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Cable links and L-space surgeries

Eugene Gorsky1 and Jennifer Hom2

Abstract. An L-space link is a link in S3 on which all su�ciently large integral surgeries

are L-spaces. We prove that for m; n relatively prime, the r-component cable link Krm;rn

is an L-space link if and only if K is an L-space knot and n=m � 2g.K/ � 1. We also

compute HFL– and bHFL of an L-space cable link in terms of its Alexander polynomial.

As an application, we con�rm a conjecture of Licata [7] regarding the structure of bHFL for

.n; n/ torus links.
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1. Introduction

Heegaard Floer homology is a package of 3-manifold invariants de�ned by

Ozsváth and Szabó [12, 13]. In its simplest form, it associates to a closed 3-mani-

fold Y a graded vector space cHF.Y /. For a rational homology sphere Y , they show

that

dim cHF.Y / � jH1.Y IZ/j:

If equality is achieved, then Y is called an L-space.

A knot K � S3 is an L-space knot if K admits a positive L-space surgery.

Let S3
p=q

.K/ denote p=q Dehn surgery along K. If K is an L-space knot, then

S3
p=q

.K/ is an L-space for all p=q � 2g.K/ � 1, where g.K/ denotes the Seifert

genus of K [16, Corollary 1.4]. A link L � S3 is an L-space link if all su�ciently

large integral surgeries on L are L-spaces. In contrast to the knot case, if L admits

a positive L-space surgery, it does not necessarily follow that all su�ciently large

surgeries are also L-spaces; see [10, Example 2.3].

For relatively prime integers m and n, let Km;n denote the .m; n/ cable of K,

where m denotes the longitudinal winding. Without loss of generality, we will

assume that m > 0. Work of Hedden [3] (“if” direction) and the second author [5]

(“only if” direction) completely classi�es L-space cable knots.

Theorem 1 ([3, 5]). Let K be a knot in S3, m > 1 and gcd.m; n/ D 1. The

cable knot Km;n is an L-space knot if and only if K is an L-space knot and

n=m > 2g.K/ � 1.

Remark 1.1. Note that when m D 1, we have that K1;n D K for all n.

We generalize this theorem to cable links with many components. Throughout

the paper, we assume that each component of a cable link is oriented in the same

direction.

Theorem 2. Let K be a knot in S3 and gcd.m; n/ D 1. The r-component

cable link Krm;rn is an L-space link if and only if K is an L-space knot and

n=m � 2g.K/ � 1.

In [14], Ozsváth and Szabó show that if K is an L-space knot, then 1HFK.K/ is

completely determined by �K.t /, the Alexander polynomial of K. Consequently,

the Alexander polynomials of L-space knots are quite constrained (the non-zero

coe�cients are all ˙1 and alternate in sign) and the rank of 1HFK.K/ is at most

one in each Alexander grading. In [10, Theorem 1.15], Liu generalizes this result
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to give bounds on the rank of HFL–.L/ in each Alexander multi-grading and on

the coe�cients of the multi-variable Alexander polynomial of an L-space link L

in terms of the number of components of L. For L-space cable links, we have the

following stronger result.

De�nition 1.2. De�ne the Z-valued functions h.k/ and ˇ.k/ by the equations

X

k

h.k/tk D
t�1�m;n.t /.tmnr=2 � t�mnr=2/

.1 � t�1/2.tmn=2 � t�mn=2/
; ˇ.k/ D h.k � 1/ � h.k/ � 1;

(1.1)

where �m;n.t / is the Alexander polynomial of the cable knot Km;n.

Throughout, we work with F D Z=2Z coe�cients. The following theorem

gives a complete description of the homology groups bHFL for cable links with

n=m > 2g.K/ � 1.

Theorem 3. Let Krm;rn be a cable link with n=m > 2g.K/ � 1.

(a) If ˇ.k/ C ˇ.k C 1/ � r � 2, then

bHFL.Krm;rn; k; : : : ; k/

'

ˇ.k/M

iD0

�
r � 1

i

�
F�2h.k/�i ˚

ˇ.kC1/M

iD0

�
r � 1

i

�
F�2h.k/C2�rCi :

(b) If ˇ.k/ C ˇ.k C 1/ � r � 2, then

bHFL.Krm;rn; k; : : : ; k/

'

r�2�ˇ.kC1/M

iD0

�
r � 1

i

�
F�2h.k/�i ˚

r�2�ˇ.k/M

iD0

�
r � 1

i

�
F�2h.k/C2�rCi :

(c) If v has j coordinates equal to k � 1 and r � j coordinates equal to k for

some k and 1 � j � r � 1, then

bHFL.Krm;rn; .k � 1/j ; kr�j / '

�
r � 2

ˇ.k/

�
F�2h.k/�ˇ.k/�j :

(d) For all other Alexander gradings the groups bHFL vanish.

We prove the parts of this theorem as separate Theorems 4.22, 4.24 and 4.25.

We compute bHFL explicitly for several examples in Section 5. In particular, we

use Theorem 3 to con�rm a conjecture of Joan Licata [7, Conjecture 1] concerning
bHFL for .n; n/ torus links.
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Theorem 4. Suppose that 0 � s � n�1
2

. Then

bHFL
�
T .n; n/;

n � 1

2
� s; : : : ;

n � 1

2
� s

�

D

sM

iD0

�
n � 1

i

�
F.�s2�s�i/ ˚

s�1M

iD0

�
n � 1

i

�
F.�s2�s�nC2Ci/:

Combined with [7, Theorem 2], this completes the description of bHFL.T .n;n//.

The following theorem describes the homology groups HFL– for cable links

with n=m > 2g.K/ � 1.

Theorem 5. Let K be an L-space knot and n=m > 2g.K/ � 1. Consider an

Alexander grading v D .v1; : : : ; vn/. Suppose that among the coordinates vi

exactly � are equal to k and all other coordinates are less than k. Let jvj D

v1 C � � � C vn. Then the Heegaard–Floer homology group HFL–.Krm;rn; v/ can

be described as follows.

(a) If ˇ.k/ < r � � then HFL–.Krm;rn; v/ D 0.

(b) If ˇ.k/ � r � � then

HFL–.Krm;rn; v/ ' .F.0/ ˚ F.�1//
r�� ˝

ˇ.k/�rC�M

iD0

�
� � 1

i

�
F.�2h.v/�i/;

where h.v/ D h.k/ C kr � jvj.

We prove this theorem in Section 4.2. The structure of the homology for

n=m D 2g.K/�1 (which is possible only if m D 1) is more subtle and is described

in Theorem 4.26.

Finally, we describe HFL– as anFŒU1; : : : ; Ur �–module. We de�ne a collection

of FŒU1; : : : ; Ur �–modules Mˇ for 0 � ˇ � r � 2, Mr�1;k for k � 0 and Mr�1;1.

These modules can be de�ned combinatorially and do not depend on a link.

Theorem 6. Let R D FŒU1; : : : ; Ur � and suppose that n=m > 2g.K/ � 1. There

exists a �nite collection of diagonal lattice points ai D .ai ; : : : ; ai / (determined

by m; n and the Alexander polynomial of K) such that HFL– admits the following

direct sum decomposition:

HFL–.Krm;rn/ D
M

i

R � HFL–.Krm;rn; ai/:

Furthermore, for ˇ.ai / � r � 2 one has R � HFL–.Krm;rn; ai/ ' Mˇ.ai /, and

for ˇ.ai / D r � 1 one has either R � HFL–.Krm;rn; ai / ' Mr�1;k for some k or

R � HFL–.Krm;rn; ai/ ' Mr�1;1.

We compute HFL– explicitly for several examples in Section 5.
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Yajing Liu, Joan Licata, and András Némethi for useful discussions.

2. Dehn surgery and cable links

In this section, we prove Theorem 2. We begin with a result about Dehn surgery

on cable links (cf. [4]).

Proposition 2.1. The manifold obtained by .mn; p2; : : : ; pr/–surgery on the

r-component link Krm;rn is homeomorphic to

S3
n=m.K/#L.m; n/#L.p2 � mn; 1/# � � �#L.pr � mn; 1/:

Proof. Recall (see, for example, [3, Section 2.4]) that mn-surgery on Km;n gives

the manifold S3
n=m

.K/#L.m; n/. Viewing Km;n as the image of Tm;n on @N.K/,

we have that the reducing sphere is given by the annulus @N.K/ n N.Tm;n/ union

two parallel copies of the meridional disk of the surgery solid torus; we obtain a

sphere since the surgery slope coincides with the surface framing.

The link Krm;rn consists of r parallel copies of Km;n on @N.K/. Label these

r copies K1
m;n through Kr

m;n. We perform mn-surgery on K1
m;n and consider

the image zK i
m;n of K i

m;n, 2 � i � r , in S3
n=m

.K/#L.m; n/. Each zK i
m;n lies on

@N.K/nN.Tm;n/ and thus on the reducing sphere. In particular, each zK i
m;n bounds

a disk D2
i in S3

n=m
.K/#L.m; n/ such that the collection ¹D2

2 ; : : : ; D2
r º is disjoint. It

follows that performing surgery on
Sr

iD2
zK i

m;n yields r � 1 lens space summands.

