

��

④④④④④④④

==④④④④④④④④④④④④④④④④

��

//

==④④④④④④④④④④④④④④④④④④④④④④④④

//

+3

④④④④④④④

④④④

④④④

==④④④④④④④

==④④④④④④④④④④④④④④④④④④④④④④④④

Figure 4.3. The partial cube of resolutions of D for the RIII invariance. We cancel along the

double arrows; the remainder is not a subquotient complex, so the cancellation produces

the new dotted arrow. We can produce similar cancellations for D0 to arrive at the same

diagram.

Proof. The proof is slightly di�erent from the previous ones. We will do cancel-

lations as before, but on each of the diagrams D and D0, and reduce both to the

same complex. Let us describe the cancellations for D in more detail.

Let c1; c2; c3 be the crossings of D where the Reidemeister-III move takes

place, numbered top to bottom (as per Figure 4.1c). Doing the 0-resolutions at

c1 and c3, and the 1-resolution at c2 produces a complete circle, say a, contained

in the neighborhood of ¹c1; c2; c3º where the Reidemeister-III move takes place.

Then all three of .¹c1; c2; c3º; ¿; ¹c2º; c2; a/, .¹c1; c2; c3º; ¹c2º; ¹c1; c2º; c1; a/, and

.¹c1; c2; c3º; ¹c2º; ¹c2; c3º; c3; a/ are cancellation data for D, see also [6, Sec-

tion 5.5] and [26, Theorem 7.2].
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Using Lemma 4.5, we �rst cancel the quotient complex of Ctot.D/ spanned

by all the canceling pairs for .¹c1; c2; c3º; ¿; ¹c2º; c2; a/. We then cancel all the

canceling pairs for .¹c1; c2; c3º; ¹c2º; ¹c2; c3º; c3; a/; this is neither a subcomplex

nor a quotient complex, so this cancellation produces new zigzag di�erentials, as

in equation (4.1). The new di�erentials go from the Khovanov generators living

over ¹c3º [ w1 to Khovanov generators living over ¹c1; c2º [ w2 as w1; w2 vary

over subsets of C.D/n¹c1; c2; c3º. This is shown by the dotted arrow in Figure 4.3.

Let us analyze the new di�erentials in more detail. First set up some more no-

tation. Let C C
2 , C3, C12, and C23 denote the subquotient complexes of Ctot.D/

spanned by Khovanov generators living over ¹c2º [ w with a not appearing

in the monomial, ¹c3º [ w, ¹c1; c2º [ w, ¹c2; c3º [ w, respectively, for arbi-

trary w � C.D/ n ¹c1; c2; c3º. There is a natural identi�cation C12 Š C23

since the resolutions D¹c1;c2º[w and D¹c2;c3º[w are identical outside a neigh-

borhood of a, and are canonically isotopic to each other inside the neighbor-

hood. The new di�erential is from C3 to C12, and we claim that it is identical

(under the above identi�cation) to the part of the old di�erential ıtot that went

from C3 to C23. To see this, recall that both .¹c1; c2; c3º; ¹c2º; ¹c1; c2º; c1; a/,

and .¹c1; c2; c3º; ¹c2º; ¹c2; c3º; c3; a/ are cancellation data for D. Therefore, us-

ing Lemma 4.5, only d1 contributes the part of the di�erential ıtot that goes from

C C
2 to C12 or from C C

2 to C23; and in either case, it produces a bijection between

the Khovanov generators in C C
2 with the Khovanov generators in C12 or C23; the

induced bijection between the Khovanov generators in C12 and C23 is easily seen

to be the above identi�cation. The new zigzag di�erential from C3 to C12 is ob-

tained by composing the part of the old di�erential ıtot from C3 to C23, and then

mapping C23 to C12 by the above bijection. This shows that the new di�erential

is identical to the part of the old di�erential ıtot that went from C3 to C23.

We can perform similar cancellations for the diagram D0. To wit, if c0
1; c0

2; c0
3

are the crossings of D0 where the Reidemeister-III move takes place, numbered

top to bottom (as per Figure 4.1c), then doing the 0-resolutions at c0
1 and c0

3

and the 1-resolution at c0
2 produces a complete circle, say a0, contained in the

neighborhood where the Reidemeister-III move takes place. Then we cancel

all Khovanov generators for the cancellation data .¹c0
1; c0

2; c0
3º; ¿; ¹c0

2º; c0
2; a0/ and

.¹c0
1; c0

2; c0
3º; ¹c0

2º; ¹c0
2; c0

3º; c0
3; a0/. Since we had decorated the diagrams D and D0

coherently, it is straightforward to see that after performing these cancellations,

we end up in an isomorphic picture. (The post-cancellation complexes for D and

D0 are identical outside the region where the Reidemeister-III move occurs, and

inside the region, the corresponding resolutions are canonically isotopic to one

another.)
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This establishes (after noting that the basepoint p is not in the circle a)

that .C�
tot.D; p/¹1º; Ctot.D/; �.D; p// and .C�

tot.D
0; p/¹1º; Ctot.D

0/; �.D0; p// are

isomorphic in Kp.F2ŒH; W �/. �

Lemma 4.9. If .D; p/ and .D0; p0/ are two decorated pointed link diagrams
representing isotopic pointed links, then they can be connected by some sequence
of positive Reidemeister-I moves, Reidemeister-II moves, and Reidemeister-III
moves, as described in the statements of Propositions 4.6–4.8 and Figure 4.1, their
inverses, and isotopy in S2.

Proof. This is essentially Reidemeister’s theorem which states that any two link

diagrams for the same link can be connected by isotopy in R
2 and the three

Reidemeister moves (and in particular, we only need one variant for each of the

Reidemeister I and III moves).

In presence of a single basepoint, we need two additional moves as shown

in Figure 4.4, corresponding to moving the basepoint past a strand. However,

as observed in [8, Section 3], these moves may be achieved via the usual three

Reidemeister moves away from the basepoint and isotopy in S2.

