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Volume conjectures

for the Reshetikhin–Turaev and the Turaev–Viro invariants
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Abstract. We consider the asymptotics of the Turaev–Viro and the Reshetikhin–Turaev

invariants of a hyperbolic 3-manifold, evaluated at the root of unity exp.2�
p

�1=r/ instead

of the standard exp.�
p

�1=r/. We present evidence that, as r tends to 1, these invariants

grow exponentially with growth rates respectively given by the hyperbolic and the complex

volume of the manifold. This reveals an asymptotic behavior that is different from that of

Witten’s Asymptotic Expansion Conjecture, which predicts polynomial growth of these

invariants when evaluated at the standard root of unity. This new phenomenon suggests

that the Reshetikhin–Turaev invariants may have a geometric interpretation other than the

original one via SU.2/ Chern–Simons gauge theory.
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1. Introduction

In [62], Witten provided a new interpretation of the Jones polynomial based on

Chern–Simons gauge theory, and expanded on this idea to construct a sequence

of complex valued 3-manifold invariants. This approach was formalized though

the representation theory of quantum groups by Reshetikhin and Turaev [53, 54],

who generalized the Jones polynomial to a sequence of polynomial invariants of

a link, later called the colored Jones polynomials of that link. They also defined

a sequence of 3-manifold invariants corresponding to Witten’s invariants. The

Reshetikhin–Turaev construction of 3-manifold invariants starts from a surgery

description [33] of the manifold, and evaluates the colored Jones polynomials of

the surgery data at certain roots of unity.

A different approach was developed by Turaev and Viro [60] who, from a

triangulation of a closed 3-manifold, constructed real valued invariants of the

manifold by using quantum 6j -symbols [35]; these Turaev–Viro invariants turned

out to be equal to the square of the norm of the Reshetikhin–Turaev invariants

[55, 59, 61].

Using quantum dilogarithm functions, Kashaev [29, 30] used a different type

of 6j -symbols, involving the discrete quantum dilogarithm, to define for each

integer n complex valued link invariants. He observed in a few examples, and

conjectured in the general case, that the absolute value of these invariants grow

exponentially with n, and that the growth rate is given by the hyperbolic volume

of the complement of the link. In [44], Murakami and Murakami showed that

Kashaev’s invariants coincide with the values of the colored Jones polynomials at

a certain root of unity, and reformulated Kashaev’s conjecture as follows.

Volume conjecture ([30, 44]). For a hyperbolic link L in S3, let Jn.LI q/ be its
n-th colored Jones polynomial. Then

lim
n!C1

2�

n
log jJn.LI e

2�
p

�1
n /j D Vol.S3 n L/;

where Vol.S3 n L/ is the hyperbolic volume of the complement of L.

This conjecture has now been proved for a certain number of cases: the

figure-eight knot [44]; all hyperbolic knots with at most six crossings [49, 51];

the Borromean rings [24]; the twisted Whitehead links [66]; the Whitehead

chains [63]. Various extensions of this conjecture have been proposed, and proved

for certain cases in [28, 46, 15, 18, 19, 47].
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In the current paper we investigate the asymptotic behavior of the Reshetikhin–

Turaev and the Turaev–Viro invariants, evaluated at the root of unity q D e
2�

p
�1

r .

Supported by numerical evidence, we propose the following conjecture.

Conjecture 1.1. For a hyperbolic 3-manifold M; let TVr.M I q/ be its Turaev–
Viro invariant and let Vol.M/ be its hyperbolic volume. Then for r running over

all odd integers and for q D e
2�

p
�1

r ,

lim
r!C1

2�

r
log.TVr.M I q// D Vol.M/:

We here consider all types of hyperbolic 3-manifolds: closed, cusped or those

with totally geodesic boundary. The Turaev–Viro invariant TVr .M I q/ is the

original one defined in [60] when the manifold M is closed, and is its extension

defined in [10] when M has non-empty boundary. See § 2.3 for details.

This conjecture should be contrasted with Witten’s Asymptotic Expansion

Conjecture (see [48]) which predicts that, when evaluated at q D e
�

p
�1

r , the Wit-

ten invariants of a 3-manifold (and therefore its Reshetikhin–Turaev and Turaev–

Viro invariants) only grow polynomially, with a growth rate related to classical in-

variants of the manifold such as the Chern–Simons invariant and the Reidemeister

torsion.

Conjecture 1.1 is motivated by the beautiful work of Costantino [16] relating

the asymptotics of quantum 6j -symbols to the volumes of truncated hyperideal

tetrahedra. See also [20, 19].

We provide much supporting evidence for Conjecture 1.1. In § 3, we numeri-

cally calculate TVr .M/ for various hyperbolic 3-manifolds with cusps, including

the figure-eight knot complement and its sister, the complements of the knots K52

and K61
, and the manifolds denoted by M36

, M38
, N11

and N21
in the Callahan–

Hildebrand–Weeks census [14]. We also numerically calculate TVr.M/ for the

smallest hyperbolic 3-manifolds with a totally geodesic boundary [23, 37].

Recently, Detcherry, Kalfagianni and the second author [22] provided a rigor-

ous proof of Conjecture 1.1 for the figure-eight knot complement.

The Reshetikhin–Turaev invariants RTr.M I q/ are complex valued invariants

of a closed oriented 3-manifold M , defined for all integers r > 3 and all primitive

2r-th roots of unity q. For q D e
�

p
�1

r , these invariants provide a mathemat-

ical realization of Witten’s invariants [62]. Following a skein theory approach

pioneered by Lickorish [36, 38], Blanchet, Habegger, Masbaum, and Vogel [11]

(see also Lickorish [39]) extended Reshetikhin–Turaev invariants to primitive r-

th roots of unity q with r odd. In particular, RTr.M I q/ is defined at q D e
2�

p
�1

r
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when r is odd. In § 4, we numerically compute Reshetikhin–Turaev invariants for

various closed hyperbolic 3-manifolds obtained by integral Dehn surgery along

the knots K41
and K52

. These calculations suggest the following conjecture.

Conjecture 1.2. Let M be a closed oriented hyperbolic 3-manifold and let

RTr .M I q/ be its Reshetikhin–Turaev invariants. Then for q D e
2�

p
�1

r with r

odd and for a suitable choice of the arguments,

lim
r!C1

4�
p

�1

r
log.RTr .M I q// D CS.M/ C Vol.M/

p
�1 mod �2

Z;

where CS.M/ denotes the Chern–Simons invariant of the hyperbolic metric of M

multiplied by 2�2.

Ohtsuki [50] recently announced a proof of Conjecture 1.2 for the manifolds

obtained by Dehn surgery along the knot K41
. By [55, 59, 61], Conjecture 1.2

implies Conjecture 1.1 for closed 3-manifolds.

