Quantum Topol. 8 (2017), 629[–666](#page-37-0) DOI 10.4171/QT/98

Cable links and L-space surgeries

Eugene Gorsky¹ and Jennifer Hom²

Abstract. An L-space link is a link in $S³$ on which all sufficiently large integral surgeries are L-spaces. We prove that for m, n relatively prime, the r-component cable link K_{rm} r_{n} is an L-space link if and only if K is an L-space knot and $n/m \geq 2g(K) - 1$. We also compute HFL⁻ and HFL of an L-space cable link in terms of its Alexander polynomial. compute HFL[–] and HFL of an L-space cable link in terms of its Alexander polynomial.
As an application, we confirm a conjecture of Licata [\[7\]](#page-36-0) regarding the structure of HFL for (n, n) torus links.

Mathematics Subject Classification (2010). 57M25, 57M27, 57R58.

Keywords. Cable link, L-space, surgery, Heegaard Floer homology.

Contents

¹ The author was partially supported by RFBR grant 13-01-00755 and NSF grant DMS-1403560.

² The author was partially supported by NSF grant DMS-1307879.

1. Introduction

Heegaard Floer homology is a package of 3-manifold invariants defined by Ozsváth and Szabó [\[12,](#page-36-2) [13\]](#page-36-3). In its simplest form, it associates to a closed 3-manifold Y a graded vector space $\widehat{HF}(Y)$. For a rational homology sphere Y, they show that

$$
\dim \widehat{HF}(Y) \ge |H_1(Y;\mathbb{Z})|.
$$

If equality is achieved, then Y is called an *L-space*.

A knot $K \subset S^3$ is an *L*-space knot if K admits a positive L-space surgery. Let $S^3_{p/q}(K)$ denote p/q Dehn surgery along K. If K is an L-space knot, then $S_{p/q}^3(\tilde{K})$ is an L-space for all $p/q \geq 2g(K) - 1$, where $g(K)$ denotes the Seifert genus of K [\[16,](#page-36-4) Corollary 1.4]. A link $L \subset S^3$ is an *L-space link* if all sufficiently large integral surgeries on L are L-spaces. In contrast to the knot case, if L admits a positive L-space surgery, it does not necessarily follow that all sufficiently large surgeries are also L-spaces; see [\[10,](#page-36-5) Example 2.3].

For relatively prime integers m and n, let $K_{m,n}$ denote the (m, n) cable of K, where m denotes the longitudinal winding. Without loss of generality, we will assume that $m > 0$. Work of Hedden [\[3\]](#page-36-6) ("if" direction) and the second author [\[5\]](#page-36-7) ("only if" direction) completely classifies L-space cable knots.

Theorem 1 ([\[3,](#page-36-6) [5\]](#page-36-7)). Let K be a knot in S^3 , $m > 1$ and $gcd(m, n) = 1$. The *cable knot* Km;n *is an L-space knot if and only if* K *is an L-space knot and* $n/m > 2g(K) - 1.$

Remark 1.1. Note that when $m = 1$, we have that $K_{1,n} = K$ for all n.

We generalize this theorem to cable links with many components. Throughout the paper, we assume that each component of a cable link is oriented in the same direction.

Theorem 2. Let K be a knot in S^3 and $gcd(m, n) = 1$. The *r*-component *cable link* Krm;rn *is an L-space link if and only if* K *is an L-space knot and* $n/m \geq 2g(K) - 1.$

In [\[14\]](#page-36-8), Ozsváth and Szabó show that if K is an L-space knot, then $\widehat{HFK}(K)$ is completely determined by $\Delta_K(t)$, the Alexander polynomial of K. Consequently, the Alexander polynomials of L-space knots are quite constrained (the non-zero coefficients are all ± 1 and alternate in sign) and the rank of $\widehat{HFK}(K)$ is at most one in each Alexander grading. In [\[10,](#page-36-5) Theorem 1.15], Liu generalizes this result

to give bounds on the rank of $HFL^{-}(L)$ in each Alexander multi-grading and on the coefficients of the multi-variable Alexander polynomial of an L-space link L in terms of the number of components of L . For L-space cable links, we have the following stronger result.

Definition 1.2. Define the Z-valued functions $h(k)$ and $\beta(k)$ by the equations

$$
\sum_{k} \mathbf{h}(k)t^{k} = \frac{t^{-1} \Delta_{m,n}(t)(t^{mnr/2} - t^{-mnr/2})}{(1 - t^{-1})^{2}(t^{mn/2} - t^{-mn/2})}, \qquad \beta(k) = \mathbf{h}(k - 1) - \mathbf{h}(k) - 1,
$$
\n(1.1)

where $\Delta_{m,n}(t)$ is the Alexander polynomial of the cable knot $K_{m,n}$.

Throughout, we work with $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$ coefficients. The following theorem gives a complete description of the homology groups HFL for cable links with b $n/m > 2g(K) - 1.$

Theorem 3. Let $K_{rm,rn}$ be a cable link with $n/m > 2g(K) - 1$. (a) *If* $\beta(k) + \beta(k+1) < r-2$, then $\widehat{\text{HFL}}(K_{rm\,rn}, k, \ldots, k)$ \simeq $\hat{\mathbb{A}}^{(k)}$ $i=0$ $\sqrt{r-1}$ i $\overline{}$ $\mathbb{F}_{-2h(k)-i} \oplus$ β _(k+1)
 Δ $i=0$ $\left(r-1\right)$ i $\overline{}$ $\mathbb{F}_{-2h(k)+2-r+i}$.

(b) *If* $\beta(k) + \beta(k + 1) \ge r - 2$, then

$$
\widehat{\text{HFL}}(K_{rm,rn},k,\ldots,k)
$$
\n
$$
\simeq \bigoplus_{i=0}^{r-2-\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i} \oplus \bigoplus_{i=0}^{r-2-\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)+2-r+i}.
$$

(c) If v has j coordinates equal to $k - 1$ and $r - j$ coordinates equal to k for *some k* and $1 \le j \le r - 1$ *, then*

$$
\widehat{\text{HFL}}(K_{rm,rn}, (k-1)^j, k^{r-j}) \simeq {r-2 \choose \beta(k)} \mathbb{F}_{-2\mathbf{h}(k)-\beta(k)-j}.
$$

(d) *For all other Alexander gradings the groups* HFL b *vanish.*

We prove the parts of this theorem as separate Theorems [4.22,](#page-23-0) [4.24](#page-25-0) and [4.25.](#page-25-1) We compute HFL explicitly for several examples in Section [5.](#page-28-0) In particular, we use Theorem [3](#page-2-0) to confirm a conjecture of Joan Licata [\[7,](#page-36-0) Conjecture 1] concerning \widehat{HFL} for (n, n) torus links.

Theorem 4. *Suppose that* $0 \leq s \leq \frac{n-1}{2}$ $\frac{-1}{2}$ *. Then*

$$
\widehat{\text{HFL}}\left(T(n,n),\frac{n-1}{2}-s,\ldots,\frac{n-1}{2}-s\right)
$$
\n
$$
=\bigoplus_{i=0}^{s} {n-1 \choose i} \mathbb{F}_{(-s^2-s-i)} \oplus \bigoplus_{i=0}^{s-1} {n-1 \choose i} \mathbb{F}_{(-s^2-s-n+2+i)}.
$$

Combined with [\[7,](#page-36-0) Theorem 2], this completes the description of $\widehat{HFL}(T(n,n))$.

The following theorem describes the homology groups HFL⁻ for cable links with $n/m > 2g(K) - 1$.

Theorem 5. Let K be an L-space knot and $n/m > 2g(K) - 1$. Consider an *Alexander grading* $v = (v_1, \ldots, v_n)$ *. Suppose that among the coordinates* v_i *exactly* λ *are equal to* k *and all other coordinates are less than* k*. Let* $|v| =$ $v_1 + \cdots + v_n$. Then the Heegaard–Floer homology group $HFL^{-}(K_{rm, rn}, v)$ can *be described as follows.*

- (*a*) If $\beta(k) < r - \lambda$ then HFL⁻($K_{rm, rn}, v$) = 0.
- (b) If $\beta(k) > r \lambda$ then

$$
\text{HFL}^{-}(K_{rm,rn}, v) \simeq (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{r-\lambda} \otimes \bigoplus_{i=0}^{\beta(k)-r+\lambda} \lambda \binom{\lambda-1}{i} \mathbb{F}_{(-2h(v)-i)},
$$
\n
$$
\text{where } h(v) = \mathbf{h}(k) + kr - |v|.
$$

We prove this theorem in Section [4.2.](#page-18-0) The structure of the homology for $n/m=2g(K)-1$ (which is possible only if $m = 1$) is more subtle and is described in Theorem [4.26.](#page-26-0)

Finally, we describe HFL⁻ as an $\mathbb{F}[U_1,\ldots,U_r]$ -module. We define a collection of $\mathbb{F}[U_1,\ldots,U_r]$ -modules M_β for $0 \leq \beta \leq r-2$, $M_{r-1,k}$ for $k \geq 0$ and $M_{r-1,\infty}$. These modules can be defined combinatorially and do not depend on a link.

Theorem 6. Let $R = \mathbb{F}[U_1, \ldots, U_r]$ and suppose that $n/m > 2g(K) - 1$. There *exists a finite collection of diagonal lattice points* $a_i = (a_i, \ldots, a_i)$ (*determined by* m; n *and the Alexander polynomial of* K*) such that* HFL– *admits the following direct sum decomposition:*

$$
HFL^{-}(K_{rm,rn}) = \bigoplus_{i} R \cdot HFL^{-}(K_{rm,rn}, \mathbf{a}_{i}).
$$

Furthermore, for $\beta(a_i) \leq r - 2$ *one has* $R \cdot HFL^{-}(K_{rm,rn}, \mathbf{a}_i) \simeq M_{\beta(a_i)}$ *, and* for $\beta(a_i) = r - 1$ *one has either* $R \cdot HFL^{-}(K_{rm,rn}, \mathbf{a}_i) \simeq M_{r-1,k}$ for some k or $R \cdot \text{HFL}^{-}(K_{rm,rn}, \mathbf{a}_i) \simeq M_{r-1,\infty}.$

We compute HFL⁻ explicitly for several examples in Section [5.](#page-28-0)

Acknowledgments. We are grateful to Jonathan Hanselman, Matt Hedden, Yajing Liu, Joan Licata, and András Némethi for useful discussions.

2. Dehn surgery and cable links

In this section, we prove Theorem [2.](#page-1-1) We begin with a result about Dehn surgery on cable links (cf. [\[4\]](#page-36-9)).

Proposition 2.1. *The manifold obtained by* (mn, p_2, \ldots, p_r) *–surgery on the* r*-component link* Krm;rn *is homeomorphic to*

$$
S_{n/m}^{3}(K)\#L(m,n)\#L(p_{2}-mn,1)\# \cdots \#L(p_{r}-mn,1).
$$

Proof. Recall (see, for example, [\[3,](#page-36-6) Section 2.4]) that mn -surgery on $K_{m,n}$ gives the manifold $S^3_{n/m}(K) \# L(m,n)$. Viewing $K_{m,n}$ as the image of $T_{m,n}$ on $\partial N(K)$, we have that the reducing sphere is given by the annulus $\partial N(K) \setminus N(T_{m,n})$ union two parallel copies of the meridional disk of the surgery solid torus; we obtain a sphere since the surgery slope coincides with the surface framing.

The link $K_{rm,rn}$ consists of r parallel copies of $K_{m,n}$ on $\partial N(K)$. Label these r copies $K_{m,n}^1$ through $K_{m,n}^r$. We perform mn-surgery on $K_{m,n}^1$ and consider the image $\widetilde{K}_{m,n}^i$ of $K_{m,n}^i$, $2 \le i \le r$, in $S_{n/m}^3(K) \# L(m,n)$. Each $\widetilde{K}_{m,n}^i$ lies on $\partial N(K) \setminus N(T_{m,n})$ and thus on the reducing sphere. In particular, each $\tilde{K}_{m,n}^i$ bounds a disk D_i^2 in $S^3_{n/m}(K) \# L(m,n)$ such that the collection $\{D_2^2, \ldots, D_r^2\}$ is disjoint. It follows that performing surgery on $\bigcup_{i=2}^{r} \tilde{K}_{m,n}^{i}$ yields $r-1$ lens space summands. To see which lens spaces we obtain, note that the mn -framed longitude on $K_{m,n}^i \subset$ S^3 coincides with the 0-framed longitude on $\tilde{K}_{m,n}^i \subset S^3_{n/m}(K) \# L(m,n)$. Thus, p_i -surgery on $K_{m,n}^i$ corresponds to $(p_i - mn)$ -surgery on $\tilde{K}_{m,n}^i$, and the result follows. \Box

Let us recall that the linking number between each two components of $K_{rm, rn}$ equals $l := mn$. It is well-known that the cardinality of H_1 of the manifold obtained by (p_1, p_2, \ldots, p_r) -surgery on $K_{rm,rn}$ equals $|\det \Lambda(p_1, \ldots, p_r)|$, where

$$
\Lambda_{ij} = \begin{cases} p_i, & \text{if } i = j, \\ l, & \text{if } i \neq j. \end{cases}
$$

This cardinality can be computed using the following result.

