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Defining and classifying TQFTs via surgery

András Juhász1

Abstract. We give a presentation of the n-dimensional oriented cobordism category Cobn

with generators corresponding to diffeomorphisms and surgeries along framed spheres, and

a complete set of relations. Hence, given a functor F from the category of smooth oriented

manifolds and diffeomorphisms to an arbitrary category C , and morphisms induced by

surgeries along framed spheres, we obtain a necessary and sufficient set of relations these

have to satisfy to extend to a functor from Cobn to C . If C is symmetric and monoidal,

then we also characterize when the extension is a TQFT.

This framework is well-suited to defining natural cobordism maps in Heegaard Floer

homology. It also allows us to give a short proof of the classical correspondence between

(1+1)-dimensional TQFTs and commutative Frobenius algebras. Finally, we use it to

classify (2+1)-dimensional TQFTs in terms of J-algebras, a new algebraic structure that

consists of a split graded involutive nearly Frobenius algebra endowed with a certain

mapping class group representation. This solves a long-standing open problem. As a

corollary, we obtain a structure theorem for (2+1)-dimensional TQFTs that assign a vector

space of the same dimension to every connected surface. We also note that there are 22!

nonequivalent lax monoidal TQFTs over C that do not extend to (1+1+1)-dimensional ones.
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1. Introduction

Let Mann be the category whose objects are closed oriented n-manifolds and

whose morphisms are orientation preserving diffeomorphisms, and let Cobn be

the category of closed oriented n-manifolds and equivalence classes of oriented

cobordisms. Furthermore, Cob0
n is the subcategory of Cobn that does not contain

the empty n-manifold, and such that each component of every cobordism has a

non-empty incoming and outgoing end. We denote by Cob0n the full subcategory

of Cob0
n consisting of connected objects (and hence connected cobordisms). Fi-

nally, BSut0 is the category of balanced sutured manifolds and special cobordisms

that are trivial along the boundary; see [15, Definition 5.1]. We denote by Vect the

category of finite-dimensional vector spaces over some field F.

In physics, topological quantum field theories (in short, TQFTs) were intro-

duced by Witten [38]. Inspired by Segal’s axioms proposed for conformal field

theories [34], they were first axiomatized by Atiyah [1]. In the more recent termi-

nology of Blanchet and Turaev [4], an .nC 1/-dimensional TQFT is a symmetric

monoidal functor from the category Cobn to Vect; see Definition 2.5. More gen-

erally, the target category could be any symmetric monoidal category. For the

necessary category theoretical background, we refer the reader to the books of

Mac Lane [22] and Kock [18]. Throughout this paper, all manifolds are smooth
and oriented and all diffeomorphisms are orientation preserving, unless otherwise

stated, though the methods easily generalize to unoriented manifolds.

It is a classical result that (1+1)-dimensional TQFTs correspond to commu-

tative Frobenius algebras. This statement dates back to the birth of the subject,

but completely rigorous proofs are more recent; see the book of Kock [18] that

also discusses the history of this problem. Fully extended .n C 1/-dimensional
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TQFTs constitute a constrained subclass of .nC 1/-dimensional TQFTs, that as-

sign invariants to all oriented manifolds with corners up to dimension n C 1.

These were completely classified by Lurie [21] via proving the “cobordism hy-

pothesis” conjectured by Baez and Dolan. Based on the work of Reshetikhin and

Turaev [36], Bartlett, Douglas, Schommer-Pries, and Vicary [2], [3] classified

3-dimensional oriented TQFTs extended down to 1-manifolds, which are called

(1+1+1)-dimensional or 1-2-3 TQFTs, in terms of anomaly free modular tensor

categories. This is a restricted subclass of all lax monoidal (2+1)-dimensional

TQFTs according to the following observation that we will prove at the end of

Section 7. (Recall that a TQFT F W Cob2 ! Vect is lax monoidal if the compar-

ison morphisms ˆA;B WF.A/˝ F.B/ ! F.A t B/ are not necessarily invertible

for surfaces A and B .)

Proposition 1.1. Over C, there exist 22
!

pairwise non-equivalent .2C 1/-dimen-
sional oriented lax monoidal TQFTs that do not extend to .1C1C1/-dimensional
TQFTs.

Our first main result is a presentation of the n-dimensional oriented cobordism

category in terms of generators corresponding to diffeomorphisms and surgeries

along framed spheres, and a complete set of relations. We state the necessary

definitions first.

Definition 1.2. LetM be an oriented n-manifold. For k 2 ¹0; : : : ; nº, a framed k-
sphere inM is an orientation reversing embedding SWSk �Dn�k ,! M . Then we

can perform surgery onM along S by removing the interior of the image of S and

gluing inDkC1�Sn�k�1 via SjSk�Sn�k�1; after smoothing the corners we obtain

the surgered manifoldM.S/. We consider two additional types of framed spheres,

namely S D 0 and S D ;. For S D 0, which we think of as the framed attaching

sphere of a 0-handle, we let M.0/ D M t Sn. For S D ;, we let M.;/ D M . We

write

W.S/ D .M � I / [S .D
kC1 �Dn�k/

for the trace of the surgery, where W.0/ D .M � I /tDnC1 andW.;/ D M � I .

ThenW.S/ is a cobordism fromM toM.S/. We denote by a.S/ D S.Sk � ¹0º/ �
M the attaching sphere and by b.S/ D ¹0º � Sn�k�1 � M.S/ the belt sphere of

the handle attached along S.

If SWSk�Dn�k ,! M is a framed k-sphere for k < n, then let xS be the framed

sphere defined by

xS.
N
x;

N
y/ D S.rkC1.N

x/; rn�k.
N
y//;
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where
N
x 2 Sk � RkC1,

N
y 2 Dn�k � Rn�k, and

rm.x1; x2; : : : ; xm/ D .�x1; x2; : : : ; xm/:

Definition 1.3. Let Gn be the directed graph obtained from the category Mann by

adding an edge eM;S fromM toM.S/ for every pair .M; S/, whereM is an oriented

n-manifold and S is a framed sphere inside M . For clarity, we will sometimes

write ed for the edge fromM toN corresponding to a diffeomorphism d WM ! N .

Then Mann is a subgraph of Gn. We denote by F.Gn/ the free category generated

by Gn.

Let G0
n be the subgraph of Gn obtained by removing the empty n-manifold,

and edges eM;S such that S D 0 or a framed n-sphere. Furthermore, G0n is the

full subgraph of G0
n spanned by connected objects. Finally, the vertices of Gs

are balanced sutured manifolds, and the edges are diffeomorphisms and surgeries

along framed 0-, 1-, and 2-spheres in the interior of a balanced sutured manifold.

Definition 1.4. We now define a set of relationsR in F.Gn/; these can be though of

as 2-cells attached to Gn. If w and w0 are words consisting of composing arrows,

then we write w � w0 if w.w0/�1 2 R.

(1) Firstly, edıd 0 � ed ı ed 0 for diffeomorphisms d and d 0 that compose. We

have eM;; � IdM , and if d 2 Diff0.M/, then ed � IdM .

(2) Given an orientation preserving diffeomorphism d WM ! M 0 between n-

manifolds and a framed sphere S � M , let S0 D d ı S, and let dSWM.S/ !
M 0.S0/ be the induced diffeomorphism. Then the following diagram is

commutative:

M
eM;S //

d

��

M.S/

dS

��
M 0

eM 0;S0
// M 0.S0/:

(3) IfM is an oriented n-manifold and S and S0 are disjoint framed spheres inM ,

then M.S/.S0/ D M.S0/.S/; we denote this manifold by M.S; S0/. Then the

following diagram is commutative:

M
eM;S //

eM;S0

��

M.S/

eM.S/;S0

��
M.S0/

eM.S0/;S // M.S; S0/:
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(4) If S0 � M.S/ and the attaching sphere a.S0/ intersects the belt sphere b.S/

once transversely, then there is a diffeomorphism 'WM ! M.S/.S0/ (which

is defined in Definition 2.17; it is the identity onM \M.S/.S0/ and is unique

up to isotopy), for which

eM.S/;S0 ı eM;S � ':

(5) Finally, eM;S � eM;xS.

We can define a set of relations Rs in F.Gs/ analogously.

Having defined the relations R, we can take the quotient category F.Gn/=R.

This is a symmetric monoidal category when equipped with the disjoint union

operation.

Definition 1.5. Let cWGn ! Cobn be the graph morphism that is the identity on

the vertices, assigns the cylindrical cobordism cd to a diffeomorphism d as in

Definition 2.3, and assigns the elementary cobordismW.S/ to the edge eM;S. This

extends to a symmetric strict monoidal functor cWF.Gn/ ! Cobn. Similarly, we

can define a symmetric monoidal functor cs WF.Gs/ ! BSut0.

Remark 1.6. Note that this is not an embedding as, for example, cd D cd 0 if and

only if d and d 0 are pseudo-isotopic diffeomorphisms; see [24, Theorem 1.9].

In our first main result, we give a presentation of Cobn, where the genera-

tors are diffeomorphisms and surgery morphisms, and the relations are given in

Definition 1.4.

Theorem 1.7. The functor cWF.Gn/ ! Cobn descends to a functor

F.Gn/=R �! Cobn

that is an isomorphism of symmetric monoidal categories.
By slight abuse of notation, we will also denote the functor F.Gn/=R ! Cobn

by c. Then c restricted to F.G0
n/=R is an isomorphism onto Cob0

n and c restricted
to F.G0n/=R is an isomorphism onto Cob0n. Finally, cs WF.Gs/ ! BSut0 descends
to a functor F.Gs/=Rs ! BSut0 that is an isomorphism of symmetric monoidal
categories.

Gay, Wehrheim, and Woodward [13], [37] introduced the notion of Cerf de-

composition to construct TQFTs by assigning maps to elementary cobordisms.
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They showed that any two decompositions of a cobordism into elementary pieces

can be related by a short list of moves. An elementary cobordism is one that admits

a Morse function with at most one interior critical point. Every cobordism can be

decomposed into elementary cobordisms, and two decompositions can be related

by critical point cancelations or creations, critical point reversals, and gluing or

splitting cylinders. This relies on the classification of singularities appearing in

generic 1-parameter families of smooth functions based on Thom transversality,

and is summarised in the work of Cerf [6, pp. 23–24].

However, Cerf decompositions do not keep track of the framed attaching

spheres of the handles in the elementary cobordisms, which feature in the defi-

nition of cobordism maps in Heegaard Floer homology. Furthermore, the moves

are defined on the level of the cobordisms and refer to Morse functions, unlike our

relations in Definition 1.4 for surgeries. Note that the natural definition of Hee-

gaard Floer homology requires taking into account the embedding of the Heegaard

surface into the 3-manifold, hence one has to be particularly careful with various

identifications when defining the cobordism maps; see Section 1.2.

A parameterized Cerf decomposition C of W consists of a decomposition

W D W0 [M1
W1 [M2

� � � [Mm
Wm

into elementary cobordisms Wi from Mi to MiC1, together with framed spheres

Si � Mi and diffeomorphisms di WMi .Si / ! MiC1 that extend to the traces of the

surgeries for i 2 ¹0; : : : ; mº; see Definition 2.8 for more detail.

The surjectivity of c onto the morphisms of Cobn means that every cobor-

dism W from M to M 0 has a parameterized Cerf decomposition. Indeed, as we

can replace any path of diffeomorphisms with their composition, we can find a

path

M D M0

eM0;S0�����! M0.S0/
d0�! M1

eM1;S1�����! M1.S1/
d1�! � � � dm��! Mm D M 0

in Gn such that

W D c
� m

Y

iD0

.di ı eMi ;Si
/
�

:

This is precisely a parameterized Cerf decomposition of W .

A straightforward but very useful consequence of Theorem 1.7 is a simple

and easily applicable framework in all dimensions for constructing all functors

(e.g., TQFTs) from the oriented cobordism category Cobn to an arbitrary target

category C via surgery. This framework is well-suited to the study of Heegaard

Floer homology; see Section 1.2 for more detail. We give a set of necessary and
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sufficient conditions for surgery morphisms to give rise to cobordism morphisms

independent of the surgery description of the cobordism. The big advantage of

considering surgeries as opposed to handle attachments is that, for an .n C 1/-

dimensional TQFT, it suffices to work with n-manifolds and surgeries on these,

without having to consider the .n C 1/-dimensional cobordisms themselves. To

illustrate the power of this approach, we will classify (2+1)-dimensional TQFTs in

terms of a new algebraic structure called J-algebras. According to Segal [35], the

classification problem for TQFTs is one that has been around since the inception

of the subject, and so has been the aim to construct TQFTs via surgery.

Theorem 1.8. Let C be a category. Suppose that we are given a functor

F W Mann �! C;

and for every oriented n-manifold M and framed sphere S � M , a morphism
FM;SWF.M/ ! F.M.S// that satisfy relations (1)–(5) (these are spelled out
explicitly in Section 3). For a parameterized Cerf decomposition C of an oriented
cobordism W , let

F.W;C/ D
m

Y

iD0

.F.di / ı FMi ;Si
/WF.M/ �! F.M 0/: (1.1)

Then F.W;C/ is independent of the choice of C; we denote it by F.W /. Further-
more, F W Cobn ! C is a functor that satisfies F.d/ D F.cd / (see Definition 2.3)
and F.W.S// D FM;S.

In the opposite direction, every functor F W Cobn ! C arises in this way. More
precisely, if we let FM;S D F.W.S// and F.d/ D F.cd /, then these morphisms
satisfy relations (1)–(5), and for any oriented cobordismW , the morphism F.W /

is given by equation (1.1).
Now suppose that .C;˝; IC / is a symmetric monoidal category. Then the

functor F is a TQFT if and only if F W Mann ! C is symmetric and monoidal;
furthermore, given n-manifolds M and N , and a framed sphere S in M , the
diagram

F.M/˝ F.N/
ˆM;N //

FM;S˝IdF.N/

��

F.M tN/
FM tN;S

��
F.M.S//˝ F.N/

ˆM.S/;N // F.M.S/ tN/:

(1.2)

is commutative, where ˆA;B WF.A/ ˝ F.B/ ! F.A t B/ are the comparison
morphisms for F .
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An analogous result holds for Cob0
n, and we can avoid S D 0 and framed n-

spheres. In the case of Cob0n for n � 2, we need to avoid S D 0 and n-spheres,
together with separating .n � 1/-spheres. Finally, for BSut0, we have a similar
result, and we can avoid S D 0 and framed 3-spheres.

Remark 1.9. To illustrate why working with Cerf decompositions without the

parameterization is insufficient to define the cobordism morphismF.W /, consider

the simplest possible case when W itself is diffeomorphic to M � I . Then

this is a Cerf decomposition with a single component. Given a diffeomorphism

DWM � I ! W , let dt D DjM�¹tº; then it is natural to define F.W / as

F.d1 ı d�1
0 /. However, D is not unique, and for different choices we only know

that the corresponding d1 ıd�1
0 are pseudo-isotopic, not necessarily isotopic, and

hence a priori might induce different homomorphisms via F . To avoid this issue,

we identify each componentWi of the Cerf decomposition with a concrete handle

cobordismW.Si /, and once we know this induces a TQFT, we obtain as a corollary

that pseudo-isotopic diffeomorphisms induce the same morphism.

When W is cylindrical, one might have to pass through a sequence of moves

between Cerf decompositions to get from one parametrization of W as a prod-

uct to another. For example, by Kwasik and Schultz [20, Corollary], if M is

the connected sum of two metacyclic prism 3-manifolds, then it admits an au-

tomorphism d that is pseudo-isotopic but not isotopic to the identity. Hence

there is a diffeomorphism DWM � I ! M � I such that D.x; 0/ D x and

D.x; 1/ D .d.x/; 1/ for every x 2 M . So, if W is the identity cobordism from M

to M , then W D W0 D M � I with S0 D ; and d0 D d is a different parameter-

ized Cerf decomposition than for d0 D IdM . The first decomposition arises from

the Morse function f .x; t/ D pI ıD�1.x; t / onM � I , where pI WM � I ! I is

the projection, while the second one from the Morse function pI . Then f and pI

cannot be connected with a family of Morse functions with no critical points, as

otherwise d and IdM would be isotopic.

It might come as a surprise that handleslide invariance does not feature among

the relations in Definition 1.4. This is because the proof of Theorem 1.7 relies on

proper and not self-indexing Morse functions, and a handleslide can be replaced

by moving one of the corresponding critical points to a higher level, isotoping its

framed attaching sphere, then moving it back to the same level. So handleslide

invariance follows from relations (2) and (3).

Segal [35, p. 34] raised a related question on describing TQFTs via surgery in

terms of categories associated to products of spheres (along which the surgered

disks are glued), but this was never completed due to technical difficulties. For a
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related result on 2-framed (2+1)-dimensional TQFTs, see the work of Sawin [33],

where he outlines a Kirby calculus approach. Note that a Kirby calculus approach

to constructing numerical invariants of 3-manifolds was suggested by Reshetikhin

and Turaev in the introduction of [31].

1.1. Applications to the classification of TQFTs. Theorem 1.8 provides a pow-

erful method for classifying TQFTs. As our first application, we give a short, five

pages long proof of the classical theorem that the category of (1+1)-dimensional

oriented TQFTs is equivalent to the category of commutative Frobenius alge-

bras. This also serves as a warmup for the (2+1)-dimensional case: We obtain a

complete classification of (2+1)-dimensional oriented TQFTs with target category

Vect. Specializing to this target allows us to carry out certain computations and

simplifications that are not possible in general symmetric monoidal categories. As

to be expected, the corresponding algebraic structure is more complicated than in

the (1+1)-dimensional case, but surprisingly only moderately, and can probably

be simplified further, which is the subject of future research. For the definition

of split graded involutive nearly Frobenius algebras (or split GNF�-algebras in

short), see Definitions 5.1 and 5.2, and for mapping class group representations
on these, see Definition 5.13. A J-algebra is a split GNF�-algebras endowed with a

mapping class group representation. These form a symmetric monoidal category

that we denote by J-Alg. Similar structures, called weight homogeneous tensor

representations were defined by Funar [11, p. 411], which correspond to certain

lax monoidal (2+1)-dimensional TQFTs. Our second main result is the following,

which answers [25, Problem 8.1].

Theorem 1.10. There is an equivalence between the symmetric monoidal category
of (2+1)-dimensional TQFTs and J-Alg.

Let †g denote a closed oriented surface of genus g. We use Theorem 1.10 to

show that, given a (2+1)-dimensional TQFT F over C such that dimF.†g / < 2g

for infinitely many g 2 N, the action of the mapping class group of †k on F.†k/

is trivial for every k 2 N. This implies the following structure theorem, which we

will prove in Proposition 7.7.

