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The Lie Lie algebra
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Abstract. We study the abelianization of Kontsevich’s Lie algebra associated with the

Lie operad and some related problems. Calculating the abelianization is a long-standing

unsolved problem, which is important in at least two di�erent contexts: constructing coho-

mology classes inHk.Out.Fr/IQ/ and related groups as well as studying the higher order

Johnson homomorphism of surfaces with boundary. The abelianization carries a grading

by “rank,” with previous work of Morita and Conant-Kassabov-Vogtmann computing it up

to rank 2. This paper presents a partial computation of the rank 3 part of the abelianization,

�nding lots of irreducible Sp-representations with multiplicities given by spaces of modu-

lar forms. Existing conjectures in the literature on the twisted homology of SL3.Z/ imply

that this gives a full account of the rank 3 part of the abelianization in even degrees.
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1. Introduction

Let h denote Kontsevich’s Lie algebra of symplectic derivations of the free Lie

algebra [19, 20]. We call h the “Lie Lie algebra” to distinguish it from the Lie

algebras of symplectic derivations in the commutative and associative cases. Let

A D ˚Ad denote the abelianization of the positive degree part hC graded by

degree, let sw be the dimension of the vector space of cusp forms of weight w

for the modular group PSL2.Z/, and let Œ��Sp be the irreducible Sp-representation

corresponding to the partition �. Our main theorem is

Theorem 1.1. Let � D Œa; b; c� be a partition of 2m. The multiplicity of the

representation Œ��Sp in A2mC4 is at least sa�bC2 C sb�cC2 C ıa;b;c C �a;b;c ,

where �a;b;c D 1 if a > b > c are all even and is equal to 0 otherwise, and

ıa;b;c D sa�bC2 if a � b D b � c, and is equal to 0 otherwise.

The Lie algebra h appears in many places in topology. Kontsevich showed its

homology is essentially the same as the direct sum of cohomologiesH�.Out.Fr /;

k/ for a base �eld of characteristic 0. On the other hand Morita [23] demonstrated

it as the natural target of the higher Johnson homomorphisms of the mapping class

group. Relatedly, Levine [22] showed that it is the associated graded Lie algebra

for the Johnson �ltration of the group of 3-dimensional homology cylinders up to

homology cobordism.

Calculating the abelianization A of the positive degree part hC is an important

unsolved problem. For example, elements of the abelianization can be assembled

to give cohomology classes in Out.Fr /. See [19, 20, 23, 13, 14, 26, 17, 9, 10]

for papers about this. The abelianization is bigraded. It has a degree coming

from the usual grading on the free Lie algebra L.V /, but it also carries a grading

by “rank” [9]. We denote the rank r degree d part of the abelianization by Ar
d
,

which we think of as a functor on symplectic vector spaces V . Theorem 1.1 is a

computation in rank 3, giving representations Œa; b; c�Sp in A3
2mC4. Conjecturally,

the inequality of Theorem 1.1 is an equality in even degrees 2mC 4. Indeed this

would follow from two conjectures in the literature. See Conjecture 5.1 of this

paper and the remarks just after it.

The abelianization was previously known up to rank 2. The ranks 0 and 1

pieces were calculated by Morita using his trace map. The only nonzero pieces

are A0
1 D Œ13�Sp and A1

2kC1
D Œ2k C 1�Sp for k � 0.
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The rank 2 piece was calculated in [9, 10]. It is only nonzero for even d ,

in which case the only Sp-representations appearing in A
2
dC2

are Œa; b�Sp where

a � b C 2, a C b D d . These appear with multiplicity sa�b if a; b are even and

sa�b C 1 if a; b are odd.

Unlike in rank 2, the odd degree part A3
2kC1

is not trivial, but it remains poorly

understood. Indeed, computer calculations show that

A
3
7 Š Œ21�Sp;

A
3
9 Š Œ41�Sp ˚ Œ32�Sp;

A
3
11 Š Œ7�Sp ˚ 2Œ61�Sp ˚ 2Œ52�Sp ˚ Œ512�Sp ˚ Œ43�Sp:

A conceptual explanation of the appearance of these odd degree classes is an

important problem for future research.

In addition to the abelianization A, which is the quotient of hC by the space of

commutators, we consider C, the quotient of hC by the Lie algebra generated by

degree 1 elements. C inherits the degree from h and clearly there is a surjection

Cd � Ad ; d � 2:

By a theorem of Hain, C.H1.†g;1Ik// is isomorphic to the cokernel of the

Johnson homomorphism, for large enough genus g compared to degree [18]. See

[23, 24, 15, 6, 16, 25] for background and historical interest in C.

Theorem 1.1 gives new information about the Johnson cokernel, but more can

be said:

Theorem 1.2. Let � D Œa; b; c� be a partition of 2m. The representation Œ��Sp

appears in C2mC4 with multiplicity at least sa�bC2 C s0
b�cC2

C ıa;b;c C �a;b;c ,

where s0
2mC2 D d2m

3
e � 1 if m > 0 and s0

k
D 0 in all other cases.

Comparing to Theorem 1.1, the term sb�cC2 � .b � c/=12 for b � c even has

been enlarged to s0
b�cC2

� .b � c/=3.

Theorem 1.2 is in some sense a rank 3 computation of classes in the cokernel.

In [8], we did some rank 2 computations, which we generalize here. The result is

somewhat technical to state, and we will need a few preliminary de�nitions. Let

S�.V / be the GL.V / Schur functor for partition �. (When V is suppressed, this is

often written Œ��GL:) It can be constructed as follows. If � is a partition of n, let

P� be the corresponding irreducible representation of the symmetric group †n.

De�ne S�.V / D P� ˝kŒ†n� V
˝n, where †n acts on V ˝n by permuting the tensor

factors. Next, let L.2/.V / D V ˚
V2

V be the free nilpotent Lie algebra on V of

nilpotency class 2, and consider S�.L.2/.V //. For any Lie algebra g, the adjoint

action of g induces an action of g on S�.g/. Modding out by the image of this
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action yields a vector space S�.g/. Also de�ne '
Sp

GL.˚m�Œ��GL/ D ˚m�Œ��Sp, an

operator which takes a decomposition into irreducible GL-modules and spits out

the corresponding direct sum of Sp-modules.

Theorem 1.3. For each m > 0, there is an embedding

M

aCbD2m

'
Sp

GL.S.a;b/.L.2/.V ///
˝˛.a;b/ ,�! C2mC2;

where ˛.a; b/ D 0 if a� b is odd, ˛.a; b/ D da�b
3

e if a� b is even and b > 0, and

˛.2m; 0/ D d2m
3

e � 1.

In [8], roughly speaking, we had proven the same fact with ˛.a; b/ replaced by

the smaller number sa�bC2.

1.1. Generalized trace maps. In order to prove these theorems and related

results, we will study two functors of cocommutative Hopf algebras: Hr.H/ and

�r .H/ which will have implications for A and C. More precisely Hr.Sym.V //

will contain complete information about A, while Hr.T .V // and �r .T .V // will

contain a lot of information about C, including that coming from the Morita and

Enomoto-Satoh trace maps [24, 16].

Supposing that H is a cocommutative Hopf algebra, and that O is a cyclic

operad, one can form a new cyclic operad HO, which consists of formal com-

positions of elements of H and elements of O, such that one can push elements

of H past elements of O using the coproduct. (See De�nition 2.3). Then GHLie

is de�ned as the graph complex where vertices are labeled by elements of HLie.

The grading is by number of vertices, so that the bottom homology is H1.GHLie/.

Restricting to rank r connected graphs G
.r/
HLie

we have

Hr .H/ WD H1.G
.r/
HLie

/:

An example of a graph in G
.3/
HLie

is

Here a; b; c represent elements in H , while there are two solid trees representing

elements of Lie..4//.
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In [8], we proved that Hr.H/ Š H 2r�3.Out.Fr /IH˝r/, where Aut.Fr / acts

on H˝r via the Hopf algebra structure (see section 2.3), and H˝r is a natural

quotient on which inner automorphisms act trivially. When H D Sym.V /,

H˝r D H˝r and the action of Out.Fr/ factors through the standard GLr .Z/

action.

By de�nition

Hr.H/ WD G
.r/
HLie;1=@.G

.r/
HLie;2/:

We de�ne �r.H/ to be G
.r/
HLie;1=@S2 where S2 consists of 2-vertex graphs where

one of the two vertices is labeled either by a tripod (generator of Lie..3//) or an

element of H .

In [9] we introduced a generalized trace map TrW h ! GSym.V /Lie;1. The Lie

algebra h has a well-known description via trees with V -labeled leaves, and the

trace map is de�ned by adding several directed edges joining pairs of leaves

of a disjoint union of trees in all possible ways, multiplying by the product of

contractions of the labels. The leaves which are not joined become hairs, and

strings of adjacent V -labeled hairs can be interpreted as elements of Sym.V / [8].

In fact, in [10] the trace map was used to prove that

A
r Š '

Sp

GL.Hr.Sym.V ///:

Thus Hr .Sym.V // contains complete information about the abelianization A.