Comparing Conjecture 1.2 with Witten’s Asymptotic Expansion Conjecture,

one sees a very different asymptotic behavior for the Reshetikhin–Turaev invari-

ants evaluated at q D e
2�

p
�1

r and q D e
�

p
�1

2r . Our numerical calculations also

suggest exponential growth at other roots of unity such as q D e
3�

p
�1

r . For these

roots of unity, we expect a geometric interpretation of Reshetikhin–Turaev invari-

ants that is different from the SU.2/ Chern–Simons gauge theory.

In § 5, we calculate TVr.M/ for the complements of the unknot, the Hopf link,

the trefoil knot and the torus links T.2;4/ and T.2;6/. We also numerically calculate

TVr.M/ for the complement of the torus knots T.2;5/, T.2;7/, T.2;9/, T.2;11/, T.3;5/

and T.3;7/. These computations suggest an Integrality Conjecture (Conjecture 5.1)

which states that the Turaev–Viro invariants of torus link complement are integers

independent of the roots of unity at which they are evaluated.
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ary 2015. We would like to thank the organizers for their support and hospitality.
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2. Preliminaries

We recall the construction of Turaev–Viro invariants of 3-dimensional manifolds.

In order to follow a uniform treatment for all cases, we extend their definition to

pseudo 3-manifolds.

2.1. Pseudo 3-manifolds and triangulations. A pseudo 3-manifold is a topo-

logical space M such that each point p of M has a neighborhood Up that is home-

omorphic to a cone over a surface †p. We call p a singular point and Up a sin-
gular neighborhood if †p is not a 2-sphere. In particular, a closed 3-manifold is

a pseudo 3-manifold with no singular point, and every 3-manifold with boundary

is homeomorpic to a pseudo 3-manifold with suitable singular neighborhoods of

all singular points removed.

A triangulation T of a pseudo manifold M consists of a disjoint union

X D
F

�i of finitely many Euclidean tetrahedra �i and of a collection of home-

omorphisms ˆ between pairs of faces in X such that the quotient space X=ˆ is

homeomorphic to M . The vertices, edges, faces and tetrahedra in T are respec-

tively the quotients of the vertices, edges, faces and tetrahedra in X . From the

definition, we see that a singular point of M must be a vertex of T. We call the

non-singular vertices of T the inner vertices. If M is a closed 3-manifold, then a

triangulation of M is a triangulation of manifold in the usual sense; and if N is a

3-manifold with boundary obtained by removing all singular neighborhoods of a

pseudo 3-manifold M , then a triangulation of M without inner vertices determines

an ideal triangulation of N . (See Figure 1.)

In [41, 42, 52], it is proved that any two triangulations of a pseudo 3-manifold

are related by a sequence of 0–2 and 2–3 Pachner moves. See the figure below,

where in the 0 � 2 move a new inner vertex is introduced.

2.2. Quantum 6j -symbols. We now recall the definition and basic properties

of the quantum 6j -symbols. See [35, 32] for more details.
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Figure 1

Throughout this subsection, we will fix an integer r > 3, and we let Ir D
¹0; 1=2; : : : ; .r � 2/=2º be the set of non-negative half-integers less than or equal

to .r � 2/=2. The elements of Ir are traditionally called colors.

Let q 2 C be a root of unity such that q2 is a primitive root of unity of order r .

For an integer n, the quantum integer Œn� is the real number defined by

Œn� D qn � q�n

q � q�1
;

and the associated quantum factorial is

Œn�Š D Œn�Œn � 1� : : : Œ1�:

By convention, Œ0�Š D 1.

A triple .i; j; k/ of elements of Ir is called admissible if

(1) i C j > k, j C k > i and k C i > j ,

(2) i C j C k 2 Z,

(3) i C j C k 6 r � 2.

A 6-tuple .i; j; k; l; m; n/ of elements of Ir is admissible if the triples .i; j; k/,

.j; l; n/, .i; m; n/, and .k; l; m/ are admissible.

For an admissible triple .i; j; k/, define

�.i; j; k/ D

s

Œi C j � k�ŠŒj C k � i �ŠŒk C i � j �Š

Œi C j C k C 1�Š

with the convention that
p

x D
p

jxj
p

�1 when the real number x is negative.
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Definition 2.1. The quantum 6j -symbol of an admissible 6-tuple .i; j; k; l; m; n/

is the number

ˇ

ˇ

ˇ

ˇ

i j k

l m n

ˇ

ˇ

ˇ

ˇ

D
p

�1
�2.iCj CkClCmCn/

�.i; j; k/�.j; l; n/�.i; m; n/�.k; l; m/

min¹Q1;Q2;Q3º
X

zDmax¹T1;T2;T3;T4º

.�1/zŒz C 1�Š

N
;

where

N D Œz � T1�ŠŒz � T2�ŠŒz � T3�ŠŒz � T4�ŠŒQ1 � z�ŠŒQ2 � z�ŠŒQ3 � z�Š;

T1 D i C j C k; T2 D j C l C n;

T3 D i C m C n; T4 D k C l C m;

and

Q1 D i C j C l C m;

Q2 D i C k C l C n;

Q3 D j C k C m C n:

A good way to memorize the definitions is to consider a tetrahedron as in

Figure 2, and to attach the weights i , j , k, l , m, n to its edges as indicated in

the figure. Then each of T1, T2, T3, T4 corresponds to a face of the tetrahedron,

and each of Q1, Q2, Q3 corresponds to a quadrilateral separating two pairs of the

vertices.

Figure 2. 6j -symbols and the tetrahedron.
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The following symmetries
ˇ

ˇ

ˇ

ˇ

i j k

l m n

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

j i k

m l n

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

i k j

l n m

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

i m n

l j k

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

l m k

i j n

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

l j n

i m k

ˇ

ˇ

ˇ

ˇ

immediately follow from the definitions.

The quantum 6j -symbols satisfy the following two important identities, which

are crucial in the construction of the Turaev–Viro invariants. For i 2 Ir , set

wi D .�1/2i Œ2i C 1� and � D
X

i2Ir

w2
i :

Proposition 2.2 (orthogonality property). For any admissible 6-tuple .i; j; k,
l; m; n/,

X

s

wswm

ˇ

ˇ

ˇ

ˇ

i j m

k l s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j n

k l s

ˇ

ˇ

ˇ

ˇ

D ımn; (2.1)

where ı is the Kronecker symbol, and where the sum is over all s 2 Ir such that
the two 6-tuples in the sum are admissible. �

Corollary 2.3. For any admissible triple .i; j; k/,

��1
X

l;m;n

wlwmwn

ˇ

ˇ

ˇ

ˇ

i j k

l m n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

l m n

ˇ

ˇ

ˇ

ˇ

D 1; (2.2)

where the sum is over l; m; n 2 Ir such that the 6-tuples .i; j; k; l; m; n/ is
admissible. �

Proposition 2.4 (Biedenharn–Elliot identity). For any i , j , k, l , m, n, o, p, q 2 Ir

such that .o; p; q; i; j; k/ and .o; p; q; l; m; n/ are admissible,

X

s

ws

ˇ

ˇ

ˇ

ˇ

i j q

m l s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j k o

n m s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k i p

l n s

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

o p q

i j k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

o p q

l m n

ˇ

ˇ

ˇ

ˇ

; (2.3)

where the sum is over s 2 Ir such that the three 6-tuples in the sum are admissible.
�

2.3. Turaev–Viro invariants of pseudo 3-manifolds. Let q be a root of unity,

and let r be such that q2 is a primitive root of unity of order r . As in § 2.2, we

consider the set Ir D ¹0; 1=2; 1; : : : ; .r � 2/=2º of colors, and the notation

Œn� D qn � q�n

q � q�1
; wi D .�1/2i Œ2i C 1�; � D

X

i2Ir

w2
i :

for every integer n and color i 2 Ir .
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For a triangulation T of a pseudo 3-manifold M , an r-admissible coloring of

.M;T/ is a map

cW ¹edges of Tº �! Ir

such that, for every 2-dimensional face F of T, the colors c.e1/, c.e2/, c.e3/ 2 T

associated to the edges of F form an admissible triple. Such a coloring c associates

to each edge e of T the number

jejc D wc.e/;

and to each tetrahedron � of T the 6j -symbol

j�jc D
ˇ

ˇ

ˇ

ˇ

c.e12/ c.e13/ c.e23/

c.e34/ c.e24/ c.e14/

ˇ

ˇ

ˇ

ˇ

;

where the edges of � are indexed in such a way that, if v1, v2, v3, v4 denote the

vertices of �, the edge eij connects vi to vj .

Definition 2.5. With the above definitions, the Turaev–Viro invariant of M asso-

ciated to the root of unity q is defined as the sum

TVq.M;T/ D ��jV j X

c2Ar

Y

e2E

jejc
Y

�2T

j�jc

where V , E, T , Ar respectively denote the sets of inner vertices, edges, tetrahedra

and r-admissible colorings of the triangulation T.

Theorem 2.6. The above invariant TVq.M;T/ depends only on the pseudo-
manifold M and on the root of unity q, not on the triangulation T.

Proof. Theorem 2.6 is proved by a straightforward extension to pseudo-3-mani-

folds of the original argument of Turaev and Viro in [60] for 3-manifolds.

The first ingredient is a purely topological statement, proved in [41, 42, 52],

which says that any two triangulations of a pseudo 3-manifold are related by

a sequence of the Pachner Moves 0–2 and 2–3 represented in Figures 3 and 4.

The Pachner Move 0–2 replaces a 2-dimensional face of the triangulation by two

tetrahedra meeting along 3 faces, and adds one vertex to the triangulation. The 2–3

Move replaces two tetrahedra meeting along one face by three tetrahedra sharing

one edge.
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Figure 3. The Pachner Move 0–2.

Figure 4. The Pachner Mover 2–3.

The second ingredient is algebraic, and is provided by the properties of

6j -symbols given in § 2.2. Indeed, exactly as in [60], Corollary 2.3 of the Or-

thogonality Property of Proposition 2.1 shows that TVr.M;T/ is unchanged as we

modify the triangulation T by a 0–2 move, and the Biedenharn–Elliot identity (2.3)

guarantees the invariance under the 2–3 move. �

As mentioned in § 2.1, a triangulation of a pseudo 3-manifold without inner

vertices determines an ideal triangulation of the 3-manifold with boundary ob-

tained by removing all the singular neighborhoods. Hence for a 3-manifold M

with boundary, one can define TVr.M/ using an ideal triangulation of M . Our

invariant (and its construction) then coincides with the one defined in [10] using

o-graphs.

Theorem 2.6 shows that, for any r and q as above, TVq.M;T/ is independent of

the choice of of the triangulation T. We will consequently omit the triangulation

T and denote the invariant by TVr .M/ if q D e
2�

p
�1

r , or by TVr.M I q/ if we

want to emphasize which root of unity q is being used.



Volume conjectures for the Reshetikhin–Turaev and the Turaev–Viro invariants 429

3. Evidence for 3-manifolds with boundary

We now provide numerical evidence for Conjecture 1.1 for a few hyperbolic 3-

manifolds with boundary. The closed manifold case will be considered in the next

section. The reason for considering the two cases separately is that a hyperbolic 3-

manifold with boundary often admits an ideal triangulation by a small number of

tetrahedra, whereas a triangulation of a closed hyperbolic 3-manifold usually re-

quires more tetrahedra. For example, it takes at least nine tetrahedra to triangulate

the Weeks manifold, which is the smallest closed hyperbolic 3-manifold.

To simplify the notation, set

QVr.M/ D 2�

r � 2
log.TVr .M I e

2�
p

�1
r //

for each odd integer r > 3. Similarly, write

TVr.L/ D TVr.S3 n L/ and QVr .L/ D QVr.S3 n L/

when M D S3 n L is a link complement.

3.1. The figure-eight knot complement and its sister. By Thurston’s famous

construction [56], the figure-eight knot complement S3 n K41
has volume

Vol.S3 n K41
/ � 2:02988;

and has the ideal triangulation represented in Figure 5. In that figure, edges with

the same labels (a or b) are glued together following the indicated orientations to

form an edge of the ideal triangulation.

Figure 5
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By Definition 2.5, we have

TVr .K41
/ D

X

.a;b/2Ar

wawb

ˇ

ˇ

ˇ

ˇ

a a b

a b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a b

a b b

ˇ

ˇ

ˇ

ˇ

;

where Ar consists of the pairs .a; b/ of elements of Ir such that .a; a; b/ and

.b; b; a/ are admissible, i.e., 2a�b > 0, 2b�a > 0, 2aCb 6 r �2, 2bCa 6 r �2

and 2a C b and 2b C a are integers. From this formula, we have the following

table of values of QVr .K41
/.

r 11 13 15

QVr .K41
/ 2:40661 2:37755 2:34826

r 17 19 21

QVr .K41
/ 2:31907 2:29953 2:28227

r 23 25 31

QVr .K41
/ 2:26834 2:25634 2:22824

r 41 51 61

QVr .K41
/ 2:19685 2:17540 2:15953

r 71 81 91

QVr .K41
/ 2:14721 2:13731 2:12915

r 101 111 121

QVr .K41
/ 2:12230 2:11643 2:11136

r 131 141 151

QVr .K41
/ 2:10692 2:10299 2:09949

r 201 301 401

QVr .K41
/ 2:08641 2:07168 2:06344

r 501 701 1001

QVr .K41
/ 2:05810 2:05153 2:04614

Figure 6 below compares the values of the Turaev–Viro invariants QVr .K41
/

and the Kashaev invariants hK41
ir for various values of r . The dots represent

the points .r; QVr.K41
//, the diamonds represent the points .r; 2�

r
log jhK41

ir j/,
and the squares represent the points .r; Vol.S3 n K41

//. Note that the values of

QVr.K41
/ appear to converge to Vol.S3 n K41

/ much faster than hK41
ir as r

becomes large.