To see which lens spaces we obtain, note that the mn-framed longitude on K i
m;n �

S3 coincides with the 0-framed longitude on zK i
m;n � S3

n=m
.K/#L.m; n/. Thus,

pi -surgery on K i
m;n corresponds to .pi � mn/-surgery on zK i

m;n, and the result

follows. �

Let us recall that the linking number between each two components of Krm;rn

equals l WD mn. It is well-known that the cardinality of H1 of the manifold

obtained by .p1; p2; : : : ; pr/-surgery on Krm;rn equals j det ƒ.p1; : : : ; pr/j, where

ƒij D

´
pi ; if i D j;

l; if i ¤ j:

This cardinality can be computed using the following result.
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Proposition 2.2. One has the following identity:

det ƒ.p1; : : : ; pr/ D .p1 � l/ � � � .pr � l/ C l

rX

iD1

.p1 � l/ � � � 2.pi � l/ � � � .pr � l/:

(2.1)

Proof. One can easily check that det ƒ.l; p2; : : : ; pr/ D l.p2 � l/ � � � .pr � l/: The

expansion of the determinant in the �rst row yields a recursion relation

det ƒ.p1; : : : ; pr/ D det ƒ.l; p2 : : : ; pr/ C .p1 � l/ det ƒ.p2; : : : ; pr/

D l.p2 � l/ � � � .pr � l/ C .p1 � l/ det ƒ.p2; : : : ; pr/:

Now (2.1) follows by induction in r . �

Corollary 2.3. If pi � l for all i then det ƒ.p1; : : : ; pr/ � 0.

In order to prove Theorem 2, we will need the following:

Theorem 2.4 ([10, Proposition 1.11]). A link L is an L–space link if and only if

there exists a surgery framing ƒ.p1; : : : ; pr/, such that for all sublinks L0 � L,

det.ƒ.p1; : : : ; pr/jL0/ > 0 and S3
ƒjL0

.L0/ is an L–space.

We will also need the following proposition, which we prove in Subsection 2.1

below.

Proposition 2.5. Let K be an L-space knot and pi > 0, i D 1; : : : ; r .

If n < 2g.K/ � 1, then the manifold obtained by .p1; : : : ; pr/-surgery on the

r-component link Kr;rn is not an L-space.

Proof of Theorem 2. If Krm;rn is an L-space link, then by [10, Lemma 1.10] all its

components are L-space knots. On the other hand, its components are isotopic

to Km;n. Thus, if m > 1, then by Theorem 1, K is an L-space knot and n=m >

2g.K/ � 1. If m D 1, then K must be an L-space knot and by Proposition 2.5,

n � 2g.K/ � 1.

Conversely, suppose that K is an L-space knot and n=m � 2g.K/ � 1, i.e.,

Km;n is an L-space knot. Let us prove by induction on r that .p1; : : : ; pr/-surgery

on Krm;rn is an L-space if pi > l for all i . For r D 1 it is clear. By Proposition 2.1,

the link Krm;rn admits an L-space surgery with parameters l; p2; : : : ; pr . Let us

apply Theorem 2.4. Indeed, by Corollary 2.3, one has det.ƒ.l; p2 : : : ; pr/jL0/ > 0

and by the induction assumption S3
ƒ.l;p2:::;pr /jL0

.L0/ is an L–space for all sublinks

L0. By [10, Lemma 2.5], .p1; : : : ; pr/-surgery on Krm;rn is also an L-space for all

p1 > l . Therefore Krm;rn is an L-space link. �
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2.1. Proof of Proposition 2.5. We will prove Proposition 2.5 using Lipshitz–

Ozsváth–Thurston’s bordered Floer homology [8], and speci�cally Hanselman–

Watson’s loop calculus [2]. That is, we will decompose the result of surgery on

Kr;rn into two pieces, one that is surgery on a torus link in the solid torus and

the other the knot complement, and then apply a gluing result of Hanselman and

Watson to conclude that the result of this surgery along Kr;rn is not an L-space.

The following was described to us by Jonathan Hanselman.

Let Y1 denote the Seifert �bered space obtained by performing .p1; : : : ; pr/-

surgery on the r-component .r; 0/-torus link in the solid torus. Consider the

bordered manifold .Y1; ˛1; ˇ1/, where ˛1 is the �ber slope and ˇ1 lies in the base

orbifold; that is, ˛1 is the longitude and ˇ1 the meridian of the original solid torus.

Let .Y2; ˛2; ˇ2/ be the n-framed complement of K; that is, Y2 D S3 n N.K/, ˛2 is

an n-framed longitude, and ˇ2 is a meridian. Let .Y1; ˛1; ˇ1/[.Y2; ˛2; ˇ2/ denote

the result of gluing Y1 to Y2 by identifying ˛1 with ˛2 and ˇ1 with ˇ2. Note

that .Y1; ˛1; ˇ1/ [ .Y2; ˛2; ˇ2/ is homeomorphic to .p1; : : : ; pr/-surgery along

Kr;rn. We identify the slope p˛i Cqˇi on @Yi with the (extended) rational number
p
q

2 Q [ ¹1
0
º.

The following lemma gives a description of bCFD.Y1; ˛1; ˇ1/ in terms of the

standard notation de�ned in [2, Section 3.2].

Lemma 2.6. The invariant bCFD.Y1; ˛1; ˇ1/ can be written in standard notation

as a product of dki
where

(1) ki � 0 for all i ,

(2) ki D 0 for at least one i ,

(3) ki D �r for exactly one i .

Proof. The computation is similar to the example in [2, Section 6.5]. A plumbing

tree � for Y1 is given in Figure 1. We �rst consider the plumbing tree �i in

Figure 2(a). We will build � by merging the �i , i D 1; : : : ; r .

We proceed as in [2, Section 6.5]. Start with a loop .d0/ representing the tree

�0 in Figure 2(b). We have that �i D E.T pi .�0// so by [2, Sections 3.3 and 6.3]:

bCFD.�i / D e.tpi ..d0///

D e..dpi
//

D .d �
�pi

/

� .d�1 d0 : : : d0„ ƒ‚ …
pi

/:
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Figure 1. The plumbing tree � .

Figure 2. Left, the plumbing tree �i . Right, the plumbing tree �0.

We then have that � D M.�2;M.�2; : : : ;M.�pr�1
; �pr

///. By [2, Proposi-

tion 6.4], we have that bCFD.�/ is a represented by a product of dki
where ki � 0

for all i and ki D 0 for at least one i since each pi > 0. Moreover, d�r appears

exactly once in the product, since we performed r � 1 merges. This completes the

proof of the lemma. �

Lemma 2.7. The slope 1 is not a strict L-space slope on .Y1; ˛1; ˇ1/.

Proof. We will apply a positive Dehn twist to .Y1; ˛1; ˇ1/ to obtain .Y1; ˛1,

ˇ1 C ˛1/. We will show that 0 is not a strict L-space slope on .Y1; ˛1; ˇ1 C ˛1/,

and hence 1 is not a strict L-space slope on .Y1; ˛1; ˇ1/.

By [2, Proposition 6.1], we have that bCFD.Y1; ˛1; ˇ1 C ˛1/ can be obtained

by applying t to a loop representative of bCFD.Y1; ˛1; ˇ1/. Since t.dk/ D dkC1,

it follows from Lemma 2.6 that bCFD.Y1; ˛1; ˇ1 C ˛1/ can be written in standard

notation as a product of dki
with ki � 1 for all i , ki D 1 for at least one i , and

ki D 1 � r for exactly one i .

We claim that if a loop ` contains both positive and negative dk segments (i.e.,

both di ; i > 0 and dj ; j < 0), then in dual notation ` contains at least one a�
i

or b�
j segment. Indeed, suppose by contradiction that ` has no a�

i or b�
j . Then `

consists of only d �
i segments, i 2 Z. It is straightforward to see (for example, by
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considering the segments as drawn in [2, Figure 1]) that one cannot obtain a loop

containing both positive and negative dk segments from d �
i segments, i 2 Z. This

completes the proof of the claim.

Furthermore, note that bCFD.Y1; ˛1; ˇ1 C ˛1/ consists of simple loops (see

De�nition 4.19 of [2]). Then by [2, Proposition 4.24], in dual notation ` has no

a�
k

or b�
k

segments for k < 0. It now follows from Proposition 4.18 of [2] that 0

is not a strict L-space slope for bCFD.Y1; ˛1; ˇ1 C ˛1/. Therefore, 1 is not a strict

L-space slope on .Y1; ˛1; ˇ1/, as desired. �

Remark 2.8. Note that by Proposition 4.18 of [2], we have that 0 and 1 are strict

L-space slopes on .Y1; ˛1; ˇ1/. Since 1 is not a strict L-space slope, it follows from

Corollary 4.5 of [2] that the interval of L-space slopes of .Y1; ˛1; ˇ1/ contains the

interval Œ�1; 0�.

Remark 2.9. An alternative proof of Lemma 2.7 follows from [9, Theorem 1.1].

Indeed, by setting ri D 1=pi and e0 D �1 in Figure 1 of [9], we see that

M.�1I 1=p1; : : : ; 1=pr/ is not an L-space, hence neither is M.1I �1=p1; : : : ,

�1=pr /, which is homeomorphic to �lling .Y1; ˛1; ˇ1/ along a curve of slope 1.

Lemma 2.10. Let K be an L-space knot. If n < 2g.K/ � 1, then 1 is not a strict

L-space slope on the n-framed knot complement .Y2; ˛2; ˇ2/.