The map Tr also induces maps C ! �r.T .V // and C ! Hr.T .V // for the

tensor algebra T .V / [6, 8], and moreover C surjects onto '
Sp

GL.�r.T .V /// and

'
Sp
GL.Hr.T .V ///.

The meat of the paper is to �nd explicit presentations for Hr .H/ and �r .H/

for r � 3 (Theorems 4.9, 4.10, 6.1, 4.10). In particular, when H D Sym.V /, the

presentation for H3.H/ implies the following result.

Theorem 1.4. We have

H3.Sym.V //2k Š H 3.Out.F3/I Sym.V /˝3/2k Š H 3.GL3.Z/I Sym.V /˝3/2k

allowing us to appeal to known results about the cohomology of GL3.Z/ to

produce classes in A3 and leading to Theorem 1.1. Note that the equality of Out.F3/

and GL3.Z/ cohomology in even degrees here is a novel and unexpected result. Its

proof comes down to �nding presentations for both as vector spaces and noticing

they are equal. Surely a more conceptual proof exists, which is another good

problem for future research. It is worthwhile to note that the isomorphism does

not hold in odd degrees, as the GL3.Z/ cohomology vanishes but the Out.F3/

cohomology does not.
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Theorem 1.2 is proven by careful examination of calculations of Allison–

Ash–Conrad [1] for H3.GL3.Z/;M/, extending them to our presentation of

�3.Sym.V //.

Similarly, the presentation of�2.Sym.V // allows us to calculate its dimension

using an elementary and clever argument due to Martin Kassabov, and extending

the ideas of [8], one can compute �2.U L.2//, which is a quotient of �2.T .V //,

leading to Theorem 1.3.

These presentations are also useful for computer calculations, the results of

which are listed in the last section. These computations have been con�rmed and

extended in [11].

1.2. The groups �n;s. The abelianization A is intimately related to the coho-

mology of certain groups �n;s in their vcd, and our computations of the rank 3

part of the abelianization have implications for the cohomology of �3;s. First

we recall the de�nition of the groups �n;s . Let Xn;s be a 1-complex homotopy

equivalent to a wedge of n circles with s marked points. �n;s is the set of self-

homotopy equivalences of Xn;s �xing the s points, up to homotopy relative to

those points. These are groups which generalize Out.Fn/ and Aut.Fn/ in the sense

that �n;0 D Out.Fn/ and �n;1 D Aut.Fn/. The vcd of �n;s is 2n� 3C s.

Let V ^n be the †n-representation which is V ˝n as a vector space, with †n

acting with the sign of the permutation. We have the following theorem [9, 7]

Theorem 1.5. There is an isomorphism

H 2n�3.Out.Fn/I Sym.V /˝n/ Š
M

s�0

H 2n�3Cs.�n;s Ik/˝ V ^s :

This implies that the GL representations appearing in

H 2n�3.Out.Fn/I Sym.V /˝n/

appear as the conjugate Young diagram for an †s-representation in

H 2n�3Cs.�n;s Ik/:

Thus Theorem 1.1 implies the following theorem.

Theorem 1.6. Let � D Œa; b; c� be a partition of 2s, and �� its conjugate. Then

the †2s-representation P�� appears in H 3Cs.�3;2s Ik/ with multiplicity at least

sa�bC2 C sb�cC2 C ıa;b;c C �a;b;c .

Acknowledgments. The author thanks the referee, Avner Ash, Martin Kassabov,

Andy Putman and Nolan Wallach for useful discussions and suggestions.
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2. De�nitions

2.1. The Lie Lie algebra. Suppose V is a �nite dimensional symplectic k-vector

space. I.e. it has a nondegenerate antisymmetric bilinear form h�; �iWV ˝ V ! k.

Let ¹pi ; qiº form a symplectic basis: hpi ; qii D 1 D �hqi ; pi i and all other

pairings of basis elements are 0. Consider the free Lie algebra L.V / which has V

as its degree 1 elements. De�ne h.V / D Der!.L.V // to be the set of derivations

of L.V / which annihilate the element ! D
P

Œpi ; qi �, and let hC.V / be generated

by derivations of positive degree. h.V / is well-known to be isomorphic to the

space of Lie spiders. These are trivalent trees with univalent vertices labeled by

elements of V , modulo orientation, IHX and multilinearity relations. See [12, 22]

for more details. Let hC
1 D lim

n!1
hC.Vn/ where

� � � �! Vn �! VnC1 �! � � �

is a standard sequence of symplectic vector spaces Vn of dimension 2n.

In this paper we are primarily interested in this Lie algebra as it relates to the

homology of Out.Fn/ and the Johnson homomorphism of the mapping class group

of a surface.

Theorem 2.1 (Kontsevich). We have

lim
n�!1

PH�.hC.Vn//
Sp Š

M

r�2

H�.Out.Fr /Ik/:

In particular the abelianization gives rise to potential homology classes in

Out.Fr /:

lim
n�!1

PH�.AC.Vn//
Sp �!

M

r�2

H�.Out.Fr /Ik/:

On the other hand, the higher order Johnson homomorphism is a Lie algebra

homomorphism

� WGrJ.Mod.g; 1// �! hC.H1.†g;1Ik//

where GrJ.Mod.g; 1// is the associate graded (tensored with k) vector space

associated with the Johnson �ltration of the mapping class group Mod.g; 1/.

Theorem 2.2 (Hain). im � is (stably) generated as a Lie algebra by degree 1

elements.

Let C.V / be hC.V / divided by the Lie algebra generated by degree 1 elements.

By Hain’s result, Cd .H1.†g;1Ik// this is isomorphic to the degree d part of the

Johnson cokernel when the d is small compared to the genus g. Clearly, for degree

d > 1, we have a surjection Cd .V / � Ad .V /.
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2.2. The operad HO. Suppose H is a co-commutative Hopf algebra and O is

an operad with unit (in the category of k-vector spaces). We let OŒn� denote the

vector space spanned by operad elements with n inputs and one output, n being

referred to as the arity. If O is cyclic, we let O..n// D OŒn � 1� as a †n-module.

Regard H as an operad with elements only of arity 1 and operad composition

given by algebra multiplication. The antipode S turnsH into a cyclic operad: the

†2 action sends h to S.h/.

De�nition 2.3. (1) Let O1 and O2 be operads with unit. De�ne O1 �O2 to be the

operad freely generated by O1 and O2. This is de�ned to be the operad consisting

of trees with vertices of valence � 2 labeled by elements of O1 or O2. Composing

two elements of Oi for i D 1; 2 along a tree edge is considered the same element

of O1 � O2, and the units of O1 and O2 are identi�ed and equal to the unit of

O1 � O2.

(2) LetHO be the quotient of H �O by the relation that h commutes with an

element of O via the comultiplication map as in the �gure below. (The fact that

1O D 1H is also included for emphasis.)

Note the use of Sweedler notation hiding the fact that the coproduct is actually

a sum of pure tensors.

2.3. Aut.Fn/ acting on H ˝n. In [8], a right action of Aut.Fn/ on H˝n is

de�ned. It can be described as follows. For a group G, introduce maps

mWG �G �! G; �WG �! G � G; S WG �! G;

de�ned by

m.g; h/ D gh; m.g/ D g � g; S.g/ D g�1:

Suppose Fn is generated by x1; : : : xn. Given � 2 Aut.Fn/ represent the transfor-

mation F n
n ! F n

n given by .x1; : : : ; xn/ 7! .�.x1/; : : : ; �.xn// as a composition

of permutations of coordinates, multiplication of two coordinates, doubling of a

coordinate and inversion of a coordinate. Now think of these operations instead



The Lie Lie algebra 675

as operations of the Hopf algebra. For example suppose �.x1/ D x2
2x

�1
1 and

�.x2/ D x1x
�1
2 . Then .a˝ b/ � � D b.1/b.2/S.a.1//˝ a.2/S.b.3//.

We let �H W Aut.Fn/ ! Aut.H˝n/ denote this action.

De�nition 2.4. The Hopf algebra H acts on H˝n via conjugation. That is,

suppose h 2 H and�2n.h/ D h.1/ ˝ h.2/ ˝ � � � ˝ h.2n�1/ ˝h.2n/, using Sweedler

notation. Then de�ne

h~ .h1 ˝ � � � ˝ hn/ D h.1/h1S.h.2//˝ � � � ˝ h.2n�1/hnS.h.2n//:

LetH˝n be the quotient ofH˝n by the subspace spanned by elements of the form

.h � ��.h//~ .h1 ˝ � � � ˝ hn/;

i.e., this is the maximal quotient ofH˝n where the conjugation action ofH factors

through the counit.

The action of Aut.Fn/ induces an action of Out.Fn/ on H˝n, which we also

denote by �H .

2.4. Graph homology. Recall from [12] that one can de�ne a graph complex GO

for any cyclic operad O by putting elements of O..jvj// at each vertex v of a graph

and identifying the i/o slots with the adjacent edges. In this de�nition, the graph

may have bivalent vertices but no univalent or isolated vertices, since the operad

O is assumed not to have anything in arity �1 and 0.