634 E. Gorsky and J. Hom

Proposition 2.2. *One has the following identity:*

$$
\det \Lambda(p_1, \dots, p_r) = (p_1 - l) \cdots (p_r - l) + l \sum_{i=1}^r (p_1 - l) \cdots (p_i - l) \cdots (p_r - l).
$$
\n(2.1)

Proof. One can easily check that det $\Lambda(l, p_2, \ldots, p_r) = l(p_2 - l) \cdots (p_r - l)$. The expansion of the determinant in the first row yields a recursion relation

$$
\det \Lambda(p_1, \dots, p_r) = \det \Lambda(l, p_2 \dots, p_r) + (p_1 - l) \det \Lambda(p_2, \dots, p_r)
$$

$$
= l(p_2 - l) \cdots (p_r - l) + (p_1 - l) \det \Lambda(p_2, \dots, p_r).
$$

Now (2.1) follows by induction in r.

Corollary 2.3. *If* $p_i \geq l$ *for all i then* det $\Lambda(p_1, \ldots, p_r) \geq 0$.

In order to prove Theorem [2,](#page-1-1) we will need the following:

Theorem 2.4 ([\[10,](#page-36-5) Proposition 1.11]). *A link* L *is an* L*–space link if and only if there exists a surgery framing* $\Lambda(p_1, \ldots, p_r)$ *, such that for all sublinks* $L' \subseteq L$ *,* $\det(\Lambda(p_1, \ldots, p_r)|_{L'}) > 0$ and $S^3_{\Lambda|_{L'}}(L')$ is an *L*–space.

We will also need the following proposition, which we prove in Subsection [2.1](#page-6-0) below.

Proposition 2.5. Let K be an L-space knot and $p_i > 0$, $i = 1, \ldots, r$. *If* $n < 2g(K) - 1$, then the manifold obtained by (p_1, \ldots, p_r) -surgery on the r*-component link* Kr;rn *is not an L-space.*

Proof of Theorem [2](#page-1-1). If $K_{rm, r, n}$ is an L-space link, then by [\[10,](#page-36-5) Lemma 1.10] all its components are L-space knots. On the other hand, its components are isotopic to $K_{m,n}$. Thus, if $m > 1$, then by Theorem [1,](#page-1-2) K is an L-space knot and $n/m >$ $2g(K) - 1$. If $m = 1$, then K must be an L-space knot and by Proposition [2.5,](#page-5-1) $n \geq 2g(K) - 1.$

Conversely, suppose that K is an L-space knot and $n/m \geq 2g(K) - 1$, i.e., $K_{m,n}$ is an L-space knot. Let us prove by induction on r that (p_1, \ldots, p_r) -surgery on $K_{rm,rn}$ is an L-space if $p_i > l$ for all i. For $r = 1$ it is clear. By Proposition [2.1,](#page-4-1) the link $K_{rm,rn}$ admits an L-space surgery with parameters l, p_2, \ldots, p_r . Let us apply Theorem [2.4.](#page-5-2) Indeed, by Corollary [2.3,](#page-5-3) one has $\det(\Lambda(l, p_2 \ldots, p_r)|_{L}) > 0$ and by the induction assumption $S^3_{\Lambda(l, p_2... , p_r)|_{L'}}(L')$ is an L-space for all sublinks L'. By [\[10,](#page-36-5) Lemma 2.5], (p_1, \ldots, p_r) -surgery on $K_{rm, rn}$ is also an L-space for all $p_1 > l$. Therefore $K_{rm, rn}$ is an L-space link.

2.1. Proof of Proposition [2.5.](#page-5-1) We will prove Proposition [2.5](#page-5-1) using Lipshitz– Ozsváth–Thurston's bordered Floer homology $[8]$, and specifically Hanselman– Watson's loop calculus $[2]$. That is, we will decompose the result of surgery on $K_{r,n}$ into two pieces, one that is surgery on a torus link in the solid torus and the other the knot complement, and then apply a gluing result of Hanselman and Watson to conclude that the result of this surgery along $K_{r,rn}$ is not an L-space. The following was described to us by Jonathan Hanselman.

Let Y_1 denote the Seifert fibered space obtained by performing (p_1, \ldots, p_r) surgery on the r-component $(r, 0)$ -torus link in the solid torus. Consider the bordered manifold (Y_1, α_1, β_1) , where α_1 is the fiber slope and β_1 lies in the base orbifold; that is, α_1 is the longitude and β_1 the meridian of the original solid torus. Let (Y_2, α_2, β_2) be the *n*-framed complement of K; that is, $Y_2 = S^3 \setminus N(K)$, α_2 is an *n*-framed longitude, and β_2 is a meridian. Let $(Y_1, \alpha_1, \beta_1) \cup (Y_2, \alpha_2, \beta_2)$ denote the result of gluing Y_1 to Y_2 by identifying α_1 with α_2 and β_1 with β_2 . Note that $(Y_1, \alpha_1, \beta_1) \cup (Y_2, \alpha_2, \beta_2)$ is homeomorphic to (p_1, \ldots, p_r) -surgery along $K_{r,rn}$. We identify the slope $p\alpha_i + q\beta_i$ on ∂Y_i with the (extended) rational number p $\frac{p}{q} \in \mathbb{Q} \cup \{\frac{1}{0}\}.$

The following lemma gives a description of $\widehat{CFD}(Y_1, \alpha_1, \beta_1)$ in terms of the standard notation defined in $[2, Section 3.2]$.

Lemma 2.6. *The invariant* $\widehat{CFD}(Y_1, \alpha_1, \beta_1)$ *can be written in standard notation* as a product of d_{k_i} where

- (1) $k_i \leq 0$ *for all i*,
- (2) $k_i = 0$ *for at least one i*,
- (3) $k_i = -r$ *for exactly one i*.

Proof. The computation is similar to the example in [\[2,](#page-36-11) Section 6.5]. A plumbing tree Γ for Y_1 is given in Figure [1.](#page-7-0) We first consider the plumbing tree Γ_i in Figure [2\(](#page-7-1)a). We will build Γ by merging the Γ_i , $i = 1, ..., r$.

We proceed as in [\[2,](#page-36-11) Section 6.5]. Start with a loop (d_0) representing the tree Γ_0 in Figure [2\(](#page-7-1)b). We have that $\Gamma_i = \mathcal{E}(\mathcal{T}^{p_i}(\Gamma_0))$ so by [\[2,](#page-36-11) Sections 3.3 and 6.3]:

$$
\widehat{CFD}(\Gamma_i) = E(\mathbf{T}^{p_i}((d_0)))
$$

= E((d_{p_i}))
= (d_{-p_i}^*)

$$
\sim (d_{-1} \underbrace{d_0 \dots d_0}_{p_i}).
$$

Figure 1. The plumbing tree Γ .

Figure 2. Left, the plumbing tree Γ_i . Right, the plumbing tree Γ_0 .

We then have that $\Gamma = \mathcal{M}(\Gamma_2, \mathcal{M}(\Gamma_2, ..., \mathcal{M}(\Gamma_{p_{r-1}}, \Gamma_{p_r})))$ $\Gamma = \mathcal{M}(\Gamma_2, \mathcal{M}(\Gamma_2, ..., \mathcal{M}(\Gamma_{p_{r-1}}, \Gamma_{p_r})))$ $\Gamma = \mathcal{M}(\Gamma_2, \mathcal{M}(\Gamma_2, ..., \mathcal{M}(\Gamma_{p_{r-1}}, \Gamma_{p_r})))$. By [2, Proposition 6.4], we have that $\widehat{\text{CFD}}(\Gamma)$ is a represented by a product of d_{k_i} where $k_i \leq 0$ for all *i* and $k_i = 0$ for at least one *i* since each $p_i > 0$. Moreover, d_{-r} appears exactly once in the product, since we performed $r - 1$ merges. This completes the proof of the lemma. \Box

Lemma 2.7. *The slope* 1 *is not a strict L-space slope on* (Y_1, α_1, β_1) *.*

Proof. We will apply a positive Dehn twist to (Y_1, α_1, β_1) to obtain (Y_1, α_1, β_1) $\beta_1 + \alpha_1$). We will show that 0 is not a strict L-space slope on $(Y_1, \alpha_1, \beta_1 + \alpha_1)$, and hence 1 is not a strict L-space slope on (Y_1, α_1, β_1) .

By [[2](#page-36-11), Proposition 6.1], we have that $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1 + \alpha_1)$ can be obtained by applying τ to a loop representative of $\widehat{CFD}(Y_1, \alpha_1, \beta_1)$. Since $\tau(d_k) = d_{k+1}$, it follows from Lemma [2.6](#page-6-1) that $CFD(Y_1, \alpha_1, \beta_1 + \alpha_1)$ can be written in standard notation as a product of d_{k_i} with $k_i \leq 1$ for all i, $k_i = 1$ for at least one i, and $k_i = 1 - r$ for exactly one *i*.

We claim that if a loop ℓ contains both positive and negative d_k segments (i.e., both d_i , $i > 0$ and d_j , $j < 0$), then in dual notation ℓ contains at least one a_i^* or b_j^* segment. Indeed, suppose by contradiction that ℓ has no a_i^* or b_j^* . Then ℓ consists of only d_i^* segments, $i \in \mathbb{Z}$. It is straightforward to see (for example, by

considering the segments as drawn in $[2,$ $[2,$ $[2,$ Figure 1]) that one cannot obtain a loop containing both positive and negative d_k segments from d_i^* segments, $i \in \mathbb{Z}$. This completes the proof of the claim.

Furthermore, note that $\overline{CFD}(Y_1, \alpha_1, \beta_1 + \alpha_1)$ consists of simple loops (see Definition 4.19 of [[2](#page-36-11)]). Then by [2, Proposition 4.24], in dual notation ℓ has no a_k^* or b_k^* segments for $k < 0$. It now follows from Proposition 4.18 of [[2](#page-36-11)] that 0 is not a strict L-space slope for $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1 + \alpha_1)$. Therefore, 1 is not a strict L-space slope on (Y_1, α_1, β_1) , as desired.

Remark [2](#page-36-11).8. Note that by Proposition 4.18 of [2], we have that 0 and ∞ are strict L-space slopes on (Y_1, α_1, β_1) . Since 1 is not a strict L-space slope, it follows from Corollary 4.5 of [[2](#page-36-11)] that the interval of L-space slopes of (Y_1, α_1, β_1) contains the interval $[-\infty, 0]$.

Remark 2.9. An alternative proof of Lemma [2.7](#page-7-2) follows from [[9](#page-36-12), Theorem 1.1]. Indeed, by setting $r_i = 1/p_i$ and $e_0 = -1$ in Figure 1 of [[9](#page-36-12)], we see that $M(-1; 1/p_1, \ldots, 1/p_r)$ is not an L-space, hence neither is $M(1; -1/p_1, \ldots,$ $1/p_r$, which is homeomorphic to filling (Y_1, α_1, β_1) along a curve of slope 1.

Lemma 2.10. Let K be an L-space knot. If $n < 2g(K) - 1$, then 1 is not a strict *L*-space slope on the *n*-framed knot complement (Y_2, α_2, β_2) *.*

Proof. Since K is an L-space knot, we have that $S_K^3(p/q)$ is an L-space exactly when $p/q \geq 2g(K) - 1$. Since α_2 is an *n*-framed longitude, it follows that the interval of strict L-space slopes on (Y_2, α_2, β_2) is $(0, \frac{1}{2g(K)-1-n})$, that is, the reciprocal of the interval $(2g(K) - 1 - n, \infty)$.

Proof of Proposition [2.5](#page-5-1)*.* The result now follows from [[2](#page-36-11), Theorem 1.3] com-bined with Lemmas [2.7](#page-7-2) and [2.10;](#page-8-0) the slope 1 is not a strict L-space slope on either (Y_1, α_1, β_1) or (Y_2, α_2, β_2) , and so the resulting manifold $(Y_1, \alpha_1, \beta_1) \cup$ (Y_2, α_2, β_2) , which is (p_1, \ldots, p_r) -surgery on $K_{r, rn}$, is not an L-space.

Remark 2.11. One can use similar methods to provide an alternate proof that $K_{r,rn}$ is an L-space link if K is an L-space knot and $n \geq 2g(K) - 1$. Indeed, if K is an L-space knot, then the interval of strict L-space slopes on the n framed knot complement (Y_2, α_2, β_2) is $(0, \frac{1}{2g(K)-1-n})$ if $n \leq 2g(K)-1$ and $[0, \infty] \cup [-\infty, \frac{1}{2g(K)}]$ $\frac{1}{2g(K)-1-n}$ if $n > 2g(K) - 1$. Hence if $n \geq 2g(K) - 1$, then the interval of strict L-space slopes on (Y_2, α_2, β_2) contains the interval $(0, \infty)$. By Remark [2.8,](#page-8-1) we have that the interval of strict L-space slopes on (Y_1, α_1, β_1) contains $[-\infty, 0]$. Therefore, by [[2](#page-36-11), Theorem 1.4], if $n \geq 2g(K) = 1$, then the result of positive surgery (i.e., each surgery coefficient is positive) on $K_{r,rn}$ is an L-space.

638 E. Gorsky and J. Hom

3. A spectral sequence for L-space links

In this section we review some material from [[1](#page-36-13)]. Given $u, v \in \mathbb{Z}^r$, we write $u \le v$ if $u_i \le v_i$ for all i, and $u \le v$ if $u \le v$ and $u \ne v$. Recall that we work with $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$ coefficients.