Figure 4.4. Additional moves for the basepoint.

Finally, with regard to decorations, we need an additional move which changes

the decoration at a single crossing. This move may be achieved by two Reide-

meister II moves, as shown in Figure 4.5. �

Proof of Proposition 4.2. This is an immediate consequence of Lemma 4.9 and

Propositions 4.6–4.8. The only thing to note is that the contribution functions

d and h satisfy the naturality rule, i.e., they are preserved under isotopy in S2;

consequently, the chain complex Ctot de�ned using d and h also remains invariant

under isotopy in S2. �
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oo // oo //

Figure 4.5. Changing the decoration at a single crossing.

5. Properties

From this section onwards, we will restrict to the unpointed case, and only study

the unreduced version Ctot. In Propositions 4.6–4.8, we associated isomorphisms

in K.F2ŒH; W �/ corresponding to knot isotopy. We will now construct morphisms

in K.F2ŒH; W �/ for three additional local moves.

De�nition 5.1. Fix a decorated link diagram D, and let D0 be the decorated link

diagram obtained from D by adding a small unknotted circle a disjoint from the D.

(The transformation D ! D0 is usually called a ‘birth’, and it corresponds to a link

cobordism in R
3�Œ0; 1� with a single index-zero critical point. The transformation

D0 ! D is usually called a ‘death’, and it corresponds to a link cobordism in

R
3 � Œ0; 1� with a single index-two critical point.) We have a decomposition

Ctot.D
0/ Š Ctot.D

0/0 ˚ Ctot.D
0/1;

where Ctot.D
0/0 is the direct summand of Ctot.D

0/ where the circle a does not

appear in the monomials for the Khovanov generators, while Ctot.D
0/1 is the direct

summand of Ctot.D
0/ where the circle a does appear in the monomials. Each

of Ctot.D
0/0 and Ctot.D

0/1 is identi�ed with Ctot.D/, after shifting the quantum

gradings correctly.

To a birth, we associate a morphism from Ctot.D/ to Ctot.D
0/¹1º in the category

K.F2ŒH; W �/ as the composition

Ctot.D/ Š Ctot.D
0/0¹1º ,�! Ctot.D

0/0¹1º ˚ Ctot.D
0/1¹1º Š Ctot.D

0/¹1º;

where the inclusion is an inclusion as a direct summand.
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To a death, we associate a morphism from Ctot.D
0/ to Ctot.D/¹1º in the category

K.F2ŒH; W �/ as the composition

Ctot.D
0/ Š Ctot.D

0/0 ˚ Ctot.D
0/1 �� Ctot.D

0/1 Š Ctot.D/¹1º;

where the surjection is a projection to a direct summand.

De�nition 5.2. Assume two decorated link diagrams D0 and D1 are related as

shown in Figure 5.1. That is, assume that there is a decorated link diagram D with

a distinguished crossing c, so that resolving c by the i-resolution produces Di ,

for i D 0; 1; and further assume the link diagrams D0 and D1 can be, and are,

oriented coherently. (The transformation D0 ! D1 is usually called a ‘saddle’,

and it corresponds to a link cobordism in R
3 � Œ0; 1� with a single index-one

critical point.) After an overall shift of the bigradings (which may depend on

the diagrams), there is an identi�cation

Ctot.D/ Š Cone.f W Ctot.D0/ �! Ctot.D1/¹�1º/:

where f is the part of the di�erential ıtot for Ctot.D/ that goes from the 0-resolution

at c to the 1-resolution at c. To the saddle move D0 ! D1, we associate the

morphism f from Ctot.D0/ to Ctot.D1/¹�1º in K.F2ŒH; W �/.

//

Figure 5.1. The saddle cobordism from D0 to D1. Note that the link diagrams are oriented

coherently.

To a link cobordism in R
3 � Œ0; 1�, one can associate maps on Khovanov

chain complex [6, 5, 9, 4] and on the Bar-Natan chain complex [2, 4]. These

maps are de�ned by composing maps associated to elementary moves, namely

the three Reidemeister moves, birth, death, and saddle. We may also use our maps

from Propositions 4.6–4.8 and De�nitions 5.1–5.2 to de�ne map associated to link

cobordisms presented as a sequence of elementary moves. We will not prove that

this map is well-de�ned in K.F2ŒH; W �/, that is, it only depends on the isotopy

class of the link cobordism, and not on a choice of presentation as a sequence of

elementary moves. Nevertheless, when we specialize W D 0, we get the existing

link cobordism map on the Bar-Natan theory.
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Proposition 5.3. For any link cobordism in R
3 � Œ0; 1� viewed as a sequence

of elementary moves, the maps on Ctot de�ned in Propositions 4.6–4.8 and
De�nitions 5.1–5.2 induce the standard link cobordism maps in the Bar-Natan
theory CBN .

Proof. This is immediate from the de�nitions (which we have not given here) of

the Bar-Natan link cobordism maps, which are specializations [2, Section 9.3] of

maps de�ned in a more general setting [2, Sections 4.3 and 8.1]. �

Next, we will use these link cobordism maps to prove some structure theorems

for the total homology. Before proceeding, let us collect a few facts about the

Bar-Natan theory.

(BN-1) For an l-component link L, the homology of the localized Bar-Natan

complex ¹H º�1CBN is 2l copies of F2ŒH; H �1�, while the homology of

the �ltered Bar-Natan complex CfBN D Ctot=¹H D 1; W D 0º has rank

2l [14, 27]; in either case, the generators correspond to the orientations

of L, and the grh-preserving reduction ¹H º�1CBN ! CfBN preserves this

correspondence. (Since CfBN ˝ F2ŒZ� can be identi�ed with ¹H º�1CBN ,

as in the proof of Proposition 5.4, the two statements are equivalent.)

