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The Homflypt polynomial and the oriented Thompson group
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Abstract. We show how to construct unitary representations of the oriented Thompson

group EF from oriented link invariants. In particular we show that the suitably normalised

HOMFLYPT polynomial defines a positive definite function of EF .
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1. Introduction

The Thompson group F is usually defined geometrically as a group of piecewise

linear homeomorphisms of the circle. One can then readily give a combinatorial

description in terms of pairs of planar rooted binary trees, see [2]. In [5] the geo-

metrical definition of F was used to obtain some knot and link TQFT invariants as

coefficients of a specific “vacuum” vector �, for certain unitary representations

of F . The calculation of these coefficients used a direct construction of a link

from the combinatorial description of an element of F as a pair of binary trees,

by replacing each vertex of the trees by a crossing, where the roots at the top and

bottom are vertices, and the loose ends introduced are all tied togther in the only

planar way possible.

If g 2 F let us call L.g/ the corresponding link, L 7! Q.L/ the relevant

TQFT link invariant (L denotes a generic link) and � the unitary representation

of F defined in [5]. The picture below illustrates how to construct L.g/ from a

1 Vaughan F. R. Jones is supported by the NSF under Grant No. DMS-0301173 and grant

DP140100732, Symmetries of subfactors.
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pair of trees:

where each vertex is replaced by the following tangle as shown below:

and the free ends are connected in the obvious way.

Then

h�.g/�; �i D Q.L.g//:

Since � is unitary, the map g 7! Q.L.g// is a positive definite function on F ,

which is not obvious without this interpretation.

In [5] it was shown that any link arises as L.g/ for some g 2 F so that F

is as good as the braid groups at producing links. Unfortunately L.g/ receives

no natural orientation from g. This defect was overcome in [5] by restricting the

construction to a subgroup EF < F for which the chequerboard shading surface for

L.g/ is oriented and so defines an orientation of L.g/ as the oriented boundary.

It was further shown that all oriented links arise in this way from EF .

But [5] failed to interpret oriented TQFT invariants as coefficients of unitary

representations of EF .

In this paper we fill this gap, following the observation by the first two authors

(extending the result in [1]) that, at least for HOMFLYPT, the map g 7! Q.L.g//

is in fact positive definite on EF . For a precise statement, see Theorem 4.2 below.
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We will achieve this interpretation using the method of [6] which is a remark-

ably flexible way of constructing actions of many groups by realising them as

groups of fractions G.C/ (in the sense of Ore) for categories C with stabilisation

and cancellation properties: every functor from C to another category D admitting

direct limits yields immediately an action of G.C/ on a certain direct limit.

In the case of Thompson’s group F we have F D G.C/ where C is the category

F of binary planar rooted forests. There is an abundance of readily obtainable

functors from F to other categories, in particular one may realise the construction

of L.g/ by a functor to the category of Conway tangles. In this paper we will

show how to realise EF as the field of fractions of an oriented version EF of F (see

Proposition 3.6). And oriented TQFT invariants Q will give rise to functors from
EF which give unitary representations � of EF such that

Q.L.g// D h�.g/�; �i

for g 2 EF . Positive definiteness of the map g 7! Q.L.g// becomes immediate.

2. Positivity of the HOMFLYPT inner product

Let � be a function from ¹1; 2; : : : ; 2nº to ¹C; �º. such that j��1.C/j D

j��1.�/j D n. Let s 2 C and k 2 N be given. We consider the vector spaces V�

given by the HOMFLYPT skein module for the circle with 2n boundary points.

That is to say the quotient of the space of all linear combinations of Conway tan-

gles of oriented links (orientations compatible at the boundary with � with C D

out and � D in) modulo the skein relation

s�2k � s2k D
�

s �
1

s

�

:

These vector spaces have a natural *-structure given by reflection, reversing all

the orientations and the condition
� ��

D :

One needs to specify a first point on the boundary of a diagram as well. See [4]

for more details. The HOMFLYPT polynomial equips the V� with scalar products

h ; i where if T1 and T2 are tangles, hT1; T2i is the HOMFLYPT polynomial of

the link:
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Proposition 2.1. The inner product h�; �i on V� defined above is positive semidef-

inite if s D e�i=r for r � k C 2; r 2 Z.

Proof. This is a corollary of Wenzl’s paper [8] in which the result is proved for the

special choice of � with � D .C; C; C: : : : ; C; �; �; �; : : : ; �/. In this case, it is

well known that the the corresponding tangles are linearly spanned by braids (see

e.g. [7]). The connection between the HOMFLYPT polynomial and Wenzl’s result

in [8], which is formulated in terms of Hecke algebras, is explained quite in detail

in [9, Section 3]. We only observe some change in conventions and notations:

consider the change of parameter .r; s/ 7! .r; �s�1/ in [9] and then Theorem 3.1.1

therein applies with r D s�2k (the Hecke algebra parameter becomes q D s�2).

