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1. Introduction

This paper is motivated by the main result of [1] which shows that a certain inclu-

sion of in�nite iterated crossed product algebras associated to a �nite-dimensional

Hopf algebra H is a crossed product by the Drinfeld double D.H/ of H . The

hardest step in the proof was the identi�cation of an explicit algebra embedding

of D.H/ into the triple crossed product H �
Ì H Ì H �. This required the machin-

ery of Jones’ planar algebras to derive (while verifying it is merely an exercise in

Sweedler’s notation calisthenics).

For the rest of the paper, k will be an arbitrary algebraically closed �eld

and H D .H; �; �; �; �; S/ a �nite-dimensional, semisimple and cosemisimple

Hopf algebra over k. Associated to H is a planar algebra over k denoted by

P D P.H/. The algebras P0;˙ and P1;˙ are identi�ed with k and for k � 2,

Pk;C Š H Ì H �
Ì H Ì : : : and Pk;� Š H �

Ì H Ì H �
Ì : : : as algebras (where

there are k � 1 alternating factors, and for the natural actions of H � on H and H

on H � de�ned by f:a D f .a2/a1 and a:f D f2.a/f1).

The embedding of D.H/ in H �
ÌH ÌH � may therefore be regarded as a map

of P.D.H//2;C into P.H �/4;C. Such maps are interesting for various reasons.

For instance, one such embedding of D.H/ into the tensor square of H Ì H �

is discussed in [8] and used in [9] to construct knot invariants in intrinsically

three-dimensional terms. We note that P.H �/4;C can be naturally regarded as a
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subalgebra of P.H �/5;C which can be identi�ed with the tensor square of H ÌH �

– both these being matrix algebras over k of size dim.H/2.

It is thus a natural question to ask whether the embedding of D.H/ into

H �
ÌH ÌH � may be extended to a planar algebra map in some canonical fashion,

and it is the a�rmative answer to this question that is one of the main results of

our paper. The other parts of the paper show that this planar algebra map is an

embedding and characterise the image.

2. Preliminaries

We review some required preliminaries before stating and proving the main theo-

rem.

2.1. Semisimple and cosemisimple Hopf algebras. The following facts about

semisimple and cosemisimple Hopf algebras (over an algebraically closed �eld k)

may be found in [12] and in [10]. They are multi-matrix algebras whose dimen-

sions, along with those of their irreducible representations, are invertible in k.

The normalised (to be 1 at the unit) traces in the left regular representations of H

and H � will be denoted by p and h respectively. These are non-degenerate traces

and are two-sided integrals, i.e., hx D �.x/h D xh and qp D q.1/p D pq for

all x 2 H; q 2 H �. Also p.h/ D 1
n

where n D dim.H/. The antipodes of H

and H � are involutive. Some formulae involving integrals that we will use with-

out explicit mention are h1 ˝ h2 D h2 ˝ h1 D Sh1 ˝ Sh2 D Sh2 ˝ Sh1 and

xh1 ˝ h2 D h1 ˝ Sxh2 along with the analogous formulae for H �.

2.2. Planar algebras. The notion of planar algebras has been evolving since the

�rst paper [4]. We elaborate a little on the notion of planar algebras that we use

in this paper which is di�erent in some respects from the planar algebras that we

have used in our previous work. Assuming familiarity with some notion of planar

algebras, we will be brief – see [5] for a more leisurely discussion of the older

version of planar algebras and [2] for the newer version.

Recall that the coloured operad of planar tangles underlies planar algebras.

Consider the set Col D ¹0; 1; 2; : : :º � ¹˙1º, elements of which we refer to as

colours. We will typically write a colour as .k; �/ where � is either C or � and

stands for C1 or �1. A tangle is a subset of the plane that is the complement of the

union of the interiors of a (possibly empty) �nite numbered collection of internal

discs in an external disc, along with the following data. Each disc has an even

number (again, possibly 0) of points marked on its boundary circles. There is also
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given a collection of disjoint curves on the tangle each of which is either a simple

closed curve, or joins a marked point on one of the circles to another such, cutting

each transversally. Each marked point on a disc must be the end-point of one of

the curves. For each disc, one of its boundary arcs (= connected components of

the complement of the marked points on the boundary circle) is distinguished and

marked with a � placed near it. Finally, there is given a chequerboard shading of

the regions (= connected components of the complement of the curves) such that

across any curve, the shading toggles. A disc with 2n points on its boundary is said

to be an .n; C/ disc or an .n; �/ disc according as its �-arc abuts a white or black

region. A tangle is said to be an .n; �/-tangle if its external disc is of colour .n; �/.

