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Abstract. We use Heegaard Floer homology with twisted coe�cients to de�ne numerical

invariants for arbitrary closed 3-manifolds equipped torsion spinc structures, generalising

the correction terms (or d -invariants) de�ned by Ozsváth and Szabó for rational homology

3-spheres and, more generally, for 3-manifolds with standard HF1. Our twisted correction

terms share many properties with their untwisted analogues. In particular, they provide

restrictions on the topology of 4-manifolds bounding a given 3-manifold.
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1. Introduction

One of the most celebrated results in low dimensional topology is Donaldson’s

diagonalisability theorem for intersection forms of smooth 4-manifolds. It asserts

that any negative de�nite intersection form of a closed smooth 4-manifold is diag-

onalisable over Z. Both assumptions on the 4-manifold, being smooth and closed,

are crucial. On the one hand, an equally fascinating result of Freedman shows

that every unimodular symmetric bilinear form appears as the intersection form

of some closed topological 4-manifold. On the other hand, an easy construction

shows that any symmetric bilinear form is the intersection form of some smooth

4-manifold with boundary. Note, however, that one cannot control the topology

of the boundary. In this paper we are interested in the possible intersection forms

of smooth 4-manifolds bounding a �xed 3-manifold.

1.1. The main results. A purely algebraic result of Elkies [4] shows that Don-

aldson’s theorem can be rephrased as a family of inequalities c2
1.s/ C b2.X/ � 0

where s runs through all spinc structures on a closed smooth 4-manifold X .

It turns out that these inequalities admit generalisations to 4-manifolds with

boundary. The �rst signi�cant progress in this direction was made by Frøyshov [7]

using Seiberg–Witten theory and later by Ozsváth and Szabó [16] in the context
of Heegaard Floer homology. In this paper we will de�ne a generalisation of the
correction terms de�ned by Ozsváth and Szabó, using Heegaard Floer homology
with twisted coe�cients: to any spinc 3-manifold .Y; t/ with c1.t/ torsion we as-
sociate a rational number

N
d.Y; t/, called the twisted correction term of .Y; t/. One

of the main goals of the paper is to prove the following general result.

Theorem 1.1. Let .Z; s/ be a smooth spinc 4-manifold with connected spinc

boundary .Y; t/. If, furthermore, bC
2 .Z/ D 0 and c1.t/ is torsion, then

c2
1 .s/ C b�

2 .Z/ � 4
N
d.Y; t/ C 2b1.Y /: (1.1)

Here b˙
2 .Z/ are the dimensions of maximal positive and negative de�nite sub-

spaces for the intersection form of Z. As indicated above, similar inequalities were
obtained by Frøyshov [7], [8] for rational homology 3-spheres and by Ozsváth and
Szabó [16] for 3-manifolds with “standard HF1” (see Section 3.3 below). Our ap-
proach is similar to the one taken by Ozsváth and Szabó, but it turns out that
the use of twisted coe�cients allows us to work with arbitrary 3-manifolds. The
proof of Theorem 1.1 occupies Sections 2–4, including a brief review of Heegaard
Floer homology with twisted coe�cients and a discussion of the twisted correc-
tion terms and their properties. Starting with Section 5 we return to intersection
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forms of smooth 4-manifolds with boundary. As a sample result, we mention the
following, although we actually prove a stronger statement in Corollary 5.4.

Theorem 1.2. For any closed, oriented 3-manifold Y there are only �nitely many

isometry classes of even, semide�nite symmetric bilinear forms that can appear

as intersection forms of smooth 4-manifolds bounded by Y .

Note that Theorem 1.2 cannot hold for topological 4-manifolds. Indeed, us-
ing Freedman’s result one can add arbitrary unimodular summands to the inter-
section form of any given 4-manifold by connect summing with suitable closed
topological 4-manifolds. So the �niteness in Theorem 1.2 is an inherently smooth
phenomenon.

In Section 6 we turn to some concrete examples and give some further ap-
plications. In particular, for a surface †g of arbitrary genus g we compute the
twisted correction terms of †g � S1 – which has non-standard HF1 for g � 1

and therefore lies outside the scope of previously available techniques – and use
Theorem 1.1 to deduce the following.

Theorem 1.3. Let Z be a smooth 4-manifold with boundary T 3 or †2 �S1. If the

intersection form QZ is negative semide�nite and even, then its non-degenerate

part is either trivial or isometric to E8, and both of these occur.

Again, we actually prove a slightly stronger statement (see Corollary 6.10).

1.2. Notation and terminology. By default, all manifolds are assumed to be
smooth, compact, connected, and oriented. The letter Y will always indicate
a closed 3-manifold. Similarly, we reserve Z for 4-manifolds with connected
boundary, and W for cobordisms between non-empty 3-manifolds; and if Y D @Z,
we refer to Z as a �lling of Y . Spinc structures on 3-manifolds will be denoted by t

and those on 4-manifolds by s. If .Y; t/ is the spinc boundary of .Z; s/, then we
call the latter a spinc �lling. Lastly, for 3- or 4-manifold with torsion-free second
cohomology we write t0 or s0 for the unique spinc structure with trivial �rst Chern
class (provided that they exist, in the case of 4-manifolds).

Acknowledgements. We would like to thank Paolo Lisca, Bruno Martelli, and
András Stipsicz for their encouragement; Filippo Callegaro, Andrea Ma�ei, and
Danny Ruberman for helpful conversations. A special thanks goes to Adam Levine
for pointing out a mistake in an earlier proof of Proposition 3.8.
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2. Review of Heegaard Floer homology

We recall some relevant de�nitions and facts about Heegaard Floer homology
with twisted coe�cients. The basic references for this material are [18, Section 8]
and [10]. We will pay special attention to the role of ground rings.

2.1. Twisted coe�cients. Fix a ground ring F; usually F D Z, Q or Fp for
some prime p. Let Y be a closed, oriented 3-manifold equipped with a spinc

structure t 2 Spinc.Y /. The input for Heegaard Floer theory is a Heegaard
diagram .†; ˛; ˇ/ with some extra decorations (see [19] and [18] for details; for
instance, we will suppress the basepoint from the notation). The output is a short
exact sequence of chain complexes

0 �! CF�.Y; t/F
�

�! CF1.Y; t/F
�

�! CFC.Y; t/F �! 0 (2.1)

over the ring FŒU �˝FFŒH2.Y /� whose homology groups, denoted by HFı.Y; t/F,
are an invariant of .Y; t/ known as Heegaard Floer homology with fully twisted

coe�cients over F. Following [10] we write RY D FŒH2.Y /� so that FŒU � ˝F

FŒH2.Y /� becomes RY ŒU �; we also use the common shorthand notation

T
� D U � FŒU �; T

1 D FŒU; U �1�; and T
C D FŒU; U �1�=U � FŒU �

for the FŒU �-modules that have become known as towers. We think of them as
relatively Z-graded such that multiplication by U has degree �2 and a subscript
T

ı
d

indicates that U k lies in grading d � 2k.
For any RY -module M one can further de�ne Heegaard Floer homology

groups with coe�cients in M

HFı.Y; tI M/F D H�.CFı.Y; t/F ˝RY
M/: (2.2)

The most common choice for M is the ground ring F itself, endowed with the
trivial RY -action. This yields the untwisted Heegaard Floer homology groups
HFı.Y; t/F. In all other cases it has become customary to speak of twisted co-

e�cients. Note that for M D RY one recovers the fully twisted homology
groups HFı.Y; t/F. We will usually suppress the ground ring in the subscript from
the notation whenever this does not cause confusion, but at times this more precise
notation will be convenient.

It follows from general principles of homological algebra that (2.1) induces a
long exact sequence of RY ŒU �-modules

� � � ! HF�.Y; tI M/F
��

�! HF1.Y; tI M/F
��

�! HFC.Y; tI M/F
ı

�! � � � (2.3)
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while (2.2) gives rise to a universal coe�cient spectral sequence

E2
�;� D TorRY

� .HFı
�.Y; t/F; M/ H) HFı.Y; tI M/F (2.4)

which highlights the universal role of HFı.Y; t/F.
We will mostly work with the fully twisted theory. As explained in [10,

Section 3], the groups HFı.Y; t/F carry a relative Z-grading. Moreover, if c1.t/

is torsion, then the relative Z-grading can be lifted to an absolute Q-grading [20,
Section 7]. We also recall the following result due to Ozsváth and Szabó which is
of fundamental importance for our work.

Theorem 2.1 ([18, Theorem 10.12]). If c1.t/ is torsion, then there is a unique

equivalence class of orientation systems such that

HF1.Y; t/F Š FŒU; U �1� D T
1

as RY ŒU �-modules with a trivial RY -action on T
1.

2.2. Cobordism maps. Now let .W; s/ be a spinc cobordism from .Y; t/ to
.Y 0; t0/. It is well known that for any RY -module M there are induced cobordism

maps

F ı
W;sIM W HFı.Y; tI M/ �! HFı.Y 0; t0I M.W //

which have the peculiarity that the target generally depends on the cobordism
through the coe�cient module. Indeed, the RY 0-module M.W / can be described
as follows. We consider the .RY ; RY 0/-bimodule

BW D FŒH2.Y /W C H2.Y 0/W � � FŒH2.W /�

where H2.Y /W denotes the image of the map H2.Y / ! H2.W / induced by
inclusion (and similarly for Y 0) and de�ne

M.W / D M ˝RY
BW : (2.5)

For example, in the fully twisted case M D RY we have RY .W / D BW and we
denote the cobordism map by

x
F ı

W;sW HFı.Y; t/ ! HFı.Y 0; t0I BW /:

These cobordism maps will play an important role in the proof of Theorem 1.1.
The dependence of the target on the cobordism is one of the extra complications
compared to the untwisted situation.
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Remark 2.2. There are slightly di�erent de�nitions of M.W / in the literature.
Ours is essentially the same as in [20, Section 2.7] except that we work in the
Poincaré dual picture (using H2 instead of H 1). Another di�erence appears in [10,
Section 2.2] where the the RY 0-module xM ˝RY

BW is used. Here xM stands
for M with the conjugate RY -module structure (for which h 2 H2.Y / acts as �h).
However, note that the conjugation only a�ects the RY -module structure and that
we have xM ˝RY

BW Š M ˝RY
BW as RY 0-modules.