Corollary 1.11. Suppose that F is an oriented .2C 1/-dimensional TQFT over C
such that dimF.†/ D n for every connected oriented surface † for some con-
stant n. Then F is naturally isomorphic to the TQFT .F1/˚n given by F1.†/ D C

for any surface † and F1.W / D IdC for any cobordism W (where we identify
C˝k with C), and we take the direct sum of TQFTs as defined by Durhuus and
Jonsson [9].
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Example 1.12. To illustrate the non-triviality of this seemingly simple statement

even for n D 1, consider Quinn’s TQFT Q˛ for some ˛ 2 R, restricted to

cobordisms of surfaces [30]. This is defined as Q˛.†/ D C for any surface †,

and a cobordismW from †0 to †1 induces the map

Q˛.W /.z/ D ei˛�.W;†0/z

for any z 2 Q˛.†0/ D C. According to Corollary 1.11, this is naturally iso-

morphic to the TQFT F1. Indeed, for a surface †, consider the transformation

N˛.†/WF1.†/ ! Q˛.†/ given by

N˛.†/.z/ D ei˛�.†/=2z

for z 2 F1.†/ D C. This is natural since a cobordism W from †0 to †1 satisfies

�.W / D .�.†0/C �.†1//=2, and hence

�.W;†0/ D .�.†1/ � �.†0//=2:

Example 1.13. Together with Bartlett, in a forthcoming paper, we will give a non-

trivial example of a functor F W Man2 ! VectC together with surgery maps, where

a simple check of the relations of Theorem 1.8 shows that this data gives rise to a

(2+1)-dimensional TQFT. More concretely, let C be a spherical fusion category.

For a surface†, we define F.†/ to be the C-vector space generated by string-nets

over C ; these are isotopy classes of embedded C -labeled graphs modulo a local

equivalence relation. Given a framed sphere S in †, there is a representative of

the string-net in its equivalence class disjoint from it, and performing the surgery

on † along S naturally gives rise to a string-net on †.S/.

1.2. Applications to Heegaard Floer homology. We use Theorem 1.8 to con-

struct functorial cobordism maps induced on sutured Floer homology and link

Floer homology, and a splitting of these along Spinc structures using a Spinc

refinement of Theorem 1.8 combined with Kirby calculus [15]. Heegaard Floer

homology will not feature in the rest of the present paper, but as it was a key mo-

tivation for Theorem 1.8, we discuss the relationship below. For further details,

refer to [15].

Heegaard Floer homology, defined by Ozsváth and Szabó [27], [26], consists

of 3-manifold invariants HFC, HF�, HF1, and bHF, together with cobordism

maps induced on each, and they admit refinements along Spinc structures. Every

flavor is a type of .3C 1/-dimensional TQFT, with some caveats such as they are

only defined for connected 3-manifolds and for connected cobordisms between

them, there is no unique way of composing Spinc cobordisms, and to obtain an
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interesting closed 4-manifold invariant (conjectured to coincide with the Seiberg-

Witten invariant), one has to mix the C, �, and 1 flavors. In particular, they

are functors from Cob03 to the category of ZŒU �-modules. Mrowka called such a

theory a “secondary TQFT,” but no precise axioms for these exist to date. Ozsváth

and Szabó [28] constructed the cobordism maps in Heegaard Floer homology

via composing surgery maps, and to check this is independent of the surgery

description of the cobordism, they used Kirby calculus.

The author noticed that there was a gap in the functorial construction of the

Heegaard Floer invariants due to the lack of connection between the 3-manifold

and the Heegaard diagrams used in their definitions. With Dylan Thurston [16],

we fixed this by considering Heegaard diagrams embedded in the 3-manifold. An

unexpected consequenceof this was that bHF depends on the choice of a basepoint;

see the work of Zemke [39] for a precise formula describing this dependence.

In light of this, I revisited [15] the construction of the cobordism maps and ex-

tended it to sutured manifold and link cobordisms using Theorem 1.8. A key point

is that one has to keep track of identifications and what happens to the embedding

of the Heegaard diagram while performing the Kirby moves to make the proof

of [28, Theorem 3.8] completely rigorous. For example, see the discussion about

diffeomorphisms induced by handleslides on page 170 of the book of Gompf and

Stipsicz [14].

To get the Spinc refinement, Ozsváth and Szabó ingeniously attach all 2-

handles simultaneously to circumvent the non-uniqueness of the composition

of Spinc cobordisms, which makes the use of Kirby calculus necessary. They

essentially checked all the necessary invariance properties, modulo the above

mentioned naturality issues due to not keeping track of identifications, and the

sufficiency of these properties is only sketched in the proof of [28, Theorem 3.8].

As it turns out [15], [39], the cobordism maps on bHF also depend on an arc

connecting the basepoints, justifying the extra careful approach of this work.

Organization. In Section 2.1, we review cobordism categories and TQFTs. We

define parameterized Cerf decompositions and Morse data in Section 2.2. Lem-

mas 2.15 and 2.16 imply there is an essentially unique correspondence between

the two. We define a set of moves on Morse data in Section 2.3 that arise from

bifurcations in generic 1-parameter families. Furthermore, we translate these to

moves on Cerf decompositions, and show in Theorem 2.24 that any two Morse

data on a cobordism can be connected by a sequence of such moves. We prove

Theorems 1.7 and 1.8 using the machinery of parameterized Cerf decompositions

in Section 3.
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In Section 4, as a warmup, we reprove the classification of (1+1)-dimensional

TQFTs using Theorem 1.8. We explain how to assign a J-algebra to a (2+1)-

dimensional TQFT in Section 5.2. We define split GNF�-algebras in Section 5.3

and mapping class group representations on these in Section 5.4, and study their

algebraic properties. We prove Theorem 1.10 in Section 6, and present some

examples and applications in Section 7.

Acknowledgements. I would like to thank Bruce Bartlett, André Henriques,

Oscar Randal-Williams, Graeme Segal, Peter Teichner, and Ulrike Tillmann for

helpful discussions, and the anonymous referees for their constructive suggestions.

2. Parameterized Cerf decompositions

2.1. Cobordism categories and TQFTs. When talking about cobordism cate-

gories, it is important to keep the following definition in mind, see Milnor [24,

Definition 1.5].

Definition 2.1. A cobordism from M n
0 to M n

1 is a 5-tuple .W IV0; V1I h0; h1/,
where W is a compact .nC 1/-manifold such that @W is the disjoint union of V0

and V1, and hi WVi ! Mi are diffeomorphisms for i 2 ¹0; 1º.
If M0 and M1 are oriented, we require that W be oriented as well, such that

if V0 and V1 are given the boundary orientation, then h0 is orientation reversing,

while h1 is orientation preserving.

Given cobordisms from M0 to M1 and M1 to M2, we can glue them together,

but the smooth structure on the result is only well-defined up to diffeomorphism

fixing the boundaries. Hence, to be able to define the composition of cobordisms,

we consider the following equivalence relation.

Definition 2.2. The cobordisms .W IV0; V1I h0; h1/ and .W 0IV 0
0; V

0
1I h0

0; h
0
1/ from

M0 to M1 are equivalent if there is a diffeomorphism gWW ! W 0 such that

g.Vi / D V 0
i and h0

i ı gjVi
D hi for i 2 ¹0; 1º.

Definition 2.3. We can assign a cobordism to any diffeomorphism as follows.

Suppose that hWM ! M 0 is a diffeomorphism of n-manifolds. Then let ch be the

equivalence class of the tuple

.M � I IM � ¹0º;M � ¹1ºIp0; h1/;

where p0.x; 0/ D x and h1.x; 1/ D h.x/ for every x 2 M .
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Recall that two diffeomorphisms h, h0WM ! M 0 are pseudo-isotopic if there is

a diffeomorphism gWM � I ! M 0 � I such that g.x; i/ D .hi .x/; i/ for i 2 ¹0; 1º
and x 2 M . Note that g does not have to preserve level sets. Then ch0

D ch1
if

and only if h0 and h1 are pseudo-isotopic; see [24, Theorem 1.9]. Furthermore,

ch0 ı ch D ch0ıh, where we write the composition of cobordism from right-to-

left, as opposed to Milnor [24, Theorem 1.6]. The following is based on [24,

Definition 1.5].

Definition 2.4. Let Cobn be the category whose objects are closed oriented n-

manifolds, and whose morphisms are equivalence classes of oriented cobordisms.

For an n-manifold M , the identity morphism iM WD cIdM
.

The description of the identity morphism highlights the role of the parameter-

izations hi , as only using triads .W IV0; V1/, we would not have any morphisms

from M to itself.

Definition 2.5. Let Vect be the category of vector spaces and linear maps over

some fieldF. An .nC1/-dimensional topological quantum field theory is a functor

F W Cobn �! Vect

such that for any two closed n-manifolds M and M 0, there are natural isomor-

phismsˆM;M 0WF.M/˝F.M 0/ ! F.M tM 0/ andˆWF ! F.;/, which are part

of the data, that make the following diagrams commutative:

.F.M/˝ F.N//˝ F.P /
ˆM tN;P ı.ˆM;N ˝IdF.P // //

��

F..M tN/ t P /

��
F.M/˝ .F.N/˝ F.P //

ˆM;NtP ı.IdF.M /˝ˆN;P / // F.M t .N t P //;

F.M/˝ F
ˆM t;ı.IdF.M /˝ˆ/

//

��

F.M t ;/

��
F.M/

D // F.M/:

In other words, F preserves the monoidal structure on Cobn given by the disjoint

union and on Vect given by the tensor product. Furthermore, the functor F is
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symmetric in the sense that

F.M/˝ F.M 0/
ˆM;M 0

//

F.cs/

��

F.M tM 0/

r

��
F.M 0/˝ F.M/

ˆM 0;M // F.M 0 tM/;

where sWM t M 0 ! M 0 t M is the diffeomorphism swapping the two factors,

and r.x ˝ y/ D y ˝ x.

More generally, Vect could be replaced by any symmetric monoidal category.

Similarly, a TQFT on the category of connected n-manifolds is a functor

F W Cob0n �! Vect;

but in this case we drop the conditions on disjoint unions.

Given an orientation preserving diffeomorphism h, we denote the map F.ch/

by h�. We shall see in Lemma 3.1 that if F arises from a functor F W Mann ! Vect

and surgery maps FM;S as in Theorem 1.8, then h� D F.h/. If h and h0 are pseudo-

isotopic, then ch D ch0 , hence h� D h0
�.

The cobordism maps in a TQFT F satisfy the following naturality property.

Lemma 2.6. Let W D .W IV0; V1I h0; h1/ be an oriented cobordism from M0

to M1, and let W0 D .W 0IV 0
0; V

0
1I h0

0; h
0
1/ be an oriented cobordisms from M 0

0

to M 0
1. If d WW ! W 0 is an orientation preserving diffeomorphism such that

d.Vi / D V 0
i for i 2 ¹0; 1º, then we write

d jMi
WD h0

i ı d jVi
ı h�1

i WMi �! M 0
i :

If F is a TQFT, then the following diagram is commutative:

F.M0/
F.c/ //

.d jM0
/�

��

F.M1/

.d jM1
/�

��
F.M 0

0/
F .c0/ // F.M 0

1/;

where c is the equivalence class of W and c0 is the equivalence class of W0.

Proof. As .d jMi
/� D F.cd jMi

/, this follows from the functoriality of F , once we

observe that the cobordisms c0 ı cd jM0
and cd jM1

ı c are equivalent via d . �
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2.2. Parameterized Cerf decompositions and Morse data. To simplify the

notation for cobordisms, from now on, we will suppress the diffeomorphisms h0

and h1 and identify Vi and Mi . So an oriented cobordism from M0 to M1 is

viewed as a compact .n C 1/-manifold W with @W D �M0 [ M1. With this

convention, two cobordisms W and W 0 from M0 to M1 are equivalent if there is

a diffeomorphism d WW ! W 0 that fixes the boundary pointwise. We say that

f WW ! Œa; b� is a Morse function if f �1.a/ D M0, f
�1.b/ D M1, and f has

only non-degenerate critical points, all lying in the interior of W .

Recall from Definition 1.2 that, given an oriented n-manifold M , a framed

k-sphere S � M is an orientation reversing embedding of Sk � Dn�k into M .

We write W.S/ for the manifold obtained by attaching the handle DkC1 �Dn�k

toM �I along S�¹1º; this is a cobordism fromM to the manifoldM.S/ obtained

by surgery on M along S. We now recall and extend [24, Definition 3.10].

Definition 2.7. A cobordismW fromM0 to M1 is elementary if there is a Morse

function f WW ! Œa; b� such that it has at most one critical point. A framed

attaching sphere S for W is ; if f has no critical points; otherwise, it is a framed

sphere inM0 such that there is a diffeomorphismDWW.S/ ! W that is the identity

along M0 (where we identify M0 with M0 � ¹0º).

It is a classical result of Morse theory [24, Definition 3.9 and Theorem 3.13]

that every elementary cobordism admits a framed attaching sphere in the above

sense.

Definition 2.8. A parameterized Cerf decomposition of an oriented cobordismW

from M to M 0 consists of

� a Cerf decomposition

W D W0 [M1
W1 [M2

� � � [Mm
Wm

in the sense of Gay, Wehrheim, and Woodward [13]; i.e., each Wi is an

elementary cobordism fromMi toMiC1, whereM0 D M andMmC1 D M 0,

� a framed attaching sphere Si � Mi forWi of dimension ki for i 2 ¹0; : : : ; mº,
� an orientation preserving diffeomorphism di WMi.Si / ! MiC1, well-defined

up to isotopy, such that there is a diffeomorphism Di WW.Si/ ! Wi with

Di jMi �¹0º D p0 and Di jMi .Si / D di , where p0.x; 0/ D x.

Remark 2.9. The existence of the diffeomorphismDi ensures that the cobordism

.W.Si /IMi � ¹0º;Mi.Si /Ip0; di /
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is equivalent to .Wi IMi ;MiC1I IdMi
; IdMiC1

/. So we are replacing each elemen-

tary component in the Cerf decomposition of W by an equivalent handle cobor-

dism. In particular, the composition of these handle cobordisms is equivalent

to .W IM;M 0I IdM ; IdM 0/.

The following definition is based on [24, Definition 3.1].

Definition 2.10. Let f be a Morse function on the oriented cobordism W . We

say that the vector field v on W is gradient-like for f if vp.f / > 0 for every

p 2 W n Crit.f /, and for every point p 2 Crit.f /, there exists a local positively

oriented coordinate system .x1; : : : ; xnC1/ centered at p in which

f D f .p/� x21 � � � � � x2k C x2kC1 C � � � C x2nC1; (2.1)

and where v is the Euclidean gradient; i.e.,

v D 2
�

� x1
@

@x1
� � � � � xk

@

@xk
C xkC1

@

@xkC1

C � � � C xnC1

@

@xnC1

�

: (2.2)

The space of positive coordinate systems at a Morse critical point in which f

is of the normal form (2.1) is homotopy equivalent to SO.k; nC1�k/, and hence

is connected for k 2 ¹0; nC 1º, and has two components otherwise; see Cerf [6,

p.168]. However, the space of gradient vector fields v induced by such coordinate

systems is connected for every k. Indeed, if k 62 ¹0; nC 1º and .x1; : : : ; xnC1/ is

a positive coordinate system in which f is of the form (2.1), then

.�x1; x2; : : : ; xn;�xnC1/

is also a positive coordinate system as in (2.1), but which lies in the opposite

component since it reverses the orientation of both the positive and negative

definite subspaces. In both coordinate systems v is of the same form.

Definition 2.11. A Morse datum (cf. [13, Definition 2.1]) for the cobordism W is

a triple .f;
N
b; v/, where

�
N
b D .b0; : : : ; bmC1/ 2 RmC2 is an ordered tuple; i.e., b0 < b1 < � � � < bmC1,

� f WW ! Œb0; bmC1� is a Morse function such that each bi is a regular value

of f , and f has at most one critical value in each interval .bi�1; bi /, and

� v is a gradient-like vector field for f .

We now explain how to construct a parameterized Cerf decomposition from a

Morse datum.
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Definition 2.12. Suppose that W is an elementary cobordism from M to M 0,

together with a Morse function f and a gradient-like vector field v. If f has no

critical points, then one obtains a diffeomorphism dv WM ! M 0 by flowing along

w D v=v.f /. When f has one critical point p of index k, then we obtain a framed

sphere SWSk�1 � Dn�kC1 ! M , and a diffeomorphism dv WM.S/ ! M 0, well-

defined up to isotopy, as follows. (Note that Milnor [24, Definition 3.9] calls S

the characteristic embedding. We review his construction to be able to define the

map dv .)

Let W s.p/ be the stable manifold of p. We define the attaching sphere a.S/

to be W s.p/ \M , with the following framing. As in Milnor [23, p. 16], choose a

positive coordinate system

.x1; : : : ; xnC1/WU �! R
nC1

centered at p in which f is of the form (2.1), and let " be so small that the image of

.x1; : : : ; xnC1/ contains a ball of radius
p
2" centered at the origin. Let c D f .p/,

x� D .x1; : : : ; xk/, and xC D .xkC1; : : : ; xnC1/. Define the cell e to be the subset

of U where jx�j2 � " and xC D 0. Furthermore, let E be a regular neighborhood

of e of width
p

"=2, extending all the way to f �1.c � "/; i.e.,

E D ¹ jxCj2 � "=2 º \ ¹ c � jx�j2 C jxCj2 � c � " º:

This is diffeomorphic to the k-handle Dk �Dn�kC1 via the map

e.x�; xC/ D
� x�

p

jxCj2 C "
;

r

2

"
xC

�

;

which identifies E \ f �1.c � "/ with Sk�1 �Dn�kC1. For s 2 Sk�1 �Dn�kC1,

flow from e�1.s/ 2 E \ f �1.c � "/ along �w to M to obtain S.s/.

It is straightforward to check that v is transverse to @E n f �1.c � "/. The

diffeomorphism dv is defined by flowing fromM nIm.S/ alongw to f �1.c�"/nE,

and identifying the part Dk � Sn�k of M.S/ with E n f �1.c � "/ via e�1, then

flowing again along w to M 0 (as we are not flowing from a level set, for different

points, we need to flow for a different amount of time to reach M 0). Note that

dv jMnIm.S/ is simply given by the flow of v. It is easy to see that dv extends to a

diffeomorphism fromW.S/ toW that is the identity onM ; see [24, Theorem 3.13].

Remark 2.13. The above construction depends on the choice of " and local co-

ordinate system as follows. The attaching sphere a.S/ is unique, and different

choices give isotopic framings. Furthermore, if Si and dv;i WM.Si / ! M 0 for i 2
¹1; 2º arise from different coordinate systems and "i , then there is an isotopically

unique diffeomorphism  WM.S1/ ! M.S2/ such that dv;1 is isotopic to dv;2 ı .
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This ambiguity will not cause any problems in the proof of Theorem 1.7 due to

relation (1) of Definition 1.4.

The framed sphere S and the diffeomorphism dv depend on v only up to

isotopy, since the space of gradient-like vector fields v compatible with a given

Morse function f is connected. The only caveat is that when k 62 ¹0; nC 1º, the

space of coordinate systems is homotopy equivalent to SO.k; nC 1 � k/, which

has two components. The two components correspond to non-isotopic framed

spheres. If S is one, then xS represents the other isotopy class; cf. relation (5) in

Definition 1.4.

