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Abstract. Modular categories are a well-known source of quantum 3-manifold invariants.

In this paper we study structures on modular categories which allow to de�ne re�nements

of quantum 3-manifold invariants involving cohomology classes or generalized spin and

complex spin structures. A crucial role in our construction is played by objects which

are invertible under tensor product. All known examples of cohomological or spin type

re�nements of the Witten–Reshetikhin–Turaev 3-manifold invariants are special cases of

our construction. In addition, we establish a splitting formula for the re�ned invariants,

generalizing the well-known product decomposition of quantum invariants into projective

ones and those determined by the linking matrix.
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1. Introduction

In the late 80’s, inspired by Witten’s ideas [22], Reshetikhin and Turaev [18] came

up with a construction of new 3-manifold invariants, known as WRT quantum

invariants. Few years later, Turaev [20] formalized this construction by introduc-

ing the notion of modular category. His main result is that any modular category

gives rise to a 3-dimensional Topological Quantum Field Theory (TQFT), and in

particular, to quantum 3-manifold invariants.

A modular category over a �eld k is a special kind of k-linear ribbon category

which has a �nite set of simple objects �, including the unit object 1 2 �,

satisfying domination and non-degeneracy axioms. If we replace the category

by its additive closure, which we will always do here, then the domination axiom

is equivalent to semisimplicity, with � representing all isomorphism classes of

simple objects. A ribbon category is a monoidal category with braiding, twist

and compatible duality. Ribbon categories are universal receivers for invariants

of ribbon graphs [20]. Examples of modular categories arise from representation

theory of quantum groups, when the quantum parameter q is a root of unity, or can

be constructed skein theoretically [1, 3, 4, 10]. Many authors [2, 8, 19], observed

independently that for some special values of q, the sl2 WRT invariants admit

spin and cohomological re�nements. This was extended to sln quantum invariants

in [3] and [15]. Cohomological re�nements give rise to Homotopy Quantum Field

Theories (HQFT’s), constructed by Turaev in [21]. However, spin re�nements do

not �t in the framework of HQFT’s.

The main aim of this paper is to provide an algebraic setting for spin type re�ne-

ments of quantum 3-manifold invariants. Although we restrict to closed 3-man-

ifolds in this paper, we expect that all our results generalize to an appropriately

chosen 3-cobordism category, and hence admit a TQFT version.

Before explaining our results let us recall few de�nitions.

Given a group G, a G-category was de�ned in [21, Section VI]. We slightly

modify the de�nition to �t with the case where the category has direct sums.

A G-category C is a monoidal k-linear category equipped with a family of full

subcategories ¹C˛º˛2G such that

� each object of C is isomorphic to a direct sum over ˛ 2 G of objects in C˛;

� HomC.U; V / D 0 if U 2 Ob.C˛/, V 2 Ob.Cˇ /, ˛ ¤ ˇ;

� for U 2 Ob.C˛/ and V 2 Ob.Cˇ /, U ˝ V 2 Ob.C˛ˇ /.
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Then the trivial object is in C1, and if U 2 Ob.C˛/ has a (left or right) dual U �,

then U � 2 Ob.C˛�1/.

Given a modular category with representative set of simple objects �, we call

an object t 2 � invertible if there exists an object �, such that t ˝ � Š 1. Let us

denote byG D GC the subset of invertible objects in the distinguished set�. Using

tensor product and isomorphisms, we get on G the structure of a �nite abelian

group. In Section 5.2 we show that the braiding (or monodromy) coe�cients of

� 2 � with t 2 G de�ne a map � to the group of characters Hom.G;C�/ D yG.

This map induces on C the structure of a yG-category.

Note the braiding matrix de�nes a bilinear form onG, and the twist coe�cients

extend it to a quadratic form. A special role in our approach will play a subgroup

H � G, such that the bilinear form restricted to H is trivial while the quadratic

extension is not. Clearly, in this case C also admits a structure of yH -category in-

duced by the characters Hom.H;C�/ D yH , which is coarser than the yG-structure

for proper H , i.e. the yH -subcategories are direct sums of the yG-subcategories.

Let us state our main de�nition.

De�nition. Let C be a modular category and H � G be a subgroup in the

group of invertible distinguished objects. The category C is called H -re�nable

if H � Ob.C1/ for the yH -structure on C. Moreover, an H -re�nable modular

category C is H -spin if the twist quadratic form restricted to H is non–trivial, or

equivalently if H has at least one element with twist coe�cient �1. When H is

cyclic of order d , we will use shorthand d -spin and d -re�nable.

For example, the sl2 modular category at the r th root of unity q is 2-re�nable

for r D 0 .mod 2/ and it is 2-spin if r D 0 .mod 4/. The group G D H D Z=2Z

is generated by the .r � 1/-dimensional representation.

We say that t 2 G has order n if n is the minimal integer such that tn Š 1.

We will see that the order of an element with twist �1 has to be even.

H -re�nable modular categories which are non spin give rise to invariants

of pairs .M; h/ for any compact orientable 3-manifold M and a cohomology

class h 2 H 1.M I yH/. They also �t in the setting of modular group-categories

introduced in [21]. In the spin case, the formalism of [21] does not apply since

the non degeneracy condition required in trivial degree is not satis�ed. Indeed the

trivial degree subcategory is neither modular, nor modularizable.
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Most results here could be applied to pre-modular categories for which the

evaluation of the unknot with framing ˙1 and Kirby color are invertible. However,

under a mild condition about positivity of the dimension of transparent objects

which is satis�ed in the examples, those pre-modular categories can be modu-

larized [5, 14]. For this reason, and also because certain invertible objects are

involved in the modularization, making a possible confusion with their role here,

we choose to deal with modular categories.

Let us concentrate on the spin case. If we have a H -spin modular category,

then the twist coe�cients de�ne an order 2 element v 2 yH , which we will call the

spin character. We will extend the de�nition of generalized spin structures with

modulo d coe�cients given in [2] to this situation and de�ne . yH; v/ generalized

spin structures. One of the results of this paper is the following.

Theorem 1. Any H -spin modular category C with associated spin character

v 2 Tor2. yH/ provides a topological invariant �C.M; �/ of a pair .M; �/, where �

is a . yH; v/ generalized spin structure on M . Moreover,

�C.M/ D
X

�

�C.M; �/:

We expect that Theorem 1 extends naturally to a spin type TQFT.

In Section 2 we de�ne d -complex spin structures. Let us denote the set of such

structures onM by Spinc
d .M/. Generalizing results of [6], we identify Spinc

d .M/

with the set of modulo d Chern vectors which are further used for constructing

extensions of WRT invariants.

Theorem 2. Suppose d is an even positive integer. For any 2d -spin modular

category C, there exists a topological invariant �C.M; �/ of a pair .M; �/, where

� 2 Spinc
d .M/ is a d -complex spin structure on M .

We call a modular category C reduced if it is GC-re�nable. This means that all

invertible objects have trivial characters.

Assume the group of invertible objects G of our modular category C is cyclic

of order d , generated by t . For 0 < ı � d , let the character of t (induced by

the braiding) be 
ı.t / D e
2�

p
�1ı

d . Then there is a positive integer m, such that

ım D d . Clearly, C is not reduced, but H -re�nable, where H is the subgroup of

order ı generated by tm 2 C1.
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Given these data, one way to construct re�ned invariants is by using the

ı-re�nable structure on C. In Section 7 we show that there is a more e�cient way

to compute this invariant. Namely, there always exists a smaller reduced category

zC, which leads to the same invariant up to a correction term fully determined by the

linking matrix. If gcd.m; ı/ D 1, zC is particularly simple and coincides with C1.

Theorem 3. Let C be a modular category in which the group G of invertible

objects is cyclic and generated by t . Assume d D jGj, the character of t is 
ı and

ım D d . Then, there exists a reduced ı-re�nable category zC, a positive integer ˛

and a root of unity � such that for any closed oriented 3-manifold M we have

�C.M; �/ D ˛�b1.M /�zC.M; �/�
MMO
� .M; �/

where �MMO
�

.M; �/ is the re�ned Murakami–Ohtsuki–Okada invariant. We have

either � 2 H 1.M;Zı/ or � 2 Spinı.M/, and b1.M/ is the �rst Betti number.

In the particular case, when gcd.ı; m/ D 1, we have ˛ D 1, � is a root of unity

of order m and �MMO
�

.M; �/ does not depend on � so that we have

�C.M/ D �zC.M/�MMO
� .M/:

The Murakami–Ohtsuki–Okada invariant de�ned in [16] depends only on the

homological information which can be obtained from the linking matrix of the

surgery link.

Theorem 3 generalizes the well-known decompositon results for quantum

invariants stated in [2] and [9]. We expect that these decomposition results extend

to re�ned TQFTs.

Organization of the paper. After recalling the basic de�nitions of Spinc-struc-

tures, we give homotopy theoretical and also combinatorial descriptions of their

reduction modulo d . Further we recall the de�nitions of ribbon and modular ca-

tegories and of quantum 3-manifold invariants. Section 5 deals with modular ca-

tegories containing invertible objects. The re�ned invariants are studied in Sec-

tions 6 and 7. The last section is devoted to the proof of Theorem 3.
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2. Complex spin structures mod d

In this section, given a compact orientable 3-manifold M , we de�ne the set

Spinc
d .M/.