Definition 3.1. Given a r -component oriented link L , we define an affine lattice over \mathbb{Z}^r :

$$
\mathbb{H}(L) = \bigoplus_{i=1}^r \mathbb{H}_i(L), \qquad \mathbb{H}_i(L) = \mathbb{Z} + \frac{1}{2}\mathrm{lk}(L_i, L - L_i).
$$

Let us recall that the Heegaard–Floer complex for a r -component link L is naturally filtered by the subcomplexes $A_L^-(L; v)$ of $\mathbb{F}[U_1, \ldots, U_r]$ -modules for $v \in H(L)$. Such a subcomplex is spanned by the generators in the Heegaard– Floer complex of Alexander filtration less than or equal to v in the natural partial order on $H(L)$. The group $HFL^{-}(L, v)$ can be defined as the homology of the associated graded complex:

$$
HFL^{-}(L, v) = H_{*}\Big(A^{-}(L; v)/\sum_{u \prec v} A^{-}(L; u)\Big). \tag{3.1}
$$

One can forget a component L_r in L and consider the $(r - 1)$ -component link $L - L_r$. There is a natural forgetful map $\pi_r : \mathbb{H}(L) \to \mathbb{H}(L - L_r)$ defined by the equation:

$$
\pi_r(v_1,\ldots,v_r)=(v_1-\mathrm{lk}(L_1,L_r)/2,\ldots,v_{r-1}-\mathrm{lk}(L_{r-1},L_r)/2).
$$

Similarly, one can define a map $\pi_{L'}: \mathbb{H}(L) \to \mathbb{H}(L')$ for every sublink $L' \subset L$. Furthermore, for large $v_r \gg 0$ the subcomplexes $A^-(L; v)$ stabilize, and by [[15](#page-36-14), Proposition 7.1] one has a natural homotopy equivalence $A^{-1}(L; v) \sim$ $A^{-}(L - L_{r}; \pi_{r}(v))$. More generally, for a sublink $L' = L_{i_1} \cup \cdots \cup L_{i_{r'}}$ one gets

$$
A^{-}(L'; \pi_{L'}(v)) \sim A^{-}(L; v), \text{ if } v_i \gg 0 \text{ for } i \notin \{i_1, \ldots, i_{r'}\}. \tag{3.2}
$$

We will use the "inversion theorem" of $[1]$ $[1]$ $[1]$, expressing the h-function of a link in terms of the Alexander polynomials of its sublinks, or, equivalently, the Euler characteristics of their Heegaard–Floer homology. Define $\chi_{L,v}$:= χ (HFL⁻(L, v)). Then by [[15](#page-36-14)]

$$
\chi_L(t_1,\ldots,t_r) := \sum_{v \in \mathbb{H}(L)} \chi_{L,v} t_1^{v_1} \cdots t_r^{v_r} = \begin{cases} (t_1 \cdots t_r)^{1/2} \Delta(t_1,\ldots,t_r) & \text{if } r > 1, \\ \Delta(t)/(1-t^{-1}) & \text{if } r = 1, \end{cases}
$$

where $\Delta(t_1, \ldots, t_r)$ denotes the *symmetrized* Alexander polynomial.

Remark 3.2. We choose the factor $(t_1 \cdots t_r)^{1/2}$ to match more established conventions on the gradings for the hat-version of link Floer homology. For example, the Alexander polynomial of the Hopf link equals 1, and one can check [[15](#page-36-14)] that the Alexander polynomial of the Hopf link equals 1, and one can check [15] that HFL is supported in Alexander degrees $(\pm \frac{1}{2}, \pm \frac{1}{2})$. Since the maximal Alexander HFL is supported in Alexander degrees ($\pm \frac{1}{2}$, $\pm \frac{1}{2}$). Since the maximely degrees in HFL and HFL⁻ coincide, one gets $\chi_{T(2,2)}(t_1, t_2) = t_1^{1/2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

The following "large surgery theorem" underlines the importance of $A⁻(L; v)$.

Theorem 3.3 ([[11](#page-36-15)]). *The homology of* $A⁻(L; v)$ *is isomorphic to the Heegaard– Floer homology of a large surgery on* L with spin_c-structure specified by v. In *particular, if* L *is an L-space link, then* $H_*(A^-(L, v)) \simeq \mathbb{F}[U]$ *for all* v *and all* U_i *are homotopic to each other on the subcomplex* $A^-(L; v)$ *.*

One can show that for L-space links the inclusion $h_v: A^-(L, v) \hookrightarrow A^-(S^3)$ is injective on homology, so it is multiplication by $U^{h_L(v)}$. Therefore the generator of $H_*(A^-(L, v)) \simeq \mathbb{F}[U]$ has homological degree $-2h_L(v)$. The function $h_L(v)$ will be called the h*–function* for an L–space link L. In [[1](#page-36-13)] it was called an "HFL-weight function."

Furthermore, if L is an L-space link, then for large $N \in H(L)$ one has

$$
\chi(A^-(L;N)/A^-(L,v)) = h_L(v).
$$

Hence, by (3.1) and the inclusion-exclusion formula one can write

$$
\chi_{L,v} = \sum_{B \subset \{1, \dots, r\}} (-1)^{|B|-1} h_L(v - e_B),\tag{3.3}
$$

where e_B denotes the characteristic vector of the subset $B \subset \{1, \ldots, r\}$. Further-more, by [\(3.2\)](#page-9-2) for a sublink $L' = L_{i_1} \cup \cdots \cup L_{i_{r'}}$ one gets

$$
h_{L'}(\pi_{L'}(v)) = h_L(v), \quad \text{if } v_i \gg 0 \text{ for } i \notin \{i_1, \dots, i_{r'}\}.
$$
 (3.4)

For $r = 1$ equation [\(3.3\)](#page-10-0) has the form $\chi_{L,v} = h(v-1) - h(v)$, so $h(v)$ can be easily reconstructed from the Alexander polynomial: $h_L(v) = \sum_{u \ge v+1} \chi_{L,v}$. For $r > 1$, one can also show that equation (3.3) (together with the boundary conditions (3.4)) has a unique solution, which is given by the following theorem.

Theorem 3.4 ([[1](#page-36-13)]). *The* h*-function of an L-space link is determined by the Alexander polynomials of its sublinks as follow:*

$$
h_L(v_1, \dots, v_r) = \sum_{L' \subseteq L} (-1)^{r'-1} \sum_{u \ge \pi_{L'}(v+1)} \chi_{L',u},\tag{3.5}
$$

where the sublink L' has r' components and $\mathbf{1} = (1, \ldots, 1)$ *.*

Given an L-space link, we construct a spectral sequence whose E_2 page can be computed from the multi-variable Alexander polynomial by an explicit combinatorial procedure, and whose E_{∞} page coincides with the group HFL⁻. The complex (3.1) is quasi-isomorphic to the iterated cone:

$$
\mathcal{K}(v) = \bigoplus_{B \subset \{1,\dots,r\}} A^-(L, v - e_B),
$$

where the differential consists of two parts: the first acts in each summand and the second acts by inclusion maps between summands. There is a spectral sequence naturally associated to this construction. Its E_1 term equals

$$
E_1(v) = \bigoplus_{B \subset \{1, ..., r\}} H_*(A^-(L, v - e_B)) = \bigoplus_{B \subset \{1, ..., r\}} \mathbb{F}[U] \langle z(v - e_B) \rangle,
$$

where $z(u)$ is the generator of $H_*(A^-(L, u))$ of degree $-2h_L(u)$. The next differential ∂_1 is induced by inclusions and reads as

$$
\partial_1(z(v - e_B)) = \sum_{i \in B} U^{h(v - e_B) - h(v - e_{B - i})} z(v - e_B + e_i).
$$
 (3.6)

We obtain the following result.

Theorem 3.5 ([[1](#page-36-13)]). Let L be an L-space link with r components and let $h_l(v)$ *be the corresponding h-function. Then there is a spectral sequence with* $E_2(v)$ = $H_*(E_1, \partial_1)$ and $E_\infty \simeq HFL^-(L, v)$.

Remark 3.6. Let us write more precisely the bigrading on the E_2 page. The E_1 page is naturally bigraded as follows: a generator $U^m z(v - e_B)$ has *cube degree* |B| and its homological degree *in* $A^{-}(L, v - e_{B})$ equals $-2m - 2h(v - e_{B})$. In short, we will write

bideg
$$
(U^m z(v - e_B)) = (|B|, -2m - 2h(v - e_B)).
$$

The homological degree of the same generator in $E_1(v)$ equals the sum of these two degrees. The differential ∂_1 has bidegree $(-1, 0)$, and, more generally, the differential ∂_k in the spectral sequence has bidegree $(-k, k - 1)$.

In the next section we will compute the E_2 page for cable L-space links and show that $E_2 = E_{\infty}$. Let us discuss the action of the operators U_i on the E_2 page. Recall that U_i maps $A^-(L, v)$ to $A^-(L, v - e_i)$, and in homology one has

$$
U_i z(v) = U^{1 - h(v - e_i) + h(v)} z(v - e_i).
$$
 (3.7)

Since U_i commutes with the inclusions of various A^- , we get the following result.

Proposition 3.7. *Equation* [\(3.7\)](#page-11-0) *defines a chain map from* $\mathcal{K}(v)$ *to* $\mathcal{K}(v - e_i)$ *commuting with the differential* ∂_1 *, so we have a well-defined combinatorial map*

$$
U_i: H_*(E_1(v), \partial_1) \longrightarrow H_*(E_1(v-e_i), \partial_1).
$$

If $E_2 = E_\infty$ then one obtains U_i : $HFL^-(L, v) \rightarrow HFL^-(L, v - e_i)$.

Furthermore, by the definition of \widehat{HFL} [[15](#page-36-14), Section 4] one gets

$$
\widehat{\text{HFL}}(L, v) = H_*\Big(A^-(L, v) / \Big[\sum_{i=1}^r A^-(v - e_i) \oplus \sum_{i=1}^r U_i A^-(v + e_i)\Big]\Big).
$$

This implies the following result.

Proposition 3.8. *There is a spectral sequence with* E_1 *page*

$$
\widehat{E}_1 = \bigoplus_{B \subset \{1, \dots, r\}} \text{HFL}^-(L, v + e_B)
$$

and converging to $\widehat{E}_{\infty} = \widehat{HFL}(L, v)$ *. The differential* $\widehat{\partial}_1$ *is given by the action of* U_i induced by [\(3.7\)](#page-11-0).

4. Heegaard–Floer homology for cable links

4.1. The Alexander polynomial and h**–function.** The Alexander polynomial of cable knots and links is given by the following well-known formula:

$$
\Delta_{K_{rm,rn}(t_1,\ldots,t_r)} = \Delta_K(t_1^m\cdots t_r^m)\cdot \Delta_{T(rm,rn)}(t_1,\ldots,t_r),\tag{4.1}
$$

where $T(rm, rn)$ denotes the (rm, rn) torus link. Throughout, let $\mathbf{t} = t_1 \cdots t_r$ and $l = mn$.

Lemma 4.1. *The generating functions for the Euler characteristics of* HFL– *for* Krm;rn *and* Km;n *are related by the following equation:*

$$
\chi_{K_{rm,rn}}(t_1,\ldots,t_r) = \chi_{K_{m,n}}(\mathbf{t}) \cdot (\mathbf{t}^{l/2} - \mathbf{t}^{-l/2})^{r-1}.
$$
 (4.2)

Proof. The statement follows from the identity [\(4.1\)](#page-12-1) and the expression for the Alexander polynomials of torus links:

$$
\chi_{T(rm,rn)}(t_1,\ldots,t_r)=\frac{(\mathbf{t}^{mn/2}-\mathbf{t}^{-mn/2})^r}{(\mathbf{t}^{m/2}-\mathbf{t}^{-m/2})(\mathbf{t}^{n/2}-\mathbf{t}^{-n/2})}.
$$

 \Box

Remark 4.2. The Alexander polynomial is determined up to a sign. By [\(4.2\)](#page-12-2), the multivariable Alexander polynomial of a cable link is supported on the diagonal, so one can fix the sign by requiring its top coefficient to be positive.

From now on we will assume that K is an L-space knot and $n/m \geq 2g(K)-1$, so $K_{rm, rn}$ is an L-space link for all r. To simplify notation, we define $h_{rm, rn}(v) =$ $h_{K_{rm\{rm}}r_{m}}(v)$ and $\chi_{rm\{rm}}r_{m}(v) = \chi_{K_{rm\{rm}}r_{m}}$, v . Let $c = l(r-1)/2$.

