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Abstract. We consider the following question: when is the manifold obtained by gluing

together two knot complements an L-space? Hedden and Levine proved that splicing

0-framed complements of nontrivial knots never produces an L-space. We extend this

result to allow for arbitrary integer framings. We �nd that splicing two integer framed

nontrivial knot complements only produces an L-space if both knots are L-space knots

and the framings lie in an appropriate range. The proof involves a careful analysis of the

bordered Heegaard Floer invariants of each knot complement.
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1. Introduction

For a rational homology 3-sphere Y , the rank of bHF.Y / is bounded below by the

order of H1.Y;Z/; if the rank of bHF.Y / is equal the order of H1.Y;Z/, Y is called

an L-space. Examples of L-spaces include manifolds with �nite fundamental

group [7] and branched double covers of alternating links [8].

There is signi�cant interest in determining exactly which 3-manifolds are

L-spaces. Of particular interest is the connection between L-spaces and the fun-

damental group: it is conjectured that an irreducible rational homology 3-sphere

Y is an L-space if and only if �1.Y / is not left-orderable [2]. It was also proved

by Ozsváth and Szabó that an L-space Y does not admit a coorientable taut foli-

ation [5], and the converse is conjectured to hold. Recently Boyer and Clay used

gluing conditions to characterize the graph manifolds which admit taut foliations

and which have left-orderable fundamental group [1]. This result, in light of the

conjectures mentioned above, provides strong motivation for developing cut and

paste techniques for classifying L-spaces.

In [3], Hedden and Levine use such a cut and paste argument to determine

whether a homology sphere obtained by splicing together two 0-framed knot

complements is an L-space. Given a knot K in a 3-manifold Y , let XK denote

the manifold with boundary Y nK along with the curves �K and �K in @XK given

by the meridian and Seifert longitude of K, respectively. XK is the 0-framed knot

complement of K. Given two knots K1 � Y1 and K2 � Y2, let Y.K1; K2/ denote

the 3-manifold obtained by gluing XK1
to XK2

via a map �W @XK1
! @XK2

taking

�K1
to �K2

and �K1
to �K2

. We refer to gluing knot complements in this way as

splicing. The main result of [3] can be stated as follows:

Theorem 1.1. For any homology sphere L-spaces Y1 and Y2 and any nontrivial

knots K1 � Y1 and K2 � Y2, the manifold Y.K1; K2/ obtained by splicing XK1

and XK2
is not an L-space.

The proof is based on understanding the bordered Heegaard Floer invariants

of the two pieces XK1
and XK2

. The existence of certain special generators in

the bordered invariants implies the existence of generators in bHF.Y.K1; K2//. In

this way, it can be shown that the rank of bHF.Y.K1; K2// is at least two. The

result follows using the fact that splicing 0-framed knot complements produces

an integral homology sphere, so if Y.K1; K2/ is an L-space then rk.bHF.Y // D 1.

In this paper, we extend Theorem 1.1 by considering splicing knot complements

with non-zero framings. That is, we allow the Seifert longitude �K in @XK to be
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replaced by any integer framed longitude. For a knot K � Y , let X
Œn�
K denote

Y nK, along with the curves �K and �
Œn�
K D �K C n�K in @XK . Given two knots

K1 � Y1 and K2 � Y2, de�ne Y.K
Œn1�
1 ; K

Œn2�
2 / to be the 3-manifold obtained by

gluing X
Œn1�
K1

to X
Œn2�
K2

via a gluing map taking �K1
to �

Œn2�
K2

and �
Œn1�
K1

to �K2
. The

main result is the following:

Theorem 1.2. For nontrivial knots K1 and K2 in L-space integral homology

spheres, the manifold Y.K
Œn1�
1 ; K

Œn2�
2 / described above is an L-space if and only

if all of the following hold:

� K1 and K2 are L-space knots;

� ni � 2�.Ki / if �.Ki/ > 0 and ni � 2�.Ki/ if �.Ki/ < 0;

� if �.K1/ and �.K2/ have the same sign, then n1 ¤ 2�.K1/ or n2 ¤ 2�.K2/.

The de�nition and basic properties of L-space knots are recalled in Section 2.4.

Here �.K/ denotes the Ozsváth–Szabó concordance invariant; for an L-space

knot, �.K/ is either g.K/ or �g.K/, where g.K/ is the genus of K.

The if direction of Theorem 1.2 can be seen by explicit tensor product compu-

tations, since the bordered Heegaard Floer invariants of an L-space knot comple-

ment have a well understood form; we do this in Section 3.5. The rest of Section 3

is devoted to the proof of the only if direction, which is broadly similar to the

proof of Theorem 1.1. We �rst prove that the relevant bordered Heegaard Floer in-

variants contain generators satisfying certain properties. These generators, which

we call durable generators, are de�ned in Section 3.1; the de�nition is motivated

by the generators used in [3]. Using the existence of durable generators, we can

�nd at least two generators in cCF.Y.K
Œn1�
1 ; K

Œn2�
2 // that survive in homology.

Unlike the 0-framed case, �nding two generators in bHF.Y.K
Œn1�
1 ; K

Œn2�
2 // is

not enough to prove that Y.K
Œn1�
1 ; K

Œn2�
2 / is not an L-space, since splicing integer

framed knot complements does not, in general, produce an integral homology

sphere. The key to solving this problem is the Z2 grading on (bordered) Heegaard

Floer homology. By understanding the Z2 gradings of the durable generators we

pick out in each bordered Heegaard Floer invariant, we can show that the two

resulting generators in bHF.Y.K
Œn1�
1 ; K

Œn2�
2 // have di�erent Z2 gradings. This, it

turns out, is su�cient to show that bHF.Y.K
Œn1�
1 ; K

Œn2�
2 // is not an L-space.

Acknowledgements. I am grateful to Robert Lipshitz for valuable comments on

earlier drafts of this paper. I would also like to thank Adam Levine for helpful

conversations and Jen Hom for answering numerous questions about knot Floer

homology.
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2. Background

2.1. Bordered Heegaard Floer homology. Bordered Heegaard Floer homology

is an invariant of 3-manifolds with parametrized boundary introduced in [4].

We assume the reader is familiar with the basics of bordered Heegaard Floer

homology in the torus boundary case, but we review the most important de�nitions

here.

Bordered Heegaard Floer homology associates a di�erential algebra to each

parametrized surface. The algebraA D A.T 2/ associated to the torus is generated

as a vector space over F D Z2 by eight elements: two idempotents, �0 and �1,

and six Reeb elements �1; �2; �3; �12; �23, and �123. The idempotents satisfy

�i �j D ıij �i , and the identity element is 1 D �0 C �1. Let I denote the ring

of idempotents. The Reeb elements interact with idempotents on either side as

follows:

�0�1 D �1�1 D �1; �1�2 D �2�0 D �2; �0�3 D �3�1 D �3;

�0�12 D �12�0 D �12; �1�23 D �23�1 D �23; �0�123 D �123�1 D �123:

The only nonzero products of Reeb elements are �1�2 D �12, �2�3 D �23, and

�1�23 D �12�3 D �123. The di�erential on A is zero. For a more detailed

treatment of the torus algebra see [4, Section 11.1].

To a 3-manifold Y with torus boundary and a parametrization �WT 2 ! @Y ,

we associate a right type A module bCFA.Y; �/ if � is orientation-preserving or a

left type D-module 1CFD.Y; �/ if � is orientation-reversing (the map � is often

suppressed from the notation). These modules are invariants of the pair .Y; �/

up to homotopy equivalence. Recall that a type A module over A is a right

A1-module M over A (we can think of A as an A1-algebra with trivial higher

products). Such a module has multiplication maps

mkC1WM ˝I A˝I � � � ˝I A„ ƒ‚ …
k times

�!M

satisfying certain A1 relations (see [4, De�nition 2.5]). A type D module over

A is a Z2-vector space N with a left action of I such that N D �0N ˚ �1N and a

map

ı1WN �! A˝I N

such that

.�˝ idN / ı .idA˝ı1/ ı ı1 D 0;

where � denotes multiplication on A.
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For a type D module over A, we will use the notation of coe�cient maps

described in [4, Section 11.1]. Let V be the underlying Z2-vector space of the type

D-module. Let R denote the set of increasing sequences of consecutive integers

in ¹1; 2; 3º and let R0 D R [ ¹;º. Note that the set of Reeb elements in A is

¹�I jI 2 Rº. For simplicity, we de�ne �; D 1. We de�ne coe�cient maps

DI WV �! V

for each I 2 R0 such that for each v 2 V ,

ı1.v/ D
X

I2R0

�I ˝DI .v/:

A type D module can be represented by a directed graph: vertices correspond to

generators and for generators x and y there is an arrow from the vertex x to the

vertex y labelled with DI if the coe�cient of y in DI .x/ is nonzero.