2.3. A connected sum formula for fully twisted coe�cients. The following is a
generalisation of the connected sum formula in Heegaard Floer homology (see [18,
Theorem 6.2]) to fully twisted coe�cients. For technical reasons we work over a
�xed ground �eld F.

Proposition 2.3. Let .Y1; t1/ and .Y2; t2/ be spinc 3-manifolds, and let CF�.Yi ; ti/

be the usual chain complex computing HF�.Yi ; ti/. Then there is an isomorphism

HF�.Y1#Y2; t1#t2/ Š H�.CF�.Y1; t1/ ˝FŒU � CF�.Y2; t2//Œ2� (2.6)

where Œ2� indicates a grading shift by 2.

In the proof we will use the shorthand notation Sn for the 3-manifold #nS1�S2

which will also appear later on.

Proof. We argue as in the proof of [18, Theorem 6.2] to which we refer for further
details and notation. As in the untwisted case, it is more convenient to study the
complex CF�0 instead of CF�. This explains the degree shift in (2.6): CF�0 is just
CF� with a grading shift. The main di�erence between the twisted and untwisted
cases lies in the de�nition of the twisted coe�cients map

x
�W CF�0.Y1; t1/ ˝FŒU � CF�0.Y2; t2/ �! CF�0.Y1#Y2; t1#t2/;

the analogue of the untwisted map �. The map
x
�0 corresponding to �0 in the

proof of [18, Theorem 6.2] is de�ned in the same way, as the ‘closest point map’.
Once we have constructed

x
�, the rest of the argument follows verbatim, and we

refer the reader to the original proof; we therefore focus only on constructing
x
�.

Choose a Heegaard diagram .†i ; ˛i ; ˇi/ for Yi , where †i has genus gi . As in
the untwisted case, consider the triple Heegaard diagram

.†; ˛; ˇ; / D .†1#†2; ˛1 [ ˛0
2; ˇ1 [ ˛2; ˇ0

1 [ ˇ2/;

where the primes denote small Hamiltonian perturbations. It is immediate to
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check that .†; ˛; ˇ/ represents zY1 WD Y1#Sg2
, while .†; ˇ; / represents zY2 WD

Y2#Sg1
, and .†; ˛; / represents Y1#Y2. Let Ri WD RYi

for i D 1; 2. Using
the canonical splitting H2. zYi/ D H2.Yi/ ˚ H2.Sg3�i

/ we can consider Ri as an
R zYi

-module. Following [18, Section 8.2.2], we see that .†; ˛; ˇ; / induces a map

f
�0

˛;ˇ; W CF�0. zY1; t1I R1/ ˝FŒU � CF�0. zY2; t2I R2/ ! CF�0.Y1#Y2; t1#t2/:

To conclude the proof, we need to �nd a map ˆi W CF�0.Yi ; ti / ! CF�0. zY1; ti I Ri /.
In fact, it is an easy check that CF�0. zYi ; ti I Ri / Š CF�0.Yi ; ti /˝FŒU �CF�0.Sg3�i

/,
and the latter factor has a canonical top degree generator ‚i , as seen in the proof
of [18, Theorem 6.2]. This gives the desired embeddings. �

2.4. Twisted surgery triangles. Let K be a knot in a 3-manifold Y . We write
Y� D Y�.K/ for the �-framed surgery on K and W� D W�.K/ for the corre-
sponding surgery cobordism from Y to Y�. We write EK D Y n �K for the knot
exterior and consider the framing and the meridian of K as simple closed curves
�; � � @EK well de�ned up to isotopy. Since the map H1.@EK/ ! H1.EK/ has
rank 1, there is another essential simple closed curve �0 � @EK , well de�ned up
to isotopy, characterised by the property of having �nite order in H1.EK/. By a
slight abuse of terminology we refer to �0 as the 0-framing although it might not
actually be a framing in general, as it may intersect the meridian more than once
or not at all. Note that by de�nition of �0 we can �nd an oriented surface S � EK

which bounds a number of parallel copies of �0 with the same orientation. An
elementary exercise in homology acrobatics, which we leave to the reader, gives
the following.

Lemma 2.4. Let  � @EK be an arbitrary essential simple closed curve and Y

the closed 3-manifold obtained by Dehn �lling EK along  .

(i) If  ¤ �0, then H2.EK/ Š H2.Y /, induced by the inclusion.

(ii) If  D �0, then H2.EK/ Š H2.Y /=Œ yS� where yS � Y� is obtained by capping

o� S � EK with spanning disks of  in Y .

In particular, for a �xed choice of S , the ring MK D FŒH2.EK/� has canonical

module structures over RY D FŒH2.Y /� and RY�
D FŒH2.Y�/� where � is an

arbitrary framing of K.

With these remarks in place, the well-known exact triangle for surgeries on
rationally null-homologous knots admits the following generalization to arbitrary
knots in arbitrary 3-manifolds.
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Proposition 2.5. As before, let .K; �/ be a framed knot in a 3-manifold Y and let

MK D FŒH2.EK/�. Then there is an exact triangle of the form

HFC.Y I MK/
F // HFC.Y�I MK/

Gvv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

HFC.Y�C�I MK/

H

hh◗◗◗◗◗◗◗◗◗◗◗◗◗

where the maps F , G, and H are induced by surgery cobordisms and the relevant

module structures of MK are as in Lemma 2.4.

Proof. The proof of the twisted exact triangle [18, Theorem 9.21] works here with
only minor modi�cation; more precisely, one only needs observe that the proof of
[18, Proposition 9.22] applies also with coe�cients in MK . �

We point out that if �0 … ¹�; �; � C �º, then Proposition 2.5 actually provides
a surgery triangle for fully twisted coe�cients. Indeed, let  2 ¹�; �; � C �º

and write R for RY
D FŒH2.Y /� where Y� D Y . Notice that when  is

not the 0-framing, then MK Š R by Lemma 2.4 so that HFı.Y ; tI MK/ is
just HFı.Y ; t/.

However, if either �, �, or �C� agrees with �0, then some extra care has to be
taken when using Proposition 2.5 to study fully twisted coe�cients. For example,
if � is the 0-framing, in which case K is necessarily rationally null-homologous,
then only Y and Y�C� appear with fully twisted coe�cients in (2.5). But we
can give a fairly explicit computation of the group HF1.Y�; tI MK/ which will
be useful in conjunction with Proposition 2.5. In fact, we have a free resolution
of MK as an R�-module

0 �! R�

�.1�Œ yS�/
�����! R� �! MK �! 0

showing that TorR�
� .MK ;T1/ D T

1 ˚ T
1Œ1� whenever the R�-action on T

1

is trivial (as it is in our case), and the universal coe�cient spectral sequence
collapses at the second page. We have thus proved the following.

Proposition 2.6. When � is the 0-framing, HF1.Y�; tI MK/ D T
1 ˚ T

1Œ1�.

Of course, analogous considerations hold when � C � is the 0-framing and
when K is homologically essential in Y (which is equivalent to � D �0).
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3. Twisted correction terms

Let .Y; t/ be a closed 3-manifold, equipped with a spinc structure t such that c1.t/

is torsion. We will refer to .Y; t/ as a torsion spinc 3-manifold. In this section, we
work over a ground �eld F. Recall that, when Y is a rational homology sphere,
the untwisted group HFC.Y; t/ admits a U -equivariant splitting of the form

HFC.Y; t/ Š T
C ˚ HFC

red.Y; t/:

The correction term d.Y; t/ is the degree of the element in HFC.Y; t/ correspond-
ing to U �1 2 T

C. More generally, when b1.Y / > 0 there is an action of the
exterior algebra ƒ D ƒ�.H1.Y /=Tor/ on HFı.Y; t/; Ozsváth and Szabó used this
action to de�ne a similar invariant for a restricted class of 3-manifolds, namely
the ones with standard HF1. Recall that .Y; t/ is said to have standard HF1

if HF1.Y; t/ is isomorphic to ƒ ˝Z ZŒU; U �1� as a ƒ-module. Under this as-
sumption, the kernel of the ƒ-action on HF1 maps to a copy of TC in HFC.Y; t/

whose least degree is called the bottom-most correction term db.Y; t/. It is clear
that db.Y; t/ generalizes d.Y; t/ for rational homology spheres. We propose an-
other generalisation that is available for all 3-manifolds.

De�nition 3.1 (Twisted correction terms). Let .Y; t/ be a torsion spinc 3-manifold
and let F be a �eld of characteristic p. We de�ne the (homological) twisted

correction term
N
dp.Y; t/ 2 Q as the minimal grading among all non-zero elements

in the image of ��W HF1
� .Y; t/F ! HFC

� .Y; t/F. Similarly, there is a cohomological

version
N
d �

p .Y; t/ 2 Q de�ned using the map ��W HF�
1.Y; t/F ! HF�

�.Y; t/F on
Heegaard Floer cohomology; since multiplication by U increases the degree by 2

in cohomology,
N
d �

p .Y; t/ is the maximal grading among all non-zero elements in
the image of ��.

Remark 3.2. Using the universal coe�cient theorem, it is easy to show that if F0

is a �eld extension of F, then the two corresponding correction terms coincide,
hence the correction term only depends on the characteristic. In particular, this
justi�es the notational choice and shows that is su�ces to consider F D Q or Fp.

Remark 3.3. It is not known whether the twisted correction terms do in fact
depend on p. To the best of our knowledge, there are no examples for which

N
d0.Y; t/ and

N
dp.Y; t/ are di�erent for some p > 0 and our example computations

in Section 6 give the same results for all values of p. Note that similar situations
arise in the work of Frøyshov [8, p. 569] and Manolescu [12, Remark 3.12].
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Proposition 3.4. The correction term
N
d0.Y; t/ agrees with the minimal grading

among all non-Z-torsion elements in the image of ��W HF1
� .Y; t/Z ! HFC

� .Y; t/Z.