In more detail, consider some orientation o on the link L, presented as a

link diagram D in the plane R2. Fix a checkerboard coloring of the com-

plement of D in R
2; for concreteness, one usually decrees the unbounded

region to be colored white. Consider the oriented resolution of D accord-

ing to the orientation o, and let ¹x1; : : : ; xkº be the complete circles of the

resolution. Then each of the individual circles ¹xiº are also oriented ac-

cording to o. Consider the one-variable polynomial (over F2ŒH �) in xi ,

which is xi or H C xi , depending on whether xi is oriented as the bound-

ary of a black region or a white region, respectively; then consider the

product of all these k one-variable polynomials. This k-variable polyno-

mial may be viewed as a linear combination over F2ŒH � of square-free

monomials in the circles ¹xiº, and thereby viewed as a linear combination

of the Khovanov generators over this oriented resolution, see also (X-3)

from Section 2. This linear combination represents the generator corre-

sponding to o in ¹H º�1CBN . Let gBN.o/ be the corresponding generator

in H�.CfBN/.

In particular, note that the homological grading of gBN.o/ is given by

the linking number

grh.gBN.o// D 2 lk.L0; L n L0/
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where L0 � L is the sublink where the orientation o agrees with the

starting orientation of L (the one that was used to de�ne the homological

grading grh in the �rst place, cf. (X-4) from Section 2), with the following

understanding: the linking number is computing after orienting both L0

and L n L0 according to the starting orientation of L; and the linking

number with the empty link is zero.

(BN-2) For any oriented link cobordism from L1 to L2 in R
3 � Œ0; 1� without any

closed components, and for any orientation o on L1, the Bar-Natan link

cobordism map on CfBN acts as follows on the generator gBN.o/,

gBN.o/ 7�!
X

o0 orientation on L2

o and o0 extend to an orientation on the cobordism

gBN.o0/;

see [23], see also [15].

(BN-3) For a knot K, the Rasmussen s-invariant of the knot (overF2) is de�ned as

s.K/ D max¹n j FnCBN.K/ contains a representative for gBN.o/º C 1

D max¹n j FnCBN.K/ contains a representative for gBN.�o/º C 1

D max¹n j FnCBN.K/ contains a representative

for gBN.o/ C gBN.�o/º � 1;

where o is any orientation on K and FnCBN.K/ is the subcomplex of

CBN.K/ supported in quantum grading n or more. This was originally

de�ned over any �eld of characteristic di�erent from 2 in [23], and

extended to F2 in [15].

Proposition 5.4. Fix any l-component link L. The following hold.

(R-1) The homology of CfHtot D Ctot=¹H D 1º is isomorphic to 2l copies of
F2ŒW �.

(R-2) The homology of ¹H º�1Ctot is isomorphic to 2l copies of F2ŒH; H �1; W �

(R-3) The homology of Cftot D .C; d C h/ has rank 2l .

In each case, the 2l generators are in a canonical correspondencewith the orienta-
tions of L (as was the case for ¹H º�1CBN and CfBN , cf. (BN-1)), and the reductions

¹H º�1Ctot //

��

CfHtot //

��

Cftot

¹H º�1CBN // CfBN

preserve this correspondence, and the left four reductions (the ones forming the
square) also preserve the homological grading.
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Towards this end, we will need to understand the spectral sequence

H�.CfHtot=¹W D 0º/ ˝ F2ŒW � �!
�! H�.CfHtot/:

The chain complex CfHtot is singly graded by grh, and carries a �ltration by powers

of W . Its associated graded object is isomorphic to

CfHtot=¹W D 0º ˝ F2ŒW � D CfBN ˝ F2ŒW �;

whose homology is 2l copies of F2ŒW �, via (BN-1). The �ltrations induce a

spectral sequence over F2ŒW � (see for example [17, Theorem 2.6]) starting at

the homology of the associated graded object, and converging to the homology

of CfHtot. Since the complex CfHtot is �nitely generated over F2ŒW �, the spectral

sequence is forced to collapse after �nitely many pages. We will in fact show that

the spectral sequence collapses immediately.

Lemma 5.5. The above spectral sequence H�.CfBN/ ˝ F2ŒW � � H�.CfHtot/ has
no higher di�erentials.

Proof. We �rst prove this when the link L is a disjoint union of some copies of

the Hopf link and some copies of the unknot. Since adding a disjoint unknot

component has the e�ect of tensoring everything with a two-dimensional vector

space, we might assume L is merely a disjoint union of Hopf link components,

and let M1; : : : ; Mk be the components (so that L has l D 2k link components).

Fix a link diagram for L with 2k crossings. Let ci1 and ci2 be the two crossings in

the diagram for Mi , and �x a decoration on the link diagram so that the surgery

arcs ˛ci1
and ˛ci2

are oriented in parallel.

We will �rst analyze the complex CfHtot.Mi /. For any subset u � ¹ci1; ci2º,

let Nu 2 ¹0; 1º2 be the corresponding vertex (that is, cij 2 u () Nuj D 1). Let

¹x Nu
j º be the circles appearing in the complete resolution of Mi corresponding to u;

therefore, the chain group over u will be generated by the square-free monomials in

x Nu
j ; for clarity, we will denote the monomial 1 as 1 Nu. Then the complex CfHtot.Mi /

is the following:

110

%%❑
❑

❑
❑

❑
❑

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽

x10
1

��✽
✽✽
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✽✽
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✽✽

✽✽
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��✽
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✽✽
✽✽

✽✽ W // 111

x00
1

99ssssssssssss

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽ x11
1 .111 C x11

2 /

x00
2
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  ❅
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Here, we have performed a change of basis on the generators coming from

the resolution at ¹ci1; ci2º. The dotted arrows come from the di�erentials h1.