Throughout this paper all manifolds are assumed to be compact and oriented;

all (co)homology groups are computed with integer coe�cients, unless otherwise

is speci�ed; Zx denotes the cyclic group of integers modulo x.

2.1. Spinc-structures. Complex spin structures are additional structures some

manifolds can be endowed with and just like the more common spin structures,

they can be seen as a generalization of orientations. We recall basic facts and

equivalent ways to de�ne Spinc-structures following the lines of [6] and [17].

Let n � 1 be an integer. The group Spin.n/ is de�ned as the non-trivial double

cover of the special orthogonal group SO.n/:

1 �! Z2 �! Spin.n/
�

�! SO.n/ �! 1:

Example. Spin.1/ Š Z2, Spin.2/ Š S1 and Spin.3/ Š SU.2/:

The complex spin group is de�ned as the quotient

Spinc.n/ WD
Spin.n/ � S1

Z2

where Z2 is generated by .�1;�1/ 2 Spin.n/ � S1. It follows that the map

�W Spinc.n/ ! SO.n/, de�ned as �.ŒA; z�/ D �.A/ is a principal S1-�bration.

Example. Spinc.3/ Š U.2/.

Let X be an n-dimensional Riemannian manifold and denote by PSO.n/ ! X

the principal bundle of oriented orthonormal frames of X .

De�nition ([17]). A Spinc-structure on the manifoldX is a principal Spinc.n/-bun-

dle PSpinc.n/

s
! X , together with a map � WPSpinc.n/ ! PSO.n/ that restricted to the
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�bers is �, i.e., makes the following diagram commute, i.e.,

PSpinc.n/ � Spinc.n/

.�;�/

��

// PSpinc.n/

�

��

s

!!❈
❈❈

❈❈
❈

X

PSO.n/ � SO.n/ // PSO.n/

==③③③③③③

Since �W Spinc.n/ ! SO.n/ is the S1-bundle of the unique non trivial line

bundle over SO.n/ (see [13]) and isomorphism classes of principal S1-bundles

over X are in one-to-one correspondence with elements of H 2.X IZ/, complex

spin structures can be de�ned as cohomology classes:

Alternative de�nition ([17]). A Spinc-structure on the manifold X is an element

� 2 H 2.PSO.n/IZ/ whose restriction to every �ber of PSO.n/ ! X is the unique

non trivial element of H 2.SO.n/IZ/ Š Z2, i.e.,

Spinc.X/ D ¹� 2 H 2.PSO.n/IZ/ j �j�ber ¤ 0 2 H 2.SO.n/IZ/º:

Let BSO.n/ denote the Grassman manifold of oriented n-planes in R
1 and let


SO.n/ be the universal n-dimensional oriented vector bundle over BSO.n/. Note

that for discrete topological groups G, the classifying space BG is Eilenberg–

MacLane of type .G; 1/. Let h be the unique (up to homotopy) non-homotopically

trivial map from BSO.n/ to the Eilenberg–MacLane space K.Z; 3/. We �x h in its

homotopy class and we de�ne the �bration BSpinc.n/
�
! BSO.n/ as the pull-back

under h of the path-space �bration over K.Z; 3/. If we set 
Spinc.n/ WD ��.
SO.n//,

then:

Alternative de�nition. A Spinc-structure on the manifold X is a homotopy class

of bundle maps between the (stable) tangent bundle TX of X and 
Spinc.n/.

2.1.1. The Chern map. Let us denote by ˛W Spinc.n/ ! S1 the homomorphism

˛.ŒA; z�/ D z2. Then, to any Spinc-structure � on an n-dimensional manifold X

(in the sense of De�nition 2.1), one can associate a complex line bundle as follows:

using the map ˛, the action of the group Spinc.n/ on the space PSpinc.n/ extends

to an action on the product PSpinc.n/ � C and we consider its orbit space

det.�/W D .PSpinc.n/ � C/=Spinc.n/;
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called the determinant line bundle of � . The Chern map

cW Spinc.X/ �! H 2.X/

is de�ned as c.�/ WD c1.det.�//; where c1 is the �rst Chern class of the bundle

det.�/, and it is a�ne over the doubling mapH 2.X/
�2
! H 2.X/: See [6] for more

details.

2.2. d-complex spin structures. In this subsection, for an even positive inte-

ger d , we de�ne, d -complex spin structures (short Spinc
d -structures) on n-dimen-

sional manifolds and we describe some of their properties. Then, we focus on

dimension three and we present a set of re�ned Kirby’s moves for Spinc
d -mani-

folds obtained by surgery along links in S3.

Let ˇWH 2.BSO.n/IZ2/ ! H 3.BSO.n/IZd / be the Bockstein homomor-

phism associated to the exact sequence of groups:

0 �! Zd

�2
�! Z2d �! Z2 �! 0:

The following lemma will help justify our construction of Spinc
d -structures.

Lemma. Let d be an even positive integer. For n � 3 the groupH 3.BSO.n/IZd /

is cyclic of order 2 generated by ˇ.w2/ ¤ 0 2 H 3.BSO.n/IZd /, where w2 is the

second Stiefel–Whitney class.

Since the elements of the groupH 3.BSO.n/IZd / are in one-to-one correspon-

dence with homotopy classes of maps in ŒBSO.n/I K.Zd ; 3/�, there is a unique

(up to homotopy) non-homotopically trivial map gW BSO.n/ ! K.Zd ; 3/.

We �x g in its homotopy class and de�ne the �bration �d W BSpinc
d .n/ ! BSO.n/

as the pull-back of the path space �bration of K.Zd ; 3/ under the map g:

BSpinc
d .n/

�d

��

// PK.Zd ; 3/

��
BSO.n/

g // K.Zd ; 3/

We set 
Spinc
d .n/ D ��

d
.
SO.n//. Note that another choice of the map g in its

homotopy class yields a di�erent, but homotopy equivalent, space BSpinc
d .n/.

Let X be an n-dimensional Riemannian manifold.
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De�nition. A d -complex spin structure onX is a homotopy class of a bundle map

between the (stable) tangent bundle TX of X and 
Spinc
d .n/.

Alternative de�nition. A d -complex spin structure on X is a homotopy class of

a lift Nf of f to BSpinc
d .n/, where f WX ! BSO.n/ is a classifying map for the

bundle TX.

BSpinc
d .n/

�d

��
X

f //

Nf
<<

BSO.n/

Since the �ber of �d is the Eilenberg–MacLane space K.Zd ; 2/, there is a

unique obstruction wX to the existence of lifts Nf and this obstruction lies in the

group H 3.X IZd /.

Note that the universal obstruction w 2 H 3.BSO.n/IZd / (obtained from

wX by setting X D BSO.n/ and f D idBSO.n/) is non-zero, therefore not all

manifolds can admit Spinc
d -structures. To see this, assume the contrary. Then,

the �bration �d W BSpinc
d .n/ ! BSO.n/ has a section s and the map k ı s lifts g

to the contractible space PK.Zd ; 3/. Therefore g must be null-homotopic which

contradicts the choice we made for g.

BSpinc.Zd /
k //

�d

��

// PK.Zd ; 3/

p

��
BSO.n/

s

II

g // K.Zd ; 3/

As a consequence, the universal obstruction w is the generator ˇ.w2/ of

H 3.BSO.n/IZd /.

Proposition. The set Spinc
d .X/ of d -complex spin structures on a manifold X is

non-empty, if and only if, ˇ.w2.X// D 0 2 H 3.X IZd /. If non-empty, the set

Spinc
d .X/ is a�ne over H 2.X IZd / (w2.X/ is the second Stiefel–Whitney class

of X).

Proof. Consider the commutative diagram

BSpinc
d .n/

�d

��
X:

f //

Nf
;;

BSO.n/
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Let f be the classifying map of the (stable) tangent bundle of X . Then, the lifts

Nf of f to BSpinc.Zd / are in one-to-one correspondence with the sections of the

bundle f �.
Spinc
d .n//. The obstruction wX to the existence of such sections is a

characteristic cohomology class so by its naturality property we have

wX .f
�.
Spinc

d .n/// D f �.w.
Spinc
d .n///

D f �.ˇ.w2//:

The above relation together with the naturality of Bockstein homomorphisms

imply the result. The second part of the theorem follows by standard arguments

of obstruction theory. �

2.2.1. Restriction to the boundary. Let us consider a manifold X with bound-

ary. Then, any section of TX j@X transverse to @X and oriented outwards gives

rise to a homotopy class of isomorphisms between the oriented vector bundles

R ˚ T@X and TX j@X . Therefore, there is a well-de�ned restriction map

Spinc
d .X/ ! Spinc

d .@X/

a�ne over the map

i�WH 2.X IZd / �! H 2.@X IZd /

induced by the inclusion i W @X ! X .