Proof. Since K is an L-space knot, we have that S3
K.p=q/ is an L-space exactly

when p=q � 2g.K/ � 1. Since ˛2 is an n-framed longitude, it follows that

the interval of strict L-space slopes on .Y2; ˛2; ˇ2/ is .0; 1
2g.K/�1�n

/, that is, the

reciprocal of the interval .2g.K/ � 1 � n; 1/. �

Proof of Proposition 2.5. The result now follows from [2, Theorem 1.3] com-

bined with Lemmas 2.7 and 2.10; the slope 1 is not a strict L-space slope on

either .Y1; ˛1; ˇ1/ or .Y2; ˛2; ˇ2/, and so the resulting manifold .Y1; ˛1; ˇ1/ [

.Y2; ˛2; ˇ2/, which is .p1; : : : ; pr/-surgery on Kr;rn, is not an L-space. �

Remark 2.11. One can use similar methods to provide an alternate proof that

Kr;rn is an L-space link if K is an L-space knot and n � 2g.K/ � 1. Indeed,

if K is an L-space knot, then the interval of strict L-space slopes on the n-

framed knot complement .Y2; ˛2; ˇ2/ is .0; 1
2g.K/�1�n

/ if n � 2g.K/ � 1 and

.0; 1� [ Œ�1; 1
2g.K/�1�n

/ if n > 2g.K/ � 1. Hence if n � 2g.K/ � 1, then

the interval of strict L-space slopes on .Y2; ˛2; ˇ2/ contains the interval .0; 1/.

By Remark 2.8, we have that the interval of strict L-space slopes on .Y1; ˛1; ˇ1/

contains Œ�1; 0�. Therefore, by [2, Theorem 1.4], if n � 2g.K/ D 1, then the

result of positive surgery (i.e., each surgery coe�cient is positive) on Kr;rn is an

L-space.
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3. A spectral sequence for L-space links

In this section we review some material from [1]. Given u; v 2 Zr , we write

u � v if ui � vi for all i , and u � v if u � v and u ¤ v. Recall that we work with

F D Z=2Z coe�cients.

De�nition 3.1. Given a r-component oriented link L, we de�ne an a�ne lattice

over Zr :

H.L/ D

rM

iD1

Hi .L/; Hi .L/ D Z C
1

2
lk.Li ; L � Li /:

Let us recall that the Heegaard–Floer complex for a r-component link L is

naturally �ltered by the subcomplexes A�
L.LI v/ of FŒU1; : : : ; Ur �-modules for

v 2 H.L/. Such a subcomplex is spanned by the generators in the Heegaard–

Floer complex of Alexander �ltration less than or equal to v in the natural partial

order on H.L/. The group HFL–.L; v/ can be de�ned as the homology of the

associated graded complex:

HFL–.L; v/ D H�

�
A�.LI v/=

X

u�v

A�.LI u/
�
: (3.1)

One can forget a component Lr in L and consider the .r � 1/-component link

L � Lr . There is a natural forgetful map �r WH.L/ ! H.L � Lr / de�ned by the

equation:

�r.v1; : : : ; vr/ D .v1 � lk.L1; Lr/=2; : : : ; vr�1 � lk.Lr�1; Lr/=2/ :

Similarly, one can de�ne a map �L0 WH.L/ ! H.L0/ for every sublink L0 � L.

Furthermore, for large vr � 0 the subcomplexes A�.LI v/ stabilize, and

by [15, Proposition 7.1] one has a natural homotopy equivalence A�.LI v/ �

A�.L � Lr I �r.v//. More generally, for a sublink L0 D Li1 [ � � � [ Lir0 one

gets

A�.L0I �L0.v// � A�.LI v/; if vi � 0 for i … ¹i1; : : : ; ir 0º: (3.2)

We will use the “inversion theorem” of [1], expressing the h-function of a

link in terms of the Alexander polynomials of its sublinks, or, equivalently,

the Euler characteristics of their Heegaard–Floer homology. De�ne �L;v WD

�.HFL–.L; v//. Then by [15]

�L.t1; : : : ; tr/ WD
X

v2H.L/

�L;vt
v1

1 � � � tvr
r D

8
<
:

.t1 � � � tr/1=2�.t1; : : : ; tr/ if r > 1;

�.t/=.1 � t�1/ if r D 1;

where �.t1; : : : ; tr/ denotes the symmetrized Alexander polynomial.
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Remark 3.2. We choose the factor .t1 � � � tr/1=2 to match more established con-

ventions on the gradings for the hat-version of link Floer homology. For example,

the Alexander polynomial of the Hopf link equals 1, and one can check [15] that
bHFL is supported in Alexander degrees .˙1

2
; ˙1

2
/. Since the maximal Alexander

degrees in bHFL and HFL– coincide, one gets �T .2;2/.t1; t2/ D t
1=2
1 t

1=2
2 .

The following “large surgery theorem” underlines the importance of A�.LI v/.

Theorem 3.3 ([11]). The homology of A�.LI v/ is isomorphic to the Heegaard–

Floer homology of a large surgery on L with spinc-structure speci�ed by v. In

particular, if L is an L-space link, then H�.A�.L; v// ' FŒU � for all v and all Ui

are homotopic to each other on the subcomplex A�.LI v/.

One can show that for L-space links the inclusion hvW A�.L; v/ ,! A�.S3/ is

injective on homology, so it is multiplication by U hL.v/. Therefore the generator

of H�.A�.L; v// ' FŒU � has homological degree �2hL.v/. The function hL.v/

will be called the h–function for an L–space link L. In [1] it was called an

“HFL-weight function.”

Furthermore, if L is an L-space link, then for large N 2 H.L/ one has

�.A�.LI N /=A�.L; v// D hL.v/:

Hence, by (3.1) and the inclusion-exclusion formula one can write

�L;v D
X

B�¹1;:::;rº

.�1/jBj�1hL.v � eB/; (3.3)

where eB denotes the characteristic vector of the subset B � ¹1; : : : ; rº. Further-

more, by (3.2) for a sublink L0 D Li1 [ � � � [ Lir0 one gets

hL0.�L0.v// D hL.v/; if vi � 0 for i … ¹i1; : : : ; ir 0º: (3.4)

For r D 1 equation (3.3) has the form �L;v D h.v�1/�h.v/, so h.v/ can be easily

reconstructed from the Alexander polynomial: hL.v/ D
P

u�vC1 �L;v: For r > 1,

one can also show that equation (3.3) (together with the boundary conditions (3.4))

has a unique solution, which is given by the following theorem.

Theorem 3.4 ([1]). The h-function of an L-space link is determined by the Alexan-

der polynomials of its sublinks as follow:

hL.v1; : : : ; vr/ D
X

L0�L

.�1/r 0�1
X

u��L0 .vC1/

�L0;u; (3.5)

where the sublink L0 has r 0 components and 1 D .1; : : : ; 1/.
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Given an L-space link, we construct a spectral sequence whose E2 page

can be computed from the multi-variable Alexander polynomial by an explicit

combinatorial procedure, and whose E1 page coincides with the group HFL–.

The complex (3.1) is quasi-isomorphic to the iterated cone:

K.v/ D
M

B�¹1;:::;rº

A�.L; v � eB/;

where the di�erential consists of two parts: the �rst acts in each summand and the

second acts by inclusion maps between summands. There is a spectral sequence

naturally associated to this construction. Its E1 term equals

E1.v/ D
M

B�¹1;:::;rº

H�.A�.L; v � eB// D
M

B�¹1;:::;rº

FŒU �hz.v � eB/i;

where z.u/ is the generator of H�.A�.L; u// of degree �2hL.u/. The next

di�erential @1 is induced by inclusions and reads as

@1.z.v � eB// D
X

i2B

U h.v�eB /�h.v�eB�i /z.v � eB C ei /: (3.6)

We obtain the following result.

Theorem 3.5 ([1]). Let L be an L-space link with r components and let hL.v/

be the corresponding h-function. Then there is a spectral sequence with E2.v/ D

H�.E1; @1/ and E1 ' HFL–.L; v/.

Remark 3.6. Let us write more precisely the bigrading on the E2 page. The E1

page is naturally bigraded as follows: a generator U mz.v � eB/ has cube degree

jBj and its homological degree in A�.L; v � eB/ equals �2m � 2h.v � eB/. In

short, we will write

bideg .U mz.v � eB// D .jBj; �2m � 2h.v � eB//:

The homological degree of the same generator in E1.v/ equals the sum of these

two degrees. The di�erential @1 has bidegree .�1; 0/, and, more generally, the

di�erential @k in the spectral sequence has bidegree .�k; k � 1/.

In the next section we will compute the E2 page for cable L-space links and

show that E2 D E1. Let us discuss the action of the operators Ui on the E2 page.

Recall that Ui maps A�.L; v/ to A�.L; v � ei /, and in homology one has

Uiz.v/ D U 1�h.v�ei /Ch.v/z.v � ei /: (3.7)

Since Ui commutes with the inclusions of various A�, we get the following result.
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Proposition 3.7. Equation (3.7) de�nes a chain map from K.v/ to K.v � ei /

commuting with the di�erential @1, so we have a well-de�ned combinatorial map

Ui W H�.E1.v/; @1/ �! H�.E1.v � ei/; @1/:

If E2 D E1 then one obtains Ui W HFL–.L; v/ ! HFL–.L; v � ei /.

Furthermore, by the de�nition of bHFL [15, Section 4] one gets

bHFL.L; v/ D H�

�
A�.L; v/=

h rX

iD1

A�.v � ei / ˚

rX

iD1

UiA
�.v C ei /

i�
:

This implies the following result.

Proposition 3.8. There is a spectral sequence with E1 page

yE1 D
M

B�¹1;:::;rº

HFL–.L; v C eB/

and converging to yE1 D bHFL.L; v/. The di�erential y@1 is given by the action of

Ui induced by (3.7).