Furthermore, we have
N
d0.Y; t/ �

N
dp.Y; t/ for every prime p.

Proof. The universal coe�cient theorem shows that

HFı.Y; t/Q D HFı.Y; t/Z ˝Z Q;

and the �rst statement readily follows. The second statement follows from the
universal coe�cient theorem applied to the change of coe�cients from Z to Fp,
together with the observation that HF1.Y; t/Z has no Z-torsion. �

In what follows, we will be sloppy and simply write
N
d instead of

N
dp to signify

that the results and computations will hold regardless of the characteristic.

If Y is a rational homology 3-sphere, then Proposition 3.4 shows that
N
d.Y; t/

agrees with the usual correction term d.Y; t/ as de�ned in [16, De�nition 4.1]. As
in that case, there is an alternative description. The long exact sequence (2.3)

together with Theorem 2.1 gives rise to a (non-canonical) decomposition of
RY ŒU �-modules

HFC.Y; t/ Š T
C ˚ HFC

red.Y; t/;

where HFC
red.Y; t/ is de�ned as the cokernel of ��. In such a decomposition

N
d.Y; t/

appears as the minimal grading of non-zero elements in T
C.

Example 3.5. By a direct computation of HFC one can check that

N
d.S1 � S2; t0/ D �1

2

and

N
d.T 3; t0/ D 1

2
:

The computation for S1 � S2 is easy; for T 3 see [16, Proposition 8.5]. Moreover,
since S1 �S2 and T 3 have orientation-reversing di�eomorphisms that preserve t0
(up to conjugation),

N
d � agrees with �

N
d , as we will see in Proposition 3.6 below.

It turns out that many properties of the usual correction terms have analogues
for

N
d.Y; t/. In the rest of this section we describe the e�ects on

N
d.Y; t/ of conju-

gation of spinc structures, orientation reversal, and connected sums. In Section 4
we will study the behavior under negative semide�nite cobordisms.
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3.1. Conjugation and orientation reversal. Recall that in Heegaard Floer the-
ory one identi�es spinc structures with homology classes of nowhere vanish-
ing vector �elds. In particular, we have an on-the-nose equality Spinc.Y / D

Spinc.�Y / where �Y denotes Y with the opposite orientation.1 Moreover, if a
spinc structure t is represented by a vector �eld v, then �v represents the conju-

gate spinc structure which we denote by Nt.

Proposition 3.6. The twisted correction terms of .Y; t/ satisfy

N
d.Y; Nt/ D

N
d.Y; t/ D �

N
d �.�Y; t/ D �

N
d �.�Y; Nt/:

In particular, if Y has an orientation-reversing self-di�eomorphism that pre-

serves t up to conjugation, then
N
d �.Y; t/ D �

N
d.Y; t/.

Proof. This follows exactly as in the proof of [16, Proposition 4.2] with some
additional input for twisted coe�cients from [10, Section 6]. �

It is interesting to note that the proof of [16, Proposition 4.2] also shows that
for b1.Y / D 0 we have

N
d.Y; t/ D

N
d �.Y; t/ – both agreeing with d.Y; t/ which

therefore satis�es d.�Y; t/ D �d.Y; t/. However, according to Example 3.5 this
argument has to fail for b1.Y / > 0. In general, we do not see any obvious relation
between

N
d.Y; t/ and

N
d �.Y; t/.

3.2. Connected sums. Next we study the behavior of the twisted correction
terms under the connected sum operation.

Proposition 3.7. For torsion spinc 3-manifolds .Y1; t1/ and .Y2; t2/ we have

N
d.Y1#Y2; t1#t2/ D

N
d.Y1; t1/ C

N
d.Y2; t2/

and

N
d �.Y1#Y2; t1#t2/ D

N
d �.Y1; t1/ C

N
d �.Y2; t2/

Proof. The idea is to show that, in the connected sum theorem for HF�, the tensor
product of the two towers is mapped surjectively onto the tower in the connected
sum, and this immediately proves the statement.

1 Note however that c1.Y; t/ D �c1.�Y; t/ D c1.�Y; Nt/. So some caution is needed when
working with the more common shortened notation c1.t/.
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To see this, observe that from (2.6), the Künneth theorem yields a short exact
sequence that splits:

0 �! .HF�.Y1; t1/ ˝FŒU � HF�.Y2; t2//Œ2�
j

�! HF�.Y1#Y2; t1#t2/

�! TorFŒU �.HF�.Y1; t1/; HF�.Y2; t2// �! 0:

Also, there is a splitting ofFŒU �-modules HF�.Yi ; ti / Š FŒU �xi ˚HF�
red.Yi ; ti /,

where each element in HF�
red.Yi ; ti/ is U -torsion; this splitting is far from being

unique, but, if we insist upon xi being homogeneous, the degree of xi is well-
de�ned, and indeed deg xi D

N
d.Yi ; ti / � 2.

The element x WDj.x1˝x2/ is homogeneousof degree
N
d.Y1; t1/C

N
d.Y2; t2/�2.

Since the short exact sequence above splits, and since in the tensor product the
only non-U -torsion summand is FŒU �x, we deduce that there is a decomposition
of FŒU �-modules

HF�.Y1#Y2; t1#t2/ Š FŒU �x ˚ T;

where T is the U -torsion summand. Since the decomposition above determines
the degree of x, we obtain the desired equality. �

3.3. Manifolds with standard HF1. We now compare the twisted correction
terms with the bottom-most correction terms that have been studied by Ozsváth
and Szabó [16] and later by Levine and Ruberman [11].

Proposition 3.8. If a torsion spinc 3-manifold .Y; t/ has standard HF1, then

N
d.Y; t/ � db.Y; t/:

(It is understood that
N
d and db are de�ned using the same coe�cient �eld, and

that the statement holds for all characteristics.)

Proof. Let H , ƒ and R denote the group H2.Y /, the exterior algebra ƒ�H and
the ring ZŒH � respectively; endow Z with the trivial R-module structure, i.e.
Z D R=.h�1 j h 2 H/. Take ƒR WD R˝ZR, endowed with the trivial di�erential
and the obvious grading, as an R-module resolution of Z, and consider R as the
trivial R-module resolution of itself. The quotient map R ! Z induces a map
between the two resolutions, that is an isomorphism of their degree-0 summands.
This map, in turn, induces a map of (universal coe�cient) spectral sequences from
HFı.Y; t/ to HFı.Y; t/.
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If .Y; t/ has standard HF1, the universal coe�cient spectral sequence from
HF1.Y; t/ ˝R ƒR to HF1.Y; t/ collapses at the second page, and moreover the
action of ƒ on HF1.Y; t/ is induced by the action of ƒ on the �rst page of the
spectral sequence. In particular, the bottom-most tower of HF1.Y; t/ corresponds
to the degree-0 component of ƒ, and it follows that HF1.Y; t/ maps onto this
tower under the map of spectral sequences described above.

Summing up, we have the following commutative diagram

HF1.Y; t/

��

// HF1.Y; t/

��

HFC.Y; t/ // HFC.Y; t/

where the top horizontal map is an isomorphism of HF1.Y; t/ onto the kernel of
the ƒ-action on HF1.Y; t/. It follows that db.Y; t/ �

N
d.Y; t/. �

While in general we do not expect equality of db and
N
d to hold, there are

families of examples where the two quantities agree; for instance, all rational
homology spheres, and 0-surgeries along knots in the 3-sphere, as the following
example shows.

Example 3.9. Let us consider a knot K in S3; it follows from [16, Section 4.2]
that db.S3

0 .K// D d�1=2.S3
0 .K// D d.S3

�1.K// � 1=2. Let us now look at the
twisted surgery exact triangle of [18, Theorem 9.14] associated to the framings
1; �1 and 0 of K:

� � � �! HFC.S3/Œt; t�1�
F

�! HFC.S3
�1.K//Œt; t�1�

G
�! HFC.S3

0 .K//
H

�! � � � :

It is immediate to see that the map F is multiplication by .1�t /, that the restriction
of G on the tower is modeled on the projection ZŒt; t�1� ! ZŒt; t�1�=.1 � t / Š Z,
and that the map H vanishes on the tower; moreover, the map H has degree �1=2

in the spinc structure with trivial Chern class. In particular,

N
d.S3

0 .K// � d.S3
�1.K// � 1=2 D db.S3

0 .K//:

Combined with the proposition above, this shows that
N
d.S3

0 .K// D db.S3
0 .K//.

4. Negative semide�nite cobordisms

In this section we prove the core technical result, Theorem 4.1 below, which will
imply Theorem 1.1. We will work over the integers, but everything goes through
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for Q and Fp with obvious modi�cations. The proof is based on the strategy used
in Ozsváth and Szabó’s proof of Donaldson’s theorem [16, Section 9]. Throughout
this section .W; s/ will be a spinc cobordism between torsion spinc 3-manifolds
.Y; t/ and .Y 0; t0/. To obtain cleaner statements we renormalize the twisted cor-
rection terms to

ı.Y; t/ D 4
N
d.Y; t/ C 2b1.Y /: (4.1)

Theorem 4.1. Let .W; s/ be a negative semide�nite spinc cobordism between

torsion spinc 3-manifolds .Y; t/ and .Y 0; t0/ such that the inclusion Y ,! W

induces an injection H1.Y IQ/ ! H1.W IQ/. Then

c2
1.s/ C b�

2 .W / � ı.Y 0; t0/ � ı.Y; t/

D 4
N
d.Y 0; t0/ � 4

N
d.Y; t/ C 2b1.Y 0/ � 2b1.Y /:

(4.2)

Before going into the proof of the theorem we pause to derive some conse-
quences of Theorem 4.1. To begin with, we show that it implies Theorem 1.1.