The short solid arrows come from the di�erentials d1, while the long solid ar-

row (from 100 to 111) comes from the di�erential d2; it picks up a power of W ,

which we have indicated.

We observe that after this change of basis, the complex CfHtot.Mi / breaks

up into two direct summands: the summand Si generated by 100, 110, 101, 111,

x11
1 .111 C x11

2 /, and x11
2 .111 C x11

1 /; and the summand Ti generated by x00
1 , x00

2 ,

x00
1 x00

2 , x10
1 , x01

1 , and x11
1 x11

2 . Furthermore, Si contains two of the four homology

generators of the �ltered Bar-Natan complex CfBN , namely, x11
1 .111 C x11

2 / and

x11
2 .111 Cx11

1 /, and they live in the same homological grading; and Ti contains the

other two homology generators of CfBN , namely, x00
1 C x00

1 x00
2 and x00

2 C x00
1 x00

2 ,

and they too live in the same homological grading.

Now look at the complex for L D
`

i Mi . The chain complex CfHtot.L/

is not directly related to the tensor product of the chain complexes CfHtot.Mi /.

The chain group is indeed the tensor product of the individual chain groups, and

the di�erential coming from d behaves like a tensor product, but the di�erential

coming from h is gotten by applying it to any non-empty subset of the individual

chain groups (as opposed to just one, which would have been the case for the

tensor product). Since the only non-zero terms in the di�erential for CfHtot.Mi /

come from d1, d2 and h1, we can write the di�erential for CfHtot.L/ succinctly

as follows. For any generators 
i 2 C.Mi /, the di�erential on 
1 ˝ � � � ˝ 
k in

CfHtot.L/ is the sum

X

i


1 ˝ � � � ˝ .d1 C W d2/.
i / ˝ � � � ˝ 
k

C
X

¿¤A�¹1;:::;kº

W jAj�1
�

O

i2A

h1.
i /
�

˝
�

O

i…A


i

�

D
X

i


1 ˝ � � � ˝ .d1 C W d2/.
i / ˝ � � � ˝ 
k

C
.Id CW h1/.
1/ ˝ � � � ˝ .Id CW h1/.
k/ � 
1 ˝ � � � ˝ 
k

W
:

Therefore, despite not being the tensor product, we still get 2k direct summands

for CfHtot.L/ coming from the direct summands Si and Ti for CfHtot.Mi /, for

i D 1; : : : ; k. That is, the chain complex CfHtot.L/ can be viewed as 2k di�erent

�ltered chain complexes, not interacting with one another, each with an associated

spectral sequence. Furthermore, each summand contains 2k homology generators

of the �ltered Bar-Natan complex CfBN , all living in the same homological grading.
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We have so far not delved into the details of the the spectral sequence associated

to a �ltered chain complex. Peeking into [17, the proof of Theorem 2.6], we see

that the higher di�erentials correspond to zigzags of the same form as described

in equation (4.1). Therefore, the spectral sequence associated to a direct sum of

�ltered chain complexes is the direct sum of the individual spectral sequences.

Consequently, in the situation at hand, the entire spectral sequence decomposes

into 2k summands. On the other hand, it is easy to see from grading considerations

that the higher di�erentials are zero for each of the summands. To wit, the

homology of the �rst page of each summand has 2k generators (over F2ŒW �)

living in the same homological grading. Since the higher di�erentials increase

homological grading grh by one, and grh.W / D �1, we see that there are no

higher di�erentials.

// //

Figure 5.2. Performing a crossing change by a saddle (which splits a component into two)

at the cost of introducing a meridional circle on one of the strands.

This completes the proof that the spectral sequence

H�.CfBN.L// ˝ F2ŒW � �!
�! H�.CfHtot.L//

has no higher di�erentials when L is a disjoint union of some copies of the Hopf

link and some copies of the unknot. To see how this implies the general statement,

we will construct an oriented link cobordism S in R
3 � Œ0; 1� from our starting link

L to some other link L0 which is a disjoint union of some copies of the Hopf link

and some copies of the unknot, satisfying the following properties.

(1) The map

�0.L/ �! �0.S/

(induced from the inclusion L Š S \ .R3 � ¹0º/ ,! S ) is a bijection.

(2) The map

�0.L0/ �! �0.S/

(induced from the inclusion L0 Š S \ .R3 � ¹1º/ ,! S ) is a surjection.



A perturbation of the geometric spectral sequence 615

One way to construct such a cobordism is illustrated in Figure 5.2. We may

perform a crossing change by a single saddle which adds a meridional circle to one

of the strands, and the saddle splits a link component into two. After suitable such

crossing changes, we can produce an unlink, with each component having some

number meridional circles attached to them. After performing a few more splits

using saddles, we can convert this picture into a disjoint union of Hopf links and

an unlink. During this cobordism, the only elementary moves that we used were

link isotopy and saddles that were splits; therefore, this link cobordism satis�es

the above two properties.

Using the maps from Propositions 4.6–4.8 and De�nitions 5.1–5.2, we get a

map CfHtot.L/ ! CfHtot.L
0/ in K.F2ŒW �/. Being a map over F2ŒW �, the �ltrations

given by the powers of W are preserved. Therefore, we get a map between the two

spectral sequences, see for example, [17, Theorem 3.5].

Proposition 5.3 implies the map on the �rst page is the standard map on the

�ltered Bar-Natan theory (tensored with F2ŒW �). Since our link cobordism S

satis�es the above conditions, for any orientation o on L, there exists a unique

orientation o0 on L0 so that o and o0 can be extended to an orientation on S .

Therefore, (BN-2) implies that the map on H�.CfBN/ is injective.