Definition 2.14. Let W be an oriented cobordism from M to M 0. We say

that the Morse datum .f;
N
b; v/ induces the parameterized Cerf decomposition C

of W if Mi D f �1.bi / and Wi D f �1.Œbi ; biC1�/. Furthermore, for each

elementary cobordismWi , the framed attaching sphere Si and the diffeomorphism

di WMi .Si / ! MiC1 are obtained from f jWi
and vjWi

as in Definition 2.12 for

some choice of compatible local coordinate systems and radii "i at the critical

points.

Hence, the Morse datum .f;
N
b; v/ gives rise to a well-defined parameterized

Cerf decomposition that we denote by C.f;
N
b; v/, up to possibly replacing a framed

sphere S with xS, and up to the ambiguity explained in Remark 2.13. The following

result, which is a slight extension of [24, Theorem 3.12] to include the parametriza-

tion, states that this assignment is surjective.

Lemma 2.15. Let C be a parameterized Cerf decomposition of the oriented
cobordism W . Then there exists a Morse datum .f;

N
b; v/ inducing C.

Proof. By definition, each diffeomorphism di WMi .Si / ! MiC1 extends to a

diffeomorphism Di WW.Si / ! Wi . We claim that there is a Morse function

f 0
i WW.Si/ ! R and a gradient-like vector field v0

i on W.Si / such that f 0
i has a

single critical point in the handle if Si ¤ ;, and the diffeomorphism dv0
i

induced

by f 0
i and v0

i onW.Si / as in Definition 2.12 is IdMi .Si /. If Si D ;, then we take f 0
i

to be the projection p2WMi � I ! I and v0
i to be @=@t .

If Si ¤ ; is a framed .k � 1/-sphere, then consider the functions

s.x1; : : : ; xnC1/ D 1=2 � x21 � � � � � x2k C x2kC1 C � � � C x2nC1

and

u.x1; : : : ; xnC1/ D
q

.x21 C � � � C x2
k
/.x2

kC1
C � � � C x2nC1/
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on RnC1. Let

H D ¹
N
x 2 R

nC1W 0 � s.
N
x/ � 1, u.

N
x/ � 1 º:

Consider Si WSk�1 �Dn�kC1 ! Mi , then

G D .Im.Si / � I / [ .Dk �Dn�kC1/ � W.Si /

is diffeomorphic to H if we smooth the corners after attaching the handle. We

choose a diffeomorphism �WG ! H such that it maps Im.Si /�¹0º toH \¹s D 0º
andDk�Sn�k toH \¹s D 1º. Furthermore, there is a small � 2 RC such that for

any
N
x 2 H with s.

N
x/ 2 .0; 1/ and u.

N
x/ 2 Œ1��; 1�, we have ��1.

N
x/ 2 Mi �¹s.

N
x/º.

For y 2 .Mi � I / n G, we let f 0
i .y/ D p2.y/, where p2.x; t / D t , while

for y 2 G, let f 0
i .y/ D s.�.y//. This is a smooth function by construction.

The gradient-like vector field v0
i on W.Si/ is defined on G by pulling back the

Euclidean gradient of s on H via �. We extend this to .Mi � I / n G via @=@t . It

is now straightforward to check that the function f 0
i and the gradient-like vector

field v0
i induce the identity diffeomorphism from Mi .Si / to itself if we apply the

construction in Definition 2.12 with the radius " D 1.

Let ai W I ! Œbi�1; bi � be the affine equivalence ai .t / D .1 � t /bi�1 C tbi ,

and we set fi WD ai ı f 0
i ı D�1

i . By [13, Lemma 2.6], we can modify the fi by

an ambient isotopy on a collar neighborhood of Mi such that they patch together

to a Morse function f . If vi D D�
i .v

0
i /, possibly modified on a collar of Mi so

that for different i they fit together to a smooth vector field v, then the induced

diffeomorphism from M.Si / to MiC1 will be isotopic to di . �

Lemma 2.16. Let C be a parameterized Cerf decomposition of the cobordismW .
Suppose that the Morse data .f;

N
b; v/ and .f 0;

N
b0; v0/ both induce C, in the sense

that, for given local coordinate systems about the critical points and radii, the
framings of the attaching spheres and the diffeomorphisms di coincide. Then
there exist orientation preserving diffeomorphisms DWW ! W and �WR ! R

such that

(1)
N
b0 D �.

N
b/,

(2) f 0 D � ı f ıD�1,

(3) � � v0 D D�.v/ for some positive function � 2 C1.W;RC/, and

(4) DjMi
D IdMi

.

Proof. Suppose that W is an elementary cobordism,
N
b D

N
b0, and j

N
bj D j

N
b0j D 2.

For an illustration, see Figure 1. Let the critical points of f and f 0 be p and p0

with values c and c0, respectively. Choose coordinate charts
N
xWU ! RnC1 and
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N
x0WU 0 ! RnC1 about p and p0, respectively, such that their images coincide with

the diskD.
N
0;

p
2"/, and in which f and f 0 have the normal form of equation (2.1),

while v and v0 have the normal form (2.2). We write Kp D W s.p/ [W u.p/ and

Kp0 D W s.p0/[W u.p0/, where the stable and unstable manifolds for p are always

with respect to v, while for p0 they are with respect to v0.

Figure 1. An elementary cobordism W with two different Morse data that induce the same

framed sphere S and diffeomorphism d WM ! M.S/.

Let �0W Œb0; b1� ! Œb0; b1� be a diffeomorphism such that �0.bi / D bi for

i 2 ¹0; 1º, and such that �0.t / D c0 � c C t for t 2 Œc � 2"; c C 2"�. Then v is

also a gradient-like vector field for �0 ı f ; moreover, �0 ı f .p/ D f .p0/, and the

Morse datum .�0ıf;
N
b; v/ induces the same parameterized Cerf decomposition C.

Hence, we can assume that f .p/ D f .p0/ D c.

Let 
 WZ ! W and 
 0WZ0 ! W for Z, Z0 � W � R be the flows of v

and v0, respectively. For x 2 W , the set Ix WD .¹xº � R/ \ Z is a closed

interval ¹xº � Œ�˛.x/; !.x/�when x 62 Kp, a half-interval ¹xº � Œ�˛.x/;1/when

x 2 W s.p/, and a half-interval ¹xº � .�1; !.x/� for x 2 W u.p/. Using Z0, we

obtain the interval I 0
x and the functions ˛0 and !0 in an analogous way.
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LetD.p/ D p0. We define the diffeomorphismD onW n¹pº as follows. First,

note thatW s.p/\M D W s.p0/\M D a.S/ andW u.p/\M 0 D W u.p0/\M 0 D
d.b.S//, where SWSk�1�Dn�kC1 ! M is the framed sphere and d WM.S/ ! M 0

is the diffeomorphism in the Cerf decomposition C induced by both .f;
N
b; v/ and

.f 0;
N
b0; c0/. If x 2 M [ d.b.S// and t 2 Ix , then there is the unique parameter

value t 0.x; t / 2 I 0
x for which

f 0.
 0.x; t 0.x; t /// D f .
.x; t //:

Indeed, f is monotonically increasing along the flow-line 
.x; s/ for s 2 Ix , and

f 0 is monotonically increasing along 
 0.x; s0/ for s0 2 I 0
x . Furthermore, we have

f .
.x; inf.Ix/// D f 0.
 0.x; inf.I 0
x/// and f .
.x; sup.Ix/// D f 0.
 0.x; sup.I 0

x///

as b0 D b0
0, b1 D b0

1, and c D c0. If x 2 M [ d.b.S// and t 2 Ix , then let

D.
.x; t// D 
 0.x; t 0.x; t //:

It is clear that D restricts to a diffeomorphism

W nW u.p/ �! W nW u.p0/

that fixes @W n W u.p/ D @W n W u.p0/ pointwise. Indeed, for x 2 M n a.S/,
we have 
.x; !.x// D 
 0.x; !0.x// since the Morse data .f;

N
b; v/ and .f 0;

N
b0; v0/

induce the same diffeomorphism d WM.S/ ! M 0 in C.

LetE be the subset of RnC1 constructed in Definition 2.12; it is diffeomorphic

to the k-handle Dk �Dn�kC1. We denote by @�E the part of @E corresponding

to Sk�1 � Dn�kC1, and by @CE the part corresponding to Dk � Sn�k. Let F

be the smallest subset of W that contains E D
N
x�1.E/ and is saturated under

the flow of v, and we define F 0 containing E0 D .
N
x0/�1.E/ analogously. Note

that F is a regular neighborhood of Kp and F 0 is a regular neighborhood of Kp0 .

Furthermore, let @˙E D
N
x�1.@˙E/, and @˙E0 D .

N
x0/�1.@˙E/.

Since .f;
N
b; v/ induces C, by definition, the flow of v from

E \ f �1.c � "/ D @�E � Sk�1 �Dn�kC1

gives S. Similarly, the flow of v0 from E0 \ .f 0/�1.c � "/ D @�E
0 gives S0

as .f 0;
N
b0; v0/ also induces C. If H denotes the handle part of M.S/, which is

diffeomorphic to Dk � Sn�k, then d WM.S/ ! M 0 restricts to a map d jH that

gives a framing of W u.p/ \M 0 D W u.p0/ \ M 0 that is given by either flowing

from @CE along v to M 0, or from @CE0 along v0 to M 0.

We claim that

DjE D .
N
x0/�1 ı

N
xWE �! E0: (2.3)
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To see this, it suffices to show that, for any point e 2 @E, we have

N
x0.D.e// D

N
x.e/ 2 @E: (2.4)

Indeed, if e 2 E nW u.p/, then there is a unique t 2 R�0 for which 
.e; t / 2 @�E;

we write e� D 
.e; t /. By definition,D.e/ is given by flowing back toM along v,

and then forward along v0 until the value of f 0 agrees with f .e/. We obtain

the same point by flowing back along v to e� 2 @�E, then forward along v0

from D.e�/ D .
N
x0/�1 ı

N
x.e�/ until f 0 becomes f .e/. Since .

N
x0/�1 ı

N
x takes v

to v0 and f to f 0 as they are in normal form in
N
x and

N
x0, respectively, we see

that D.e/ D .
N
x0/�1 ı

N
x.e/. If e 2 W u.p/ n ¹pº, then there is a unique t 2 R�0

for which 
.e; t / 2 @CE; let eC D 
.e; t /. In this case, we get D.e/ by flowing

forward toM 0 along v, then back along v0 until the value of f 0 becomes f .e/. We

get the same point by flowing back from D.eC/ D .
N
x0/�1 ı

N
x.eC/. Just like in the

previous case, it follows that D.e/ D .
N
x0/�1 ı

N
x.e/.

We now prove equation (2.4). Let r 2 @�E. Since v and v0 both give

the same framed sphere S, we get the same point m 2 M if we flow back

along v from
N
x�1.r/ 2 @�E or if we flow back along v0 from .

N
x0/�1.r/. But

f .
N
x�1.r// D f ..

N
x0/�1.r// D c � ", hence D.

N
x�1.r// D .

N
x0/�1.r/. Now let

r 2 Sn�k WD @CE \ ¹ x1 D � � � D xk D 0 º:

Flowing forward along v from
N
x.Sn�k/ to M 0, or along v0 from

N
x0.Sn�k/ to M 0

give the same parametrization of W u.p/ \ M 0 D W u.p0/ \ M 0. Indeed, they

induce the same map M.S/ ! M 0, and the handle part of M.S/ is identified

with @CE. So if we flow forward from
N
x.r/ toM 0 along v and then back along v0 to

@CE0, then we get
N
x0.r/. However, f .

N
x.r// D f 0.

N
x0.r//, hence D.

N
x.r// D

N
x0.r/.

This concludes the proof of equation (2.4), and by the previous paragraph, the

proof of equation (2.3).

It follows that D is smooth in E. To see that it is smooth along W u.p/, note

that if x 2 W and there is a t 2 R�0 for which 
.x; t/ 2 @CE, then D.x/ can

also be obtained by flowing forward fromD.
.x; t// along v0 until the value of f 0

becomes f .x/. Together with equation (2.3), which implies thatD smoothly maps

@CE to @CE0, and the fact thatD maps flow-lines of v to flow-lines of v0, we obtain

that D is also smooth along W u.p/.

That DjM D IdM and DjW u.p/\M 0 D IdW u.p/\M 0 follow from the definition

of D. To see that DjM 0nW u.p/ D IdM 0nW u.p/, note that v and v0 induce the same

diffeomorphismsM.S/ ! M 0. Hence, for every x 2 M na.S/, the flow-lines of v

and v0 starting at x end at the same point of M 0. This concludes the proof when

the cobordism is elementary and
N
b D

N
b0.
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We now consider the case of a general Cerf decomposition C. Choose an orien-

tation preserving diffeomorphism �WR ! R such that �.
N
b/ D

N
b0 and such that �

is linear in a neighborhood of each critical value of f (the latter is to ensure that v

is also gradient-like at the critical points of � ıf ). We can then apply the previous

argument to each elementary pieceWi with Morse data .� ıf jWi
; .b0

i�1; b
0
i /; vjWi

/

and .f 0jWi
; .b0

i�1; b
0
i/; v

0jWi
/ to obtain diffeomorphisms Di WWi ! Wi that piece

together to a diffeomorphism DWW ! W with the required properties. �

2.3. Moves on Morse data and parameterized Cerf decompositions. We

now define some moves on Morse data. We show that any two Morse data

on the same cobordism can be connected by a sequence of such moves, and

describe what happens to the induced parameterized Cerf decompositions. In the

following, let M D .f;
N
b; v/ and M0 D .f 0;

N
b0; v0/ be Morse data on the oriented

cobordism W , and let C D C.M/ and C0 D C.M0/ be the induced parameterized

Cerf decompositions. Furthermore, we denote by pi the critical point of f inWi ,

assuming Wi is not cylindrical.

We say that M and M0 are related by a critical point cancelation (cf. the

analogous move of [13, Definition 2.8]) if there exists a one-parameter family

¹ .ft ; N
bt ; vt/ W t 2 Œ�1; 1� º

of triples such that

� .f�1; N
b�1; v�1/ D M and .f1; N

b1; v1/ D M0,

� ft is a family of smooth functions and vt is a family of smooth vector fields,

� .ft ; N
bt ; vt / is a Morse datum for every t 2 Œ�1; 1� n ¹0º,

�
N
bt is a constant

N
b D .b0; : : : ; bmC1/ for t 2 Œ�1; 0/, and there is a j 2

¹1; : : : ; mº such that
N
bt D

N
b n ¹bj º for t 2 .0; 1�,

� the critical points pj�1.t / 2 f �1
t .Œbj�1; bj �/ and pj .t / 2 f �1

t .Œbj ; bjC1�/

of ft for t < 0 cancel at t D 0, and ft has no critical values in Œbj�1; bjC1�

for t > 0,

� W u.pj�1.t // andW s.pj .t // are transverse and intersect in a single flow-line

for every t 2 Œ�1; 0/,
� ¹ft W t 2 Œ�1; 1� º is a “chemin élémentaire de mort” supported in a small

neighborhood U of

�

W u.pj�1.t //[W s.pj .t //
�

\ f �1Œbj�1.t /; bjC1.t /�I

see Cerf [6, Section 2.3, p.71]. Inside U , the path ft is of normal form, while

outside U , both ft and vt are constant.
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Cerf [6, Chapter II.2] proved that, given a pair of ascending and descending mani-

folds for a pair of consecutive critical points that intersect in a single flow-line, the

space of standard neighborhoods is connected, and hence any two “chemin élé-

mentaire de mort” starting at f compatible with this stable and unstable manifold

are homotopic through such families. A critical point creation is the reverse of a

critical point cancelation.

We now define the diffeomorphism ' appearing in relation (4) of Definition 1.4.

Hatcher proved that Diff.D3; @D3/ is contractible, hence every diffeomorphism of

a 3-manifold supported in a ball is isotopic to the identity. So, when n � 3, the

diffeomorphism ' is uniquely characterized up to isotopy by the property that it

fixes M \ M.S/.S0/. However, in higher dimensions, Diff.Dn; @Dn/ might be

disconnected. The reader only interested in the n � 3 case, which covers all the

applications in this paper, can safely skip the following definition.

Definition 2.17. Suppose that S0 � M.S/ is a framed sphere such that a.S0/

intersects b.S/ transversely in one point. Let W be the cobordism obtained by

attaching a handle h to M � I along S � ¹1º, followed by a handle h0 attached

along S0. Consider

B D Im.S/ [ .Im.S0/ \M/

with its corners smoothed. This is diffeomorphic to a disk since ja.S0/\b.S/j D 1.

Furthermore, let

H D .B � I / [ h [ h0I

this is diffeomorphic to B � I . Let F WM � I ! W be a diffeomorphism such

that F.x; 0/ D .x; 0/ for every x 2 M and F.x; t/ D .x; t / for every x 2 M n B
and t 2 I . Then let ' D F jM�¹1º. To define F , one only needs to choose a

diffeomorphism from B � I to H that is the identity along .B � ¹0º/[ .@B � I /.
If F 0 is another such map, then the induced '0 differs from ' by a pseudo-isotopy

supported in the disk H \M.S/.S0/. By Cerf [6], for n � 5, any diffeomorphism

of Dn that fixes @Dn and is pseudo-isotopic to the identity is actually isotopic

to the identity, as Dn is simply-connected. The only case when we do not know

whether ' is well-defined up to isotopy is when n D 4.

The following construction works in all dimensions. Now let W be the cobor-

dism obtained by composing W.S/ and W.S0/. By Lemma 2.15, there is a Morse

function f on W and a gradient-like vector field v that are compatible with the

natural parameterized Cerf decomposition of W with diffeomorphisms IdM.S/
and IdM.S/.S0/. In particular, f has exactly two critical points p and p0 at the

centers of h and h0, respectively. Furthermore, the stable manifold W s.p/ is the

core of h union S � I , the unstable manifold W u.p/ \W.S/ is the co-core of h,
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and similarly, W s.p0/ \W.S0/ is the core of h0 union S0 � I , while W u.p0/ is the

co-core of h0. There is a homotopically unique 1-parameter family

¹ ft W t 2 Œ�1; 1� º

of smooth functions .W; @W / ! .I; @I / such that f�1 D f , it has a single death

bifurcation at t D 0, and the stable manifold of the larger critical point and the

unstable manifold of the smaller critical point remain transverse for t 2 Œ�1; 0/.
In the terminology of Cerf [6, Proposition 2, Chapitre III], there is a “chemin

élémentaire;” i.e., an elementary path canceling the two critical points that can be

described in a local model in a neighborhood U of W u.p/[W s.p0/. Outside U ,

the family ft is constant. In particular, f1 has no critical points, and according to

Cerf [6], the space of such paths is connected. Hence, if ft and f 0
t are two different

paths, then f1 and f 0
1 are homotopic through smooth functions with no critical

points. The gradient flows of f1 and f 0
1 give rise to isotopic diffeomorphisms

from M to M.S/.S0/, and changing the metric also preserves the isotopy class.

It is important to note that keeping the ascending and descending manifolds

of the canceling critical points transverse throughout (or equivalently, the pair of

spheres obtained by intersecting them withM.S/) is what ensures the uniqueness.

The space of ascending and descending manifolds intersecting in a single flow-

line might have several components, each of which might result in different

cancelations. Also see the First Cancelation Theorem of Morse in the book of

Milnor [24, Theorem 5.4].