Proof of Theorem 1.1. Given a negative semide�nite �lling .Z; s/ of .Y; t/ we
consider the spinc cobordism from .S3; t0/ to .Y; t/ given by W D ZnB4 equipped
with the restriction s. Since S3 is simply connected, Theorem 4.1 applies and the
desired inequality is immediate from the fact that ı.S3; t0/ D 0. �

Another consequence of Theorem 4.1 is that the twisted correction terms, like
ordinary and generalised correction terms, are rational cobordism invariants.

Corollary 4.2. If .W; s/ is a rational homology cobordism between .Y; t/ and

.Y 0; t0/, then
N
d.Y; t/ D

N
d.Y 0; t0/ and ı.Y; t/ D ı.Y 0; t0/.

Proof. Both W and �W are negative semide�nite, and both inclusions
Y; Y 0 ,! W induce isomorphisms on rational homology by assumption. Hence
applying Theorem 4.1 to W and �W we get

N
d.Y; t/ �

N
d.Y 0; t0/ and

N
d.Y 0; t0/ �

N
d.Y; t/. �

4.1. The proof of Theorem 4.1. As mentioned above our proof of Theorem 4.1 is
modeled on Ozsváth and Szabó’s proof of Donaldson’s theorem in [16, Section 9].
The strategy is to equip the cobordism with a suitable handle decomposition and to
investigate the behavior of the twisted correction terms under 1-, 2-, and 3-handle
attachments. As usual, the 1- and 3-handles can be treated on an essentially
formal level while the 2-handles require more sophisticated arguments – in this
case establishing properties of cobordism maps on HF1 with suitably twisted
coe�cients. We begin with the 1- and 3-handles.
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Proposition 4.3. If W consists of a single 1-or 3-handle attachment, then

N
d.Y 0; t0/ �

N
d.Y; t/ D �1

2
.b1.Y 0/ � b1.Y // D

8
<
:

�1
2

for 1-handles,

1
2

for 3-handles,

or, equivalently, ı.Y 0; t0/ D ı.Y; t/.

Proof. In the case of a 1-handle attachment we have Y 0 Š Y #.S1 � S2/ and the
claim follows from Proposition 3.7, the computation of

N
d.S1 � S2; t0/ D �1

2
in

Example 3.5, and the fact that there is a unique spinc structure on W extending t

whose restriction to Y 0 is torsion. Similarly, for 3-handles Y Š Y 0#.S1 �S2/. �

For the discussion of 2-handles we switch to a more �tting notation. We
consider a framed knot .K; �/ in a 3-manifold Y and write Y� D Y�.K/ and
W� D W�.K/ for the 3-manifold obtained by �-framed surgery on K and the
corresponding 2-handle cobordism. We have to discuss the cobordism maps
induced by W� and it turns out that we have to distinguish two cases depend-
ing on whether K has in�nite order in H1.Y / or it represents a torsion class.
We begin with the former case, which requires some more subtle modi�cations of
the standard arguments for untwisted coe�cients.

We �rst introduce some terminology. For any subgroup V � H2.Y / we de�ne

V ? D ¹x 2 H1.Y / j x � v D 0 for all v 2 V º � H1.Y /:

Note that V ? contains the torsion subgroup of H1.Y / and that the intersection
pairing induces a canonical identi�cation of H1.Y /=V ? with V � D Hom.V;Z/.

De�nition 4.4. Let .Y; t/ be a torsion spinc 3-manifold and let V be a direct
summand of H2.Y /. Consider the coe�cient module MV D ZŒH2.Y /=V � with
the obvious RY -action. We say that .Y; t/ has V -standard HF1 if there is an
RY ŒU �-linear isomorphism

HF1.Y; tI MV / Š ƒ�V ˝Z ZŒU; U �1�

such that the action of V ? � H1.Y / is annihilating while V � D H1.Y /=V ? acts
by contraction on ƒ�V .

Example 4.5. (i) For V D H2.Y / the above de�nition agrees with the usual notion
of “standard HF1” discussed in Section 3.3.

(ii) By Theorem 2.1 all 3-manifolds have standard HF1 for V D 0 and
according to Proposition 2.6 the same holds for any V of rank 1.
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(iii) This example will be particularly relevant and has, in fact, already ap-
peared in the proof of Proposition 2.3. Let .Y; t/ be a spinc 3-manifold; the proof
of [18, Proposition 6.4] shows that for any RY -module M we have

HFı.Y #Sn; t#t0I M/ Š HFı.Y; tI M/ ˝ ƒ�H2.Sn/ (4.3)

where M is considered as and module over RY #Sn
D RY ˝Z RSn

with trivial
RSn

action. Moreover, the action of H1.Y #Sn/ on the right-hand side is induced by
the usual action of H1.Y / on the �rst factor, and by the contraction with elements
of H1.Sn/ via the intersection product on the second factor. In particular, it is a
matter of checking the de�nition to see that .Y #Sn; t#t0/ has standard HF1 with
respect to the subgroup of H2.Y #Sn/ corresponding to H2.Sn/.

Proposition 4.6. Let .Y; t/ be a torsion spinc 3-manifold and let .K; �/ be a

framed knot in Y such that K has in�nite order in H1.Y /. Let V be a direct

summand of H2.Y / such that .Y; t/ has V -standard HF1 and some v 2 V

satis�es ŒK��v ¤ 0. Then there is a subgroup VK of H2.Y�/ such that MVK
Š MV .

Moreover, Y� has VK-standard HF1 for any torsion spinc structure t
0 which is

cobordant to t via .W�; s/; and the cobordism map induces an isomorphism

HF1.Y; tI MV /= kerŒK�
Š

�! HF1.Y�; t0I MV /

where kerŒK� is the kernel of the action of ŒK�.

Proof. One readily checks that the inclusion of Y in W� induces an isomorphism
H2.W�/ Š H2.Y /. According to (2.5) we get maps

F 1
W�;sW HF1.Y; tI MV / �! HF1.Y�; t0I MV /

for any s 2 Spinc.W�/ and t
0 D sjY�

. By a variation of Lemma 2.4 we see that
H2.Y�/ Š H2.EK/ and H2.Y / Š H2.EK/ ˚ Z where the second summand
is generated by a primitive element of H2.Y / that has non-trivial intersection
with ŒK�. By assumption we can �nd such an element in V . Under the above iden-
ti�cations we can consider VK D ¹v 2 V j ŒK� � v D 0º as a subgroup of H2.EK/

and therefore of H2.Y�/. Moreover, we have H2.Y /=V Š H2.Y�/=VK and thus
MV Š MVK

.

Now suppose that t0 is torsion. We can put the maps induced by W� into
a surgery triangle as before and argue as in the proof of [16, Proposition 9.3]
that F 1

W�;s vanishes on kerŒK� and is injective on the quotient for all �eld coef-
�cients. The only missing piece is a bound on the rank of HF1.Y�; t0I MV / in
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each degree. To that end, we observe that the E2-term of the relevant universal
coe�cient spectral sequence is given by

TorRY .HF1.Y�; t0/; MV / Š TorZŒH2.Y�/�.Z;ZŒH2.Y /=V �/ ˝Z ZŒU; U �1�

Š TorZŒV �.Z;Z/ ˝Z ZŒU; U �1�

Š ƒ�V ˝Z ZŒU; U �1�

where the second isomorphism follows from Shapiro’s lemma (see [1, p. 73],
for example). The resulting rank bound can be used as a replacement of [16,
Lemma 9.2] in the proof of [16, Proposition 9.3]. �

Remark 4.7. Note that in the above proof it was crucial for the action of K to have
non-trivial image. Since any non-torsion element of H1.Y / annihilates HFı.Y; t/

(see [10, Remark 5.2]), the proof does not work for V D 0, that is, we cannot start
with fully twisted coe�cients for Y .

We now turn to the case when K has �nite order in H1.Y /.

Proposition 4.8. Let .Y; t/ and .K; �/ be as above and suppose that K has �nite

order in H1.K/. If bC
2 .W�/ D 0, then W� induces an isomorphism

HF1.Y; t/
Š

�! HF1.Y�; t0/

where t
0 is the restriction of an extension of t to the surgery cobordism.

Remark 4.9. For those familiar with rational linking numbers we note that the
bC

2 -condition is equivalent to lkQ.K; �/ � 0, so that the assumptions in the above
propositions can be rephrased purely in 3-dimensional terms.

Proof of Proposition 4.8. The main idea is to study exact triangles relating suit-
able twisted Heegaard Floer homology groups of the manifolds Y , Y�, and Y�C�

where the latter is obtained by � C �-framed surgery on K. There are three cases
to consider according to the change of b1 under the surgeries:

(1) b1.Y / D b1.Y�/ D b1.Y�C�/,

(2) b1.Y / D b1.Y�/ < b1.Y�C�/,

(3) b1.Y / D b1.Y�C�/ < b1.Y�/.

Case (1) is an immediate adaptation of the proof of [16, Proposition 9.4]. In fact,
all relevant cobordisms induce maps between the fully twisted Floer homology
groups, and the proof proceeds exactly as in the untwisted case.
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Case (2) also follows from an adaptation of the same proof, but with more
substantial modi�cations. In this case, in fact, there is a surgery exact triangle that
reads as follows (see [10, Theorem 9.1]):

HFC.Y /Œt; t�1�
F // HFC.Y�/Œt; t�1�

Gvv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

HFC.Y�C�/

H

ggPPPPPPPPPPPP

Here, F is t -equivariant and is, in fact, the map
x
F ˝ 1, where

x
F is the map

induced by the surgery cobordism between the twisted Floer homology groups.
Moreover, t acts as the class of the capped-o� surface T 2 H2.Y�C�/. Since T

acts as the identity on HF1.Y�C�/, for all su�ciently large degrees the map F is
multiplication by .1 � t /, and in particular it induces a surjection on the towers in
HFC.Y; t/ for each torsion spinc structure t on Y . Now the argument runs as in the
untwisted case to show the desired inequality; compare with [18, Theorem 9.1].