We say that a type A module M is bounded if there is some K such that for

all x 2 M , k � K and any I1; : : : ; Ik 2 R0, mkC1.x; �I1
; : : : ; �Ik

/ D 0. We say

that a type D module N is bounded if there is some K such that for all x 2 M ,

k � K and any I1; : : : ; Ik 2 R0, .DIk
ı � � � ı DI1

/.y/ D 0. If either M or N

is bounded, we can de�ne the box tensor product M � N to be the vector space

M ˝I N equipped with the di�erential

@�.x ˝ y/ D
X

I1;:::;Ir 2R

mrC1.x; �I1
; : : : ; �Ir

/˝ .DIr
ı � � � ıDI1

/.y/:

Bordered Heegaard Floer invariants satisfy the following pairing theorem [4,

Theorem 1.3]: if bCFA.Y1; �1/ and 1CFD.Y2; �2/ are bordered Heegaard Floer

invariants and at least one of them is bounded, then

bCFA.Y1; �1/ � 1CFD.Y2; �2/ Š cCF.Y1 [�2ı��1
1

Y2/: (1)

Finally, recall that given a type D invariant for a bordered manifold, the

corresponding type A invariant can be computed using an algorithm described

in [3, Section 2.3]. There is a one-to-one correspondence between generators of
1CFD and generators of bCFA, and A1 operations in bCFA are derived from chains

of sequential coe�cient maps in 1CFD. As a convention, we will denote type A

generators with a bar to distinguish them from their type D counterparts.

2.2. Z2 gradings with torus boundary. First, we review the Z2 grading in the

closed case. For a closed 3-manifold Y , the relative Z2 grading on bHF.Y / can

be de�ned in terms of a genus g Heegaard diagram for Y with oriented ˛ and ˇ
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curves. A generator x of bHF.Y / corresponds to a g-tuple of intersection points

.x1; : : : ; xg/, where xi 2 ˛i \ ˇ�x.i/ and �x is a permutation of ¹1; : : : ; gº. The

permutation �x has a sign, and the orientation on the ˛ and ˇ curves gives rise to

a sign s.xi / for each intersection point xi . The grading of x, gr.x/, is de�ned to

be the element of Z2 such that

.�1/gr.x/ D sign.�x/
� gY

iD1

s.xi /
�
:

This de�nes a relative Z2 grading on bHF.Y /, since it depends on the ordering of

the ˛ and ˇ curves and on their orientations. We note that the grading can be made

absolute, but the relative grading is su�cient for the purposes of this paper so we

will not discuss the absolute grading.

Note that the Euler characteristic ofbHF with respect to this relative grading can

be interpreted as the determinant (up to sign) of the g�g matrix whose entries Mij

are given by the signed intersection number of ˛i and ǰ . This same determinant

also gives a computation of the order of H1.Y /. This relationship implies the

equation

j rk.bHF1.Y // � rk.bHF0.Y //j D

8
<
:
jH1.Y /j if Y is a QHS ,

0 otherwise.
(2)

which leads to the inequality

rk.bHF.Y // � jH1.Y /j

mentioned in the introduction [6]. The following proposition is an easy conse-

quence of equation (2).

Proposition 2.1. A 3-manifold Y is an L-space if and only if all elements ofbHF.Y /

have the same Z2 grading.

The relative Z2 grading was extended to bordered Heegaard Floer homology

in [10]. We will only discuss the case of manifolds with torus boundary. Let

.Y; �WT 2 ! @Y / be a bordered manifold with a genus g bordered Heegaard

diagram H. The bordered diagram H contains two ˛ arcs, which we label ˛a
1

and ˛a
2 . The .g � 1/ closed ˛ curves are labeled ˛c

1; : : : ; ˛c
g�1, and the ˇ curves

are labeled ˇ1; : : : ; ˇg . Orient the ˛ and ˇ curves arbitrarily and orient the ˛ arcs

as follows: if .Y; �/ is type D, label the endpoints of the ˛ arcs ˛�
1 ; ˛�

2 ; ˛C
1 ; ˛C

2

starting at the basepoint and following the orientation of�@H and orient the arc ˛a
i
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from ˛C
i to ˛�

i ; if .Y; �/ is type A, label the endpoints of the ˛ arcs ˛�
1 ; ˛�

2 ; ˛C
1 ; ˛C

2

starting at the basepoint and following the orientation of @H and orient the arc ˛a
i

from ˛�
i to ˛C

i (see Figure 1).

Figure 1. The orientation of the ˛ arcs on a bordered Heegaard diagram with type D

boundary (left) or type A boundary (right).

A generator of 1CFD.Y / or bCFA.Y / corresponds to a g-tuple of intersection

points x D .x1; : : : ; xg/, where x1 lies on ˛a
1 or ˛a

2 and xi lies on ˛c
i�1 for

2 � i � g. For each i , let s.xi / be the sign of the intersection of the relevant

˛ arc/curve and ˇ curve at xi . Let �x be the permutation such that xi lies on ˇ�.i/

for each i . The Z2 grading on bCFA.Y / can now be de�ned by

.�1/gr.x/ D sign.�x/
� gY

iD1

s.xi /
�
:

The Z2 grading on 1CFD.Y / is de�ned by

.�1/gr.x/ D s .o.x// sign.�x/
� gY

iD1

s.xi /
�
;

where s.o.x// is C1 if x occupies ˛a
1 and �1 if x occupies ˛a

2 .

It is not di�cult to see that the closed Z2 grading is recovered when two

bordered manifolds are glued together. If x 2 bCFA.Y1/ and y 21CFD.Y2/, then

the generator x˝ y of bCFA.Y1/ � 1CFD.Y2/ Š cCF.Y1 [ Y2/ has Z2 grading

gr.x˝ y/ D gr.x/C gr.y/:
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Remark 2.2. Just as in the closed case, the relative Z2 grading on bordered

Heegaard Floer can be made into an absolute grading (see [9]). However, this

grading does not recover the absolute grading when two bordered manifolds are

glued together. Consider, for example, 1CFD and bCFA for the 0-framed solid torus

and the .�2/-framed solid torus. For any way of making the relative grading

absolute on these four modules there is a pair whose tensor product has negative

Euler characteristic with respect to the induced absolute grading, but bHF always

has nonnegative Euler characteristic.

The grading on bordered Heegaard Floer homology speci�es a grading on the

algebra associated with the boundary. For the torus algebra A, the grading is as

follows:

gr.�1/ D 0; gr.�2/ D 1; gr.�12/ D 1;

gr.�3/ D 0; gr.�123/ D 1; gr.�23/ D 1:

The grading respects module multiplication in the sense that if �I is an element

of A and x is a generator in 1CFD.Y /, then

gr.�I � x/ � gr.�I /C gr.x/ (mod 2): (3)

The grading also satis�es

gr .@x/ � gr.x/C 1 (mod 2) (4)

for any generator x of 1CFD. If x is a generator in bCFA.Y / and �I1
; : : : ; �Ik

are

elements of A, then

gr
�
mkC1.x; �I1

; : : : ; �Ik
/
�
� gr.x/C gr.�I1

/C � � � C gr.�Ik
/C k C 1 (mod 2):

(5)

Note that if the directed graph corresponding to 1CFD.Y / is connected, the

relative Z2 grading can be computed without reference to a Heegaard diagram.

We simply choose the grading of one generator arbitrarily and determine the other

gradings using equations (3) and (4). The grading on bCFA.Y / can be obtained

from the grading on 1CFD.Y / by �ipping the grading of each generator with

idempotent �0.

2.3. Knot Floer Homology. Let K be a knot in an L-space homology 3-sphere

Y . Let C � D CFK�.K; Y / denote the knot Floer complex of K with ground �eld

F D Z2. Recall that C � is a chain complex over FŒU � with a �ltration

� � � � Fi � FiC1 � � � � � C �:

If g.K/ is the genus of K, then we have thatFg.K/�1 ¨ Fg.K/ D C �,F�g.K/�1 �

UC �, and F�g.K/ 6� UC �.
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For any nonzero x 2 C �, the Alexander grading of x is A.x/ D min¹i jx 2 Fi º.

Multiplication by U decreases the Alexander grading by one. Let C 1 denote

CFK1.K; Y / D C �˝FŒU � FŒU; U �1�; the �ltration on C � extends to a �ltration

on C 1. We can picture C � and C 1 as living on the integer lattice in R2. If x

is a generator of C � over FŒU �, then the element U kx 2 C 1 corresponds to a

point at .�k; A.x/ � k/. We may assume that C � is reduced, meaning for any

x 2 C �, @x D U � y C z, where A.z/ < A.x/. In terms of the lattice, this means

that the di�erential only moves down and/or to the left. From C � and C 1 we

construct two additional complexes: the vertical complex C v D C �=UC � with

induced di�erential @v , and the horizontal complex C h D F0.C 1/=F�1.C 1/

with induced di�erential @h.