To get from this choice of boundary orientations to any other one, first observe

that the permutation group S2n is transitive on all the � . So it suffices to show that

positivity is conserved if the boundary orientation � is changed to � 0 by applying

a transposition between adjacent elements. For this simply surround the circle in

which the tangles live with a single crossing as

This defines a h ; i-preserving linear map from V� to V� 0 . The invariance of

the inner product is a consequence of the application of a Reidemeister move of

type II, as shown in the figure below for a concrete example. Consider the tangles

T1; T2 2 V.CCC���/ given by

T1 D T2 D
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Then the scalar product hT1; T2i is the HOMFLYPT polynomial of the link

while the scalar product of the images of T1; T2 in V.CC�C��/ is the HOMFLYPT

polynomial of the link

The invariance of the inner product in the other cases follows from similar argu-

ments. �

Remark 2.2. If one changes the *-structure by making an oriented crossing self-

adjoint, the inner product becomes positive semidefinite when s 2 R
C.
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3. The category EF and its group of fractions

Recall from [5, Section 5.3.2] that a pair of binary planar trees representing an

element of F determines a surface with boundary as below:

EF is the subgroup of F for which this surface is orientable and one chooses an

orientation C for the leftmost part of the surface in the picture. The link which is

the boundary of the surface is then oriented with the boundary orientation. It is

shown in [5] that, modulo distant unknots, every oriented link arises in this way

from an element of EF .

In [6, Section 2.1] a group of fractions was associated to an object j in a

category Cat having the following three properties.
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Unit. MorCat.j; a/ ¤ ; for all a 2 Ob.Cat/.

Stabilisation. Let D WD
S

a2Ob.Cat/ MorCat.j; a/. Then for each f , g 2 D

there are morphisms p and q such that pf D qg.

Cancellation. Given two morphisms p and q, if pf D qf for f 2 D then

p D q.

If the category has one object the group of fractions is due to Ore. More

importantly an action of the group of fractions is associated to any functor ˆ from

Cat to another category Kat. In the case where Cat is the category of planar

binary forests, j is the forest with one root and one leaf, the group of fractions is

Thompson’s group F and morphisms are obtained whenever Kat has a morphism

which behaves like a tree with one root and two leaves. In particular in the category

of unoriented tangles a crossing provides such a morphism. Applying a unitary

unoriented TQFT to the picture gives unitary representations of F on a Hilbert

space with a special “vacuum” vector � so that the coefficient hg�; �i is the

invariant that the TQFT assigns to the link. We will now repeat this construction

by constructing a category EF of planar binary forests with extra orientation data.
EF will satisfy the axioms of [6] and its group of fractions will be obviously

isomorphic to EF . Moreover assigning oriented crossings to the forks in EFwill give

a functor to the category of tangles and applying a unitary oriented TQFT such

as SU(N) at some level will give a unitary representation of EF whose coefficients

hg�; �i produce the HOMFLYPT polynomial of the oriented link constructed

from g in [5].

Definition 3.1. For n D 1; 2; 3; : : : an n-sign will be a sequence of n C’s and �’s

such that the first sign is C and the second is � (if n � 2/.

An n-sign determines a bi-colouring (by ˙) of the regions to the left of n points

on R so that the infinite left region is coloured C (adjacent regions other than the

leftmost two may have the same colour).

Binary planar forests are as in [5]. They form a category under stacking.

Proposition 3.2. Given an m-sign � and a binary planar forest f whose m roots

lie on R and whose n leaves lie on a parallel copy of R, the colouring of the

regions between the roots of f extends uniquely to a colouring of the regions

of the planar map given by the forest, with the property that regions sharing an

edge of f emanating clockwise from the lower incident edge at a triple point have

different colours. Thus f and � together determine an n-sign f .�/ which can be

read off from the copy of R containing the leaves of f .
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We give a proof by example. Consider � and f .�/ equal to .C; �; C; �/ and

.C; �; �; C; �; C; �; �; C; C/ respectively, then

Proposition 3.3. The map � ! f .�/ is functorial, i.e. f .g.�// D .f ı g/.�/.

Proof. The claim is actually a consequence of the uniqueness of the procedure

described in the former proposition. In fact, on the one hand we have a colouring of

the regions determined by g and induced by � , which in turn extends to a colouring

of the regions determined by f and induced by g.�/. On the other hand, since

f ıg is forest we also have a naturally induced colouring of the regions determined

by f ı g and � . The claim now follows by the uniqueness of the procedure. �

Definition 3.4. The category EF has as objects all pairs of the form .n; �/ where �

is an n-sign and the morphisms from .m; �1/ to .n; �2/ are the pairs .f; �1/ where

f .�1/ D �2. Composition of morphisms is obvious.