Summarizing, we get a map from the spectral sequence for L to the spectral

sequences for L0. It is injective on the homology of the �rst page; and the spectral

sequence for L0 has no higher di�erentials. Therefore, the spectral sequence for

L has no higher di�erentials either. (The last step is merely the observation that

if f is an injective chain map from a chain complex .C1; d1/ to a chain complex

.C2; d2 D 0/, then d1 D 0.) �

Proof of Proposition 5.4. First note that the statements (R-1) and (R-2) are equiv-

alent, since we have an F2ŒH; H �1; W �-module grh-graded isomorphism

CfHtot ˝ F2ŒZ� D .Ctot=¹H D 1º/ ˝ F2ŒZ� �! ¹H º�1Ctot

induced by the map

ŒW a.u; x/; b� 7�! H b�aC.grq..u;x//�l/=2W a.u; x/:

Here the F2ŒH; H �1; W �-module structure on CfHtot ˝ F2ŒZ� is given by

H aW bŒW c.u; x/; d � D ŒW bCc.u; x/; a C b C d�:

The map, by de�nition, is F2ŒH; H �1; W �-equivariant; since grh.H/ D 0,

the map preserves the grh-grading; and it has an obvious inverse map induced

by

H aW b.u; x/ 7�! ŒW b.u; x/; a C b C .l � grq..u; x///=2�:
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To see that these maps are chain maps, observe that if H cW d .v; y/ appears in

ıtot..u; x//, then grq..v; y// D grq..u; x// C 2c C 2d , and therefore, we have a

commuting diagram

H aW b.u; x/ oo //

ıtot

��

ŒW b.u; x/; a C b C .l � grq..u; x///=2�

ıtot=¹HD1º˝Id

��
H aCcW bCd .v; y/ oo // ŒW bCd .v; y/; a C b C .l � grq..u; x///=2�;

where the horizontal arrows are the maps de�ned above, and the vertical arrows

are parts of the di�erentials ıtot and ıtot=¹H D 1º ˝ Id.

The statement (R-3) follows from (R-1) by the following well-known trick

in homological algebra (and can also be seen as an application of the universal

coe�cient theorem). The complex Cftot can be viewed as the mapping cone

Cftot D CfHtot=¹W D 1º ' Cone.W � 1W CfHtot ! CfHtot/:

The homology of the mapping cone is the homology of the mapping cone of the

homology. That is, we have an exact triangle

H�.CfHtot/
.W �1/� // H�.CfHtot/

xxqqq
qq
qq
qq
q

H�.Cftot/;

ff▼▼▼▼▼▼▼▼▼▼

which implies

H�.Cftot/ Š H�.Cone..W � 1/�W H�.CfHtot/ ! H�.CfHtot///

D H�

�

Cone.W � 1W

2l
M

F2ŒW � !

2l
M

F2ŒW �/
�

D

2l
M

F2:

Therefore, we only need to prove the statement for (R-1). This follows im-

mediately from Lemma 5.5. The E2 D E1-page of the spectral sequence

H�.CfBN/ ˝ F2ŒW � � H�.CfHtot/ is isomorphic to 2l copies of F2ŒW �, with the

copies in a canonical correspondence with the orientations of L. The E1-page

being a free module over F2ŒW �, we do not encounter any extension problems,

and can conclude that it is isomorphic to the homology of CfHtot, which therefore

is 2l copies of F2ŒW � as well. �
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6. Concordance invariants

In this section, we will construct concordance invariants in the same spirit as [23],

as described in (BN-3) in Section 5. We concentrate only on knots K, although

most of the constructions generalize for links. We also only work with the �ltered

version Cftot.K/; using the more general version would allow us to construct to

similar other invariants, although computing them might be more challenging.

De�nition 6.1. An upright set is a subsetU ofZ�.2ZC1/ satisfying the following

condition: If .a; b/ is in U and a0 � a and b0 � b, then .a0; b0/ is also in U .

For any even integer n, the translate U Œn� is another upright set de�ned as

.a; b/ 2 U Œn� () .a; b � n/ 2 U :

A centered upright set is an upright set that contains .0; 1/, but not .0; �1/.

Example 6.1. The intersection of the all the centered upright sets is the following

centered upright set

Umin
..D ¹.a; b/ j a � 0 and b > 0º;

and the union of the all centered upright sets is the following centered upright set

Umax
..D ¹.a; b/ j a > 0 or b > 0º:

De�nition 6.2. A sequence of upright sets U1;U2; : : : is said to have a limit if for

all points .a; b/, there exists N (depending on a; b) such that either

(1) .a; b/ 2 Ui for all i > N ; or

(2) .a; b/ … Ui for all i > N .

In that case, the limit upright set is de�ned as

lim
i!1

Ui D ¹.a; b/ j there exists N (depending on a; b)

such that for alli > N; .a; b/ 2 Uiº:

The following properties are immediate from the de�nition.

(1) If a sequence U1;U2; : : : has a limit, then any subsequence also has the same

limit.

(2) The limit of centered upright sets, if exists, is centered.

(3) For nested sequences U1 � U2 �; � � � , the limit is the union. For nested

sequences U1 � U2 �; � � � , the limit is the intersection.
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Example 6.2. For t 2 Œ0; 1�, de�ne U.t/ to be the following centered upright set,

U.t/ D ¹.a; b/ j at C b.1 � t / > 0 or Œat C b.1 � t / D 0 and b > 0�º:

For any increasing sequence t1 � t2 � � � � of points in Œ0; 1� converging to t ,

U.t/ D lim
i!1

U.ti /:

Example 6.3. Extending Example 6.2, for t 2 Œ0; 1�, s 2 Œ�1; 1�, consider any

function

r W ¹.a; b/ j at C b.1 � t / D s.1 � t /º ! ¹˙1º

satisfying:

(1) if a D 0, r.0; b/ D sgn.b/ (only relevant when t D 1 or s D ˙1);

(2) if b is �xed, r.a; b/ is a non-decreasing function of a (only relevant when

t D 0).