These complexes are graded by the number of vertices of the underlying graph

and the boundary operator is induced by contracting edges of the underlying graph.

Let G
.n/
O

be the subcomplex spanned by O-colored connected graphs of rank n. In

this section we will studyH�.GHLie/. As a consequence of the de�nitions, the rank

0 part of GHLie is trivial.

De�nition 2.5. LetGHLie denote the quotient of the graph complex forHLiewhere

the elements inH are allowed to slide through the edges, i.e., the following graphs

in GHLie are equivalent in GHLie.

It is clear that the quotient map GHLie ! GHLie preserves the di�erential and

induces a map between the homologies.
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Remark 2.6. The Hopf algebra elements h 2 H encode the “hairs” of hairy graph

homology. For example the product v1v2 � � �vk 2 T .V / represents k hairs in a row,

labeled by v1; : : : ; vk. When H D Sym.V /, these hairs commute, which is what

happens for hairy Lie graph homology. See section 5.3 of [10].

Theorem 2.7 (Conant-Kassabov). For n � 2 we have

Hk.G
.n/
HLie

/ D H 2n�2�k.Out.Fn/IH˝n/:

Proof. See [8]. �

Let Hn.H/ D H1.G
.n/
HLie

/.

Theorem 2.8. (1) There is a stable embedding

lim
n�!1

A.Vn/ ,�! lim
n�!1

^3
Vn ˚

M

r�1

Hr.Sym.Vn//:

Moreover the Sp-decomposition of A is isomorphic to the GL decomposition of
L

r�1 Hr.Sym.V //: i.e. '
Sp
GL.

L

r�1 Hr.Sym.V /// D A
C.

(2) Then there is a map from the Johnson cokernel

C.V / �!
M

r�1

Hr.T .V //:

Stably, every GL-representation in Hr.T .V //will appear as an Sp representation

in C.V /.

Proof. The �rst statement follows from [9, 10]. The second from [8]. �

2.5. Johnson cokernel obstructions. We de�ne �n.H/ to be G
.n/
HLie;1 modulo

certain boundaries. We de�ne a subspace S2 � G
.n/
HLie;2 as follows. Note that

graphs in G
.n/
HLie;2 are described by two elements of HLie joined by some edges.

S2 is spanned by graphs where one of the twoHLie elements is actually an element

of Lie..3// � HLie..3//, i.e. it is a tripod where all three i/o slots are joined to

graph edges. We de�ne

�n.H/ D G
.n/
HLie;1=@S2:

Let C be the cokernel of the Johnson homomorphism.
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Theorem 2.9. There is a degree preserving Sp-module map

TrC W C �!
M

n�0

�n.T .V //

which surjects onto the top level Sp-representations.

Proof. This is the main theorem of [6], with slightly altered notation. Our

�n.T .V // was called simply �n.V / in [6]. �

Corollary 2.10. There is a degree preserving Sp-module map

TrC W C �!
M

n�0

�n.U L.k/.V //

which surjects onto the top level Sp-representations.

Proof. The map T .V / � U.L.k/.V // induces a surjection

�n.T .V // �� �n.U.L.k/.V ///:

To see that �n preserves surjections H1 � H2, observe that there is a map of

chain complexes G
.n/
H1Lie;�

� G
.n/
H2Lie;�

which preserves the S2 subspace. So the

induced map is necessarily a surjection: �n.H1/ � �n.H2/. �

3. Rank 0 and 1

Rank 0 is a bit special. H0.V / is not well de�ned. However, the degree 1 part of

hC.V / is isomorphic to
V3
.V / Š Œ13�Sp ˚ Œ1�Sp. The Œ1�Sp is detected in rank 1

by the trace map, while Œ13�Sp lies in the kernel of the trace. So there is a sense in

which H0.V / D Œ13�Sp:

Rank 1 was considered in [8].

Theorem 3.1 (Conant-Kassabov). There is an isomorphism H1.H/ Š �1.H/ Š

.Id � S/.H=ŒH;H�/. In particular

(1) H1.Sym.V // Š
M

k�0

Sym2kC1.V /

and

(2) H1.T .V / Š/
M

k�1

ŒV ˝k �D2k

These give the targets of the Morita and Enomoto-Satoh traces respectively.
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4. Rank 2

In this section we calculate presentations for H2.H/ and �2.H/. H2.Sym.V //

was completely calculated in [9] while H2.T .V // was partially analyzed in [8].

In particular, H2.U L2.V // was calculated in [8], where L.2/.V / Š V ˚
V2

V is

the free Lie algebra of nilpotency class 2. Our calculations in this section allow

us to completely calculate�2.Sym.V // and�2.U L2.V // as well, leading to new

families of representations in the Johnson cokernel.

4.1. Operators on H ˝2. Note that Out.F2/ Š GL2.Z/ acts on H˝2. We

introduce some standard matrices in GL2.Z/ and explore how they act on H˝2.

Let

s D

�

0 1

�1 0

�

; t D

�

1 1

0 1

�

;

and thus

st D

�

0 1

�1 �1

�

:

Let  D �H .st/. The operator  is induced by the automorphisms x 7! y�1,

y 7! xy�1, and x 7! y�1; y 7! y�1x, which are equivalent as outer automor-

phisms. Hence, one can write

.a˝ b/ �  D S.b.1//˝ aS.b.2//

or

.a˝ b/ �  D S.b.1//˝ S.b.2//a;

and indeed both are equivalent in H˝2. Thus,

.a ˝ b/.Id C  C 2/ D a˝ b C S.a.1//b ˝ S.a.2//C S.b.1//˝ S.b.2//a:

Let

ı D

�

�1 0

0 1

�

; and � D

�

0 1

1 0

�

:

4.2. Cohomology of GL2.Z/. In this section, we calculate a presentation for

H 1.GL2.Z/IM/ where M is a right GL2.Z/-module. (That is, M is a vector

space with a GL2.Z/ action.) This is well-known and intimately related to the

Eichler–Shimura isomorphism and modular symbols, but as it is relatively easy,

we include a proof. Start with the fact that PSL2.Z/ Š Z2 �Z3 with the �rst factor

generated by s and the second factor generated by st . We also use the fact that

H 1.GIM/ is isomorphic to the set of derivations of G modulo inner derivations.
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That is functions �WG ! M satisfying �.gh/ D �.h/ C �.g/h modulo cocyles

of the form �m.g/ D m �mg for each m 2 M .

We begin with a well-known lemma.

Lemma 4.1. Let X be an operator acting on the k vector space M on the

right which satis�es Xn D Id. De�ne �X D Id C X C � � � C Xn�1. Then

ker �X D im.Id � X/ and ker.Id �X/ D im.�x/.

Proof. A slick way to prove ker �X D im.Id�X/ is to observe thatH 1.ZnIM/D0

sinceM is over a �eld of characteristic 0. This means that all 1 cocycles are inner

derivations. In our case the 1 cocycles�WZn ! M are identi�ed with the image on

a generator �.X/ 2 M , and because Xn D Id, must satisfy �.X/ 2 ker �X . Thus

the cocycles are exactly ker �. Similarly the coboundaries (or inner derivations)

are canonically identi�ed with im.Id �X/.

A similar argument uses H1.ZnIM/ D 0 to show ker.Id � X/ D im.�x/. �

Proposition 4.2. Let G D Zk � Z` D hX; Y j Xk D Y ` D 1i, and let M be a

right G-module. We have an isomorphism

H 1.Zk � Z`IM/ Š
M

h�X ; �Y i
;

where the notation hr1; r2; : : : rki signi�es the subspaceMr1 C � � � CMrk .