In case (3), we use the surgery triangle of Proposition 2.5:

HFC.Y /
F // HFC.Y�I MK/

Gww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

HFC.Y�C�/

H

ff▼▼▼▼▼▼▼▼▼▼

As in the proof of Proposition 4.6 we show that the in�nity version of G has the
same kernel as the action of the dual knot of K, say K 0 � Y�. Moreover, the usual
argument shows that the in�nity version of F , which is just F 1

W�;s, is injective;
and by exactness it injects into kerŒK 0� which, according to Proposition 2.6,
is graded isomorphic to HF1.Y�; t0/. Again observing that the argument goes
through with arbitrary �eld coe�cients, we see that F 1

W�;s maps isomorphically
onto kerŒK 0�. �

Proof of Theorem 4.1. The key is the standard observation that whenever we have
a cobordism .W; s/ between torsion spinc 3-manifolds .Y; t/ and .Y 0; t0/ inducing
an isomorphism F 1

W;sW HF1.Y; t/ ! HF1.Y 0; t0/, then
N
d.Y; t/ C deg F C

W;s �

N
d.Y 0; t0/, as an easy diagram chase shows. Unfortunately, we cannot apply this
argument directly because in general the target of the cobordism maps will not
have fully twisted coe�cients.

To circumvent this problem, we observe that the left-hand side of the inequal-
ity (4.2) is additive while the right-hand side behaves telescopically when two neg-
ative semide�nite cobordisms are composed. Conversely, one can also show that



Heegaard Floer correction terms, with a twist 19

the left-hand side splits appropriately when W is cut along a separating 3-manifold
in its interior. It would therefore be enough to prove Theorem 4.1 for cobordisms
consisting of single handle attachments. In fact, this strategy works quite well
since Proposition 4.3 covers 1- and 3-handles, while Proposition 4.8 allows us to
run the standard argument mentioned above. What remains are 2-handle attach-
ments along knots in essential homology classes. It turns out that these actually
cannot be treated separately but have to be paired with 1-handles. It is at this point
that the assumption on the map H1.Y IQ/ ! H1.W IQ/ becomes relevant and we
are forced to work with the coe�cient systems that appear in Proposition 4.6.

As a last preparatory remark, we can restrict our attention to the case when
H1.Y IQ/ ! H1.W IQ/ is not only injective but actually an isomorphism. Indeed,
if it is not surjective, say of corank k, then we perform surgery on an embedded
circle C � W n @W which represents a non-zero class in H1.W IQ/ not contained
in the image of H1.Y IQ/. The resulting cobordism W 0 has the same boundary
as W and is easily seen to satisfy b˙

2 .W 0/ D b˙
2 .W / and the map H1.Y IQ/ !

H1.W 0IQ/ has corank k � 1. Moreover, the restriction of s to W n �C extends
to W 0 and any such extension s

0 satis�es c2
1.s0/ D c2

1 .s/. In particular, the left-
hand side of (4.2) is the same for .W; s/ and .W 0; s0/. By successive surgeries we
can therefore cut down H1.W IQ/ to the image of H1.Y IQ/.

We now begin the actual proof. We choose a handle decomposition of W and
put it in standard ordering as de�ned by Ozsváth and Szabó (see [16, p. 243]). This
means that the handles are attached in order of increasing index and, moreover, the
2-handle attachments are ordered such that b1 of the intermediate 3-manifolds �rst
decreases, then stays constant, and �nally increases. For the existence of such a
handle decomposition, see [16, p. 244]. We cut W into two pieces W12[N W23 such
that W12 contains all 1-handles and the decreasing 2-handles while W23 contains
the remaining 2- and 3-handles. Observe that the b1-decreasing 2-handles are
exactly those that are attached along essential knots. So by the above remarks
Theorem 4.1 holds for W23 and we can restrict our attention to W12. Since we are
assuming that H1.Y IQ/ ! H1.W IQ/ is an isomorphism, there must be exactly
as many b1-decreasing 2-handles as there are 1-handles, say we have n each.
Our goal is to show that .W12; s/ induces an isomorphism between HF1.Y; t/

and HF1.N; tN / where tN D sjN is easily seen to be torsion. We further
decompose W12 into pieces V1 and V2 along Y #Sn where Vi contains all i-handles.
Note that the attaching circles K1; : : : ; Kn � Y #Sn of the 2-handles span the
subspace H1.SnIQ/ � H1.Y #SnIQ/. In particular, W12 is a rational homology
cobordism which, in turn, implies that the twisted cobordism map has the correct
functoriality. To show that it is an isomorphism we invoke the composition law
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for twisted coe�cients [10, Section 2.3]. On the one hand, we observe that in the
identi�cation of Example 4.5 (iii) we have

F 1
V1;s.HF1.Y; t// Š HF1.Y; t/ ˝ ƒnH2.Sn/;

which follows from the de�nition of the maps induces by 1-handles,
see [20, Section 4.3]. On the other hand, Proposition 4.6 applies to the 2-han-
dles with V D H2.Sn/ and shows that F 1

V2;s maps the image of F 1
V1;s isomorphi-

cally onto HF1.N; tN /. We can therefore conclude that we have an isomorphism

F 1W HF1.Y; t/
Š
! HF1.N; tN /, which �nishes the proof. �

5. Intersection forms of smooth �llings

We already mentioned that Theorem 1.1 imposes restrictions on the possible in-
tersection forms of smooth 4-manifolds with �xed boundary. We will now make
the nature of these restrictions more precise. We begin with some general re-
marks about non-degenerate symmetric bilinear forms over the integers. Let L be
a free Abelian group of rank n, equipped with an integer-valued symmetric bilin-
ear form S and let d D jdet S j. Recall that S is called non-degenerate if d ¤ 0

and unimodular if d D 1. We will refer to the expressions of the form S.x; x/,
x 2 L, as squares of S . We say that S is semide�nite (or simply de�nite in the
non-degenerate case) if all non-zero squares have the same sign, and inde�nite

otherwise. Furthermore, S is called even if all squares are even, and odd oth-
erwise. If S is non-degenerate then L canonically embeds into the dual group

L� D HomZ.L;Z/ as a subgroup of index d . Consequently, we can identify L

with its image in L� and extend S to a rational-valued form on L� as follows. For
any � 2 L� we have d� 2 L and we set

S�.�; �/ D 1
d2 S.d�; d�/ D 1

d
�.d�/ 2 1

d
Z � Q:

for any pair �; � 2 L�.

Remark 5.1. A less intrinsic but more geometric picture emerges when we embed
L as a lattice in Rn in such a way that S corresponds to the standard inner
product with the same signature as S (which is possible by Sylvester’s law of
inertia). After �xing such an embedding L � Rn one can conveniently think
of L� as the dual lattice ¹y 2 Rn j x � y 2 Z for all x 2 Lº leading to a chain of
inclusions L � L� � Rn and both S and S� are given by the relevant inner
product on Rn.



Heegaard Floer correction terms, with a twist 21

The main purpose for introducing L� is that it serves as a host for the charac-

teristic covectors of S which form the set

��.S/ D ¹� 2 L� j �.x/ � S.x; x/ mod 2 for all x 2 Lº :

From these we extract a numerical invariant

m.S/ D min ¹jS�.�; �/j j � 2 ��.S/º 2 Q

which, in the case of a de�nite lattice in Rn, measures the length of the shortest
characteristic covector of S . As we will see, this is a rather powerful invariant
of S . For mainly cosmetic reasons we will consider the equivalent invariant

d.S/ D n � m.S/ 2 Q: (5.1)

that we call the defect of S .2 To the best of our knowledge these invariants �rst
appeared implicitly in the work of Elkies [4] and [5], which was inspired by
Donaldson’s theorem. We will say more about their algebraic signi�cance after
explaining the relation to Theorem 1.1.

Now let Z be a smooth �lling of a �xed 3-manifold Y and let ker.QZ/ be the
kernel of the intersection form on H2.Z/. The quotient LZ D H2.Z/= ker.QZ/

is easily seen to be free Abelian of rank bC
2 .Z/ C b�

2 .Z/ and QZ descends to
a non-degenerate form on LZ , henceforth denoted by SZ, which we will refer
to as the non-degenerate intersection form of Z. Together with the observation
that ker.QZ/ contains the image of H2.Y / as a subgroup of full rank, the universal
coe�cient theorem gives identi�cations

L�
Z Š

®
� 2 H 2.Z/

ˇ̌
h�; xi D 0 for all x 2 ker.QZ/

¯
=torsion

D
®
� 2 H 2.Z/

ˇ̌
�jY 2 H 2.Y / is torsion

¯
=torsion:

Moreover, an inspection of the homology sequence of the pair shows that L�
Z=LZ

injects into the torsion subgroup of H1.Y / so that jdet.SZ/j is bounded by the
order of the torsion subgroup of H1.Y /. In order to state a more algebraic
reformulation of Theorem 1.1 we introduce the notation

ı.Y / D max ¹ı.Y; t/ j t 2 Spinc.Y / torsionº

which gives an invariant that does not depend on any spinc structure but only on Y .

2 While defects of lattices tend to show up quite frequently in relation questions surrounding
Donaldson’s theorem, there does not seem to be a standard terminology. We follow [6, p. 8].
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Theorem 5.2. Let Z be a smooth �lling of Y . If bC
2 .Z/ D 0, then any character-

istic covector � 2 ��.SZ/ satis�es

b�
2 .Z/ C �2 � ı.Y /:

In particular, the defect of SZ satis�es d.SZ/ � ı.Y /.