De�ne U.t;s;r/ to be the following centered upright set,

U.t;s;r/ D ¹.a; b/ j at C b.1 � t / > s.1 � t / or Œat C b.1 � t / D s.1 � t / and

r.a; b/ > 0�º;

see also Figure 6.1

Figure 6.1. The upright set U.t;s;r/ from Example 6.3. Let L be the line passing through

the point .0; s/ and making an angle � D 2 tan�1.t/ with the negative x-axis. The subset

U.t;s;r/ � Z � .2Z C 1/ consists of all the points above and to the right of L (marked

solid), none of the points below and to the left of L (marked hollow), and some of the

points on L (marked solid or hollow) determined by the function r . (If t D 0; 1 or

s D ˙1, there are some restrictions on the function r to ensure that U.t;s;r/ is indeed a

centered upright set.) We have depicted the case when t D 10=19; s D �5=9 and r satis�es

r.�5; 5/ D 1; r.4; �5/ D �1.
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De�nition 6.3. For any knot K, and any upright set U , let FUCftot.K/ denote

the subcomplex of Cftot.K/ D .C.K/; d C h/ generated by Khovanov generators

whose .grh; grq/-bigradings are in U .

De�nition 6.4. Fix a knot K and an orientation o on K. For any centered upright

set U , de�ne the following three numbers:

sUo .K/ D max¹n 2 2Z j FU Œn�Cftot.K/ contains a representative for g.o/ºC2;

sU�o.K/ D max¹n 2 2Z j FU Œn�Cftot.K/ contains a representative for g.�o/ºC2;

sUo;�o.K/ D max¹n 2 2Z j FU Œn�Cftot.K/ contains a representative

for g.o/ C g.�o/º;

where g.˙o/ are the two generators for H�.Cftot.K// corresponding to the orien-

tations ˙o, from Proposition 5.4 (R-3).

Example 6.4. Let us compute these new s-invariants for the three-crossing dia-

gram of the positive trefoil from Example 3.1. Continuing the same notation from

that example, and for some orientation o of the trefoil, the three non-zero elements

of the two-dimensional homology of Cftot D Ctot=¹H D W D 1º has the following

cycle representatives:

g.o/ D Œx000
1 C x000

1 x000
2 �;

g.�o/ D Œx000
2 C x000

1 x000
2 �;

g.o/ C g.�o/ D Œx000
1 C x000

2 �:

Since none of x000
1 , x000

2 , and x000
1 x000

2 are hit by the di�erential, any cycle

representative for these elements must contain these Khovanov generators. The

.grh; grq/-bigradings of x000
1 , x000

2 and x000
1 x000

2 are .0; 3/, .0; 3/, and .0; 1/,

respectively. Therefore, for any centered upright set U ,

FU Œn�Cftot contains a cycle representative of g.o/ or g.�o/

() .0; 1/ 2 U Œn�

() n � 0;

and

FU Œn�Cftot contains a cycle representative of g.o/ C g.�o/

() .0; 3/ 2 U Œn�

() n � 2:

(Here, the last step is justi�ed since the centered upright U � Z�.2ZC1/ contains

.0; 1/ but not .0; �1/.) Therefore, sUo D sU�o D sUo;�o D 2.
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It is perhaps not immediate why these numbers are knot invariants. We will

prove this in Proposition 6.6 (S-1). Along the way, we need the following lemma.

Lemma 6.5. Consider any connected oriented cobordism from a knot K1 to a
knot K2 in R

3 � Œ0; 1�. After viewing the cobordism as a sequence of Reidemeister
moves, births, deaths, and saddles, consider the map

f W H�.Cftot.K1// �! H�.Cftot.K2//

induced from the maps de�ned in Propositions 4.6–4.8 and De�nitions 5.1–5.2. If
˙o1 are the orientations on K1, and ˙o2 are the two corresponding orientations
on K2 (induced from the connected oriented cobordism), the map acts as follows
on the generators of H�.Cftot/:

g.o1/ 7�! g.o2/ g.�o1/ 7�! g.�o2/:

Proof. Consider the induced map Qf on the partially �ltered complex CfHtot D

Ctot=¹H D 1º. Let Qg.˙o1/ and Qg.˙o2/ be the generators of H�.CfHtot.K1//

and H�.CfHtot.K2// over F2ŒW � corresponding to the orientations ˙o1 and ˙o2,

respectively, cf. Proposition 5.4 (R-1). Assume

Qf . Qg.o1// D ˛W a Qg.o2/ C ˇW b Qg.�o2/;

Qf . Qg.�o1// D 
W c Qg.o2/ C ıW d Qg.�o2/

for some ˛; ˇ; 
; ı 2 F2, and some integers a; b; c; d � 0. Here, and elsewhere,

we may be viewing the equations at the level of homology, or at the chain level,

where Qg.˙oi / should read ‘a cycle representative for Qg.˙oi /’, and the equality

sign should read ‘equal relative boundary’. Since Qf preserves the grh-grading, and

all of the four elements Qg.˙oi / live in homological grading zero (Proposition 5.4),

we must have a D b D c D d D 0.

Therefore, the induced map fBN on the �ltered Bar-Natan complex CfBN D

Ctot=¹H D 1; W D 0º is

fBN.gBN.o1// D ˛gBN.o2/ C ˇgBN.�o2/;

fBN.gBN.�o1// D 
gBN.o2/ C ıgBN.�o2/

where gBN.˙oi / denotes the standard generators of H�.CfBN.Ki// from (BN-1).

However, since this induced map fBN is the standard Bar-Natan cobordism map

(from Proposition 5.3), (BN-2) implies that ˛ D ı D 1 and ˇ D 
 D 0. Therefore,

the map f on Cftot D Ctot=¹H D W D 1º is

g.o1/ 7�! g.o2/ g.�o1/ 7�! g.�o2/:

as desired. �
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Proposition 6.6. These new s-invariants for any knot K and any centered upright
set U , satisfy the following.