Tangles are de�ned only up to a planar isotopy preserving the �-arcs, the shading

and the numbering of the internal discs. As is usual, we will often refer to and

draw the discs as boxes with their *-arcs being their leftmost arc and sometimes

omit drawing the external disc/box.

Two basic operations that can be performed on tangles are that of renumbering

the internal discs or of substitution of one tangle into a disc of another, and the

collection of tangles along with these operations is called the coloured operad of

planar tangles. A planar algebra P is an algebra over this operad. Thus P is a

collection (i) of vector spaces indexed by Col and (ii) linear maps ZP
T indexed by

tangles, with the maps being compatible with renumbering and substitution and

satisfying the so-called non-degeneracy axiom.

We will refer to planar algebras in the older sense as restricted planar algebras.

For these, the set of colours is the subset ¹.0; ˙/; .1; C/; .2; C/; : : :º, all discs

(with the exception of .0; �/-discs) have �-arcs abutting white regions and P is a

collection of vector spaces indexed only by the subset above. Clearly, a planar

algebra naturally yields a restricted planar algebra (which we will refer to as

its restriction) in the obvious manner. The converse holds too in the following

categorical form – see Remark 3.6 of [2] (which treats the case when P has

modulus).

Proposition 1. Let Q be a restricted planar algebra. There exists a planar algebra

P with restriction isomorphic to Q. Further P is unique in the sense that if P 1

and P 2 are planar algebras with restrictions Q1 and Q2 that are isomorphic

(as restricted planar algebras) by the map �W Q1 ! Q2, then, there exists a unique

planar algebra isomorphism Q�W P 1 ! P 2 that restricts to �.

Sketch of proof. For existence, given Q, construct P as follows. De�ne P0;˙ D

Q0;˙ and for k > 0, set Pk;˙ D Qk;C.
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To de�ne the action by tangles, �rst consider for every colour .k; �/, the

tangle C .k;�/ which is de�ned to be the identity tangle of colour .k; �/ if .k; �/ 2

¹.0; ˙/; .1; C/; .2; C/; : : :º and to be the one-rotation tangle with an internal disc

of colour .k; C/ and external disc of colour .k; �/ otherwise. Also consider

the tangle D.k;�/ which is de�ned to be the identity tangle of colour .k; �/ if

.k; �/ 2 ¹.0; ˙/; .1; C/; .2; C/; : : :º and to be the inverse one-rotation tangle with

an internal disc of colour .k; �/ and external disc of colour .k; C/ otherwise.

Now, for a .k0; �0/-tangle T with internal discs of colours .k1; �1/; : : : ; .kb; �b/,

de�ne ZP
T D Z

Q

zT
where

zT D D.k0;�0/ ı T ı.D1;:::;Db/ .C .k1;�1/; C .k2;�2/; : : : ; C .kb ;�b//:

It is then easy to see that this de�nes a planar algebra structure on P (with

restriction Q), the main observation being that C .k;�/ ıD.k;�/ is the identity tangle

of colour .k; �/.

For uniqueness of P , suppose that P 1; P 2 are planar algebras with restrictions

Q1; Q2 and �W Q1 ! Q2 is a restricted planar algebra isomorphism. We need

to see the existence and uniqueness of a unique planar algebra isomorphism
Q�W P 1 ! P 2 that restricts to �.

The uniqueness of Q� is because, given a colour .k; �/ with k > 0, the equation
Q�k;� ıZP 1

C .k;�/ D ZP 2

C .k;�/ ı�k;C, must hold and ZP
C .k;�/ is an isomorphism for any

planar algebra P . As for existence, de�ne Q�k;� by the same equation and check

that this indeed gives a planar algebra isomorphism that restricts to �. �

2.3. The planar algebra of a Hopf algebra. Next, we recall the construction

from [7] of the planar algebra P.H/ associated to H . This depends on the choice

of a square root, denoted ı, of n in k, which we will assume has been made and

is �xed throughout. The planar algebra P.H/ is then de�ned to be the quotient of

the universal planar algebra on the label set L D L2;C D H by the set of relations

in Figures 1–4.

In these �gures, note that the shading is such that all the 2-boxes that occur are

of colour .2; C/. Also note that the modulus relation is a pair of relations – one

for each choice of shading the circle. Finally, note that the interchange of ı and

ı�1 between the (I) and (T) relations here and those of [7] is due to the di�erent

normalisations of h and p. Here, and in the sequel, we will use an abbreviated

version of Sweedler’s notation and represent �.a/ as a1 ˝ a2 instead of the usual
P

.a/ a.1/ ˝ a.2/.
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Figure 1. The L(inearity) and M(odulus) relations.

Figure 2. The U(nit) and I(ntegral) relations.

Figure 3. The C(ounit) and T(race) relations.
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Figure 4. The E(xchange) and A(ntipode) relations.