The manifold M22
in the Callahan–Hildebrand–Weeks census [14], also known

as the “figure-eight sister,” shares the same volume with the figure-eight knot

complement, i.e.,

Vol.M22
/ D Vol.S3 n K41

/ � 2:02988:

It is also known that M22
is not the complement of any knot in S3. According to

Regina [12], M22
has the ideal triangulation represented in Figure 7.



Volume conjectures for the Reshetikhin–Turaev and the Turaev–Viro invariants 431

Figure 6. Comparison of different invariants for K41
.

Figure 7

Since for each tetrahedron in this triangulation, the coloring is the same as that

of S3 n K41
, the invariant TVr .M22

/ has exactly the same formula as TVr .K41
/.

As a consequence, the Turaev–Viro invariants of these manifolds take the same

values.

3.2. The K52
knot complement and its sisters. According to SnapPy [21] and

Regina [12], the complement of the knot K52
has volume

Vol.S3 n K52
/ � 2:82812;

and admits the ideal triangulation represented in Figure 8. Since only the colors

of the edges (according to which the edges are identified to form an edge of the



432 Q. Chen and T. Yang

triangulation) matters in the calculation of TVr .M/, we omit the arrows on the

edges.

Figure 8

By Definition 2.5, we have

TVr .K52
/ D

X

.a;b;c/2Ar

wawbwc

ˇ

ˇ

ˇ

ˇ

a a b

b c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a b

b c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

b b c

ˇ

ˇ

ˇ

ˇ

;

where Ar consists of triples .a; b; c/ of elements of Ir such that .a; a; b/, .b; b; c/,

.c; c; a/ and .a; b; c/ are admissible. From this, we have the following table of

values of QVr .K52
/.

r 7 9 11 21

QVr .K52
/ 3:38531 3:32394 3:25282 3:09588

r 31 41 51 61

QVr .K52
/ 3:03657 3:00236 2:97925 2:96232

r 71 81 91 101

QVr .K52
/ 2:94927 2:93883 2:93027 2:92309

r 121 151 201 301

QVr .K52
/ 2:91169 2:89937 2:88586 2:87071

Figure 9 compares the values of QVr.K52
/ with those of the Kashaev in-

variants hK52
ir . Again, the dots represent the points .r; QVr.K52

//, the dia-

monds represent the points
�

r; 2�
r

log jhK52
ir j

�

, and the squares represent the

points .r; Vol.S3 n K52
//.
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Figure 9. Comparison of different invariants for K52
.

The manifold M36
in the Callahan–Hildebrand–Weeks census [14] is also the

complement of the .�2; 3; 7/-pretzel knot of Figure 10. It has the same volume as

S3 n K52
, namely

Vol.M36
/ D Vol.S3 n K52

/ � 2:82812:

Figure 10. The .�2; 3; 7/�pretzel knot.
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According to Regina, M36
can be represented by the ideal triangulation of

Figure 11.

Figure 11

Then for r > 3, we have

TVr.M36
/ D

X

.a;b;c/2Ar

wawbwc

ˇ

ˇ

ˇ

ˇ

a a b

b c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a b

b c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

a a c

ˇ

ˇ

ˇ

ˇ

;

where Ar consists of all triples .a; b; c/ of elements of Ir such that .a; a; b/,

.b; b; c/, .c; c; a/, .a; b; c/ and .a; a; c/ are admissible.

The table below shows a few values of QVr.K52
/ and QVr .M36

/. We observe

that QVr.K52
/ and QVr .M36

/ are distinct, but are getting closer to each other and

seem to converge to 2:82812 as r grows.

r 9 11

QVr.K52
/ 3:3239396087031623282 3:2528240712684816477

QVr .M36
/ 3:2936286562299185780 3:2291939333749922011

r 21 31

QVr.K52
/ 3:0958786489268195966 3:0365668215995635907

QVr .M36
/ 3:0954357480831343159 3:0365081953458580040

r 51 101

QVr.K52
/ 2:9792536251826401549 2:9230944207585713174

QVr .M36
/ 2:9792532229139281449 2:9230944207610719723

The manifold M38
in the Callahan–Hildebrand–Weeks census [14], which is

not the complement of any knot in S3, also has the same volume as S3 n K52
.

According to Regina, M38
has an ideal triangulation that has the same colors

as that of S3 n K52
drawn above. As a consequence, QVr .M38

/ coincides with

QVr.K52
/ for all r > 3.
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3.3. The K61
knot complement. According to SnapPy [21] and Regina [12], the

complement of the knot K61
has volume

Vol.S3 n K61
/ � 3:16396;

and can be described by the ideal triangulation of Figure 12.

Figure 12

This gives

TVr .K61
/ D

X

.a;b;c;d/2Ar

wawbwcwd

ˇ

ˇ

ˇ

ˇ

a a b

a d b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a c c

b b d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b c

a c d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b c

b d c

ˇ

ˇ

ˇ

ˇ

;

where Ar consists of quadruples .a; b; c; d/ of elements of Ir such that all the

triples involved are admissible. From this, we have the following table of values

of QVr.K61
/.

r 21 31 41 51

QVr .K61
/ 3:34732 3:31699 3:29688 3:28214

r 5 7 9 11

QVr .K61
/ 3:34732 3:31699 3:29688 3:28214

r 61 71 81 91

QVr .K61
/ 3:27076 3:26165 3:25417 3:24790

r 101 121 151 201

QVr .K61
/ 3:24255 3:23390 3:22431 3:21353
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Figure 13 compares a few values of QVr.K61
/ with those of the Kashev

invariant hK61
ir and with the volume Vol.S3 n K61

/.

Figure 13. Comparison of different invariants for K61
.

3.4. Some non-orientable cusped 3-manifolds

3.4.1. The Gieseking manifold. The manifold N11
in the Callahan–Hildebrand–

Weeks census [14], also known as the Gieseking manifold, is the smallest non-

orientable cusped 3-manifold. It has an ideal triangulation with a single tetrahe-

dron which, by an Euler characteristic calculation, has only one edge. According

to SnapPy [21] and Regina [12], the Gieseking manifold has volume

Vol.N11
/ � 1:01494:

By Definition 2.5, we have

TVr .N11
/ D

X

a2Ar

wa

ˇ

ˇ

ˇ

ˇ

a a a

a a a

ˇ

ˇ

ˇ

ˇ

;

where Ar consist of integers a such that 0 6 a 6 b.r � 2/=3c. Here b c is the floor

function that bxc equals the greatest integer less than or equal to x. From this, we

have the following table of values of QVr.N11
/.
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r 7 9 11 21

QVr .N11
/ 1:81736 1:66782 1:62276 1:43255

r 31 41 51 61

QVr .N11
/ 1:33012 1:27064 1:23174 1:20411

r 71 81 91 101

QVr .N11
/ 1:18335 1:16711 1:15401 1:14319

r 201 301 401 501

QVr .N11
/ 1:08943 1:06872 1:05748 1:05035

3.4.2. Manifold N21
. According to SnapPy [21] and Regina [12], the manifold

N21
in Callahan–Hildebrand–Weeks census [14] has volume

Vol.N21
/ � 1:83193;

and has the following ideal triangulation in Figure 14.