4. Heegaard–Floer homology for cable links

4.1. The Alexander polynomial and h–function. The Alexander polynomial

of cable knots and links is given by the following well-known formula:

�Krm;rn
.t1; : : : ; tr/ D �K.tm

1 � � � tm
r / � �T .rm;rn/.t1; : : : ; tr/; (4.1)

where T .rm; rn/ denotes the .rm; rn/ torus link. Throughout, let t D t1 � � � tr and

l D mn.

Lemma 4.1. The generating functions for the Euler characteristics of HFL– for

Krm;rn and Km;n are related by the following equation:

�Krm;rn
.t1; : : : ; tr/ D �Km;n

.t/ � .tl=2 � t�l=2/r�1: (4.2)

Proof. The statement follows from the identity (4.1) and the expression for the

Alexander polynomials of torus links:

�T .rm;rn/.t1; : : : ; tr/ D
.tmn=2 � t�mn=2/r

.tm=2 � t�m=2/.tn=2 � t�n=2/
:

�
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Remark 4.2. The Alexander polynomial is determined up to a sign. By (4.2), the

multivariable Alexander polynomial of a cable link is supported on the diagonal,

so one can �x the sign by requiring its top coe�cient to be positive.

From now on we will assume that K is an L-space knot and n=m � 2g.K/�1,

so Krm;rn is an L-space link for all r . To simplify notation, we de�ne hrm;rn.v/ D

hKrm;rn
.v/ and �rm;rn.v/ D �Krm;rn;v: Let c D l.r � 1/=2.

Theorem 4.3. Suppose that v1 � v2 � � � � � vr . Then the following equation

holds:

hrm;rn.v1; : : : ; vr/

D hm;n.v1 � c/ C hm;n.v2 � c C l/ C � � � C hm;n.vr � c C .r � 1/l/:
(4.3)

Proof. We will use Theorem 3.4 to compute h.v/. Let L0 be a sublink of Krm;rn

with r 0 components, i.e., L0 D Kr 0m;r 0n. By (4.2), one has

�Kr0m;r0n
.t1; : : : ; tr 0/ D �Km;n

.t/ � tl.r 0�1/=2

r 0�1X

j D0

.�1/j

�
r 0 � 1

j

�
t�lj ;

hence �L0;u does not vanish only if u D .s; : : : ; s/, and

�L0;s;:::;s D

r 0�1X

j D0

.�1/j

�
r 0 � 1

j

�
�m;n.s � l.r 0 � 1/=2 C lj /:

Therefore

X

u��L0 .vC1/

�L0;u D
X

s>max.�L0 .v//

r 0�1X

j D0

.�1/j

�
r 0 � 1

j

�
�m;n.s � l.r 0 � 1/=2 C lj /

D

r 0�1X

j D0

.�1/j

�
r 0 � 1

j

�
hm;n.max.�L0.v// � l.r 0 � 1/=2 C lj /:

Furthermore, if L0 D Li1 [ � � � [ Lir0 then

�L0.v/ D .vi1 � l.r � r 0/=2; : : : ; vir0 � l.r � r 0/=2/;

so

max.�L0.v// D max.vi1; : : : ; vi 0
r
/ � l.r � r 0/=2 D max.vL0/ � l.r � r 0/=2:
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This means that (3.5) can be rewritten as follows:

hrm;rn.v1; : : : ; vr/

D
X

L0;j

.�1/r 0�1Cj

�
r 0 � 1

j

�
hm;n.max.vL0/ � l.r � 1/=2 C lj /

D
X

i;j

hm;n.vi � l.r � 1/=2 C lj /
X

L0Wvi Dmax.vL0 /

.�1/r 0�1Cj

�
r 0 � 1

j

�
:

One can check that the inner sum vanishes unless j D i �1 (recall that v1 � v2 �

� � � � vr ), so one gets

hrm;rn.v1; : : : ; vr/ D
X

i

hm;n.vi � l.r � 1/=2 C l.i � 1//: �

Lemma 4.4. The following identity holds:

hrm;rn.�v1; : : : ; �vr/ D hrm;rn.v1; : : : ; vr/ C .v1 C � � � C vr/:

Proof. Suppose that v1 � v2 � � � � � vr . Then �v1 � �v2 � � � � � �vr .

Therefore

hrm;rn.�v1; : : : ; �vr/ D

rX

iD1

hm;n.�vi � l.r � 1/=2 C l.r � i//

D

rX

iD1

hm;n.�vi C l.r � 1/=2 � l.i � 1//:

It is known (e.g., [6]) that for all x,

hm;n.�x/ D hm;n.x/ C x;

hence

hm;n.�vi C l.r � 1/=2 � l.i � 1//

D hm;n.vi � l.r � 1/=2 C l.i � 1// C .vi � l.r � 1/=2 C l.i � 1//:

Finally,
Pr

iD1.�l.r � 1/=2 C l.i � 1// D 0. �
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Lemma 4.5. One has hrm;rn.k; k : : : ; k/ D h.k/, where h.k/ is de�ned by (1.1).

Proof. Indeed, by (4.3) we have

hrm;rn.k; : : : ; k/ D hm;n.k � l.r � 1/=2/ C hm;n.k � l.r � 1/=2 C l/ C � � �

C hm;n.k C l.r � 1/=2/;

so

X

k

hrm;rn.k; : : : ; k/tk D .t�l.r�1/=2 C � � � C t l.r�1/=2/
X

k

hm;n.k/tk

D
.t lr=2 � t�lr=2/

.t l=2 � t�l=2/
�

t�1�m;n.t /

.1 � t�1/2
: �

For the rest of this section we will assume that n=m > 2g.K/ � 1.

Lemma 4.6. If v � g.Km;n/ � l , then HFK–.Km;n; v/ ' F.

Proof. By [3, Theorem 1.10], Km;n is an L-space knot and hence by [14]

g.Km;n/ D �.Km;n/; g.K/ D �.K/:

By [17], we have

g.Km;n/ D mg.K/ C
.m � 1/.n � 1/

2
;

so for n=m > 2g.K/ � 1 we have

2g.Km;n/ D 2mg.K/ C mn � m � n C 1 < mn C 1;

hence l D mn � 2g.Km;n/. On the other hand, it is well known that for

v � �g.Km;n/ one has HFK–.Km;n; v// ' F. �

We will use the function ˇ de�ned by (1.1).

Lemma 4.7. If ˇ.k/ D �1 then HFK–.Km;n; k � c/ D 0. Otherwise

ˇ.k/ D max¹j W 0 � j � r � 1; HFK–.Km;n; k � c C lj / ' Fº: (4.4)



Cable links and L-space surgeries 645

Proof. By (1.1) and Lemma 4.5 we have

ˇ.k/ C 1 D hrm;rn.k � 1; : : : ; k � 1/ � hrm;rn.k; : : : ; k/

D

r�1X

j D0

.hm;n.k � 1 � c C lj / � hm;n.k � c C lj //:

Note that hm;n.k �1�c C lj /�hm;n.k �c C lj / D dim HFK–.Km;n; k �c C lj / 2

¹0; 1º: If HFK–.Km;n; k�cClj / ' F then k�cClj � g.Km;n/, so by Lemma 4.6

HFK–.Km;n; k �c C lj 0/ ' F for all j 0 < j . Therefore, if HFK–.Km;n; k �c/ D 0

then ˇ.k/ D �1, otherwise

HFK–.Km;n; k � c C lj / D

8
<
:
F if j � ˇ.k/;

0 if j > ˇ.k/: �

Suppose that

v1 D � � � D v�1
D u1;

v�1C1 D � � � D v�1C�2
D u2;

:::

v�1C���C�s�1C1 D � � � D vr D us ;

where u1 < u2 < � � � < us and �1 C � � � C �s D r . We will abbreviate this as

v D .u
�1

1 ; : : : ; u
�s
s /:

Lemma 4.8. Suppose that ˇ.us/ < r ��s . Then for any subset B � ¹1; : : : ; r �1º

one has hrm;rn.v � eB/ D hrm;rn.v � eB � er /.

Proof. To apply (4.3), one needs to reorder the components of the vectors v � eB

and v � eB � er . Note that in both cases the last (largest) �s components are equal

either to us or to us � 1, and the corresponding contributions to hrm;rn are equal

to hm;n.us �c C l.r ��s/C lj / or to hm;n.us �c C l.r ��s/C lj �1/, respectively

(j D 0; : : : ; �s � 1). On the other hand, by (4.4) one has

HFK–.Km;n; us � c C l.r � �s/ C lj / D 0

and so

hm;n.us � c C l.r � �s/ C lj � 1/ D hm;n.us � c C l.r � �s/ C lj /: �
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Lemma 4.9. If ˇ.us/ � r � �s then hrm;rn.v/ D h.us/ C rus � jvj:

Proof. Since ˇ.us/ � r � �s, we have HFK–.Km;n; us � c C l.r � �s// ' F, so

us � c C l.r � �s/ � g.Km;n/:

For i � r � �s we get

vi � c C l.i � 1/ < us � c C l.i � 1/ � us � c C l.r � �s/ � l � g.Km;n/ � l;

so by Lemma 4.6, HFK–.Km;n; w/ ' F for all w 2 Œvi�cCl.i�1/; us�cCl.i�1/�,

and

hm;n.vi � c C l.i � 1// D hm;n.us � c C l.i � 1// C .us � vi /:

Now the statement follows from Lemma 4.3. �

Lemma 4.10. Suppose that ˇ.us/ � r � �s. Then for any subsets B 0 � ¹1; : : : ;

r � �sº and B 00 � ¹r � �s C 1; : : : ; rº one has

hrm;rn.v � eB0 � eB00/ D hrm;rn.v/ C jB 0j C min.jB 00j; ˇ.us/ � r C �s C 1/:

Proof. Since HFK–.Km;n; us � c C l.r � �s// ' F, we have

us � c C l.r � �s/ � g.Km;n/;

so for all i � r � �s one has

vi � c C l.i � 1/ < us � c C l.r � �s/ � l � g.Km;n/ � l;

and by Lemma 4.6 HFK–.Km;n; vi � c C l.i � 1// ' F, and

hm;n.vi � 1 � c C l.i � 1// D hm;n.vi � c C l.i � 1// C 1:

Therefore

hrm;rn.v � eB0 � eB00/ D jB 0j C hrm;rn.v � eB00/:

Finally,

hrm;rn.v � eB00/ � hrm;rn.v/ D

jB00jX

j D0

.hm;n.us � 1 � c C l.r � �s/ C lj /

� hm;n.us � c C l.r � �s/ C lj /

D min.jB 00j; ˇ.us/ � r C �s C 1/: �
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4.2. Spectral sequence for HFL–

De�nition 4.11. Let Er denote the exterior algebra overFwith variables z1; : : : ; zr .

