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Abstract. To every object X of a symmetric tensor category over a �eld of characteristic

p > 0 we attach p-adic integers DimC.X/ and Dim�.X/ whose reduction modulo p

is the categorical dimension dim.X/ of X , coinciding with the usual dimension when

X is a vector space. We study properties of Dim˙.X/, and in particular show that they

don’t always coincide with each other, and can take any value in Zp. We also discuss the

connection of p-adic dimensions with the theory of �-rings and Brauer characters.
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1. Introduction

Let k be an algebraically closed �eld of characteristic p > 0, and let C be a

symmetric tensor (in particular, abelian) category over k. Let X 2 C. Then to

X one can attach its categorical dimension dim.X/ 2 k, and it is shown in [9],

Exercise 9.9.9(ii) that in fact dim.X/ 2 Fp � k. The main result of the paper

is that dim.X/ is the reduction modulo p of a richer invariant of X , which takes

values in Zp — the p-adic dimension ofX . In fact, we de�ne two kinds of p-adic

dimensions — the symmetric p-adic dimension DimC.X/ and the exterior p-adic

dimension Dim�.X/, which for vector spaces coincide with the usual dimension

of X .

Speci�cally, recall that if t D : : : t2t1t0 2 Zp is a p-adic integer with digits

t0; t1; t2; : : : (i.e., t D
P

j �0 tjp
j ), then we can de�ne the power series

.1C z/t WD

1
Y

j D0

.1C zpj

/tj 2 FpŒŒz��;
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and t is uniquely determined by the series .1 C z/t . This series has all the

properties of the exponential function, i.e., .1 C z/tCs D .1 C z/t .1 C z/s,

..1C z/t /s D .1C z/ts , etc.

Now, the p-adic dimensions of X are de�ned by the formulas

1
X

j D0

dim.S jX/zj D .1� z/� DimC.X/; (1)

and
1

X

j D0

dim.
Vj

X/zj D .1C z/Dim�.X/; (2)

where S iX and
Vi

X are the symmetric and exterior powers of X . The main

challenge is to show that Dim˙.X/ exist. We do it in Section 2.

It follows immediately from the de�nition that

Dim˙.X ˚ Y / D Dim˙.X/C Dim˙.Y /

and that p-adic dimension is functorial, i.e. for any (exact) symmetric tensor

functor F we have Dim˙.F.X// D Dim˙.X/. Also, using Deligne’s categories

in characteristicp, we show that DimC.X/ and Dim�.X/ can take any value inZp.

On the other hand, we show that in general

DimC.X/ ¤ Dim�.X/;Dim˙.X ˝ Y / ¤ Dim˙.X/Dim˙.Y /;

and at least in characteristic 2 the dimensions Dim˙ are not always additive on

exact sequences, although these properties do hold for “good” objects.

We will discuss applications of p-adic dimensions in subsequent papers. One

of the motivations is to formulate the universal property of Deligne’s categories

Rep.St / and Rep.GLt / in positive characteristic, de�ned by P. Deligne in his let-

ter to the third author, [6] (see [10], Section 3.3, for a summary). Namely, for any

nontrivial ultra�lter U on the set of natural numbers Deligne constructed the ten-

sor categories of superexponential growth Rep.SU/, Rep.GLU/ over k, analogous

to Deligne’s categories Rep.St /, Rep.GLt / in characteristic zero (see [7, 4, 5]

and [9], Section 9.12). These categories are obtained by “p-adic interpolation”

of the ordinary representation categories of Sn and GLn along U. Deligne con-

jectured that they depend only on the p-adic integer t WD limU n (so that one

may denote them by Rep.St /;Rep.GLt /), and for Rep.SU/ this has now been

proved in [10]. In characteristic zero, the categories Rep.St / and Rep.GLt / have

nice universal properties; for instance, symmetric tensor functors from Rep.GLt /,

Rep.St / to a symmetric tensor category C correspond to objects (respectively,
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commutative Frobenius algebras) X in C of dimension t such that for any parti-

tion �, the Schur functor S�X is nonzero. The notion of p-adic dimension should

allow one to generalize these properties to positive characteristic; namely, one

should expect that symmetric tensor functors from Rep.GLt /, Rep.St / to C corre-

spond to “good” objects (respectively, commutative Frobenius algebras)X in C of

p-adic dimension t . We plan to discuss these universal properties more precisely

elsewhere.

The organization of the paper is as follows. In Section 2 we de�ne the p-adic

dimensions and prove their existence. In Section 3 we study the properties of

p-adic dimensions, and discuss their connection with �-rings and Brauer charac-

ters.

Acknowledgements. We are very grateful to Pierre Deligne for his letter to

V. Ostrik, which led to this work. We thank Haynes Miller for Remark 3.4

and Siddharth Venkatesh for useful discussions. The work of P. Etingof and

N. Harman was partially supported by the NSF grant DMS-1502244. The work

of N. Harman was also partially supported by the National Science Foundation
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2. p-adic dimensions

2.1. Preliminaries on tensor categories. Let k be an algebraically closed �eld

of characteristic p > 0, and C a symmetric tensor category over k (see [9],

De�nitions 4.1.1, 8.1.2). For X; Y 2 C, we have the commutativity constraint

cX;Y WX˝Y ! Y ˝X . Since cY;X ıcX;Y D 1X˝Y , we have a natural action of the

symmetric group Sn on X˝n de�ned by si;iC1 7! ci WD 1˝i�1 ˝ cX;X ˝ 1n�i�1,

where si;j 2 Sn is the transposition of i and j .