We will need to work with special bases for C �. Recall that the associated

graded object of C � is the free FŒU �-module

gr.C �/ D
M

i2Z

Fi=Fi�1;

with induced multiplication by U . For any x 2 C �, let Œx� denote the image of

x in FA.x/=FA.x/�1 � gr.C �/. A basis ¹x1; : : : ; xnº for C � over FŒU � is called a

�ltered basis if ¹Œx1�; : : : ; Œxn�º is a basis for gr.C �/ over FŒU �. Any two �ltered

bases ¹x1; : : : ; xnº and ¹x0
1; : : : ; x0

nº are related by a �ltered change of basis: if

xi D †j aij x0
j and x0

i D †j bij xj with aij ; bij 2 FŒU �, then A.aij x0
j / � A.xi/

and A.bij xj / � A.x0
i / for all i; j . There are two particularly important types of

�ltered basis:

De�nition 2.3. A vertically simpli�ed basis is a �ltered basis ¹�0; : : : ; �2nº for C �

over FŒU � such that for j D 1; : : : ; n,

A.�2j �1/ � A.�2j / D hj > 0 and @�2j �1 D �2j (mod UC �/;

while for i D 0; 1; : : : ; n, @�2i D 0 (mod UC �/. We say that there is a vertical

arrow of length hj from �2j �1 to �2j .

De�nition 2.4. A horizontally simpli�ed basis is a �ltered basis ¹�0; : : : ; �2nº for

C � over FŒU � such that for j D 1; : : : ; n,

A.�2j / � A.�2j �1/ D j̀ > 0 and @�2j �1 D U j̀ �2j (mod FA.�2j �1/�1/;

while for i D 0; 1; : : : ; n, A.@�2i/ < A.�2i /. We say that there is a horizontal

arrow of length j̀ from �2j �1 to �2j .

C � always has a vertically simpli�ed basis and a horizontally simpli�ed basis

[4, Proposition 11.52]. Moreover, we can assume that the change of basis between

these two bases is well behaved, according to the following proposition.
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Proposition 2.5 ([3, Proposition 2.5]). There exists a vertically simpli�ed basis

¹�0; : : : ; �2nº and a horizontally simpli�ed basis ¹�0; : : : ; �2nº for C � such that, if

�p D

2nX

qD0

ap;q�q and �p D

2nX

qD0

bp;q�q ;

where ap;q ; bp;q 2 FŒU �, then ap;q D 0 whenever A.�p/ ¤ A.ap;q�q/ and

bp;q D 0 whenever A.�p/ ¤ A.bp;q�q/. In other words, each �p is an FŒU �-

linear combination of the elements �q that are the same �ltration level as �p, and

vice versa.

Lipshitz, Ozsváth, and Thurston describe a method for computing 1CFD of

the complement of K from C � (they treat the case of knots in S3, but the proof

carries over if Y is an arbitrary L-space homology sphere). The statement involves

the Ozsváth–Szabó concordance invariant � , which can be de�ned in terms of a

horizontally or vertically simpli�ed basis by

�.K/ D A.�0/ D �A.�0/:

We parametrize @X
Œn�
K such that ˛1 represents the meridian � and ˛2 represents the

framed longitude �Œn�. Then according to [4, Theorem 11.27 and Theorem A.11],
1CFD.X

Œn�
K / is determined as follows:

Theorem 2.6. Suppose that ¹ Q�0; : : : ; Q�2kº is a vertically simpli�ed basis for C �,

¹ Q�0; : : : ; Q�2kº is a horizontally simpli�ed basis for C �, and

Q�p D

2kX

qD0

Qap;q Q�q and Q�p D

2kX

qD0

Qbp;q
Q�q ;

where Qap;q ; Qbp;q 2 FŒU �. Let ap;q D Qap;q jU D0 and bp;q D Qbp;q jU D0. Then

1CFD.X
Œn�
K / satis�es the following conditions.

� The summand �01CFD.X
Œn�
K / has a basis ¹�0; : : : ; �2kº and a basis ¹�0; : : : ; �2kº

such that

�p D

2kX

qD0

ap;q�q and �p D

2kX

qD0

bp;q�q ;

� The summand �11CFD.X
Œn�
K / has dimension

Pk
j D1.hj C j̀ / C jn � 2�.K/j,

with basis

k[

j D1

¹�
j
1 ; : : : ; �

j

hj
º [

k[

j D1

¹�
j
1 ; : : : ; �

j

j̀
º [ ¹�1; : : : ; �jn�2�.K/jº:
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� For j D 1; : : : ; k, there are coe�cient maps

�2j �1

D1
��! �

j
1

D23
 �� � � �

D23
 �� �

j

hj

D123
 ��� �2j :

We call this sequence of generators a vertical chain corresponding to the

vertical arrow of length hj from Q�2j �1 to Q�2j .

� For j D 1; : : : ; k, there are coe�cient maps

�2j �1

D3
��! �

j
1

D23
��! � � �

D23
��! �

j

j̀

D2
��! �2j :

We call this sequence of generators a horizontal chain corresponding to the

horizontal arrow of length j̀ from Q�2j �1 to Q�2j .

� Depending on t D n � 2�.K/, there are additional coe�cient maps

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�0

D1
��! �1

D23
 �� � � �

D23
 �� �t

D3
 �� �0 if t > 0;

�0

D12
��! �0 if t D 0;

�0

D123
���! �1

D23
��! � � �

D23
��! ��t

D2
��! �0 if t < 0:

We call the generators in this sequence the unstable chain.

We will modify this description of1CFD.X
Œn�
K / slightly to ensure that we always

work with bounded type D modules. Speci�cally, if K is not an L-space knot and

t � 0 we replace the unstable chain with

8
<
:

�0

D1
��! �1

D;
 �� �2

D2
��! �0 if t D 0;

�0

D12
�! �1

D;
 � �2

D3
�! �1

D23
�! � � �

D23
�! �t

D2
�! �0 if t < 0:

This modi�cation does not change the quasi-isomorphism type of1CFD.X
Œn�
K /. We

also note that this modi�cation does not impact any of the arguments in Section 3,

since we will only consider generators away from the unstable chain unless K is

an L-space knot.

To see that 1CFD.X
Œn�
K / is bounded after modifying the unstable chain, recall

that a type D module is bounded if the corresponding directed graph has no di-

rected loops. Any loop in the graph corresponding to 1CFD.X
Œn�
K / is a collec-

tion of horizontal, vertical, and unstable chains. No directed loop may traverse

a vertical chain, since a vertical chain has arrows oriented in both directions.

A directed loop could contain horizontal chains, but it must traverse all horizontal

chains in the same direction. Since horizontal chains raise the Alexander grading,
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there can not be a directed loop consisting of only horizontal chains. Thus any

directed loop must involve the unstable chain. For a non-L-space knot, the above

modi�cation ensures that the unstable chain has arrows oriented in both directions,

and so 1CFD.X
Œn�
K / has no directed loops. For an L-space knot, 1CFD.X

Œn�
K / has a

special form (which will be described in Section 2.4). The corresponding graph

has only one loop, which contains the vertical chains and thus is not a directed

loop.

2.4. L-space knots. We say that a knot K in an L-space homology sphere Y is

an L-space knot if some nontrivial surgery on K produces an L-space.1 If K is an

L-space knot then the knot Floer homology of K has a particularly simple form.

It follows from [7, Theorem 1.2] that there is a basis ¹ Qx0; : : : ; Qx2kº for C � such

that

A. Qx0/ < � � � < A. Qx2k/

and A. Qxi / D �A. Qx2k�i /. Furthermore, if K admits a positive L-space surgery,

then this basis satis�es

8
<
:

@ Qxi D 0 if i is even,

@ Qxi D Qxi�1 C U A. QxiC1/�A. Qxi / QxiC1 if i is odd:

If instead K admits a negative L-space surgery, then the basis satis�es

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

@ Qxi D 0 if i is odd,

@ Qxi D Qxi�1 C U A. QxiC1/�A. Qxi / QxiC1 if 0 < i < 2k is even,

@ Qx0 D U A. Qx1/�A. Qx0/ Qx1;

@ Qx2k D Qx2k�1:

A basis of this form gives rise to the staircase shape pictured in Figure 2. It is

clear that in either case the basis ¹ Qx0; : : : ; Qx2kº is both horizontally and vertically

simpli�ed. Note that �.K/ D A. Qx2k/ D g.K/ if K admits a positive L-space

surgery and �.K/ D A. Qx0/ D �g.K/ if K admits a negative L-space surgery.

1 This is one of two de�nitions found in the literature. The other common convention says

that K is an L-space knot if it admits a positive L-space surgery. We �nd it convenient to use

the more inclusive de�nition of L-space knot; however, we use the sign of �.K/ to keep track of

whether K admits positive or negative L-space surgeries.
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Figure 2. A fundamental domain of C 1 for an L-space knot K with .a/ �.K/ > 0, or

.b/ �.K/ < 0. The nodes represent the generators Qx0; : : : ; Qx2k multiplied by appropriate

powers of U , which are omitted from the diagram for simplicity. The node labelled Qxi is

in fact U A. Qxi /�A. Qx0/ Qxi , an element of C �.