Proof. This is an immediate consequence of Theorem 1.1 once we understand the
relationship between spinc structures on Z and characteristic covectors of SZ.
Since this is common folklore, we shall be brief. Using the identi�cation of L�

Z

in (5.2), each spinc structure s 2 Spinc.Z/ with c1.sjY / torsion gives rise to an
element �s 2 L�

Z . Moreover, we have �s.x/ D hc1.s/; Nxi for any Nx 2 H2.Z/

representing x 2 LZ and, since c1.s/ reduces to w2.Z/ which evaluates as the
mod 2 self-intersections, it follows that �s 2 ��.SZ/. One readily checks that
��.SZ/ has a free and transitive action of 2L�

Z which can be realised by the action
of H 2.Z/ on Spinc.Z/. Hence, all characteristic covectors have the form �s for
some s. What is left to check is that �2

s
D c2

1 .s/ which, in essence, follows
from Poincaré duality after unraveling the de�nition. Theorem 1.1 then yields the
inequality b�

2 .Z/ C �2
s

� ı.Y; t/ where t D sjY . Taking maxima on both sides
leads to the desired inequalities. �

Having identi�ed the defect of the non-degenerate intersection form as the
algebraic invariant of semi-de�nite �llings obstructed by the ı-invariant, and thus
by the twisted correction terms, we now take a closer look from an algebraic
perspective. We restrict our attention to a negative de�nite form S of rank n.
An important feature is that the defect d.S/ a priori lies in the bounded range

0 � d.S/ � n: (5.2)

The right inequality holds by de�nition with equality precisely when S is even
(both conditions are equivalent to 0 2 ��.S/). The left inequality was �rst proved
by Elkies [4] for unimodular forms and was extended by Owens and Strle [15] to the
general case. More interestingly, their results also show that the equality d.S/ D 0

characterises the trivial lattice S Š In D n h�1i. This already shows that
the defect is a powerful invariant. Theorem 5.2 together with (5.2) yields the
following.

Corollary 5.3. If Y has a smooth, negative semide�nite �lling, then ı.Y / � 0.

Recall that any negative de�nite form can be decomposed as S D S0˚Ir where
S0 is minimal in the sense that it has no element of square �1. The number r
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and the isometry class of S0 are uniquely determined by S . Since the defect is
clearly additive under orthogonal sums and d.Ir / D 0, we see that d.S/ D d.S0/.
An immediate consequence of this is that an upper bound on the defect does not
imply an upper bound for the rank. However, if S happens to be even (and thus
minimal), then we have d.S/ D rk.S/ as noted above. Using this we get the
following re�nement of Theorem 1.2.

Corollary 5.4. Let Z be a smooth �lling of Y . Suppose that SZ is negative de�nite

and splits as SZ Š S0 ˚ Ir with S0 minimal and even. Then rk.S0/ � ı.Y /. In

particular, this leaves a �nite list of possible isometry classes for S0.

Proof. Since S0 is even, its rank agrees with d.S0/ D d.SZ/ and the bound
follows from Theorem 5.2. Moreover, possibly up to a sign the determinant of S0

agrees with that of SZ, which is bounded in absolute value by the order of the
torsion subgroup of H1.Y /. Since there are only �nitely many isomorphism
classes of de�nite forms with given rank and determinant (see [13, p. 18], for
example), the result follows. �

It is an interesting question to what extent the assumption that S0 is even is
necessary in Corollary 5.4. In essence, this was already asked by Elkies [5, p. 650].

Question 5.5 (Elkies). Let S0 be a minimal (unimodular) lattice. Does an upper

bound on d.S0/ imply an upper bound on the rank of S0?

As far as we know, this question is still open. Some evidence for an a�rmative
answer is available in the unimodular case. It should be noted that the defect of
a unimodular lattice, as we have de�ned it, is divisible by 8 as a consequence of
van der Blij’s lemma [13, p. 24], so the �rst possible defects are 0, 8, 16, and 24.
Elkies showed that there are exactly 14 non-trivial minimal unimodular lattices
with d.L0/ � 8, see [4, 5]; in addition, rank bounds are known for d.L0/ � 24,
see [9] and [14]. Curiously, the lattices with low defect are at the opposite end of
the spectrum as even lattices, which realize the highest possible defect for a given
rank, for which the rank bound is obvious. Lastly, we remark that the question
appears to be completely uncharted territory in the non-unimodular case.

6. Computations and applications

After the abstract algebraic considerations in Section 5 we now turn to more
concrete problems. We begin by giving a computation of the twisted correction
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terms of †g � S1 for a surface †g of arbitrary genus g. For g � 1 these are
arguably the simplest examples of 3-manifolds with non-standard HF1 and as
such they are not accessible to the previously available (untwisted) correction
terms.

6.1. A surface times a circle. Recall from Example 3.5 that
N
d.S1�S2; t0/ D �1

2

and
N
d.T 3; t0/ D 1

2
. It turns out that this pattern continues as follows.

Theorem 6.1. Let †g be a closed, oriented surface of genus g. Then the unique

torsion spinc structure t0 on the product †g � S1 satis�es

N
d.†g � S1; t0/ D

8
<
:

�1
2

g even,

C1
2

g odd.

In other words, we have

ı.†g � S1/ D ı.†g � S1; t0/ D 8
˙

g
2

�

where d�e is the ceiling function.

We split the proof into two parts. We �rst exhibit an explicit �lling that realises
the lower bound ı.†g � S1/. The second part is an inductive argument based on
a computation of

N
d.†2 � S1; t0/ which will occupy most of the present section.

Proposition 6.2. †g �S1 has a smooth �lling Zg with even, negative semide�nite

intersection form of rank b�
2 .Z/ D 8

˙
g
2

�
. In particular, we have ı.†g � S1/ �

8
˙

g
2

�
.

In Lemma 6.9 below we will also determine the intersection form of the
4-manifold Zg constructed below.

Proof. We �rst construct a 4-manifold Z0
g as the complement of a (symplectic)

genus-g surface of self-intersection 0 in a blow-up of CP2. We start with a
con�guration of g C 1 complex curves of which g are smooth generic conics
in a pencil, and the remaining one is a generic line. This con�guration has 2g

double points and four points of multiplicity g. One can resolve the double points
in the symplectic category, hence obtaining a symplectic curve with four points of
multiplicity 2g. We now blow up CP2 at these points, and at 4gC1 generic points
of the curve. Taking the proper transform gives a smooth symplectic curve C of
self-intersection 0 in X D CP2#.4g C 5/CP2 in the homology class

ŒC � D .2g C 1/h � g.e1 C � � � C e4/ � .e5 C � � � C e4gC5/:
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The canonical divisor KX of X is Poincaré dual to e1 C � � � C e4gC5 � 3h, hence
the adjunction formula reads

0 D hKX ; C i C C 2 C �.C / D 4g � .4g C 1/ � .2g C 1/ C 2 � 2g.C /;

showing that C has genus g.C / D g. In particular, the complement Z0
g of an

open, regular neighbourhood of C in X is a �lling of †g � S1 and we claim that
for odd g it has all the required properties. In fact, it is negative semide�nite, since
C 2 D 0 and bC

2 .X/ D 1; moreover, since b�
2 .X/ D 4g C 5, we have that

b�
2 .Z0

g/ D b�
2 .X/ � 1 D 4g C 4:

Finally, ŒC � is easily seen to be characteristic in H2.X/ if g is odd, hence the
intersection form on the complement is even: in fact, if x 2 ŒC �?, then x2 �

x � ŒC � D 0.
For odd g we can therefore take Zg D Z0

g . For even g use the following trick.
Let Vg be a cobordism from †g to †gC1 obtained by attaching a 3-dimensional
1-handle and let Wg D Vg � S1. Then the intersection form on H2.Wg/ is trivial
and H1.†g � S1/ injects into H1.Wg/. In particular, a Mayer–Vietoris argument
shows that if Z is a �lling of †g � S1 with bC

2 .Z/ D 0, then Z [ Wg is any �lling
of †gC1 � S1 with bC

2 .Z [ Wg/ D 0 and b�
2 .Z [ Wg/ D b�

2 .Z/. Moreover, if Z

has an even intersection form, then so does Z [ Wg . So for g even and positive
we let Zg D Zg�1 [ Wg�1. �

The second ingredient for our proof of Theorem 6.1 is the following special
case.

Proposition 6.3. The correction term of †2 � S1 with its unique torsion spinc

structure t0 is
N
d.†2 � S1; t0/ D �1

2
.

The computation is lengthy and technical and we postpone it until Section 6.1.1.
We �rst explain how it �ts into the proof of Theorem 6.1.

Proof of Theorem 6.1. For brevity we write Yg D †g � S1 and omit the unique
torsion spinc structure from the notation. We proceed by induction on g. As
mentioned in Example 3.5, the computations of

N
d.Yg/ for g D 0 or 1 are covered

in the literature, and the case g D 2 is obtained in Proposition 6.3 above.
Suppose now that g > 2. There is a cobordism from Yg to Yg�2#Y2 obtained

by attaching a single 2-handle along a null-homologous knot with framing 0. This
is shown in Figure 1: in the top picture, the dashed curve represents the attaching
curve of the 2-handle, and the other curves give a surgery presentation for Yg ; the
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bottom picture is obtained from the one on top by a handleslide, and it shows that
the positive boundary of the cobordism is Yg�2#Y2.

g�2‚ …„ ƒ

: : :

00

g�2‚ …„ ƒ

: : :

00

Figure 1. The handleslide.

In particular, the assumptions of Theorem 4.1 are satis�ed by this cobordism,
and applying additivity we get

2
N
d.Yg/ C b1.Yg/ � 2

N
d.Yg�2#Y2/ C b1.Yg�2#Y2/

D 2
N
d.Yg�2/ C 2

N
d.Y2/ C b1.Yg�2#Y2/;

showing that
N
d.Yg/ �

N
d.Yg�2/. On the other hand, Proposition 6.2 ensures that Y

bounds an even, negative semide�nite 4-manifold Z with b�
2 .Z/ D 4g C 4 if g is

odd and b�
2 .Z/ D 4g if g is even. The fact that Z is even implies that we can �nd

a spinc strucutre s 2 Spinc.Z/ with c1.s/ torsion; hence, applying Theorem 1.1
to .Z; s/, we obtain

0 C b�
2 .Z/ � 4

N
d.Yg / C 2b1.Yg/;

from which we get
N
d.Yg/ � 1

2
for g odd, and

N
d.Yg / � �1

2
for g even. �

6.1.1. Computation of
N
d.†2�S 1; t0/. This subsection is devoted to the proof of

Proposition 6.3. In what follows, we will denote by K the right-handed trefoil T2;3,
by K2 the connected sum of two copies of K, i.e. K2 D T2;3#T2;3. Also, we will
denote by M.a; b; c; d/ the manifold obtained by doing surgery along the framed
link L in Figure 2. Notice that the 0-framed component of L is distinguished,
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since it is the only component of Seifert genus 2 in the complement of the other
components.

a

b

c

d

0

Figure 2. A surgery diagram for M.a; b; c; d /.