Recall from [9] that to every endomorphism AWX ! X of an object X 2 C

we can attach its trace

TrX .A/ WD evX ıcX;X� ı .A˝ 1/ ı coevX 2 End.1/ D k;

and in particular we can de�ne the dimension ofX by dim.X/ D TrX .1/ 2 k. We

have TrX�.A�/ D TrX .A/, hence dim.X�/ D dim.X/.

Lemma 2.1. Let � 2 Sn be a permutation. Then TrX˝n.�/ D dim.X/c.�/, where

c.�/ is the number of cycles of � .
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Proof. This is easy to prove diagrammatically. Consider the �at braid b� corre-

sponding to � . Then the trace of � is depicted by the �at link obtained by gluing

the i-th input of b� to its i-th output for all i 2 Œ1; n�. It is easy to see that this �at

link has c.�/ components, and each component contributes a factor of dim.X/,

which implies the statement. �

Lemma 2.2 ([9], Exercise 9.9.9(ii)). One has dim.X/ 2 Fp.

Proof. Let s be the cyclic permutation acting onX˝p. Then sp D1, so .1�s/p D0

(as we are in characteristicp), and hence 1�s is nilpotent. Thus TrX˝p .1�s/ D 0.

But by Lemma 2.1, this trace equals dim.X/p � dim.X/. Thus dim.X/p D

dim.X/, so dim.X/ 2 Fp . �

Now recall the de�nition of symmetric and exterior powers of X . This de�ni-

tion is given in [9], Section 9.9, under the assumption of characteristic zero; the

discussion also applies to characteristic p > 2, but some changes are needed for

p D 2.

Letƒ2X be the image of cX;X � 1 in X˝X . We de�ne the symmetric algebra

SX to be the quotient of the tensor algebra TX by the two-sided ideal generated

by ƒ2X . Then SX is a ZC-graded algebra: SX D
L

n�0 S
nX . The object SnX

is the object of coinvariants of Sn in X˝n, and is called the n-th symmetric power

of X . We also de�ne the dual n-th symmetric power SnX WD .SnX�/�. We have

a natural inclusion SnX � X˝n as the subobject of Sn-invariants; i.e., SnX is the

intersection of the kernels of ci � 1 for i D 1; : : : ; n � 1. We also have a natural

projection X˝n ! SnX . The composition of these two maps is a morphism

�nW SnX ! SnX . This morphism is an isomorphism for n < p but not for n � p.

Similarly, consider S2X � X ˝ X , and de�ne the exterior algebra
V

X as

the quotient of TX by the two-sided ideal generated by S2X . Then
V

X D
L

n�0

Vn
X , and

Vn
X is a quotient of X˝n called the n-th exterior power of

X . We also de�ne the dual n-th exterior power ƒnX WD .
Vn

X�/� � X˝n,

which is the intersection of the images of ci � 1 for i D 1; : : : ; n� 1 (so for n D 2

we recover ƒ2X de�ned above). We have a morphism  nWƒnX !
Vn

X which

is an isomorphism for n < p but not for n � p.

If p > 2 then S2X Š S2X , so the exterior power
Vn

X can be de�ned

as the object of anticoinvariants of Sn in X˝n, while the dual exterior power

ƒnX � X˝n is the subobject of antiinvariants (the intersection of the kernels

of ci C 1 or, equivalently, images of ci � 1 over all i).

Also, in any characteristic these de�nitions of symmetric and exterior algebras

and powers coincide with the usual ones if X is a vector space over k.

Finally, note that dim.S iX/ D dim.SiX�/ and dim.
Vi

X/ D dim.ƒiX�/.
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2.2. The p-adic dimensions. Let X 2 C. The following theorem is our main

result.

Theorem 2.3. (i) There exists a unique dC D dC.X/ 2 Zp such that
X

j �0

dim.SjX/zj D .1 � z/�dC :

(ii) There exists a unique d� D d�.X/ 2 Zp such that
X

j �0

dim.ƒjX/zj D .1C z/d� :

Proof. (i) Let dr WDdim.SrX/. Letn be a positive integer, and�D .�1;�2; : : : ; �m/

be a partition of n of length m. Let

S� WD S�1
� � � � � S�m

� Sn

be the Young subgroup of �. Let

S�X WD S�1X ˝ � � � ˝ S�mX D .X˝n/S� :

Given a double coset B 2 S�nSn=S�, we have a canonical endomorphism

AB W S�X ! S�X . Namely, write B as a disjoint union of left cosets Bi of S�

in Sn, and pick elements bi 2 Bi . Then de�ne the endomorphism A0 of X˝n by

A0 WD
P

i bi .

Claim 1. A0 restricts to an endomorphismAB of S�X , and the resulting endomor-

phism is independent on the choice of the bi .

Indeed, if b0
i 2 Bi is another choice, then b0

i D bigi , where gi 2 S�, so

b0
i D bi on S�X . Also, for any g 2 S� we have g

P

i bi D
P

i gbi , and gbi is

a representative of the coset gBi . But the union of gBi over all i is disjoint and

equals B , so
P

i gbi D
P

i bi on S�X . This proves the claim.

Lemma 2.4. There exists a universal polynomialPB.x1; x2; : : : ; x�1
/with integer

coe�cients such that for a tensor category C over a �eld of any characteristic and

any X 2 C we have TrS�X.AB/ D PB.d1; d2; : : : ; d�1
/.

Proof. The proof is by reverse induction in the lengthm of �, starting with length

n. If length.�/ D n then S�X D X˝n, S� D 1, B 2 Sn, AB D B , and

TrS�X.AB/ D d
c.B/
1 by Lemma 2.1, which gives the base of induction. So as-

sume that length.�/ D m < n and the statement is known for all larger lengths. If

B is the double coset of 1 then AB D 1, and TrS�X .AB/ D
Qm

iD1 d�i
, as required.
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So we may assume without loss of generality that B is the double coset of g 2 Sn,

where g … S�. Let H � S� be the intersection of S� with gS�g
�1. Recall that

double cosets of S� in Sn are labeled bym bymmatrices a D .aij / of nonnegative

integers such that
P

i aij D �i and
P

j aij D �j (see [14], Exercise 7.77).