Figure 14

By Definition 2.5, we have

TVr.N21
/ D

X

.a;b/2Ar

wawb

ˇ

ˇ

ˇ

ˇ

a b b

a b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b b

a b b

ˇ

ˇ

ˇ

ˇ

;

where Ar consist of the pairs .a; b/ of elements of Ir such that .a; b; b/ is admis-

sible. From this, we have the following table of values of QVr .N21
/.

r 5 7 9 11

QVr .N21
/ 2:90345 2:54929 2:46119 2:42036

r 21 31 41 51

QVr .N21
/ 2:20099 2:11235 2:06163 2:02810

r 61 71 81 91

QVr .N21
/ 2:00403 1:98578 1:97140 1:95974

r 101 121 151 201

QVr .N21
/ 1:95006 1:93489 1:91876 1:90140
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3.5. Smallest hyperbolic 3-manifolds with totally geodesic boundary. By [37],

any orientable hyperbolic 3-manifold Mmin with non-empty totally geodesic

boundary that has minimum volume admits a tetrahedral decomposition by two

regular truncated hyperideal tetrahedra of dihedral angles �=6. As a consequence,

such a hyperbolic manifold has volume

Vol.Mmin/ � 6:452:

Such minimums are not unique and are classified in [23]. In particular, the bound-

ary of each of them is a connected surface of genus 2, and an Euler characteristic

calculation shows that each ideal triangulation of Mmin with two tetrahedra has

only one edge, as in Figure 15.

Figure 15

Therefore, for r > 3,

TVr .Mmin/ D
X

a2Ar

wa

ˇ

ˇ

ˇ

ˇ

a a a

a a a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

a a a

ˇ

ˇ

ˇ

ˇ

;

where Ar consists of all integers a with 0 6 a 6 b.r � 2/=3c. Here TVr .Mmin/

is negative for some values of r . In this case, we require the argument of the

logarithm to be in the interval Œ0; 2�/, so that the imaginary part of QVr .Mmin/ D
2�

r�2
log.TVr.Mmin// is either 0 or 2�2=.r � 2/. As a consequence, this imaginary

part converges to 0 and it suffices to consider the real part to test the convergence

of QVr.Mmin/.

We have the following table of the values of the real part <.QVr .Mmin// of

QVr.Mmin/.

r 11 21 31 41 ]

<.QVr .Mmin// 4:39782 5:12434 5:44590 5:63235

r 51 61 71 81

<.QVr .Mmin// 5:75566 5:84395 5:91063 5:96297

r 91 101 201 301

<.QVr .Mmin// 6:00526 6:04022 6:21400 6:28075

r 401 501 1001 2001

<.QVr .Mmin// 6:31684 6:33970 6:38935 6:41741



Volume conjectures for the Reshetikhin–Turaev and the Turaev–Viro invariants 439

Figure 16 below illustrates the asymptotic behavior of QVr.Mmin/, where the

dots represent the points .r; QVr .Mmin// and the squares represent the points

.r; Vol.Mmin//.

Figure 16. Asymptotics of QVr .Mmin/.

4. Evidence for closed 3-manifolds

We now consider Conjectures 1.1 and 1.2 in the case of closed manifolds ([55,

59, 61]), and provide evidence for these conjectures by numerically calculating

the Reshetikhin–Turaev invariants of a few closed 3-manifolds obtained by doing

Dehn surgeries along the knots K41
and K52

.

According to [39], if M is obtained from S3 by doing a p-surgery along a knot

K, then for an odd r > 3 the Reshetikhin–Turaev invariant RTr.M I q/ of M at

q D e
2�

p
�1

r is calculated as

RTr.M I q/ D 2

r
e

��.p/
�

� 3
r

� rC1
4

�

�
p

�1
�

r�2
X

nD0

�

sin
2.n C 1/�

r

�2

.�e
�

p
�1

r /p.n2C2n/

JnC1.KI e
4�

p
�1

r /
�

;

(4.1)
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where �.p/ is the sign of p, and Jn.KI e
4�

p
�1

r / is the value of the n-th colored

Jones polynomial Jn.KI t / of K at t D e
4�

p
�1

r , normalized in such a way that

Jn.unknot/ D 1.

Remark 4.1. The conventions in skein theory ([32, 11, 39]) make use of a variable

A that is, either a primitive 2r-th root of unity for an integer r , or a primitive r-

th root of unity for an odd integer r . The root of unity q in the definition of the

Turaev–Viro invariant then corresponds to A2, while the variable t of the colored

Jones polynomial corresponds to A4. Formula (4.1) deals with the case where

A D e
�

p
�1

r for r odd, in which case q D e
2�

p
�1

r and t D e
4�

p
�1

r .

Remark 4.2. Formula (4.1) is directly derived from [39, § 4.1]. In Lickorish’s

notation and letting A D e
�

p
�1

r , one has

� D 1p
r

sin
2�

r
;

h�!i�
U� D e

��.p/
�

� 3
r

� rC1
4

�

�
p

�1
; h�!i�1

U D 2p
r

sin
2�

r
;

and for Kp the knot K with framing p,

h!iKp
D

r�2
X

nD0

�sin 2.nC1/�
r

sin 2�
r

�2

.�e
�

p
�1

r /p.n2C2n/JnC1.KI e
4�

p
�1

r /:

Multiplying the above terms together, one gets formula (4.1).

To calculate the growth rate of RTr .M I q/ as r approaches infinity, it is equiv-

alent to calculate the limit of the following quantity:

Qr.M/ D 2�
p

�1 log
� RTr.M I e

2�
p

�1
r /

RTr�2.M I e
2�

p
�1

r�2 /

�

;

where the logarithm log is chosen so that its imaginary part lies in the interval

.��; �/:

4.1. Surgeries along the figure-eight knot. In this subsection, we denote by Mp

the manifold obtained from S3 by doing a p-surgery along the figure-eight knot

K41
. Recall from [56] that Mp is hyperbolic if and only if jpj > 5. By [43], the

n-th colored Jones polynomial of K41
equals

Jn.K41
; t / D

n�1
X

kD0

k
Y

iD1

.t
n�i

2 � t� n�i
2 /.t

nCi
2 � t� nCi

2 /: (4.2)
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In the tables below, we list the values of Qr .Mp/ modulo �2
Z for p D

�6; �5; 5; 6; 7; 8 and for r D 51, 101, 151, 201, 301 and 501.