Proof. Using the de�nition ofH 1.GIM/ as the space of derivations modulo inner

derivations, we see

H 1.Zk � Z`IM/ Š
¹.�.X/; �.Y / j �.X/�X D 0; �.Y /�Y D 0º

¹.m�mX;m �mY /º

Š
¹.a; b/ j a�X D 0; b�Y D 0º

¹.m�mX;m �mY /º

Š
¹.a.Id �X/; b.Id � Y // j a; b 2 M º

¹.m.Id � X/;m.Id � Y / j m 2 M/º
:

De�ne a map

M �!
¹.a.Id � X/; b.Id � Y // j a; b 2 M º

¹.m.Id �X/;m.Id � Y / j m 2 M/º

by

z 7�! .0; z.Id � Y //:

It is straightforward to see that the kernel of this map is im �X C im �Y , completing

the proof. �
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Corollary 4.3. LetM be a right PSL2.Z/ module. Then

H 1.PSL2.Z/IM/ Š
M

h1C s; 1C .st/C .st/2i
:

Corollary 4.4. Suppose that M is a right SL2.Z/-module. If �I2 acts as the

identity on M , then M is a PSL2.Z/-module under the induced action and there

is an isomorphism

H 1.SL2.Z/IM/ Š H 1.PSL2.Z/IM/

Proof. Using the Hochschild-Serre spectral sequence,

H 1.SL2.Z/IM/ Š H 1.PSL2.Z/IH
0.Z2IM// Š H 1.PSL2.Z/IM

Z2/:

By hypothesis MZ2 D M . �

Proposition 4.5. Suppose thatM is a right GL2.Z/-module. We have an isomor-

phism

H 1.GL2.Z/IM/ Š
M

h1C st C .st/2; .1C s/; .1� �/i
:

Proof. Let M D MC ˚ M� be the decomposition into eigenspaces of the

action by �I2. Since �I2 is in the center of GL2.Z/, these are also GL2.Z/

representations. The Hochschild-Serre spectral sequence yields

H 1.GL2.Z/IM/ Š H 0.Z2IH 1.SL2.Z/IM//

Š ŒH 1.SL2.Z/IM/�Z2

D H 1.SL2.Z/IM
C/

where the Z2 acts via the matrix � . Now identify the Z2 invariants with coinvari-

ants, which will kill M�, to complete the proof. �

Corollary 4.6. Let .det/ be the 1 dimensional representation of GL2.Z/ given by

the determinant, and supposeM is a right GL2.Z/-module. Then

H 1.GL2.Z/IM ˝ .det// Š
M

h1C st C .st/2; .1C s/; .1C �/i
:

Remark 4.7 (relation between twisted homology and cohomology). Suppose G

is a group andM is a �nite dimensional kŒG�-module over a �eld of characteristic

0. Then H�.G;M/ Š .H�.G;M
�//� where the � superscript denotes the vector

space dual.

In particular, H1.GL2.Z/IM ˝ .det// can be identi�ed with the subspace of

M consisting of all m satisfying m.1C st C .st/2/ D m.1C s/ D m.1C �/ D 0.
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4.3. Cohomology of GL2.Z/ with coe�cients in irreducible GL2.k/ repre-

sentations. For every partition .a; b/, a � b, there is an irreducible GL2.k/

representation ‰.a;b/. In terms of Schur functors, it is de�ned as ‰.a;b/ D

S.a;b/.k
2/. All irreducible representations are of the form ‰.a;b/ ˝ .det/k. More-

over ‰.aCk;bCk/ Š ‰.a;b/ ˝ .det/k . Letting ˆg D ‰.g;0/ Š Symg.k2/, it follows

that all representations of GL2.k/ are of the form ˆg ˝ .det/k for some g and k.

Proposition 4.8. The cohomology groupH 1.GL2.Z/Iˆg ˝ .det/k/ is trivial if g

is odd, is equal to SgC2 if g; k are even and is equal to MgC2 if g is even but k is

odd.

Proof. The Eichler–Shimura isomorphism implies that

H 1.SL2.Z/Iˆg/ Š MgC2 ˚ SgC2:

Passing to GL2.Z/ involves taking Z2-invariants of this space. This is done

explicitly in [9], and gives the result stated in the proposition. �

4.4. Presentations for H2.H / and �2.H /. We begin with the statements of

the theorems. The proofs are found in section 4.6.

Theorem 4.9. There is an isomorphism

H2.H/ Š
H˝2

hId � �; Id C ı; Id C  C 2i
:

I.e. H2.H/ is the quotient of H˝2 by

(1) a˝ b D b ˝ a

(2) a˝ b D �S.a/˝ b

(3) a˝ b C S.a.1//b ˝ S.a.2//C S.b.1//˝ S.b.2//a D 0:

It can be useful for visualization purposes, especially when we move to rank 3

to represent an element of H˝n, graphically as a rectangle with n inputs repre-

senting the n tensor factors. See Figure 1.

Figure 1. Relations for H2.H/. The relation on the right is equivalent to relation (3) of

Theorem 4.9 in the presence of relations (1) and (2).



682 J. Conant

Theorem 4.10. There is an isomorphism

�2.H/ Š
H˝2

hId � �; Id � S ˝ S; Id C  C 2; � ˝ Idi

where we recall �WH ! k is the counit. I.e. �2.H/ is presented by H˝2 modulo

the relations

(1) a˝ b D b ˝ a D S.a/˝ S.b/,

(2) �.1/˝ a D 0,

(3) a˝ b C S.b/a.1/ ˝ a.2/ C b.1/ ˝ S.a/b.2/ D 0:

4.5. Computations. We now use Theorem 4.10 to do some calculations. Let

!2n D
˙

2n
3

�

.

Proposition 4.11. The vector space dimension of �2.Sym.k//2n is given by

!2n � 1 while �2.Sym.k//2nC1 D 0.

Proof. The odd degree case is evident. The following argument for the even

degree case is due to Martin Kassabov.

Start with the observation that � D
�

0 1
1 0

�

and  D
�

0 1
�1 �1

�

generate a copy

of the symmetric group †3. Now decompose Sym.k/˝2 Š kŒx; y� into a direct

sum of irreducible †3-modules. Modding out by 1C  C 2 and 1 � � kill both

1 dimensional representations and reduce the dimension of the 2 dimensional

representation to 1. This can be done explicitly by realizing the 2-dimensional

representation as the subspace of k3 consisting of .t1; t2; t3/where t1Ct2Ct3 D 0.

Now �2n.Sym.k// is the quotient of kŒx; y�2n by the relations 1� � , 1C  C 2

and x2n D y2n D 0. The above representation theory argument shows that,

kŒx; y�2n modulo just 1 � � and 1 C  C 2 will have the same dimension as

the multiplicity of the two dimensional representations in kŒx; y�2n. It’s also

not hard to show that further modding out by the two monomials x2n and y2n

will reduce the dimension by 1. Now to calculate the †3 decomposition, we

calculate the character. It’s not too hard to see that the character is given by

� D
�

2nC 1 1 1
�

;
�

2nC 1 1 �1
�

or
�

2nC 1 1 0
�

depending on the

congruence class of n modulo 3. From here it follows that the multiplicity of the

two dimensional representation in kŒx; y�2n is 2nC1
3
; 2nC2

3
or 2n

3
again depending

on the congruence class modulo 3.
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�

For the next proposition, suppose that !2kC1 D 0.

Corollary 4.12. We have a GL-decomposition

�2.Sym.V // Š
M

k>`>0

!k�`Œk; `�GL ˚
M

k�0

.!2k � 1/Œ2k�GL:

Proof. We use Schur-Weyl duality:

Sym.V /˝2 Š
M

k>`�0

S.k;`/.V /˝ S.k;`/.k
2/

Š
M

k>`�0

S.k;`/.V /˝ kŒx; y�k�` ˝ .det/`:

Modding out by 1C st C .st/2 and 1 � � corresponds to modding out kŒx; y�k�`

by 1C st C .st/2 and 1� .�1/`� . This has the same e�ect on the fundamental†3

representations as in the previous proposition, so the dimension will be dk�`
3

e.

When we additionally mod out by 1 ˝ a and a ˝ 1, these will map into the

S.k/.V / ˝ S.k/.k
2/ summands, and so will only reduce their dimension in the

total answer. �

Note that T .V / D U.L.V // is the universal enveloping algebra of the free

Lie algebra. Let L.2/.V / Š V ˚
V2

V be the free metabelian Lie algebra. Then

there is a map T .V / � L.2/.V / and a corresponding surjection �2.T .V // �

�2.L.2/.V //. The following corollary thus gives large families of representations

in the Johnson cokernel, and implies Theorem 1.3 stated in the introduction.

Corollary 4.13.

�2.U.L.2/.V /// Š
M

k>`>0

S.k;`/.L.2/.V //
˝!k�`

˚
M

k�0

S.2k/.L.2/.V //
˝.!2k�1/

;

where S.�/.L.2/.V /// is the quotient of the Schur functor by the adjoint action.

Proof. Let H D U.g/ be the universal enveloping algebra of a Lie algebra g.

The PBW theorem gives a coalgebra isomorphism with Sym.g/. Thus H˝2 is

isomorphic (as a coalgebra) to S.g ˝ k2/. This has an obvious GL2.Z/ action

coming from its action on k2 (which coincides with the de�nition from section 2.3

when you take the usual Hopf algebra structure on S.g/. Therefore H˝2 has two

di�erent actions of GL2.Z/ D Out.F2/. One is the action constructed in section
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2.3, and the other is the action coming from the PBW isomorphism. In [8] it

is shown that these two actions coincide if commutators of the form ŒX; ŒX; Y ��

vanish in g. In particular this holds for L.2/. So we calculate

U.L.2//
˝2 Š Sym.L.2//

˝2 Š
M

k>`�0

S.k;`/.L.2//˝ S.k;`/.k
2/

Š
M

k>`�0

S.k;`/.L.2//˝ kŒx; y�k�` ˝ .det/`:

Passing to the quotient U.L.2//
˝2 results in taking the quotient of the Schur

functors S.k;`/.L.2// by the adjoint action of L.2/. See [8]. The rest of the argument

is the same as Corollary 4.12. �

4.6. Proofs of Theorems 4.9 and 4.10. We give two di�erent proofs of Theo-

rem 4.9, one by directly computing what happens in the graph complex and one

computingH 1.Out.F2/IH˝2/ Š H2.H/ from the group cohomology chain com-

plex.