Using the basis described above, it is straightforward to compute 1CFD for a

framed complement X
Œn�
K of an L-space knot. �01CFD.X

Œn�
K / has basis ¹x0; : : : ; x2kº.

For each horizontal arrow from Qxi to QxiC1 of length `i D A. QxiC1/ � A. Qxi / there

is a horizontal chain

xi

D3
��! yi

1

D23
��! � � �

D23
��! yi

`i

D2
�! xiC1;

and for each vertical arrow from QxiC1 to Qxi of length `i D A. QxiC1/� A. Qxi / there

is a vertical chain

xiC1

D1
��! yi

1

D23
 �� � � �

D23
 �� yi

`i

D123
 ��� xi :

Finally, there is an unstable chain from x2k to x0 if �.K/ > 0 and from x0 to x2k

if �.K/ < 0. Let `2k D jn � 2�.K/j be the length of the unstable chain. We label

the generators of �11CFD.X
Œn�
K / in the unstable chain sequentially as y2k

1 ; : : : ; y2k
`2k

.

3. Proof of the main theorem

3.1. Durable generators. Following the strategy of [3], we will search for spe-

cial generators in 1CFD and bCFA that give rise to generators in the homology of

the box tensor product.
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De�nition 3.1. Let Y be a manifold with torus boundary. We call a generator

x 2 �01CFD.Y / durable if it satis�es the following conditions.

� x has no incoming coe�cient maps; that is, �x ıDI D 0 for any I , where �x

denotes projection onto the subspace generated by x.

� If DIr
ı � � � ıDI1

.x/ is nonzero, then

– I1 D 3 or I1 D 123,

– if I1 D 123 and r > 1, then I2 D 23,

– if I1 D 3 and r > 1, then I2 D 23 or I2 D 2,

– if I2 D 2 and r > 2, then I3 D 123.

We call a generator x 2 �11CFD.Y / durable if it satis�es the following conditions.

� If �x ıDIr
ı � � � ıDI1

is nonzero, then r D 1 and I1 D 1 or I1 D 123.

� If DIr
ı � � � ıDI1

.x/ is nonzero, then I1 D 23.

Remark 3.2. These are precisely the properties demonstrated for generators in

the subspaces BK and VK in Propositions 3.5 and 3.6 of [3].

When bCFA is computed from 1CFD using the algorithm in [3, Section 2.3],

there is a direct correspondence between the generators. We de�ne generators of
bCFA to be durable if they correspond to durable generators of 1CFD. It is easy to

see that this is equivalent to the following conditions (c.f. Propositions 3.7 and 3.8

in [3]):

Proposition 3.3. A durable generator x 2 �0 bCFA.Y / satis�es the following

properties.

� There are no A1 operations which evaluate to x, except the identity opera-

tion m2.x; 1/ D x.

� If mrC1.x; a1; : : : ; ar/ is nonzero for Reeb chords a1; : : : ; ar , then

– a1 D �1; �3, or �123,

– if a1 D �123, then r � 2 and a2 D �2,

– if a1 D �3, then r � 3, a2 D �2, and a3 D �1 or �12.

A durable generator x 2 �1 bCFA.Y / satis�es the following properties.

� If mrC1.y; a1; : : : ; ar/ D x for some generator y 2 bCFA.Y / and Reeb chords

a1; : : : ; ar , then either r D 1 and a1 D �3 or r D 3 and .a1; a2; a3/ D

.�3; �2; �1/.

� If mrC1.x; a1; : : : ; ar/ is nonzero for Reeb chords a1; : : : ; ar , then a1 D �2.
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Given these conditions, it is straightforward to check the following (c.f. [3,

Proof of Theorem 1]):

Proposition 3.4. If x is a durable generator of bCFA.Y1/ and y is a durable

generator of 1CFD.Y2/ such that x and y have the same idempotent, then x ˝ y

is a generator of bCFA.Y1/ �1CFD.Y2/ with no incoming or outgoing di�erentials.

Thus, x˝ y survives as a generator of bHF.Y1 [ Y2/.

We will also make use of a weaker condition on generators.

De�nition 3.5. Let Y be a manifold with torus boundary. We call a generator

x 2 �01CFD.Y / weakly durable if

0 D D1.x/ D D12.x/ D D2 ıD123.x/ D D1 ıD2 ıD3.x/ D D12 ıD2 ıD3.x/:

We call a generator x 2 �11CFD.Y / weakly durable if D2.x/ D 0 and �x ıD3 and

�x ıD1 ıD2 ıD3 are trivial.

The trivial chains of coe�cient maps in this de�nition are chosen precisely to

match the nontrivial A1 operations for a durable generator. Thus the statement in

Proposition 3.4 remains true if the generator y in 1CFD.Y2/ is only weakly durable.

We will �nd that many framed knot complements have a pair of durable genera-

tors connected by the coe�cient map D123, and that all framed knot complements

have such a pair of weakly durable generators. This leads to a simple proof that

certain splicings are not L-spaces using the following proposition.

Proposition 3.6. Let Y1 and Y2 be bordered 3-manifold with torus boundary.

Suppose that CFD.Y1/ has two durable generators x1 and y1, where y1 D

D123.x1/, and that 1CFD.Y2/ has two weakly durable generators x2 and y2, where

y2 D D123.x2/. Then Y1 [ Y2 is not an L-space.

Proof. Let Nx1 and Ny1 denote the generators in bCFA.Y1/ corresponding to x1

and y1, respectively. Nx1 ˝ x2 and Ny1 ˝ y2 are generators of cCF.Y1 [ Y2/ Š
bCFA.Y1/�1CFD.Y2/ that survive in homology. These generators haveZ2 gradings

gr.Nx1 ˝ x2/ D gr.Nx1/C gr.x2/;

gr.Ny1 ˝ y2/ D gr.Ny1/C gr.y2/:

Since D123.x2/ D y2, it follows from equations (3) and (4) that gr.x2/ D gr.y2/.

Similarly, gr.x1/ D gr.y1/. When we compute bCFA.Y1/ from 1CFD.Y1/, we

change the grading for x1 but not for y1. As a result, gr.Nx1/ ¤ gr.Ny1/. This

implies that gr.Nx1 ˝ x2/ ¤ gr.Ny1 ˝ y2/, and by Proposition 2.1, Y1 [ Y2 is not an

L-space. �
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3.2. Durable generators for non-L-space knots. It was shown in [3] that

for any nontrivial 0-framed knot complement, 1CFD has at least two durable

generators. The proof relies on the form of the unstable chain and thus does not

work for arbitrary framings. However, for non-L-space knots we can use similar

methods to �nd durable generators that do not lie on the unstable chain. Since

the framing only in�uences the unstable chain, these durable generators exist for

arbitrary framing.

Let K be a nontrivial knot in an L-space integral homology sphere Y . Recall

that C � will denote the knot Floer complex CFK�.K/. Choose simpli�ed �ltered

bases ¹ Q�0; : : : ; Q�2mº and ¹ Q�0; : : : ; Q�2mº for C � as in Proposition 2.5. For any

Qa 2 C �, there is a corresponding element a in �01CFD.X
Œn�
K /. Recall that elements

of �01CFD.X
Œn�
K / inherit an Alexander grading from the corresponding elements in

C �.

For a given �g.K/ � k � g.K/, let Bk denote the subspace of �01CFD.X
Œn�
K /

generated by elements with Alexander grading k. Note that each Bk has a basis

which is a subset of ¹�0; : : : ; �2mº and a basis which is a subset of ¹�0; : : : ; �2mº.

Let B 0
k

denote the subspace Bk\span¹�2; �4; : : : ; �2mº\span¹�1; �3; : : : ; �2m�1º.

Lemma 3.7. If a 2 B 0
k

for some k and DI ıD2 ıD3.a/ ¤ 0, then I D 123.

Before approaching the general proof of Lemma 3.7, it may be instructive to

consider the proof under the simplifying assumption that the bases ¹ Q�0; : : : ; Q�2mº

and ¹ Q�0; : : : ; Q�2mº of C � are the same up to permutation of the elements. The idea

of the proof is the same but there is less notational complexity. Loosely speaking,

we must show that if there is a length 1 horizontal arrow starting at Qa in C �, it is

not followed by a downward vertical arrow.

Remark 3.8. It is not known whether CFK�.K/ always admits a simultaneously

horizontally and vertically simpli�ed basis as in this simplifying assumption.

Simpli�ed proof of Lemma 3.7. Under the simplifying assumption, B 0
k

is gener-

ated by elements of the form �2i�1 D �2j , with 1 � i; j � m. Since coe�cient

maps are linear, it su�ces to prove the statement when a is a basis element. As-

sume without loss of generality that a D �1 D �2. We also assume that the length

`1 of the horizontal arrow from �1 to �2 is 1, since otherwise D2 ı D3.a/ D 0.

It follows that D2 ıD3.�1/ D �2.