2.2.2. From Spinc to Spinc

d
. We have seen in Section 2.1 that the �bration

� W BSpinc.n/ �! BSO.n/

is de�ned as the pull-back under h of the path-space �bration over K.Z; 3/. The

modulo d restriction morphism �WZ ! Zd induces a map

��W K.Z; 3/ �! K.Zd ; 3/

on the level of Eilenberg–MacLane spaces and further, via ��, a natural map

BSpinc.n/ �! BSpinc
d .n/:

As a result, there exists a well-de�ned natural map

Spinc.X/ �! Spinc
d .X/

a�ne overH 2.X/
��
! H 2.X IZd / induced by �.
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BSpinc.n/

&&▼▼
▼▼

▼▼
▼▼

//

�

��

PK.Z; 3/

��

&&▲▲
▲▲

▲▲
▲▲

BSpinc
d .n/

�d

��

// PK.Zd ; 3/

��

X
f // BSO.n/

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

h // K.Z; 3/
��

&&▼▼
▼▼

▼▼
▼

BSO.n/
g // K.Zd ; 3/

2.3. Combinatorial description of Spinc

d
-structures. Let L D .L1; : : : ; Ln/

be an oriented framed link in S3 with linking matrix .Lij /i;j D1;n and denote by

S3.L/ the 3-manifold obtained by surgery. The manifold S3.L/ is the boundary

of a 4-manifold WL, constructed from a 4-ball D4 by attaching n 2-handles

.D2 �D2/i along embeddings of �.S1�D2/i in concordance with the orientation

and framing of each componentLi . The 4-manifoldWL is sometimes called trace

of surgery.

Let us de�ne the set

S
c
d .L/ D

¹.�1; : : : ; �n/ 2 .Z2d /
nj�i D Li i .mod 2/º

2ImL

whose elements will be called modulo d Chern vectors.

Theorem. There is a canonical bijection

Spinc
d .S

3.L//
�L

�! S
c
d .L/:

Proof. We have seen in the previous section that Spinc-structures induce d -com-

plex spin structures. In particular, the map rd W Spinc.WL/ ! Spinc
d .WL/ is sur-

jective since it is a�ne over the surjective map H 2.WLIZ/ ! H 2.WLIZd / in-

duced by restriction modulo d of coe�cients and similarly, the restriction map

r W Spinc
d .WL/ ! Spinc

d .S
3.L// is surjective since it is a�ne over the surjective

map H 2.WLIZd / ! H 2.S3.L/IZd / induced by inclusion.

With the help of r and rd , we de�ne the map �LW Spinc
d .S

3.L// ! Sc
d
.L/ as

follows: any � 2 Spinc
d .S

3.L// is the image of an element Q� 2 Spinc.WL/ under

the composition r ı rd . The value c. Q�/ 2 H 2.WLIZ/ Š Z
n is characteristic for L

(see [6]), therefore c. Q�/ D .c1; : : : ; cn/ 2 Z
n with ci D Li i .mod 2/. We set

�L.�/ to be the image of c. Q�/ .mod 2d/ in Sc
d
.L/.
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� �L.�/ is well-de�ned: let us assume that .r ı rd /
�1.�/ contains two di�erent

elements Q�1 and Q�2. Then, they di�er by y 2 H 2.WL/ Š Z
n whose modulo

d reduction belongs to ImL in .Zd /
n. Since 2y .mod 2d/ belongs to 2ImL

in .Z2d /
n, we get that Œc. Q�2/� D Œc. Q�1/ C 2y� D Œc. Q�1/� (the �rst equality

follows from the fact that the Chern map is a�ne over the doubling map).

� �L is injective: let us assume that �L.�1/ D �L.�2/. Then, the preimages Q�1

and Q�2 (of �1 and �2, respectively) under r ı rd di�er by y 2 H 2.WL/ Š Z
n

such that 2y .mod 2d/ belongs to 2ImL in .Z2d /
n. This implies that y

.mod d/ belongs to ImL in .Zd /
n and therefore �1 D �2.

The sets Spinc
d .S

3.L// andSc
d
.L/ have the same cardinality, hence �L is bijective.

�

From now on, we will refer to the set Sc
d
.L/ as the combinatorial description

of d -complex spin structures on the surgered manifold S3.L/.

2.4. Spinc

d
Kirby moves. A celebrated theorem of Kirby [7] states that two

(oriented) framed links in S3 produce the same manifold by surgery, if and only

if, they are related by a �nite sequence of local geometric transformations called

Kirby moves. In what follows, we present a re�ned version of the original Kirby

theorem for manifolds equipped with Spinc
d -structures.

Theorem. Let .L; �/ and .L0; � 0/ be two oriented framed links with Chern vectors

� , � 0. Then, the manifolds .S3.L/; �/ and .S3.L0/; � 0/ are Spinc
d -homeomorphic,

if and only if, the pairs .L; �/ and .L0; � 0/ are related by a �nite sequence of the

moves in Figure 2.1 or their inverses.

Proof. We must check that for any of the Kirby moves (stabilization, handle

slide and orientation reversal) L
K
! L0, the Chern vectors change under the

homeomorphism S3.L/ ! S3.L0/ in the way described by Figure 2.1. To do

this, note that the map r ı rd W Spinc.WL/ ! Spinc
d .S

3.L// de�ned in the proof of

Theorem 2.3 is surjective and the following diagram commutes:

Spinc.WL/

rırd

��

K // Spinc.WL0/

r 0ır 0
d

��
Spinc

d .S
3.L//

K // Spinc
d .S

3.L0//
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Since Spinc-structures onWL are combinatorially described as the elements of the

set

¹.c1; : : : ; cn/ 2 Z
n j ci D Li i .mod 2/º

and their change under Kirby moves is known ([6]), the conclusion follows. �

Figure 2.1. Re�ned Spinc
d -Kirby moves (a) Stabilization (b) Handle slide (c) Orientation

reversal. Note that we use the blackboard framing and the labels refer to modulo d Chern

vectors.

3. Generalized spin structures

In [2] the second author introduced spin structures modulo an even integerd (short

Spind -structures). In dimension three, he gave a combinatorial description of such

structures as well as a re�ned set of Kirby moves. In this section we recall his

results using the notations of Section 2.3 and extend the de�nition to a possibly

non cyclic group of coe�cients K with a distinguished order 2 element v 2 K.

3.1. .K; v/-spin structures. Let K be a �nite abelian group and v a non trivial

element in the 2-torsion subgroup Tor2.K/, then we can de�ne .K; v/ generalized

spin structures.

De�nition. For n � 3, a .K; v/ generalized spin structure on an SO.n/ principal

bundle SO.n/ ,! P ! M is a cohomology class � 2 H 1.P;K/whose restriction

to the �ber is equal to v in H 1.SO.n/; K/ Š Tor2.K/. A .K; v/ generalized spin

structure on an oriented manifold of dimension � 3 is a .K; v/ spin structure on

its oriented framed bundle.
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As usual this de�nition can be extended to dimensions less than 3 by using

stabilization.

If K is decomposed as a product of cyclic groups, K D Zd1
� � � � � Zdk

, then

a .K; v/ generalized spin structure is a sequence .�1; : : : ; �k/ where �j is either a

dj -spin structure or a mod dj cohomology class, depending if the component vj

of the 2-torsion element v has order 2 or vanishes.

3.2. Combinatorial description of Spind -structures. IfK D Zd , let us denote

the set of
�

K; v D d
2

�

-structures on M by Spind .M/. In the case when M D

S3.L/ (is obtained by surgery on a framed link in S3) this set admits a nice

combinatorial description.

Consider the set

Sd .L/ D
°

.s1; : : : ; sn/ 2 .Zd /
n

ˇ

ˇ

ˇ

n
X

j D1

Lij sj D
d

2
Li i .mod d/

±

:

The elements of Sd .L/ are called modulo d characteristic solutions of L.

Lemma. There is a canonical bijection

 LW Spind .S
3.L// �! Sd .L/:

Proof. Given a Spind -structure � on S3.L/ it can be extended toWL if and only if

a certain cohomology class inH 2.WL; S
3.L/IZd / vanishes. We denote this class

by w.WLI �/ and we call it relative obstruction. To any � 2 Spind .S
3.L// there

is associated a relative obstruction w.WLI �/ in H 2.WL; S
3.L/IZd /. Since the

group H 2.WL; S
3.L/IZd / is free of rank n, taking the coe�cients of the relative

obstruction we obtain a map  LW Spind .S
3.L// ! .Zd /

n. We will show that

this map is injective and its image coincides with Sd .L/. Let us consider the

embedding �WZ2 ,! Zd . Then, the relative obstructionw.WLI �/ D ��.w2.WL//,

where �� is the induced map on the level of cohomology. Given an integral

2-cycle x, we denote by x �x its self-intersection number and by Œx�m its modulom

restriction. The second Stiefel–Whitney class w2.WL/ is de�ned by the following

equation:

hw2.WL/; Œx�2i D x � x .mod 2/; for all x;

therefore, the relative obstruction is de�ned by

hw.WLI �/; Œx�d i D
d

2
x � x .mod d/; for all x:



Spin modular categories 473

Using functoriality and writing w.WLI �/ in the preferred basis of H 2.WLIZd /,

the result follows. �

The setSd .L/will be referred to as a combinatorial description of Spind -struc-

tures on the surgered manifold S3.L/.