First proof of Theorem 4.9: G
.2/
HLie;1 is generated by graphs of the form

which we identify with a˝b 2 H˝2. (The element a˝b is only well de�ned up to

conjugation.) The other type of graph, the eyeglass graph, is a linear combination

of two of these via an IHX relation. The various symmetries of the graph lead to

the relations a ˝ b D b ˝ a D S.a/˝ S.b/. Now @.G
.2/
HLie;2/ is generated by the

boundaries of the following two types of graphs:

The boundary of the �rst graph has three terms corresponding to contracting along

each of the three dashed edges. Contracting along the middle edge gives a ˝ b.
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To contract along the other two edges, we use the fact that

So the boundary becomes a˝ bCS.a.1//˝S.a.2//bCS.b.1//a˝S.b.2// which

is equivalent to the third relation, in the presence of the relation a ˝ b D b ˝ a.

The boundary of the second graph has only one term, which is equal by an

IHX relation to �a ˝ S.b/ � a ˝ b. This gives the relation a ˝ b D �S.a/˝ b,

and together with symmetry derived above, its consequence a˝b D S.a/˝S.b/.

This completes the �rst proof. �

Second proof of Theorem 4.9: The statement follows immediately from Propo-

sition 4.5 and the fact that the natural map Out.F2/ ! GL2.Z/ is an isomor-

phism. �

Proof of Theorem 4.10. We follow the �rst proof of Theorem 4.9, but we should

only mod out by the �rst type of boundary, and the second type of boundary only

when one of the two loops does not have an element ofH adorning it. By an IHX

relation, this becomes 2.1˝ b/ D 0. �

5. Cohomology of GL3.Z/

In this section, we prove some preliminary results about the cohomology of

GL3.Z/ before considering the rank 3 spaces H3.H/ and �3.H/.

Let W D k¹x; y; zº be the standard representation of GL3.Z/. Then the

irreducible �nite dimensional GL3.k/ modules are all of the form ‰.a;b;c/ D

S.a;b;c/.W / ˝ .det/k for a partition � D .a; b; c/ and k 2 Z. Furthermore

‰.a;b;c/ D ‰.aCk;bCk;cCk/ ˝ .det/�k, allowing us to extend ‰.a;b;c/ to arbitrary

triples a � b � c of possibly negative integers. Note that all representations

are represented by ‰.a;b;0/ ˝ .det/k for some k. We also mention that the dual

representation satis�es ‰�
.a;b;c/

D ‰.�c;�b;�a/.
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In this section, we shall be concerned with calculatingH 3.GL3.Z/I‰.a;b;0/ ˝

.det/k/. A �rst observation is that �I3 2 GL3.Z/ is central, and if �I3 acts non-

trivially on an irreducible module M , then, thinking of �I3 as generating a copy

of Z2 inside GL3.Z/, we haveH k.GL3.Z/IM/ Š H k.PGL3.Z/IH
0.Z2IM// Š

H k.PGL3.Z/IM
Z2/ D H k.PGL3.Z/I 0/ D 0.

As a result, H 3.GL3.Z/I‰.a;b;c/ ˝ .det/k/ D 0 if aC bC cC k is odd. So we

now con�ne our attention to the even case and assume we have a representation

‰.a;b;c/ where aC b C c is even.

LetM be an arbitrary irreducible representation and let us temporarily switch

to homology cf. Remark 4.7. Then there is a decomposition

H3.GL3.Z/IM/ D H @
3 .GL3.Z/IM/˚H

cusp
3 .GL3.Z/IM/

into boundary and cuspidal homology respectively [3]. It follows from a theorem

of Borel and Wallach [5, II.6.12] that H
cusp
3 .GL3.Z/IM/ D 0 unless M is self

dual. The only self dual module in even degree is ‰.2g;g;0/ for g even. Let sw

be the dimension of the space of cusp forms of weight w. It is known that for g

even dimŒH
cusp
3 .GL3.Z/I‰.2g;g;0//� � sgC2 arising from the symmetric square

construction [4]. In fact, it is conjectured that

Conjecture 5.1 (Ash–Pollack).

dimŒH
cusp
3 .GL3.Z/I‰.2g;g;0//� D sgC2

For the boundary homology, in [1] the authors construct three subsets of

H @
3 .GL3.Z/IM/ and conjecture that they span all of it. They remark that a proof

that the subsets span should follow from arguments similar to those found in Lee

and Schwermer’s paper [21]. To explain their result, consider the two subgroups

P and Q of GL3.Z/ which are the stabilizers of the lines .0; 0; �/t and .�; 0; 0/

respectively. Let B D P \ Q be the group of lower triangular matrices. The

unipotent radicals of P and Q can be written as

UP D

0

@

1 0 0

0 1 0

� � 1

1

A UQ D

0

@

1 0 0

� 1 0

� 0 1

1

A

Paraphrasing their notation, de�ne homomorphismsLP ; LQW GL2.Z/ ! GL3.Z/

via

X 7�!

�

X 0

0 1

�

X 7�!

�

1 0

0 X

�

respectively. Finally, de�ne the antisymmetrizing operator A D
P

�2†3
.�1/j�j�

where the symmetric group †3 is realized as permutation matrices in GL3.Z/.
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Finally, recall the three de�ning equations for H1.GL2.Z/IM ˝ .det//:

m.1C st C .st/2/ D m.1C s/ D m.1C �/ D 0: (�)

Now they de�ne three subsets of M :

(1) ¹A.m/ 2 M j m 2 MBº,

(2) ¹A.m/ j m 2 MUP and m satis�es (�) under LP º,

(3) ¹A.m/ j m 2 MUQ and m satis�es (�) under LQº.

Theorem 5.2 (Allison–Ash–Conrad). H @
3 .GL3.Z/IM/ can naturally be regarded

as a subspace ofM , and the three subsets above are contained inH @
3 .GL3.Z/IM/.

Conjecturally these are everything.

Remark 5.3. The matrix h2 D
�

0 �1
1 �1

�

which they use satis�es ıh2ı D st . Now

ı D �s, so the relations Id C � D Id C s D 0 imply that m � ı D m. So in the

presence of these relations, m � .Id C st C .st/2/ D 0 is an equivalent relation to

m � .Id C h2 C h2
2/ D 0.

Our �rst task is to identify the invariants MB ;MUP and MUQ . We take as

our model for M D ‰.a;b;c/ the GL3.Z/ submodule of W ˝aCbCc generated by

f D xa�b Œx; y�b�c.A.xyz//c. In the following lemma, Symk.x; y/ denotes the

kth symmetric power of the k-vector space spanned by x; y.

Lemma 5.4. (1)MB is 0 unless a; b; c are even, in which case MB Š k¹f º.

(2)MUP D Syma�b.x; y/Œx; y�b�c.A.xyz//c Š S.a;b/.k¹x; yº/.

(3)MUQ D xa�b Symb�c.Œx; y�; Œx; z�/.A.xyz//c Š S.b;c/.k¹y; zº/.

Proof. It is easy to check that

� k¹f º is B-invariant,

� Syma�b.x; y/Œx; y�b�c.A.xyz//c is UP invariant,

� xa�b Symb�c.Œx; y�; Œx; z�/.A.xyz//c is UQ invariant.

A somewhat tedious calculation shows that these actually generate the entire

invariant subspaces. However, the obvious containment is all that will be needed

to prove Theorem 5.7, so we omit the proof of equality. �
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Lemma 5.5. (1) Suppose b > c. Then

kerAjM UP D ¹m 2 MUP j .1� LP .�//m D 0º:

(2) Suppose a > b. Then

kerAj
M

UQ D ¹m 2 MUQ j .1 � LQ.�//m D 0º:

(3) AŒMUP � \ AŒMUQ � is at most one-dimensional and is spanned by A.f /.

A.f / ¤ 0 if and only if one of the three following conditions is satis�ed:

(a) a > b > c,

(b) a D b and b is odd,

(c) b D c and b is odd.

Proof. For the �rst claim, let m D '.x; y/Œx; y�b�c.A.xyz//c, and observe that

A �m 2 kŒx; y�.A.xyz//c ˚ kŒx; z�.A.xyz//c ˚ kŒy; z�.A.xyz//c:

Suppose A �m D 0. Projecting to each component (assuming b > c) all yield the

same condition on m, namely that m D LP .�/ �m.

For the second claim, consider

m D .xa�b'.Œx; y�; Œx; z�//.A.xyz//c

and

A �m 2 xa�bkŒx; y; z�.A.xyz//c ˚ ya�bkŒx; y; z�.A.xyz//c

˚ za�bkŒx; y; z�.A.xyz//c:

Suppose that A � m D 0. Looking at each component again yields the desired

equation m D LQ.�/ �m, assuming a > b.