We need to show that DI .�2/ D 0 unless I is 123. Note that �2 D �j for

some j . It is enough to show that j 2 ¹2; 4; : : : ; 2mº, since �2 has no outgoing

horizontal chains, and vertical chains ending at �j only contribute to D123.�j /.
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Consider the element Q�1 of C �. By the de�nition of vertically simpli�ed basis,

we have that

@ Q�1 D Q�2 C Uˇ D Q�1 C Uˇ

for some ˇ 2 C �. Since Q�1 D Q�2 is in the kernel of the vertical di�erential,

@ Q�1 2 UC �. By the de�nition of horizontally simpli�ed basis,

@ Q�1 D U Q�2 C U
 D U Q�j C U


for some 
 2 C � with A.
/ � A.�1/ D k.

Now consider

0 D @2. Q�1/ D @. Q�1/C @.Uˇ/ D U Q�j C U
 C U @ˇ:

Since multiplying by U is injective, we have that 0 D Q�j C 
 C @ˇ. We consider

this equation modulo U , and note that 
 is congruent (modulo U ) to a linear

combination of ¹ Q�i jA. Q�i / � kº and @ˇ is congruent to a linear combination of

¹ Q�2; Q�4; : : : ; Q�2mº. Since the Alexander grading of Q�j D Q�2 is k C 1, it follows that

j 2 ¹2; 4; : : : ; 2mº. �

Full proof of Lemma 3.7. Let a D
Pm

iD1 ai �2i�1 D
Pm

iD1 bi �2i , where ai ; bi 2

F. There is a corresponding element of C �, Qa D
Pm

iD1 ai Q�2i�1; we also have that

Qa is congruent modulo U to
Pm

iD1 bi
Q�2i . For i D 1; : : : ; m, de�ne a0

i to be ai if

the length `i of the horizontal arrow from Q�2i�1 to Q�2i is one and 0 otherwise. We

have that

D2 ıD3.a/ D

mX

iD1

a0
i �2i DW c:

We need to show that D1.c/ D D12.c/ D D3.c/ D 0. In terms of the vertical

basis, we have c D
P2m

j D0 cj �j , where cj 2 F. It su�ces to show that cj D 0

unless j 2 ¹2; 4; : : : ; 2mº, since c has no outgoing horizontal chains and the

vertical chains ending in �j with j 2 ¹2; 4; : : : ; 2mº only contribute outgoing

D123 coe�cient maps.

Consider the element Qb D
Pm

iD1 bi
Q�2i�1 of C �. By the de�nition of vertically

simpli�ed basis, @ Qb is congruent modulo U to
Pm

iD1 bi
Q�2i , which is congruent to

Qa. That is,

@ Qb D QaC Uˇ

for some ˇ 2 C �. Since Qa is congruent modulo U to a linear combination of

¹ Q�2; Q�4; : : : ; Q�2mº, @ Qa 2 UC �. By the de�nition of horizontally simpli�ed basis,

we have that

@ Qa D U

mX

iD1

a0
i Q�2i C U 2

mX

iD1

.ai � a0
i /U

`i �2 Q�2i C U
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for some 
 2 C � with A.
/ � A. Qa/ D k. Now consider @2 Qb:

0 D @2. Qb/ D @. Qa/C@.Uˇ/ D U

mX

iD1

a0
i Q�2iCU 2

mX

iD1

.ai�a0
i/U

`i �2 Q�2iCU
CU @ˇ:

Dividing by U and restricting to U D 0, we �nd that

mX

iD1

a0
i Q�2i C 
 C @ˇ � 0 (mod U /:

Since
Pm

iD1 a0
i�2i D

P2m
j D0 cj �j , it follows that

Pm
iD1 a0

i Q�2i is congruent toP2m
j D0 cj

Q�j modulo U . Note that cj D 0 unless A. Q�j / D k C 1, since a0
i is only

nonzero if A. Q�2i / D k C 1. Since A.
/ � k, 
 is congruent modulo U to a linear

combination of ¹ Q�j jA. Q�j / � kº. Thus there can be no cancellation between the

�rst two terms above. Finally, @ˇ is congruent modulo U to a linear combination

of ¹ Q�2; Q�4; : : : ; Q�2mº, so we must have that cj D 0 unless j 2 ¹2; 4; : : : ; 2mº. �

Lemma 3.9. For any �g.K/ � k � g.K/ and any nonzero a 2 B 0
k
, there

does not exist an element b 2 1CFD.X
Œn�
K / such that D1 ı D2.b/ D D123.a/ or

D1 ıD12.b/ D D123.a/.

As with the previous Lemma, we �rst give the simpler proof under the assump-

tion that the bases ¹ Q�iº and ¹ Q�iº can be identi�ed. We make the further simplifying

assumption that a is a basis element.

Simpli�ed proof. Under the simplifying assumption, B 0
k

is generated by basis

elements of the form �2i D �2j �1. We assume without loss of generality that

a D �1 D �2. Suppose there exist b; c 21CFD.X
Œn�
K / such that D1.c/ D D123.a/

and c D D2.b/ or c D D12.b/. We will produce a contradiction, implying that

such a b does not exist.

The coe�cient map D123 on a D �2 arises from the vertical chain from �1 to

�2. The form of the vertical chain implies that c only exists if the length h1 of the

vertical arrow from Q�1 to Q�2 is one. In this case, c is �1 plus a linear combination

of ¹�0; �2; : : : ; �2mº. �1 D �j for some j . In fact, j must be even because the

coe�cient maps D2 and D12 only appear at the end of horizontal and unstable

chains and thus D2.b/ and D12.b/ are linear combinations of ¹�0; �2; : : : ; �2mº.

Consider the element Q�1 D Q�j of C �. Since j is even, Q�j is in the kernel of the

horizontal di�erential. It follows that @ Q�j D Q�2CUˇ where A.ˇ/ � A. Q�j / D kC1.

Similarly, @ Q�2 D @ Q�1 D U `1 Q�2 C U
 , where A.
/ � k. Writing ˇ as a linear

combination (with coe�cients inFŒU �) of horizontal basis elements, let � be the Q�1
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component of ˇ, and let ˇ0 D ˇ� �. By the de�nition of a horizontally simpli�ed

basis, @ˇ0 can be written as the sum of a linear combination of ¹ Q�4; Q�6; : : : ; Q�2mº

plus an element with grading at most k. Note that A.�/ � A.�1/ D k. It follows

that @ˇ D ıC�, where ı is a linear combination of ¹ Q�4; Q�6; : : : ; Q�2mº and A.�/ � k.

Now consider

0 D @2 Q�j D @. Q�2/C @.Uˇ/ D U ` Q�2 C U
 C U @.ˇ/ D U ` Q�2 C U
 C Uı C U�:

Projecting @2 Q�j to Fk=Fk�1 gives

0 D Œ@2 Q�j � D ŒU ` Q�2 C U
 C Uı C U�� D ŒU ` Q�2 C Uı�:

Since ı is a linear combination of basis elements independent from Q�2 and ¹�j º is

a �ltered basis, the right hand side cannot be zero. This is a contradiction, and so

the element b must not exist. �

Full proof of Lemma 3.9. Let a D
Pm

iD1 a2i�2i with a2i 2 Z2, and suppose that

c 21CFD.X
Œn�
K / such that D1.c/ D D123.a/. Further suppose that D2.b/ D c or

D12.b/ D c for some b. We will reach a contradiction, implying that such a b

does not exist.

Note that for vertical basis elements, D1.�j / D 0 if j is even. If j is

odd, D1.�j / ¤ 0, and D1.�j / D D123.�j C1/ if and only if the length of the

vertical chain from �j to �j C1 is one. Thus in terms of the vertical basis we have

c D
P2m

j D0 cj �j , where cj 2 Z2, c2i�1 D a2i for i D 1; 2; : : : ; m, and a2i D 0

unless the length hi of the vertical chain from �2i�1 to �2i is one. The coe�cient

maps D2 and D12 only appear at the end of horizontal and unstable chains, so

the fact that c D D2.b/ or c D D12.b/ implies that c D
Pm

iD0 b2i �2i for some

b2i 2 Z2.

Consider the element Qc D
Pm

iD0 b2i Q�2i of C � and note that Qc is equivalent

modulo U to
P2m

j D0 cj
Q�j . The de�nition of vertically simpli�ed basis implies that

@ Qc �

mX

iD1

c2i�1
Q�2i �

mX

iD1

a2i
Q�2i .mod U /:

Since a D
Pm

iD1 a2i �2i is an element of B 0
k
, it can also be written in terms of the

horizontal basis as a D
Pm

iD1 d2i�1�2i�1, where d2i�1 D 0 unless A.�2i�1/ D k.

It follows that the last sum above is congruent modulo U to
Pm

iD1 d2i�1 Q�2i�1. The

de�nition of horizontally simpli�ed basis implies that A.@ Qc/ < A. Qc/ D k C 1.

Putting all this information together, we have that

@ Qc D

mX

iD1

d2i�1 Q�2i�1 C Uˇ;
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where A.ˇ/ � kC1. Since a 2 B 0
k

is nonzero, at least one of the coe�cients d2i�1

is nonzero; by reordering the basis elements, we may assume that d1 is nonzero.