3.3. Spind Kirby moves. The second author proved the following result:

Theorem ([2]). Let .L; s/ and .L0; s0/ be two oriented framed links with cha-

racteristic solutions s; s0. Then, the manifolds .S3.L/; s/ and .S3.L0/; s0/ are

Spind -homeomorphic, if and only if, the pairs .L; s/ and .L0; s0/ are related by

a �nite sequence of the moves in Figure 3.1 or their inverses.

Figure 3.1. Re�ned Spind -Kirby moves (a) Stabilization (b) Handle slide (c) Orientation

reversal. Note that we use the blackboard framing and the labels refer to modulo d

characteristic solutions of L.

4. Modular categories

In this section we brie�y recall the construction of WRT invariants.

4.1. Modular categories. We refer to [20] for a detailed treatment of this mate-

rial.

A ribbon category is a monoidal category C equipped with braiding b, twist

� and duality satisfying compatibility conditions ensuring the existence of a
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representation of the category of C-colored tangle and more generally of C-colored

ribbon graphs, which is called Reshetikhin–Turaev ribbon functor and denoted by

FC . Hence, in ribbon categories, a trace of an endomorphism f can be de�ned

as this functor FC. Of / evaluated on the closure Of of f . Graphically, we represent

f W x ! x by a rectangle with one outgoing and one incoming lines colored by x,

and connecting these two lines in a circle we get Of . Then dimension of an object

is the trace of its identity endomorphism.

Let k be a �eld of zero characteristic. A ribbon category is called k-linear or

pre-additive over k if the Hom sets are k-vector spaces, composition and tensor

product are bilinear and End.1/ D k. An object � of the category is called simple

if the map u 7! u � id� from k D End.1/ to End.�/ is an isomorphism.

We will denote by C˚ the additive closure of a pre-additive ribbon category C,

which admits direct sums of objects and compositions of morphisms are modelled

on the matrix multiplication ([12]).

De�nition. A modular category over the �eld k is a k-linear ribbon category C

with a �nite set of simple objects � that satis�es the following axioms.

(1) Normalization. The trivial object 1 is in �.

(2) Domination. For any object V of the category, there exists a �nite decom-

position

idV D
X

i

fi id�i
gi

with �i 2 �, for all i .

(3) Non-degeneracy. The matrix S D .S��/�;�2� is invertible over k,

where S�� 2 k is the endomorphism of the trivial object associated with

the .�; �/-colored, 0-framed Hopf link with linking C1.

� �

Figure 4.1. The Hopf link with linking number C1 and colors � and �
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The category is called pre-modular if we remove the last axiom. Replacing

C with its additive closure, we can reformulate the domination axiom as follows:

for any �; �; � 2 � there exist positive integers C
�

��
called structure constants,

such that � ˝ � '
L

�2� C
�

��
�. The domination axiom says that any object

decomposes into a direct sum of simple ones.

Example. Let g D slN and q be an .N C K/th root of unity. Then, there exists

an associated modular category C.N;K/ (N;K � 2) with simple objects given by

partitions � from

� D ¹� D .�1; : : : ; �s/ j �1 � K; s < N º:

See e.g. [3] for more details.

4.2. Properties of pre-modular categories. In what follows, we describe basic

properties of pre-modular categories that will be relevant to the rest of the paper.

We follow the lines of [1]. Unless otherwise stated, C is a pre-modular category

over a �eld k with zero characteristic and � is the set of representatives of simple

objects.

De�nition. (a) An object � of C is called transparent if for any object � the

following morphisms in C are equal

(b) A morphism f 2 Hom.�; �/ is called negligible if tr.fg/ D 0 for any

g 2 Hom.�; �/.

For any object � 2 � the twist coe�cient �� is de�ned by the equality:
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(c) The braiding coe�cients between two objects �; � 2 � are de�ned as a

collection ¹b
�

�;�
º for all � which is a summand in �˝ � such that

where the boxes represent a morphism i W� ! �˝� and a morphism pW�˝� ! �

such that p ı i D id�. Note that b�
�;�

D ��.����/
�1.

We discuss in detail a formula that will be used extensively throughout the

paper. Let us start by �xing some notations. Given objects ˛1; : : : ; ˛n; ˇ1; : : : ,

ˇm 2 �, we denote byH
ˇ1;:::;ˇm
˛1;:::;˛n

the k-module of morphisms HomC.˛1 ˝� � �˝˛n,

ˇ1 ˝ � � � ˝ ˇm/:

The modules H��
� , H�

��� , H
���
�� , H

��

���� , H
���

�� and H �
���

are mutually iso-

morphic, as well as the modulesH����� , H����
and all obtained from them by a

cyclic permutation of colors. Identifying these modules along the isomorphisms,

we get a symmetrized multiplicity module zH����
for which only the cyclic order

of colors is important. The elements of zH����
are represented by a round coupon

with one incoming line (colored with �) and two outgoing ones (colored by �

and �).

The pairing

h ; iW zH����
˝ zH�����

�! k

de�ned as

hf; gi D tr.fg/

is non-degenerate since the category C can be assumed without negligible mor-

phisms (if any, they can be quotiened out). The symmetrized modules zH����

and zH�����
are dual to each other, therefore we can choose bases .ai /i2I

�

��
for

zH�����
and .bi /i2I

�

��
for the module zH����

that are dual with respect to h ; i:

Note that the composition bj ı ai is an endomorphism of the simple object �, so

it is of the form cij � id�, cij 2 k. Comparing the traces gives ıij D cij h�i so

bj ı ai D ıij h�i�1id�. For any simple objects �; � 2 �, the domination axiom



Spin modular categories 477

applied to id�˝� yields the following relation, known as the fusion formula:

D
X

�2�

X

i2I
�

��

h�i :

For any pre-modular category C, let us de�ne the Kirby color ! D
P

�2�h�i�

as an element of K0.C
˚/ ˝ k, where K0.C

˚/ denotes the Grothendieck ring of

the category C˚.

Proposition (sliding property, [1]). In any pre-modular category the following

handle sliding identity holds

Lemma (killing property, [1]). Let C be a pre-modular category with h!i ¤ 0

and � 2 �. Then, the morphism

is non-trivial if and only if � is transparent.

Proof. If � is transparent, then the map

D h!i ¤ 0:
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Conversely, if we assume that for some c 2 k, c ¤ 0 we have

D c

then, by sliding any �-colored strand along the !-colored one, we obtain the

following equalities of morphisms in C

D c�1 D

and therefore, � is transparent. �

Proposition ([1]). A pre-modular category with h!i ¤ 0 and with no non-trivial

transparent objects is modular.

Proof. Let xS D . xS��/�� be a matrix with entries given by the relation

D
xS��

h�i
:

We want to prove that the product S � xS D h!i I, where I is the identity matrix of

size j�j. We have

.S � xS/�� D

D

D
X

�2�

X

i2I
�

���

h�i
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D h!i
X

i2I 1
���

D h!i � ı�� ;

where ı�� is the Kronecker index. The second equality holds by isotopy, the third

equality holds by the fusion formula, while the fourth equality is a consequence

of the killing property. The last equality can be proved using the structure of the

modules Hom.1; �˝ ��/ and Hom.�˝ ��; 1/. �

Note. If C is a modular category, then h!i is invertible in k, and hence h!i ¤ 0.

4.3. WRT invariants. Given a modular category C and a closed 3-manifold

M D S3.L/ obtained by surgery on S3 along a framed link L, whose linking

matrix has bC positive and b� negative eigenvalues, we de�ne

�C.M/ D
FC.L.!; : : : ; !//

FC.U1.!//
bCFC.U�1.!//b�

(1)

where U˙1 denotes the ˙1-framed unknot and FCW RibC ! C is the natural ribbon

functor, RibC is the category of ribbon graphs.

Theorem ([20]). For any modular category C, �C.M/ de�nes a topological

invariant of M , independent on the choice of the link L.

Proof. We need to show that �C.M/ is well-de�ned and does not change under

Kirby moves.

The fact that FC.U˙1.!// are non-zero follows from the properties of the

ribbon functor FC and the non–degeneracy axiom for C.

The �rst Kirby move is easy to establish. The invariance under the second

Kirby move is provided by Proposition 4.2. In order to prove invariance under

orientation reversal, let us consider the link L0 obtained from L by reversing the

orientation of a componentLk. Without loss of generality, we may assume k D 1.
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Thus we have

FC.L
0.!; : : : ; !// D

X

�2�

h�iFC.L
0.�; !; : : : ; !//

D
X

�2�

h��iFC.L.�
�; !; : : : ; !//

D
X

�2�

h�iFC.L.�; !; : : : ; !//

D FC.L.!; : : : ; !//:

The linking matrix .L0
ij / D tS.Lij /S with S D diag.�1; 1; : : : ; 1/ hence the

matrices .L0
ij / and .Lij / have the same eigenvalues. In particular, b0

C D bC and

b0
� D b� so �C.M;L

0/ D �C .M;L/. This concludes the proof. �

5. Group-categories from invertible objects

In this section, we show that for any modular category C, its group of invertible

distinguished objects G � � de�nes the structure of yG-category on C.