The main result of [7] then asserts that P.H/ is a connected, irreducible,

spherical, non-degenerate planar algebra with modulus ı and is of depth two with

dim.P.H/k;˙/ D nk�1 for every k � 1. The word ‘non-degenerate’ here refers

not to the non-degeneracy axiom (which must hold for any planar algebra) but to

the condition that the trace tangles for each colour specify non-degenerate traces.

2.4. Cabling. For any positive integer m, consider the ‘operation T 7! T .m/

on tangles’ given by m-cabling. Some care is needed in de�ning this for tangles

involving .k; �/ boxes with � D �1. Take the tangle T , ignore its shading and

thicken every strand to a cable of m parallel strands without changing the �’s. Now

introduce shading in the result such that any .k; �/ box of T changes to a .mk; �m/

box of T .m/. A little thought shows that this does give a consistent chequerboard
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shading as needed. For a detailed de�nition of ‘operation on tangles’, see [5]. This

gives an operation on planar algebras P 7! .m/P . Here, the planar algebra .m/P =

Q, say, is de�ned by setting the vector spaces Qk;˙ to be Pmk;.˙/m and the action

Z
Q
T of a tangle T on Q to be ZP

T .m/ .

In this paper we will only be interested in the 2-cabling of a planar algebra P

whose spaces are speci�ed by ..2/P /k;˙ D P2k;C for any k 2 ¹0; 1; 2; : : : º.

2.5. The Drinfeld double. For a �nite-dimensional Hopf algebra H , its Drinfeld

double, denoted D.H/, is the Hopf algebra with underlying vector space H � ˝

H and multiplication, comultiplication and antipode speci�ed by the following

formulae:

.f ˝ x/.g ˝ y/ D g1.Sx1/g3.x3/.g2f ˝ x2y/;

�.f ˝ x/ D .f1 ˝ x1/ ˝ .f2 ˝ x2/;

S.f ˝ x/ D f1.x1/f3.Sx3/.S�1f2 ˝ Sx2/:

The de�nition of D.H/ is not uniform in the literature and the above is the version

in [11].

As in [1] what we will actually use is an isomorphic variant of D.H/, which

we denote zD.H/, which also has underlying vector space H � ˝ H and structure

maps obtained by transporting the structures on D.H/ using the invertible map

S ˝ S�1W D.H/ D H � ˝ H ! H � ˝ H D zD.H/. It is easily checked that the

structure maps for zD.H/ are given by the following formulae:

.f ˝ x/.g ˝ y/ D g1.x1/g3.Sx3/.fg2 ˝ yx2/;

�.f ˝ x/ D .f2 ˝ x2/ ˝ .f1 ˝ x1/;

S.f ˝ x/ D f1.Sx1/f3.x3/.S�1f2 ˝ Sx2/:

The unit and counit of zD.H/ are given by � ˝ 1 and 1 ˝ � respectively.

If H is semisimple and cosemisimple, there are normalised two-sided integrals

p ˝ h 2 zD.H/ and h ˝ p 2 zD.H/�, and in particular, D.H/ is both semisimple

and cosemisimple. Also, in this case, since the antipode S is involutive, there is

no distinction between S and S�1.

2.6. Iterated crossed products. For a �nite-dimensional Hopf algebra H , we

de�ne the iterated crossed product algebras H Ì H �
Ì H Ì : : : (k factors) and

H �
Ì H Ì H �

Ì : : : (k factors) inductively using the natural actions of H on H �

and of H � on H . The details appear in [1] where (an appropriate generalisation

of) the following multiplication rule is also shown:

.f Ì x Ì g/.p Ì y Ì q/ D hx1; p2ihg1; y2ifp1 Ì x2y1 Ì g2q:
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3. The planar algebra morphism

The following proposition is the �rst part of the main result of this paper.

Proposition 2. Let H be a �nite-dimensional, semisimple and cosemisimple Hopf

algebra over k of dimension n D ı2 with Drinfeld double zD.H/. The map

zD.H/ Š P. zD.H//2;C �! .2/P.H �/2;C D P.H �/4;C Š H �
Ì H Ì H �

de�ned by linear extension of f ˝ a 7! f1.Sa1/f3 ÌSa2 Ìf2 extends to a unique

planar algebra morphism from P. zD.H// to .2/P.H �/.

Before beginning the proof, we clarify, in the following lemma whose proof

we omit, the isomorphisms occurring in the statement of the proposition. When

H is a Kac algebra and for the Pk;C, the proof, in detail, appears in the thesis [3].

The proof in our case is identical and proceeds by induction on k. The statement

uses the Fourier transform map FH W H ! H � de�ned by FH .a/ D ıp1.a/p2

which satis�es FH �FH D S . We will usually omit the subscript of FH and FH �

and write both as F with the argument making it clear which is meant.