Let us de�ne the cube di�erential on Er by the equation

@.z˛1
^ � � � ^ z˛k

/ D

kX

j D1

z˛1
^ � � � ^ yz

j̨
^ � � � ^ z˛k

;

and the b-truncated di�erential on Er ŒU � by the equation

@.b/.z˛1
^ � � � ^ z˛k

/ D

8
<
:

U @.z˛1
^ � � � ^ z˛k

/ if k � b;

@.z˛1
^ � � � ^ z˛k

/ if k > b:

More invariantly, we de�ne the weight of a monomial z˛ D z˛1
^ � � � ^ z˛k

as

w.z˛/ D min.j˛j; b/, and the b-truncated di�erential is given by the equation

@.b/.z˛/ D
X

i2˛

U w.˛/�w.˛�˛i /z˛�˛i
: (4.5)

Indeed, w.˛/ � w.˛ � ˛i / D 1 for j˛j � b and w.˛/ � w.˛ � ˛i / D 0 for j˛j > b.

De�nition 4.12. Let E red
r � Er be the subalgebra of Er generated by the di�erences

zi � zj for all i ¤ j .

Lemma 4.13. The kernel of the cube di�erential @ on Er coincides with E red
r .

Proof. It is clear that @.zi � zj / D 0, and Leibniz rule implies vanishing of @ on

E red
r . Let us prove that Ker @ � E red

r . Since .Er ; @/ is acyclic, it is su�cient to

prove that the image of every monomial z˛1
^ � � �^ z˛k

is contained in Er . Indeed,

one can check that

@.z˛1
^ � � � ^ z˛k

/ D .z˛2
� z˛1

/ ^ � � � ^ .z˛k
� z˛k�1

/: �

Lemma 4.14. The homology of @.b/ is given by the following equation:

dim Hk.Er ŒU �; @.b// D

8
ˆ̂<
ˆ̂:

�
r � 1

k

�
if k < b;

0 if k � b:
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Proof. Since @ is acyclic, one immediately gets Hk.Er ŒU �; @.b// D 0 for k � b.

For k < b, the homology is supported at the zeroth power of U and one has

Hk.Er ŒU �/ ' Ker.@j^k.z1;:::;zr //. The dimension of the latter kernel equals

dim Ker.@j^k.z1;:::;zr // D dim ^k.z1 � z2; : : : ; z1 � zr/ D

�
r � 1

k

�
: �

Proof of Theorem 5. Let us compute HFL–.Krm;rn; v/ using the spectral sequence

constructed in Theorem 3.5. By Lemma 4.8, in case (a) it is easy to see that the

complex .E1; @1/ is contractible in the direction of er and E2 D H�.E1; @1/ D 0.

In case (b) by Lemma 4.10 and (4.5) one can write E1 D Er��s
ŒU � ˝FŒU �

E�s
ŒU �, a tensor product of chain complexes of FŒU �–modules, and @1 acts as U @

on the �rst factor and as @.ˇC1/ on the second one. This implies

E2 D H�.E1; @1/ ' Er��s
˝F H�.E�s

ŒU �; @.ˇC1//: (4.6)

Indeed, U acts trivially on H�

�
E�s

ŒU �; @.ˇC1/
�
, so one can take the homology of

@.ˇC1/ �rst and then observe that U @ vanishes on

Er��s
ŒU � ˝FŒU � H�.E�s

ŒU �; @.ˇC1// ' Er��s
˝F H�.E�s

ŒU �; @.ˇC1//:

By Lemma 4.14, the E2 page (4.6) agrees with the statement of the theorem, hence

we need to prove that the spectral sequence collapses.

Indeed, the E1 page is bigraded by the homological degree and jBj (see

Remark 3.6). By Lemma 4.14 any surviving homology class on the E2 page of

cube degree x has bidegree .x; �2hrm;rn.v/ � 2x/, so all bidegrees on the E2

page belong to the same line of slope .�2/. Therefore all higher di�erentials must

vanish.

Finally, a simple formula for hrm;rn.v/ in case (b) follows from Lemma 4.9.

�

4.3. Action of Ui . One can use Proposition 3.7 to compute the action of Ui on

HFL– for cable links. Recall that R D FŒU1; : : : ; Ur �. Throughout this section we

assume n=m > 2g.K/ � 1. We start with a simple algebraic statement.

Proposition 4.15. Let C be an F-algebra. Given a �nite collection of elements

c˛ 2 C and vectors v.˛/ 2 Zr , consider the ideal I � C ˝F R generated by

c˛ ˝ U
v

.˛/
1

1 � � � U
v

.˛/
r

r . Then the following statements hold:

(a) the quotient .C ˝F R/=I can be equipped with a Zr–grading, with Ui of

grading .�ei / and C of grading 0;
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(b) the subspace of .C ˝F R/=I with grading v is isomorphic to

Œ.C ˝F R/=I �.v/ ' C=.c˛W v.˛/ � �v/:

Proof. Straightforward. �

De�nition 4.16. We de�ne Ar D Er ˝F R and Ared
r D E red

r ˝F R. Let I 0
ˇ

denote

the ideal in Ar generated by the monomials .zi1 ^ � � � ^ zis / ˝ UisC1
� � � UiˇC1

for

all s � ˇ C 1 and all tuples of pairwise distinct i1; : : : ; iˇC1. Let Iˇ WD I 0
ˇ

\Ared
r

be the corresponding ideal in Ared
r .

The algebras Ar and Ared
r are naturally ZrC1–graded: the generators zi have

Alexander grading 0 and homological grading .�1/, the generators Ui have

Alexander grading .�ei/ and homological grading .�2/.

De�nition 4.17. We de�ne H.k/ WD
L

max.v/�k HFL–.Krm;rn; v/. Since Ui

decreases the Alexander grading, H.k/ is naturally an R–module.

The following theorem clari�es the algebraic structure of Theorem 5.

Theorem 4.18. The following graded R–modules are isomorphic:

H.k/=H.k � 1/ ' A
red
r =Iˇ.k/Œ�2h.k/�¹k; : : : ; kº;

where Œ�� and ¹�º denote the shifts of the homological grading and the Alexander

grading, respectively.

Proof. By de�nition,H.k/=H.k�1/ is supported on the set of Alexander gradings

v such that max.v/ D k. The monomial U1 � � � Ur belongs to the ideal Iˇ.k/, so

Ared
r =Iˇ.k/ is supported on the set of Alexander gradings u with max.u/ D 0.

Suppose that exactly � components of v are equal to k. Without loss of

generality we can assume v1; : : : ; vr�� < k and vr��C1 D � � � D vr D k. It

follows from Lemma 4.13 and the proof of Theorem 5 that HFL–.Krm;rn; v/ is

isomorphic to the quotient of E red
r by the ideal generated by degree ˇ � r C � C 1

monomials in .zi � zj / for i; j > r � �.

Consider the subspace of Ar=I 0
ˇ

of Alexander grading .v1 �k; : : : ; vr �k/. By

Proposition 4.15 it is isomorphic to a quotient of Er modulo the following relations.

For each subset B � ¹1; : : : ; r � �º and each degree ˇ C 1 � jBj monomial m0 in

variables zi for i … B there is a relation m0 ˝
Q

b2B Ub 2 I 0
ˇ
. All these relations

can be multiplied by an appropriate monomial in R to have Alexander grading

.v1 � k; : : : ; vr � k/.



650 E. Gorsky and J. Hom

Note that such m0 should contain at most r � � � jBj factors with indices in

¹1; : : : ; r � �º n B , hence it contains at least ˇ � r C � C 1 factors with indices in

¹r � � C 1; : : : ; rº. Therefore ŒAr=I 0
ˇ

�.v1 � k; : : : ; vr � k/ is naturally isomorphic

to the quotient of Er by the ideal generated by degree ˇ � r C � C 1 monomials

in zi for i > r � �.

We conclude that the space ŒAred
r =Iˇ.k/�.v1 � k; : : : ; vr � k/ is isomorphic to

HFL–.Krm;rn; v/. The action of Ui on H.k/ is described by Proposition 3.7. One

can check that it commutes with the above isomorphisms for di�erent v, so we get

the isomorphism of R–modules. �

We illustrate the above theorem with the following example (cf. Example 5.8).