Theorem 4.3. Suppose that $v_1 \le v_2 \le \cdots \le v_r$. Then the following equation *holds:*

$$
h_{rm,rn}(v_1, \ldots, v_r)
$$

= $h_{m,n}(v_1 - c) + h_{m,n}(v_2 - c + l) + \cdots + h_{m,n}(v_r - c + (r - 1)l).$ (4.3)

Proof. We will use Theorem [3.4](#page-10-2) to compute $h(v)$. Let L' be a sublink of $K_{rm,rn}$ with r' components, i.e., $L' = K_{r'm,r'n}$. By [\(4.2\)](#page-12-2), one has

$$
\chi_{K_{r'm,r'n}}(t_1,\ldots,t_{r'})=\chi_{K_{m,n}}(\mathbf{t})\cdot \mathbf{t}^{l(r'-1)/2}\sum_{j=0}^{r'-1}(-1)^j\binom{r'-1}{j}\mathbf{t}^{-lj},
$$

hence $\chi_{L',u}$ does not vanish only if $u = (s, \ldots, s)$, and

$$
\chi_{L',s,\dots,s} = \sum_{j=0}^{r'-1} (-1)^j {r'-1 \choose j} \chi_{m,n}(s-l(r'-1)/2+lj).
$$

Therefore

$$
\sum_{u \ge \pi_{L'}(v+1)} \chi_{L',u} = \sum_{s \ge \max(\pi_{L'}(v))} \sum_{j=0}^{r'-1} (-1)^j {r'-1 \choose j} \chi_{m,n}(s - l(r'-1)/2 + l j)
$$

=
$$
\sum_{j=0}^{r'-1} (-1)^j {r'-1 \choose j} h_{m,n}(\max(\pi_{L'}(v)) - l(r'-1)/2 + l j).
$$

Furthermore, if $L' = L_{i_1} \cup \cdots \cup L_{i_{r'}}$ then

$$
\pi_{L'}(v) = (v_{i_1} - l(r - r')/2, \dots, v_{i_{r'}} - l(r - r')/2),
$$

so

$$
\max(\pi_{L'}(v)) = \max(v_{i_1}, \ldots, v_{i_r'}) - l(r - r')/2 = \max(v_{L'}) - l(r - r')/2.
$$

This means that (3.5) can be rewritten as follows:

$$
h_{rm,rn}(v_1, \ldots, v_r)
$$

= $\sum_{L',j} (-1)^{r'-1+j} {r'-1 \choose j} h_{m,n}(\max(v_{L'}) - l(r-1)/2 + lj)$
= $\sum_{i,j} h_{m,n}(v_i - l(r-1)/2 + lj) \sum_{L':v_i = \max(v_{L'})} (-1)^{r'-1+j} {r'-1 \choose j}.$

One can check that the inner sum vanishes unless $j = i - 1$ (recall that $v_1 \le v_2 \le v_1$) $\cdots \leq v_r$, so one gets

$$
h_{rm,rn}(v_1,\ldots,v_r) = \sum_i h_{m,n}(v_i - l(r-1)/2 + l(i-1)). \qquad \Box
$$

Lemma 4.4. *The following identity holds:*

$$
h_{rm,rn}(-v_1,\ldots,-v_r) = h_{rm,rn}(v_1,\ldots,v_r) + (v_1 + \cdots + v_r).
$$

Proof. Suppose that $v_1 \le v_2 \le \cdots \le v_r$. Then $-v_1 \ge -v_2 \ge \cdots \ge -v_r$. Therefore

$$
h_{rm,rn}(-v_1,\ldots,-v_r) = \sum_{i=1}^r h_{m,n}(-v_i - l(r-1)/2 + l(r-i))
$$

=
$$
\sum_{i=1}^r h_{m,n}(-v_i + l(r-1)/2 - l(i-1)).
$$

It is known (e.g., $[6]$ $[6]$ $[6]$) that for all x,

$$
h_{m,n}(-x) = h_{m,n}(x) + x,
$$

hence

$$
h_{m,n}(-v_i + l(r-1)/2 - l(i-1))
$$

= $h_{m,n}(v_i - l(r-1)/2 + l(i-1)) + (v_i - l(r-1)/2 + l(i-1)).$

Finally, $\sum_{i=1}^{r}(-l(r-1)/2 + l(i-1)) = 0.$

Lemma 4.5. *One has* $h_{rm,rn}(k, k, \ldots, k) = \mathbf{h}(k)$ *, where* $\mathbf{h}(k)$ *is defined by* [\(1.1\)](#page-2-1)*.*

Proof. Indeed, by (4.3) we have

$$
h_{rm,rn}(k,...,k) = h_{m,n}(k - l(r-1)/2) + h_{m,n}(k - l(r-1)/2 + l) + \cdots
$$

+
$$
h_{m,n}(k + l(r-1)/2),
$$

so

$$
\sum_{k} h_{rm,rn}(k, \dots, k)t^{k} = (t^{-l(r-1)/2} + \dots + t^{l(r-1)/2}) \sum_{k} h_{m,n}(k)t^{k}
$$

$$
= \frac{(t^{l r/2} - t^{-l r/2})}{(t^{l/2} - t^{-l/2})} \cdot \frac{t^{-1} \Delta_{m,n}(t)}{(1 - t^{-1})^{2}}.
$$

For the rest of this section we will assume that $n/m > 2g(K) - 1$.

Lemma 4.6. *If* $v \le g(K_{m,n}) - l$, then HFK⁻ $(K_{m,n}, v) \simeq \mathbb{F}$.

Proof. By [[3](#page-36-6), Theorem 1.10], $K_{m,n}$ is an L-space knot and hence by [[14](#page-36-8)]

$$
g(K_{m,n}) = \tau(K_{m,n}), \quad g(K) = \tau(K).
$$

By $[17]$ $[17]$ $[17]$, we have

$$
g(K_{m,n}) = mg(K) + \frac{(m-1)(n-1)}{2},
$$

so for $n/m > 2g(K) - 1$ we have

$$
2g(K_{m,n}) = 2mg(K) + mn - m - n + 1 < mn + 1,
$$

hence $l = mn \geq 2g(K_{m,n})$. On the other hand, it is well known that for $v \leq -g(K_{m,n})$ one has HFK⁻ $(K_{m,n}, v)$) \simeq F.

We will use the function β defined by [\(1.1\)](#page-2-1).

Lemma 4.7. *If* $\beta(k) = -1$ *then* HFK⁻($K_{m,n}, k - c$) = 0. *Otherwise*

$$
\beta(k) = \max\{j : 0 \le j \le r - 1, \text{ HFK}^-(K_{m,n}, k - c + lj) \simeq \mathbb{F}\}. \tag{4.4}
$$

Proof. By (1.1) and Lemma [4.5](#page-15-0) we have

$$
\beta(k) + 1 = h_{rm,rn}(k - 1, ..., k - 1) - h_{rm,rn}(k, ..., k)
$$

$$
= \sum_{j=0}^{r-1} (h_{m,n}(k - 1 - c + lj) - h_{m,n}(k - c + lj)).
$$

Note that $h_{m,n}(k-1-c+lj) - h_{m,n}(k-c+lj) = \dim HFK^{-}(K_{m,n}, k-c+lj) \in$ $\{0, 1\}$. If HFK⁻ $(K_{m,n}, k-c+lj) \simeq \mathbb{F}$ then $k-c+lj \leq g(K_{m,n})$, so by Lemma [4.6](#page-15-1) HFK⁻ $(K_{m,n}, k-c+lj') \simeq \mathbb{F}$ for all $j' < j$. Therefore, if HFK⁻ $(K_{m,n}, k-c) = 0$ then $\beta(k) = -1$, otherwise

$$
\text{HFK}^-(K_{m,n}, k-c+lj) = \begin{cases} \mathbb{F} & \text{if } j \le \beta(k), \\ 0 & \text{if } j > \beta(k). \end{cases} \quad \Box
$$

Suppose that

$$
v_1 = \dots = v_{\lambda_1} = u_1,
$$

$$
v_{\lambda_1 + 1} = \dots = v_{\lambda_1 + \lambda_2} = u_2,
$$

$$
\vdots
$$

$$
v_{\lambda_1 + \dots + \lambda_{s-1} + 1} = \dots = v_r = u_s,
$$

where $u_1 < u_2 < \cdots < u_s$ and $\lambda_1 + \cdots + \lambda_s = r$. We will abbreviate this as $v = (u_1^{\lambda_1}, \ldots, u_s^{\lambda_s}).$

Lemma 4.8. *Suppose that* $\beta(u_s) < r - \lambda_s$ *. Then for any subset* $B \subset \{1, \ldots, r-1\}$ *one has* $h_{rm,rn}(v - e_B) = h_{rm,rn}(v - e_B - e_r)$ *.*

Proof. To apply [\(4.3\)](#page-13-0), one needs to reorder the components of the vectors $v - e_B$ and $v - e_B - e_r$. Note that in both cases the last (largest) λ_s components are equal either to u_s or to $u_s - 1$, and the corresponding contributions to $h_{rm,rn}$ are equal to $h_{m,n}(u_s - c + l(r - \lambda_s) + l_j)$ or to $h_{m,n}(u_s - c + l(r - \lambda_s) + l_j - 1)$, respectively $(j = 0, \ldots, \lambda_s - 1)$. On the other hand, by [\(4.4\)](#page-15-2) one has

$$
HFK^{-}(K_{m,n}, u_s - c + l(r - \lambda_s) + lj) = 0
$$

and so

$$
h_{m,n}(u_s - c + l(r - \lambda_s) + lj - 1) = h_{m,n}(u_s - c + l(r - \lambda_s) + lj).
$$

646 E. Gorsky and J. Hom

Lemma 4.9. *If* $\beta(u_s) \ge r - \lambda_s$ *then* $h_{rm,rn}(v) = \mathbf{h}(u_s) + ru_s - |v|$.

Proof. Since $\beta(u_s) \ge r - \lambda_s$, we have HFK⁻ $(K_{m,n}, u_s - c + l(r - \lambda_s)) \simeq \mathbb{F}$, so

$$
u_s-c+l(r-\lambda_s)\leq g(K_{m,n}).
$$

For $i \leq r - \lambda_s$ we get

$$
v_i - c + l(i-1) < u_s - c + l(i-1) \le u_s - c + l(r - \lambda_s) - l \le g(K_{m,n}) - l,
$$

so by Lemma [4.6,](#page-15-1) HFK⁻ $(K_{m,n}, w) \simeq \mathbb{F}$ for all $w \in [v_i - c + l(i-1), u_s - c + l(i-1)],$ and

$$
h_{m,n}(v_i-c+l(i-1))=h_{m,n}(u_s-c+l(i-1))+(u_s-v_i).
$$

Now the statement follows from Lemma [4.3.](#page-13-0) \Box

Lemma 4.10. *Suppose that* $\beta(u_s) \geq r - \lambda_s$. *Then for any subsets* $B' \subset \{1, \ldots,$ $r - \lambda_s$ *and* $B'' \subset \{r - \lambda_s + 1, \ldots, r\}$ *one has*

$$
h_{rm,rn}(v - e_{B'} - e_{B''}) = h_{rm,rn}(v) + |B'| + \min(|B''|, \beta(u_s) - r + \lambda_s + 1).
$$

Proof. Since HFK^{$-$}($K_{m,n}$, $u_s - c + l(r - \lambda_s)$) $\simeq \mathbb{F}$, we have

$$
u_s-c+l(r-\lambda_s)\leq g(K_{m,n}),
$$

so for all $i \leq r - \lambda_s$ one has

$$
v_i - c + l(i - 1) < u_s - c + l(r - \lambda_s) - l \le g(K_{m,n}) - l,
$$

and by Lemma [4.6](#page-15-1) HFK⁻ $(K_{m,n}, v_i - c + l(i - 1)) \simeq \mathbb{F}$, and

$$
h_{m,n}(v_i - 1 - c + l(i-1)) = h_{m,n}(v_i - c + l(i-1)) + 1.
$$

Therefore

$$
h_{rm,rn}(v - e_{B'} - e_{B''}) = |B'| + h_{rm,rn}(v - e_{B''}).
$$

Finally,

$$
h_{rm,rn}(v - e_{B''}) - h_{rm,rn}(v) = \sum_{j=0}^{|B''|} (h_{m,n}(u_s - 1 - c + l(r - \lambda_s) + lj) - h_{m,n}(u_s - c + l(r - \lambda_s) + lj)
$$

$$
= \min(|B''|, \beta(u_s) - r + \lambda_s + 1).
$$

4.2. Spectral sequence for HFL–

Definition 4.11. Let \mathcal{E}_r denote the exterior algebra over F with variables z_1, \ldots, z_r . Let us define the *cube differential* on \mathcal{E}_r by the equation

$$
\partial(z_{\alpha_1} \wedge \cdots \wedge z_{\alpha_k}) = \sum_{j=1}^k z_{\alpha_1} \wedge \cdots \wedge \widehat{z}_{\alpha_j} \wedge \cdots \wedge z_{\alpha_k},
$$

and the *b*-truncated differential on $\mathcal{E}_r[U]$ by the equation

$$
\partial^{(b)}(z_{\alpha_1} \wedge \cdots \wedge z_{\alpha_k}) = \begin{cases} U \partial(z_{\alpha_1} \wedge \cdots \wedge z_{\alpha_k}) & \text{if } k \leq b, \\ \partial(z_{\alpha_1} \wedge \cdots \wedge z_{\alpha_k}) & \text{if } k > b. \end{cases}
$$

More invariantly, we define the *weight* of a monomial $z_{\alpha} = z_{\alpha_1} \wedge \cdots \wedge z_{\alpha_k}$ as $w(z_{\alpha}) = min(|\alpha|, b)$, and the b-truncated differential is given by the equation

$$
\partial^{(b)}(z_{\alpha}) = \sum_{i \in \alpha} U^{w(\alpha) - w(\alpha - \alpha_i)} z_{\alpha - \alpha_i}.
$$
 (4.5)

Indeed, $w(\alpha) - w(\alpha - \alpha_i) = 1$ for $|\alpha| \le b$ and $w(\alpha) - w(\alpha - \alpha_i) = 0$ for $|\alpha| > b$.