By choosing g to be of minimal length, we may assume that

g�1Hg D Sa WD

m
Y

iD1

m
Y

j D1

Saij
� S�;

where .aij / is a partition of �i (nontrivial for at least one i); see [13], Lemma 2.

Let cs be representatives of elements s of S�=H in S�. Then we can write AB as

AB D
X

s2S�=H

csg

(note that this is independent on the choice of cs since g�1Hg � S�).

Let SaX WD ˝i j̋ SaijX , and let A0W SaX ! X˝n be de�ned by the same

formula as AB , i.e.,

A0 D
X

s2S�=H

csg:

Claim 2. A0 lands in S�X � X˝n.

Indeed, let y 2 S�. Then

yA0 D
X

s

ycsg D
X

s

csbsg D
X

s

csgb
0
s ;

where bs 2 H and b0
s D g�1bsg 2 g�1Hg D Sa. So b0

s acts trivially on SaX ,

hence yA0 D A0, and thus A0 lands in S�X , as claimed.

It is clear that A0 restricts on S�X to AB . Thus, TrS�X .AB/ D TrSaX .A
0/.

But TrSaX .A
0/ is given by some universal polynomial in d1; : : : ; d�1

with integer

coe�cients by the induction assumption, as A0 is a sum of endomorphisms of the

form AB0 , where B 0 is a double coset of Sa in Sn, and Sa is a parabolic subgroup

corresponding to the partition a with length.a/ > m. This proves the lemma. 4

Lemma 2.5. Suppose that the ground �eld has characteristic p > 0. Then

for each n there exists a universal polynomial Qn.z0; z1; : : : / over Fp such that

dn D Qn.d1; dp; dp2 ; : : : /. Moreover,Qn is unique if we require that it is of degree

< p in every variable. This unique polynomial is given by the formula

Qn.z0; z1; z2; : : : / D .�1/n
k

Y

iD0

�

.�1/p
i
zi

ni

�

; (3)

where ni are the digits of the base p expansion of n.
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Proof. To prove existence, use induction in n. The base n D 1 is trivial. We may

assume that n is not a power of p (otherwise, if n D pi , then Qn.z/ D zi ).

Suppose the statement is known below n. Let pi be the largest power of p

dividing n (i � 0). Then it is easy to see that the binomial coe�cient
�

n
pi

�

is

not zero in Fp . Therefore, SnX is the image of the following projector P acting

on Sn�pi

X ˝ Spi

X :

P D

�

n

pi

��1
X

s

cs ;

where cs are representatives of the elements s 2 Sn=Sn�pi � Spi in Sn. Thus,

dn D Tr.P /. But by Lemma 2.4, Tr.P / is given by a universal polynomial over

Fp in d1; : : : ; dr , where

r D max.n� pi ; pi/:

Since r < n, by the induction assumption, di , i � r are universal polynomials

over Fp of d1; dp; dp2 ; : : : . Hence so is dn. This shows that the polynomial Qn

exists.

Moreover, since by Lemma 2.2 we have di 2 Fp , in Qn we can replace z
p
i

with zi , and thus can chooseQn in such a way that it has degree < p with respect

to each variable.

Now we want to show that Qn with this degree requirement is unique and is

given by formula (3). To do so, pick some Qn satisfying the degree requirement,

and let

f .z0; : : : ; zk/ D Qn.z0; : : : ; zk/ � .�1/n
k

Y

iD0

�

.�1/p
i
zi

ni

�

;

for su�ciently large k. Let N0; N1; : : : ; Nk 2 Œ0; : : : ; p � 1�, and let

N D pkC1 �

k
X

iD0

Nip
i :

Let C be the category of vector spaces, and X D k
N . Then dr D

�

N Cr�1
r

�

D

.�1/r
�

�N
r

�

. By Lucas’ theorem, for r < pkC1 we then get

dr D .�1/r
k

Y

iD0

�

Ni

ri

�

;

where rj are the base p digits of r , and we view the right hand side modulo p.

In particular, dpi D .�1/p
i
Ni for i D 0; : : : ; k, where Ni are taken mod p. Thus,

we get

dr D .�1/r
k

Y

iD0

�

.�1/p
i
dpi

ri

�

;
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so f .d1; dp; : : : ; dpk / D 0 for any d1; dp : : : ; dpk 2 Fp (asNi are arbitrary). Since

the degree of f in each variable is < p, this implies that f D 0, as desired. 4

Now we are ready to prove (i). Let ıi be the representative of .�1/p
i
dpi in

Œ0; p � 1�, and let dC D �
P

i�0 ıip
i 2 Zp. We have

1
X

nD0

dnz
n D

Y

i�0

p�1
X

ni D0

�

.�1/p
i
dpi

ni

�

.�z/ni pi

D
Y

i�0

p�1
X

ni D0

�

ıi

ni

�

.�z/ni pi

D
Y

i�0

.1 � zpi

/ıi

D .1� z/�dC :

This proves (i).

(ii) First assume that p > 2. Consider the symmetric tensor category C0 WD

Supervec �C, and de�ne the object …X WD X ˝ k� 2 C0, where k� is the

odd 1-dimensional supervector space. Then ƒnX D Sn…X for even n and

ƒnX D …Sn…X for odd n. Thus, (ii) reduces to (i), with d�.X/ D �dC.…X/.