Example 4.19. Let us describe the subspaces of Ared
3 =I1 with various Alexander

gradings. The ideal I1 equals:

I1 D ..z1 � z2/.z2 � z3/; .z1 � z2/U3;

.z1 � z3/U2; .z2 � z3/U1; U1U2; U1U3; U2U3/ � A
red
3 :

In the Alexander grading .0; 0; 0/ one gets

ŒAred
3 =I1�.0; 0; 0/ ' E

red
3 =..z1 � z2/.z2 � z3// D h1; z1 � z2; z2 � z3i;

in the Alexander grading .k; 0; 0/ (for k > 0) one gets two relations

U k
1 .z1 � z2/.z2 � z3/; U k�1

1 .z2 � z3/ 2 I1:

Since the latter implies the former, we get

ŒAred
3 =I1�.k; 0; 0/ ' E

red
3 =.z2 � z3/ D h1; z1 � z2i:

The map

U1W ŒAred
3 =I1�.0; 0; 0/ �! ŒAred

3 =I1�.1; 0; 0/

is a natural projection

E
red
3 =..z1 � z2/.z2 � z3// �! E

red
3 =.z2 � z3/;

while the map

U1W ŒAred
3 =I1�.k; 0; 0/ �! ŒAred

3 =I1�.k C 1; 0; 0/

is an isomorphism for k > 0.

The gradings .0; k; 0/ and .0; 0; k/ can be treated similarly. Furthermore,

Ui Uj 2 I1 for i ¤ j , so all other graded subspaces of Ared
3 =I1 vanish.
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Since the multiplication by Ui preserves the ideal Iˇ , we get the following

useful result.

Corollary 4.20. If max.v/ D max.v � ei /, then the map

Ui W HFL–.Krm;rn; v/ �! HFL–.Krm;rn; v � ei /

is surjective.

Lemma 4.21. Suppose that max.v/ D k and max.v � ei / D k � 1, and the

homology group HFL–.Krm;rn; v/ does not vanish. Then ˇ.k/ D r �1; ˇ.k �1/ �

r � 2 and the map

Ui W HFL–.Krm;rn; v/ �! HFL–.Krm;rn; v � ei /

is surjective.

Proof. Since max.v/ D k and max.v � ei/ D k � 1, the multiplicity of k in

v equals 1, so by Theorem 5 ˇ.k/ � r � 1, hence ˇ.k/ D r � 1. There-

fore HFL–.Krm;rn; v/ ' E red
r , so Ui is surjective. Indeed, by Theorem 5

HFL–.Krm;rn; v � ei / is naturally isomorphic to a quotient of E red
r , and by Propo-

sition 3.7 Ui coincides with a natural quotient map. Finally, by (4.4)

HFK–.Km;n; k � c C l.r � 1// ' F;

and by Lemma 4.6

HFK–.Km;n; k � 1 � c C l.r � 2// ' F;

so ˇ.k � 1/ � r � 2. �

Proof of Theorem 6. Let us prove that the homology classes with diagonal Alexan-

der gradings generate HFL– over R. Indeed, given v D .v1 � � � � � vr/ with

HFL–.Krm;rn; v/ ¤ 0, by Theorems 5 and 4.18 one can check that

HFL–.Krm;rn; vr ; : : : ; vr/ ¤ 0

and by Corollary 4.20 the map

U
vr �v1

1 � � � U
vr �vr�1

r�1 W HFL–.Krm;rn; vr ; : : : ; vr/ ! HFL–.Krm;rn; v/

is surjective.
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Let us describe the R-modules generated by the diagonal classes in degree

.k; : : : ; k/. If ˇ.k/ D �1 then HFL–.Krm;rn; k; : : : ; k/ D 0. If 0 � ˇ.k/ � r � 2

then by Lemma 4.21 the submodule R � HFL–.Krm;rn; k; : : : ; k/ does not contain

any classes with maximal Alexander degree less than k, so by Theorem 4.18

R � HFL–.Krm;rn; k; : : : ; k/ ' A
red
r =Iˇ.k/ DW Mˇ.k/

Suppose that ˇ.k/ D r � 1, and consider minimal a and maximal b such that

a � k � b and ˇ.i/ D r � 1 for i 2 Œa; b�. If there is no minimal a, we set

a D �1. By Lemma 4.21, ˇ.a � 1/ D r � 2 and all the maps

HFL–.Krm;rn; b; : : : ; b/
U1���Ur
����! HFL–.Krm;rn; b � 1; : : : ; b � 1/

� � � �! HFL–.Krm;rn; a; : : : ; a/
U1���Ur
����! HFL–.Krm;rn; a � 1; : : : ; a � 1/

are surjective. Therefore

R � HFL–.Krm;rn; b; : : : ; b/ ' A
red
r =.U1 � � � Ur/b�a

Ir�2 DW Mr�1;b�aC1

is supported in all Alexander degrees with maximal coordinates in Œa; b� and in

Alexander degrees with maximal coordinate .a � 1/ which appears with multi-

plicity at least 2.

Finally, we get the following decomposition of HFL– as an R–module:

HFL–.Krm;rn/ D
M

kW0�ˇ.k/<r�1

ˇ.kC1/<r�1

Mˇ.k/ ˚
M

a;bWˇ.a�1/Dr�2

ˇ.bC1/<r�1

ˇ.Œa;b�/Dr�1

Mr�1;b�aC1 ˚ Mr�1;1: �

Note that for r D 1 we get M0;l ' FŒU1�=.U l
1 / and M0;C1 ' FŒU �.

4.4. Spectral sequence for 1HFL

Theorem 4.22. If ˇ.k/ C ˇ.k C 1/ � r � 2 then the spectral sequence for
bHFL.Krm;rn; k; : : : ; k/ degenerates at the yE2 page and

bHFL.Krm;rn; k; : : : ; k/ '

ˇ.k/M

iD0

�
r � 1

i

�
F�2h.k/�i ˚

ˇ.kC1/M

iD0

�
r � 1

i

�
F�2h.k/C2�rCi :



Cable links and L-space surgeries 653

Proof. By Proposition 3.8, for a given v there is a spectral sequence with yE1 page

yE1 D
M

B�¹1;:::;rº

HFL–.L; v C eB/

and converging to yE1 D bHFL.L; v/. If v D .k; : : : ; k/ then (for B ¤ ;) the

maximal coordinate of v CeB equals k C1 and appears with multiplicity � D jBj.

Therefore, by Theorem 5 HFL–.L; v C eB/ does not vanish if and only if either

B D ; or jBj � r � ˇ.k C 1/, and it is given by Theorem 5. By (1.1) we have

h.k C 1/ D h.k/ � ˇ.k C 1/ � 1:

The spectral sequence is bigraded by the homological (Maslov) grading at each

vertex of the cube and the “cube grading” jBj. The di�erential y@1 acts along the

edges of the cube, and decreases the Maslov grading by 2 and the cube grading

by 1.

One can check using Theorem 4.18 that its homology yE2 does not vanish in

cube degrees 0 and r � ˇ.k C 1/, so one can write

yE2 D yE0
2 ˚ yE

r�ˇ.kC1/
2 ;

and

yE0
2 '

ˇ.k/M

iD0

�
r � 1

i

�
F�2h.k/�i ;

yE
r�ˇ.kC1/
2 '

ˇ.kC1/M

iD0

�
r � 1

i

�
F�2h.kC1/�3ˇ.kC1/Ci :

By (1.1) we have

h.k C 1/ D h.k/ � ˇ.k C 1/ � 1;

so

�2h.k C 1/ � 3ˇ.k C 1/ C i D �2h.k/ C 2 � ˇ.k C 1/ C i:

A higher di�erential y@s decreases the cube grading by s and decreases the

Maslov grading by s C 1. Therefore the only nontrivial higher di�erential is
y@r�ˇ.kC1/ which vanishes by degree reasons too. Indeed, the maximal Maslov

grading in yE
r�ˇ.kC1/
2 equals �2h.k/ C 2 while the minimal Maslov grading in

yE0
2 equals �2h.k/ � ˇ.k/, so the di�erential can decrease the Maslov grading at

most by ˇ.k/ C 2. On the other hand, y@r�ˇ.kC1/ drops it by r � ˇ.k C 1/ C 1, and

for ˇ.k/ C ˇ.k C 1/ < r � 1 one has r � ˇ.k C 1/ C 1 > ˇ.k/ C 2. Therefore
y@r�ˇ.kC1/ D 0 and the spectral sequence vanishes at the yE2 page. �
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We illustrate the proof of Theorem 4.22 by Examples 5.4 and 5.5

Lemma 4.23. The following identity holds:

ˇ.1 � k/ C ˇ.k/ D r � 2:

Proof. By (1.1) and Lemma 4.5,

ˇ.k/ D h.k � 1; : : : ; k � 1/ � h.k; : : : ; k/ � 1;

ˇ.1 � k/ D h.�k; : : : ; �k/ � h.1 � k; : : : ; 1 � k/ � 1:

By Lemma 4.4,

h.�k; : : : ; �k/ D h.k; : : : ; k/ C kr;

h.1 � k; : : : ; 1 � k/ D h.k � 1; : : : ; k � 1/ C r.k � 1/:

These two identities imply the desired statement. �

Theorem 4.24. If ˇ.k/ C ˇ.k C 1/ � r � 2, then

bHFL.Krm;rn; k; : : : ; k/

'

r�2�ˇ.kC1/M

iD0

�
r � 1

i

�
F�2h.k/�i ˚

r�2�ˇ.k/M

iD0

�
r � 1

i

�
F�2h.k/C2�rCi :