Definition 4.12. Let $\mathcal{E}_r^{\text{red}} \subset \mathcal{E}_r$ be the subalgebra of \mathcal{E}_r generated by the differences $z_i - z_j$ for all $i \neq j$.

Lemma 4.13. The kernel of the cube differential ∂ on \mathcal{E}_r coincides with $\mathcal{E}_r^{\text{red}}$.

Proof. It is clear that $\partial(z_i - z_j) = 0$, and Leibniz rule implies vanishing of ∂ on $\mathcal{E}_r^{\text{red}}$. Let us prove that Ker $\partial \subset \mathcal{E}_r^{\text{red}}$. Since $(\mathcal{E}_r, \partial)$ is acyclic, it is sufficient to prove that the image of every monomial $z_{\alpha_1} \wedge \cdots \wedge z_{\alpha_k}$ is contained in \mathcal{E}_r . Indeed, one can check that

$$
\partial(z_{\alpha_1} \wedge \cdots \wedge z_{\alpha_k}) = (z_{\alpha_2} - z_{\alpha_1}) \wedge \cdots \wedge (z_{\alpha_k} - z_{\alpha_{k-1}}).
$$

Lemma 4.14. *The homology of* $\partial^{(b)}$ *is given by the following equation:*

$$
\dim H_k(\mathcal{E}_r[U], \partial^{(b)}) = \begin{cases} {r-1} \\ k \end{cases} \quad \text{if } k < b, \\ 0 \quad \text{if } k \ge b.
$$

Proof. Since ∂ is acyclic, one immediately gets $H_k(\mathcal{E}_r[U], \partial^{(b)}) = 0$ for $k > b$. For $k \leq b$, the homology is supported at the zeroth power of U and one has $H_k(\mathcal{E}_r[U]) \simeq \text{Ker}(\partial|_{\wedge^k(z_1,...,z_r)})$. The dimension of the latter kernel equals

$$
\dim \text{Ker}(\partial|_{\wedge^k(z_1,\ldots,z_r)}) = \dim \wedge^k(z_1-z_2,\ldots,z_1-z_r) = \binom{r-1}{k}.\qquad \Box
$$

Proof of Theorem [5](#page-3-0). Let us compute $HFL^{-}(K_{rm, rn}, v)$ using the spectral sequence constructed in Theorem 3.5 . By Lemma 4.8 , in case [\(a\)](#page-3-1) it is easy to see that the complex (E_1, ∂_1) is contractible in the direction of e_r and $E_2 = H_*(E_1, \partial_1) = 0$.

In case [\(b\)](#page-3-2) by Lemma [4.10](#page-17-0) and [\(4.5\)](#page-18-1) one can write $E_1 = \mathcal{E}_{r-\lambda_s}[U] \otimes_{\mathbb{F}[U]}$ $\mathcal{E}_{\lambda_s}[U]$, a tensor product of chain complexes of $\mathbb{F}[U]$ –modules, and ∂_1 acts as $U\partial$ on the first factor and as $\partial^{(\beta+1)}$ on the second one. This implies

$$
E_2 = H_*(E_1, \partial_1) \simeq \mathcal{E}_{r-\lambda_s} \otimes_{\mathbb{F}} H_*(\mathcal{E}_{\lambda_s}[U], \partial^{(\beta+1)}). \tag{4.6}
$$

Indeed, U acts trivially on $H_*\left(\mathcal{E}_{\lambda_S}[U],\partial^{(\beta+1)}\right),$ so one can take the homology of $\partial^{(\beta+1)}$ first and then observe that U ∂ vanishes on

$$
\mathcal{E}_{r-\lambda_s}[U] \otimes_{\mathbb{F}[U]} H_*(\mathcal{E}_{\lambda_s}[U],\partial^{(\beta+1)}) \simeq \mathcal{E}_{r-\lambda_s} \otimes_{\mathbb{F}} H_*(\mathcal{E}_{\lambda_s}[U],\partial^{(\beta+1)}).
$$

By Lemma [4.14,](#page-18-2) the E_2 page [\(4.6\)](#page-19-0) agrees with the statement of the theorem, hence we need to prove that the spectral sequence collapses.

Indeed, the E_1 page is bigraded by the homological degree and |B| (see Remark [3.6\)](#page-11-2). By Lemma [4.14](#page-18-2) any surviving homology class on the E_2 page of cube degree x has bidegree $(x, -2h_{rm, rn}(v) - 2x)$, so all bidegrees on the E_2 page belong to the same line of slope (-2) . Therefore all higher differentials must vanish.

Finally, a simple formula for $h_{rm,rn}(v)$ in case [\(b\)](#page-3-2) follows from Lemma [4.9.](#page-17-1) \Box

4.3. Action of U_i **.** One can use Proposition [3.7](#page-11-3) to compute the action of U_i on HFL⁻ for cable links. Recall that $R = \mathbb{F}[U_1, \ldots, U_r]$. Throughout this section we assume $n/m > 2g(K) - 1$. We start with a simple algebraic statement.

Proposition 4.15. Let C be an F-algebra. Given a finite collection of elements $c_{\alpha} \in C$ and vectors $v^{(\alpha)} \in \mathbb{Z}^r$, consider the ideal $\mathcal{I} \subset C \otimes_{\mathbb{F}} R$ generated by $c_{\alpha}\otimes U_1^{v_1^{(\alpha)}}\cdots U_r^{v_r^{(\alpha)}}.$ Then the following statements hold:

(a) the quotient $(C \otimes_F R)/\mathcal{I}$ can be equipped with a \mathbb{Z}^r -grading, with U_i of *grading* $(-e_i)$ *and* C *of grading* 0;

(b) *the subspace of* $(C \otimes_F R)/\mathcal{I}$ *with grading* v *is isomorphic to*

$$
[(\mathcal{C} \otimes_{\mathbb{F}} R)/\mathcal{I}](v) \simeq \mathcal{C}/(c_{\alpha}:v^{(\alpha)} \leq -v).
$$

Proof. Straightforward. □

Definition 4.16. We define $\mathcal{A}_r = \mathcal{E}_r \otimes_{\mathbb{F}} R$ and $\mathcal{A}_r^{\text{red}} = \mathcal{E}_r^{\text{red}} \otimes_{\mathbb{F}} R$. Let \mathcal{I}'_β denote the ideal in A_r generated by the monomials $(z_{i_1} \wedge \cdots \wedge z_{i_s}) \otimes U_{i_{s+1}} \cdots U_{i_{\beta+1}}$ for all $s \le \beta + 1$ and all tuples of pairwise distinct $i_1, \ldots, i_{\beta+1}$. Let $\mathcal{I}_{\beta} := \mathcal{I}'_{\beta} \cap \mathcal{A}_r^{\text{red}}$ be the corresponding ideal in A_r^{red} .

The algebras A_r and A_r^{red} are naturally \mathbb{Z}^{r+1} -graded: the generators z_i have Alexander grading 0 and homological grading (-1) , the generators U_i have Alexander grading $(-e_i)$ and homological grading (-2) .

Definition 4.17. We define $\mathcal{H}(k) := \bigoplus_{\max(v) \leq k} \text{HFL}^{-1}(K_{rm, rn}, v)$. Since U_i decreases the Alexander grading, $\mathcal{H}(k)$ is naturally an R–module.

The following theorem clarifies the algebraic structure of Theorem [5.](#page-3-0)

Theorem 4.18. *The following graded* R*–modules are isomorphic:*

$$
\mathcal{H}(k)/\mathcal{H}(k-1) \simeq \mathcal{A}_r^{\text{red}}/\mathcal{I}_{\beta(k)}[-2\mathbf{h}(k)]\{k,\ldots,k\},\,
$$

where $\lceil \cdot \rceil$ *and* $\lceil \cdot \rceil$ *denote the shifts of the homological grading and the Alexander grading, respectively.*

Proof. By definition, $\mathcal{H}(k)/\mathcal{H}(k-1)$ is supported on the set of Alexander gradings v such that max $(v) = k$. The monomial $U_1 \cdots U_r$ belongs to the ideal $\mathcal{I}_{\beta(k)}$, so $\mathcal{A}_r^{\text{red}}/\mathcal{I}_{\beta(k)}$ is supported on the set of Alexander gradings u with max $(u) = 0$.

Suppose that exactly λ components of v are equal to k. Without loss of generality we can assume $v_1, \ldots, v_{r-\lambda} < k$ and $v_{r-\lambda+1} = \cdots = v_r = k$. It follows from Lemma [4.13](#page-18-3) and the proof of Theorem [5](#page-3-0) that $HFL^{-}(K_{rm,rn}, v)$ is isomorphic to the quotient of $\mathcal{E}_r^{\text{red}}$ by the ideal generated by degree $\beta - r + \lambda + 1$ monomials in $(z_i - z_j)$ for $i, j > r - \lambda$.

Consider the subspace of A_r/\mathcal{I}'_β of Alexander grading (v_1-k,\ldots,v_r-k) . By Proposition [4.15](#page-19-1) it is isomorphic to a quotient of \mathcal{E}_r modulo the following relations. For each subset $B \subset \{1, \ldots, r - \lambda\}$ and each degree $\beta + 1 - |B|$ monomial m' in variables z_i for $i \notin B$ there is a relation $m' \otimes \prod_{b \in B} U_b \in \mathcal{I}'_B$. All these relations can be multiplied by an appropriate monomial in R to have Alexander grading $(v_1 - k, \ldots, v_r - k).$

Note that such m' should contain at most $r - \lambda - |B|$ factors with indices in $\{1, \ldots, r - \lambda\} \setminus B$, hence it contains at least $\beta - r + \lambda + 1$ factors with indices in $\{r - \lambda + 1, \ldots, r\}$. Therefore $[\mathcal{A}_r / \mathcal{I}'_{\beta}](v_1 - k, \ldots, v_r - k)$ is naturally isomorphic to the quotient of \mathcal{E}_r by the ideal generated by degree $\beta - r + \lambda + 1$ monomials in z_i for $i > r - \lambda$.

We conclude that the space $[\mathcal{A}_r^{\text{red}}/\mathcal{I}_{\beta(k)}](v_1 - k, \dots, v_r - k)$ is isomorphic to HFL^{$-(K_{rm, rn}, v)$. The action of U_i on $\mathcal{H}(k)$ is described by Proposition [3.7.](#page-11-3) One} can check that it commutes with the above isomorphisms for different v , so we get the isomorphism of R –modules. \square

We illustrate the above theorem with the following example (cf. Example [5.8\)](#page-32-0).

Example 4.19. Let us describe the subspaces of $\mathcal{A}_3^{\text{red}}/\mathcal{I}_1$ with various Alexander gradings. The ideal \mathcal{I}_1 equals:

$$
I_1 = ((z_1 - z_2)(z_2 - z_3), (z_1 - z_2)U_3,
$$

$$
(z_1 - z_3)U_2, (z_2 - z_3)U_1, U_1U_2, U_1U_3, U_2U_3) \subset \mathcal{A}_3^{\text{red}}.
$$

In the Alexander grading $(0, 0, 0)$ one gets

$$
[\mathcal{A}_3^{\text{red}}/\mathcal{I}_1](0,0,0) \simeq \mathcal{E}_3^{\text{red}}/((z_1 - z_2)(z_2 - z_3)) = \langle 1, z_1 - z_2, z_2 - z_3 \rangle,
$$

in the Alexander grading $(k, 0, 0)$ (for $k > 0$) one gets two relations

$$
U_1^k(z_1-z_2)(z_2-z_3), U_1^{k-1}(z_2-z_3) \in \mathcal{I}_1.
$$

Since the latter implies the former, we get

$$
[\mathcal{A}_{3}^{\text{red}}/\mathcal{I}_{1}](k,0,0) \simeq \mathcal{E}_{3}^{\text{red}}/(z_{2}-z_{3}) = \langle 1, z_{1}-z_{2} \rangle.
$$

The map

$$
U_1: [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1](0,0,0) \longrightarrow [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1](1,0,0)
$$

is a natural projection

$$
\mathcal{E}_3^{\text{red}}/((z_1-z_2)(z_2-z_3)) \longrightarrow \mathcal{E}_3^{\text{red}}/(z_2-z_3),
$$

while the map

$$
U_1: [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1](k,0,0) \longrightarrow [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1](k+1,0,0)
$$

is an isomorphism for $k > 0$.

The gradings $(0, k, 0)$ and $(0, 0, k)$ can be treated similarly. Furthermore, $U_i U_j \in \mathcal{I}_1$ for $i \neq j$, so all other graded subspaces of $\mathcal{A}_3^{\text{red}}/\mathcal{I}_1$ vanish.

Since the multiplication by U_i preserves the ideal \mathcal{I}_{β} , we get the following useful result.

Corollary 4.20. *If* max $(v) = \max(v - e_i)$ *, then the map*

$$
U_i: \text{HFL}^-(K_{rm,rn}, v) \longrightarrow \text{HFL}^-(K_{rm,rn}, v - e_i)
$$

is surjective.