Now consider the case p D 2. In this case, we will use an argument analogous

to the proof of (i), replacing S� by ƒ� (this argument can also be used as an

alternative proof for p > 2, inserting appropriate signs). Let us describe the

necessary changes. First we need to prove an analog of Claim 1:

Claim 3. A0 restricts to an endomorphism AB of ƒ�X , and the resulting endo-

morphism is independent on the choice of the bi .

To see this, note �rst that ƒ�X � S�X , so by Claim 1, the choice of bi does

not matter. To show that AB lands in ƒ�X , we need to show that AB lands in the

image of cj C1 inX˝n for each j ¤ �1; �1 C�2; : : : : Let Tj be the set of all i such

that sj;j C1Bi D Bi . If i … Tj , we may choose bi 2 Bi and bi 0 2 Bi 0 WD sj;j C1Bi

so that sj;j C1bi D bi 0 . Thus, it su�ces to show that for each i 2 Tj , bi mapsƒ�X

to the image of cj C 1. To this end, note that sj;j C1bi D bisk;l , where sk;l 2 S�.

Since
V�

X is contained in the image of sk;l C 1, the image of bi restricted to

ƒ�X is contained in the image of bi .sk;l C 1/ D .sj;j C1 C 1/bi on X˝n. This

implies Claim 3.

Now we need to prove an analog of Claim 2.
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Claim 4. A0 lands in ƒ�X � X˝n.

To see this, let Uj be the set of s such that sj;j C1s D s. As in Claim 3,

it su�ces to show that for s 2 Uj , csg restricted to ƒaX lands in the image

of sj;j C1 C 1. We have sj;j C1csg D csgsk;l , where sk;l 2 Sa. We have

ƒaX � Im.sk;l C 1/, so the image of the restriction of csg to ƒaX is contained

in the image of csg.sk;l C 1/ D .sj;j C1 C 1/csg. This proves Claim 4.

The rest of the proof is a straightforward generalization of the proof of (i),

starting from Lemma 2.5, and the formulas are simpler. Namely, we have N D

N0CN1pC� � �CNkp
k, and the universal polynomial analogous to the polynomial

Qn of Lemma 2.5 has the form

Q�
n .z0; z1; : : : / D

Y

i�0

�

zi

ni

�

: �

Example 2.6. Here are examples of computation of the polynomial PB con-

structed in the proof of Lemma 2.4.

1. Let n D 3, � D .2; 1/. Then Sn D S3 consists of two double cosets

of S� D S2 D h.12/i — the group S� itself and the remaining set B of 4

elements: B D ¹.23/; .13/; .123/; .132/º. The element of minimal length in B

is g D .23/ (it has length 1). Then H is the trivial group, and so is Sa. Thus

AB D .23/C .12/.23/ D .23/C .123/. Hence

PB D Tr.AB/ D Tr.A0/ D TrX˝3..23/C .123// D d2
1 C d1:

So in characteristic 2we get d3 D d1d2Cd2
1 Cd1, which gives d1d2 D Q3.d1; d2/

(as d1 2 F2).

2. Let n D 4, � D .3; 1/. Then Sn D S4 consists of two double cosets of

S� D S3 D h.12/; .23/i — the group S� itself and the remaining set B of 18

elements. The element of minimal length in B is g D .34/ (it has length 1). Thus

H D h.12/i D Sa. Hence

AB D .34/C .123/.34/C .213/.34/ D .34/C .1234/C .2134/:

So

PB D Tr.AB/ D Tr.A0/ D TrS2X˝X˝X ..34/C .1234/C .2134//

D d1d2 C TrS2X˝X˝X ..1234/C .234//:

The remaining trace is the trace corresponding to a double cosetB 0 of S2 D h.12/i

in S4 consisting of the elements .134/; .234/; .1234/; .2134/ in which the minimal

length element is .234/ (of length 2). So this trace equals

TrX˝4..1234/C .234// D d1 C d2
1 :
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Thus we get that PB D d1d2 C d1 C d2
1 . Hence, in characteristic 3 we have

d4 D d1d3 C
1

2
d1.d

2
1 C d1/C d1 C d2

1 D d1d3 � d3
1 C d1;

which gives d1d3 D Q3.d1; d3/, as d1 2 F3.

De�nition 2.7. We call the number dC.X
�/ the symmetric p-adic dimension of

X , denoted DimC.X/, and call the number d�.X
�/ the exterior p-adic dimension

of X , denoted Dim�.X/.

Thus, the numbers Dim˙.X/ satisfy equations (1) and (2).

Example 2.8. Let X be a supervector space. Then DimC.X/ D Dim�.X/ D

dim.X0/ � dim.X1/, where X0 and X1 are the even and odd parts of X .

Let R be the ring of integer-valued polynomials, i.e. polynomials f 2 QŒt �

which map integers to integers (or, equivalently, map su�ciently large integers

to integers). It is well known that R has a Z-basis consisting of the binomial

coe�cients ei WD
�

t
i

�

, i � 0, with multiplication law

eiej D
X

k

C k
ij ek ; C k

ij D
kŠ

.k � i/Š.k � j /Š.i C j � k/Š
:

In particular, the leading coe�cient (i.e., that of eiCj ) is
�

iCj
i

�

.

Recall that if m is not a power of a prime p then there exists an integer

0 < i < m such that
�

m
i

�

is not divisible by p. Thus, R is generated by ej where j

is a prime power.

Let I � ZŒx1; x2; : : : � be the ideal of polynomials f such that for a symmetric

tensor category C over any �eld and anyX 2 C, one has f .d1; d2; : : : / D 0, where

di D dim
Vi

X . Let R WD ZŒx1; x2; : : : �=I.

Proposition 2.9. We have an isomorphism  WR ! R given by  .xi/ D ei .

Proof. Consider the map �WZŒx1; x2; : : : � ! R sending xi to ei . Let I D Ker �.