Lemma 3. Let H be a �nite-dimensional, semisimple and cosemisimple Hopf

algebra over k with planar algebra P.H/. For each k � 2 the maps

H Ì H �
Ì H Ì : : : .k � 1 factors/ �! P.H/k;C

and

H �
Ì H Ì H �

Ì : : : .k � 1 factors/ �! P.H/k;�;

de�ned as in Figure 5 are algebra isomorphisms. �

Figure 5. Algebra isomorphisms.
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The idea of the proof of Proposition 2 is very simple. Since we know a

presentation of the planar algebra of zD.H/ by generators and relations, in order

to de�ne a planar algebra map of P. zD.H// into any planar algebra, it su�ces to

map the generators to suitable elements in the target planar algebra in such a way

that the relations hold.

Proof of Proposition 2. Throughout this proof, we will use P to denote the planar

algebra P. zD.H//.

The map de�ned in the statement of Proposition 2 can also be expressed as

f ˝ a 7! .f2 Ì 1 Ì f1/.� Ì S.a/ Ì �/, as a brief calculation shows – see the

pictorial rule for multiplication in iterated cross products in [1]. This map is shown

pictorially in Figure 6. Being bilinear in f and a, this map clearly admits a linear

extension to a map

zD.H/ �! P.H �/4;C D .2/P.H �/2;C:

Consider its extension to a planar algebra map from the universal planar algebra

on L D L2;C D zD.H/ to .2/P.H �/. We will now check that each of the 8 relations

(L), (M), (U), (I), (C), (T), (E), (A) in Figures 1–4 (applied to the Hopf algebra
zD.H/) is in the kernel of this planar algebra map.

Figure 6. Mapping zD.H/ to P4;C.H �/.

Relation L. This is a direct consequence of the linearity of the map

zD.H/ �! .2/P.H �/2;C D P.H �/4;C

together with the multilinearity of tangle maps.

Relations M. The modulus relations for P D P. zD.H// depend on a choice of

square root of dim. zD.H// D n2 and we will choose n to be the modulus of P .

Thus the modulus relations for P assert that ZP

T 0;˙
.1/ D n10;˙ where T 0;˙ are
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the .0; ˙/ tangles with just one internal closed loop and no internal discs and 10;˙

are the unit elements of P0;˙. Pushing this down to .2/P.H �/, what needs to be

veri�ed is that, Z
.2/P.H �/

T 0;˙
.1/ D n10;˙ or equivalently that Z

P.H �/

.T 0;˙/.2/
.1/ D n10;C.

Since the 2-cabled tangle .T 0;˙/.2/ is just the .0; C/ tangle with two parallel

internal closed loops (and no internal discs), the asserted equality is a consequence

of (one application of each of) the two modulus relations for P.H �/.

Relation U. This is the equality ZP

I
2;C
2;C

.1 zD.H// D ZP
U 2;C.1/, where I

2;C
2;C and

U 2;C are the identity and unit tangles of colour .2; C/. In order to push this down

to .2/P.H �/, we note �rst that 1 zD.H/ D � ˝ 1 (D � ˝ 1H ) and that under the

map of Figure 6 it goes to 14;C – the unit element of P4;C.H �/. This is because

FS.1/ D F.1/ D ıp and by use of the integral relation in P.H �/.

Thus what needs to be veri�ed is that Z
.2/P.H �/

I
2;C
2;C

.14;C/ D Z
.2/P.H �/

U 2;C .1/ or

equivalently that Z
P.H �/

.I
2;C
2;C /.2/

.14;C/ D Z
P.H �/

.U 2;C/.2/.1/. The last equality holds since

.I
2;C
2;C /.2/ D I

4;C
4;C , .U 2;C/.2/ D U 4;C and, by de�nition, 14;C D ZU 4;C.1/.

Relation I. This is the equality ZP

I
2;C
2;C

.h zD.H/
/ D n�1ZP

E2;C.1/, where h zD.H/
is

the integral in zD.H/ and E2;C is the Jones projection tangle of colour .2; C/. To

push this down to .2/P.H �/, recall �rst that h zD.H/
D p ˝ h. Under the map of

Figure 6 this goes to the element of P4;C.H �/ shown on the left in Figure 7,

Figure 7. Equality to be veri�ed in P4;C.H �/.

which needs to be shown to be equal to n�1Z
.2/P.H �/

E2;C .1/ D n�1Z
P.H �/

.E2;C/.2/.1/,

which is the element of P4;C.H �/ shown on the right in Figure 7.