5.1. Invertible objects. An object � in � is called invertible if there exists

another object � 2 � such that � ˝ � Š 1. Invertible objects in � form a �nite

abelian group under tensor multiplication. Here isomorphisms may be necessary

to identify a tensor product or dual with an object in �. Let us denote this group

by G � � and let yG D Hom.G;C�/ be the group of its characters. We say that

the tensor order of � is d if �˝d Š 1 with d minimal.

Example. In Example 4.1 the objectK (the longest row) is invertible of order N .

The following lemma shows that the group G acts on �.

Lemma. For any � 2 � and any invertible g 2 G, � ˝ g is isomorphic to an

object in �.

Proof. By the domination axiom we have � ˝ g Š
L

i �i . Multiplying this

identity by the inverse of g, we get � D
L

i .�i ˝ g�1/. Thus, the right hand is

simple, and so �˝ g has to be simple too. �
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5.2. Group-category. Assume C is a modular category with G � � the group

of invertible distinguished objects. We can de�ne a yG-structure on C as follows:

Given � 2 �, the braiding coe�cient of � with elements of G de�nes a map

� ! yG which associates to each � a character �� 2 yG de�ned by the equality:

D ��.g/ :

Indeed, the previous lemma implies that the braiding operator acts on � and g

as a multiplication by S�g=h�ihgi, i.e. only one braiding coe�cient is non-zero.

Using the fact that g is of �nite order, we deduce that this coe�cient is a root of

unity of that order. Observe that ��˝� D ����.

For any ˛ 2 yG, let C˛ be the full subcategory whose objects are isomorphic

to direct sums of simple object in ¹� 2 � j �� D ˛º. Using the semisimple

decompositionof objects, we have that

� each object of C is isomorphic to a direct sum over ˛ 2 yG of objects in C˛;

� HomC.U; V / D 0 if U 2 Ob.C˛/, V 2 Ob.Cˇ /, ˛ ¤ ˇ;

� for U 2 Ob.C˛/ and V 2 Ob.Cˇ /, U ˝ V 2 Ob.C˛ˇ /.

This proves the following.

Proposition. A modular category C with group G of invertible distinguished

objects is yG-category.

If � 2 C˛ , for some ˛, we say that � is an homogenous object of degree

˛ D deg.�/.

Additive notation in cyclic case. If G is cyclic of order d , we call C a modular

d -category. Fixing a generator t of G and a primitive d th root of unity ed , we

have the decomposition

� D �0 q �1 q � � � q �d�1;

where �i D ¹� 2 �j��.t / D ei
d

º. In this case we identify yG with Zd and use

additive notation.
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Example. Let us assume thatN D .N;K/ in Examples 4.1 and 5.1. ThenG D ZN

is generated by K. Hence, the category C.N;K/ is a modular N -category with

deg.�/ D
P

i �i .mod N/.

We will need the following lemma.

Lemma. Let C be a modular d -category such that the groupG Š Zd is generated

by t . Then hti D 1 if d is odd, and hti D ˙1 if d is even.

Proof. Let bt;t be the braiding coe�cient, such that

D bt;t :

Using

D bt;t

D bt;t hti

we have �t D bt;t hti. Similarly ��1
t D b�1

t;t hti. We get that hti D ˙1. The object

t has order d so we have �td D 1. On the other hand using that bd
t;t D 1, we

compute �td D bd2

t;t �
d
t D htid . The statement follows. �

Let us recall the following de�nition which will play a central role in our

exposition.

De�nition. LetH � G be a subgroup of the group G of distinguished objects in

a modular category C. The modular category C is calledH -re�nable if all objects

of H have trivial yH -degree. If, in addition, H has at least one element with twist

coe�cient �1, we call the category H -spin.

In the case H is cyclic of order d , we will use the shorthand d -re�nable and

d -spin.
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Example. Given an even integer d D .N;K/ D ˛ˇ, such that .˛; N 0/ D

.ˇ;K 0/ D 1 for N 0 D N
d

and K 0 D K
d

, The second author constructed in [3] a

category PC.N;K/ with

P� D ¹.1N /˝i ˝ � j 0 � i < ˛; �1 � K; �_
1 < N º

and G D Zd generated by 1N ˝K. Here �_ denotes the transpose partition. The

second author proved that the category PC.N;K/ is d -spin modular.

5.3. Sliding identities in pre-modular group-categories. Assume C is a pre-

modular d -category. For any d 2 Zd , let us de�ne the re�ned Kirby colors as

follows:

!u D
X

�2�u

h�i�:

Lemma (graded sliding property). In any pre-modular d -category C we have the

following equality of morphisms:

D

with j�j D deg.�/.

Proof. The proof is the same as in the non-graded case, using the fact that

Hom.�˝ �; �/ is zero unless deg.�/ D deg.�/C deg.�/. Hence, the sum over �

can be restricted to �uCj�j.

D
X

�2�u

h�i

D
X

�2�u

X

�2�uCj�j

X

i2I
�

��

h�ih�i
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D
X

�2�u

X

�2�uCj�j

X

i2I
���
�

h�ih�i

D
X

�2�uCj�j

h�i

D :

In the second and the fourth equalities we use the fusion formula, the third equality

holds by isotopy. �

For any 0 � v < d , and a primitive d th root of unity ed , we de�ne

!v D
X

�2�

e
v deg.�/

d
h�i�

the dual re�ned Kirby color. Note that !0 D !, however other dual Kirby colors

depend on the choice of ed . We use the graded sliding identity to prove the

following lemma.

Proposition (dual sliding property). In any pre-modular d -category C we have

the following equality of morphisms:

D e
�v deg.�/

d
; (a)
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D : (b)

Proof. (a) We have the following equalities:

D
X

�2�

e
v deg.�/

d
h�i

D
X

�2�

X

�2�deg.�/Cdeg.�/

X

i2I
�

��

e
v deg.�/

d
h�ih�i

D e
�v deg.�/

d

X

�2�

X

�2�deg.�/�deg.�/

e
v deg.�/

d
h�ih�i

D e
�v deg.�/

d

X

�2�

e
v deg.�/

d
h�i

D e
�v deg.�/

d
:
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The second and fourth equalities follow from the fusion formula, the third equality

holds by isotopy.

(b) For a C-colored ribbon graph�with an annulus component a colored with

the dual Kirby color !s, and the ribbon graph �0 obtained from � by reversing

the orientation of a and changing its color to !�s, FC.�/ D FC.�
0/. In particular,

we have

D D D ;

where the second equality is a straightforward application of (a). �

6. Spin modular categories

This section is devoted to the proof of Theorem 1. We give �rst the proof in the

cyclic case and then deduce the general statement. For d -spin modular categories

we obtain invariants of 3-manifolds equipped with Spind structure. In cohomolog-

ical case we get re�ned invariants for 3-manifolds with modulo d 1-dimensional

cohomology classes.

For the rest of this section M D S3.L/ is a closed 3-manifold obtained by

surgery on S3 along a framed link L D .L1; : : : ; Ln/ whose linking matrix .Lij /

has bC positive and b� negative eigenvalues.

6.1. Spin re�nements, cyclic case. Let d be an even, positive integer and C be

a d -spin modular category. For any s D .s1; : : : ; sn/ 2 Spind .M/ let us de�ne

�C.M; s/ D
FC.L.!s1

; : : : ; !sn
//

FC.U1.!//
bCFC.U�1.!//b�

: (2)

Theorem. For any d -spin modular categoryC, �C.M; s/ is a topological invariant

of the pair .M; s/. Moreover,

�C.M/ D
X

s2Spind .M /

�C.M; s/ :
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Proof. To prove the �rst statement we need to show that �.M; s/ is well-de�ned

and does not change under re�ned Kirby moves.

Invariance under the �rst two Spind Kirby moves follows immediately from

the graded sliding property and the next lemma which implies that FC.U�.w// D

FC.U�.wd
2
// is invertible for � D ˙1. In order to prove invariance under ori-

entation reversal, let us consider the link L0 obtained from L by reversing the

orientation of a component Lk . Without loss of generality, we may assume that

k D 1. We have seen in the proof of Theorem 4.3 that the linking matrices .L0
ij /

and .Lij / have the same eigenvalues so b0
C D bC, b0

� D b�.

Since s0 D .�s1; s2; : : : ; sn/ we have

FC.L
0.!�s1

; !s2
; : : : ; !sn

// D
X

�2��s1

h�iFC.L
0.�; !s2

; : : : ; !sn
//

D
X

�2��s1

h��iFC.L.�
�; !s2

; : : : ; !sn
//

D
X

�2�s1

h�iFC.L.�; !s2
; : : : ; !sn

//

D FC.L.!s1
; !s2

; : : : ; !sn
//

and therefore �C.M;L
0I s0/ D �C.M;LI s/. It remains to prove that

FC.L.!s1
; : : : ; !sn

// D 0

if si do not solve
Pn

j D1Lij sj D d
2
Li i .mod d/. The proof is in three steps.