(S-1) Each of the three numbers sU� .K/ is a knot invariant, and each is zero for
the unknot.

(S-2) If U 0 is another centered upright set with U � U 0, then for each of the three
variants

sU� .K/ � sU
0

� .K/:

(S-3) For any sequence of centered upright sets U1;U2; : : : that have a limit, each
of the three variants satisfy

lim
i!1

s
Ui
� .K/ D s

limi Ui
� .K/:

(S-4) sUo;�o C 2 � sUo .K/ D sU�o.K/.

(S-5) For each variant, s
U.1/

� .K/ agrees with the Rasmussen s-invariant (where
U.1/ is described in Example 6.2).

(S-6) Each of the three numbers sU� .K/ is �nite.

Proof. For the proof of (S-1), note that the bigraded chain homotopy type of the

full theory Ctot.K/ is a knot invariant, see Proposition 4.2; therefore, the .grh; grq/-

bi�ltered chain homotopy type of Cftot.K/ is a knot invariant as well. Furthermore,

the maps inducing the homotopy equivalence preserve the generators correspond-

ing to ˙o, see Lemma 6.5; therefore, each of the three numbers is a knot invariant.

The computation for the unknot is immediate from the 0-crossing diagram of the

unknot.

For (S-2), observe that for all n,FU Œn�Cftot.K/ is a subcomplex ofFU 0Œn�Cftot.K/.

Consequently, if FU Œn�Cftot.K/ contains a cycle representative for some element in

H�.Cftot.K//, so does FU 0Œn�Cftot.K/.

For (S-3), �x some knot diagram for K. The Khovanov chain group C for this

knot diagram is supported on some �nite subset of Z � .2Z C 1/. Choose N

large enough so that for all i > N , Ui agrees with limi Ui on this �nite subset.

The claim then follows immediately.

For the equality in (S-4), we will produce an automorphism of Ctot.K/

(in K.F2ŒH; W �/) whose induced automorphism on H�.Cftot.K// interchanges

g.o/ and g.�o/. Fix some knot diagram D1 for K, and consider the rightmost

strand. We may move it over the point at 1 in S2 to obtain a diagram D2. This

isotopy in S2 induces an identi�cation between Ctot.D1/ and Ctot.D2/. We then

perform a sequence of Reidemeister moves in the plane R
2 to get back to D1
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from D2, producing a map Ctot.D2/ ! Ctot.D1/. The composition is the required

automorphism. See Figure 6.2 (the same trick was used in [8] to deal with the

basepoint). Since the isotopy moves over 1 2 S2 once, the checkerboard color-

ing in (BN-1) is reversed, and therefore, the induced automorphism of the �ltered

Bar-Natan complex CfBN D CfHtot=¹W D 0º interchanges the two generators. As

in the proof of Lemma 6.5, this shows that the automorphism on Cftot interchanges

the two generators as well.

K

@A BC

EDGF
isotopy in S2

))

Reidemeister moves in R
2

ii K

BC@A

GF ED

Figure 6.2. An automorphism of Ctot that reverses the orientation.

The inequality in (S-4) follows immediately from the observation that if

FU Œn�Cftot.K/ contains cycle representatives for g.o/ and g.�o/, then it contains a

cycle representative for g.o/ C g.�o/ as well.

The proof of (S-5) takes up most of the work. Let s denote the Rasmussen

invariant. Assume we are working with the variant s
U.1/
o (the argument for the

other variants are similar). To show s
U.1/
o � s, we need to show FU.1/Œs�2�Cftot

contains a cycle representative for g.o/; and to show s
U.1/

o � s, we need to show

FU.1/Œs�Cftot does not contain a representative for g.o/.

For convenience, let us �x a few more notations. Let f D d1 C h1 and

g D d C h � f . Both are endomorphisms on the total chain group C; neither

drops the quantum grading grq , f increases grh by one, while g increases it by

at least two. Furthermore, we have f 2 D Œf W g� D g2 D 0. Also, let C�i be the

subgroup of C that lives in homological grading at least i , and Ci be the subgroup

of C that lives in homological grading i .

Recall from (BN-1), the grh-graded chain complex CfBN D .C; f / has

homology of rank two, generated by gBN.o/ and gBN.�o/, both supported in

grh-grading zero. Using (BN-3), choose a cycle representative c0 for gBN.o/ living

in C0 \ FU.1/Œs�2�C. Therefore, we have f .c0/ D 0; let b0 D g.c0/ 2 C�2. Now

assume by induction that we have de�ned, for i D 0; : : : ; k � 1, chains bi 2 C�iC2

and ci 2 C�i , so that g.ci / D bi , and (for i ¤ 0) f .ci / D bi�1. We will extend
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the construction to i D k. Since

f .bk�1/ D fg.ck�1/ D gf .ck�1/ D

´

0 if k D 1,

g.bk�2/ D g2.ck�2/ D 0 if k > 1,

and bk�1 lives in homological grading at least k C 1, and the entire homology

of .C; f / is supported in grading zero, there is some chain ck 2 C�k with

f .ck/ D bk�1; de�ne bk D g.ck/. Then
P

i ci is a cycle for the chain complex

Cftot D .C; f C g/, and indeed, represents the generator g.o/. Moreover, by

construction, it is supported in FU.1/Œs�2�C, and this establishes s
U.1/
o � s.

For the other direction, assume if possible, g.o/ has a cycle representative in

FU.1/Œs�C. Let c0
i be the part of this cycle representative that lives in homological

grading i . Therefore,
P

i .ci C c0
i / is a boundary, say .f C g/.a/, for some chain

a; let ai be the part of a that lives in grh D i , and let k D min¹i j ai ¤ 0º. Since

.c0 C c0
0/ ¤ 0, we have k � �1. Indeed, we may assume k D �1. Otherwise,

if k < �1, then f .ak/ 2 CkC1 is zero, and since the homology of .C; f / is

supported in grading zero, there exists a chain e 2 Ck�1 with f .e/ D ak. Then

.a C .f C g/.e// 2 C�kC1 is another chain whose boundary is also
P

i .ci C c0
i /.