We prove this as follows. First note that FS.h/ D F.h/ D ıp1.h/p2 D

ıp.h/� D ı�1�. Now applying the unit relation in P.H �/ we reduce the element

on the left side of Figure 7 to that on the left side in Figure 8.
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Figure 8. Computation in P.H �/

Then we calculate in P.H �/ as in Figure 8, where the �rst equality follows

from the exchange and antipode relations in P.H �/ together with the fact that

Sp D p and the Hopf algebra identity p1 ˝ p2 D p2 ˝ p1 (which essentially

expresses the traciality of p), while the second equality follows from the integral

relation. Now, comparison with the previous step immediately yields the equality

expressed in Figure 7, thus verifying Relation (I).

Relation C. Recalling that the counit of zD.H/ is given by 1˝�, the veri�cation

that Relation C is in the kernel of the planar algebra map from P to .2/P.H �/

is easily seen to be equivalent to the truth of the equation of Figure 9 holding in

P.H �/.

Figure 9. Relation C.

This is easily seen since the trace and antipode relations in P.H �/ simplify

the looped FS.a/ to ıF.a/.h/ D ı2p.Sah/ D �.a/. Now f2Sf1 D f .1/�, so the

required equality follows using Relation U .

Relation T. Recalling that p zD.H/
D h ˝ p, the veri�cation that Relation T is

in the kernel of the planar algebra map from P to .2/P.H �/ is easily seen to be

equivalent to the truth of the equation of Figure 10 holding in P.H �/.



Planar algebras, cabling and the Drinfeld double 151

Figure 10. Relation T.

The left hand side of Figure 10 simpli�es, using the trace and counit relations

in P.H �/, to ıf1.h/FS.a/.1/f2 D ı2p.a/f1.h/f2 D np.a/f .h/�, as needed.

Relation E. This is equivalent to two relations – one for multiplication and the

other for comultiplication. These are shown in Figure 11.

Figure 11. Multiplication and comultiplication relations.

To prove that the multiplication relation is in the kernel, a little thought shows

that it su�ces to verify the equality of Figure 12 in P.H �/.

Figure 12. Equality to be veri�ed for the multiplication relation.
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Using the exchange relation in P.H �/ twice, the equality in Figure 12 is

equivalent to the Hopf algebraic identity:

f1 ˝ f2 ˝ FS.a/ D f1.a1/f6.Sa3/f3 ˝ f4 ˝ f5SF.a2/Sf2:

To see this, it certainly su�ces to see that

f ˝ FS.a/ D f1.a1/f5.Sa3/f3 ˝ f4SF.a2/Sf2:

Evaluating both sides on an arbitrary element x ˝ y 2 H ˝ H , we need to verify

the equality

f .x/FS.a/.y/ D f1.a1/f5.Sa3/f3.x/.f4SF.a2/Sf2/.y/:

The right hand side of the above equation may be written as:

RHS D f1.a1/f5.Sa3/f3.x/f4.y1/SF.a2/.y2/Sf2.y3/

D ıf1.a1/f5.Sa3/f3.x/f4.y1/p1.Sa2/p2.y2/Sf2.y3/

D ıf1.a1/f5.Sa3/f3.x/.f4p2Sf2/.y/p1.Sa2/

D ıf1.a1/f5.Sa3/f3.x/p2.y/.Sf4p1f2/.Sa2/

D ıf1.a1/f5.Sa5/f3.x/p2.y/Sf4.Sa4/p1.Sa3/f2.Sa2/

D ıf .a1Sa2xa4Sa5/p2.y/p1.Sa3/

D ıf .x/p.Say/;

which clearly agrees with the left hand side, �nishing the proof of the multiplica-

tion relation.

Checking that the comultiplication relation is in the kernel is seen to be equiv-

alent to the identity of Figure 13 holding in P.H �/.

Figure 13. Equality to be veri�ed for the comultiplication relation.
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This easily reduces to verifying the relation of Figure 14 for all a 2 H .

Figure 14. Equivalent equality to be veri�ed.

Using the de�nition of F , this follows from the equalities in Figure 15.

Figure 15. Another equivalent equality to be veri�ed.
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The �rst equality there follows from

ı2p1.a1/ Qp1.a2/ p2 ˝ Qp2 D ı2.p1 Qp1/.a/ p2 ˝ Qp2 D ı2 Qp1.a/ p2 ˝ Sp1 Qp2I

the second from the exchange and antipode relations, and the third from the

integral relation.

Relation A. The easiest way to see that the antipode relation is in the kernel

of the planar algebra map from P to .2/P.H �/ is to appeal to the already proved

multiplication relation. Since S is an anti-homomorphism as is the 2-rotation,

compatibility with multiplication immediately reduces to checking the antipode

relation on an algebra generating set of zD.H/. These may be chosen to be f ˝ 1

and �˝a, and on elements of this kind the antipode relation is trivial to verify. �

4. Injectivity

In this section, we establish the injectivity of the planar algebra map obtained in

the previous section.