4.1.1. p D �6. According to SnapPy [21],

CS.M�6/ C Vol.M�6/
p

�1 � �1:34092 C 1:28449
p

�1 mod �2
Z;

and by (4.1) and (4.2), we have

r 51 101

Qr .M�6/ �1:34241 C 1:22717
p

�1 �1:32879 C 1:28425
p

�1

r 151 201

Qr .M�6/ �1:33549 C 1:28440
p

�1 �1:33786 C 1:28443
p

�1

r 301 501

Qr .M�6/ �1:33956 C 1:28446
p

�1 �1:34043 C 1:28448
p

�1

4.1.2. p D �5. According to SnapPy [21],

CS.M�5/ C Vol.M�5/
p

�1 � �1:52067 C 0:98137
p

�1 mod �2
Z;

and by (4.1) and (4.2), we have

r 51 101

Qr .M�5/ �1:50445 C 0:87410
p

�1 �1:51521 C 0:98003
p

�1

r 151 201

Qr .M�5/ �1:51712 C 0:98130
p

�1 �1:51865 C 0:98131
p

�1

r 301 501

Qr .M�5/ �1:51977 C 0:98134
p

�1 �1:52035 C 0:98136
p

�1

4.1.3. p D 5. According to SnapPy [21],

CS.M5/ C Vol.M5/
p

�1 � 1:52067 C 0:98137
p

�1 mod �2
Z;

and by (4.1) and (4.2), we have

r 51 101

Qr .M5/ 1:50445 C 0:87410
p

�1 1:51521 C 0:98003
p

�1

r 151 201

Qr .M5/ 1:51712 C 0:98130
p

�1 1:51865 C 0:98131
p

�1

r 301 501

Qr .M5/ 1:51977 C 0:98134
p

�1 1:52035 C 0:98136
p

�1
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4.1.4. p D 6. According to SnapPy [21],

CS.M6/ C Vol.M�6/
p

�1 � 1:34092 C 1:28449
p

�1 mod �2
Z;

and by (4.1) and (4.2), we have

r 51 101

Qr .M6/ 1:34241 C 1:22717
p

�1 1:32879 C 1:28425
p

�1

r 151 201

Qr .M6/ 1:33549 C 1:28440
p

�1 1:33786 C 1:28443
p

�1

r 301 501

Qr .M6/ 1:33956 C 1:28446
p

�1 1:34043 C 1:28448
p

�1

4.1.5. p D 7. According to SnapPy [21],

CS.M7/ C Vol.M7/
p

�1 � 1:19653 C 1:46378
p

�1 mod �2
Z;

and by (4.1) and (4.2), we have

r 51 101

Qr .M7/ 1:10084 C 1:43670
p

�1 1:18016 C 1:46354
p

�1

r 151 201

Qr .M7/ 1:18930 C 1:46367
p

�1 1:19246 C 1:46372
p

�1

r 301 501

Qr .M7/ 1:19472 C 1:46375
p

�1 1:19588 C 1:46377
p

�1

4.1.6. p D 8. According to SnapPy [21],

CS.M8/ C Vol.M8/
p

�1 � 1:07850 C 1:58317
p

�1 mod �2
Z;

and by (4.1) and (4.2), we have

r 51 101

Qr .M8/ 0:96311 C 1:57167
p

�1 1:05821 C 1:58282
p

�1

r 151 201

Qr .M8/ 1:06949 C 1:58304
p

�1 1:07343 C 1:58309
p

�1

r 301 501

Qr .M8/ 1:07625 C 1:58313
p

�1 1:07769 C 1:58315
p

�1
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4.2. Surgeries along K52
. In this subsection, we let Mp be the manifold ob-

tained from S3 by doing a p-surgery along the knot K52
. Recall that Mp is hyper-

bolic if and only if p 6 �1 or p > 5. By [40], the n-th colored Jones polynomial

of K52
is equal to

Jn.K52
; t / D

n�1
X

kD0

t� k.kC3/
4 ck

k
Y

iD1

.t
n�i

2 � t� n�i
2 /.t

nCi
2 � t� nCi

2 /; (4.3)

where

ck D .�1/kt� 5k2C7k
4

k
X

iD0

t� i2�2i�3ki
2

Œk�Š

Œi �ŠŒk � i �Š
:

Here the formula differs from that of [40] by replacing t with t�1. This comes from

the chirality of K52
. Here we stick to the convention that is used in SnapPy [21],

which is the mirror image of the one used in [40].

In the tables below, we list the values of Qr .Mp/ modulo �2
Z for p D

�3; �2; �1; 5; 6; 7 and for r D 51; 75; 101; 125; 151 and 201.

4.2.1. p D �3. According to SnapPy [21],

CS.M�3/ C Vol.M�3/
p

�1 � �4:45132 C 2:10310
p

�1 mod �2
Z;

and by (4.1) and (4.3), we have

r 51 75

Qr .M�3/ �4:37951 C 2:10038
p

�1 �4:41819 C 2:10200
p

�1

r 101 125

Qr .M�3/ �4:43323 C 2:10247
p

�1 �4:43957 C 2:10268
p

�1

r 151 201

Qr .M�3/ �4:44329 C 2:10281
p

�1 �4:44681 C 2:10293
p

�1

4.2.2. p D �2. According to SnapPy [21],

CS.M�2/ C Vol.M�2/
p

�1 � �4:63884 C 1:84359
p

�1 mod �2
Z;

and by (4.1) and (4.3), we have

r 51 75

Qr .M�2/ �4:59073 C 1:84822
p

�1 �4:61357 C 1:84289
p

�1

r 101 125

Qr .M�2/ �4:62490 C 1:84317
p

�1 �4:62978 C 1:84331
p

�1

r 151 201

Qr .M�2/ �4:63265 C 1:84339
p

�1 �4:63536 C 1:84348
p

�1
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4.2.3. p D �1. According to SnapPy [21],

CS.M�1/ C Vol.M�1/
p

�1 � �4:86783 C 1:39851
p

�1 mod �2
Z;

and by (4.1) and (4.3), we have

r 51 75

Qr .M�1/ �4:85045 C 1:39808
p

�1 �4:85817 C 1:39817
p

�1

r 101 125

Qr .M�1/ �4:84865 C 1:40943
p

�1 �4:86157 C 1:39827
p

�1

r 151 201

Qr .M�1/ �4:86355 C 1:39834
p

�1 �4:86542 C 1:39841
p

�1

4.2.4. p D 5. According to SnapPy [21],

CS.M5/ C Vol.M5/
p

�1 � �1:52067 C 0:98137
p

�1 mod �2
Z;

and by (4.1) and (4.3), we have

r 51 75

Qr .M5/ �1:50445 C 0:87410
p

�1 �1:48899 C 0:96890
p

�1

r 101 125

Qr .M5/ �1:51521 C 0:98003
p

�1 �1:51539 C 0:98098
p

�1

r 151 201

Qr .M5/ �1:51712 C 0:98130
p

�1 �1:51865 C 0:98131
p

�1

4.2.5. p D 6. According to SnapPy [21],

CS.M6/ C Vol.M6/
p

�1 � �1:51206 C 1:41406
p

�1 mod �2
Z;

and by (4.1) and (4.3), we have

r 51 75

Qr .M6/ �1:46756 C 1:40044
p

�1 �1:50631 C 1:41501
p

�1

r 101 125

Qr .M6/ �1:50836 C 1:41339
p

�1 �1:50968 C 1:41356
p

�1

r 151 201

Qr .M6/ �1:51042 C 1:41372
p

�1 �1:51113 C 1:41386
p

�1
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4.2.6. p D 7. According to SnapPy [21],