Therefore, we may assume, a 2 C��1. Then we must have f .a�1/ D c0 C c0
0.

This implies c0
0 is also a cycle representative for the generator gBN.o/ in H�.CfBN/.

Since c0
0 is supported in quantum grading grq � s C 1, this is a contradiction,

thereby establishing s
U.1/
o � s.

The statement of (S-6) is an immediate corollary of (S-5). Let us assume that

we are working with the variant sUo .K/ (the argument for the other variants are

similar). Since

sUmin
o .K/ � sUo .K/ � sUmax

o .K/;

from (S-2) (where Umin and Umax are de�ned in Example 6.1), it is enough to

show that s
Umin
o .K/ > �1 and s

Umax
o .K/ < 1. Let s D s

U.1/

o .K/ be Rasmussen’s

s-invariant. Then from de�nitions, FU.1/Œs�2�Cftot.K/ contains a representative for

g.o/, but FU.1/Œs�Cftot.K/ does not.

Now �x some knot diagram for K. Let S be the �nite subset ofZ�.2ZC1/ that

supports the bigrading of the Khovanov chain complex C for this knot diagram.

There exists n su�ciently small so that

U.1/Œs � 2� \ S � UminŒn�;

and therefore, FUminŒn�Cftot.K/ contains a cycle representative for g.o/ as well.

Similarly, there exists m su�ciently large so that

UmaxŒm� \ S � U.1/Œs�;

and therefore, FUmaxŒm�Cftot.K/ cannot contain a cycle representative for g.o/. �
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We conclude by observing that each of these new s-invariants produce a lower

bound for the four-ball genus.

Proposition 6.7. For any connected oriented genus-g knot cobordism between
any knots K1 and K2 in R

3 � Œ0; 1�, and any centered upright set U ,

g �
1

2
jsU� .K1/ � sU� .K2/j:

Therefore, the four-ball genus of any knot K is bounded below

g4.K/ �
1

2
jsU� .K/j:

(Here sU� denotes any one of the three versions de�ned in De�nition 6.4.)

Proof. Present the cobordism as a sequence of elementary moves, and consider

the link-cobordism map f W Ctot.K1/ ! Ctot.K2/¹�2gº in K.F2ŒH; W �/ as de�ned

in Propositions 4.6–4.8 and De�nitions 5.1–5.2. (This map might depend on how

the cobordism is presented, but that turns out to be irrelevant.) We will analyze

the map Nf induced on Cftot D Ctot=¹H D W D 1º.

Let .u; x/ and .v; y/ be Khovanov generators so that .v; y/appears in Nf ..u; x//.

Then .v; y/ must appear in f ..u; x// with some non-zero coe�cient, say H aW b,

for some a; b � 0. Therefore,

grh..v; y// D b C grh..H aW b.v; y//

D b C grh..u; x//

� grh..u; x//

and

grq..v; y// D 2.a C b/ C grq..H aW b.v; y//

D 2.a C b/ C grq..u; x// � 2g

� grq..u; x// � 2g:

In other words, if .u; x/ is contained in any upright set U 0, then .v; y/ is contained

in the translate U 0Œ�2g�.

From Lemma 6.5, we know that

Nf .g.o1// D g.o2/ Nf .g.�o1// D g.�o2/;

where ˙o1 and ˙o2 are the orientations on K1 and K2, induced from the two

orientations of the cobordism.
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Summarizing what we have said so far, for every n 2 Z, we have a commuting

diagram

FU Œn�Cftot.K1/
� _

��

Nf j // FU Œn�2g�Cftot.K2/
� _

��
Cftot.K1/

Nf

g.o1/7�!g.o2/; g.�o1/7�!g.�o2/
// Cftot.K2/:

Therefore, if FU Œn�Cftot.K1/ contains a cycle representative for g.o1/ (respectively,

g.o1/ C g.�o1/), then FU Œn�2g�Cftot.K2/ contains a cycle representative for g.o2/

(respectively, g.o2/ C g.�o2/). Therefore, we get the inequality sU� .K2/ �

sU� .K1/ � 2g.

Viewing the cobordism in reverse, we get sU� .K1/ � sU� .K2/ � 2g, and com-

bining the two inequalities, we reach our desired goal. �

One can easily construct model chain complexes where these new s-invariants

are di�erent from Rasmussen’s s-invariant. The following are perhaps the simplest

of such models (the two models are duals of one another). Assume that .C; d Ch/

contains a direct summand in one of the following two forms, and assume b is a

representative for the Bar-Natan generator gBN.o/. Therefore, b lies in bigrading

.0; s � 1/, where s is the Rasmussen invariant.

In the �rst case, we get that g.o/ has a unique cycle representative b C c C e, and

therefore, for any centered upright set U ,

sUo D

´

s if .1; �1/ 2 U ,

s � 2 otherwise.

In the second case, g.o/ has three cycle representatives, b, c, or e; and therefore,

for any centered upright set U ,

sUo D

´

s C 2 if .�1; 3/ 2 U ,

s otherwise.
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Note that in both cases, the E3-page of the Bar-Natan spectral sequence, induced

from the �ltered Bar-Natan complex CfBN D .C; d1 C h1/, contains one of the

following two con�gurations (the higher di�erential is a zigzag di�erential from

equation (4.1)):

or

However, the Bar-Natan spectral sequence usually collapses very quickly.

Indeed, for all knots up to 16 crossings, except the connect sum of the torus knot

T .3; 4/ with its mirror, the E3-page of the Bar-Natan spectral sequence does not

contain any of the above two con�gurations. Therefore, it remains a challenging

exercise to �nd knots where these new s-invariants are di�erent from the existing

one.
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