In particular this implies that A.�1/ D k.

Writing ˇ in terms of the horizontal basis, let ˇ D
P2m

j D0 Qej Q�j , where Qej 2

FŒU �. By the de�nition of horizontal basis, we have that

@
� mX

iD1

d2i�1 Q�2i�1

�
D 
1 C

mX

iD1

d2i�1U `i Q�2i

and

@
� 2mX

iD0

Qei Q�i

�
D 
2 C

mX

iD1

Qe2i�1U `i Q�2i ;

where A.
1/ < k and A.
2/ � k. Note that the i D 1 term in the last sum

has grading A.U `1 Q�2/ D A.�1/ D k. We will consider the projection of @2 Qc to

Fk=Fk�1 � gr.C �/. We have

0 D Œ@2 Qc� D
h

1 C

mX

iD1

d2i�1U `i Q�2i C U
�

2 C Qe1U `1 Q�2 C

mX

iD2

Qe2i�1U `i Q�2i

�i
;

D
h mX

iD1

d2i�1U `i Q�2i C

mX

iD2

Qe2i�1U `i C1 Q�2i

i
:

The projection of the �rst sum contains a nontrivial multiple of Œ Q�2�, since we

assumed that d1 is nonzero. However, the projection of the second sum can be

written as a linear combination of ¹Œ Q�4�; Œ Q�6�; : : : ; Œ Q�2m�º. This contradicts the fact

that ¹�iº
2m
iD0 is a �ltered basis, so the element b must not exist. �

Lemma 3.10. If x is a nonzero generator in B 0
k

for some k, then x is a durable

generator. Moreover, D123.x/ D y is nonzero and is a durable generator.

Proof. First we check that x is durable. It is clear that there are no incoming

coe�cient maps, since B 0
k

does not contain �2i for i D 0; : : : ; m. Outgoing

coe�cient maps from B 0
k

can come either from horizontal chains starting with

D3, or from vertical chains starting with D123. It follows that D1 and D12 are

zero on B 0
k
.

Let DIr
ı� � �ıDI1

be a composition of coe�cient maps which is nonzero on x.

We have now that either I1 D 3 or I1 D 123. Consider �rst the case that I1 D 3.

The form of the horizontal chains implies that if r > 1, I2 is either 23 or 2. We

need to show that if I2 D 2 and r > 2, then I3 D 123. This last statement is
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proved in Lemma 3.7. In the case that I1 D 123, then the shape of vertical chains

implies that if r > 1, I2 must be 23. This completes the proof that x is durable.

Now consider y D D123.x/. If x D
Pm

iD1 ai�2i ¤ 0, then y D
Pm

iD1 ai�
j

hj
¤

0. The restrictions on the outgoing chains from x imply that if DI .y/ is nonzero,

then I is 23. The form of vertical chains implies that if �y ıDI .z/ D y then either

I D 1 or I D 123. Moreover, if I D 123 then z D x. Since x has no incoming

coe�cient maps, �y ıD123ıDI is trivial for any I . We also need that �y ıD1ıDI

is trivial for any I ; this follows from Lemma 3.9 and the fact that y 2 D123.¹xº/.

This proves that y is durable. �

Any generator of B 0
k

leads to the desired pair of durable generators. It only

remains to show that such a generator must exist for some k.

Proposition 3.11. Suppose K is not an L-space knot; then B 0
k

is nontrivial for

some k.

Proof. Note that K is an L-space knot if and only if each nontrivial Bk is one

dimensional and, for �g.K/ � k � g.K/,

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

if Bk contains �2i�1; then it contains one of ¹�0; �1; �3; : : : ; �2m�1º;

if Bk contains �2i ; then it contains one of ¹�0; �2; �4; : : : ; �2mº;

if Bk contains �2i�1; then it contains one of ¹�0; �1; �3; : : : ; �2m�1º;

if Bk contains �2i ; then it contains one of ¹�0; �2; �4; : : : ; �2mº:

(6)

Since K is not an L-space knot, there is some integer k such that Bk does not

satisfy (6); let k0 be the smallest such k. We will show that B 0
k0

is nontrivial.

First note that the the vertical basis for B�g.K/ is a subset of ¹�0; �2; : : : ; �2mº

and the horizontal basis is a subset of ¹�0; �1; �3; : : : ; �2m�1º, since A.�2i�1/ >

A.�2i / and A.�2i / > A.�2i�1/ for 1 � i � m. B 0
�g.K/

is trivial only if B�g.K/

is generated by either �0 or �0, in which case B�g.K/ satis�es (6). Thus if

k0 D �g.K/ we are done, and if k0 > �g.K/ we can assume that either �0

or �0 generate the lowest Alexander grading.

Suppose that k0 > �g.K/. We will assume �rst that B�g.K/ is generated by

�0. It follows that �0 is in the highest occupied Alexander grading, g.K/. In fact,

by symmetry Bg.K/ is one dimensional and must be generated by �0, and so Bg.K/

satis�es (6) and k0 < g.K/. Suppose Bk0
contains �i0 for some odd i0. Then �i0C1

has Alexander grading k1 < k0. Since Bk1
satis�es (6), it is one dimensional and

�i0C1 D �i1 for i1 even. If i1 ¤ 0, then �i1�1 has Alexander grading k2 < k1.

It follows that Bk2
is one dimensional and �i1�1 D �i2 where i2 is odd. We �nd
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that �i2C1 D �i3 with i3 even. Continuing in this way, we construct a chain of

generators �i0 ; �i1; �i2; : : : of decreasing Alexander grading that only ends with

�0. Since C �=UC � is �nite dimensional, the chain must end. Similarly, if Bk0

contains �i0 for some even i0 > 0, then we can construct a chain of generators

�i0 ; �i1 D �i0�1; �i2 D �i1C1; : : : with decreasing Alexander grading. This chain

must end with �0.

Any two such chains starting from Bk0
must be disjoint outside Bk0

. Since

each ends in �0, there can be at most one such chain. Thus Bk0
contains either:

(a) at most one of ¹�1; �3; : : : ; �2m�1º and none of ¹�2; �4; : : : ; �2mº, or (b) at most

one of ¹�2; �4; : : : ; �2mº and none of ¹�1; �3; : : : ; �2m�1º. Also note that �0 and �0

are not in Bk0
, since �g.K/ < k0 < g.K/.

If Bk0
contains none of ¹�1; �3; : : : ; �2m�1º and none of ¹�2; �4; : : : ; �2mº, then

B 0
k0
D Bk0

is nontrivial. If Bk0
contains �2i for some 1 � i � m, then

B 0
k0
D Bk0

=span¹�2iº. It follows that B 0
k0

is nontrivial, since if Bk0
D span¹�2i º

then (6) is satis�ed. Finally, if Bk0
contains �2i�1 for some 1 � i � m, then

B 0
k0
D Bk0

=span¹�2i�1º is nontrivial, since if Bk0
D span¹�2i�1º then (6) is

satis�ed.

The case that B�g.K/ is generated by �0 instead of �0 is completely identical,

except that the chains of generators of decreasing Alexander grading described

above terminate in �0 instead of �0. �

3.3. Durable generators for L-space knots. The pairs of durable generators

described in the preceding section do not exist for L-space knots; indeed, for an

L-space knot the spaces B 0
k

are trivial for any k. However, we can �nd similar

pairs of generators for certain framings.

Proposition 3.12. Let K be an L-space knot with framing n, such that n < 2�.K/

if �.K/ > 0 and n > 2�.K/ C 1 if �.K/ < 0. Then 1CFD.X
Œn�
K / has a pair of

durable generators x and y D D123.x/.

Proof. Using the basis for 1CFD.X
Œn�
K / described in Section 2.4, we simply take x

to be x0. y D D123.x/ is y0
`0

if �.K/ > 0 or y2k
1 if �.K/ < 0. The relevant portion

of 1CFD.X
Œn�
K / is pictured in Figure 3; it is easy to check that the generator x and y

satisfy De�nition 3.1. �

Framed complements of L-space knots which are not addressed by Proposi-

tion 3.12 do not have a pair of durable generators separated by the coe�cient map

D123. However, all L-space knot complements have a pair of weakly durable gen-

erators in 1CFD.X
Œn�
K /. Using the basis described in Section 2.4, let x D x0 and
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y D y0
`0

if �.K/ > 0. If �.K/ < 0, take x D x1 and y D y1
`1

. In either case,

D123.x/ D y, and x and y are weakly durable. The coe�cient maps into and out

of x and y can be seen in Figure 3 if we replace the unstable chain according to

the framing, as described in Section 2.4.

Figure 3. The portion of bCFD.X
Œn�

K
/ for an L-space knot complement containing the pair

of durable generators or the pair of weakly durable generators. .a/ represents a knot with

�.K/ > 0 and n < 2�.K/; .b/ represents a knot with �.K/ < 0 and n > 2�.K/. The dotted

arrow represents a chain of D23 arrows whose length depends on n.