We need to show that I D I. Note that I is generated by the elements fij WD

xixj �
P

k C
k
ijxk . We claim that fij 2 I, i.e.

didj D
X

k

C k
ijdk : (4)
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in any tensor category. To see this, multiply the left hand side by ziwj and

sum over i; j . We get .1 C z/d .1 C w/d , where d D Dim�.X/. Write this as

.1C z C w C zw/d and expand it as

.1C z/d .1C w/d D
X

k

dk.z C w C zw/k

D
X

i;j;k

kŠ

.k � i/Š.k � j /Š.i C j � k/Š
dkz

k�jwk�i .zw/iCj �k

D
X

i;j;k

kŠ

.k � i/Š.k � j /Š.i C j � k/Š
dkz

iwj ;

which is exactly the generating function of the right hand sides of (4). Thus, I � I,

and our job is to establish the opposite inclusion. To do so, let f 2 I, and assume

that f depends only on x1; : : : ; xr . Consider the category C D VectC of complex

vector spaces. Let X D Cn. Then di D
�

n
i

�

, so f
�

1; n; : : : ;
�

n
r

��

D 0 for any

positive integer n. Then f
�

1; t; : : : ;
�

t
r

��

D 0 in R, which implies that f 2 I , as

desired. �

Remark 2.10. Using Proposition 2.9, we see that the polynomialPB in Lemma 2.4

is not unique, since R is generated by ej with j being a prime power (so, d6 ex-

presses in terms of d1,. . . ,d5).

Remark 2.11. Let zI � ZŒx1; x2; : : : � be the ideal of polynomials f such that

for a symmetric tensor category C over any �eld and any X 2 C, one has

f .d1; d2; : : : / D 0, where di D dimS iX . Let zR WD ZŒx1; x2; : : : �=zI. Then

similarly to Proposition 2.9 one shows that we have an isomorphism Q W zR ! R

such that Q .xi / D si , where si WD
�

tCn�1
n

�

2 R.

3. Properties of p-adic dimensions

In this section we will study properties of p-adic dimensions Dim˙. Some of

the properties are obvious from the de�nition — e.g. Dim˙ are invariant under

symmetric tensor functors, and Dim˙.X/ are equal to dim.X/ modulo p. Some

less obvious properties are discussed below.

3.1. Values of p-adic dimensions

Proposition 3.1. DimC.X/ and Dim�.X/ can take any value in Zp .
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Proof. This follows from the existence of Deligne’s examples (see [10], Subsec-

tion 3.3). Namely, e.g. take Deligne’s category Rep.SU/ for an ultra�lter U,

and let V be the tautological object in this category. Then it is easy to see that

DimC.V / D Dim�.V / D t , where t D limU n 2 Zp, and t can be arbitrary. �

3.2. Additivity on exact sequences. If Y is a ZC-�ltered object of a symmetric

tensor category C, then we will denote by grY the associated graded object
L

i FiC1Y=FiY ; so, dimY D dim grY . Also note that if Y is ZC-�ltered then

the symmetric algebra SY carries an induced �ltration.

Let

0 �! X �! Y �! Z �! 0

be a short exact sequence; it induces a 2-step �ltration on Y .

Proposition 3.2. Suppose that the natural surjective morphism

�CWS.X ˚Z/ D S.grY / �! grSY

is an isomorphism. Then DimC.Y / D DimC.X/ C DimC.Z/. Likewise, if the

natural surjective morphism

��W
V

.X ˚Z/ D
V

.grY / �! gr
V

Y

is an isomorphism then Dim�.Y / D Dim�.X/C Dim�.Z/.

Proof. For a graded ind-object W D
L

n�0Wn of C, de�ne its Hilbert series by

hW .z/ D
X

n�0

dimWnz
n:

Then by de�nition of p-adic dimensions, for any object V 2 C, hSV .z/ D

.1 � z/� DimC.V / and hV

V .z/ D .1 C z/Dim�.V /. Thus, the result is obtained

by computing the Hilbert series of SY as the product of Hilbert series of SX

and SZ, using that grSY D S.X ˚ Z/ D SX ˝ SZ, and similarly for exterior

algebras. �

Example 3.3. The assumption in Proposition 3.2 cannot be removed, and, in

fact, its conclusion can fail at least in characteristic 2. To give an example, let

D be the Hopf algebra kŒd �=d2 with d being a primitive element and triangular

structure R D 1 ˝ 1 C d ˝ d . Consider the non-semisimple symmetric tensor

category RepD. This category plays the role of the category of supervector spaces

in characteristic 2. Take Y D D, and X D Z D 1. Then the map �C is not
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an isomorphism; in fact, SnD D D for n � 1 (see [15], Subection 1.5). Thus,

since dim.D/ D 0, we get that DimC.Y / D 0. Likewise,
Vn

D D D for

n � 1, so Dim�.Y / D 0. On the other hand, Dim˙.X/ D Dim˙.Z/ D 1, so

Dim˙.Y / ¤ Dim˙.X/C Dim˙.Z/.

Remark 3.4. The symmetric category RepD appeared 50 years ago in algebraic

topology. Namely, it is explained in [2], Corollary 7.8 that the K-theory of a

topological space with coe�cients in Z=2 is a Z=2-graded commutative algebra

in RepD, with d of degree 1 (the Bockstein homomorphism), and in fact it does

not admit (universal) multiplications which are commutative in the usual sense

(see also [3], (2.17)).

Question 3.5. Suppose p > 2, and Y has a �nite �ltration. Are the natural

epimorphisms �CWS.grY / ! grSY , ��W
V

.grY / ! gr
V

Y isomorphisms?