Proof. By Lemma 4.23 we get ˇ.�k/ D r�2�ˇ.kC1/ and ˇ.1�k/ D r�2�ˇ.k/,

so

ˇ.k/ C ˇ.k C 1/ C ˇ.�k/ C ˇ.1 � k/ D 2.r � 2/;

so ˇ.�k/Cˇ.1�k/ � r �2. By Theorem 4.22 the spectral sequence degenerates

for bHFL.�k; : : : ; �k/ and

bHFL.Krm;rn; �k; : : : ; �k/

'

r�2�ˇ.kC1/M

iD0

�
r � 1

i

�
F�2h.�k/�i ˚

r�2�ˇ.k/M

iD0

�
r � 1

i

�
F�2h.�k/C2�rCi :

Finally, by [15, Proposition 8.2] we have

bHFL�.Krm;rn; k; : : : ; k/ D bHFL��2kr .Krm;rn; �k; : : : ; �k/

and by Lemma 4.4 h.k/ D h.�k/ � kr . �
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Theorem 4.25. O�-diagonal homology groups are supported on the union of

the unit cubes along the diagonal. In such a cube with corners .k; : : : ; k/ and

.k C 1; : : : ; k C 1/ one has

bHFL.Krm;rn; .k � 1/j ; kr�j / '

�
r � 2

ˇ.k/

�
F�2h.k/�ˇ.k/�j :

Proof. We use the spectral sequence from HFL– to bHFL. By Theorem 4.18, all

the yE2 homology outside the union of these cubes vanish (since some Ui would

provide an isomorphism between HFL–.Krm;rn; v/ and HFL–.Krm;rn; v � ei /).

Furthermore, if ˇ.k/ D r �1 then the homology in the cube vanish too, so we can

focus on the case ˇ.k/ � r � 2.

One can check that yE2 does not vanish in cube degrees j � ˇ.k/; : : : ; j and

yE
j �c
2 '

�
j � 1

c

��
r � 1 � j

ˇ.k/ � c

�
F�2h.k/�ˇ.k/�c :

Note that the total homological degree on yE
j �c
2 equals �2h.k/ � ˇ.k/ � j and

does not depend on c. Therefore all higher di�erentials in the spectral sequence

must vanish and the rank of bHFL equals:

ˇX

cD0

�
j � 1

c

��
r � 1 � j

ˇ.k/ � c

�
D

�
r � 2

ˇ.k/

�
: �

We illustrate this proof by Example 5.6.

4.5. Special case: m D 1; n D 2g.K/ � 1. The case m D 1; n D 2g.K/ � 1

is special since Lemma 4.6 is not always true. Indeed, Km;n D K and l D n D

2g.K/ � 1, but for v D g.K/ � l D 1 � g.K/ we have HFL–.K; v/ D 0. However,

it is clear that in all other cases Lemma 4.6 is true, so for generic v Lemmas 4.8

and 4.10 hold true. This allows one to prove an analogue of Theorem 5.

Theorem 4.26. Assume that m D 1; n D 2g.K/ � 1 (so l D 2g.K/ � 1) and

suppose that v D .u
�1

1 ; u
�2

2 ; : : : ; u
�s
s / where u1 < � � � < us . Then the Heegaard–

Floer homology group HFL–.Krm;rn; v/ can be described as follow.

(a) Assume that us � c C l.r � �s/ D g.K/ � �l with 1 � � � �s. Then

HFL–.Krm;rn; v/ ' .F.0/ ˚ F.�1//
r��s ˝

� ��2M

j D0

�
�s � 1

j

�
F.�2h.v/�j /

˚

�
�s � 1

�

�
F.�2h.v/C2��/

�

(b) In all other cases, the homology is given by Theorem 5.
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Proof. One can check that the proof of Lemma 4.8 fails if us � c C l.r � �s/ D

g.K/ � l , and remains true in all other cases. Similarly, the proof of Lemma 4.10

fails only if us � c C l.r � �s/ C lj D g.K/ � l for 1 � j � �s � 1, which is

equivalent to us � c C l.r � �s/ D g.K/ � .j C 1/. This proves (b).

Let us consider the special case (a). Note that

hm;n.us � c C l.r � �s/ C lj � 1/ � hm;n.us � c C l.r � �s/ C lj /

D �.HFK–.K; g.K/ C l.j � �//

D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

1 if j < � � 1;

0 if j D � � 1;

1 if j D �;

0 if j > �:

Given a pair of subsets B 0 � ¹1; : : : ; r � �sº and B 00 � ¹r � �s C 1; : : : ; rº, one

can write, analogously to Lemma 4.10:

hrm;rn.v � eB0 � eB00/ D hrm;rn.v/ C jB 0j C w.B 00/;

where

w.B 00/ D

8
ˆ̂̂
<
ˆ̂̂
:

jB 00j if jB 00j � � � 1;

� � 1 if jB 00j D �;

� if jB 00j > �:

By the Künneth formula, the E2 page of the spectral sequence is determined by

the “deformed cube homology” with the weight function w.B 00/, as in (4.5). If

@, as above, denotes the standard cube di�erential, then, similarly to Lemma 4.14,

the homology of @w
U is isomorphic to the kernel of @ in cube degrees 0; : : : � � 2

and �:

Finally, we need to prove that all higher di�erentials vanish. For a homology

generator ˛ on the E2 page of cube degree x, its bidegree is equal either to

.x; �2h.v/ � 2x/ or to .x; �2h.v/ � 2x C 2/. The di�erential @k has bidegree

.�k; k � 1/ (see Remark 3.6), so the bidegree of @k.˛/ is equal either to .x � k,

�2h.v/ � 2x C k � 1/ or to .x � k; �2h.v/ � 2x C k C 1/. Since �2x C k C 1 <

�2.x � k/ for k > 1, we have @k.˛/ D 0. �

The action of Ui in this special case can be described similarly to Theorem 4.18.

However, it is not true that Ui is surjective whenever it does not obviously vanish.

In particular, the following example shows that HFL– may be not generated

by diagonal classes, so Theorem 6 does not hold. We leave the appropriate

adjustment of Theorem 6 as an exercise to a reader.
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Example 4.27. Consider T2;2, the .2; 2/ cable of the trefoil. We have g.K/D l D1

and c D 1=2, so by Theorem 4.26

HFL–.T2;2; 1=2; 1=2/ ' F.�1/; HFL–.T2;2; �1=2; 1=2/ ' F.�2/ ˚ F.�3/:

Therefore U1 is not surjective. Furthermore, the class in HFL–.T2;2; �1=2; 1=2/

of homological degree .�2/ is not in the image of any diagonal class under the

R–action.

5. Examples

5.1. .n; n/ torus links. The symmetrized multi-variable Alexander polynomial

of the .n; n/ torus link equals (for n > 1):

�Tn;n
.t1; : : : ; tn/ D ..t1 � � � tn/1=2 � .t1 � � � tn/�1=2/n�2:

Each pair of components has linking number 1, so c D .n � 1/=2. The homology

groups HFL–.T .n; n/; v/ are described by the following theorem, which is a

special case of Theorem 5.

Theorem 5.1. Consider the .n; n/ torus link, and an Alexander grading v D

.v1; : : : ; vn/. Suppose that among the coordinates vi exactly � are equal to k

and all other coordinates are less than k. Let jvj D v1 C � � � C vn. Then

HFL–.T .n; n/; v/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

0

if k > � �
n C 1

2
;

.F.0/ ˚ F.�1//
n�1 ˝ F2jvj

if k < �
n � 1

2
;

.F.0/ ˚ F.�1//
n�� ˝

�� nC1
2

�kM

iD0

�
� � 1

i

�
F.�2h.v/�i/

if �
n � 1

2
� k � � �

n C 1

2
;

where h.v/ D 1
2

�
n�1

2
� k

��
n�1

2
� k C 1

�
C kn � jvj in the last case.
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Proof. Indeed, ˇ.k/ D n�1
2

� k for k > �n�1
2

and ˇ.k/ D n � 1 for k � �n�1
2

.

By Theorem 5, the homology group HFL–.T .n; n/; v/ does not vanish if and only

if

k � � �
n C 1

2
: (5.1)

If k � �n�1
2

, equation (4.3) implies

hn;n.v/ D
1

2

�n � 1

2
� k

��n � 1

2
� k C 1

�
C kn � jvj:

If k � �n�1
2

, equation (4.3) implies hn;n.v/ D �jvj. Furthermore, for all v

satisfying (5.1) one has

HFL–.T .n; n/; v/ D .F.0/ ˚ F.�1//
n�� ˝

�� nC1
2

�kM

j D0

�
� � 1

j

�
F.�2hn;n.v/�j /:

Finally, if k � n�1
2

, then (5.1) holds for all � and � � nC1
2

� k > � � 1, hence

HFL–.T .n; n/; v/ D .F.0/ ˚ F.�1//
n�� ˝

��1M

j D0

�
� � 1

j

�
F.�2hn;n.v/�j /

D .F.0/ ˚ F.�1//
n�1 ˝ F.�2hn;n.v//: �

Remark 5.2. One can check that, in agreement with [1], the condition (5.1) de�nes

the multi-dimensional semigroup of the plane curve singularity xn D yn.

Corollary 5.3. We have the following decomposition of HFL– as an R-module:

HFL–.T .n; n// D M0 ˚ M1 ˚ M2 ˚ � � � ˚ Mn�2 ˚ Mn�1;C1:

To prove Theorem 4, we use Theorem 3.