Proposition 4. The planar algebra morphism P. zD.H// (=P ) to .2/P.H �/

de�ned in Proposition 2 is injective.

Before proceeding with the proof we recall a result from [7]. Let T.k; �/ denote

the set of .k; �/ tangles with k � 1 (interpreted as 0 for k D 0) internal boxes of

colour .2; C/ and no ‘internal regions’. The result then asserts:

Lemma 5 (Lemma 16 of [7]). For each tangle X 2 T.k; �/, the map

Z
P.H/
X W .P2;C.H//˝.k�1/ �! Pk;�.H/

is an isomorphism.

While the statement in [7] assumes � D 1 and k � 3, it is easy to see that

neither restriction is really necessary.

Proof of Proposition 4. Let ‰W P ! .2/P.H �/ denote the planar algebra mor-

phism of Proposition 2, which is a collection of maps

‰k;�W Pk;� �! ..2/P.H �//k;� D P2k;C.H �/

for each colour .k; �/. To see that each of these is injective, it su�ces to check

this when either k D 0 or when � D 1 (since the one-rotation tangles for k > 0
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give isomorphisms). The cases when k D 0 (and � D ˙1) are obvious since both

sides are naturally isomorphic to k with the ‰0;˙’s reducing to the identity map

under these isomorphisms. Also, ‰1;C takes 11 2 P1;C to 12 2 P2;C.H �/, and is

therefore injective.

For k � 2 (and � D 1) consider the family of tangles Xk;C with k � 1 internal

boxes of colour .2; C/ de�ned inductively as in Figure 16.

Figure 16. Inductive de�nition of XkC1;C.

It is easy to see that Xk;C 2 T.k; C/. Thus ZP
Xk;C W . zD.H//˝.k�1/ ! Pk;C is an

isomorphism, and to show that ‰k;C is injective it su�ces to see that ‰k;C ıZP
Xk;C

is injective.

Since ‰ is a planar algebra morphism de�ned by the extension of the map of

Figure 6, it follows easily that

‰k;� ı ZP
Xk;C..f 1 ˝ x1/ ˝ .f 2 ˝ x2/ ˝ � � � ˝ .f .k�1/ ˝ x.k�1///

is given by the element of P2k;C.H �/ shown in Figure 17.

Figure 17. ‰k;� ı ZP

Xk;C..f 1 ˝ x1/ ˝ .f 2 ˝ x2/ ˝ � � � ˝ .f .k�1/ ˝ x.k�1///.
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Some manipulation with the exchange relation in P.H �/ shows that this ele-

ment is also equal to Z
P.H �/

S2k;C .f 1
2 ˝FSx1Sf 2

3 ˝f 1
1 Sf 2

2 ˝f 2
4 FSx2Sf 3

3 ˝f 2
1 Sf 3

2 ˝

� � �˝f k�2
4 FSxk�2Sf k�1

3 ˝f k�2
1 Sf k�1

2 ˝f k�1
4 FSxk�1 ˝f k�1

1 / where S2k;C is

the .2k; C/ tangle with 2k � 1 internal boxes of colour .2; C/ shown in Figure 18.

Figure 18. The tangle S2k;C.

Now observe that S2k;C is in T.2k; C/ and thus the injectivity statement

desired reduces to the Hopf algebra statement: for every k � 2 the map, say

�k W .H � ˝ H/˝.k�1/ ! .H �/˝.2k�1/ de�ned by

f 1 ˝ x1 ˝ f 2 ˝ x2 ˝ � � � ˝ f .k�1/ ˝ x.k�1/

�k
�! f 1

2 ˝ FSx1Sf 2
3 ˝ f 1

1 Sf 2
2 ˝ f 2

4 FSx2Sf 3
3 ˝ f 2

1 Sf 3
2 ˝ : : :

� � � ˝ f k�2
4 FSxk�2Sf k�1

3 ˝ f k�2
1 Sf k�1

2 ˝ f k�1
4 FSxk�1 ˝ f k�1

1

is injective. It is this statement that we will prove by induction on k.

The basis case when k D 2 asserts that �2 de�ned by �2.f 1 ˝ x1/ D

f 1
2 ˝FSx1 ˝f 1

1 is injective which is clear. For the inductive step, assume that �k

is injective and observe that with the linear map � W H �˝H ˝H �˝H � ! .H �/˝4

de�ned by �.f ˝ x ˝ k ˝ q/ D f2 ˝ FSxSk2 ˝ f1Sk1 ˝ k3q, a short calculation

shows that �kC1 D .� ˝ id ˝.2k�3// ı .id ˝ id ˝ �k/. Thus to show �kC1 is

injective, it su�ces to see that � is injective.