CS.M7/ C Vol.M7/
p

�1 � �1:55255 C 1:75713
p

�1 mod �2
Z;

and by (4.1) and (4.3), we have

r 51 75

Qr .M7/ �1:53822 C 1:75178
p

�1 �1:55297 C 1:75315
p

�1

r 101 125

Qr .M7/ �1:55265 C 1:75507
p

�1 �1:55257 C 1:75582
p

�1

r 151 201

Qr .M7/ �1:55255 C 1:75625
p

�1 �1:55254 C 1:75664
p

�1

5. An integrality conjecture for torus link complements

In this section, we study the Turaev–Viro invariants for torus link complements.

We propose the following Integrality Conjecture 5.1, and provide evidence by both

rigorous (§ 5.1) and numerical (§ 5.2) calculations.

Conjecture 5.1. Let T.m;n/ be the .m; n/-torus link in S3. If r is relatively prime
to m and n; then TVr.S3 n T.m;n// is an integer independent of the choice of the
roots of unity q.

5.1. Calculations for some torus links. In this subsection, we will rigorously

calculate TVr.M/ for the complements of the unknot, the trefoil knot, the Hopf

link and the torus links T.2;4/ and T.2;6/. As in the previous sections, for a link L

in S3 we let

TVr.L/ D TVr.S3 n L/:

All the ideal triangulations used in this section are obtained by using Regina [12]

and SnapPy [21], and for simplicity, we will omit the arrows on the edges and keep

only the colors.

5.1.1. The unknot

Proposition 5.2. Let U be the unknot in S3. Then

TVr.U / D 1

for all r > 3 and for all q 2 C such that q2 is a primitive root of unity of degree r .
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Proof. The complement of the unknot admits the ideal triangulation represented

in Figure 17.

Figure 17

Therefore, for each r > 3; we have

TVr .U / D
X

a;b

wawb

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

a a a

ˇ

ˇ

ˇ

ˇ

D
X

a

wa

ˇ

ˇ

ˇ

ˇ

a a a

a a a

ˇ

ˇ

ˇ

ˇ

�

X

b

wb

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

�

;

where in the first row .a; b/ 2 Ir � Ir runs over all the admissible colorings at

level r; and in the second row a is over all the elements of Ir such that .a; a; a/ is

admissible and b is over all elements of Ir such that .a; a; b/ is admissible. Then

the result follows from the following identity

X

b

wb

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

D ı0;a: (5.1)

To prove (5.1), we use the Orthogonality Property. Letting m D 0; s D b and

i D j D k D l D n D a in (2.1), we have

X

b

wbw0

ˇ

ˇ

ˇ

ˇ

a a 0

a a b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

D ı0;a;

where b is over all elements of Ir such that .a; b/ is admissible at level r . Since

w0 D 1 and
ˇ

ˇ

ˇ

ˇ

a a 0

a a b

ˇ

ˇ

ˇ

ˇ

D 1

Œ2a C 1�
;

we have
X

b

wb

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

D Œ2a C 1� � ı0;a D ı0;a: �
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Conjecture 5.3. Let K be a knot in S3. Then TVr.K/ D 1 for all r > 3 and for
all q 2 C such that q2 is a primitive root of unity of degree r if and only if K D U .

Remark 5.4. It is interesting to know whether there is an M ¤ S3 n U; not

necessarily a link complement, such that TVr .M/ D 1 for all r and q.

5.1.2. The trefoil knot

Proposition 5.5. Let T.2;3/ be the trefoil knot in S3. Then

TVr.T.2;3// D
jr � 2

3

k

C 1

for all r > 3 and for all q 2 C such that q2 is a primitive root of unity of degree r .

Proof. The complement of trefoil knot T.2;3/ admits the ideal triangulation repre-

sented in Figure 18.

Figure 18

Therefore, for each r > 3; we have

TVr .T.2;3// D
X

a;b

wawb

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

;

where .a; b/ 2 Ir � Ir runs over all the admissible colorings at level r . The triple

.a; a; a/ being admissible implies that a 2 Z and a 6 .r � 2/=3. Hence the right

hand side equals

X

06a6
r�2

3

�

X

b

wbwa

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

�

;

where a is over all the integers in that range and b is over all elements of Ir such

that .a; a; b/ is admissible. Letting i D j D k D l D m D n D a and s D b in
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the Orthogonality Property (2.1), we have

X

b

wbwa

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

a a b

ˇ

ˇ

ˇ

ˇ

D 1;

where b is over all elements of Ir such that .a; a; b/ is admissible. As a conse-

quence,

TVr.T.2;3// D
X

06a6
r�2

3

1 D
jr � 2

3

k

C 1: �

5.1.3. The Hopf link and torus links T.2;4/ and T.2;6/

Proposition 5.6. Let T.2;2/ be the Hopf link in S3. Then

TVr .T.2;2// D r � 1

for all r > 3 and for all q 2 C such that q2 is a primitive root of unity of degree r .

Proof. The complement of the Hopf link admits the ideal triangulation repre-

sented in Figure 19.

Figure 19

Therefore, for each r > 3; we have

TVr.T.2;2// D
X

a;b;c

wawbwc

ˇ

ˇ

ˇ

ˇ

a a a

a a c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

b b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

b b b

ˇ

ˇ

ˇ

ˇ

D
X

a;b

wawb

ˇ

ˇ

ˇ

ˇ

a a a

b b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a a

b b b

ˇ

ˇ

ˇ

ˇ

�

X

c

wc

ˇ

ˇ

ˇ

ˇ

a a a

a a c

ˇ

ˇ

ˇ

ˇ

�

;

where in the first row .a; b; c/ runs over all the admissible colorings at level r; and

in the second row c runs over all elements of Ir such that all the involved quantum
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6j -symbols are admissible. By (5.1), we have

X

c

wc

ˇ

ˇ

ˇ

ˇ

a a a

a a c

ˇ

ˇ

ˇ

ˇ

D ı0;a:

Therefore,

TVr.T.2;2// D
X

b

w0wb

ˇ

ˇ

ˇ

ˇ

0 0 0

b b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 0 0

b b b

ˇ

ˇ

ˇ

ˇ

D
X

b

1;

where b is over all the elements in Ir such that .0; b; b/ is admissible. Since this

holds for all elements b in Ir ;

TVr.T.2;2// D jIr j D r � 1: �

Proposition 5.7. Let T.2;4/ be the .2; 4/-torus link in S3. Then

TVr .T.2;4// D
�jr � 2

2

k

C 1
��jr � 1

2

k

C 1
�

for all r > 3 and for all q 2 C such that q2 is a primitive root of unity of degree r .