Lemma 4.21. *Suppose that* $max(v) = k$ *and* $max(v - e_i) = k - 1$ *, and the homology group* $HFL^{-}(K_{rm, rn}, v)$ *does not vanish. Then* $\beta(k) = r - 1$, $\beta(k-1) \ge$ $r - 2$ *and the map*

$$
U_i: \text{HFL}^-(K_{rm,rn}, v) \longrightarrow \text{HFL}^-(K_{rm,rn}, v - e_i)
$$

is surjective.

Proof. Since max $(v) = k$ and max $(v - e_i) = k - 1$, the multiplicity of k in v equals 1, so by Theorem $5 \beta(k) \ge r - 1$ $5 \beta(k) \ge r - 1$, hence $\beta(k) = r - 1$. Therefore HFL⁻ $(K_{rm,rn}, v) \simeq \mathcal{E}_r^{\text{red}}$, so U_i is surjective. Indeed, by Theorem [5](#page-3-0) HFL⁻($K_{rm,rn}, v - e_i$) is naturally isomorphic to a quotient of $\mathcal{E}_r^{\text{red}}$, and by Propo-sition [3.7](#page-11-3) U_i coincides with a natural quotient map. Finally, by [\(4.4\)](#page-15-2)

$$
HFK^{-}(K_{m,n}, k-c+l(r-1)) \simeq \mathbb{F},
$$

and by Lemma [4.6](#page-15-1)

$$
HFK^{-}(K_{m,n}, k-1-c+l(r-2)) \simeq \mathbb{F},
$$

so $\beta(k - 1) > r - 2$.

Proof of Theorem [6](#page-3-3)*.* Let us prove that the homology classes with diagonal Alexander gradings generate HFL⁻ over R. Indeed, given $v = (v_1 \leq \cdots \leq v_r)$ with HFL^{$-$}($K_{rm,rn}$, v) \neq 0, by Theorems [5](#page-3-0) and [4.18](#page-20-0) one can check that

$$
HFL^{-}(K_{rm, rn}, v_r, \ldots, v_r) \neq 0
$$

and by Corollary [4.20](#page-22-0) the map

$$
U_1^{v_r-v_1}\cdots U_{r-1}^{v_r-v_{r-1}}:\operatorname{HFL}^-(K_{rm,rn},v_r,\ldots,v_r)\to \operatorname{HFL}^-(K_{rm,rn},v)
$$

is surjective.

Let us describe the R-modules generated by the diagonal classes in degree $(k, ..., k)$. If $\beta(k) = -1$ then HFL⁻ $(K_{rm, rn}, k, ..., k) = 0$. If $0 \le \beta(k) \le r - 2$ then by Lemma [4.21](#page-22-1) the submodule $R \cdot HFL^{-}(K_{rm, rn}, k, \ldots, k)$ does not contain any classes with maximal Alexander degree less than k , so by Theorem [4.18](#page-20-0)

$$
R \cdot \text{HFL}^{-}(K_{rm,rn}, k, \ldots, k) \simeq \mathcal{A}_r^{\text{red}}/\mathcal{I}_{\beta(k)} =: M_{\beta(k)}
$$

Suppose that $\beta(k) = r - 1$, and consider minimal a and maximal b such that $a \leq k \leq b$ and $\beta(i) = r - 1$ for $i \in [a, b]$. If there is no minimal a, we set $a = -\infty$. By Lemma [4.21,](#page-22-1) $\beta(a - 1) = r - 2$ and all the maps

$$
\begin{aligned} \n\text{HFL}^{-}(K_{rm,rn}, b, \dots, b) & \xrightarrow{U_1 \cdots U_r} \text{HFL}^{-}(K_{rm,rn}, b-1, \dots, b-1) \\
&\dots \longrightarrow \text{HFL}^{-}(K_{rm,rn}, a, \dots, a) & \xrightarrow{U_1 \cdots U_r} \text{HFL}^{-}(K_{rm,rn}, a-1, \dots, a-1)\n\end{aligned}
$$

are surjective. Therefore

$$
R \cdot \text{HFL}^{-}(K_{rm,rn}, b, \ldots, b) \simeq \mathcal{A}_{r}^{\text{red}}/(U_{1} \cdots U_{r})^{b-a} \mathcal{I}_{r-2} =: M_{r-1,b-a+1}
$$

is supported in all Alexander degrees with maximal coordinates in $[a, b]$ and in Alexander degrees with maximal coordinate $(a - 1)$ which appears with multiplicity at least 2.

Finally, we get the following decomposition of HFL⁻ as an R-module:

$$
HFL^{-}(K_{rm,rn}) = \bigoplus_{k:0 \leq \beta(k) < r-1} M_{\beta(k)} \oplus \bigoplus_{a,b: \beta(a-1) = r-2} M_{r-1,b-a+1} \oplus M_{r-1,\infty}.
$$
\n
$$
\Box
$$
\n
$$
\beta(k+1) < r-1 \qquad \beta(b+1) < r-1
$$
\n
$$
\beta([a,b]) = r-1
$$

Note that for $r = 1$ we get $M_{0,l} \simeq \mathbb{F}[U_1]/(U_1^l)$ and $M_{0,+\infty} \simeq \mathbb{F}[U]$.

4.4. Spectral sequence for HFL 1

Theorem 4.22. *If* $\beta(k) + \beta(k+1) \leq r-2$ *then the spectral sequence for* $\widehat{HFL}(K_{rm,rn}, k, \ldots, k)$ *degenerates at the* \widehat{E}_2 *page and*

$$
\widehat{\text{HFL}}(K_{rm,rn},k,\ldots,k)\simeq \bigoplus_{i=0}^{\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i} \oplus \bigoplus_{i=0}^{\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)+2-r+i}.
$$

Proof. By Proposition [3.8,](#page-12-3) for a given v there is a spectral sequence with \hat{E}_1 page

$$
\widehat{E}_1 = \bigoplus_{B \subset \{1, \dots, r\}} \text{HFL}^-(L, v + e_B)
$$

and converging to $\widehat{E}_{\infty} = \widehat{HFL}(L, v)$. If $v = (k, \ldots, k)$ then (for $B \neq \emptyset$) the maximal coordinate of $v + e_B$ equals $k + 1$ and appears with multiplicity $\lambda = |B|$. Therefore, by Theorem [5](#page-3-0) HFL^{$-L$}, $v + e_B$) does not vanish if and only if either $B = \emptyset$ or $|B| \ge r - \beta(k + 1)$, and it is given by Theorem [5.](#page-3-0) By [\(1.1\)](#page-2-1) we have $h(k + 1) = h(k) - \beta(k + 1) - 1.$

The spectral sequence is bigraded by the homological (Maslov) grading at each vertex of the cube and the "cube grading" |B|. The differential $\hat{\theta}_1$ acts along the edges of the cube, and decreases the Maslov grading by 2 and the cube grading by 1.

One can check using Theorem [4.18](#page-20-0) that its homology \hat{E}_2 does not vanish in cube degrees 0 and $r - \beta(k + 1)$, so one can write

$$
\widehat{E}_2 = \widehat{E}_2^0 \oplus \widehat{E}_2^{r-\beta(k+1)},
$$

and

$$
\widehat{E}_2^0 \simeq \bigoplus_{i=0}^{\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i},
$$

$$
\widehat{E}_2^{r-\beta(k+1)} \simeq \bigoplus_{i=0}^{\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k+1)-3\beta(k+1)+i}.
$$

By (1.1) we have

$$
h(k + 1) = h(k) - \beta(k + 1) - 1,
$$

so

$$
-2\mathbf{h}(k+1) - 3\beta(k+1) + i = -2\mathbf{h}(k) + 2 - \beta(k+1) + i.
$$

A higher differential $\hat{\partial}_{s}$ decreases the cube grading by s and decreases the Maslov grading by $s + 1$. Therefore the only nontrivial higher differential is $\hat{\partial}_{r-\beta(k+1)}$ which vanishes by degree reasons too. Indeed, the maximal Maslov grading in $\hat{E}_2^{r-\beta(k+1)}$ $e^{(k+1)}$ equals $-2h(k) + 2$ while the minimal Maslov grading in \hat{E}_2^0 equals $-2\mathbf{h}(k) - \beta(k)$, so the differential can decrease the Maslov grading at most by $\beta(k) + 2$. On the other hand, $\hat{\partial}_{r-\beta(k+1)}$ drops it by $r - \beta(k+1) + 1$, and for $\beta(k) + \beta(k + 1) < r - 1$ one has $r - \beta(k + 1) + 1 > \beta(k) + 2$. Therefore $\widehat{\partial}_{r-\beta(k+1)} = 0$ and the spectral sequence vanishes at the \widehat{E}_2 page.

We illustrate the proof of Theorem [4.22](#page-23-0) by Examples [5.4](#page-30-0) and [5.5](#page-30-1)

Lemma 4.23. *The following identity holds:*

$$
\beta(1-k) + \beta(k) = r - 2.
$$

Proof. By [\(1.1\)](#page-2-1) and Lemma [4.5,](#page-15-0)

$$
\beta(k) = h(k-1, ..., k-1) - h(k, ..., k) - 1,
$$

$$
\beta(1-k) = h(-k, ..., -k) - h(1-k, ..., 1-k) - 1.
$$

By Lemma [4.4,](#page-14-0)

$$
h(-k, ..., -k) = h(k, ..., k) + kr,
$$

$$
h(1 - k, ..., 1 - k) = h(k - 1, ..., k - 1) + r(k - 1).
$$

These two identities imply the desired statement. \Box

Theorem 4.24. *If* $\beta(k) + \beta(k+1) \ge r - 2$, *then*

$$
\widehat{\text{HFL}}(K_{rm,rn},k,\ldots,k)
$$
\n
$$
\simeq \bigoplus_{i=0}^{r-2-\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i} \oplus \bigoplus_{i=0}^{r-2-\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)+2-r+i}.
$$

Proof. By Lemma [4.23](#page-25-2) we get $\beta(-k) = r - 2 - \beta(k+1)$ and $\beta(1-k) = r - 2 - \beta(k)$, so

$$
\beta(k) + \beta(k+1) + \beta(-k) + \beta(1-k) = 2(r-2),
$$

so $\beta(-k) + \beta(1-k) \le r - 2$. By Theorem [4.22](#page-23-0) the spectral sequence degenerates for $\widehat{HFL}(-k, \ldots, -k)$ and

$$
\widehat{\text{HFL}}(K_{rm,rn},-k,\ldots,-k)
$$
\n
$$
\simeq \bigoplus_{i=0}^{r-2-\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(-k)-i} \oplus \bigoplus_{i=0}^{r-2-\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(-k)+2-r+i}.
$$

Finally, by [[15](#page-36-14), Proposition 8.2] we have

$$
\widehat{\text{HFL}}_{\bullet}(K_{rm,rn},k,\ldots,k)=\widehat{\text{HFL}}_{\bullet-2kr}(K_{rm,rn},-k,\ldots,-k)
$$

and by Lemma [4.4](#page-14-0) $h(k) = h(-k) - kr$.

Theorem 4.25. *Off-diagonal homology groups are supported on the union of the unit cubes along the diagonal. In such a cube with corners* (k, \ldots, k) *and* $(k + 1, \ldots, k + 1)$ one has

$$
\widehat{\text{HFL}}(K_{rm,rn}, (k-1)^j, k^{r-j}) \simeq \binom{r-2}{\beta(k)} \mathbb{F}_{-2\mathbf{h}(k)-\beta(k)-j}.
$$

Proof. We use the spectral sequence from HFL⁻ to HFL. By Theorem [4.18,](#page-20-0) all the \hat{E}_2 homology outside the union of these cubes vanish (since some U_i would provide an isomorphism between HFL⁻($K_{rm,rn}$, v) and HFL⁻($K_{rm,rn}$, v – e_i)). Furthermore, if $\beta(k) = r - 1$ then the homology in the cube vanish too, so we can focus on the case $\beta(k) \le r - 2$.

One can check that \hat{E}_2 does not vanish in cube degrees $j - \beta(k), \ldots, j$ and

$$
\widehat{E}_2^{j-c} \simeq \binom{j-1}{c}\binom{r-1-j}{\beta(k)-c} \mathbb{F}_{-2\mathbf{h}(k)-\beta(k)-c}.
$$

Note that the *total* homological degree on \hat{E}_2^{j-c} 2^{j-c} equals $-2h(k) - \beta(k) - j$ and does not depend on c . Therefore all higher differentials in the spectral sequence must vanish and the rank of \widehat{HFL} equals:

$$
\sum_{c=0}^{\beta} {j-1 \choose c} {r-1-j \choose \beta(k)-c} = {r-2 \choose \beta(k)}.
$$

We illustrate this proof by Example [5.6.](#page-30-2)

4.5. Special case: $m = 1$, $n = 2g(K) - 1$. The case $m = 1, n = 2g(K) - 1$ is special since Lemma [4.6](#page-15-1) is not always true. Indeed, $K_{m,n} = K$ and $l = n$ $2g(K) - 1$, but for $v = g(K) - l = 1 - g(K)$ we have HFL⁻(K, v) = 0. However, it is clear that in all other cases Lemma 4.6 is true, so for generic v Lemmas 4.8 and [4.10](#page-17-0) hold true. This allows one to prove an analogue of Theorem [5.](#page-3-0)

Theorem 4.26. Assume that $m = 1, n = 2g(K) - 1$ (so $l = 2g(K) - 1$) and suppose that $v = (u_1^{\lambda_1}, u_2^{\lambda_2}, \dots, u_s^{\lambda_s})$ where $u_1 < \dots < u_s$. Then the Heegaard– Floer homology group $HFL^{-}(K_{rm, rn}, v)$ can be described as follow.