Finally, a lengthy but complete routine calculation shows that the map f ˝

g ˝ k ˝ q 7! f4 ˝ F.gSk1f3/ ˝ Sk3f1 ˝ Sf2k2q is (a right inverse of, and

hence) the inverse of � , completing the proof of the inductive step and hence, of

the proposition. �

A much simpler proof of injectivity has been suggested by Shamindra Kumar

Ghosh which follows immediately from the lemma below.

Lemma 6. Let P and Q be two connected planar algebras with the same non-

zero modulus such that the trace tangles yield non-degenerate traces on Pk;� for

each color .k; �/. Any planar algebra morphism from P to Q is then injective.
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5. Characterisation of the image

This section will be devoted to an explicit characterisation of the image of

P. zD.H// in .2/P.H �/.

Fix k � 2. Consider the (algebra) maps ˛; ˇW H ! End.P.H �/2k;C/ de�ned

for x 2 H and X 2 P.H �/2k;C by Figure 19.

The main result of this section is the following proposition. We will use

the notation Q to denote the planar subalgebra of .2/P.H �/ that is the image of

P D P. zD.H//. Thus Qk;˙ � P.H �/2k;C.

Proposition 7. For every k � 2,

Qk;C D ¹X 2 P.H �/2k;CW ˛h.X/ D Xº;

Qk;� D ¹X 2 P.H �/2k;CW ˇh.X/ D Xº:

We pave the way for a proof of this proposition by giving an alternate descrip-

tion of the �xed points under ˛h. We will need some notation. For x 2 H , let �k.x/

denote the element of P.H �/4k;C depicted in Figure 20. For X 2 P.H �/4k;C

(resp. P.H �/4kC2;C) let zX 2 P.H �/4kC4;C denote the element on the left (resp.

right) in Figure 21.

Lemma 8. For X 2 P.H �/4k;C or X 2 P.H �/4kC2;C, the following conditions

are equivalent:

(1) ˛h.X/ D X ,

(2) zX commutes with �kC1.x/ for all x 2 H .

Proof. We prove the equivalence of the conditions only for X 2 P.H �/4k;C

leaving the case X 2 P.H �/4kC2;C for the reader. Suppose that (1) holds so

that ˛h.X/ D X . Then, using the de�nitions of ˛x.X/ and of zX , we have that zX

is given by Figure 22.

With a little manipulation and using traciality of h, so that h1˝h2˝� � �˝h2k D

h2k ˝ h1 ˝ h2 ˝ � � � ˝ h2k�1, we see that zX is also given by Figure 23.

Thus, zX D �kC1.h1/ zX�kC1.Sh2/. Hence, for any x 2 H , zX�kC1.x/ D

�kC1.h1/ zX�kC1.Sh2x/ D �kC1.xh1/ zX�kC1.Sh2/ D �kC1.x/ zX , so that (2) is

veri�ed to hold. Conversely suppose that (2) holds for X 2 P4k;C. It follows that

the element in Figure 23 equals zX and hence also the element of Figure 22. This

then implies that ˛h.X/ D X , proving (1) as needed. �
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Figure 20. De�nition of �k.x/.

Figure 21. De�nition of zX .

Figure 22. zX when X 2 P.H �/4k;C and ˛h.X/ D X .

Figure 23. Equivalent form of zX when X 2 P.H �/4k;C and ˛h.X/ D X .
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Next, we need some preliminary commutativity statements.

Lemma 9. The following two commutativity statements hold for all x 2 H and

all X 2 Q2;C.

Proof. To prove the �rst commutativity relation, from the form of a general

generator of Q2;C in Figure 6, it su�ces to see that the commutativity in Figure 24

holds

Figure 24. Equivalent form of the �rst commutativity relation.

To see this, note that calculation shows that the elements � Ì1Ìf2 Ì1Ìf1 Ì1

and � Ì x1 Ì � Ì 1 Ì � Ì x2 of H �
Ì H Ì H �

Ì H Ì H �
Ì H commute for all

f 2 H � and x 2 H . Now applying the isomorphisms of Lemma 3 (to P.H �/)

proves the desired commutativity.

As for the second commutativity relation, again from the form of a general

generator of Q2;C, it is easily seen to be equivalent to the equation in Figure 25

holding for all f 2 H � and x 2 H .

Figure 25. Equivalent form of the second commutativity relation.