Remark 2.18. In relation (1) of Definition 1.4, to prove Theorem 1.8, it would

suffice to assume that d � IdM whenever d is isotopic to the identity and
supported in a ball. However, according to the classical result of Palis and

Smale [29], such diffeomorphisms generate Diff0.M/.

Lemma 2.19. Suppose that the Morse data M D .f;
N
b; v/ and M0 D .f 0;

N
b0; v0/

are related by a critical point cancelation ¹ .ft ; N
bt ; vt / W t 2 Œ�1; 1� º. Then the

corresponding parameterized Cerf decompositions C D C.M/ and C0 D C.M0/

are related as follows.
The attaching sphere a.SjC1/ intersects dj .b.Sj // in a single point, where

b.Sj / in Mj .Sj / is the belt sphere of the handle in Wj .Sj /. The cobordism
Wj [WjC1 is cylindrical. We obtain C0 from C by removingMjC1, more precisely,

M 0
i D

´

Mi if i < j C 1;

MiC1 otherwise.
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We obtain the framed attaching spheres S0
i and the diffeomorphisms d 0

i for i ¤ j

analogously. We have S0
j D ;, and letSjC1 D d�1

j ıSjC1 � Mj .Sj /. To determine

d 0
j WM 0

j .S
0
j / D Mj �! M 0

jC1 D MjC2;

note that there is a diffeomorphism

'WMj �! Mj .Sj /.SjC1/

defined as in Definition 2.17. Furthermore, dj induces a diffeomorphism

d
Sj C1

j WMj .Sj /.SjC1/ �! MjC1.SjC1/:

Then
d 0
j � djC1 ı dSj C1

j ı '; (2.5)

where ‘�’ means ‘isotopic to.’

Proof. We prove equation (2.5), the rest of the statement is straightforward. Let SW
be the cobordism obtained by gluing W.Sj / and W.SjC1/ along M.Sj /. This

carries a parameterized Cerf decomposition xC, with diffeomorphisms IdM.Sj / and

IdM.Sj /.Sj C1/. According to Lemma 2.15, there exists a Morse datum . Nf; N
N
b; Nv/

inducing xC.

Next, we construct a diffeomorphism GW SW ! Wj [ WjC1. Choose an

extension Di WWi .Si / ! Wi of di for i 2 ¹j; j C 1º. Then Dj and DjC1 glue

together to a diffeomorphism

G0WW.Sj / [dj
W.SjC1/ �! Wj [WjC1:

Furthermore, we can glue together IdW.Sj / and the diffeomorphism

D
Sj C1

j WW.SjC1/ �! W.SjC1/

extending d
Sj C1

j to a diffeomorphism G1W SW ! W.Sj / [dj
W.SjC1/. Then we

set G D G0 ıG1.
The Morse datum .f ı G; .bj�1; bj ; bjC1/; G

�.v// on SW also induces the pa-

rameterized Cerf decomposition xC. Hence, by Lemma 2.16, there exists a diffeo-

morphism DW SW ! SW that fixes Mj , M.Sj /, and M.Sj /.SjC1/ pointwise, and

such that f ıG ıD D Nf and .G ıD/�.v/ D � � Nv for some � 2 C1.SW;RC/. In

particular, ft ı G ı D for t 2 Œ�1; 1� is a “chemin élémentaire de mort” starting

from Nf and ending at a function f1 ı G ı D with no critical points that induces
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the diffeomorphism 'WMj ! Mj .Sj /.SjC1/, up to isotopy. Indeed, by Cerf [6,

Chapter 2.3], the space of “chemin élémentaire” starting at a given Morse function

that cancel two consecutive critical points with a single flow-line between them,

and which is supported in a neighborhood of their stable and unstable manifolds

where it is in normal form is connected, and so their endpoints can be connected

through Morse functions with no critical points. So, for any choice of gradient-

like vector fields, the endpoints induce isotopic diffeomorphisms. Hence f1 on

Wj [ WjC1 induces a diffeomorphism d 0
j WMj ! MjC2 that is conjugate to '

along G. As GjM D IdM and GjM.Sj /.Sj C1/ D djC1 ı dSj C1

j , we obtain

equation (2.5). �

We say that the Morse data M and M0 are related by a critical value crossing
if there exists a one-parameter family

¹ .ft ; N
bt ; vt /W t 2 Œ�1; 1� º

of triples such that

� .f�1; N
b�1; v�1/ D M and .f1; N

b1; v1/ D M0,

� ft is a family of Morse functions with critical set Crit.ft / D ¹p0; : : : ; pmº
independent of t , and vt is a family of smooth vector fields,

� .ft ; N
bt ; vt / is a Morse datum for every t 2 Œ�1; 1� n ¹0º,

� there is a j 2 ¹0; : : : ; mº such that bi .t / D bi is independent of t for i ¤ jC1,
where

N
bt D .b0.t /; : : : ; bmC1.t //,

� two critical values cross each other; i.e., ft .pj / < ft .pjC1/ for t < 0 and

ft .pj / > ft .pjC1/ for t > 0, with equality for t D 0,

� W u.pj / \W s.pjC1/ D ; for every t 2 Œ�1; 1�,
� ¹ft W t 2 Œ�1; 1� º is a “chemin élémentaire de croisement ascendant or de-

scendant” with support in a small neighborhood U of

W s.pj / \ f �1Œbj ; bjC2� or W s.pjC1/ \ f �1Œbj ; bjC2�I

see Cerf [6, Chapter II, p.40]. Inside U , the path ft is of normal form, while

outside U both ft and vt are constant.

Lemma 2.20. Suppose that the Morse data M D .f;
N
b; v/ and M0 D .f 0;

N
b0; v0/

are related by a critical value crossing ¹ .ft ; N
bt ; vt /W t 2 Œ�1; 1� º, and consider

the induced parameterized Cerf decompositions C and C0. Then these satisfy the
following properties:
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(1) in C, the partWj [Mj C1
WjC1 is replaced byW 0

j [M 0
j C1

W 0
jC1, the rest of the

decomposition is unchanged,

(2) Im.Sj / \ Im.S0
j / D ; and Im.SjC1/ \ dj .D

kj � Sn�kj / D ;,

(3) d 0
j ıSj D S0

jC1 (where we consider Sj inMj .S0
j /) and dj ıS0

j D SjC1 (where
we consider S0

j in Mj .Sj /), and

(4) the following diagram is commutative up to isotopy:

Mj .Sj ; S
0
j /

.dj /
S

0
j

//

.d 0
j
/
Sj

��

MjC1.SjC1/

dj C1

��
M 0
jC1.S

0
jC1/

d 0
j C1 // MjC2:

Proof. Without loss of generality, suppose we are dealing with an ascending

path; i.e., the critical value ft .pj / increases until it gets above ft .pjC1/ D
f .pjC1/. The deformation of .ft ; vt/ is supported in a saturated neighborhood U

of W s.pj / \ f �1
t .Œbj ;1//. To see (1), note that if i 62 ¹j; j C 1º, then on Wi

the function and the vector field remain unchanged, and so do the regular values

bi and biC1. The deformation is supported inside Wj [ WjC1, and bjC1.t / stays

between the critical values ft .pj / and ft .pjC1/ for every t 2 Œ�1; 1�. Part (2)

follows from the facts that W s.pj / \W s.pjC1/ D ; and

W u.pj / \W s.pjC1/ \MjC1 D ;:

To prove (3), recall from Definition 2.12 that Sj is given byW s.pj /\Mj , with

framing coming from a local normal form of f about pj . Along an elementary

path, this local form remains the same except for a constant shift. In particular,

W s.pj / intersects Mj in a.Sj / with the same framing, and M 0
jC1 in a.S0

jC1/.

Hence, if we flow from Im.Sj / along v1 to M 0
jC1, we obtain d 0

j ı Sj D S0
jC1

as Im.Sj / \ Im.S0
j / D ;. Similarly, W s.pjC1/ intersects Mj in a.S0

j / and MjC1

in a.SjC1/, so flowing along v D v�1, we see that dj ı S0
j D SjC1.

Finally, we show part (4); i.e., that

djC1 ı dS
0
j

j .x/ D d 0
jC1 ı .d 0

j /
Sj .x/

for every x 2 Mj .Sj ; S
0
j /. Since the deformation .ft ; vt / is supported in a

neighborhood ofW s.pj /, for every x 2 Mj n.a.Sj /[a.S0
j // this is clear since both

compositions are induced by flowing along v fromMj to MjC2. When x is in the

handle part ofMj .Sj ; S
0
j / corresponding to S0

j , both compositions are obtained by
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flowing along v from the corresponding point of a standard neighborhood of pjC1

to MjC2. When x is in the handle part corresponding to Sj , flowing up to MjC2

along v or v0 give isotopic diffeomorphisms since for an elementary deformation

ft � f is constant near pj and vt is the Euclidean gradient. �

We say that M and M0 are related by an isotopy of the gradient if f D f 0

and
N
b D

N
b0. Given a parameterized Cerf decomposition C, an isotopy of a framed

attaching sphere is a move described as follows. Let 't WMj ! Mj for t 2 I be

an isotopy, and let S0
j D '1 ı Sj . There is an induced map

'0
1 D .'1/

Sj WMj .Sj / �! Mj .S
0
j /;

and we let d 0
j WD dj ı .'0

1/
�1. It is easy to see that d 0

j extends to a diffeomorphism

D0
j WW.S0

j / ! Wj via the formula

D0
j .x; t / D .Dj ı '�1

t .x/; t /

for .x; t / 2 Mj � I , and extending to the handle in the natural way.

Lemma 2.21. Let .f;
N
b/ be a Morse datum for the cobordism W . If C and C0 are

parameterized Cerf decompositions induced by the triples .f;
N
b; v/ and .f;

N
b; v0/,

respectively, then they are related by isotopies of the framed attaching spheres Si
and of the diffeomorphisms di , and possibly by reversing framed spheres.

Proof. This is a direct consequence of Remark 2.13. �

The Morse data M and M0 are related by adding or removing a regular value
if j

N
b 4

N
b0j D 1, where 4 denotes the symmetric difference. In this case, there is

an i 2 N for which either Œbi ; biC1� contains no critical value of f , or Œb0
i ; b

0
iC1�

contains no critical value of f 0. Then the corresponding parameterized Cerf

decompositions are related by merging or splitting a product: Suppose that one

of Wj and WjC1 is cylindrical; i.e., Sj or SjC1 is empty. We describe the case

when Sj D ;, the other case is analogous. Then we remove MjC1 and merge Wj

and WjC1. We set S0
j D d�1

j ı SjC1 and

d 0
j D djC1 ı .dj /S

0
j WMj .S0

j / �! MjC2;

where .dj /
S

0
j WMj .S0

j / ! MjC1.SjC1/ is the diffeomorphism induced by dj WMj !
MjC1. Splitting a product is the reverse of the above move. In general, we have

the following result for changing
N
b.
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Lemma 2.22. Suppose that .f;
N
b; v/ and .f;

N
b0; v/ are Morse data for the cobor-

dism W , and let C and C0 be the corresponding parameterized Cerf decomposi-
tions. Then .f;

N
b [

N
b0; v/ is also a Morse datum for W , and C00 D C.f;

N
b [

N
b0; v/

can be obtained from both C and C0 by splitting products. In particular, one can
get from C to C0 by splitting then merging products.

Finally, M and M0 are related by a left-right equivalence if there are diffeo-

morphisms ˆWW ! W and 'WR ! R such that f 0 D ' ı f ı ˆ�1,
N
b0 D '.

N
b/,

v0 D ˆ�.v/, ˆjM WM ! M is isotopic to IdM , and ˆjM 0WM 0 ! M 0 is isotopic

to IdM 0 . Then we obtain C.M0/ from C.M/ by a diffeomorphism equivalence; i.e.,

setting W 0
i D ˆ.Wi /, S

0
i D ˆ ı Si , and

d 0
i D ˆiC1 ı di ı .ˆSi

i /
�1;

where ˆi D ˆjMi
.

The content of the following lemma is that an isotopy of one of the dj can be

written in terms of the above moves on parameterized Cerf decompositions.

Lemma 2.23. Suppose that the parameterized Cerf decomposition C0 is ob-
tained from C by replacing one of the diffeomorphisms dj by a diffeomor-
phism d 0

j D � ı dj , where �WMjC1 ! MjC1 is isotopic to IdMj C1
. If we ex-

tend � to a diffeomorphismˆWW ! W isotopic to IdW and supported in a collar
neighborhood ofMjC1, then C0 can also be obtained from C by performing the dif-
feomorphism equivalence corresponding to ˆ, and then isotoping � ı SjC1 back
to SjC1.

Proof. It is clear thatWi D W 0
i ,Mi D M 0

i , and Si D S0
i for any i 2 ¹0; : : : ; mC1º.

What we do need to check is that dj D d 0
j and djC1 D d 0

jC1. If we use

the notation ˆi D ˆjMi
, then ˆi D IdMi

unless i D j C 1. Hence, the

diffeomorphism equivalence replaces dj by ĵC1 ı dj D � ı dj and djC1 by

djC1 ı .ˆSj C1

jC1 /
�1 D djC1 ı .�Sj C1/�1. Then isotoping � ı SjC1 back to SjC1

replaces djC1 ı .�Sj C1/�1 by

djC1 ı .�Sj C1/�1 ı �Sj C1 D djC1: �

Theorem 2.24. Let M D .f;
N
b; v/ and M0 D .f 0;

N
b0; v0/ be Morse data on the

oriented cobordismW . Then they can be connected by a sequence of critical point
creations and cancelations, critical value crossings, isotopies of the gradient,
adding or removing regular values, and left-right equivalences.
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Furthermore, if the ends of each component of the cobordism W are non-
empty, then we can avoid index 0 and n C 1 critical points throughout. If, in
addition, we assume that n � 2, and the cobordismW and each level set f �1.bi /

and .f 0/�1.b0
j / are connected, then we can choose the above sequence such that in

the correspondingparameterizedCerf decompositions all level sets are connected.
In particular, there are no index 0 or n C 1 critical points throughout, and no
index n critical points with separating attaching spheres.

Proof. Connect f and f 0 by a generic one-parameter family ¹ fsW s 2 Œ0; 1� º of

smooth functions. This family fails to be a Morse function at the parameter values

c1; : : : ; cl , where either we have a birth-death singularity, or two critical points

have the same value. We also choose parameter values s0; : : : ; s2lC1 such that

s0 D 0, s2lC1 D 1,

s0 < s1 < c1 < s2 < s3 < c2 < � � � < s2l�2 < s2l�1 < cl < s2l < s2lC1;

and s2i�1 and s2i are close to ci in a sense to be specified below. For every

i 2 ¹0; : : : ; 2lC1º, let vi be a gradient-like vector field for fi D fsi . Furthermore,

for every i 2 ¹0; : : : ; lº, choose the ordered tuples
N
b2i and

N
b2iC1 such that M2i D

.f2i ; N
b2i ; v2i / and M2iC1 D .f2iC1; N

b2iC1; v2iC1/ are Morse data, and such that

they can be connected by a continuous path of tuples
N
b.s/ consisting of regular

values of fs for s 2 Œs2i ; s2iC1�. Then, by [13, Lemma 3.1], the Morse data M2i

and M2iC1 are related by a left-right equivalence and an isotopy of the gradient.

Furthermore, by Lemma 2.22, different choices of
N
b give decompositions related

by adding and removing regular values.

It remains to prove thatM2i�1 andM2i are related by one of the moves listed in

the statement for a fixed i 2 ¹0; : : : ; lº. To simplify the notation, let M� D M2i�1,

MC D M2i , s� D s2i�1, sC D s2i , f˙ D fs˙ , v˙ D vs˙ , and c D ci . Choose

an ordered tuple
N
b such that there is exactly one element of

N
b between any two

consecutive critical points of fc .

First, suppose that the function fc has a death singularity at p 2 W with

fc.p/ 2 .bj ; bjC1/. According to Cerf [6, p. 71, Proposition 2], we can modi-

fying the family fs such that it becomes a “chemin élémentaire de mort” for s in

a neighborhood of c. (Note that this modification does change the function at the

endpoint of the family, but it is left-right equivalent and hence isotopic to the orig-

inal endpoint via a two-sided isotopy. Our modified family is the juxtaposition of

the chemin élémentaire de mort and this two-sided isotopy, and we take s� and

sC to be the start and endpoint of the chemin élémentaire de mort.) In particular,

fs is constant in s outside a ballB � f �1
c .Œbj ; bjC1�/ containing p for s 2 Œs�; sC�,
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if s˙ are very close to c. Furthermore, there is a coordinate system about p in

which

fs.N
x/ D fc.p/C x31 C sx1 � x22 � � � � � x2k C x2kC1 C � � � C x2nC1:

We choose v� and vC to be gradient-like vector fields for f� and fC, respectively,

that coincide outside B . Notice that fc.p/ lies between the values of the two

critical points that cancel for s < 0, hence .f�; N
b�/ is a Morse datum for

N
b� D

N
b [ ¹fc.p/º. Then .f�; N

b�; v�/ and .fC; N
b; vC/ are Morse data for W . It follows

from the above construction that in M� the attaching sphere and the belt sphere

of the canceling pair of critical points intersect in a single point. So M� and MC

are related by a critical point cancelation.

Now consider the case when fc has two critical points at p and q such that

fc.p/ D fc.q/ 2 Œbj ; bjC1�:

Then we can modify the family fs in the interval Œs�; sC� such that it becomes

a “chemin élémentaire de 1-croisement” in a neighborhood of c; this is possible

by Cerf [6, p. 49, Proposition 2]. In particular, fs is independent of s outside

a neighborhood N of either W s.p/ or W s.q/, and the points p and q remain

critical throughout. Furthermore, for s 2 Œs�; c/, we have fs.p/ < fs.q/, while

for s 2 .c; sC�, we have fs.q/ < fs.p/. In fact, we can arrange that a fixed vector

field v on W remains gradient-like for every fs . If we set

N
b˙ D

N
b [ ¹.fs˙.p/C fs˙.q//=2º;

then .f�; N
b�; v/ and .fC; N

bC; v/ are Morse data. Then we can get from M� to MC

by a critical value crossing and isotopies of the gradient.

If each component of the cobordismW has non-empty ends, then we can avoid

index 0 and nC1 critical points using Cerf theory as in the work of Kirby [17]. The

statement on connected Cerf decompositions follows from [13, Theorem 3.6]. �

3. The presentation of Cobn and constructing TQFTs

In this section, we describe how Theorem 2.24, together with the lemmas of the

previous section translating moves on Morse data to moves on parameterized Cerf

decompositions, imply Theorem 1.7. Then we show how Theorem 1.8 follows from

Theorem 1.7. We now restate Theorem 1.7 for the reader’s convenience.
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Theorem. The functor cWF.Gn/ ! Cobn descends to a functor

F.Gn/=R �! Cobn

that is an isomorphism of symmetric monoidal categories.
By slight abuse of notation, we will also denote the functor F.Gn/=R ! Cobn

by c. Then c restricted to F.G0
n/=R is an isomorphism onto Cob0

n and c restricted
to F.G0n/=R is an isomorphism onto Cob0n. Finally, cs WF.Gs/ ! BSut0 descends
to a functor F.Gs/=Rs that is an isomorphism of symmetric monoidal categories.