Proposition 3.5. Consider j D .1; �0/, with �0 being the unique 1-sign. Then EF

satisfies the Unit, Stabilisation and Cancellation properties.

Proof. We start with the Unit property. A morphism in MorEF
�

j; .n; �/
�

is just a

binary tree f such that f .�0/ D � . The set of these trees is non-empty since one

can always determine a planar binary tree for a given n-sign as done in [5, Section

5.2, p. 31].

Now we take care of the Stabilisation property. We recall that one can de-

scribe the elements of the oriented Thompson group EF as pairs of trees (see

[5] for the notation, cf. [2]). Given two elements g.T C
1 ; T �

1 / and g.T C
2 ; T �

2 /,

if one wants to perform the multiplication g.T C
1 ; T �

1 /g.T C
2 ; T �

2 /, one needs to

find other representatives of the factors of the form g.T C0

1 ; T 0/ and g.T 0; T �0

1 /.

This can be done by adding pairs of opposing carets. Then the product is

g.T C
1 ; T �

1 /g.T C
2 ; T �

2 / D g.T C0

1 ; T �0

2 /. In the same way, in the present situation,

we may add "carets" and vertical lines forming the forests/morphisms p and q to

the trees/morphisms f and g and obtain the same tree pf D qg.

The Cancellation property is clear. �
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Proposition 3.6. The group of fractions of EF is naturally isomorphic to EF .

Proof. A pair of morphisms in EF from j to any fixed object is, by definition, a pair

of binary planar trees together with a bi-colouring of the graph described in [5].

Thus forgetting the n-signs defines a homomorphism from the group of fractions

of EF onto EF which is injective since the planar tree f determines f .�0/. �

4. The HOMFLYPT functor

Let C be the category whose objects are sequences � of an odd number of signs

and whose morphisms C
�
� are the oriented Conway tangles in a rectangle with m

points on the bottom and n points on the top so that the string incident on the i th

point on the bottom is ingoing or outgoing if �.i/ is � or C respectively. And the

string incident on the i th point on the top is ingoing or outgoing if �.i/ is C or �

respectively. Composition is stacking of tangles. Here is an element of C
�
� :

where � D .C; C; �/ and � D .C; �; C; �; C/.

Put ı D s�2k�s2k

s�s�1
. We will only use tangles such that the leftmost bottom

and top strings are ingoing and outgoing respectively which is why n-signs are

required to have �.1/ D C.

We now suppose s D e�i=r , with r as in Proposition 2.1, and take the positive

definite HOMFLYPT skein of C and let H be the category with objects being the n-

signs as before and morphisms H �
� being the quotient of the vector space spanned

by C �
� by the kernel of the positive semidefinite form defined by the HOMFLYPT

polynomial.
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Definition 4.1. We define the functor ˆW EF ! H by identifying the objects and

assigning an element of MorH.�; �/ to a pair .f; �/ with f .�/ D � as follows.

If f and � are represented as

(� D .C; �; C; �/, � D .C; �; �; C; �; C; �; �; C; C/) then we form the oriented

surface (shaded regions) as follows:

And finally we orient the boundary components of the surface to obtain the

oriented Conway tangle:

ˆ.f; �/ D 1p
ı

n

which we interpret as a morphism ˆ.f; �/ in H. We have multiplied by a power

of ı to ensure that ˆ.f; �/ is an isometry for the Hilbert space structure.

By the procedure of [6] (see Proposition 2.1.3 therein) this gives a unitary

representation of the group EF as the group of fractions of EF.

Let L.g/ denote the oriented link assigned to g 2 EF in [5]. We recognise the

coefficients h�.g/�; �i of the vacuum vector � D " in the semicontinuous limit

as the suitably normalised HOMFLYPT polynomial of L.g/ for g 2 EF .

Theorem 4.2. If n is the number of leaves of g, the function

g 7�!
1

ın
HOMFLYPT.L.g//

is a positive definite function on EF .
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Remark 4.3. If one changes the �-structure as in Remark 2.2, the HOMFLYPT

polynomial of the alternating link obtained by the inner product becomes a posi-

tive definite function on EF for s 2 RC (actually R�).

Remark 4.4. The result also follows for any unitary TQFT invariant such as the

Kauffman polynomial at various values and all cablings of such. And of course

for the original Jones polynomial, improving the corresponding partial results

obtained in [1] by a different method. We gave the details for HOMFLYPT by

way of illustration.
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