Assume that the �rst component L1 of our link is the ˙1-framed unknot.

Then it can be unlinked from the rest of L by applying the Fenn–Rourke move.

The graded sliding identity and Lemma 6.1 tell us that s1 should solve the above

equations.

Assume L1 is the a-framed unknot. Then we add a ˙1-framed unknot to our

link (with an invertible invariant) and slide it alongL1 (perform the inverse Fenn–

Rourke move). This changes the framing on L1 by �1 and allows to reduce this

case to the previous one.

Finally, assume L1 is arbitrary. Then we can unknot L1 by adding ˙1-framed

unknots to our link in such a way, that their linking number with L1 is zero. This

again reduces the situation to the previous case. �
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Lemma. For any d -spin modular category C, FC.U˙1.wu// is zero unless u D d
2
.

Proof. Recall that invertible objects form an abelian group under tensor multipli-

cation, which acts on �. In particular, its cyclic subgroup H D hti Š Zd acts

on each �u. Let us denote by z�u the set of orbits under this action and by Q!u the

corresponding reduced Kirby color. Note that !u D
Pd�1

iD0 htii t i Q!u. Let Ha;b be

the .a; b/-framed Hopf link with linking matrix �1.

Figure 6.1. The Hopf link H1;0.!0; !u/.

After sliding the second component of H.1;0/.!0; !u/ along the �rst one we

get

FC.U1.wu//FC.U�1.wu// D FC.H1;0.!0; !u//

D

d�1
X

i;j D0

htiiCjFC.H1;0.t
i Q!0; t

j Q!u//

D

d�1
X

i;j D0

htiiCjFC.H1;0. Q!0; Q!u//e
ui
d �

i
t htiiCj

D dFC.H1;0. Q!0; Q!u//

d�1
X

iD0

eui
d .�1/

i

which is zero unless u D d
2
.mod d/. Here we used that �t D �1 and hti D ˙1,

by Lemma 5.2. Since FC.U1.wu// and FC.U�1.wu// are complex conjugate to

each other, the result follows. �

6.2. Cohomological re�nements. In this subsection we assume that C is a non-

spin d -re�nable modular category.

The elements h 2 H 1.M IZd / are combinatorially given by solutions of
Pn

j D1Lijhj D 0 .mod d/, for all i D 1; : : : ; n: Let L be an oriented framed link

and h 2 H 1.S3.L/IZd /. The usual Kirby moves admit re�nements for manifolds

equipped with such structures as follows.
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� Stabilization. .L; h/ ! .L t U˙1; .h; 0//.

� Handle slide. .L; h/ ! .L0; h0/ where L0 is obtained from L by sliding

component Li along Lj and h0
k

D hk if k ¤ j and h0
j D hj � hi . Here

the sign depends on whether the orientations of Li and Lj match or not,

respectively.

� Orientation reversal. .L; h/ ! .L0; h0/ where L0 is obtained from

L by reversing the orientation of component Li and h0
j D hj if j ¤ i and

h0
i D �hi .

For any h D .h1; : : : ; hn/ 2 H 1.M IZd / let us de�ne

�C.M; h/ D
FC.L.!h1

; : : : ; !hn
//

FC.U1.!//
bCFC.U�1.!//b�

: (3)

Theorem. For any non-spin d -re�nable modular category, �C.M; h/ is a topo-

logical invariant of the pair .M; h/. Moreover,

�C.M/ D
X

h2H 1.M IZd /

�C.M; h/:

The proof is based on the following lemma.

Lemma. For any non-spin d -re�nable modular category C, FC.U˙1.wu// is zero

unless u D 0.

Proof. Just as in the proof of Lemma 6.1, we consider the Hopf linkH1;0.!0; !u/

with linking number �1 and we slide the second component along the �rst one.

We get

FC.U1.wu//FC.U�1.wu// D FC.H1;0.!0; !u//

D dFC.H1;0. Q!0; Q!u//

d�1
X

j D0

e
uj

d

which is zero, unless u D 0. �

6.3. Spin re�nements, general case. The proof of Theorem 1 follows from the

two previous cases. An . yH; v/ generalized spin structure � on M D S3.L/ is de-

scribed by a sequence of coe�cients .s1; : : : ; sn/ 2 yHn satisfying a characteristic

equation:

.s1; : : : ; sn/. yH ˝ L/ D v ˝ .L11; : : : ; Lnn/
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Indeed, the Kirby element decomposes using yH -degree, and the formula for the

re�ned invariant given in (2) still holds. The condition for non vanishing in

Lemma 6.1 is u D v.

The solution of these equations is a sequence of �i where the index i runs

over cyclic components Hi Š Zdi
of H . Moreover, either �i 2 Spindi

.M/

or �i 2 H 1.M;Zdi
/, depending on the twist coe�cient of the corresponding

generator. Combining the two previous theorems we get

�C.M/ D
X

�

�C.M; �/:

7. Complex spin re�nements

This section is devoted to the proof of Theorem 2. Again, according to the twist

coe�cients, we will either get an extension of WRT invariants for 3-manifolds

equipped with modulo d complex spin structures or with 2-dimensional cohomo-

logy classes.

Throughout this section C is a 2d -spin modular category with d even. For any

� 2 Sc
d
.M/, let us de�ne

�C.M; �/ D .�d/�n
X

.�1;:::;�n/2 �

FC.L.!
�1; : : : ; !�n//

FC.U1.!//
bCFC.U�1.!//b�

(4)

where the shorthand .�1; : : : ; �n/ 2 � means that the summation is taken over all

elements of .Z2d /
n in the equivalence class of � .

Theorem. Let d be an even integer. For any .2d/-spin modular category C,

�C.M; �/ is a topological invariant of the pair .M; �/.

Proof. In order to prove that �C.M; �/ is a topological invariant of the Spinc
d -man-

ifold .M; �/, we have to check invariance under the Spinc
d Kirby moves of Theo-

rem 2.4.
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We start by checking invariance under the �rst Kirby move. Let .L0; � 0/ be

obtained from .L; �/ by a positive stabilization. We have that

�C.M;L
0I � 0/ D .�d/�.nC1/

X

.�1;:::;�nC1/2� 0

FC.L.!
�1; : : : ; !�n//FC.U1.!

�nC1//

FC.U1.!//
bCC1FC.U�1.!//b�

D .�d/�n
X

.�1;:::;�n/2�

FC.L.!
�1; : : : ; !�n//

FC.U1.!//
bCFC.U�1.!//

b�

X

�nC121C2Z2d

FC.U1.!
�nC1//

.�d/FC.U1.!//

D �C.M;LI �/

2d�1
X

xD0

x even

FC.U1.!
1Cx//

.�d/FC.U1.!//
:

To compute the sum
2d�1
X

xD0
x even

FC.U1.!
1Cx//;

we write the dual Kirby color !1Cx in terms of the re�ned (graded) Kirby colors

!i as follows:

!1Cx D

2d�1
X

iD0

X

�2�i

e
.1Cx/i

2d
h�i� D

2d�1
X

iD0

e
.1Cx/i

2d
!i :

Lemma 6.1 together with the identity

2d�1
X

xD0

x even

e
.1Cx/i

2d
D

8

<

:

0 if i ¤ d;

�d if i D d;

gives

2d�1
X

xD0

x even

FC.U1.!
1Cx// D

2d�1
X

iD0

2d�1
X

xD0

x even

e
.1Cx/i

2d
FC.U1.!i//

D �dFC.U1.!//

so �C.M;L
0I � 0/ D �C.M;LI �/.
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Analogously, �C.M; �/ is invariant under a negative stabilization. The in-

variance under the second Kirby move is provided by the dual sliding property.

Finally, we must check invariance under orientation reversal. For that, let .L0; � 0/

be obtained from .L; �/ by changing the orientation of a component Lk . Without

any loss of generality, we may assume that k D 1 and, just like in the proof of

Theorem 4.3, we get b0
C D bC, b0

� D b�. We have that

X

.�0
1

;:::;�0
n/2� 0

FC.L
0.!�0

1 ; : : : ; !�0
n//

D
X

.�1;:::;�n/2�

FC.L
0.!��1; !�2; : : : ; !�n//

D
X

.�1;:::;�n/2�

X

�2�

e
��1 deg.�/

2d
h�iFC.L

0.�; !�2; : : : ; !�n//

D
X

.�1;:::;�n/2�

X

�2�

e
�1 deg.��/

2d
h��iFC.L.�

�; !�2; : : : ; !�n//

D
X

.�1;:::;�n/2�

X

�2�

e
�1 deg.�/

2d
h�iFC.L.�; !

�2; : : : ; !�n//

D
X

.�1;:::;�n/2�

FC.L.!
�1 ; : : : ; !�n//:

The �rst equality above is a consequence of the fact that .L0
ij / D tS.Lij /S , for

S D diag.�1; 1; : : : ; 1/. This concludes the proof. �

7.1. Homological re�nements. Let d be a positive integer and C be a non–spin

d -re�nable modular category.