Proof of Theorem 1.7. To show that c descends to F.Gn/=R, it suffices to check

that if we apply c to any relation in R, then the resulting relation holds in the

cobordism category Cobn. Applying c to relation (1) gives cdıd 0 D cd ı cd 0 .

Furthermore, if d 2 Diff0.M/, then cd D iM . Both of these hold by the discussion

following Definition 2.3. If we apply c to relation (2), then we obtain

cdS ıW.S/ D W.S0/ ı cd ;

where d WM ! M 0 is a diffeomorphism, S is a framed sphere inM , and S0 D d ıS,

which is straightforward. Relation (3) amounts to

W.M.S/; S0/ ıW.M; S/ D W.M.S0/; S/ ıW.M; S0/

for disjoint framed spheres S and S0 in M (here we also specify the manifold we

are performing surgery on in the notation of the trace to avoid ambiguity). This is

standard in handle theory; see the proof of Lemma 2.20. Relation (4), cancelation,

amounts to

W.S0/ ıW.S/ D c' ;

and follows from the discussion in Definition 2.17. Finally, relation (5), holds as

W.S/ D W.xS/.
We now show that cWF.Gn/=R ! Cobn is an isomorphism of symmetric

monoidal categories. Suppose that W is an oriented cobordism from M to M 0.

Choose a Morse datum .f;
N
b; v/ for W . By Definition 2.12, this induces a param-

eterized Cerf decomposition C of W , consisting of a decomposition

W D W0 [M1
W1 [M2

� � � [Mm
Wm;

together with framed attaching spheres Si and diffeomorphisms di from Mi .Si /

to MiC1. When n � 2 and W , M , and M 0 are all connected, we can assume

that each Mi is connected as well by [13, Lemma 2.5]. As explained in the
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introduction after the statement of Theorem 1.7, the decomposition C corresponds

to the morphism

fC WD
m

Y

iD0

di ı eMi ;Si

in the category F.Gn/. ThenW D c.fC/, showing that the functor cWF.Gn/=R !
Cobn is surjective onto the morphisms of Cobn.

Suppose that W and W 0 are equivalent cobordisms from M to M 0, with

equivalence given by the diffeomorphism hWW ! W 0 fixingM andM 0 pointwise.

Let C be a parameterized Cerf decomposition of W , as above. Then h induces a

parameterized Cerf decomposition C0 of W 0 by setting W 0
i D h.Wi /, S

0
i D d ı Si ,

and

d 0
i D hiC1 ı di ı .hSi

i /
�1WM 0

i .S
0
i / �! M 0

iC1;

where hi D hjMi
for i 2 ¹0; : : : ; mº. We claim that

fC � fC0 ;

where fC0 is the morphism in F.Gn/ arising from C0. Indeed, consider the diagram

Mi

eMi ;Si //

hi

��

Mi .Si /

h
Si
i

��

di // MiC1

hiC1

��
M 0
i

e
M 0

i
;S0

i // M 0
i .S

0
i /

d 0
i // M 0

iC1:

The rectangle on the left is commutative because of relation (2) of Definition 1.4,

while the rectangle on the right commutes by the above definition of d 0
i and

relation (1). Putting the above rectangles together for i 2 ¹0; : : : ; mº, and using

the property that h0 D IdM and hmC1 D IdM 0 , the claim follows.

As we shall see, the content of Theorem 2.24 is that, for any two parameterized

Cerf decompositions C and C0 of a cobordism W , we can get from fC to fC0 via

relations inR. Together with the previous paragraph, this implies that c is injective

on F.Gn/=R.

By Lemma 2.15, there exist Morse data M D .f;
N
b; v/ and M0 D .f 0;

N
b0; v0/

inducing C and C0, respectively. It suffices to prove that fC � fC0 when M0 is

obtained from M by one of the moves listed in Theorem 2.24, since any two Morse

data can be connected by a sequence of such moves.

First, suppose that M0 is obtained from M by a critical point cancelation. Then

what we need to show is that

djC1 ı eMj C1;Sj C1
ı dj ı eMj ;Sj

� d 0
j : (3.1)
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By Lemma 2.19, d 0
j � djC1 ı dSj C1

j ı', where SjC1 D d�1
j ı SjC1. Hence, using

relation (1), equation (3.1) reduces to

eMj C1;Sj C1
ı dj ı eMj ;Sj

� d
Sj C1

j ı ':

By relation (4) of Definition 1.4, we have

' � eMj .Sj /;Sj C1
ı eMj ;Sj

:

Now, according to relation (2),

d
Sj C1

j ı eMj .Sj /;Sj C1
� eMj C1;Sj C1

ı dj ;

and the result follows. The case of a critical point creation follows by reversing

the roles of M and M0.

Now assume that M and M0 are related by a critical value crossing. Then we

will show that

djC1 ı eMj C1;Sj C1
ı dj ı eMj ;Sj

� d 0
jC1 ı eM 0

j C1
;S0

j C1
ı d 0

j ı eMj ;S
0
j
: (3.2)

Using relation (2) and part (3) of Lemma 2.20,

eMj C1;Sj C1
ı dj � .dj /

S
0
j ı eMj .Sj /;S

0
j
;

and similarly,

eM 0
j C1

;S0
j C1

ı d 0
j � .d 0

j /
Sj ı eM 0

j
.S0

j
/;Sj
:

Substitute these into equation (3.2), and notice that, by relation (3) and part (2) of

Lemma 2.20, we have

eMj .Sj /;S
0
j

ı eMj ;Sj
� eM 0

j
.S0

j
/;Sj

ı eMj ;S
0
j
;

so it suffices to prove that

djC1 ı .dj /S
0
j � d 0

jC1 ı .d 0
j /

Sj :

But this follows from part (4) of Lemma 2.20 and relation (1).

Assume now that M0 is obtained from M via an isotopy of the gradient v.

By Lemma 2.21, the induced parameterized Cerf decompositions C and C0 are

related by a sequence of isotopies of the framed attaching spheres Si and of the

diffeomorphisms di , and reversing framed 0-spheres. First suppose that C and C0

are related by an isotopy of Sj . More precisely, let 't be an ambient isotopy of

the framed attaching sphere Sj . Recall that d 0
j D dj ı .'0

1/
�1, where '0

1 D .'1/
Sj ,

everything else remains the same. By relation (2),

eMj ;S
0
j

ı '1 � '0
1 ı eMj ;Sj

:
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However, '1 is isotopic to the identity, hence '1 � IdF.Mj /. Using relation (1),

d 0
j ı eMj ;S

0
j

� dj ı .'0
1/

�1 ı eMj ;S
0
j

� dj ı eMj ;Sj
;

hence fC � fC0 . If C and C0 are related by an isotopy of one of the diffeomor-

phisms dj , then invariance follows from relation (1) of Definition 1.4. The map is

also unchanged by reversing a framed sphere by relation (5).

Now consider the case when M0 is obtained from M by adding or removing

a regular value. Then C0 is obtained from C by merging or splitting a product.

Without loss of generality, suppose we are merging the cylindrical Wj to WjC1.

The cases when WjC1 is cylindrical and when we are splitting a product are

analogous. Recall that S0
j D d�1

j ı SjC1 and d 0
j D djC1 ı .dj /S

0
j . Then

d 0
j ı eMj ;S

0
j

� djC1 ı .dj /S
0
j ı eMj ;S

0
j
:

According to relation (2), applied to dj W .Mj ; S0
j / ! .MjC1; SjC1/, we have

.dj /
S

0
j ı eMj ;S

0
j

� eMj C1;Sj C1
ı dj :

Hence, as eMj ;; � IdMj
,

d 0
j ı eMj ;S

0
j

� djC1 ı eMj C1;Sj C1
ı dj ı eMj ;;;

and the result follows for merging a product.

Finally, suppose that M0 is obtained from M by a left-right equivalence. In this

case, C and C0 are related by a diffeomorphism equivalenceˆWW ! W . Then, by

the definition of d 0
i ,

fC0 D
m

Y

iD0

.ˆiC1 ı di ı .ˆSi

i /
�1 ı eM 0

i
;S0

i
/:

If we apply relation (2) to the diffeomorphismˆi W .Mi ; Si / ! .M 0
i ; S

0
i /, we obtain

that

.ˆ
Si

i /
�1 ı eM 0

i
;S0

i
� eMi ;Si

ı .ˆi /�1:

Substituting this into the previous formula, and using the fact that ˆ0 � IdM and

ˆm � IdM 0 , we obtain that fC � fC0 . This concludes the proof of Theorem 1.7 in

the case of Cobn.

For Cob0
n and Cob0n, we apply the second paragraph of Theorem 2.24. In the

case of BSut0, our objects are 3-manifolds with boundary, but the cobordisms are

products along the boundary, hence we only need to consider handles attached

along the interior, and the proof is completely analogous to the case of Cob0
3. �
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We now restate Theorem 1.8, spelled out in more detail.

Theorem. Let C be a category. Suppose that we are given a functor

F W Mann �! C;

and for every oriented n-manifold M and framed sphere S � M , a morphism
FM;SWF.M/ ! F.M.S// that satisfy relations (1)–(5):

(1) We have FM;; D IdF.M/, and if d 2 Diff0.M/, then F.d/ D IdF.M/.

(2) Given an orientation preserving diffeomorphism d WM ! M 0 between
n-manifolds and a framed sphere S � M , let S0 D d ı S, and let
dSWM.S/ ! M 0.S0/ be the induced diffeomorphism. Then the following di-
agram is commutative:

F.M/
FM;S //

F .d/

��

F.M.S//

F.dS/

��
F.M 0/

FM 0;S0
// F.M 0.S0//:

(3) IfM is an oriented n-manifold and S and S0 are disjoint framed spheres inM ,
then the following diagram is commutative:

F.M/
FM;S //

FM;S0

��

F.M.S//

FM.S/;S0

��
F.M.S0//

FM.S0/;S // F.M.S; S0//:

(4) If S0 � M.S/ and a.S0/ intersects b.S/ once transversely, then there is a
diffeomorphism 'WM ! M.S/.S0/ (see Definition 2.17), for which

FM.S/;S0 ı FM;S D F.'/:

(5) FM;S D FM;xS.

For a parameterized Cerf decomposition C of an oriented cobordism W , let

F.W;C/ D
m

Y

iD0

.F.di / ı FMi ;Si
/WF.M/ �! F.M 0/: (3.3)

Then F.W;C/ is independent of the choice of C; we denote it by F.W /. Further-
more, F W Cobn ! C is a functor that satisfies F.d/ D F.cd / (see Definition 2.3)
and F.W.S// D FM;S.
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In the opposite direction, every functor F W Cobn ! C arises in this way. More
precisely, if we let FM;S D F.W.S// and F.d/ D F.cd /, then these morphisms
satisfy relations (1)–(5), and for any oriented cobordismW , the morphism F.W /

is given by equation (3.3).
Now suppose that .C;˝; IC / is a symmetric monoidal category. Then the

functor F is a TQFT if and only if F W Mann ! C is symmetric and monoidal;
furthermore, given n-manifolds M and N , and a framed sphere S in M , the
diagram

F.M/˝ F.N/
ˆM;N //

FM;S˝IdF.N/

��

F.M tN/
FM tN;S

��
F.M.S//˝ F.N/

ˆM.S/;N // F.M.S/ tN/:

(3.4)

is commutative, where ˆA;B WF.A/ ˝ F.B/ ! F.A t B/ are the comparison
morphisms for F .

An analogous result holds for Cob0
n, and we can avoid S D 0 and framed n-

spheres. In the case of Cob0n for n � 2, we need to avoid S D 0 and n-spheres,
together with separating .n � 1/-spheres. Finally, for BSut0, we have a similar
result, and we can avoid S D 0 and framed 3-spheres.

Proof of Theorem 1.8. Suppose that C is a category, F W Mann ! C is a functor,

and we are given morphisms FM;S that satisfy the relations (1)–(5) listed in

Definition 1.4. ThenF extends to a functorF WF.Gn/=R ! C such thatF.eM;S/ D
FM;S and F.ed / D F.d/. By Theorem 1.7, the map cWF.Gn/=R ! Cobn is an

isomorphism of categories, and F ı c�1W Cobn ! C is the desired functor.

We now show that if W is an oriented cobordism from M to M 0, then

F ı c�1.ŒW �/ is given by equation (3.3), where ŒW � is the equivalence class ofW .

Choose a parameterized Cerf decomposition C of W , consisting of a decomposi-

tion

W D W0 [M1
W1 [M2

� � � [Mm
Wm;

together with framed attaching spheres Si and diffeomorphisms di from Mi .Si /

to MiC1. When n � 2 and W , M , and M 0 are all connected, we can assume that

each Mi is connected as well by [13, Lemma 2.5]. Then

c�1.ŒW �/ D fC D
m

Y

iD0

.di ı eMi ;Si
/WM �! M 0;

and so F ı c�1.ŒW �/ D F.W;C/, as required.

In the opposite direction, if we are given a functor F W Cobn ! C , then

F ı cWF.Gn/=R �! C
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is also a functor. Hence, if we letF.h/ D F.ch/ for a diffeomorphism hWM ! M 0,

and, given a framed sphere S in M , we define FM;SWF.M/ ! F.M.S// to be

F.W.S//, then these maps satisfy relations (1)–(5). The correspondence is one-

to-one by the following.

Lemma 3.1. Suppose that F arises from a functor F W Mann ! C and surgery
morphisms FM;S as in Theorem 1.8. Then, for any diffeomorphism hWM ! M 0,
we have

F.h/ D h�:

Proof. Recall that h� is defined as F.ch/, where ch is the cylindrical cobordism

.M � I IM � ¹0º;M � ¹1ºIp0; h1/:

Then this is in itself a parameterized Cerf decomposition C of a single level, and

so F.ch;C/ D F.h/ ı FM;; D F.h/. 4

If .C;˝; IC / is a symmetric monoidal category and F W Mann ! C is a

symmetric monoidal functor, then the extension F W Cobn ! C automatically

satisfies all properties of a TQFT listed in Definition 2.5 (i.e., it is symmetric and

monoidal) as these properties do not involve cobordisms, except we need to check

that the comparison morphisms ˆM;N WF.M/˝F.N/ ! F.M tN/ are natural.

This follows from the commutativity of diagram (3.4). Indeed, naturality of the

comparison morphisms amounts to the commutativity of the diagram

F.M/˝ F.N/
ˆM;N //

F.V /˝F .W /

��

F.M tN/

F .VtW /

��
F.M 0/˝ F.N 0/

ˆM 0;N 0
// F.M 0 t N 0/;

(3.5)

where V is an oriented cobordism fromM toM 0 andW is an oriented cobordism

from N to N 0. It suffices to show this when either V or W is a trivial cobordism,

according to the following diagram:

F.M/˝ F.N/
ˆM;N //

F.V /˝F .iN /

��

F.M tN/

F .VtiN /

��
F.M 0/˝ F.N/

ˆM 0;N //

F.iM 0 /˝F .W /

��

F.M 0 tN/

F .iM 0 tW /

��
F.M 0/˝ F.N 0/

ˆM 0;N 0
// F.M 0 tN 0/:
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By the symmetry of F , if diagram (3.5) commutes when W is trivial, then it also

commutes whenever V is trivial. So, it suffices to show that the diagram

F.M/˝ F.N/
ˆM;N //

F.V /˝IdF.N/

��

F.M tN/

F .VtiN /

��
F.M 0/˝ F.N/

ˆM 0;N // F.M 0 tN/

(3.6)

is commutative for any oriented cobordism V from M to M 0. Let C be a parame-

terized Cerf decomposition of V . Then

F.V / D F.V;C/ D
m

Y

iD0

.F.di / ı FMi ;Si
/WF.M/ �! F.M 0/:

Since F W Mann ! C is monoidal, the comparison morphisms are natural with

respect to diffeomorphisms, hence the diagram

F.Mi .Si //˝ F.N/
ˆMi .Si /;N //

F .di /˝IdF.N/

��

F.Mi .Si / tN/

F .di tIdN /

��
F.MiC1/˝ F.N/

ˆMiC1;N
// F.MiC1 tN/

is commutative. Together with the commutativity of diagram (3.4) for the framed

spheres Si inMi , we obtain that diagram (3.6) is also commutative. Hence, we see

that if F W Mann ! C is symmetric and monoidal and diagram (3.4) commutes,

then the extension F W Cobn ! C is also symmetric and monoidal; i.e., a TQFT.

This concludes the proof of Theorem 1.8 in case of the category Cobn.

The results for Cob0
n, Cob0n, and BSut0 follow from the respective parts of

Theorem 1.7 analogously. �

4. Classifying (1+1)-dimensional TQFTs

Recall that a Frobenius algebra is a finite-dimensional unital associativeF-algebra

A with multiplication �WA˝ A ! A and a trace functional � WA ! F such that

ker.�/ contains no non-zero left ideal of A. Then �.a; b/ D �.ab/ is a non-

degenerate bilinear form. In particular, � sets up an isomorphism between A

and A�. Dualizing the algebra structure, we also get a coalgebra structure on A

with counit; we denote the coproduct by ıWA ! A˝A. Note that ı is obtained by

dualizing the product A˝ A ! A, and using the fact that .A˝ A/� � A� ˝ A�
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since A is finite-dimensional. The Frobenius algebra A is called commutative if

the product � is commutative and the coproduct ı is cocommutative.

In this section, we give a short proof of the following classical result on

the classification of (1+1)-dimensional TQFTs using Theorem 1.8; see [18]. This

can be viewed as a warm-up for the following section, where we classify (2+1)-

dimensional TQFTs. Here all 1-manifolds and cobordisms are assumed to be

oriented.

Theorem 4.1. There is an equivalence between the category of (1+1)-dimensional
TQFTs and the category of finite-dimensional commutative Frobenius algebras.

Proof. It is straightforward to see that a (1+1)-dimensional TQFT

F W Cob2 �! VectF

gives rise to a Frobenius algebra. Indeed, let A WD F.S1/. If S is a pair-of-pants

cobordism from S1 t S1 to S1, then the multiplication is given by

F.S/WF.S1 t S1/ Š F.S1/˝ F.S1/ D A˝ A �! F.S1/ D A;

where the first map is the natural isomorphism coming from the monoidal struc-

ture of F . If D denotes the cobordism from S1 to ; given by a disk, then

� WD F.D/. We can also view the disk as a cobordism from ; to S1 which we

denote by xD . Then F.xD/.1/ 2 A is the unit. It is now straightforward to check

that these form a Frobenius algebra. Commutativity follows from the symmetry

of F .

The non-trivial direction is associating a TQFT to a Frobenius algebra. Given a

Frobenius algebra A, we describe the ingredients of Theorem 1.8 needed to define

a TQFT, namely, a symmetric monoidal functor F W Man1 ! VectF and maps

induced by framed spheres that satisfy the required relations.