Proof of Theorem 4. We have ˇ.n�1
2

� s/ D s for s < n � 1, and

ˇ.
n � 1

2
� s/ C ˇ.

n � 1

2
� s C 1/ D 2s � 1 � n � 2 � s �

n � 1

2
:

Therefore for s � n�1
2

Theorem 4.22 implies the degeneration of the spectral

sequence from HFL– to bHFL, and

bHFL
�
T .n; n/;

n � 1

2
� s; : : : ;

n � 1

2
� s

�

D

sM

iD0

�
n � 1

i

�
F.�s2�s�i/ ˚

s�1M

iD0

�
n � 1

i

�
F.�s2�s�nC2Ci/: �
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Let us illustrate the degeneration of the spectral sequence from HFL– to bHFL

in some examples.

Example 5.4. For s D 0 we have yE1 D yE2 D F.0/. For s D 1 the yE1 page has

nonzero entries in cube degree 0 where one gets

HFL–
�
T .n; n/;

n � 1

2
� 1; : : : ;

n � 1

2
� 1

�
' F.�2/ ˚ .n � 1/F.�3/;

and in cube degree n where one gets F.0/: Indeed, the di�erential y@1 vanishes, so

for n > 2

bHFL
�
T .n; n/;

n � 1

2
� 1; : : : ;

n � 1

2
� 1

�
' F.�2/ ˚ .n � 1/F.�3/ ˚ F.�n/:

Note that for n D 2 the di�erential y@2 does not vanish, so the bound s � n�1
2

is

indeed necessary for the spectral sequence to collapse at yE2 page.

Example 5.5. The case s D 2 is more interesting. The yE1 page has nonzero

entries in cube degree 0, n � 1 (where we have n vertices) and n, where one has

yE0
1 D F.�6/ ˚ .n � 1/F.�7/ ˚

�
n � 1

2

�
F.�8/;

yEn�1
1 D n.F.�4/ ˚ F.�5//;

yEn
1 D F.�2/ ˚ .n � 1/F.�3/:

The di�erential y@1 cancels some summands in yEn�1
1 and yEn

1 :

yE0
2 D F.�6/ ˚ .n � 1/F.�7/ ˚

�
n � 1

2

�
F.�8/;

yEn�1
2 D .n � 1/F.�4/ C F.�5/:

For n > 4 all higher di�erentials vanish and

bHFL
�
T .n; n/;

n � 1

2
� 2; : : : ;

n � 1

2
� 2

�

' F.�6/ ˚ .n � 1/F.�7/ ˚

�
n � 1

2

�
F.�8/ ˚ .n � 1/F.�3�n/ C F.�4�n/:

The following example illustrates the computation of bHFL for the o�-diagonal

Alexander gradings.
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Example 5.6. Let us compute the homology bHFL.T .n; n/; v/ for

v D
�n � 1

2
� 2

�j �n � 1

2
� 1

�n�j

.1 � j � n � 1/

using the spectral sequence from HFL–. In the n dimensional cube .vCeB/ almost

all all vertices have vanishing HFL–, except for the vertex
�

n�1
2

� 1; : : : ; n�1
2

� 1
�

HFL–
�n � 1

2
� 1; : : : ;

n � 1

2
� 1

�
D F.�2/ ˚ .n � 1/F.�3/

and j of its neighbors with homology F.�4/ ˚ F.�5/. Clearly, yE2 is concentrated

in degrees j (with homology .n � 1 � j /F.�3/) and .j � 1/ (with homology

.j � 1/F.�4//. Note that both parts contribute to the total degree .�3 � j /, so

bHFL.T .n; n/; v/ D .n � 1 � j /F.�3�j / ˚ .j � 1/F.�3�j / D .n � 2/F.�3�j /:

Finally, we draw all the homology groups HFL– for .2; 2/ and .3; 3/ torus links.

Example 5.7. For the Hopf link, one has two cases. If v1 < v2, then the

condition (5.1) implies v2 � �1=2. If v1 D v2, then (5.1) implies v2 � 1=2.

The nonzero homology of the Hopf link is shown in Figure 3 and Table 1

v1

v2

F

F2

1
2� 1

2
� 3

2
� 5

2
� 7

2
1
2

� 1
2

� 3
2

� 5
2

� 7
2

Figure 3. HFL– for the (2,2) torus link: F2 on thick lines and in the grey region.



Cable links and L-space surgeries 661

Table 1. Maslov gradings for the .2; 2/ torus link.

Alexander grading Homology

.1=2; 1=2/ F.0/

.a; b/, a; b � �1=2 F.2aC2b/ ˚ F.2aC2b�1/

Example 5.8. For the .3; 3/ torus link, one has two cases. If v1 � v2 < v3, then

the condition (5.1) implies v3 � 1. If v1 < v2 D v3, then (5.1) implies v3 � 0.

Finally, if v1 D v2 D v3, then (5.1) implies v3 � 1. In other words, nonzero

homology appears at the point .1; 1; 1/, at three lines .0; 0; k/; .0; k; 0/; .k; 0; 0/

.k � 0/ and at the octant max.v1; v2; v3/ � �1.

This homology is shown in Figure 4 and Table 2.

5.2. More general torus links. The HFL– homology of the .4; 6/ torus link

is shown in Figure 5 and Table 3. Note that as an FŒU1; U2� module it can be

decomposed into 5 copies of M0 ' F, a copy of M1;1 and a copy of M1;C1.

In particular, the map U1U2W HFL–.�2; �2/ ! HFL–.�3; �3/ is surjective with

one-dimensional kernel.

5.3. Non-algebraic example. In this subsection we compute the Heegaard–

Floer homology for the .4; 6/-cable of the trefoil. Its components are .2; 3/-cables

of the trefoil, which are known to be L-space knots (cf. [3]), but not algebraic

knots. By Theorem 2, the .4; 6/-cable of the trefoil is an L-space link, but its

homology is not covered by [1].

The Alexander polynomial of the .2; 3/-cable of the trefoil equals:

�T2;3
.t / D

.t6 � t�6/.t1=2 � t�1=2/

.t3=2 � t�3=2/.t2 � t�2/
;

hence the Euler characteristic of its Heegaard–Floer homology equals

�2;3.t / D
�T2;3

.t /

1 � t�1
D t3 C 1 C t�1 C t�3 C t�4 C � � � :

By (4.1), the bivariate Alexander polynomial of the .4; 6/-cable equals:

�4;6.t1; t2/ D �2;3.t1 � t2/..t1t2/3 � .t1t2/�3/

D .t1t2/6 C .t1t2/3 C .t1t2/2 C .t1t2/�1 C .t1t2/�2 C .t1t2/�5:

The nonzero Heegaard–Floer homology are shown in Figure 6 and the correspond-

ing Maslov gradings are given in Table 4. Note that as FŒU1; U2� module it can be

decomposed in the following way:

HFL– ' 4M0 ˚ M1;1 ˚ M1;2 ˚ M1;C1:
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Figure 4. HFL– for the (3,3) torus link: F2 on dashed thick lines; F4 on solid thick lines

and in the shaded region. Top Alexander grading is .1; 1; 1/.

Table 2. Maslov gradings for the .3; 3/ torus link.

Alexander grading Homology

.1; 1; 1/ F.0/

.0; 0; 0/ F.�2/ ˚ 2F.�3/

.0; 0; k/, .0; k; 0/ and .k; 0; 0/ (k < 0) F.2k�2/ ˚ F.2k�3/

.a; b; c/, a; b; c � �1 F.2aC2bC2c/ ˚ 2F.2aC2bC2c�1/

˚F.2aC2bC2c�2/
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v1

v2

F

F

F

F

F

F2

F

F2

F2

F2

43210�1�2�3�4�5

4

3

2

1

0

�1

�2

�3

�4

�5

Figure 5. HFL– for the (4,6) torus link: F2 on thick lines and in the grey region.

Table 3. Maslov gradings for the .4; 6/ torus link.

Alexander grading Homology

.4; 4/ F.0/

.2; 2/ F.�2/

.1; 1/ F.�4/

.0; 0/ F.�6/

.�1; �1/ F.�8/

.�2; k/ and .k; �2/, k � �2 F.2k�6/ ˚ F.2k�7/

.�3; �3/ F.�12/

.a; b/, a; b � �4 F.2aC2b/ ˚ F.2aC2b�1/
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Table 4. Maslov gradings for the (4,6) cable of the trefoil.

Alexander grading Homology

.6; 6/ F.0/

.3; 3/ F.�2/

.2; 2/ F.�4/

.0; k/ and .k; 0/, k � 0 F.2k�6/ ˚ F.2k�7/

.�1; �1/ F.�10/

.�2; �2/ F.�12/

.�3; k/ and .k; �3/, k � �3 F.2k�8/ ˚ F.2k�9/

.�4; k/ and .k; �4/, k � 10 F.2k�10/ ˚ F.2k�11/

.�5; �5/ F.�22/

.a; b/, a; b � �6 F.2aC2b/ ˚ F.2aC2b�1/

v1

v2

F

F

F

F2

F

F

F2

F2

F

F2

F2

F2

F2

F2

F2

F2

6543210�1�2�3�4�5�6�7�8�9

6

5

4

3

2

1

0

�1

�2

�3

�4

�5

�6

�7

�8

�9

Figure 6. HFL– for the (4,6) cable of the trefoil: F2 on thick lines and in the grey region.
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