For the third claim, suppose

A.'.x; y/Œx; y�b�c.A.xyz//c/ D A.xa�b .Œx; y�; Œx; z�/.A.xyz//c/:

Project to the subspace kŒx; y�.A.xyz//c. Note that if

A.xa�b .Œx; y�; Œx; z�/.A.xyz//c/ ¤ 0;
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then  .A;B/ D rAb�c or  .A;B/ D rBb�c . Otherwise every term will involve

all three generators. Suppose  .A;B/ D rAb�c . Then we have an equation

'.x; y/Œx; y�b�c � .�1/c'.y; x/Œy; x�b�c

D rxa�b Œx; y�b�c � r.�1/cya�b Œy; x�b�c

which implies

'.x; y/ � .�1/b'.y; x/ D rxa�b � .�1/brya�b :

A similar calculation holds for  .A;B/ D rBb�c.

Let

� D A.xa�bŒx; y�b�c.A.xyz//c/

D .xa�b Œx; y�b�c � .�1/bya�b Œx; y�b�c

� .�1/bza�b Œy; z�b�c � .�1/cxa�b Œx; z�b�c

C ya�b Œy; z�b�c C .�1/b�cza�b Œx; z�b�c/.A.xyz//c

Then our calculations imply that AŒMUP �\AŒMUQ � is at most one dimensional,

spanned by the vector �. If a > b > c, then � ¤ 0. If a D b then � ¤ 0 $ b is odd.

If b D c, then again � ¤ 0 $ b is odd. �

Lemma 5.6. (1) If b D c, then kerAjM UP \ ker.1C �/ is spanned by

˛ D .xa�b � ya�b/A.xyz/b:

(2) If a D b, then kerAj
M

UQ \ ker.1C �/ is spanned by

ˇ D xa�b.Œx; y�b�c � Œx; z�b�c/.A.xyz//c:

Proof. When b D c, if '.x; y/.A.xyz//c 2 kerAjM UP \ ker.1C �/, we arrive at

the equation '.x; y/C'.y; z/C'.z; x/ D 0. If '.x; y/ contains any mixed terms

xuyv (u; v � 1), then cancellation is impossible in this equation. Thus '.x; y/ is a

linear combination of xa�b and ya�b , and by antisymmetry it has to be a multiple

of ˛.

The proof for ˇ is similar. �
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Now we put our calculations together to calculate H @
3 .GL3.Z/I‰.a;b;c//.

Theorem 5.7. Let a � b � c � 0 be a triplet of nonnegative integers. Then

dim.H @
3 .GL3.Z/I‰.a;b;c/// � sa�bC2 C sb�cC2 C �a;b;c

where

�a;b;c D

´

1 if a > b > c and a; b; c are all even,

0 otherwise.
:

Proof. If we look at type (2) elements, the subset of MUP Š ‰.a;b/ satisfy-

ing (�) is isomorphic to H1.GL2.Z/I‰.a;b/ ˝ .det//. Similarly for type (3) el-

ements we have that the subset of MUQ Š ‰.b;c/ satisfying (�) is isomorphic to

H1.GL2.Z/I‰.b;c/ ˝ .det//. Now recall that

H1.GL2.Z/I‰.a;b/ ˝ .det// Š

´

Ma�bC2 if b is even,

Sa�bC2 if b is odd:

Moreover if b is even (and so a; c are even in the only interesting case) then con-

sider the elements ˛ 2 MUP and ˇ 2 MUQ ; de�ned in Lemma 5.6. These

both satisfy .�/ so are actually elements of H1.GL2.Z/I‰.a;b/ ˝ .det// and

H1.GL2.Z/I‰.b;c/ ˝ .det// respectively. It’s also easy to see that A.˛/ and A.ˇ/

are both in the subspace generated by A.f / D �. Thus if a > b > c are all even,

dim.H @
3 .GL3.Z/I‰.a;b;c/// � sa�bC2 C sb�cC2 C 1

since A is injective on H1.GL2.Z/I‰.a;b/ ˝ .det//, H1.GL2.Z/I‰.b;c/ ˝ .det//

and MB , and they all overlap in a one-dimensional subspace.

Suppose that a D b > c are all even. Then A.f / D 0. The kernel of A

on H1.GL2.Z/I‰.b;c/ ˝ .det// is spanned by ˇ so dim.H @
3 .GL3.Z/I‰.a;b;c/// D

sb�cC2.

Suppose that a > b D c are all even. Then A.f / D 0 and the kernel of A on

H1.GL2.Z/I‰.a;b/ ˝ .det// is spanned by ˛. So dim.H @
3 .GL3.Z/I‰.a;b;c/// �

sa�bC2:

Finally we need to consider the case when two of a; b; c are odd and one is

even. Then all type one classes are 0, since elements of MB need to be even in

each degree. Also, the other two pieces are images ofH1.GL2.Z/I‰.a;b/ ˝ .det//

and H1.GL2.Z/I‰.b;c/ ˝ .det// under A, and there is only GL2.Z/ homology in

even degree. So if b is even, and a; c are odd then H @
3 .GL3.Z/I‰.a;b;c// D 0.

Suppose that a; b are odd and c is even. Then we are looking at the image of

Sa�bC2 under A. We showed this injects under the assumption that b > c which

clearly holds here. So the dimension is at least sa�bC2.

Similarly if a is even and b; c are odd, we get sb�cC2. �
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Now, adding to this the cuspidal homology, which is only nontrivial when

‰.a;b;c/ is self dual, i.e. a � b D b � c, we see the following result.

Corollary 5.8. Let a � b � c � 0 be a triplet of nonnegative integers. Then

dim.H3.GL3.Z/I‰.a;b;c/// � sa�bC2 C sb�cC2 C �a;b;c C ıa;b;c

where

ıa;b;c D

´

sa�bC2 if a � b D b � c;

0 otherwise.

In particular, for the self dual module ‰.2g;g;0/ gives homology of dimension

at least 3sgC2 C 1, in accordance with the formula given in [4]. Conjecturally, the

inequality in the corollary is an equality.

Returning now to cohomology, we see that

Theorem 5.9. There is an injection

M

aCbCcD2k

S.a;b;c/.V /˝ .Sa�bC2 ˚ Sb�cC2 ˚Da;b;c ˚Ea;b;c/

,�! H 3.GL3.Z/I Sym.V /˝3/2k

where Ea;b;c D k if a > b > c are all even and is equal to 0 otherwise, and

Da;b;c D Sa�b if a � b D b � c, and is equal to 0 otherwise.

Proof. Use Remark 4.7 and the fact that‰�
.a;b;c/

Š ‰.2k�c;2k�b;2k�a/ as a GL3.Z/

module. The sum sa�bC2 C sb�cC2 C �a;b;c C ıa;b;c is invariant under the trans-

formation .a; b; c/ 7! .2k � c; 2k � b; 2k � a/. �

6. Rank 3

In this section we give presentations for H3.H/ and �3.H/ and use these to do

explicit computations in the case H D Sym.V /. The proofs of the presentations

are deferred to section 7.

6.1. Presentations for H3.H / and �3.H /. In the following, let the map

�ij WH˝3 ! H˝3 transpose the i th and j th factors. Let EWH˝3 ! H˝3

be de�ned by E D .Id ˝ m ˝ Id/ ı .� ˝ Id ˝ Id/, and similarly F D

.m˝ Id ˝ Id/ ı .Id ˝�˝ Id/.
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Theorem 6.1. H3.H/ Š H 3.Out.F3/IH˝3/ is isomorphic to the quotient of

H˝3 by the images of the following operators (operating on the right):

(1) Id C .S ˝ S ˝ S/�12

(2) Id C �13 � �12�23 � �12

(3) ..Id C S/˝ Id ˝ Id/.Id C �23/

(4) Id CE�23 C F�13 � �12 � �12F�13 � �12E�23

(5) ..Id C S/˝ Id ˝ Id/.Id CE�23 C F�13/

(6) .S ˝ Id ˝ Id/.�23E�23 C �23F�13/CE�23 C F�13

As for the rank 2 case, we depict these relations graphically in Figure 2.

Theorem 6.2. �3.H/ is presented as a quotient of H˝3 by the images of opera-

tors (operating on the right)

(1) Id C .S ˝ S ˝ S/�12

(2) Id C �13 � �12�23 � �12

(3) .S ˝ Id ˝ Id/.�23E�23 C �23F�13/CE�23 C F�13 and by the relations

(4) 1˝ a ˝ b C 1˝ b ˝ a D 0

(5) a˝�.b/ D 0

6.2. H D Sym.V /. Next we consider the speci�c case of H D Sym.V /.

Decompose Sym.V /˝3 Š ŒSym.V /˝3�e ˚ŒSym.V /˝3�o into even and odd degree

pieces respectively. The even degree case is particularly simple:

Theorem 6.3. H3.Sym.V //e Š H 3.Out.F3/I ŒSym.V /˝3�e/ is isomorphic to the

quotient of ŒSym.V /˝3�e by the images of the operators below and also depicted

in Figure 3.