The group H1.M IZd / is described combinatorially as the set .Zd /
n=ImL.

The Kirby moves for the pair .M; h/ where M is obtained by surgery on a link L

and h 2 H1.M IZd / can be described as follows.

� Stabilization. .L; h/ ! .L t U˙1; .h; 0//;

� Handle slide. .L; h/ ! .L0; h0/ where L0 is obtained from L by sliding

componentLi alongLj and h0
k

D hk if k ¤ i and h0
i D hi ˙hj . Here the sign

depends on whether the orientations of Li and Lj match or not, respectively;

� Orientation reversal. .L; h/ ! .L0; h0/ where L0 is obtained from

L by changing the orientation of component Li and h0
j D hj if j ¤ i and

h0
i D �hi .
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For any h 2 H1.M IZd / let us de�ne

�C.M; h/D d�n
X

.�1;:::;�n/2 h

FC.L.!
�1; : : : ; !�n//

FC.U1.!//
bCFC.U�1.!//b�

(5)

where the shorthand .�1; : : : ; �n/ 2 h means that the summation is taken over all

elements of .Zd /
n in the equivalence class of h.

Theorem. For any non–spin d -re�nable modular category C, �C.M; h/ is a topo-

logical invariant of the pair .M; h/.

Proof. In order to prove that �C.M; h/ is a topological invariant of the manifold

.M; h/, we have to check invariance under the Kirby moves listed above.

We start by checking invariance under the �rst Kirby move. Let .L0; h0/ be

obtained from .L; h/ by a positive stabilization.

�C.M;L
0I h0/ D d�.nC1/

X

.�1;:::;�nC1/2h0

FC.L.!
�1 ; : : : ; !�n//FC.U1.!

�nC1//

FC.U1.!//bCC1FC.U�1.!//b�

D d�n
X

.�1;:::;�n/2h

FC.L.!
�1 ; : : : ; !�n//

FC.U1.!//bCFC.U�1.!//b�

d�1
X

iD0

FC.U1.!
i //

dFC.U1.!//

D �C.M;LI h/
FC.U1.

Pd�1
iD0 !

i //

dFC.U1.!//
:

We compute

d�1
X

iD0

!i D

d�1
X

iD0

d�1
X

j D0

X

�2�j

e
ij

d
h�i�

D

d�1
X

j D0

X

�2�j

.

d�1
X

iD0

e
ij

d
/h�i�

D d � !0

since
Pd�1

iD0 e
ij

d
D 0 unless j D 0. Using Lemma 6.2 we get that FC.U1.!// D

FC.U1.!0// and therefore �C.M;L
0I h0/ D �C.M;LI h/.

Analogously, �C.M; h/ is invariant under a negative stabilization. The invari-

ance under the second Kirby move is provided by the dual sliding property. Fi-

nally, we must check invariance under orientation reversal. For that, let .L0; h0/

be obtained from .L; h/ by changing the orientation of a component Lk. Without
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any loss of generality, we may assume that k D 1 and, just like in the proof of

Theorem 4.3, we get b0
C D bC, b0

� D b�. Since h0 D .�h1; h2; : : : ; hn/, it follows

that

X

.�0
1

;:::;�0
n/2h0

FC.L
0.!�0

1 ; : : : ; !�0
n//

D
X

.�1;:::;�n/2h

FC.L
0.!��1 ; !�2; : : : ; !�n//

D
X

.�1;:::;�n/2h

X

�2�

e
��1 deg.�/

d
h�iFC.L

0.�; !�2; : : : ; !�n//

D
X

.�1;:::;�n/2h

X

�2�

e
�1 deg.��/

d
h��iFC.L.�

�; !�2; : : : ; !�n//

D
X

.�1;:::;�n/2h

X

�2�

e
�1 deg.�/

d
h�iFC.L.�; !

�2; : : : ; !�n//

D
X

.�1;:::;�n/2h

FC.L.!
�1; : : : ; !�n//:

The �rst equality above is a consequence of the fact that .L0
ij / D tS.Lij /S , for

S D diag.�1; 1; : : : ; 1/. This concludes the proof. �

8. Decomposition formula

This section is devoted to the proof of Theorem 3. Reader interested in the case

gcd.m; ı/ D 1 only can skip this section and consult an easy direct argument in

Appendix.

Throughout this section d is any positive integer, it needs not to be even.

8.1. Strategy of the proof. Let us recall the setting. We assume that C be a

modular category with cyclic group of invertible objects G generated by t . Let

deg.t / D ı 2 Zd Š yG and mı D d . Moreover, let us split ı D ˛ˇ, such that

gcd.ˇ; ˛m/ D 1, ˛ � m .mod 2/.

For any V 2 Ob.C/ we can choose �V .t / D �deg.V / where � is a primitive

d -th root of unity. Let us �x the generator t , so that � D e

p
�12�

d . The twist

coe�cient for t is �t D bt;t hti and satis�es �2
t D �ı D e

p
�12�
m . We consider

the subgroup of invertible objects H Š Zı generated by tm. Clearly, H � C0, so

the modular category C is ı-re�nable. The twist coe�cient for the generator tm
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is �tm D bm2

t;t htim. It is equal to �1 if ı is even, m is odd and either hti D 1 and

bt;t D �t D e

p
�1�
m , or hti D �1 and bt;t D ��t D �e

p
�1�
m ; it is equal to 1 in

all other cases. The modular category C is ı-spin if ı is even,m is odd and �t has

order 2m, and ı-cohomological in all other cases.

We now present the idea of the proof of the decomposition statement. We

de�ne a tensor category C0 with simple objects represented by � 0 D � � Z˛. The

tensor product in C0 mimics central extension of groups using 2-cocycles. We lift

the map degW� ! Zd into a map f W� ! Zd˛ , which plays the role of a section.

Further, we extend f into a map Ob.C0/ ! Z˛d , such that

f .V; k/ D f .V /C dk for .V; k/ 2 � 0:

Given two elements .V; k/ and .W; l/ of � 0 we de�ne their tensor product as

.V ˝W; kC l/. We allow in C0 direct sums of objects with homogenous f value.

For X D .V; k/ 2 Ob.C0/ and Y D .W; l/ 2 Ob.C0/ we set

HomC0.X; Y / D

8

<

:

0 if f .X/ ¤ f .Y /;

HomC.V;W / else.

The category C0 is a tensor category over k with unit object .1; 0/ and compat-

ible duality. Note that .V �; l/ is a left and right dual for .V; k/ if l is choosen so

that f .V �; l/ D �f .V; k/.

Proposition. The category C0 is semisimple with � 0 as representative set of simple

objects. The group of invertible objects is G0 Š Zd � Z˛ , generated by .t; 0/ and

.1; 1/.

Proof. The object .V; j / is invertible in C0 if and only if V is invertible in C.

We deduce the last statement. To prove semisimplicity, it is enough to decompose

the tensor product of two objects objects .V; j /, .V 0; j 0/ in � 0. We have in the

category C a decomposition

idV ˝ idV 0 D
X

W

X

�2I W
V;V 0

b� idW a� :

We set �W
V;V 0 D .f .V /C f .V 0/� f .W //=d . Then we have in the category C0 the

following decomposition

id.V;j / ˝ id.V 0;j 0/ D
X

W

X

�2I W
V;V 0

b� id.W;j Cj 0C�W
V;V 0 / a� : �
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Further, let us give C0 a ribbon structure which twists the one given on C. The

braiding is given by a formula

b0
.V;k/;.W;l/ D ��f .V;k/f .W;l/bV;W ;

with appropriate choice of a root of unity � whose order 2˛d if d is even and ˛d

if d is odd. Using duality, the twist is then given by

� 0
.V;k/ D ��f .V;k/2

�V :

The corresponding colored link invariants F D FC and F 0 D FC0 are equal up to

a power of � which is computed from map f and linking numbers. Note that � is

choosen such that ˛m elements of G0 become transparent.

The G0-category C0 is premodular and can be modularized as described

in [1, 5]. Simple objects in the modularization zC are obtained from those of C0

quotienting by a free action. The set z� of simple objects in zC has cardinality

j�j=m. Below we give a detailed proof of the decomposition formula in the spin

case, the cohomological cases can be proven similarly.

Proof of Theorem 3, spin case. We consider here the spin case, which means that

d is even,m is odd and the twist �t has order 2m. The generator t can be choosen

so that �t D e

p
�1�
m . Let � D e

p
�1�l

˛2m with ˇ2l � 1C ˛2m mod 2˛2m. Note that

�˛d D 1 so that the modi�ed braiding is well de�ned.