3.4. Proving the only if statement. First note that it is su�cient to prove

Theorem 1.2 when �.K1/ � 0, since the result for �.K1/ < 0 follows by taking the

mirror image of both framed knot complements. Using pairs of durable generators

we can now prove that splicing integer framed knot complements never produces

an L-space if at least one of the knots (we may assume it is K1) is a non-L-space

knot or has framing n1 such that n1 < 2�.K1/ with �.K1/ > 0. Indeed, we

have shown that in this case 1CFD.X
Œn1�
K1

/ has a pair of durable generators x1 and

y1 D D123.x1/, and that 1CFD.X
Œn2�
K2

/ has a pair of weakly durable generators x2

and y2 D D123.x2/. That the spliced manifold is not an L-space follows from

Proposition 3.6.
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To prove the only if direction of Theorem 1.2, the only case left to consider

is that K1 and K2 are L-space knots, n1 D 2�.K1/, n2 D 2�.K2/, and �.K1/

and �.K2/ are both positive. In this case we will make use of an explicit basis for
1CFD of each framed complement. Let ¹x0; : : : ; x2kº and

S2k
iD0¹y

i
1; : : : ; yi

`i
º be the

bases for �01CFD.X
Œn1�
K1

/ and �11CFD.X
Œn1�
K1

/, respectively, described in Section 2.4.

Let ¹u0; : : : ; u2mº and
S2m

iD0¹v
i
1; : : : ; vi

hi
º be analogous bases for �01CFD.X

Œn2�
K2

/

and �11CFD.X
Œn2�
K2

/. We use a bar to denote the corresponding type A generators.

Consider the generators Nx0 ˝ u0 and Ny0
1 ˝ v0

1 in bCFA.X
Œn1�
K1

/ � 1CFD.X
Œn2�
K2

/.

Equations (3) and (4) imply that

gr. Nx0/ ¤ gr.x0/ D gr.y0
1 / D gr. Ny0

1 /

and

gr.u0/ ¤ gr.v0
1/:

It follows that Nx0 ˝ u0 and Ny0
1 ˝ v0

1 have opposite Z2 gradings. We will show

that both generators survive in homology, implying that Y.K
Œn1�
1 ; K

Œn2�
2 / is not an

L-space.

Any A1 operation that evaluates to Nx0 must have �2 as its last input. Since

there is no incoming coe�cient map D2 at u0, Nx0 ˝ u0 has no incoming di�er-

entials. Any nontrivial operation mkC1. Nx0; �I1
; : : : ; �Ir

/ must have I1 D 3. Since

D3.u0/ D 0, Nx0 ˝ u0 has no outgoing di�erentials.

There are no nontrivial A1 operations starting at Ny0
1 , and if

mkC1.z; �I1
; : : : ; �Ir

/ D Ny0
`0

for some z in bCFA.X
Œn1�
K1

/ and some intervals I1; : : : ; Ir , then Ir is 1 or 3 and if

Ir D 1 then r > 1 and Ir�1 is 2 or 12. Since

�v0
1
ıD3; �v0

1
ıD1 ıD2; and �v0

1
ıD1 ıD12

are trivial on 1CFD.X
Œn2�
K2

/, there can be no di�erentials into or out of y0
1 ˝ v0

1 .

3.5. L-spaces produced by splicing. It remains to prove the if direction of

Theorem 1.2. That is, we need to prove that for L-space knots with appropriate

framings the manifold Y.K
Œn1�
1 ; K

Œn2�
2 / is an L-space. This is more di�cult in the

sense that we must consider all of bHF; to show something is not an L-space it is

su�cient to �nd one generator with the wrong Z2 grading, but now we must show

that every generator has the same grading. Fortunately the simple form of 1CFD

for L-space knot complements makes this possible.
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Let K1 and K2 be L-space knots and suppose that

� ni � 2�.Ki / > 0 or ni � 2�.Ki / < 0 for i 2 ¹1; 2º;

� if �.K1/ and �.K2/ have the same sign, then n1 ¤ 2�.K1/ or n2 ¤ 2�.K2/.

Let ¹x0; : : : ; x2kº and
S2k

iD0¹y
i
1; : : : ; yi

`i
º be the bases for �01CFD.X

Œn1�
K1

/ and

�11CFD.X
Œn1�
K1

/, respectively, described in Section 2.4. Let ¹u0; : : : ; u2mº and
S2m

iD0¹v
i
1; : : : ; vi

hi
º be analogous bases for �01CFD.X

Œn2�
K2

/ and �11CFD.X
Œn2�
K2

/.

We use bars to denote the corresponding type A basis elements.

The Z2 grading on 1CFD.X
Œn2�
K2

/ can be computed by declaring that gr.v0
1/ D 0

and using equations (3) and (4). We �nd that all the generators in �11CFD.X
Œn2�
K2

/

have grading 0. Generators of �01CFD.X
Œn2�
K2

/ at the end of a horizontal or vertical

chain (lower left corners) have grading 0, while those at the beginning of a

horizontal or vertical chain (upper right corners) have grading 1. The computation

of the Z2 grading of 1CFD.X
Œn1�
K1

/ is exactly the same, and to obtain the grading on

bCFA.X
Œn1�
K1

/ we simply switch the grading for generators with idempotent �0.

We must prove that Y.K
Œn1�
1 ; K

Œn2�
2 / is an L-space. Recall that

cCF.Y.K
Œn1�
1 ; K

Œn2�
2 // Š bCFA.X

Œn1�
K1

/ � 1CFD.X
Œn2�
K2

/

Š
M

`2¹0;1º

bCFA.X
Œn1�
K1

/�` � �`1CFD.X
Œn2�
K2

/

All generators of bCFA.X
Œn1�
K1

/�1 and �11CFD.X
Œn2�
K2

/ have grading 0, and thus all

generators in the ` D 1 summand above have grading 0. We will show that all

generators in the ` D 0 summand with grading 1 cancel in homology.

For simplicity, we assume that �.K1/ > 0 (if �.K1/ < 0, the result follows

by taking the mirror image of both knot complements). We consider the cases of

�.K2/ < 0 and �.K2/ > 0 separately.

Case 1: �.K2/ < 0. For 0 � i � 2k, gr. Nxi / is 1 if i is even and 0 if i is odd. For

0 � j � 2m, gr.uj / is 1 if j is even and 0 if j is odd. So the generators in the

tensor product that need to cancel in homology are Nxi ˝ uj where i and j have

opposite parity.

First suppose that j is odd and i is even. We can see in Figure 4(I) that uj has

an incoming D2 coe�cient map. More precisely, D2.v
j �1

hj �1
/ D uj . Similarly xi

has an incoming D2 coe�cient map unless i D 0 and n1 D 2�.K1/. If i is even

and nonzero, then D2.yi�1
`i�1

/ D xi . According to the algorithm for computing

bCFA from 1CFD, this means that m2. Nyi�1
`i�1

; �2/ D Nxi . It follows that there is a
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di�erential from Nyi�1
`i�1
˝ v

j �1

hj �1
to Nxi ˝ uj . Moreover, we can check there are

no other di�erentials to Nxi ˝ uj or from Nyi�1
`i�1
˝ v

j �1

hj �1
, so this pair cancels in

homology. To see that there are no other di�erentials to Nxi ˝ uj , note that any

chain of coe�cient maps into uj ends with a D2, but anyA1 operation evaluating

to Nxi other than the one used above has �12 as its �nal input. Similarly, to see that

there are no other di�erentials from Nyi�1
`i�1
˝ v

j �1

hj �1
note that the only outgoing

coe�cient map at v
j �1

hj �1
is D2, while any A1 operation on Nyi�1

`i�1
other than the

one used above must have �23 as its �rst input. If i D 0 and n1 > 2�.K1/ then

D2.y2k
`2k

/ D xi . It similarly follows that there is a di�erential from Ny2k
`2k
˝ v

j �1

hj �1

to Nxi ˝ uj and that the pair cancels in homology.

If i D 0 and n1 D 2�.K1/ then xi does not have an incoming D2 coe�cient

map. However, in that case we have the incoming coe�cient maps

D12.x2k/ D x0 and D12 ıD2.y2k�1
`2k�1

/ D x0:

bCFA.X
Œn�
K1

/ has the corresponding A1 operations

m3. Nx2k ; �3; �2/ D Nx0 and m3. Ny2k�1
`2k�1

; �23; �2/ D Nx0:

It follows that there is a di�erential to Nx0˝uj from Nx2k˝uj �1 if hj �1 D 1 or from

Ny2k�1
`2k�1

˝v
j �1

hj �1�1
if hj �1 > 1. In each case it is straightforward to check, as above,

that there are no other di�erentials with the same initial or terminal generators, so

the pair cancels in homology.