(a) Assume that $u_s - c + l(r - \lambda_s) = g(K) - vl$ with $1 \le v \le \lambda_s$. Then

$$
\text{HFL}^{-}(K_{rm,rn}, v) \simeq (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{r-\lambda_{s}} \otimes \left[\bigoplus_{j=0}^{\nu-2} \binom{\lambda_{s}-1}{j} \mathbb{F}_{(-2h(v)-j)} \right] \oplus \binom{\lambda_{s}-1}{\nu} \mathbb{F}_{(-2h(v)+2-\nu)} \right]
$$

(b) *In all other cases, the homology is given by Theorem* [5](#page-3-0)*.*

Proof. One can check that the proof of Lemma [4.8](#page-16-0) fails if $u_s - c + l(r - \lambda_s) =$ $g(K) - l$, and remains true in all other cases. Similarly, the proof of Lemma [4.10](#page-17-0) fails only if $u_s - c + l(r - \lambda_s) + l_j = g(K) - l$ for $1 \le j \le \lambda_s - 1$, which is equivalent to $u_s - c + l(r - \lambda_s) = g(K) - (j + 1)$. This proves [\(b\).](#page-26-1)

Let us consider the special case [\(a\).](#page-26-2) Note that

$$
h_{m,n}(u_s - c + l(r - \lambda_s) + lj - 1) - h_{m,n}(u_s - c + l(r - \lambda_s) + lj)
$$

= χ (HFK⁻(K, g(K) + l(j - v))
=
$$
\begin{cases} 1 & \text{if } j < v - 1, \\ 0 & \text{if } j = v - 1, \\ 1 & \text{if } j = v, \\ 0 & \text{if } j > v. \end{cases}
$$

Given a pair of subsets $B' \subset \{1, \ldots, r - \lambda_s\}$ and $B'' \subset \{r - \lambda_s + 1, \ldots, r\}$, one can write, analogously to Lemma [4.10:](#page-17-0)

$$
h_{rm,rn}(v - e_{B'} - e_{B''}) = h_{rm,rn}(v) + |B'| + w(B''),
$$

where

$$
w(B'') = \begin{cases} |B''| & \text{if } |B''| \le \nu - 1, \\ \nu - 1 & \text{if } |B''| = \nu, \\ \nu & \text{if } |B''| > \nu. \end{cases}
$$

By the Künneth formula, the E_2 page of the spectral sequence is determined by the "deformed cube homology" with the weight function $w(B'')$, as in [\(4.5\)](#page-18-1). If ∂ , as above, denotes the standard cube differential, then, similarly to Lemma [4.14,](#page-18-2) the homology of ∂_U^w is isomorphic to the kernel of ∂ in cube degrees $0, \ldots v-2$ and ν .

Finally, we need to prove that all higher differentials vanish. For a homology generator α on the E_2 page of cube degree x, its bidegree is equal either to $(x, -2h(v) - 2x)$ or to $(x, -2h(v) - 2x + 2)$. The differential ∂_k has bidegree $(-k, k - 1)$ (see Remark [3.6\)](#page-11-2), so the bidegree of $\partial_k(\alpha)$ is equal either to $(x - k, k)$ $-2h(v) - 2x + k - 1$ or to $(x - k, -2h(v) - 2x + k + 1)$. Since $-2x + k + 1 <$ $-2(x - k)$ for $k > 1$, we have $\partial_k(\alpha) = 0$.

The action of U_i in this special case can be described similarly to Theorem [4.18.](#page-20-0) However, it is not true that U_i is surjective whenever it does not obviously vanish. In particular, the following example shows that HFL– may be not generated by diagonal classes, so Theorem [6](#page-3-3) does not hold. We leave the appropriate adjustment of Theorem [6](#page-3-3) as an exercise to a reader.

Example 4.27. Consider $T_{2,2}$, the (2, 2) cable of the trefoil. We have $g(K)=l=1$ and $c = 1/2$, so by Theorem [4.26](#page-26-0)

$$
\text{HFL}^-(T_{2,2}, 1/2, 1/2) \simeq \mathbb{F}_{(-1)}, \quad \text{HFL}^-(T_{2,2}, -1/2, 1/2) \simeq \mathbb{F}_{(-2)} \oplus \mathbb{F}_{(-3)}.
$$

Therefore U_1 is not surjective. Furthermore, the class in HFL⁻ $(T_{2,2}, -1/2, 1/2)$ of homological degree (-2) is not in the image of any diagonal class under the R–action.

5. Examples

5.1. (n, n) **torus links.** The symmetrized multi-variable Alexander polynomial of the (n, n) torus link equals (for $n > 1$):

$$
\Delta_{T_{n,n}}(t_1,\ldots,t_n) = ((t_1\cdots t_n)^{1/2} - (t_1\cdots t_n)^{-1/2})^{n-2}.
$$

Each pair of components has linking number 1, so $c = (n-1)/2$. The homology groups $HFL^{-}(T(n, n), v)$ are described by the following theorem, which is a special case of Theorem [5.](#page-3-0)

Theorem 5.1. *Consider the* (n, n) *torus link, and an Alexander grading* $v =$ (v_1, \ldots, v_n) . Suppose that among the coordinates v_i exactly λ are equal to k *and all other coordinates are less than* k*. Let* $|v| = v_1 + \cdots + v_n$ *. Then*

$$
\text{HFL}^{-}(T(n, n), v) = \begin{cases} 0 & \text{if } k > \lambda - \frac{n+1}{2}, \\ (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-1} \otimes \mathbb{F}_{2|v|} & \\ & \text{if } k < -\frac{n-1}{2}, \\ (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-\lambda} \otimes \bigoplus_{i=0}^{\lambda - \frac{n+1}{2} - k} \binom{\lambda - 1}{i} \mathbb{F}_{(-2h(v) - i)} & \\ & \text{if } -\frac{n-1}{2} \le k \le \lambda - \frac{n+1}{2}, \end{cases}
$$

where $h(v) = \frac{1}{2}(\frac{n-1}{2} - k)(\frac{n-1}{2} - k + 1) + kn - |v|$ in the last case.

Proof. Indeed, $\beta(k) = \frac{n-1}{2} - k$ for $k > -\frac{n-1}{2}$ $\frac{-1}{2}$ and $\beta(k) = n - 1$ for $k \leq -\frac{n-1}{2}$. By Theorem [5,](#page-3-0) the homology group $HFL^{-}(T(n, n), v)$ does not vanish if and only if

$$
k \le \lambda - \frac{n+1}{2}.\tag{5.1}
$$

If $k \ge -\frac{n-1}{2}$, equation [\(4.3\)](#page-13-0) implies

$$
h_{n,n}(v) = \frac{1}{2} \left(\frac{n-1}{2} - k \right) \left(\frac{n-1}{2} - k + 1 \right) + kn - |v|.
$$

If $k \leq -\frac{n-1}{2}$, equation [\(4.3\)](#page-13-0) implies $h_{n,n}(v) = -|v|$. Furthermore, for all v satisfying (5.1) one has

$$
HFL^{-}(T(n, n), v) = (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-\lambda} \otimes \bigoplus_{j=0}^{\lambda - \frac{n+1}{2} - k} {\lambda - 1 \choose j} \mathbb{F}_{(-2h_{n,n}(v) - j)}.
$$

Finally, if $k - \frac{n-1}{2}$ $\frac{-1}{2}$, then [\(5.1\)](#page-29-0) holds for all λ and $\lambda - \frac{n+1}{2} - k > \lambda - 1$, hence

$$
HFL^{-}(T(n, n), v) = (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-\lambda} \otimes \bigoplus_{j=0}^{\lambda-1} {\lambda-1 \choose j} \mathbb{F}_{(-2h_{n,n}(v)-j)}
$$

=
$$
(\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-1} \otimes \mathbb{F}_{(-2h_{n,n}(v))}. \square
$$

Remark 5.2. One can check that, in agreement with [[1](#page-36-13)], the condition (5.1) defines the multi-dimensional semigroup of the plane curve singularity $x^n = y^n$.

Corollary 5.3. *We have the following decomposition of* HFL– *as an* R*-module:*

 $HFL^{-}(T(n, n)) = M_0 \oplus M_1 \oplus M_2 \oplus \cdots \oplus M_{n-2} \oplus M_{n-1, +\infty}.$

To prove Theorem [4,](#page-2-2) we use Theorem [3.](#page-2-0)

Proof of Theorem [4](#page-2-2). We have $\beta(\frac{n-1}{2} - s) = s$ for $s < n - 1$, and

$$
\beta(\frac{n-1}{2}-s)+\beta(\frac{n-1}{2}-s+1)=2s-1\leq n-2\leq s\leq \frac{n-1}{2}.
$$

Therefore for $s \leq \frac{n-1}{2}$ Theorem [4.22](#page-23-0) implies the degeneration of the spectral Therefore for $s \leq \frac{n-1}{2}$ Theorem
sequence from HFL[–] to HFL, and

$$
\widehat{\text{HFL}}\left(T(n,n),\frac{n-1}{2}-s,\ldots,\frac{n-1}{2}-s\right)
$$
\n
$$
=\bigoplus_{i=0}^{s} {n-1 \choose i} \mathbb{F}_{(-s^2-s-i)} \oplus \bigoplus_{i=0}^{s-1} {n-1 \choose i} \mathbb{F}_{(-s^2-s-n+2+i)}.\qquad \Box
$$

Let us illustrate the degeneration of the spectral sequence from HFL⁻ to HFL in some examples.

Example 5.4. For $s = 0$ we have $\hat{E}_1 = \hat{E}_2 = \mathbb{F}_{(0)}$. For $s = 1$ the \hat{E}_1 page has nonzero entries in cube degree 0 where one gets

$$
HFL^{-}\left(T(n,n),\frac{n-1}{2}-1,\ldots,\frac{n-1}{2}-1\right)\simeq \mathbb{F}_{(-2)}\oplus (n-1)\mathbb{F}_{(-3)},
$$

and in cube degree *n* where one gets $\mathbb{F}_{(0)}$. Indeed, the differential $\hat{\partial}_1$ vanishes, so for $n > 2$

$$
\widehat{\text{HFL}}\left(T(n,n),\frac{n-1}{2}-1,\ldots,\frac{n-1}{2}-1\right)\simeq \mathbb{F}_{(-2)}\oplus (n-1)\mathbb{F}_{(-3)}\oplus \mathbb{F}_{(-n)}.
$$

Note that for $n = 2$ the differential $\hat{\theta}_2$ does not vanish, so the bound $s \leq \frac{n-1}{2}$ $\frac{-1}{2}$ is indeed necessary for the spectral sequence to collapse at \widehat{E}_2 page.

Example 5.5. The case $s = 2$ is more interesting. The \hat{E}_1 page has nonzero entries in cube degree 0, $n - 1$ (where we have *n* vertices) and *n*, where one has

$$
\hat{E}_1^0 = \mathbb{F}_{(-6)} \oplus (n-1)\mathbb{F}_{(-7)} \oplus {n-1 \choose 2} \mathbb{F}_{(-8)},
$$

$$
\hat{E}_1^{n-1} = n(\mathbb{F}_{(-4)} \oplus \mathbb{F}_{(-5)}),
$$

$$
\hat{E}_1^n = \mathbb{F}_{(-2)} \oplus (n-1)\mathbb{F}_{(-3)}.
$$

The differential $\hat{\theta}_1$ cancels some summands in \hat{E}_1^{n-1} and \hat{E}_1^n :

$$
\hat{E}_2^0 = \mathbb{F}_{(-6)} \oplus (n-1)\mathbb{F}_{(-7)} \oplus {n-1 \choose 2} \mathbb{F}_{(-8)},
$$

$$
\hat{E}_2^{n-1} = (n-1)\mathbb{F}_{(-4)} + \mathbb{F}_{(-5)}.
$$

For $n > 4$ all higher differentials vanish and

$$
\widehat{\text{HFL}}\left(T(n,n),\frac{n-1}{2}-2,\ldots,\frac{n-1}{2}-2\right)
$$
\n
$$
\simeq \mathbb{F}_{(-6)} \oplus (n-1)\mathbb{F}_{(-7)} \oplus \binom{n-1}{2} \mathbb{F}_{(-8)} \oplus (n-1)\mathbb{F}_{(-3-n)} + \mathbb{F}_{(-4-n)}.
$$

The following example illustrates the computation of \widehat{HFL} for the off-diagonal Alexander gradings.