Throughout this paper, for oriented manifolds X , Y , we denote by Diff.X; Y /

the set of orientation preserving diffeomorphisms from X to Y , and we write

Diff.X/ WD Diff.X;X/. Furthermore,

MCG.X/ D Diff.X/=Diff0.X/

is the oriented mapping class group of X . The group Diff.Y / acts on Diff.X; Y /

by composition. By slight abuse of notation, we write

MCG.X; Y / WD Diff.X; Y /=Diff0.Y /;

even though this is not actually a group, only an affine copy of MCG.X/ if X

and Y are diffeomorphic, and the empty set otherwise.
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Let Ck D S1 � ¹1; : : : ; kº; i.e., the disjoint union of k copies of S1. Given

a closed 1-manifold M of k components, note that MCG.Ck;M/ is an affine

copy of the symmetric group Sk . An element of MCG.Ck;M/ can be thought of

as a labeling of the components of M by the integers 1; : : : ; k. Given mapping

classes �, �0 2 MCG.Ck ;M/, their difference .�0/�1 ı � is an element �.�; �0/

of MCG.Ck ; Ck/, which is canonically isomorphic to Sk.

For a closed 1-manifold M , let F.M/ be the set of those elements a of

Y

�2MCG.Ck ;M/

A˝k

such that for any �, �0 2 MCG.Ck;M/ the coordinates a.�/ and a.�0/ in A˝k

differ by the permutation of factors given by �.�; �0/ 2 Sk. Notice that the

function a is uniquely determined by its value a.�/ for any � 2 MCG.Ck;M/;

i.e., for any labeling of the components of M by the numbers 1; : : : ; k. Note that

this construction is an instance of a Kan extension.

Suppose that M and M 0 are diffeomorphic 1-manifolds; i.e., they have the

same number of components k, and let d 2 Diff.M;M 0/. Given an element

a 2 F.M/ and � 2 MCG.Ck;M/, we define

.F.d/.a//.Œd � ı �/ D a.�/;

where Œd � 2 MCG.M;M 0/ is the isotopy class of d .

If M and N are 1-manifolds of k and l components, respectively, then we

define the natural isomorphism ˆM;N WF.M/ ˝ F.N/ ! F.M t N/ as follows.

Let � 2 MCG.Ck ;M/ and  2 MCG.Cl ; N /. The mapping class

� t  2 MCG.CkCl ;M tN/

is defined to be � on S1 � ¹1; : : : ; kº, and on S1 � ¹k C 1; : : : ; k C lº it maps

.x; k C i/ to  .x; i/. If a 2 F.M/ and b 2 F.N/, then we let ˆM;N .a ˝ b/ D
a t b 2 F.M t N/, where .a t b/.� t  / D a.�/˝ b. / 2 A˝.kCl/. We leave

it to the reader to check that the F W Man1 ! VectF defined above is a symmetric

monoidal functor.

We now define the surgery maps. A framed 0-sphere in a closed 1-manifoldM

of k components is given by an embedding

SWS0 �D1 D ¹�1; 1º � Œ�1; 1� ,�! M:

Since we only consider oriented cobordisms, the framing should be orientation

reversing, and is hence unique up to isotopy. So S is completely determined by a

pair of points S D ¹s�; sCº.
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If s� and sC lie in different components M� and MC of M , respectively, then

we define the map

FM;SWF.M/ �! F.M.S//

as follows. Let a 2 F.M/, and let � 2 MCG.Ck;M/ correspond to a labeling

of the components of M such that M� is labeled k � 1 and MC is labeled k.

This gives rise to a labeling �S of the components ofM.S/, where the component

arising from surgery onM� andMC is labeled k�1, while every other component

is unchanged and retains its label. Then FM;S.a/ is the element of F.M.S// for

which FM;S.a/.�S/ is the image of a.�/ under the map

A˝.k�2/ ˝ A˝ A �! A˝.k�2/ ˝ A

that multiplies the last two factors using the algebra product of A; i.e., maps

a1 ˝ � � � ˝ ak�2 ˝ ak�1 ˝ ak 7�! a1 ˝ � � � ˝ ak�2 ˝ .ak�1ak/:

It is straightforward to see that the above definition of FM;S.a/ is independent of

the choice of �. Indeed, if �0 is another labeling such that M� is labeled k � 1

andMC is labeled k, then FM;S.a/.�S/ and FM;S.a/.�
0
S
/ differ by the action of the

permutation �.�S; �
0
S
/ that fixes k � 1, and maps to �.�; �0/ under the embedding

Sk�1 ! Sk . So, by definition, these two elements of A˝.k�1/ define the same

element FM;S.a/ of F.MS/.

Now suppose that s� and sC lie in the same component Ms of M . Then MS

has k C 1 components. The component Ms splits into a component M� corre-

sponding to the arc of Ms n S going from s� to sC, and a component MC cor-

responding to the arc of Ms n S going from sC to s�. Let � be a labeling of

the components of M such that Ms is labeled k. Then we denote by �S the la-

beling of the components of MS where each component of M n Ms retains its

label, M� is labeled k, and MC is labeled k C 1. Given a 2 F.M/, we de-

fine FM;S.a/.�S/ 2 A˝.kC1/ by applying to a.�/ 2 A˝k the map A˝k ! A˝.kC1/

that sends a1˝� � �˝ak�1˝ak to a1˝� � �˝ak�1˝ı.ak/, where ı is the coproduct

of the Frobenius algebraA. As in the previous case, FM;S.a/ is independent of the

choice of �.

Surgery along the framed attaching sphere of a 0-handle results in the man-

ifold M.0/ D M t S1. Chose an arbitrary labeling � of the components of M

with the numbers 1; : : : ; k. We obtain the labeling �0 of the components of M.0/

by labeling the new S1 component k C 1. Let �k WA˝k ! A˝.kC1/ be the

map �k.x/ D x ˝ 1, where 1 is the unit of A. For a 2 F.M/, we define

FM;0.a/.�0/ D �k.a.�//; the map FM;0 is independent of the choice of �.
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Finally, a framed 1-sphere in a 1-manifold M of k components is simply an

embedding SWS1 ,! M . Let S be the image of S, then M.S/ D M n S . Let � be

a labeling of the components of M such that S is given the label k, and let �S be

the corresponding labeling ofM.S/. Let tk WA˝k ! A˝.k�1/ be the map given by

extending linearly

tk.a1 ˝ � � � ˝ ak�1 ˝ ak/ D �.ak/ � a1 ˝ � � � ˝ ak�1:

For a 2 F.M/, let FM;S.a/.�S/ D tk.a.�//. Again, this gives a well-defined

map FM;S independent of the choice of labeling �.

Now all we need to check is that relations (1)–(5) of Definition 1.4 hold and

diagram (1.2) commutes for the data defined above. We only give an outline

here and leave the details to the reader. Axiom (1) is straightforward, as if

d 2 Diff0.M/, then Œd �ı� D � 2 MCG.M/, and .F.d/.a//.�/ D .F.d/.a//.Œd �ı
�/ D a.�/; i.e., F.d/ D IdF.M/.

Now consider relation (2), naturality. We check this in the case where S D
¹s�; sCº is a framed 0-sphere with s� and sC lying in different components M�

and MC of M , respectively; the other cases are similar. Choose a labeling � of

the components of M such that M� is labeled k � 1 and MC is labeled k. For

a1; : : : ; ak 2 A, let a be the element of F.M/ for which a.�/ D a1 ˝ � � � ˝ ak.

Then, by definition,

FM;S.a/.�S/ D a1 ˝ � � � ˝ ak�2 ˝ .ak�1ak/:

Given a diffeomorphism d WM ! M 0, this induces a labeling Œd � ı� ofM 0. Then

.F.d/.a//.Œd � ı �/ D a.�/ D a1 ˝ � � � ˝ ak . Consider S0 D ¹d.s�/; d.sC/º.
Under Œd � ı �, the component M 0

� of M 0 containing d.s�/ is labeled k � 1

and the component M 0
C containing d.sC/ is labeled k. Hence, we can use the

labeling Œd � ı � of M 0 to compute the map FM 0;S0 . This induces the labeling

.Œd � ı �/S0 , where the component obtained by taking the connected sum of M 0
�

and M 0
C is labeled k � 1 and every other component retains its label. With this

notation in place,

�

FM 0;S0 ı F.d/.a/
�

..Œd � ı �/S0/ D a1 ˝ � � � ˝ ak�2 ˝ .ak�1ak/:

The diffeomorphism dS mapsM�#MC toM 0
�#M 0

C, and on the other components

it acts just like d . It follows that ŒdS� ı �S D .Œd � ı �/S0 . Furthermore,

�

F.dS/ ı FM;S.a/
� �

ŒdS� ı �S
�

D FM;S.a/.�S/ D a1 ˝ � � � ˝ ak�2 ˝ .ak�1ak/:

This establishes the commutativity of the diagram in relation (2).
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Now consider relation (3), commutativity; i.e., that

FM.S/;S0 ı FM;S D FM.S0/;S ı FM;S0 : (4.1)

Here we have several cases depending on the dimensions of the attaching spheres.

This is obviously true when S D S0 D 0. When S and S0 are framed 1-spheres

glued along distinct components S and S 0 of M , then let � be a labeling of M

such that S is labeled k and S 0 is labeled k � 1. As above, let a 2 F.M/ be such

that a.�/ D a1 ˝ � � � ˝ ak . Then

ŒFM.S/;S0 ı FM;S.a/�.�S;S0/ D �.ak�1/�.ak/ � a1 ˝ � � � ˝ ak�2:

On the other hand, let �0 be the labeling of the components of M where S is

labeled k � 1 and S 0 is labeled k, otherwise it agrees with �. The permutation

�.�; �0/ 2 Sk is the transposition of k � 1 and k, and so

a.�0/ D a1 ˝ � � � ˝ ak�2 ˝ ak ˝ ak�1:

It follows that

ŒFM.S0/;S ı FM;S0.a/�.�0
S0;S/ D �.ak/�.ak�1/ � a1 ˝ � � � ˝ ak�2:

Since �S;S0 D �0
S0;S, the result follows from the commutativity of F in this case.

When S0 D 0 and S is a 1-sphere in a component S of M , then choose a

labeling � such that S is labeled k. Then

ŒFM.S/;0 ı FM;S.a/�.�S;0/ D �.ak/ � a1 ˝ � � � ˝ ak�1 ˝ 1;

where �S;0 labels the components ofM nS just like �, and the new S1-component

is labeled k. To compute FM.0/;S ı FM;0.a/, first note that

FM;0.a/.�0/ D a1 ˝ � � � ˝ ak ˝ 1:

If � is the transposition of k and k C 1, then

FM;0.a/.� ı �0/ D a1 ˝ � � � ˝ ak�1 ˝ 1˝ ak :

As � ı �0 labels S with k C 1,

ŒFM.0/;S ı FM;0.a/�..� ı �0/S/ D �.ak/ � a1 ˝ � � � ˝ ak�1 ˝ 1;

and .� ı �0/S D �S;0, which proves equation (4.1) in this case.
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Now suppose that S D ¹s�; sCº is a framed 0-sphere in M . The cases when

S0 D 0 or when S0 is a 1-sphere disjoint from S are similar to the previous

one. When S0 D ¹s0
�; s

0
Cº is also a 0-sphere, we have four cases depending on

whether S [ S0 intersects M in c D 1; 2; 3, or 4 components. The case c D 1

splits into two subcases depending on whether S and S0 are linked. When they are

linked, both sides of equation (4.1) will be of the form a1˝� � �˝ak�1˝.�ıı.ak//,
where � is the product and ı is the coproduct of A. When S and S0 are unlinked,

then one side becomes

a1 ˝ � � � ˝ ak�1 ˝ .ı ˝ IdA/.ı.ak//;

while the other side is

a1 ˝ � � � ˝ ak�1 ˝ .IdA ˝ ı/.ı.ak//:

The two coincide by the coassociativity of the coalgebra .A; ı/. When c D 2

and one of S and S0 lies in a single component Ms of M , while the other one

intersects Ms in one point, then the equality boils down to the fact that ı is a left

and right A-module homomorphism; i.e.,

.�˝ IdA/.ak�1 ˝ ı.ak// D .ı ı �/.ak�1 ˝ ak/ D .IdA ˝ �/.ı.ak�1/˝ ak/:

If c D 2 and S, S0 both intersect the same two components of M , then both sides

of equation (4.1) become a1 ˝ � � � ˝ ak�2 ˝ .ı ı �.ak�1; ak//. When c D 2

and S and S0 lie in two distinct components of M , then the result is clear as we

have two coproduct maps acting on distinct components of M . When c D 3

and S and S0 share a component, then the result follows from the associativity of

the algebra .A; �/. When c D 3 and S occupies two components and S0 a third,

then we have a non-interacting product and coproduct. The case c D 4 is also

straightforward as we are dealing with two non-interacting product maps.

We now check relation (4), cancelation. When S D 0 and S0 � M.0/ is a 0-

sphere that intersects the new S1 component in one point, then the result follows

from the fact that 1 is a left and right unit of A. Now suppose that S is a 0-sphere

and S0 � M.S/ is a 1-sphere that intersects b.S/ in one point. Then S has to occupy

a single component of M that splits into the components M� and MC when we

perform surgery along S, and S0 maps to either M� or MC. The result follows

from the fact that � is a left and right counit of the the coalgebra .A; ı/; i.e., that

.� ˝ IdA/ ı ı D IdA D .IdA ˝ �/ ı ı:
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Consider relation (5). If S D ¹s�; sCº and s� and sC lie in different components

of M , then FM;S.a/.�/ D a1 ˝ � � � ˝ ak�2 ˝ ak�1ak . In xS we reverse s� and sC,

and so FM;xS.a/.�/ D a1 ˝ � � � ˝ ak�2 ˝ akak�1. These coincide as the Frobenius

algebra is commutative. When s� and sC occupy the same component ofM , then

FM;S D FM;xS follows from cocommutativity.

Finally, the commutativity of diagram (1.2) follows automatically from the

construction of F and the surgery maps and does not impose any additional

restrictions.

As explained by Kock [18, p. 173], given a morphism from the TQFT F to

the TQFT G; i.e., a natural transformation �WF ) G, the map �S1 WF.S1/ !
G.S1/ is a homomorphism of Frobenius algebras. Conversely, given commutative

Frobenius algebras A and B and a homomorphism hWA ! B , we can extend

this to a natural transformation � between the corresponding TQFTs F and G.

Indeed, given a 1-manifoldM of k components and a 2 F.M/, choose a mapping

class � 2 MCG.Ck;M/. Then we let �M .a/.�/ D h˝k.a.�// 2 B˝k, where

h˝k WA˝k ! B˝k. The naturality of � for diffeomorphisms and surgery maps

follows from the fact that h is a homomorphism of Frobenius algebras, and

naturality for arbitrary cobordisms then follows via equation (1.1) that defines

the cobordism maps.

The two functors we defined between the category of (1+1)-dimensional TQFTs

and the category of commutative Frobenius algebras are inverses of each other up

to natural isomorphism, hence they are equivalences between the two categories.

This concludes the proof of Theorem 4.1. �

5. The algebra of (2+1)-dimensional TQFTs

In this section, we apply Theorem 1.8 to the study of (2+1)-dimensional TQFTs.

Note that Kontsevich [19] outlined a correspondence between (1+1+1)-dimensional

TQFTs and modular functors. As to be expected, the full (2+1)-dimensional

classification leads to an algebraic structure more complicated than in the (1+1)-

dimensional and (1+1+1)-dimensional cases; cf. Proposition 1.1. The additional

difficulty comes from the fact that the mapping class groups of connected 2-mani-

folds are non-trivial, unlike for connected 1-manifolds. However, we can make

considerable simplifications, leading to a structure just barely more involved than

commutative Frobenius algebras. We expect that the algebra presented below can

be further simplified; this is the aim of future research.
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5.1. Canonical surfaces and framed spheres. For every g � 0, let †g be a

fixed oriented surface of genus g obtained as the connected sum #g.S1 � S1/,

where S1 D ¹ z 2 CW jzj D 1 º, and let Mg D MCG.†g/. The connected sums are

taken at the point .1; 1/ of component i and the point .�1; 1/ of component .iC1/.
Let li D .S1� ¹�1º/i be a longitude of summand i , while m0 D .¹�1º �S1/1

is a meridian of the first summand, andmg D .¹1º �S1/g is a meridian of the last

summand. Furthermore, for i 2 ¹1; : : : ; g � 1º, consider the curves

mi D .¹1º � S1/i#.¹�1º � S1/iC1:

If j 2 ¹1; : : : ; gº, we write

sj D ¹ .exp." cos �
p

�1/; exp." sin �
p

�1//W � 2 S1 º � .S1 � S1/j I

this is the connected sum curve between the j -th and .jC1/-st S1�S1 summands

for j < g. Furthermore, sg is an inessential curve in the last summand .S1�S1/g .

Finally, let s0 be an inessential curve in the first summand oriented from the left.

Each sj is oriented as the boundary of the j -th S1 � S1 summand; i.e., as the

boundary of the component of †g n sj with smaller x-coordinates. All the above

curves are naturally parameterized by S1, and if we fix a thin regular neighborhood

of each, we can and will view them as framed spheres S1 � D1 ,! †g . For an

illustration when g D 4, see Figure 2.

Figure 2. The curves mi , li , and si , and the points p4, q4, and p˙
4

on the standard

surface †4 of genus four.

Let pg D .�1; 1/1 and qg D .1; 1/g be points on the first and last S1 � S1

summands of †g , respectively. These have neighborhoods parameterized by D2,

such that restricting these to S1, we obtain the fixed parameterizations of �s0
and �sg . For i , j 2 Z�0, let

Pi;j D ¹qi ; pj º 2 †i t†j :

This is a framed 0-sphere with the framing S0 � D2 ,! †i t †j given by

the parameterizations of the disks containing qi and pj . Furthermore, for every
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g 2 Z�0, let Pg D ¹q�
g ; q

C
g º be the framed sphere given by two points very

close to qg , both lying on .S1 � ¹1º/g , with framing obtained by translating and

shrinking the normal framing of qg , and also reflecting it in case of qC
g .

From now on, we will use the following isotopically unique identifications:

The diffeomorphism †g.lg/ � †g�1 for g > 0 maps the disk obtained by

performing surgery along lg on the component of †g n sg�1 containing lg to the

disk bounded by sg�1 in †g�1, fixing sg�1 pointwise. Furthermore, it maps the

other component of†g n sg�1 to †g�1 n sg�1 isometrically. The diffeomorphism

†g .Pg/ � †gC1 maps the D1 � S1 glued during the surgery along Pg to the

neighborhood of mgC1 in †gC1 given by its framing. Furthermore, it is the

identity on the component of †g n sg disjoint from Pg , and maps the result of

surgery along Pg on the disk component of†g nsg to the component of†gC1nsg
containing mgC1 isometrically. The identification .†i t†j /.Pi;j / � †iCj maps

the D1 � S1 glued during the surgery along Pi;j to the neighborhood of the

circle si in †iCj given by its framing. Furthermore, it maps †i n N.qi/ and

†j n N.pj / to the respective components of †iCj n N.si / isometrically. Finally,

the diffeomorphism †iCj .si / � †i t †j maps the components of †iCj n N.si /
to .†i nN.qi //t .†j nN.pj // isometrically, and the D2 � S0 introduced during

the surgery along si to N.qi / � †i and N.pj / � †j .