Now suppose that j is even and i is odd. We can see from Figure 4(II) that xi

has two outgoing coe�cient maps

D1.xi / D yi�1
1 and D3.xi / D yi

1;

so Nxi has the outgoing A1 operations

m2. Nxi ; �3/ D Nyi�1
1 and m2. Nxi ; �1/ D Nyi

1:

If j D 0 then D3.uj / D v0
1 ; it follows that there is a di�erential from Nxi ˝ uj

to Nyi�1
1 ˝ v0

1 . Note that there are no other di�erentials ending in Nyi�1
1 ˝ v0

1 since

there are no other coe�cient maps into v0
1 . If j > 0 then D1.uj / D vi�1

1 and there

is a di�erential from Nxi ˝uj to Nyi
1˝ vi�1

1 . There are no other di�erentials ending

in Nyi
1 ˝ vi�1

1 since there are no other A1 operations evaluating to Nyi
1.
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Figure 4(I). The relevant portion of bCFD.X
Œn2�

K2
/ near uj when gr.uj / D 0 if .a/ j ¤ 0,

.b/ j D 0 and n2 > 2�.K2/, or .c/ j D 0 and n2 D 2�.K2/.
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Figure 4(II). The relevant portion of bCFD.X
Œn2�

K2
/ near uj when gr.uj / D 1 if .a/ j ¤ 0,

.b/ j D 0 and n2 < 2�.K2/, or .c/ j D 0 and n2 D 2�.K2/.
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We have shown that each Nxi ˝ uj with grading 1 can be canceled with an-

other generator in homology, as summarized in Table 1. Moreover, for each dif-

ferential the terminal generator is not the end of any other di�erentials; this im-

plies that each di�erential can be canceled without introducing new di�erentials.

Using the table, it is straightforward to check that all these generators can be

canceled at once, that is, that none of the canceling generators are used twice.

Therefore all surviving generators in bHF.Y.K
Œn1�
1 ; K

Œn2�
2 // have Z2 grading 0 and

Y.K
Œn1�
1 ; K

Œn2�
2 / is an L-space.

Table 1. Generators of bCFA.X
Œn1�

K1
/ � bCFD.X

Œn2�

K2
/ which cancel in homology with Nxi ˝uj

(there is a di�erential to the canceling generator from Nxi ˝uj ). We assume that �.K1/ > 0

and �.K2/ < 0.

Case 2: �.K2/ > 0. For 0 � i � 2k, gr. Nxi / is 1 if i is even and 0 if i is odd. For

0 � j � 2m, gr.uj / is 0 if j is even and 1 if j is odd. So the generators in the

tensor product that need to cancel in homology are Nxi ˝ uj where i and j have

the same parity.

First suppose that i and j are both odd. We can see from Figure 4(II) that

D1.xi / D yi�1
1 , and thus m2. Nxi ; �3/ D Nyi�1

1 . We also see that D3.uj / D v
j
1 .

It follows that there is a di�erential in the box tensor product from Nxi ˝ uj to

Nyi�1
1 ˝ v

j
1 . Note that there are no other di�erentials ending at Nyi�1

1 ˝ v
j
1 since v

j
1

has no other incoming coe�cient maps.

Now suppose that i and j are both even. Table 2 lists several incoming chains

of coe�cient maps at uj , depending on j and n2 (see also Figure 4(I)). There

are similar chains of coe�cient maps ending in xi , and Table 3 contains the

corresponding A1 operations which evaluate to Nxi .
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Table 2. Some chains of coe�cient maps ending in uj for j even and �.K2/ > 0.

Table 3. Some A1 operations evaluating to Nxi for i even and �.K1/ > 0.
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We can �nd anA1 operation in Table 3 that pairs with a sequence of coe�cient

maps in Table 2 for any combination of i , j , n1, and n2 unless i D j D 0,

n1 D 2�.K1/ and n2 D 2�.K2/, but this case is excluded by assumption since

�.K1/ and �.K2/ are both positive. For example, if i > 0 and j > 0 the operation

m2. Nyi�1
`i�1

; �2/ D Nxi pairs with the nontrivial coe�cient map D2.v
j �1

hj �1
/ D uj to

produce a di�erential in the box tensor product form Nyi�1
`i�1
˝ v

j �1

hj �1
to Nxi ˝ uj . If

i D 0, n1 D 2�.K1/, j > 0, and hj �1 D 1 then there are operations which pair in

the tensor product to produce a di�erential from Nx2k ˝ uj �1 to Nxi ˝ uj .

We have shown that there is a di�erential into Nxi ˝ uj ; in fact, there is exactly

one such di�erential. It is straightforward to check that in each case at most

one operation from Table 3 pairs with a sequence of coe�cient maps in 2. Next

observe that any A1 operation evaluating to Nxi which is not in Table 3 must have

inputs ending .: : : ; �12; �12/ or .: : : ; �123; �2; �12). These operations do not pair

with any sequence of coe�cient maps in 1CFD.X
Œn2�
K2

/, since 1CFD.X
Œn2�
K2

/ has at

most one �12 arrow and does not have both a �12 and sequence �123, �2. Finally,

any sequence of coe�cient maps that does not appear in Table 2 must end with

.DI ; D23; D2/ or .DI ; D2; D123; D2/ for some I and thus does not pear with any

operation in Table 3.

When i and j have the same parity, Nxi˝uj has either an outgoing or incoming

di�erential. In each case we have shown that the terminal generator of the di�er-

ential has no other incoming di�erentials, which implies the di�erential can be

canceled without introducing new di�erentials. The canceling generator for each

case is listed in Table 4; we can check that no canceling generators are used twice,

so all of these generators may be cancelled when taking homology. Since all sur-

viving generators of bHF.Y.K
Œn1�
1 ; K

Œn2�
2 // have Z2 grading 0, Y.K

Œn1�
1 ; K

Œn2�
2 / is

an L-space.

4. Future directions

Having addressed splicing of integer framed knot complements, it is natural to ask

if Theorem 1.2 can be extended to include rational framings. Equivalently, we ask

the following:

Question 4.1. When is a manifold produced by gluing together two knot comple-

ments using any gluing map an L-space?

The challenge in extending the proof of Theorem 1.2 to answer Question 4.1

is the complexity of 1CFD of the knot complements. For integer framings, we can
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Table 4. Generators of bCFA.X
Œn1�

K1
/� bCFD.X

Œn2�

K2
/ which cancel in homology with Nxi ˝uj

(there is a di�erential from the canceling generator to Nxi ˝uj ). We assume that �.K1/ > 0

and �.K2/ > 0.

easily produce a bordered invariant from CFK� and the impact of changing the

framing is minimal, but the case of rational framing is less well understood. The

techniques used in this paper may be valuable in answering Question 4.1, but we

would �rst need a su�ciently simple description of 1CFD of a rationally framed

knot complement.

In the meantime, we can guess an answer to Question 1 by viewing the problem

in a broader context. The following conjecture is motivated by recent work of

Boyer and Clay concerning graph manifolds [1]. An important ingredient is the

twisted I -bundle over the Klein bottle, denoted N2. For a manifold M with torus

boundary, an N2-�lling of M along a curve 
 in @M will mean a manifold obtained

by gluing N2 to M so that the rational longitude of N2 is identi�ed with 
 . The

results in [1] conjecturally imply that gluing together two graph manifolds along

their common torus boundary produces an L-space if and only if there is some

rational curve 
 on the boundary torus such that N2-�lling either manifold along


 produces an L-space.
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We can speculate that this principle extends beyond graph manifolds, and

perhaps that it applies to gluing knot complements. This idea motivates the

following conjecture:

Conjecture 4.2. For i 2 ¹1; 2º, let Ki be a nontrivial knot in an L-space

homology sphere Yi with meridian �i and Seifert longitude �i . If �.K1/ > 0

let t D 2�.K1/ � 1 and if �.K1/ < 0 let t D 2�.K1/C 1. Let Y be the manifold

obtained by gluing the exterior of K1 to the exterior of K2 such that

�1 is identi�ed with p�2 C q�2

and

�1 C t�1 is identi�ed with r�2 C s�2

Then Y is an L-space if and only if all of the following hold:

� K1 and K2 are L-space knots;

� if �.K1/ > 0 then p
q

> r
s
; if �.K1/ < 0 then p

q
< r

s
;

� if �.K2/ > 0 then p
q

; r
s
2 .2�.K2/ � 1;1/; if �.K2/ < 0 then p

q
; r

s
2

.�1; 2�.K2/C 1/.

We conclude by noting that Theorem 1.2 is consistent with this conjecture.

When we splice X
Œn2�
K1

with X
Œn2�
K2

, we have the following identi�cations:

�1  ! n2�2 C �2;

�1 C n1�1  ! �2:

Adding .t � n1/ copies of the �rst line to the second tells us that

�1 C t�1  ! ..t � n1/n2 C 1/�2 C .t � n1/�2:

In the notation of Conjecture 4.2, we have

p

q
D n2 and

r

s
D n2 C

1

t � n1

:

The conditions on p, q, r , and s in Conjecture 4.2 imply the conditions on n1 and

n2 in Theorem 1.2.
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