(1) Id C �12

(2) Id C �23

(3) Id�S ˝ Id ˝ Id

(4) E C F � Id
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Figure 2. H3.H/ is isomorphic to H˝3 modulo the above relations.
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Figure 3. H3.Sym.V //e is presented by ŒSym.V /˝3�e modulo these relations.

The odd degree presentation is a bit more complicated.

Theorem 6.4. H3.Sym.V //o Š H 3.Out.F3/I ŒSym.V /˝3�o/ is isomorphic to the

quotient of ŒSym.V /˝3�o by the images of the operators below and also depicted

in Figure 4.

(1) Id � �12

(2) ...Id C S/˝ Id ˝ Id/Id C �23/

(3) ...Id C S/˝ Id ˝ Id/Id CE�23 C F�13/

(4) ..Id � S/˝ Id ˝ Id/.��23E�23 � �23F�13 CE�23 C F�13/

Figure 4. Relations for the odd degree case of H D Sym.V /.
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6.3. Computations. We begin by showing that in even degrees, there is an

isomorphism with GL3.Z/ cohomology in the same degree:

Proposition 6.5. We have

H 3.Out.F3/I ŒSym.V /˝3�e/ Š H 3.GL3.Z/I ŒSym.V /˝3�e/

Proof. From [2] one can derive a presentation forH 3.SL3.Z/I Sym.V /˝3/ as the

quotient of Sym.V /˝3 by relations IdC�12, IdC�23,ECF�Id and S˝S˝Id�Id.

See [1] where this is stated in the case of characteristic p coe�cients. To go to

GL3.Z/ we need to take the coinvariants with respect to the action of the matrix
h

�1 0 0
0 1 0
0 0 1

i

which gives exactly our presentation. �

Corollary 6.6. Let aC b C c be even. Then

H 3.Out.F3/I‰.a;b;c// Š H 3.GL3.Z/I‰.a;b;c//:

Proof. Decompose

ŒSym.V /˝3�e D
M

j�j even

‰� ˝ S�.V /;

and compare the multiplicities of the irreps S�.V / on both sides of the isomor-

phism

H 3.Out.F3/I ŒSym.V /˝3�e/ Š H 3.GL3.Z/I ŒSym.V /˝3�e/: �

Corollary 6.7. We have

M

aCbCcD2k

S.a;b;c/.V /˝ .Sa�bC2 ˚ Sb�cC2 ˚Da;b;c ˚Ea;b;c/

,�! H3.Sym.V //e

where Ea;b;c D k if a > b > c are all even and is equal to 0 otherwise, and

Da;b;c D Sa�b if a � b D b � c, and is equal to 0 otherwise.

This establishes Theorem 1.1 of the introduction.

Recall that !2n D d2n
3

e, and M�
2n D k!2n , S�

2n D k!2n�1. De�ne these space

to be zero in odd degrees. These are so named because we naturally have

M�
2n � M2nC2; S�

2n � S2nC2:

The following theorem established Theorem 1.2 of the introduction.
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Theorem 6.8. There is an injection
M

aCbCcD2k

S.a;b;c/.V /˝ .Sa�bC2 ˚ S�
b�cC2 ˚Da;b;c ˚Ea;b;c/

,�! �3.Sym.V //e:

Remark 6.9. By de�nition H3.Sym.V //e is a quotient of�3.Sym.V //e, and this

theorem manages to enlarge the Sa�bC2 in the decomposition of H3.Sym.V //e

into an S�
a�b

. It seems natural to speculate that the Sb�cC2 can be similarly en-

larged (and maybe even the Da;b;c symmetric square terms.) However, calcula-

tions similar to the ones carried out here for MUP don’t seem to extend to MUQ .

Proof. We mimic calculations in [1]. We note that �3.Sym.V //2n is equal to

Œ
V3

Sym.V /�2n modulo the relation

ab.1/ ^b.2/ ^cCa.1/ ^a.2/b^c D a^S.b.1//^S.b.2//cCa^S.b/c.1/ ^c.2/: (*)

Dually, �3.Sym.V //�e is the space of functionals f W Sym.V /˝3 ! k satisfying

f .x; y; z/ D �f .y; x; z/ D �f .x; z; y/;

f .�x;�y;�z/ D f .x; y; z/

and

f .x C y; y; z/C f .x; x C y; z/ D f .x;�y; z � y/C f .x;�y C z; z/:

Let M D .Sym.V /˝3
2n /

�. Suppose

(1) f 2 MUP ,

(2) f .x; y; z/ D �f .y; x; z/,

(3) f .x; y; z/ D f .�x;�y; z/ D f .x; y;�z/,

(4) f � .Id C  C 2/ D 0, where  D
�

0 1
�1 �1

�

:

Then we claim that A.f / 2 �3.Sym.V //�e . Supposing this for the moment,

M Š
L

� S�.V / ˝ ‰�
�
, and ‰�

�
D ‰.2k�c;2k�b;2k�a/ and taking UP -invariants

yieldsMUP D
L

� S�.V /˝‰.2k�c;2k�b/ Š
L

� S�.V /˝‰.b;c/. Modding out by

IdCC2 and 1C� yields
L

� S�.V /˝M�
b�c

, by the argument of Proposition 4.11.

The other summands of the theorem follow from the calculation in Corollary 5.8,

where we need to show that there is no overlap except in the one dimensional

subspace spanned byEa;b;c . This follows becauseA.MUP /\A.MUQ/ is spanned

by the Ea;b;c terms. It su�ces to show that the Da;b;c term is independent

of MUQ and MUP . This can be done by verifying that the only elements of

A.MUP CMUQ / satisfying the H3.GL3.Z/IM/ relations are the ones described

in [1].
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Now we prove the claim

.Af /.x C y; y; z/ D f .x C y; y; z/� f .z; y; x C y/ � f .x C y; z; y/;

.Af /.x; x C y; z/ D f .x; x C y; z/ � f .z; x C y; x/ � f .x; z; x C y/;

.Af /.x;�y; z � y/ D f .x;�y; z � y/ � f .z � y;�y; x/� f .x; z � y;�y/;

.Af /.x;�y C z; z/ D f .x;�y C z; z/ � f .z;�y C z; x/ � f .x; z;�y C z/:

Now, the the hypotheses on f imply that

f .x C y; y; z/C f .x; x C y; z/ D f .x;�y; z/:

So

.Af /.x C y; y; z/C .Af /.x; x C y; z/

D f .x;�y; z/� f .z; y; x C y/ � f .x C y; z; y/

� f .z; x C y; x/� f .x; z; x C y/

D f .x;�y; z/� f .z; y; x/� f .x C y; z;�x/� f .z; x C y; x/ � f .x; z; y/

D f .x;�y; z/� f .z; y; x/� f .x C y; z; x/� f .z; x C y; x/ � f .x; z; y/

D f .x;�y; z/� f .z; y; x/� f .x; z; y/;

where we use the fact that f .a; b; c/ D f .a; b; �1aC �2b C c/. Similarly

.Af /.x;�y; z � y/C .Af /.x;�y C z; z/

D f .x;�y; z � y/ � f .z � y;�y; x/� f .x; z � y;�y/C f .x;�y C z; z/

� f .z;�y C z; x/ � f .x; z;�y C z/

D �f .z; y; x/C f .x;�y; z � y/ � f .x; z � y;�y/

C f .x;�y C z; z/ � f .x; z;�y C z/

D �f .z; y; x/C f .x;�y; z/� f .x; z � y; z/

C f .x;�y C z; z/ � f .x; z;�y/

D �f .z; y; x/C f .x;�y; z/� f .x; z; y/:

Thus both sides are equal. �
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7. Proof of Theorems 6.1, 6.4, 6.2

De�nition 7.1. A graph in GHLie;1 is said to be a “chord diagram,” if it is repre-

sented by a linear tree with ends joined by an edge (called the long chord). For

example,

is a chord diagram.

By slide relations, we can assume that the hopf algebra elements at the ends

of the tree are all at the beginnings of their respective edges, as in this picture.

Note that a chord diagram can be rewritten as a sum of other chord diagrams

in the following way. Choose an edge from among the top edges to become the

new long chord. Now its two ends are joined by a subarc of the tree. Using IHX

relations, lengthen this arc until it occupies the whole tree. This gives a linear

combination of new chord diagrams. The equality of the original diagram with

these new diagrams is called a “chord shift relation.” Some examples will be seen

below. Chord diagrams also have a Z2 symmetry, which multiplies by a sign for

each edge and applies the antipode to each element of H .

Lemma 7.2. GHLie;1 is presented as a vector space by chord diagrams modulo

chord shifting relations and the Z2-symmetry.

Proof. We de�ne a map from GHLie;1 to chord diagrams modulo the given rela-

tions. Given an arbitrary graph in GHLie;1, choose an edge to be the long chord.

Then use IHX relations to expand as a sum of chord diagrams with this chord as

the long one. We need to show that this does not depend on the choice of chord.