5.2. Assigning a J-algebra to a TQFT. Suppose that the functor

F W Cob2 �! VectF

is a TQFT. We associate to it a tuple

J.F / D .A; ˛; !; ¹�i W i 2 Nº/

as follow. We write

Ag D F.†g /:

This vector space comes equipped with a representation

�g WMg �! Aut.Ag/:

Indeed, given d 2 Diff.†g/, let �g.d/ D F.cd /WF.†g/ ! F.†g /, where cd is

the cobordism associated to d as in Definition 2.3. We define the involution

�g WAg �! Ag

as �g D �g.�g /, where �g is �-rotation of †g in R3 with center at
N
0 about the

z-axis
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As defined in Section 5.1, there is a natural identification between †g.lg/ and

†g�1, and so we can viewW.lg/, the trace of the surgery along lg , as a cobordism

from †g to †g�1. We write

˛g WD F.W.lg //WAg �! Ag�1:

Similarly, we can identify †g.sj / with †j t†g�j , and hence we obtain a map

ıj;g�j WD F.W.sj //WAg �! Aj ˝ Ag�j

for every j 2 ¹0; : : : ; gº, where we map F.†j t †g�j / to F.Sj / ˝ F.Sg�j / D
Aj ˝ Ag�j via the monoidal structure of F . We can canonically identify

.†i t†j /.Pi;j / with †iCj , hence we obtain a map

�i;j WD F.W.Pi;j //WAi ˝ Aj �! AiCj :

Again, we used the monoidal structure of F Furthermore, †g.Pg/ is canonically

diffeomorphic to †gC1, hence we obtain a map

!g WD F.W.Pg//WAg �! AgC1:

The ball D3, viewed as a cobordism from †0 D S2 to ;, gives rise to a map

� WA0 �! F;

while viewing D3 as a cobordism from ; to †0 gives a map

"WF �! A0:

Finally, we set A D
L

i2N Ai , � D
L

i;j2N �i;j , ı D
L

i;j2N ıi;j , ˛ D
L

i2N ˛i ,

! D
L

i2N !i , and A WD .A; �; ı; "; �; �/. For an illustration of the above

operations, see Figure 3.

In what follows, we synthesize the above data into a new algebraic structure

called a J-algebra. This consists of the split GNF�-algebra .A; ˛; !/, together

with the mapping class group representation ¹�i W i 2 Nº. We proceed to give the

relevant algebraic definitions.

5.3. Split GNF�-algebras. Nearly Frobenius algebras were introduced by Co-

hen and Godin [7]. They are like Frobenius algebras, but without the trace func-

tional, and hence lack the non-degenerate bilinear pairing that identifies the al-

gebra with its dual. Note that a non-degenerate pairing forces every Frobenius

algebra to be finite dimensional, whereas this is not the case for nearly Frobenius

algebras. We now introduce a graded involutive version of this notion.
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Figure 3. Given a .2C 1/-dimensional TQFT F , we obtain the algebraic operations ˛, !,

ı, �, ", and � by applying F to the traces of the surgeries in the figure.

Definition 5.1. A graded involutive nearly Frobenius algebra (or GNF�-algebra

for short) is a tuple A D .A; �; ı; "; �; �/, where

A D
1

M

iD0

Ai

is an N-graded F-vector space such that each Ai is finite dimensional. Further-

more,

(1) �WA ˝ A ! A is a graded linear map, where A ˝ A is the graded tensor

product; i.e.,

.A˝ A/n D
n

M

iD0

Ai ˝ An�i � A˝F A;

(2) � is associative and "WF ! A0 is a left unit for �,

(3) ıWA ! A ˝ A is a graded linear map that is coassociative and � WA0 ! F

is a partial left counit for ı in the sense that .� ˝ IdAj
/ ı ı0;j D IdAj

, where

ıi;j D �i;j ı ı and �i;j WA˝ A ! Ai ˝ Aj is the projection,
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(4) the following diagram is commutative (Frobenius condition):

Ai ˝ AjCk

IdAi
˝ıj;k //

�i;j Ck

��

Ai ˝ Aj ˝ Ak

�i;j ˝IdAk

��
AiCjCk

ıiCj;k // AiCj ˝ Ak;

(5) �WA ! A is a grading-preserving involution that is an antiautomorphism of

.A; �; ı/, and such that it is the identity on A0 and A1. More concretely,

� ı � D � ı T;
ı ı � D T ı ı;

where T D
L1
i;jD0 Ti;j , and Ti;j .x ˝ y/ D y� ˝ x� for x 2 Ai and y 2 Aj .

We shall write �i;j D �jAi ˝Aj
.

Definition 5.2. A modular splitting of the GNF�-algebra A consists of a degree 1

endomorphism !WA ! A and a degree �1 endomorphism ˛WA ! A such that

they are both left .A; �/-module homomorphisms, and such that

ıi;j�1 ı ˛iCj D .IdAi
˝ j̨ / ı ıi;j ;

ıi;jC1 ı !iCj D .IdAi
˝ !j / ı ıi;j ;

˛ ı ! D IdA;

where ˛i D ˛jAi
and !i D !jAi

. We call the triple .A; ˛; !/ a split GNF�-algebra.

Definition 5.3. Let

.A; ˛; !/ D .A; �; ı; "; �; �; ˛; !/

and

.A0; ˛0; !0/ D .A0; �0; ı0; "0; � 0; �0; ˛0; !0/

be split GNF�-algebras. A homomorphism from .A; ˛; !/ to .A0; ˛0; !0/ is a

graded linear map hWA ! A0 that intertwines the operations �, ı, ", � , �, ˛,

! with �0, ı0, "0, � 0, �0, ˛0, !0, respectively.

The following straightforward lemma restates the definition of a split GNF�-

algebra in terms of the operations �i;j , ıi;j , ˛i , and !i .
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Lemma 5.4. Let .A; ˛; !/ be a split GNF�-algebra. Then the product � is
associative with left unit ":

�iCj;k ı .�i;j ˝ IdAk
/ D �i;jCk ı .IdAi

˝ �j;k/;

�0;j ı ."˝ IdAj
/ D IdAj

:
(5.1)

The coproduct ı is coassociative with left counit � :

.IdAi
˝ ıj;k/ ı ıi;jCk D .ıi;j ˝ IdAk

/ ı ıiCj;k;

.� ˝ IdAj
/ ı ı0;j D IdAj

:
(5.2)

The operations � and ı satisfy the Frobenius condition

ıiCj;k ı �i;jCk D .�i;j ˝ IdAk
/ ı .IdAi

˝ ıj;k/: (5.3)

The operation � is an anti-automorphism:

�i;j .x
� ˝ y�/ D �j;i .y ˝ x/�;

Ti;j ı ıi;j .x/ D ıj;i .x
�/;

(5.4)

where Ti;j WAi ˝Aj ! Aj ˝Ai is given by Ti;j .x˝y/ D y� ˝x�. Furthermore,
� is involutive, and is the identity on A0 and A1.

We have
˛iC1 ı !i D IdAi

; (5.5)

and the maps ˛i and !i are compatible with the product and coproduct in the
following sense:

!iCj ı �i;j D �i;jC1 ı .IdAi
˝ !j /;

˛iCj ı �i;j D �i;j�1 ı .IdAi
˝ j̨ /;

ıi;jC1 ı !iCj D .IdAi
˝ !j / ı ıi;j ;

ıi;j�1 ı ˛iCj D .IdAi
˝ j̨ / ı ıi;j :

(5.6)

In the opposite direction, suppose that we are given a sequence of finite-dimen-
sionalF-vector spacesAi for i 2 N, together with products�i;j WAi˝Aj ! AiCj ,
coproducts ıi;j WAiCj ! Ai ˝Aj , a left unit "WF ! A0, a left counit � WA0 ! F,
embeddings!i WAi !AiC1, projections ˛i WAi !Ai�1, and involutions �WAi !Ai

that satisfy equations (5.1)–(5.6). If we set A D
L

i2N Ai , � D
L

i;j2N �i;j ,
ı D

L

i;j2N ıi;j , ˛ D
L

i2N ˛i , and ! D
L

i2N !i , then .A; �; ı; "; �; �; ˛; !/ is
a split GNF�-algebra.
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Proof. It is clear that if .A; ˛; !/ is a split GNF�-algebra, then the operations�i;j ,

ıi;j , ", � , ˛i , and !i satisfy equations (5.1)–(5.6).

Now consider the opposite direction. It is also straightforward to check that

.A; �; ı; "; �/ satisfy the properties listed in Definitions 5.1 and 5.2 required of a

split GNF�-algebra. The only non-trivial part is showing that ı is coassociative;

i.e., that .ı˝ IdA/ıı D .IdA˝ ı/ıı. Restricted to An, the left-hand side becomes

n
X

iD0

i
X

jD0

.ıj;i�j ˝ IdAn�i
/ ı ıi;n�i D

n
X

iD0

i
X

jD0

.IdAj
˝ ıi�j;n�i / ı ıj;n�j

D
n

X

jD0

n
X

iDj

.IdAj
˝ ıi�j;n�i / ı ıj;n�j

D
n

X

jD0

n�j
X

kD0

.IdAj
˝ ın�k�j;k/ ı ıj;n�j

D
n

X

lD0

l
X

kD0

.IdAn�l
˝ ıl�k;k/ ı ın�l;l ;

which is exactly the right-hand side restricted toAn. Here, the first equality follows

from the coassociativity (5.2) of the (2+1)-algebra operations ıi;j , followed by

changing the order of summation, and finally setting k D n� i and l D n�j . �

Proposition 5.5. Let F W Cob2 ! VectF be a TQFT, and let

J.F / D .A; ˛; !; ¹�i W i 2 Nº/

be the associated tuple as in Section 5.2. Then .A; ˛; !/ is a split GNF�-algebra.

Proof. By the second part of Lemma 5.4, it suffices to check that the data Ai ,

�i;j , ıi;j , ", � , ˛i , !i assigned to F as in Section 5.2 satisfy equations (5.1)–(5.6).

According to Theorem 1.8, the TQFT F satisfies relations (1)–(5) of Defini-

tion 1.4. Together with the monoidality of F , these imply equations (5.1)–(5.6)

of Lemma 5.4 as follows.

First, consider equations (5.1). The equation

�iCj;k ı .�i;j ˝ IdAk
/ D �i;jCk ı .IdAi

˝ �j;k/

follows by applying relation (3) to †i t †j t †k with S D Pi;j � †i t †j and

S0 D Pj;k � †j t†k, together with the pentagon lemma of monoidality. To show

that

�0;j ı ."˝ IdAj
/ D IdAj

;

we apply relation (4) to †j with S D 0 and S0 D P0;j � †0 t†j .
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Now consider equations (5.2). To show that

.IdAi
˝ ıj;k/ ı ıi;jCk D .ıi;j ˝ IdAk

/ ı ıiCj;k;

apply relation (3) to †iCjCk with S D si and S0 D siCj . For

.� ˝ IdAj
/ ı ı0;j D IdAj

;

apply relation (4) to †j with S D s0 and S0 being the 2-sphere split off by s0.

Equation (5.3), the Frobenius condition

ıiCj;k ı �i;jCk D .�i;j ˝ IdAk
/ ı .IdAi

˝ ıj;k/;

follows from applying relation (3) to †i t †jCk with S D Pi;jCk and S0 D sj �
†jCk .

For equations (5.4),

�i;j .x
� ˝ y�/ D �j;i .y ˝ x/�;

follows from relation (2) by applying it to †i t †j with S D Pi;j and the

diffeomorphism d W†i t †j ! †j t †i being �i t �j , followed by swapping the

two components. Then note that dS D �iCj , and the result follows. Now consider

Ti;j ı ıi;j .x/ D ıj;i .x
�/;

where Ti;j WAi ˝ Aj ! Aj ˝ Ai is given by Ti;j .x ˝ y/ D y� ˝ x�. This also

follows from relation (2) applied to†iCj with S D si and d D �iCj . Furthermore,

�i is involutive since �i is, and �0 D IdA0
and �1 D IdA1

as �0 and �1 are isotopic

to the identity, together with relation (1).

To prove equation (5.5),

˛iC1 ı !i D IdAi
;

we apply relation (4) to †i with S D Pi and S0 D ljC1 that form a canceling pair.

The last set of equations is (5.6). The equation

!iCj ı �i;j D �i;jC1 ı .IdAi
˝ !j /;

follows from applying relation (3) to †i t†j with S D Pi;j and S0 D Pj � †j .

Similarly,

˛iCj ı �i;j D �i;j�1 ı .IdAi
˝ j̨ /

follows from relation (3) applied to †i t†j with S D Pi;j and S0 D lj � †j . To

obtain

ıi;jC1 ı !iCj D .IdAi
˝ !j / ı ıi;j ;
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apply relation (3) to †iCj with S D PiCj and S0 D si . Finally,

ıi;j�1 ı ˛iCj D .IdAi
˝ j̨ / ı ıi;j

follows by applying relation (3) to †iCj along S D liCj and S0 D si . �

Lemma 5.6. If A is a GNF�-algebra, then " is also a right unit, � is a partial
right counit, and

ık;iCj ı �jCk;i D .IdAk
˝ �j;i / ı .ık;j ˝ IdAi

/: (5.7)

If .˛; !/ is a modular splitting of A, then A D ker.˛/ ˚ Im.!/, both summands
are left .A; �/-submodules, and ! ı ˛ is projection onto Im.!/ along ker.˛/.

Proof. By applying � to the equation �.".t/˝ a/ D a for t 2 F and a 2 A, we

obtain that �.a� ˝ ".t// D a�, as ".t/ 2 A0 on which � acts as the identity, and

hence �.a˝ ".t// D a for every a 2 A.

Similarly, since ı0;j ı � D Tj;0 ı ıj;0, we have

� D .� ˝ IdAj
/ ı ı0;j ı � D .� ˝ IdAj

/ ı Tj;0 ı ıj;0 D .� ˝ �/ ı ıj;0

as � ı � D � since � acts as the identity on A0. Applying � to both sides,

.IdAj
˝ �/ ı ıj;0 D IdAj

:

To prove equation (5.7), we use the sumless Sweedler notation

ım;n.x/ D xm.1/ ˝ xn.2/;

where x 2 AmCn. Then condition (4) of Definition 5.1 can be written as

�i;j .a˝ b
j

.1/
/˝ bk.2/ D �i;jCk.a˝ b/

iCj

.1/
˝ �i;jCk.a˝ b/k.2/

for every a 2 Ai and b 2 AjCk . Applying T to both sides,

.bk.2//
� ˝ �i;j .a˝ b

j

.1/
/� D .�i;jCk.a˝ b/k.2//

� ˝ .�i;jCk.a˝ b/
iCj

.1/
/�:

Since � is an .A; ı/-antihomomorphism, .x�/m
.1/

˝ .x�/n
.2/

D .xm
.2/
/� ˝ .xn

.1/
/� for

every x 2 AmCn, hence

.b�/k.1/ ˝ �j;i ..b
�/
j

.2/
˝ a�/ D .�i;jCk.a˝ b/�/k.1/ ˝ .�i;jCk.a˝ b/�/

iCj

.2/

D �jCk;i .b
� ˝ a�/k.1/ ˝ �jCk;i .b

� ˝ a�/
iCj

.2/
:

As this holds for every b� 2 AjCk and a� 2 Ai , we obtain equation (5.7).
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For the last part, ker.˛/ and Im.!/ are left .A; �/-submodules since ˛ and !

are left .A; �/-module homomorphisms. Since ˛ ı ! D IdA, we see that ˛ is

surjective and ! is injective. Furthermore, the endomorphism ! ı˛ is a projection

since .! ı ˛/ ı .! ı ˛/ D ! ı ˛. As ˛ is onto, Im.! ı ˛/ D Im.!/, and since ! is

injective, ker.! ı˛/ D ker.˛/. It follows that A D ker.˛/˚ Im.!/, and that ! ı˛
is projection onto Im.!/ along ker.˛/. �

Remark 5.7. Since ! is not necessarily �-invariant, the splitting A D ker.˛/ ˚
Im.!/ is not �-invariant in general. If we introduce the notation N!.a/ D !.a�/�,

then

�. N!.a/˝ b/ D �.b� ˝ !.a�//� D .! ı �.b� ˝ a�//� D N! ı �.a˝ b/:

So, instead of!, it is N! that is a right .A; �/-module homomorphism, and similarly

for .A; ı/.

Remark 5.8. Given a split GNF�-algebra .A; ˛; !/, consider the direct system of

vector spaces

!i;j WD !j�1 ı � � � ı !i WAi �! Aj

for i � j , and let

M D lim�!Ai D
1
a

iD0

Ai

.

�;

where xi � xj for xi 2 Ai and xj 2 Aj if and only if there is some k � i ,

j for which !i;k.xi / D !j;k.xj /. Since each !i is injective, we can choose k D
max¹i; j º. Furthermore, we can canonically identifyAi with a subspaceMi ofM ,

under which !i becomes the embeddingMi ,! MiC1. For simplicity, we also use

the notation !i for this embedding. Using the same identification, ˛i descends to

a map ˛i WMi ! Mi�1, which we also denote by ˛i . Since ˛i ı !i�1 D IdMi�1
,

we have ˛i .x/ D x for every x 2 Mi�1; i.e., !i�1 ı ˛i WMi ! Mi is a projection

onto Mi�1.

Next, we show that the�i;j descend to a well-defined product�i WAi˝M !M .

Givenm 2 M , we define�.a˝m/ for a 2 Ai by taking an arbitrary representative

x 2 Aj of m, and we let �.a ˝m/ D �i;j .a ˝ x/. The equivalence class of this

product is independent of the representative x. Indeed, given two representative

x � x0 such that x 2 Aj , x0 2 Ak, and !j;k.x/ D x0, we have

�i;k.a˝ !j;k.x// D !iCj;iCk ı �i;j .a˝ x/ � �i;j .a˝ x/

as ! is a left .A; �/-module homomorphism.
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Similarly, the maps ıi;j descend to a map ıi WM ! Ai ˝ M as ! is a left

.A; ı/-comodule homomorphism. In particular, for m 2 M , we define ıi.m/ to be

ıi;n�i .x/ for some representative x 2 An of m. We now show this is independent

of the choice of x. Indeed,

ıi;n�i.x/ � .IdAi
˝ !n�i / ı ıi;n�i.x/ D ıi;n�iC1 ı !n.x/:

It follows that M is a left A-module.

By taking the direct limit ofAi along the maps N!i , we get a right A-module xM .

It follows from Remark 5.7 that � provides an anti-isomorphism between M

and xM ; in particular, xM Š M op.

Next, we present an alternate, simpler definition of a modular splitting. Let

1 WD ".1F/ 2 A0 n ¹0º

be the unit of the GNF�-algebra A.