Clearly, for this question it su�ces to consider 2-step �ltrations. By Proposi-

tion 3.2, a positive answer to Question 3.5 would imply that Dim˙ are additive on

exact sequences.

Example 3.3 shows that the answer is “no” for p D 2. However, the following

proposition shows that this type of counterexamples does not exist for p > 2.

Proposition 3.6. LetH be a cotriangular connected Hopf algebra over a �eld k

of characteristic p > 2 (i.e., every simple H -comodule is trivial, and the cat-

egory of comodules is symmetric). Then for any ZC-�ltered �nite dimensional

H -comodule Y , the natural surjections �C; �� are isomorphisms.

Proof. Let us prove the statement for �C; for �� the proof is similar.

First of all, it su�ces to prove the statement for any re�nement of the �ltration

on Y . In particular, we may take a maximal re�nement, in which the successive

quotients are trivial 1-dimensional modules, i.e., Y0 WD grY is a vector space with

a trivial action of H .

Consider the completed Rees algebra

Rees.SY / D
Y

j �0

„jFjSY ŒŒ„��

of SY . This is a formal deformation of SY0 D kŒx1; : : : ; xn� as a quadratic alge-

bra. Our job is to show that this deformation is �at. By Drinfeld’s “Koszul defor-

mation principle” ([12], Introduction, p. ix), it su�ces to check this in degrees 2; 3.
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If p > 3, then the action of Sn on Y ˝n
0 is the same as in Y ˝n for n D 2; 3

(as representations of Sn are semisimple and hence deformation-theoretically

rigid), so the condition is clearly satis�ed, and we get �atness, as desired.

Consider now the case p D 3. Then the same argument works in degree 2, and

it remains to analyze degree 3.

We claim that the deformation of the S3-action from Y ˝3
0 to Y ˝3 is still trivial.

To show this, it su�ces to check thatH 1.S3;End.Y ˝3
0 // D 0. For this, it is enough

to show that for any vector spaceW , we haveH 1.S3; W
˝3/ D 0 (then we can take

W D End.Y0/). To prove this, let wi be a basis of W . Using this basis, we can

decomposeW ˝3 as an S3-module into three kinds of modules.

(1) The span of the orbit of wi ˝ wj ˝ wm for i; j; m distinct: the regular

representation of S3. This gives the zero cohomology by the Shapiro lemma.

(2) The span of the orbit of wi ˝ wi ˝ wj for i; j distinct: the induced module

from the trivial module over S2. So again by the Shapiro lemma we get that

the cohomology in question is H 1.S2;k/ D 0 (as p D 3).

(3) The span of wi ˝ wi ˝ wi . This gives the cohomology H 1.S3;k/ D

Hom.S3;k/ D 0, as char.k/ D 3. We are done. �

Remark 3.7. 1. Note that this does not work in characteristic 2, even in degree 2,

since for char.k/ D 2, H 1.S2;k/ D k is not zero.

2. This proof extends verbatim to the case when simple H -comodules factor

through a commutative Hopf subalgebra H0 � H (with trivial triangular struc-

ture), i.e. H0 D O.G/, where G is an a�ne group scheme.

3. We can extend this further to the setting as above, except that H is a

Hopf superalgebra, G is an a�ne supergroup scheme, and O.G/ has a triangular

structure de�ned by some central element u 2 G of order 2. In this case, the proof

is the same, except we have to show for p D 3 that H 1.S3;Endeven.Y
˝3
0 // D 0,

where the action of S3 on Endeven.Y
˝3
0 / takes into account the signs. So case (1)

above is the same, in case (3) we must have all wi even, so we getH 1.S3;k/ D 0,

and in case (2) we get two subcases:

(2a) wi is even; then we get the induced module from the trivial S2-module, so

we get H 1.S2;k/ D 0; and

(2b) wi is odd; then we get the induced module from the sign character k� of S2,

and we get H 1.S2;k�/, which is again zero.

3.3. Compatibility with the �-ring structure. Recall now that a pre-�-ring is

a commutative unital ring with additional operations �i satisfying the following

axioms (see e.g. [1, 16]):
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(1) �0.x/ D 1;

(2) �1.x/ D x;

(3) �n.1/ D 0 for n > 1;

(4) �n.x C y/ D
P

iCj Dn �
i .x/�j .y/.

It is an easy exercise to verify that in a symmetric tensor category C, if for

every short exact sequence 0 ! X ! Y ! Z ! 0 the natural surjective map

 W
V

.X ˚ Z/ D
V

.grY / ! gr
V

Y is an isomorphism (as in Proposition 3.2)

then the Grothendieck ring Gr.C/ inherits the structure of a pre-�-ring with the

structure maps �i .ŒX�/ D Œ
Vi

X�.

A pre-�-ring is a �-ring if it satis�es two additional (families of) axioms

encoding plethysm:

(5) �n.xy/ D Pn.�
1.x/; �2.x/; : : : ; �n.x/; �1.y/; �2.y/; : : : ; �n.y//;

(6) �m.�n.x// D Pm;n.�
1.x/; �2.x/; : : : ; �mn.x//.

where Pn and Pn;m are certain universal polynomials with integer coe�cients

(see [1] and [16]).

For instance, Z and Zp are �-rings, with �i .x/ D
�

x
i

�

. Also, the Grothendieck

ring of any symmetric tensor category over a �eld of characteristic zero is a �-

ring, with �i D
Vi

(this follows from the fact that this holds for the category of

Schur functors, i.e. that the ring ƒ of symmetric functions over Z is a �-ring).

Proposition 3.8. Suppose that the Grothendieck ring Gr.C/ is a �-ring, with

�i .ŒX�/ D Œ
Vi

X� for all X 2 C. Then Dim�W Gr.C/ ! Zp is a homomorphism of

�-rings. In particular, Dim�.X˝Y / D Dim�.X/Dim�.Y / and Dim�.
Vi

X/ D
�

Dim�.X/
i

�

.