We note here the following identi�cations:

M.1; 1; 1; 1/ Š S3
0 .K/; M.0; 1; 1; 1/ Š S3

0 .K/#.S2 � S1/;

M.1; 1; 1; 1/ Š S3
0 .K2/; M.0; 0; 0; 1/ Š T 3#.S2 � S1/;

M.0; 0; 1; 1/ Š T 3; M.0; 0; 0; 0/ Š †2 � S1:

When a 3-manifold admits a unique torsion spinc structure (and this is the case
for all manifolds in this section, except for one, in the proof of Lemma 6.6), we
suppress the spinc structure from the notation.

Remark 6.4. Note that the connected sum formula for Heegaard Floer homology
with twisted coe�cients implies that taking a connected sum with a (twisted
coe�cients) L-space .Y; t/ (i.e. HFC

red.Y; t/ D 0) corresponds to a degree-shift
by

N
d.Y; t/; in particular, since S2 � S1 is a twisted coe�cients L-space with

correction term �1
2
, the groups HFC.M.0; 1; 1; 1// and HFC.M.0; 0; 0; 1// are

easily computed from the corresponding groups HFC.S3
0 .K// and HFC.T 3/,

respectively. These two latter groups have in fact been computed in [16, Lemma 8.6
and Proposition 8.5].

In what follows, we denote by F.s/d the ring FŒs; s�1� of Laurent polynomials
in the variable s over the �eld F, supported in degree d ; we denote by F.s; t /d the
ring FŒs; s�1; t; t�1�, supported in degree d . More generally, given a module M

over a ring R it will be convenient to write M.s/ for the module M ˝R RŒs; s�1�.
Also, given an element r 2 R, we denote by �r the projection M ! M=.r �1/M .
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Lemma 6.5. Identify FŒH2.S3
0 .K//� with F.s/. The plus-hat long exact sequence

for the twisted Heegaard Floer homology of S3
0 .K/ reads:

HFC.S3
0 .K// //

D

��

cHF.S3
0 .K// //

D

��

HFC.S3
0 .K//

D

��

T
C

� 1
2

˚ F.s/� 3
2

�
0 1�s
0 0

�

// F.s/� 1
2

˚ F.s/� 3
2

�
�s 0
0 1

�

// TC

� 1
2

˚ F.s/� 3
2

Proof. Recall that K is an L-space knot, and that in fact S3
1 .K/ is an L-space

with d.S3
1 .K// D �2. It follows that HFC.S3

1 .K// D HFC.S3
1 .K// D T

C
�2 and

cHF.S3
1 .K// D cHF.S3

1 .K// D F�2.

Consider the surgery exact triangle associated to 0-surgery along K; since the
hat-plus long exact sequence is natural with respect to cobordisms, this triangle
�ts into a long exact sequence of triangles as follows:

:::

��

:::

��

:::

��

� � � // HFC.S3/.s/ //

��

cHF.S3/.s/ //

��

HFC.S3/.s/

��

// � � �

� � � // HFC.S3
0 .K// //

��

cHF.S3
0 .K// //

��

HFC.S3
0 .K//

��

// � � �

� � � // HFC.S3
1 .K//.s/ //

��

cHF.S3
1 .K//.s/ //

��

HFC.S3
1 .K//.s/ //

��

� � �

:::
:::

:::

Observe that the horizontal maps from plus to hat have degree C1, the next
ones have degree 0 and the following ones have degree �2; that the vertical maps
from S3

1 .K/ to S3 are a sum of maps of non-negative degree, while all the other
ones involving the torsion spinc structure on S3

0 .K/ have degree �1
2
. Finally,

since HF1.S3
0 .K// D T

1, we also obtain that HFC.S3
0 .K// contains a single

tower. It follows that the vertical map HFC.S3
1 .K//.s/ ! HFC.S3/ is (up to a

sign) multiplication by U.1� t /. An easy diagram chase completes the proof. �
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Lemma 6.6. Identify FŒH2.S3
0 .K2//� with F D F.s/. The plus-hat long exact

sequence for the twisted Heegaard Floer homology of S3
0 .K2/ in the torsion spinc

structure reads:

HFC.S3
0 .K2// //

D

��

cHF.S3
0 .K2// //

D

��

HFC.S3
0 .K2//

D

��

T
C

� 1
2

˚ F� 3
2

˚ F� 5
2

0
@

0 1�s 0
0 0 1
0 0 0
0 0 0

1
A

// F� 1
2

˚ F2

� 3
2

˚ F� 5
2

�
�s 0 0 0
0 0 1 0
0 0 0 1

�

// TC

� 1
2

˚ F� 3
2

˚ F� 5
2

Proof. This is analogous to the proof of Lemma 6.5, hence here we only outline
the di�erences. K2 is not an L-space knot, but the Heegaard Floer homology of
S3

12.K2/ was computed in [17, Lemma 4.1], at least in the spinc structure which is
relevant for the computation of HFC.S3

0 .K2//, and which is relevant to us (called
Q.0/ in loc. cit.). Namely:

HFC.S3
12.K2/; Q.0// D F� 3

4
˚ T

C

� 3
4

Instead of using the surgery exact triangle for C1-surgery, we use the triangle
for twisted C12-surgery, where the degrees of the vertical maps are �9

4
(from

0-surgery to 12-surgery), �11
4

(from 12-surgery to S3) and �1
2

(from S3 to the
0-surgery). A diagram chase as above proves the lemma. �

Lemma 6.7. HFC
red.M.0; 1; 1; 1// is supported in degrees at most �2, and

N
d.M.0; 1; 1; 1// D �1:

Proof. We need to set up some notation. Let

Y D M.0; 1; 1; 1/I

H2.Y / is generated by classes s and t , where s is represented by a capped-o�
Seifert surface for the marked component of L, and t is represented by a capped-
o� Seifert surface for the �rst component of L (i.e. the one with framing 0 in this
surgery). This identi�es FŒH2.Y /� with F.s; t /.

Since Y �ts into an surgery triangle with S3
0 .K/ D M.1; 1; 1; 1/ and

S3
0 .K2/ D M.1; 1; 1; 1/, we have the following long exact sequence of exact
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triangles, as in the proof of Lemma 6.5:

:::

��

:::

��

:::

��

� � � // HFC.S3
0 .K//.t/

˛ //

��

cHF.S3
0 .K//.t/

ˇ //

��

HFC.S3
0 .K//.t/

��

// � � �

� � � // HFC.Y / //

��

cHF.Y / //

��

HFC.Y /

��

// � � �

� � � // HFC.S3
0 .K2//.t /

˛2
//

F C

��

cHF.S3
0 .K2//.t /

ˇ2

//

yF
��

HFC.S3
0 .K2//.t / //

F C

��

� � �

:::
:::

:::

Notice that the “new” variable t is the one associated with the second Seifert
surface, since the �rst Seifert surface generates the homology of S3

0 .K/ and
S3

0 .K2/.
Notice that, since HFC

red.S3
0 .K// is supported in degree �3

2
and the map

from HFC.S3
0 .K// to HFC.Y / has degree �1

2
, the image of HFC.S3

0 .K//.t/ in
HFC

red.Y / is supported in degrees at most �2. In order to prove the statement, it is
therefore enough to prove that the image of HFC

red.Y / in HFC.S3
0 .K2//.t / is sup-

ported in degrees at most �5
2

since the map HFC.Y / ! HFC.S3
0 .K2//.t /, too,

has degree �1
2
. This is in turn equivalent to showing that the vertical map starting

from F.s; t /� 3
2

� HFC.S3
0 .K2// is nonzero. Let x0 WD 1 2 F.s; t /� 3

2
.

For degree reasons, the image F C.x0/ of x0 in HFC.S3
0 .K// lies in the reduced

part, which is a copy of F.s; t /. Hence, it is torsion if and only if it vanishes; our
assumption becomes that F C.x0/ D 0.

Observe that the map F C restricts to multiplication by ˙1 on the tower TC.t /,
as in the proof of Lemma 6.5. Since the bottom-most element of the tower is in
the image of ˇ2, by commutativity of the diagram, it follows that the restriction
of yF to the subspace F.s; t /� 1

2
of cHF.S3

0 .K2// does not vanish.

For the same reason, since ˛2.x0/ lies in the same subspace, we obtain that
˛.F C.x0// does not vanish either, hence F C.x0/ ¤ 0, as required.

Finally, notice that the image of F C cannot contain the bottom-most element of
the tower of HFC.S3

0 .K//: the restriction of F C onto the tower of HFC.S3
0 .K2//

certainly does not, and the reduced part is supported in lower degrees. �
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Proof of Proposition 6.3. The argument here will be similar to the one seen in
the proofs of the three lemmas above. We �rst claim that HFC

red.M.0; 0; 1; 1//

is supported in degrees at most �3
2

and that
N
d.M.0; 0; 1; 1// D �3

2
: in fact,

M.0; 0; 1; 1/ �ts into a surgery triple with M.0; 1; 1; 1/ and M.0; 1; 1; 1/ Š

S3
0 .K/#.S2 � S1/, which gives the following long exact sequence in Heegaard

Floer homology:

� � � �! HFC.M.0; 1; 1; 1//.t / �! HFC.M.0; 0; 1; 1//

�! HFC.M.0; 1; 1; 1//.t / �! � � � :

Here t is the new generator corresponding to the new class, and needs not be
confused with the t used above.

However, combining Lemma 6.5 and Remark 6.4 we obtain that the reduced
part of the leftmost group is supported in degrees at most �2 and the same holds for
the rightmost group, thanks to Lemma 6.7. The same argument as above shows
that HFC

red.M.0; 0; 1; 1// is supported in degrees at most �3
2

and allows for the
computation of

N
d .