Proof. The complement of the torus link T.2;4/ has the following ideal triangula-

tion represented in Figure 20.

Therefore, for each r > 3; we have

TVr .T.2;4// D
X

.a;b;c;d/2Ar

wawbwcwd

ˇ

ˇ

ˇ

ˇ

a a b

c c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a b

c c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b b

a a d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b b

a a a

ˇ

ˇ

ˇ

ˇ

D
X

a;b;c

wawc

ˇ

ˇ

ˇ

ˇ

a a b

c c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a b

c c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b b

a a a

ˇ

ˇ

ˇ

ˇ

�

X

d

wd wb

ˇ

ˇ

ˇ

ˇ

b b b

a a d

ˇ

ˇ

ˇ

ˇ

�

;

where in the second row a; b; c run over elements of Ir such that all the involved

triples are admissible. We claim that

X

d

wd wb

ˇ

ˇ

ˇ

ˇ

b b b

a a d

ˇ

ˇ

ˇ

ˇ

D
p

�1
2aC2bp

Œ2a C 1�Œ2b C 1� � ı0;b:

Indeed, letting m D 0; i D j D a; k D l D n D b and s D d in the Orthogonality

Property (2.1), we have

X

d

wd wb

ˇ

ˇ

ˇ

ˇ

b b b

a a 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b b

a a d

ˇ

ˇ

ˇ

ˇ

D ı0;b:
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Figure 20

Then the claim follows from the fact that

ˇ

ˇ

ˇ

ˇ

b b b

a a 0

ˇ

ˇ

ˇ

ˇ

D
p

�1
2aC2b

p

Œ2a C 1�Œ2b C 1�
:

Therefore,

TVr.T.2;4// D
X

a;c

wawc

ˇ

ˇ

ˇ

ˇ

a a 0

c c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a 0

c c c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 0 0

a a a

ˇ

ˇ

ˇ

ˇ

p
�1

2ap

Œ2a C 1�

D
X

a;c

.�1/2aŒ2a C 1�.�1/2cŒ2c C 1�
.�1/2aC2c

Œ2a C 1�Œ2c C 1�

p
�1

2a

p

Œ2a C 1�

p
�1

2ap

Œ2a C 1�

D
X

a;c

1;

where a; c run over all the elements of Ir such that .c; c; a/ and .a; a; 0/ are
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admissible. Counting the number of such pairs .a; c/; we have

TVr .T.2;4// D
�jr � 2

2

k

C 1
��jr � 1

2

k

C 1
�

: �

Proposition 5.8. Let T.2;6/ be the .2; 6/-torus link in S3. Then

TVr.S3 n T.2;6// D
�j r � 2

3

k

C 1
��j2r � 2

3

k

C 1
�

for all r > 3 and for all q 2 C such that q2 is a primitive root of unity of degree r .

Proof. The complement of the torus link T.2;6/ has the following ideal triangula-

tion represented in Figure 21.

Figure 21

Therefore, for each r > 3; we have

TVr .T.2;6// D
X

.a;b;c;d/2Ar

wawbwcwd j
ˇ

ˇ

ˇ

ˇ

a a c

b b a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a c

b b a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b c

b b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b d

b b c

ˇ

ˇ

ˇ

ˇ

D
X

a;b;c

wawb

ˇ

ˇ

ˇ

ˇ

a a c

b b a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a c

b b a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b c

b b b

ˇ

ˇ

ˇ

ˇ

�

X

d

wd wc

ˇ

ˇ

ˇ

ˇ

b b d

b b c

ˇ

ˇ

ˇ

ˇ

�

;
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where in the second row a; b; c run over elements of Ir such that all the involved

triples are admissible. We claim that

X

d

wd wc

ˇ

ˇ

ˇ

ˇ

b b d

b b c

ˇ

ˇ

ˇ

ˇ

D .�1/2bŒ2b C 1� � ı0;c :

Indeed, letting m D 0; i D j D k D l D b; n D c and s D d in the Orthogonality

Property (2.1), we have

X

d

wd wc

ˇ

ˇ

ˇ

ˇ

b b d

b b 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b d

b b c

ˇ

ˇ

ˇ

ˇ

D ı0;c :

Then the claim follows from the fact that

ˇ

ˇ

ˇ

ˇ

b b d

b b 0

ˇ

ˇ

ˇ

ˇ

D .�1/2b

Œ2b C 1�
:

Therefore,

TVr .T.2;6// D
X

a;b

wawb

ˇ

ˇ

ˇ

ˇ

a a 0

b b a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a a 0

b b a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b 0

b b b

ˇ

ˇ

ˇ

ˇ

.�1/2bŒ2b C 1�

D
X

a;b

.�1/2aŒ2a C 1�.�1/2bŒ2b C 1�

.�1/2aC2b

Œ2a C 1�Œ2b C 1�

.�1/2b

Œ2b C 1�
.�1/2bŒ2b C 1�

D
X

a;b

1;

where a; b run over all the elements of Ir such that .a; a; b/ and .b; b; b/ are

admissible. Counting the number of such pairs .a; b/; we have

TVr .T.2;6// D
�jr � 2

3

k

C 1
��j2r � 2

3

k

C 1
�

: �

Remark 5.9. Conjecture 1.1 can be generalized to non-hyperbolic 3-manifolds by

considering the Gromov norm, and Propositions 5.2, 5.5, 5.6, 5.7, 5.8 prove that

for the corresponding cases.

5.2. Numerical evidence for Conjecture 5.1. In this subsection, we provide

further evidence for Conjecture 5.1 by numerically calculating the Turaev–Viro

invariants for the complements of the torus knots T.2;5/; T.3;5/; T.2;7/; T.3;7/; T.2;9/

and T.2;11/.
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5.2.1. Knot T.2;5/. Table 1 contains the values of TVr.T.2;5/I e
k�

p
�1

r / for k D
1; 2; 3 and r 6 20.

5.2.2. Knot T.3;5/. Table 2 contains the values of TVr .T.3;5/I e
k�

p
�1

r / for k D
1; 2; 3 and r 6 20.

5.2.3. Knot T.2;7/. Table 3 contains the values of TVr .T.2;7/I e
k�

p
�1

r / for k D
1; 2; 3 and r 6 21.

5.2.4. Knot T.3;7/. Table 4 contains the values of TVr

�

T.3;7/I e
k�

p
�1

r

�

for k D
1; 2; 3 and r 6 21.

5.2.5. Knot T.2;9/. Table 5 contains the values of TVr

�

T.2;9/I e
k�

p
�1

r

�

for k D
1; 2; 3 and r 6 22.

5.2.6. Knot T.2;11/. Table 6 below contains the values of TVr

�

T.2;11/I e
k�

p
�1

r

�

for k D 1; 2; 3 and r 6 22.
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