Planar algebras, cabling and the Drinfeld double 161

Setting F x D g, this is equivalent to verifying the Hopf algebraic identity

f2 ˝ .f1Sg1/.h/g2 D .f2Sg2/.h/g1 ˝ f1. Evaluate both sides on a ˝ b to get the

equivalent identity h1a ˝ Sh2b D bh1 ˝ aSh2 – which is easy to see. �

Proof of Proposition 7. We �rst prove the characterisation of Qk;C. Since Q is

the image of P. zD.H//, it follows from Lemma 3 that any element X 2 Q2k;C �

P.H �/4k;C is of the form shown in Figure 26, where there are 2k �1 4-boxes and

X1; X2; : : : ; X2k�1 2 Q2;C. It now follows easily from Lemma 9 that zX commutes

with �kC1.x/ for all x 2 H . Similarly, if X 2 Q2kC1;C � P.H �/4kC2;C, then

too, zX commutes with �kC1.x/ for all x 2H . An appeal to Lemma 8 now shows

that Qk;C � ¹X 2 P.H �/2k;CW ˛h.X/ D Xº.

Figure 26. Form of X 2 Q2k;C.

To prove the reverse inclusion, it su�ces by Proposition 4 to see that

dim.¹X 2 P.H �/2k;CW ˛h.X/ D Xº/ � n2k�2:

Consider the tangle V 2k;C of Figure 27.

Figure 27. The tangle V 2k;C.
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Note that V 2k;C 2 T.2k; C/ and hence induces a linear isomorphism from

.H �/˝.2k�1/ ! P.H �/2k;C. Further, we see that

˛h.ZV 2k;C.Fa1 ˝ Fa2 ˝ � � � ˝ Fa2k�1//

D ZV 2k;C.F.h1a1/ ˝ Fa2 ˝ F.h2a3/ ˝ Fa4˝

� � � ˝ Fa2k�2 ˝ F.hka2k�1//:

Thus it su�ces to see that dim.¹a1˝� � �˝a2k�1 2 H ˝.2k�1/W a1˝� � �˝a2k�1 D

h1a1 ˝ a2 ˝ h2a3 ˝ a4 ˝ � � � ˝ a2k�2 ˝ hka2k�1º � n2k�2 or equivalently that

dim.¹x1 ˝ � � � ˝ xk 2 H ˝k W x1 ˝ � � � ˝ xk D h1x1 ˝ h2x2 ˝ � � � ˝ hkxkº � nk�1.

Now observe that if x1 ˝ � � � ˝ xk D h1x1 ˝ h2x2 ˝ � � � ˝ hkxk , then

x1 ˝ � � � ˝ xk D h1x1 ˝ h2x2 ˝ � � � ˝ hkxk

D h1x1 ˝ �k�1.h2/.x2 ˝ � � � ˝ xk/

D h1 ˝ �k�1.h2Sx1/.x2 ˝ � � � ˝ xk/

D h1 ˝ h2Sx1
k�1x2 ˝ � � � ˝ hkSx1

1xk :

This is clearly in the image of the map H ˝k�1 ! H ˝k given by

z1 ˝ � � � ˝ zk�1 7�! h1 ˝ h2z2 ˝ � � � ˝ hkzk�1

and so the required dimension estimate follows, establishing the characterisation

of Qk;C.

Now note that, X 2 Qk;� , ZR.X/ 2 Qk;C (where R is the one-rotation

tangle on .k; �/ boxes, since Q is a planar subalgebra of .2/P.H �/). The action

of R on Qk;� is given by the restriction of the action of the two-rotation tangle

on P.H �/2k;C. Hence the asserted characterisation of Qk;� follows directly from

that of Qk;C. �

6. The main theorem

We collect the results of the previous statements into a single main theorem.

Theorem 10. Let H be a �nite-dimensional, semisimple and cosemisimple Hopf

algebra over k of dimension n D ı2 with Drinfeld double zD.H/. The map

P. zD.H//2;C �! .2/P.H �/2;C

de�ned in Proposition 2 extends to an injective planar algebra morphism

P. zD.H// �! .2/P.H �/

whose image Q is characterised as follows: Qk;C (resp. Qk;�) is the set of all

X 2 P2k;C such the element on the left (resp. right) in Figure 28 equals X .
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Proof. This follows from Propositions 2, 4 and 7, after observing that Figures 19

and 28 are equivalent. �

Figure 28. Characterisation of the image.
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We conclude with a few remarks. First, the main theorem above also allows us

to conclude that there is an explicitly characterised planar subalgebra of .2/P.H op/

that is isomorphic to P. zD.H//. This is because zD.H/ and zD..H op/�/ are

isomorphic. This leads to the natural question as to whether in some precise

sense, P. zD.H// is the ‘smallest’ planar algebra that maps into both .2/P.H �/

and .2/P.H op/. Finally, we hope to explore the subfactor theoretic aspects of this

result and some generalisations in a future publication.
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