Given a di�erent choice, the two sets of diagrams are related to each other by

chord shifting relations, so the map is well-de�ned.

The map in the other direction is induced by inclusion, and is well-de�ned

since the chord shift relations are IHX consequences. The composition of these

two maps is the identity in one direction, implying that chord diagrams modulo

chord shift relations inject into GHLie;1. But because chord diagrams generate

GHLie;1, this means that the two spaces are isomorphic. �
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Lemma 7.3. @.GHLie;2/ is generated by boundaries of graphs of the following

form. First one can assume both trees are linear (including the case of a tripod).

If there are edges connecting a tree to itself, we may assume that at least one of

them connects the ends of this tree. Finally, if there is no such self-edge, we may

assume that tree is a tripod.

Proof. One can straighten out the trees and have edges join their ends using

IHX relations. So the only thing that we need to check is that boundaries of

trees without self-edges such that the trees are not tripods do not add anything

to @.GHLie;2/. We proceed by induction on the number of leaves of the tree, the

base case being a tripod with three leaves. Otherwise, one can choose an internal

edge and break the tree into two pieces joined by a dashed edge. Form the graph

which is the sum of contracting along each of the dashed edges emanating from

the original tree (but not the new dashed edge we just created). This is still an

element of GHLie;2. Taking its boundary, if an edge emanating from the left tree

had been contracted, we can contract along an edge in the right tree while taking

the boundary, and vice versa. These terms all cancel in pairs, leaving us with

the single term where the dashed edge breaking apart the original tree is �lled in.

In this way, we have shown the boundary with the original tree is representable by

boundaries of terms with trees of smaller size. �

Specifying now to the rank 3 case, the three generators of G
.3/
HLie;1 are given

below:
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We identify them with elements ofH˝3. So the �rst generator corresponds to

a˝b˝c 2 H˝3. In order to distinquish the three graphs, we consider three copies

ofH˝3, with elements of the second copy denoted Qa˝ Qb˝ Qc and elements of the

third copy denoted Oa ˝ Ob ˝ Oc. Depicting these three types of tensors pictorially,

we use the symbols

We proceed to list the relations. There are symmetries of the graphs, chord

shift relations, and relations coming from im @.

7.1. Symmetry relations. The symmetries of the graphs correspond to the fol-

lowing relations: (One is actually a chord shift relation in disguise.)

(S1) a ˝ b ˝ c D �S.b/˝ S.a/˝ S.c/

(S2) Qa ˝ Qb ˝ Qc D Qc ˝ Qb ˝ Qa

(S3) Qa ˝ Qb ˝ Qc D �S. Qa/˝ S. Qb/˝ S. Qc/

(S4) Oa ˝ Ob ˝ Oc D �S. Ob/˝ S. Oa/˝ S. Oc/

7.2. Chord shift relations. There are three chord shift relations as in the follow-

ing chart, and proven below.

(CS1) Qa ˝ Qb ˝ Qc D b ˝ c ˝ a C b ˝ a˝ c

(CS2) Qa ˝ Qb ˝ Qc D Qc ˝ Qa ˝ Qb � a˝ c ˝ b � c ˝ a˝ b C Qa˝ Qc ˝ Qb

(CS3) Oa ˝ Ob ˝ Oc D Qc ˝ Qa ˝ Qb � a˝ c ˝ b � S. Oa/˝ Oc ˝ Ob C S.a/˝ c ˝ b
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For the �rst type of chord diagram, there is only one other chord up to symme-

try. So without loss of generality, we choose the b chord to expand into the long

chord:

D

D

D � :
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The relation becomes

a˝ b ˝ c D Qc ˝ Qa˝ Qb � a ˝ c ˝ b;

and by renaming this is equivalent to

Qa ˝ Qb ˝ Qc D b ˝ c ˝ a C b ˝ a˝ c: (CS1)

Again for the second generator, there is only one other chord to consider:

D

D �

D � :

yielding

Qa˝ Qb ˝ Qc D Qc ˝ Qa ˝ Qb � a ˝ c ˝ b � c ˝ a ˝ b C Qa˝ Qc ˝ Qb: (CS2)
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The third relation is

D

D �

D �



704 J. Conant

Using IHX and slide relations, this becomes

�

� C :

Yielding the third chord shift relation:

Oa ˝ Ob ˝ Oc D Qc ˝ Qa˝ Qb � a˝ c ˝ b � S. Oa/˝ Oc ˝ Ob C S.a/˝ c ˝ b: (CS3)

7.3. Boundary relations. There are four boundary relations.

(D1) S. Qa.1//˝ S. Qa.2// Qb ˝ Qc � S.a.1//b ˝ S.a.2//˝ c

�S. Oa/ Ob.1/ ˝ S. Ob.2//˝ Oc C S.a/b.1/ ˝ S.b.2//˝ c

CS. Qa/˝ S. Qb/˝ Qc � S.a/˝ S.b/˝ c

D 0

(D2) Oa˝ Ob ˝ Oc D �S. Oa/˝ S. Ob/˝ S. Oc/

(D3) Qa˝ Qb ˝ Qc D �Qa˝ S. Qb/˝ Qc

(D4) Oa˝ Ob ˝ Oc D �S. Oa/˝ Ob ˝ Oc

These are proven as follows:
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7�! C

C

D �

C
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D �

� C

C �

D S. Qa/˝ S. Qb/˝ Qc � S.a/˝ S.b/˝ c � S. Oa/ Ob.1/ ˝ S. Ob.2//˝ Oc

C S.a/b.1/ ˝ S.b.2//˝ c C S. Qa.1//S. Qa.2/
Qb/˝ Qc

� S.a.1//b ˝ S.a.2//˝ c

This concludes the proof of (D1).

To prove (D2) we consider the following boundary:

7�!

C :

This equals S. Qa/˝ S. Qb/˝ Qc C Qa ˝ Qb ˝ S. Qc/.
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Relations (D3) and (D4) come from the boundary of graphs where one tree is

a tripod connected by a self-edge. If a 2 H is attached to this loop, then in the

image, using IHX, will be a short chord with the element a C S.a/ attached.

All of the relations are summarized in Figure 5.

7.4. Special case: H D Sym.V / in even degree. The set of relations in Figure 5

simpli�es quite a bit if we assume thatH D Sym.V / is commutative and that the

degree is even. In this case S ˝ S ˝ S acts as the identity on H˝3, ensuring by

relations (S3) and (D2) that the tensors Qa ˝ Qb ˝ Qc and Oa˝ Ob ˝ Oc are zero. So the

above presentation becomes very simple. (S1) and (CS1) (or equivalently (CS2))

imply that the rectangular tensor is totally antisymmetric:

D � D � :

(CS3) kills any tensors with a factor of odd degree,

D

and �nally (D1) is equivalent to

D C :

This proves Theorem 6.3.

7.5. Simplifying the relations. First note that relation (D1) can be rewritten by

appending the invertible automorphism

to the bottom, yielding

D
.D10/

C

� C � :
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Figure 5. Rank 3 relations in pictorial format.
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Now, removing the round tensors using (CS1) gives

D
.D100/

C C

C � :

Substituting into (S2) is tautological. Substituting into (S3) and using (S1)

gives

C D
(S3)0

C :

This is also the result of plugging into (CS2). This allows us to simplify (D100) to

D
.D1000/

C C :

This relation and (CS1) then allow us to write all tensors in terms of the rectangular

ones a ˝ b ˝ c. Rewriting all relations in terms of rectangular ones yields the

presentation in Theorem 6.1.

(S4) becomes a tautology.

(D2) becomes relation (4).

(CS3) becomes relation (6).

As already noted (S1) becomes (1) and (S3) becomes (2).

(D3) becomes (3) and (D4) becomes (5).

7.6. Proof of Theorem 6.4. We work with the presentation from Theorem 6.1.

When H D Sym.V /, S ˝ S ˝ S acts on the odd degree part of H˝3 by �1.

7.7. Proof of Theorem 6.2. When calculating �3.H/, the only boundaries to

consider are D1 and also D3 and D4 in the special case where the loop has no

element ofH on it. So we divide by relations 1˝ Oa˝ Ob D 0 D Qa˝1˝ Qb. Converting

these to rectangular tensors yields the relations 1˝a˝bC1˝b˝aCb˝�.a/ D 0,

and 1˝ a ˝ b C 1˝ b ˝ a D 0, which together yield the relations 4 and 5.
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8. Computer calculations

Using the presentations given in Theorems 4.9, 6.1, 4.10, and 6.2 computations

were made and are listed in Tables 1 and 2. Note that the data is consistent

with Corollaries 4.12, 6.7, and Theorem 6.8. Note that these computations give

slightly di�erent answers than those calculated in [6]. For example in that paper,

the decomposition of �2.T .V //4 was given as Œ31� ˚ Œ14� which is not correct.

It should be Œ4�˚ Œ31�, which is consistent with Corollary 4.12.

The source code for the current computations are available as a mathematica

notebook at http://www.math.utk.edu/~jconant/ and in the arXiv source folder for

this paper.
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