Proof. Recall that the ring W.Fp/ of big Witt vectors of Fp is isomorphic to

1 C zFpŒŒz�� as an abelian group, and has a �-ring structure with the following

adjunction property: if R is a �-ring and f WR ! Fp is a map of rings, then the

map F WD 1C
P

j >0.f ı�j /zj is a map of �-rings fromR toW.Fp/, which, when

composed with the “coe�cient of z” map of rings from W.Fp/ to Fp, gives f .

By Lemma 2.2 we may think of the usual categorical dimension as a map

of rings dimW Gr.C/ ! Fp. Applying the above adjunction to this gives a map

of �-rings DimW Gr.C/ ! W.Fp/. Explicitly this map sends an object X to
P

j dim.
Vj

X/zj D .1C z/Dim�.X/ by Theorem 2.3.

The copy of Zp inW.Fp/ given by the inclusion ˛ ! .1C z/˛, was character-

ized by Elliot ([8] Proposition 9.3) as the largest sub-�-ring of W.Fp/ for which

the Adams operations act by the identity, which implies that the �-operations are
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given by the usual binomial formulas there. We see that Dim lands inside this

sub-�-ring and coincides with Dim� under its identi�cation with Zp.

In particular this implies that Dim� is a map of �-rings from Gr.C/ to Zp

(equipped with the binomial �-ring structure) and hence satis�es Dim�.X˝Y / D

Dim�.X/Dim�.Y / and Dim�.
Vi

X/ D
�

Dim�.X/
i

�

, as desired. �

This proposition applies to classical categories (supergroup representations,

etc.) as well as to Rep.SU/, Rep.GLU/. However, it is possible for both the

assumption and conclusion of Proposition 3.8 to fail in any characteristic p � 5.

To give an example, consider the Verlinde category C D Verp, see [11] and

references therein. This is the quotient of the category of representations of Z=pZ

by negligible morphisms. In Verp we have an object Lj coming from the j -

dimensional Jordan block representation of Z=pZ (1 � j � p � 1). Let V D L2.

Then L2 satis�es the equation Pp�1.L2/ D 0, where Pn is the n-th ultraspherical

polynomial de�ned by the formula Pn.q C q�1/ D
Pn

iD0 q
n�2i . We claim that

Pp�1 has no roots in Qp . Indeed, the roots of Pp are of the form �C ��1, where �

is a root of unity of order 2p. If such a root were in Qp then � would have been in

a quadratic extension of Qp; but Qp.�
2/ is well known to be a rami�ed extension

of degree p � 1 > 2. This shows that there can’t even be a ring homomorphic lift

of the dimension map to Zp. In particular, Dim� fails to be multiplicative in this

example, and hence Gr.C/ is not (naturally) a �-ring.

Example 3.9. Let p D 5. Then X D L3 satis�es the quadratic equation

X2 � X � 1 D 0 in Gr.C/. This equation has no roots in Z5, so there is no

homomorphisms from Gr.C/ to Z5.

3.4. The Koszul complex and equality of p-adic dimensions. For supervector

spaces both DimC and Dim� recover the usual notion of dimension of a super-

vector space, and in particular we have

DimC.X/ D DimC.X
�/ D Dim�.X/ D Dim�.X

�/: (5)

Therefore, we also get these equalities for any symmetric tensor category admit-

ting a �ber functor to supervector spaces (i.e. supergroup representations) as well

as interpolations of such categories (i.e., Deligne categories Rep.SU/, Rep.GLU/).

However, in a general symmetric tensor category, (5) can fail in any characteristic

p � 5.
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To give an example, consider again the category Verp. It is easy to see that
V2

V D L1 D 1 and
Vi

V D 0 for all i > 2. Also, dim.Lj / D j . Thus,

Dim�.V / D 2. At the same time, SV D L1 ˚ L2 ˚ � � � ˚ Lp�1. Hence,

1
X

j D0

dim.S jV /zj D 1C 2z C � � � C .p � 1/zp�2 D .1 � z/�2.1 � zp/:

Thus, DimC.V / D 2 � p, and DimC.V / ¤ Dim�.V /.

On the other hand, in Verp we still have DimC.X/ D DimC.X
�/ and

Dim�.X/ D Dim�.X
�/. In fact, we don’t know if these equalities can ever fail;

see Question 3.13 below.

It is therefore an interesting question when all or some of the equalities (5)

hold. The following two propositions give su�cient conditions for this.

To state the �rst proposition, recall that to any object X 2 C we can attach its

Koszul complex

K�.X/ D SX ˝ƒ�X;

with the usual Koszul di�erential @WK i.X/ ! K i�1.X/. Namely, we have the

multiplication morphism X� ˝
Vi�1

X� !
Vi

X�, which after dualization

de�nes the morphism �WX� ˝ ƒiX ! ƒi�1X . Then the di�erential @ is given

by the formula

@ D .m˝ �/ ı P23 ı .coevX ˝1SX ˝ 1ƒX/;

where coevX W 1 ! X ˝ X� is the coevaluation, P23 is the permutation of the

second and the third factor, and mWX ˝ SX ! SX is the multiplication.

The Koszul complex is a ZC-graded complex under diagonal grading. By

a classical result of commutative algebra, in the category of vector spaces, this

complex is exact. More precisely, it is exact in positive homological degrees and

has homology equal to 1 in degree 0; i.e., it is a resolution of the augmentation

module by free SX-modules. Note also that for vector spaces ƒX D
V

X , so the

Koszul complex may be de�ned as K�.X/ D SX ˝
V�

X , the di�erential graded

algebra generated by the superspace X ˚ …X with di�erential d.x; �/ D .0; x/

(where … is the change of parity functor).