The braiding coe�cients for the generators of G0 are

b0
X;.t;0/ D .���2ı/f .X/ D e

2
p

�1�.1�lˇ2/f .X/
d ;

b0
X;.1;1/ D .��2d /f .X/ D e

2
p

�1�lf .X/ˇ
˛ :

The twist coe�cients are

� 0
.t;0/ D e

p
�1�
m e�

p
�1�lˇ2

m D �1;

� 0
.1;1/ D e

�
p

�1�ld2

˛2m D 1:

It follows that the group of transparent objects is generated by .t; 0/ˇ which

has trivial twist and quantum dimension 1. Applying the results of [1, 5] we see

that the category C0 is modularizable, i.e. that there exists a modular category zC

and a dominant ribbon functor C0 ! zC. Here the group of transparent objects acts
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freely on the set � 0 of simple objects in C0. This is proved using the map f and

the fact that f ..t; 0/ˇ / D ˇı has order ˛m which is the order of .t; 0/ˇ . Hence,

the simple objects z� in zC are represented by cosets in � 0 under this free action.

In the category zC the group of invertible objects is zG D h.t; 0/; .1; 1/i Š

Zˇ � Z˛ Š Zı . The twist coe�cient for .t; 0/ is equal to �1, so the category

zC is ı-spin. Denote by !0 the Kirby element in C0 which represents ˛m times the

Kirby element Q! in zC. We write the graded decomposition

!0 D
X

c2Zı

!0
c D ˛

X

c2Zı

!c ;

so that

!0
c D

X


2Z˛d


�c mod ı

X

X2�0

f .X/D


hXiX D
X


�c mod ı

!0
jf D
 :

Moreover, for any Z˛d 3 
 � c mod ı, the Kirby color Q!c in zC is represented by

!0
jf D


, i.e.

Q!c D !0
jf D
 D

1

˛m
!0

c :

Indeed, the set !0
jf D


consists of all .V; k/ 2 � 0 such that f .V / D 
 � kd mod

˛d . There are j�j=d such elements. Acting with .tˇ ; 0/ we can shift the degree

of solutions by ı. In this way we obtain all .V; k/ 2 � 0 with deg.V / D c mod ı.

Taking the quotient by this action we get Q!c .

It makes sense to evaluate both Reshetikhin–Turaev ribbon functors F D FC ,

and F 0 D FC0 on C0 colored links. Let M D S3.L/ be a 3-manifold given by

surgery on the n-component link L with signature .bC; b�/, and � 2 Spinı.M/

represented by coe�cients cj 2 Zı , 1 � j � n. For objects Xj 2 � 0, 1 � j � n,

we have

F.L.X1; : : : ; Xn// D �
t f .X/Lf .X/F 0.L.X1; : : : ; Xn//

where tf .X/Lf .X/ D
P

i;j Lijf .Xi /f .Xj /. Note that the left hand side is

invariant under action of .t; 0/ˇ on objects and can be used for the evaluation

of the reduced invariant � zC.M; �/ which we want to compare with �C.M; �/.
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We have

�C.M; �/ D
F.L.!c1

; : : : ; !cn
//

.F.U1.!ı=2///
bC.F.U�1.!ı=2///b�

D
˛�nCbCCb�F.L.!0

c1
; : : : ; !0

cn
//

.F.U1.!
0
ı=2
///bC.F.U�1.!

0
ı=2
///b�

;

F.L.!0
c1
; : : : ; !0

cn
// D

X


2.Z˛d /n


i �ci mod ı

F.L.!0
jf D
1

; : : : ; !0
jf D
n

//

D
X


2.Z˛d /n


i �ci mod ı

�
t 
L
F 0.L.!0

jf D
1
; : : : ; !0

jf D
n
//

D
X


2.Z˛d /n


i �ci mod ı

�
t 
L
F 0.L. Q!c1

; : : : ; Q!cn
//

D F 0.L. Q!c1
; : : : ; Q!cn

//
X


2.Z˛d /n


i �ci mod ı

�
t 
L
 :

After normalization we get

�C.M; �/ D ˛�b1.M /�zC.M; �/ g
�bC. Ng/�b�

X


2.Z˛d /n


�c mod ı

�
t 
L


where

g D
X


2Z˛d


�ı=2 mod ı

�
2

and Ng is the complex conjugate. One can check, following the graded construction

in Section 6 that the formula

�MOO
� .M; �/ D g�bC. Ng/�b�

X


�c mod ı

�
t 
L


de�nes an invariant of .M; �/. We conclude

�C.M; �/ D ˛�b1.M /�zC.M; �/�
MOO
� .M; �/:

In the case gcd.m; ı/ D 1, we have ˛ D 1 and

X

j

Lij
j D
ı

2
Li i mod ı:
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We can assume that our surgery presentation has even linking matrix (the ob-

struction given by the spin cobordism group vanishes), so that c 2 Ker.L˝ Zı/.

Decomposing 
 D 
0 C ıx with 
0 2 KerL and x 2 Zm we see that

X


�c mod ı

�
t 
L
 D

X

x2.Zm/n

�
t .
0Cıx/L.
0Cıx/

D
X

x2.Zm/n

�
t .ıx/L.ıx/

D
X

x2.Zm/n

�
t xLx

does not depend on c. Summing over � we get

�C.M/ D �zC.M/�MOO
� .M/: �

Appendix

Here we give a simple direct proof of Theorem 3 in the case when gcd.m; ı/ D 1.

For readers convenience, we repeat the statement.

Theorem. Let C be a modular d -category with the cyclic group G of invertible

objects, generated by t . Assume deg t D ı, gcd.ı; d=ı/ D 1. Then there exist

a subcategory zC � C and a root of unity �, such that for any closed orientable

3-manifold M

�C.M/ D �zC.M/�MMO
� .M/:

Let m be such that ım D d and we set

z� WD ¹� 2 � j deg.�/ D 0 .mod m/º:

Let zC be the full ribbon subcategory of C generated by z� and Q! be the correspon-

ding Kirby color. Let K be a subgroup generated by tm. In this situation K has

order ı and z� D �0 q �m q � � � q �.ı�1/m: Moreover, consider � 2 C such that

D � :

We will need the following proposition.
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Proposition. Let � D �htiı . Then we have the following equalities of morphisms:

(a) for any � 2 z� and k 2 ¹0; : : : ; m� 1º

D I

(b) for any k; s 2 ¹0; : : : ; m � 1º

D �ks I

(c) for any k; s 2 ¹0; : : : ; m � 1º

D �2ks I

(d) for any k 2 ¹0; : : : ; m � 1º, the twist coe�cient �tkı D �k2

.

The proof is a straightforward computation using hti D ˙1 and �2 D �2 D eı3

d
.

Lemma. The category zC is modular and reduced, in the sense that it is zG-re�n-

able.

Proof. Clearly, 1 2 z� since deg.1/ D 0. Duality axiom holds since for � 2 z�,

deg.��/ D � deg.�/ and hence �� 2 z�. Domination follows trivially from the

same property of C. It remains to prove the non-degeneracy.

Observe that the Kirby color ! decomposes as the sum

! D

m�1
X

iD0

htiiı t iı Q!
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since .ı; m/ D 1. Decomposing ! as above and using Proposition 8.1 (a) we get

for any � 2 z� the following equalities

D

m�1
X

iD0

htiiı

D

m�1
X

iD0

htiiı

D

m�1
X

iD0

hti2iı

D m :

The killing property combined with Proposition 4.2 implies non-degeneracy. �

Proof of Theorem. Let M be presented by an oriented framed link

L D .L1; : : : ; Ln/

with all components Li unknotted (such a link always exists, see [11]). Then, the

invariant

�C.M/ D
FC.L.!; : : : ; !//

.FC.U1.!///bC.FC.U�1.!///b�
:

If we replace

! D

m�1
X

iD0

htiiı t iı Q!

in FC.L.!; : : : ; !// and apply Proposition (a) we obtain

FC.L.!; : : : ; !// D FzC.L. Q!; : : : ; Q!//

m�1
X

i1;:::;inD0

hti.i1C���Cin/ıFC.L.t
i1ı ; : : : ; t inı//:
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In particular, for � D ˙1, we have

FC.U�.!// D FzC.U�. Q!//

m�1
X

iD0

htiiıFC.U�.t
iı//:

Given the link L with components colored by t i1ı ; : : : ; t inı , we can compute

FC.L.t
i1ı ; : : : ; t inı// as follows: �rst we make each component of L zero framed;

then we unlink the components (using Proposition (c) and (d) as many times as

necessary). Finally, we obtain n disjoint and unlinked copies of the zero framed

unknot with colors t i1ı ; : : : ; t inı and the relation:

FC.L.t
i1ı ; : : : ; t inı// D hti.i1C���Cin/ı � �.i1;:::;in/L.i1;:::;in/t

;

where .Lij / is the linking matrix of L. Similarly

FC.U�.t
iı// D htiiı � ��i2

and the Reshetikin–Turaev invariant decomposes as

�C.M/ D �zC.M/

X

l2.Zm/n

�
t lLl

�

X

i2Zm

� i2
�bC�

X

i2Zm

��i2
�b�

:

Note that for d even, � is an mth root of unity if m is odd and a 2mth root of

unity if m is even and according to [16],

�MMO
� .M/ D

X

l2.Zm/n

�
t lLl

�

X

i2Zm

� i2
�bC�

X

i2Zm

��i2
�b�

is a topological invariant of M independent on the choice of L, known as the

Murakami–Ohtsuki–Okada invariant. �
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