An analogous computation, combined with [16, Proposition 8.5], shows that
HFC

red.M.0; 0; 0; 1// is supported in negative degrees and that
N
d.M.0; 0; 0; 1// D

0; this time, however, the map from the tower of HFC.M.0; 0; 1; 1//.t / is no longer
injective, so one needs to be more careful. Let us now look at the surgery triple
involving M.0; 0; 0; 0/, M.0; 0; 0; 1/ and M.0; 0; 0; 1/: we have

� � � �! HFC.M.0; 0; 0; 1//.t / �! HFC.M.0; 0; 0; 0//

�! HFC.M.0; 0; 0; 1//.t / �! � � � :

and, as above, using Remark 6.4 and the computation of HFC.T 3/, we conclude
the proof of the proposition. �

6.1.2. Intersection forms of �llings of †g � S 1. With Theorems 5.2 and 6.1
at our disposal, we have a concrete restriction for intersection forms of smooth
�llings of †g � S1 on which we now elaborate. Note that since H1.†g � S1/

is torsion-free, the non-degenerate intersection form SZ of any �lling Z is auto-
matically unimodular. Furthermore, if Z is smooth and SZ is negative de�nite,
which we henceforth assume, then its defect is bounded by d.SZ/ � 8

˙
g
2

�
. As

before we write SZ as S0 ˚Ir with S0 minimal and ask and ask what the possibil-
ities for S0 are. Obviously, the trivial form is realised by †g � D2. In the proof of
Theorem 6.1 we constructed a �lling Zg with a more interesting intersection form
which we now determine.
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Example 6.8. Recall that the vectors of the form ei Cej and 1
2
.e1 C� � �Cen/ in Rn

generate a lattice �n � Rn which is unimodular for n D 4k, even for n D 8k, and
odd for n D 8k C 4. Moreover, one can show that �4k is irreducible (hence
minimal) and satis�es d.�8k/ D d.�8kC4/ D 8k. Recall that Zg was obtained as
the complement of a genus g surface in CP2#.4g C 5/CP2 in the homology class
x D .2g C 1/h � g.e1 C � � �C e4/ � .e5 C � � �C e4gC5/. By Lemma 6.9 below SZg

is isomorphic to �4gC4. Moreover, for any h < g we can extend Zh to a �lling
of Zg by adding a cobordism as in the proof of Theorem 6.1. By blowing up these
�llings we can realise the forms �4hC4 ˚ Ir with h � g and r � 0 by smooth
�llings of †g � S1.

Lemma 6.9. Fix a positive integer g (not necessarily odd), and let hxi be the

sublattice of H2.CP2#.4g C 5/CP2/ generated by the class

x D .2g C 1/h � g.e1 C e2 C e3 C e4/ � .e5 C � � � C e4gC5/:

The lattice Q D hxi?=hxi is of type �4gC4.

Proof. For brevity we let n D 4g C 4. As seen in Example 6.8, Q is the non-
degenerate intersection form of the 4-manifold Zg whose boundary has torsion-
free homology. Hence, Q is unimodular. Moreover, Q is a root lattice, since the
associated vector space is generated by the set R of roots of Q (i.e. elements of
square �2)

R D ¹e1 � e2; e2 � e3; e3 � e4; e5 � e6; : : : ; en � enC1; h � e1 � e2 � e5º:

�

�

� � � � �
e2�e3 h�e1�e2�e5 e5�e6

e1�e2

� � �

e3�e4

en�1�en en�enC1
❑❑

❑❑
❑❑

❑❑
❑❑

ss
ss
ss
ss
ss

The roots in R intersect according to the Dynkin diagram Dn shown above;
therefore, R generates a sublattice Q0 � Q of index 2 isomorphic to the lattice Dn.
We think of Dn as sitting in Rn (with orthonormal basis ¹f1; : : : ; fnº), generated
by the roots ¹f1 C f2; f1 � f2; : : : ; fn�1 � fnº.
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In particular, the two “short legs” of the Dynkin diagram are f1Cf2 and f1�f2.
Recall that there are only two unimodular overlattices of Dn up to isomorphism:
Zn and �n, both sitting in Rn; see [3, Section 1.4]. The overlattice is Zn if and
only if it contains f1, i.e. only if it contains half of the sum of the two “short
legs” of the Dynkin diagram, and it is �n otherwise. Since the action of the Weyl
group on the set of fundamental sets of roots is transitive, we may assume that the
isomorphism between Q0 and Dn identi�es the two chosen bases. The two short
legs of R are e1 � e2 and e3 � e4, and their sum y is represented by vectors y C X

none of which divisible by 2 in Q: if k is odd hh; y C kxi is odd, and if k is even
he1; y C khi is odd. Hence Q is isomorphic to �n. �

For �llings of T 3 and †2 � S1 we have d.SZ/ D d.S0/ � 8. As mentioned
at the end of Section 5, this leaves 14 possibilities for S0, assuming that it is non-
trivial (see Elkies’ list in [4, p. 326]). Among these we �nd �8 Š E8 and �12 from
Example 6.8 above. It is well-known that E8 is the only non-trivial even lattice of
rank at most 8. As an immediate consequence we get a slightly stronger version
of Theorem 1.3.

Corollary 6.10. Let Z be a smooth �lling of T 3 or †2 � S1 with SZ negative

de�nite of the form S0 ˚ Ir with S0 even. Then S0 is either trivial or isomorphic

to E8, and both cases occur.

All other lattices in Elkies’ list are odd of rank at least 12. We have seen in
Example 6.8 that �12 is realised by a smooth �lling of †2 � S1. However, we
do not know whether it also appears for T 3; Theorem 5.2 does not provide any
obstruction in this case. We therefore ask:

Question 6.11. Can �12 be realised by smooth �llings of T 3?

Of course, there is the more general question of which odd lattices in Elkies’
list, if any, appear for T 3. This should be compared to Frøyshov’s work on �llings
of the Poincaré sphere [7, Proposition 2].

Our �ndings about T 3 and †2 � S1 leave the possibility that Theorem 5.2 is
the only obstruction for realising even lattices. In order to test this we consider
†3 � S1 and †4 � S1 for which d.SZ/ � 16. The only non-trivial even lattices of
rank at most 16 are E8, E8 ˚ E8, and �16 (see [2, Table 16.7]). In Example 6.8 we
have realised all but E8 ˚ E8.

Question 6.12. Can E8˚E8 be realised by a smooth �lling of †3�S1 or †4�S1?
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In the same spirit one may wonder which of the 24 even lattices of rank 24
(see [2, Chapter 18] for a list) are realised by �llings of †5�S1 or †6. For example:

Question 6.13. Can the Leech lattice be realised by a smooth �lling of †5 � S1?

Another way to look at this question is which is the simplest 3-manifold
that can appear on the boundary of a smooth 4-manifold whose non-degenerate
intersection form is a given lattice, for example the Leech lattice. In this special
case †5 � S1 might be considered a satisfactory answer.

If we increase the genus further, thereby further weakening our bound on
d.SZ/, we soon enter uncharted algebraic territory. As mention above, up to
defect 24 there is a manageable list of even unimodular lattices and the number of
minimal lattices is known to be �nite but possibly large [9, Chapter 5]. Beyond
this range the number of lattices allowed by Theorem 5.2 explodes, rendering any
attempt of an enumeration extremely di�cult if not impossible. As a consequence,
without further obstructions there is little hope for a classi�cation of all lattices
that can appear as non-degenerate intersection forms of �llings of 3-manifolds Y

for which ı.Y / is large.

6.2. Embeddings into closed 4-manifolds. In this section, P will be a �xed
integral homology sphere such that d WD d.P; t0/ ¤ 0 for the unique spinc

structure t0 on P . In what follows, the spinc structure will be omitted from
the notation whenever possible; also, nP will denote the connected sum of jnj

copies of P or �P (i.e. P with the reversed orientation) depending on the
sign of n. For example, the Poincaré sphere satis�es these requirements, since
d.S3

C1.T2;3// D �2.

Proposition 6.14. Fix a 3-manifold Y and a closed, smooth 4-manifold X with

de�nite intersection form. There exists an integer N , depending only on Y , such

that Yn D Y #nP does not embed in X as a separating hypersurface for jnj > N .

Proof. Notice that the statement is independent of the orientation of P , thus we
can pick the orientation of P for which d > 0. In particular, as P is an integral
homology sphere, d is an even integer, hence d � 2. Similarly, we can assume
that X is negative de�nite.

For each n there is an isomorphism Spinc.Y / ! Spinc.Yn/ de�ned by t 7! t#tn
that carries torsion spinc structures to torsion spinc structures, where tn is the
unique spinc structure on nP .
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Now assume that there is a separating embedding Yn ,! X . Let Z and Z0 be
the closures of the connected components of XnYn, labelled so that @Z D �@Z0 D

Yn. Notice that both Z and Z0 are negative semide�nite so that Corollary 5.3 yields
ı.Yn/ � 0 and also ı.�Yn/ � 0. Since correction terms are additive, so is ı, hence

0 � ı.Yn/ D ı.Y / C 4nd and 0 � ı.�Yn/ D ı.�Y / � 4nd:

Since d � 2, it follows that �ı.Y /=4d � n � ı.�Y /=4d . We can now choose

N D
j

max
°ı.Y /

8
;

ı.�Y /

8

±k
: �

Note that if ı.Y / and ı.�Y / are both negative, then N can be chosen to be �1,
hence Yn never embeds in a closed de�nite 4-manifold.

Example 6.15. Let Y D †g � S1 and P the Poincaré homology sphere; since
ı.Y / D 8dg

2
e and d.P / D �2, we get that Y #nP does not embed in a negative

de�nite 4-manifold as a separating hypersurface if n > dg
2

e. In particular, when
Y is either the 3-torus T 3 or †2 � S1, this shows that Y #nP cannot be embedded
in a negative de�nite 4-manifold X whenever n � 2.
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