Also, if i C j D n then

S i…X ˝ƒj…X D …n.
Vi
X ˝ SjX/ D …n.S jX� ˝ƒiX�/�:
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Thus, the homogeneous components of K�.X/ are dual to those of K�.…X�/ up

to parity change. This implies that the Koszul complex is exact in the category

Supervec, and hence for representation categories of supergroups and their inter-

polations (Deligne categories).

Also, it is easy to show that in any symmetric tensor category over k, the

Koszul complex is exact if char.k/ D 0 (as it is exact in the category of Schur

functors), and is exact in diagonal degrees < p for characteristic p. However, the

following proposition implies that in general, the complex K�.X/ can fail to be

exact in any characteristic p � 5.

Proposition 3.10. Dim�.X
�/ D DimC.X/ if and only if the Euler characteristic

of the Koszul complex K�.X/ is zero outside of diagonal degree zero.

Proof. It is immediate from the de�nition of Dim˙ that Dim�.X
�/ D DimC.X/

if and only if

�

X

j �0

.�1/j dim.S jX/zj
��

X

j �0

dim.ƒjX/zj
�

D 1

Taking the coe�cient of zn for n > 0 tells us that

X

j

.�1/j dim.S jX/ dim.ƒn�jX/ D 0

and one can easily recognize the left hand side as being the Euler characteristic of

the degree n part of the Koszul complex. �

Next, we will give a su�cient condition for the equality DimC.X/ D Dim�.X/

which is related to Proposition 3.8.

Proposition 3.11. Suppose char.k/ > 2, C contains Supervec, and Dim� is

multiplicative on C (e.g., the Grothendieck ring Gr.C/ is a �-ring with the usual

operations). Then Dim�.X/ D DimC.X/ for all X 2 C.

Proof. Let k� be the nontrivial invertible object in Supervec � C. We have

that Dim�.k�/ D DimC.k�/ D �1, and moreover k� exchanges the roles of

symmetric and exterior powers in the following sense:

Vj
.k� ˝ X/ D k

˝j
� ˝ S jX
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Now, since Dim� is multiplicative, we have

.1C z/� Dim�.X/ D .1C z/Dim�.k�˝X/

D
X

j

dim.^j .k� ˝X//zj

D
X

j

dim.k˝j
� ˝ S jX/zj

D
X

j

.�1/j dim.S jX/zj

D .1 � .�z//� DimC.X/

D .1C z/� DimC.X/

In particular we see that Dim�.X/ D DimC.X/, as desired. �

Remark 3.12. If D is any tensor category over k then Proposition 3.11 may be

applied to the category C WD Supervec �D, provided that Dim� is multiplicative

on this category.

3.5. Categorical Brauer characters. One can use p-adic dimension to de�ne

Brauer characters in the categorical setting. Let G be a �nite group acting on

X 2 C. Then for each g 2 G and each root of unity � 2 k, we have the generalized

eigenobjectX.g; �/, the direct limit of kernels of .g��/N jX asN ! 1. LetK be

the maximal unrami�ed extension of Qp (obtained by adding all roots of unity of

orders prime to p). Then by Hensel’s lemma, � has a canonical lift O� to K. De�ne

�X .g/ D
X

�

DimC.X.�; g// O� 2 K:

We may call this the Brauer character of G on X . Note that if X is a usual

representation then it is the usual Brauer character. One can also make a similar

de�nition using Dim�.

3.6. Questions. Here are some questions which could be a subject of further

research. Let C be a symmetric tensor category over a �eld k of characteristic

p > 0. Let X 2 C.

Question 3.13. 1. Do .S iX/� and S iX� always de�ne the same class in the

Grothendieck group Gr.C/? Same question for .
Vi

X/�,
Vi

X�.

2. Is it true that dim.S iX/ D dim.S iX�/, dim.
Vi

X/ D dim.
Vi

X�/? In

other words, is it true that DimC.X/ D DimC.X
�/, Dim�.X/ D Dim�.X

�/?
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A positive answer to (1) would imply one to (2). Also, (1) holds for represen-

tation categories of �nite groups, as the objects in question have the same Brauer

characters (using Molien’s formula).

Question 3.14. Suppose p D 2 or p D 3.

1. Is it true that DimC D Dim�?

2. If the maps �C, �� of Proposition 3.2 are always bijective for C, is it true

that Dim˙ are ring homomorphisms Gr.C/ ! Zp? is Gr.C/ a �-ring with the

usual exterior power operations in this case?

3. Is the Koszul complex K�.X/ always exact?

Question 3.15. Suppose for some C � 1 one has length.X˝n/ � C n for any

n � 1. Does it follow that Dim˙.X/ are integers?

For the next question, let � be a partition of n, and �� be the corresponding

Specht module over kSn. De�ne the Schur functor S�X WD �� ˝Sn
X˝n. E.g.,

S.n/X D SnX and S.1n/X D
Vn

X . Recall that in characteristic zero, there exists

a polynomial P� such that dim S�X D P�.dimX/. However, as we have seen, in

positive characteristic this fails even for the functors S i and
Vi

, and the situation

is more complicated. This motivates the following question.

Question 3.16. Suppose DimC D Dim�, and DimC.X/ D Dim�.X/ D t . When

can one express dim S�X in terms of t?

Note that there are other versions of Schur functors: we can replace the functor

��˝Sn
‹ with the functor HomSn

.��; ‹/ (which for � D .n/ and .1n/ yields the

functors S and ƒ, respectively), and can also replace �� with ��
�
. One may also

consider the corresponding derived functors. The behavior of dimensions under

such functors is an interesting open problem.
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