660 E. Gorsky and J. Hom

Example 5.6. Let us compute the homology $\widehat{HFL}(T(n,n), v)$ for

$$
v = \left(\frac{n-1}{2} - 2\right)^j \left(\frac{n-1}{2} - 1\right)^{n-j} \quad (1 \le j \le n-1)
$$

using the spectral sequence from HFL⁻. In the *n* dimensional cube $(v+e_B)$ almost all all vertices have vanishing HFL⁻, except for the vertex $\left(\frac{n-1}{2} - 1, \ldots, \frac{n-1}{2} - 1\right)$

$$
HFL^{-}\left(\frac{n-1}{2}-1,\ldots,\frac{n-1}{2}-1\right)=F_{(-2)}\oplus (n-1)F_{(-3)}
$$

and j of its neighbors with homology $\mathbb{F}_{(-4)} \oplus \mathbb{F}_{(-5)}$. Clearly, \hat{E}_2 is concentrated in degrees j (with homology $(n - 1 - j)F_{(-3)}$) and $(j - 1)$ (with homology $(j - 1)\mathbb{F}_{(-4)}$. Note that both parts contribute to the total degree $(-3 - j)$, so

$$
\widehat{\text{HFL}}(T(n,n), v) = (n-1-j)\mathbb{F}_{(-3-j)} \oplus (j-1)\mathbb{F}_{(-3-j)} = (n-2)\mathbb{F}_{(-3-j)}.
$$

Finally, we draw all the homology groups HFL^- for $(2, 2)$ and $(3, 3)$ torus links.

Example 5.7. For the Hopf link, one has two cases. If $v_1 < v_2$, then the condition [\(5.1\)](#page-29-0) implies $v_2 \le -1/2$. If $v_1 = v_2$, then (5.1) implies $v_2 \ge 1/2$.

The nonzero homology of the Hopf link is shown in Figure [3](#page-31-0) and Table [1](#page-32-1)

Figure 3. HFL⁻ for the (2,2) torus link: \mathbb{F}^2 on thick lines and in the grey region.

Alexander grading	Homology
(1/2, 1/2)	$\mathbb{F}(0)$
$(a, b), a, b \leq -1/2$	$\mathbb{F}_{(2a+2b)} \oplus \mathbb{F}_{(2a+2b-1)}$

Table 1. Maslov gradings for the $(2, 2)$ torus link.

Example 5.8. For the (3, 3) torus link, one has two cases. If $v_1 \le v_2 < v_3$, then the condition [\(5.1\)](#page-29-0) implies $v_3 \le 1$. If $v_1 < v_2 = v_3$, then (5.1) implies $v_3 \le 0$. Finally, if $v_1 = v_2 = v_3$, then [\(5.1\)](#page-29-0) implies $v_3 \le 1$. In other words, nonzero homology appears at the point $(1, 1, 1)$, at three lines $(0, 0, k)$, $(0, k, 0)$, $(k, 0, 0)$ $(k \leq 0)$ and at the octant max $(v_1, v_2, v_3) \leq -1$.

This homology is shown in Figure [4](#page-33-0) and Table [2.](#page-33-1)

5.2. More general torus links. The HFL^- homology of the $(4, 6)$ torus link is shown in Figure [5](#page-34-0) and Table [3.](#page-34-1) Note that as an $\mathbb{F}[U_1, U_2]$ module it can be decomposed into 5 copies of $M_0 \simeq \mathbb{F}$, a copy of $M_{1,1}$ and a copy of $M_{1,+\infty}$. In particular, the map $U_1 U_2$: HFL⁻(-2, -2) \rightarrow HFL⁻(-3, -3) is surjective with one-dimensional kernel.

5.3. Non-algebraic example. In this subsection we compute the Heegaard– Floer homology for the $(4, 6)$ -cable of the trefoil. Its components are $(2, 3)$ -cables of the trefoil, which are known to be L-space knots (cf. [[3](#page-36-6)]), but not algebraic knots. By Theorem [2,](#page-1-1) the $(4, 6)$ -cable of the trefoil is an L-space link, but its homology is not covered by [[1](#page-36-13)].

The Alexander polynomial of the $(2, 3)$ -cable of the trefoil equals:

$$
\Delta_{T_{2,3}}(t) = \frac{(t^6 - t^{-6})(t^{1/2} - t^{-1/2})}{(t^{3/2} - t^{-3/2})(t^2 - t^{-2})},
$$

hence the Euler characteristic of its Heegaard–Floer homology equals

$$
\chi_{2,3}(t) = \frac{\Delta_{T_{2,3}}(t)}{1 - t^{-1}} = t^3 + 1 + t^{-1} + t^{-3} + t^{-4} + \cdots
$$

By (4.1) , the bivariate Alexander polynomial of the $(4, 6)$ -cable equals:

$$
\chi_{4,6}(t_1, t_2) = \chi_{2,3}(t_1 \cdot t_2)((t_1t_2)^3 - (t_1t_2)^{-3})
$$

= $(t_1t_2)^6 + (t_1t_2)^3 + (t_1t_2)^2 + (t_1t_2)^{-1} + (t_1t_2)^{-2} + (t_1t_2)^{-5}.$

The nonzero Heegaard–Floer homology are shown in Figure [6](#page-35-0) and the correspond-ing Maslov gradings are given in Table [4.](#page-35-1) Note that as $\mathbb{F}[U_1, U_2]$ module it can be decomposed in the following way:

$$
HFL^{-} \simeq 4M_0 \oplus M_{1,1} \oplus M_{1,2} \oplus M_{1,+\infty}.
$$

Figure 4. HFL⁻ for the (3,3) torus link: \mathbb{F}^2 on dashed thick lines; \mathbb{F}^4 on solid thick lines and in the shaded region. Top Alexander grading is $(1, 1, 1)$.

Alexander grading	Homology
(1, 1, 1)	$\mathbb{F}_{(0)}$
(0, 0, 0)	$\mathbb{F}_{(-2)} \oplus 2\mathbb{F}_{(-3)}$
$(0,0,k)$, $(0,k,0)$ and $(k,0,0)$ $(k < 0)$	$\mathbb{F}_{(2k-2)} \oplus \mathbb{F}_{(2k-3)}$
$(a, b, c), a, b, c \leq -1$	$\mathbb{F}_{(2a+2b+2c)} \oplus 2\mathbb{F}_{(2a+2b+2c-1)}$
	$\oplus \mathbb{F}_{(2a+2b+2c-2)}$

Table 2. Maslov gradings for the $(3, 3)$ torus link.

Cable links and L-space surgeries 663

Figure 5. HFL⁻ for the (4,6) torus link: \mathbb{F}^2 on thick lines and in the grey region.

Alexander grading	Homology
(4, 4)	$\mathbb{F}_{(0)}$
(2, 2)	$\mathbb{F}_{(-2)}$
(1, 1)	$\mathbb{F}_{(-4)}$
(0, 0)	$\mathbb{F}_{(-6)}$
$(-1,-1)$	$\mathbb{F}_{(-8)}$
$(-2, k)$ and $(k, -2)$, $k \le -2$	$\mathbb{F}_{(2k-6)} \oplus \mathbb{F}_{(2k-7)}$
$(-3, -3)$	$F(-12)$
$(a, b), a, b < -4$	$\mathbb{F}_{(2a+2b)} \oplus \mathbb{F}_{(2a+2b-1)}$

Table 3. Maslov gradings for the $(4, 6)$ torus link.

Alexander grading	Homology
(6, 6)	$\mathbb{F}_{(0)}$
(3, 3)	$\mathbb{F}_{(-2)}$
(2, 2)	$\mathbb{F}_{(-4)}$
$(0, k)$ and $(k, 0)$, $k \ge 0$	$\mathbb{F}_{(2k-6)} \oplus \mathbb{F}_{(2k-7)}$
$(-1,-1)$	$\mathbb{F}_{(-10)}$
$(-2,-2)$	$\mathbb{F}_{(-12)}$
$(-3, k)$ and $(k, -3)$, $k \ge -3$	$\mathbb{F}_{(2k-8)} \oplus \mathbb{F}_{(2k-9)}$
$(-4, k)$ and $(k, -4)$, $k \ge 10$	$\mathbb{F}_{(2k-10)} \oplus \mathbb{F}_{(2k-11)}$
$(-5, -5)$	$\mathbb{F}_{(-22)}$
$(a, b), a, b < -6$	$\mathbb{F}_{(2a+2b)} \oplus \mathbb{F}_{(2a+2b-1)}$

Table 4. Maslov gradings for the (4,6) cable of the trefoil.

Figure 6. HFL⁻ for the (4,6) cable of the trefoil: \mathbb{F}^2 on thick lines and in the grey region.

References

- [1] E. Gorsky and A. Némethi, Lattice and Heegaard–Floer homologies of algebraic links. *Int. Math. Res. Not. IMRN* **2015**, no. 23, 12737–12780. [MR 3431635](http://www.ams.org/mathscinet-getitem?mr=3431635) [Zbl 1342.57005](http://zbmath.org/?q=an:1342.57005)
- [2] J. Hanselman and L. Watson, A calculus for bordered Floer homology. Preprint 2015. [arXiv:1508.05445](http://arxiv.org/abs/1508.05445) [math.GT]
- [3] M. Hedden, On knot Floer homology and cabling II. *Int. Math. Res. Not. IMRN* **2009**, no. 12, 2248–2274. [MR 2511910](http://www.ams.org/mathscinet-getitem?mr=2511910) [Zbl 1172.57008](http://zbmath.org/?q=an:1172.57008)
- [4] W. Heil, Elementary surgery on Seifert ber spaces. *Yokohama Math. J.* **22** (1974), 135–139. [MR 0375320](http://www.ams.org/mathscinet-getitem?mr=0375320) [Zbl 0297.57006](http://zbmath.org/?q=an:0297.57006)
- [5] J. Hom, A note on cabling and L-space surgeries. *Algebr. Geom. Topol.* **11** (2011), no. 1, 219–223. [MR 2764041](http://www.ams.org/mathscinet-getitem?mr=2764041) [Zbl 1221.57019](http://zbmath.org/?q=an:1221.57019)
- [6] J. Hom, T. Lidman, and N. Zufelt, Reducible surgeries and Heegaard Floer homology. *Math. Res. Lett.* **22** (2015), no. 3, 763–788. [MR 3350104](http://www.ams.org/mathscinet-getitem?mr=3350104) [Zbl 1323.57006](http://zbmath.org/?q=an:1323.57006)
- [7] J. Licata, Heegaard Floer homology of (n, n) -torus links: computations and questions. Preprint 2012. [arXiv:1208.0394](http://arxiv.org/abs/1208.0394) [math.GT]
- [8] R. Lipshitz, P. Ozsváth, and D. Thurston, Bordered Heegaard Floer homology: Invariance and pairing. Preprint 2008. [arXiv:0810.0687](http://arxiv.org/abs/0810.0687) [math.GT]
- [9] P. Lisca and A. I. Stipsicz, Ozsváth–Szabó invariants and tight contact 3-manifolds. III. *J. Symplectic Geom.* **5** (2007), no. 4, 357–384. [MR 2413308](http://www.ams.org/mathscinet-getitem?mr=2413308) [Zbl 1149.57037](http://zbmath.org/?q=an:1149.57037)
- [10] Y. Liu, L-space surgeries on links. *Quantum Topol.* **8** (2017), no. 3, 505–570. [MR 3692910](http://www.ams.org/mathscinet-getitem?mr=3692910) [Zbl 06784952](http://zbmath.org/?q=an:06784952)
- [11] C. Manolescu and P. Ozsváth, Heegaard Floer homology and integer surgeries on links. Preprint, [arXiv:1011.1317v1](http://arxiv.org/abs/1011.1317v1) [math.GT]
- [12] P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications. *Ann. of Math.* (2) **159** (2004), no. 3, 1159–1245. [MR 2113020](http://www.ams.org/mathscinet-getitem?mr=2113020) [Zbl 1081.57013](http://zbmath.org/?q=an:1081.57013)
- [13] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds. *Ann. of Math.* (2) **159** (2004), no. 3, 1027–1158. [MR 2113019](http://www.ams.org/mathscinet-getitem?mr=2113019) [Zbl 1073.57009](http://zbmath.org/?q=an:1073.57009)
- [14] P. Ozsváth and Z. Szabó, On knot Floer homology and lens space surgeries. *Topology* **44** (2005), no. 6, 1281–1300. [MR 2168576](http://www.ams.org/mathscinet-getitem?mr=2168576) [Zbl 1077.57012](http://zbmath.org/?q=an:1077.57012)
- [15] P. Ozsváth and Z. Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial. *Algebr. Geom. Topol.* **8** (2008), no. 2, 615–692. [MR 2443092](http://www.ams.org/mathscinet-getitem?mr=2443092) [Zbl 1144.57011](http://zbmath.org/?q=an:1144.57011)
- [16] P. Ozsváth and Z. Szabó, Knot Floer homology and rational surgeries. *Algebr. Geom. Topol.* **11** (2011), no. 1, 1–68. [MR 2764036](http://www.ams.org/mathscinet-getitem?mr=2764036) [Zbl 1226.57044](http://zbmath.org/?q=an:1226.57044)

666 E. Gorsky and J. Hom

[17] T. Shibuya, On the genus of torus links. *Kobe J. Math.* **2** (1985), no. 2, 123–125. [MR 0847178](http://www.ams.org/mathscinet-getitem?mr=0847178) [Zbl 0598.57004](http://zbmath.org/?q=an:0598.57004)

Received March 23, 2015

Eugene Gorsky, Department of Mathematics, UC Davis, One Shields Ave, Davis, CA 95616, USA

International Laboratory of Representation Theory and Mathematical Physics, NRU-HSE, 7 Vavilova St., 117312 Moscow, Russia

e-mail: egorskiy@math.ucdavis.edu

Jennifer Hom, School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160, USA

e-mail: jhom6@math.gatech.edu