Lemma 5.9. There is a bijection between modular splittings .˛; !/ of the GNF�-
algebra A, and pairs of elements .w; �/ 2 A1 � A�

1 for which

.IdA0
˝ �/ ı ı0;1.w/ D 1:

Given .w; �/, we get .˛; !/ by the formulae

!i .x/ D �i;1.x ˝ w/

and

˛i .x/ D .IdAi�1
˝ �/ ı ıi�1;1.x/:

In the opposite direction, given .˛; !/, we let w D !0.1/ and � D � ı ˛1.

Proof. Suppose we are given a modular splitting .˛; !/ ofA, and letw WD !0.1/ 2
A1. Then

�i;1.x ˝ w/ D �i;1.x ˝ !0.1// D !i ı �i;0.x ˝ 1/ D !i .x/

for every i 2 N and x 2 Ai since ! is a left .A; �/-module homomorphism and 1

is a unit. Hence, the element w 2 A1 completely determines !i for every i 2 N.

Indeed, if we define !i by the formula

!i .x/ WD �i;1.x ˝ w/;
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then it is a left .A; �/-module homomorphism by the associativity of �i;j :

!iCj ı �i;j .x; y/ D �iCj;1.�i;j .x; y/; w/

D �i;jC1.x ˝ �j;1.y; w//

D �i;jC1.x ˝ !j .y//:

Furthermore, ! is a left .A; ı/-comodule homomorphism as ı is a right .A; �/-

module homomorphism according to Lemma 5.6:

ıi;jC1 ı !iCj .x/ D ıi;jC1 ı �iCj;1.x; w/

D .IdAi
˝ �j;1/ ı .ıi;j ˝ IdA1

/.x ˝ w/

D .IdAi
˝ !j / ı ıi;j .x/:

Similarly, if we are given the splitting .˛; !/ and let � D � ı ˛1, then

.IdAi�1
˝ �/ ı ıi�1;1 D .IdAi�1

˝ �/ ı .IdAi�1
˝ ˛1/ ı ıi�1;1

D .IdAi�1
˝ �/ ı ıi�1;0 ı ˛i

D ˛i

as ˛ is a left .A; ı/-comodule homomorphism and � is a counit. So � 2 A�
1

completely determines ˛i for every i 2 N via the formula

˛i .x/ WD .IdAi�1
˝ �/ ı ıi�1;1:

The ˛ defined this way is a left .A; �/-module homomorphism by the Frobenius

condition (4):

˛iCj ı �i;j D .IdAiCj �1
˝ �/ ı ıiCj�1;1 ı �i;j

D .IdAiCj �1
˝ �/ ı .�i;j�1 ˝ IdA1

/ ı .IdAi
˝ ıj�1;1/

D �i;j�1 ı .IdAi
˝ j̨ /:

Similarly, ˛ is a left .A; ı/-comodule homomorphism by the coassociativity of ı:

ıi;j�1 ı ˛iCj D ıi;j�1 ı .IdAiCj �1
˝ �/ ı ıiCj�1;1

D .IdAi
˝ IdAj �1

˝ �/ ı .ıi;j�1 ˝ IdA1
/ ı ıiCj�1;1

D .IdAi
˝ IdAj �1

˝ �/ ı .IdAi
˝ ıj�1;1/ ı ıi;j

D .IdAi
˝ j̨ / ı ıi;j :

Finally, consider the condition ˛iC1 ı !i D IdAi
. Since

˛iC1 ı !i .x/ D ˛iC1 ı �i;1.x ˝ w/ D �i;0.x ˝ ˛1.w//;
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this is equivalent to having �i;0.x ˝ ˛1.w// D x for every i 2 N and x 2 Ai . In

particular, if we set i D 0 and x D 1, we must have ˛1.w/ D 1, and clearly this is

also sufficient. But ˛1.w/ D .IdA0
˝�/ıı0;1.w/, so the condition ˛iC1ı!i D IdAi

is equivalent to

.IdA0
˝ �/ ı ı0;1.w/ D 1:

This concludes the proof of the lemma. �

Remark 5.10. From now on, we use the notation .˛; !/ and .w; �/ interchange-

ably for a modular splitting. Notice that the polynomial algebra FŒw� is a subal-

gebra of .A; �/, and FŒ�� is a subalgebra of .A�; ı�/.

We saw in Section 5.2 that if the split GNF�-algebra .A; ˛; !/ arises from

a (2+1)-dimensional TQFT F , then the map !i geometrically corresponds to

performing a surgery on a genus i surface †i along a framed pair of points Pi ,

while the operation �i;1 amounts to connected summing †i with T 2, and w 2
F.T 2/.

5.4. Mapping class group representations on split GNF�-algebras. Let

F W Cob2 �! VectF

be a TQFT, and let

J.F / D .A; ˛; !; ¹�i W i 2 Nº/
be the associated tuple as in Section 5.2. Then the mapping class group actions �i

on Ai are compatible with the GNF�-algebra structure of .A; ˛; !/ in a sense that

we now formalize.

Definition 5.11. Let SWSk�Dn�k ,! M be a framed sphere in the n-manifoldM .

Then let

Diff.M; S/ D ¹ d 2 Diff.M/W d ı S D S º;
and we set MCG.M; S/ D Diff.M; S/=Diff0.M; S/.

Note that there is a natural forgetful map

fSW MCG.M; S/ �! MCG.M/:

For d 2 Diff.M; S/, the induced map dS 2 Diff.M.S// fixes the framed belt sphere

S
�WDkC1 � Sn�kC1 ,! M.S/

of the handle attached along S, hence

dS 2 Diff.M.S/; S�/:
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As dS;S� D d , this correspondence gives an isomorphism

MCG.M; S/ Š MCG.M.S/; S�/: (5.8)

We denote the image of � 2 MCG.M; S/ under this isomorphism by �S.

Definition 5.12. Let S be a framed sphere in the manifold M . Suppose we are

given representations �W MCG.M/ ! Aut.V / and �0W MCG.M.S// ! Aut.V 0/.

Then we say that a linear map hWV ! V 0 is MCG.M; S/-equivariant if

h ı �.fS.�// D �0
�

fS�

�

�S
��

ı h

for every � 2 MCG.M; S/.

Definition 5.13. Let .A; ˛; !/ be a split GNF�-algebra. Then a sequence of

homomorphisms

¹ �i WMi �! Aut.Ai / j i 2 N º

is called a mapping class group representation on .A; ˛; !/ if it satisfies the fol-

lowing properties: The map �i;j is MCG.†i t †j ;Pi;j /-equivariant and ıi;j

is MCG.†iCj ; si /-equivariant. Furthermore, �jAi
D �.�i /, and the representa-

tions �i satisfy the following conditions:

(1) �1.t1/.w/ D w and �1.�m/.w/ D w,

(2) � ı �1.t1/ D � and � ı �1.�l / D �,

(3) ˛iC1 ı �iC1.LiC1/ ı !i D !i�1 ı ˛i for i > 1,

(4) ˛nC1 ı �nC1.�nC1;i / ı !n D �i;n�i ı ıi;n�i for n 2 N and 0 � i � n,

where w D ˛1.1/ and � D � ı ˛1 are as in Lemma 5.9, and

� �i is �-rotation of the standard †i in R3 with center at
N
0 about the z-axis,

� t1 is �-rotation of the standard torus in R3 about the x-axis,

� �m, �l 2 Diff.T 2/ are right-handed Dehn twists about the meridian and

longitude, respectively,

� Li 2Diff.†i / swaps li and li�1 counterclockwise, andL
li ;li�1

i 2Diff0.†i�2/,

� �nC1;i D anC1 ı hnC1;i 2 Diff.†nC1/, where anC1 is the identity on the

component of†nC1nsn containing pnC1, and it satisfies anC1.mnC1/ D lnC1

and anC1.lnC1/ D �mnC1, while hnC1;i 2 Diff.†nC1/ swaps mnC1 and

si#mnC1 for some connected sum arc, and .hnC1;i /
mnC1;si #mnC1 is isotopic

to the identity. For more detail, see the proof of Proposition 5.16 and Figure 4.
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Figure 4. Given a TQFT, this figure illustrated why the condition ˛nC1 ı �nC1.�nC1;i / ı
!n D �i;n�i ı ıi;n�i holds. Note that both  and �si are isotopic to Id†n

.

Definition 5.14. A J-algebra is a four-tuple

.A; ˛; !; ¹�iW i 2 Nº/;

where .A; ˛; !/ is a split GNF�-algebra and ¹�i W i 2 Nº is a mapping class group

representation on it.

Definition 5.15. A homomorphism between two J-algebras is a homomorphism

of the underlying split GNF�-algebras that intertwines the mapping class group

representations. The direct sum of two J-algebras is the direct sum of the under-

lying split involutive GNF�-algebras, together with the direct sum of the mapping

class group representations. Then J-algebras together with such homomorphisms

form a symmetric monoidal category that we denote J-Alg.

Proposition 5.16. Let F W Cob2 ! VectF be a TQFT. Then the tuple

J.F / D .A; ˛; !; ¹�i W i 2 Nº/

defined in Section 5.2 is a J-algebra.
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Proof. By Proposition 5.5, the tuple .A; ˛; !/ is a split GNF�-algebra. We

now show that ¹�i W i 2 Nº is a mapping class group representation on it. It

follows from Lemma 2.6 that the map ˛g is MCG.†g ; lg/-equivariant, ıi;j is

MCG.†iCj ; si /-equivariant, �i;j is MCG.†i t†j ;Pi;j /-equivariant, and finally,

!g is MCG.†g ;Pg/-equivariant (see Definition 5.12).

The equation �1.t1/.w/ D w is equivalent to �1.t1/ ı !0 D !0. Let t0 be �-

rotation of †0 about the x-axis. This satisfies t1 D .t0/
P0 , t0 ı P0 D xP0, and is

isotopic to Id†0
. Hence, if we apply relation (2) of Definition 1.4, naturality of the

surgery maps, to t0 and P0, then we obtain that

�1.t1/ ı !0 D F†0;xP0
ı �0.t0/ D !0;

as F†0;xP0
D F†0;P0

D !0 by relation (5) of Definition 1.4.

Similarly, �1.�m/.w/ D w is equivalent to �1.�m/ ı!0 D !0. This holds since

we can apply the MCG.†0;P0/-equivariance of !0 to the diffeomorphism d that

is a Dehn twist on †0 about a circle that separates the two points of P0, which is

isotopic to the identity in MCG.†0/ (but not in MCG.†0;P0/), and because dP0

is isotopic to �m.

The equation � ı �1.t1/ D � is equivalent to ˛1 ı �1.t1/ D ˛1. This, in turn,

follows from relations (2) and (5) of Definition 1.4 applied to t1 and l , as .t1/
l D t0

is isotopic to Id†0
. Similarly, � ı �1.�l / D � is equivalent to ˛1 ı �1.�l / D ˛1,

which follows from the MCG.†1; l1/-equivariance of ˛1 applied to �l .

Now consider the condition ˛iC1 ı �iC1.LiC1/ ı !i D !i�1 ı ˛i . Relation (3)

of Definition 1.4 for †i with S D li and S0 D Pi yields

F†i .S/;S
0 ı F†i ;S D F†iC1;S ı F†i ;S

0 :

Under the identification †i .li / � †i�1, the framed sphere Pi becomes Pi�1,

giving F†i .S/;S
0 ı F†i ;S D !i�1 ı ˛i . To compute F†iC1;S, we apply the nat-

urality relation (2) to the diffeomorphism LiC1W†iC1 ! †iC1 and the framed

sphere li . As LiC1.li / D liC1 and .LiC1/
li is isotopic to Id†i

after the nat-

ural identifications †iC1.li / � †i and †iC1.liC1/ � †i , we obtain that

F†iC1;li D ˛iC1 ı �iC1.LiC1/. So

F†iC1;S ı F†i ;S
0 D ˛iC1 ı �iC1.LiC1/ ı !i :

Finally, we prove that ˛nC1 ı �nC1.�nC1;i / ı !n D �i;n�i ı ıi;n�i holds for

every n 2 N and 0 � i � n. This also follows from relation (3), applied to †n

with S D si , and S0 D P being a framed pair of points in †n such that there is

exactly one point of Pn on each side of si very close to it. Then

FM.S/;S0 ı FM;S D F†n.si /;P ı F†n;si D �i;n�i ı ıi;n�i ;
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where we identify †n.si ;P/ with †n as in Figure 4; i.e., the connected sum tube

along si between the i-th and .i C 1/-st S1�S1 summand of†n is mapped to the

D1 � S1 glued during the surgery along P.

Consider now

FM.S0/;S ı FM;S0 D F†n.P/;si ı F†n;P:

To compute F†n;P, we need to identify the pair .†n;P/ with the model framed

pair of points .†n;Pn/. Let 2 Diff.†n/ be such that �1 maps P to Pn, and acts

via a finger move on si . In particular,  �1 is isotopic to Id†n
. The identification

between †n.Pn/ and †nC1 defined in Section 5.1 maps  �1.si / to the connected

sum si#mnC1, where the connected sum depends on the choice of finger move. If

we apply relation (2) of Definition 1.4 to †n, P, and  �1, then we obtain that

F†n;P D  Pn
� ı !n ı  �1

� D  Pn
� ı !n

as  �1
� D IdF .†n/ since  �1 2 Diff0.†n/; see the left-hand square in Figure 4.

To compute F†n.P/;si , we identify the pair .†n.P/; si / with the model non-

separating framed circle .†nC1; lnC1/. Consider the framed pairs of points b.lnC1/

in †nC1.lnC1/ � †n and b.si / in †n.P; si/ � †n. By the homogeneity of †n,

there is a diffeomorphism �0 2 Diff0.†n/ such that �0 ı b.si / D b.lnC1/, and

let � WD �
b.si /
0 . Then �.si / D lnC1 and �si D �0 is isotopic to Id†n

. Hence, by

relation (2),

F†n.P/;si D .�si /�1� ı ˛nC1 ı �� D ˛nC1 ı ��I
see the bottom square in Figure 4. Consequently,

F†n.P/;si ı F†n;P D ˛nC1 ı �� ı  Pn
� ı !n:

What remains is to show that �nC1;i D � ı  Pn . Note that

� D anC1 ı . Pn/�1 ı hb.P/;si ;

where hb.P/;si swaps the curves b.P/ and si , and .hb.P/;si /
b.P/;si is isotopic to the

identity of †i t†n�i . Hence

� ı  Pn D anC1 ı . Pn/�1 ı hb.P/;si ı  Pn :

The conjugate d WD . Pn/�1 ı hb.P/;si ı Pn swaps the curves . Pn/�1.b.P// D
mnC1 and . Pn/�1.si / D si#mnC1, and dmnC1;si #mnC1 is isotopic to the identity

of †nC1.mnC1; si#mnC1/, hence d D hnC1;i . It follows that

� ı  Pn D anC1 ı hnC1;i D �nC1;i :

This concludes the proof of Proposition 5.16. �
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A mapping class group representation on a split GNF�-algebra automatically

satisfies some additional relations that we will need in the classification of (2+1)-

dimensional TQFTs:

Lemma 5.17. Let �i WMi ! Aut.Ai / be a mapping class group representation on
the split GNF�-algebra .A; ˛; !/. Then the map ˛i is MCG.†i ; li/-equivariant,
!i is MCG.†i ;Pi/-equivariant, and

(1) �iC1.tiC1/ ı !i D !i ,

(2) ˛i ı �.ri/ D ˛i ,

(3) �iC2.SiC2/ ı !iC1 ı !i D !iC1 ı !i for i 2 N,

(4) ˛i�1 ı ˛i ı �i.Li / D ˛i�1 ı ˛i for i > 0,

(5) �nC1.hnC1;i/ ı !n ı �i;j D !n ı �i;j for 0 � i � n,

(6) ıi;j ı ˛n ı �n.un;i / D ıi;j ı ˛n,
(7) ˛2 ı �2.L2/ ı !1 D !0 ı ˛1,

where n D i C j , and

� ti.mi / D �mi , and tmi

i 2 Diff0.†i�1/,

� ri.li / D �li , and .ri/li 2 Diff0.†i�1/.

� SiC2 2 Diff.†iC2/ swaps miC1 and miC2, and S
miC1;miC2

iC2 2 Diff0.†i/,

� un;i 2 Diff.†n/ swaps si#ln and ln, and .un;i /
si #ln;ln is isotopic to the

identity.

Proof. The MCG.†iC1; miC1/-equivariance of !i is equivalent to

�1.�m/.w/ D w

from condition (1) of Definition 5.13, where �m 2 Diff.†1/ is a right-handed Dehn

twist about the meridian m1. This follows from the MCG.†i t†1;Pi;1/-equiva-

riance of �i;1 and the fact that !i .x/ D �i;1.x ˝ w/. Indeed, for an arbitrary

diffeomorphism d 2 Diff.†iC1; miC1/, we have dmiC1 2 Diff.†i ;Pi/. The

MCG.†iC1; miC1/-equivariance of !i translates to

�iC1.d/ ı �i;1.x ˝ w/ D �i;1.�i .d
miC1/.x/˝ w/: (5.9)

But d fixes the isotopy class of si , and we can isotope it in Diff.†iC1; miC1/

such that d.si / D si as framed spheres. Then d si is isotopic to �km in the torus

component of†iC1.si / containingmiC1 for some k 2 Z, and is isotopic to dmiC1



294 A. Juhász

in the other component. By the MCG.†i t†1;Pi;1/-equivariance of �i;1, we get

that

�iC1.d/ ı �i;1.x ˝ w/ D �i;1.�i .d
miC1/.x/˝ �1.�

k
m/.w//: (5.10)

Comparing equations (5.9) and (5.10), we obtain that

�i;1.�i .d
miC1/.x/˝ �1.�

k
m/.w// D �i;1.�i .d

miC1/.x/˝ w/:

If we consider this for i D 0, x D 1 2 A0, and d D �m 2 Diff.†1/, then k D 1,

and we obtain that �1.�m/.w/ D w. In the opposite direction, �1.�m/.w/ D w and

equation (5.10) together imply equation (5.9).

Similarly, the MCG.†i ; li /-equivariance of ˛i is equivalent to

� ı �1.�l / D �

from condition (2) of Definition 5.13, where �l 2 Diff.†1/ is a right-handed Dehn

twist about the longitude l1. This follows from the MCG.†iCj ; si /-equivariance

of ıi;j , together with the fact that

˛i D .IdAi�1
˝ �/ ı ıi�1;1:

Now consider property (1); i.e.,

�iC1.tiC1/ ı !i D !i ;

where tiC1.miC1/ D �miC1 and t
miC1

iC1 2 Diff0.†i /. Since tiC1 fixes si and t
si
iC1

is isotopic to Id†i
t t1, we can apply the MCG.†i t†1;Pi;1/-equivariance of �i;1

to obtain

�iC1.tiC1/ ı !i .x/ D �iC1.tiC1/ ı �i;1.x ˝ w/ D �i;1.x ˝ �1.t1/.w//:

In particular, property (1) is equivalent to

�i;1.x ˝ �1.t1/.w// D �i;1.x ˝ w/

for every i 2 N and x 2 Ai . In particular, if we take i D 0 and x D 1, we obtain

�1.t1/.w/ D w (5.11)

from condition (1) of Definition 5.13, and this is clearly also sufficient, hence

equivalent to property (1).
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Now look at property (2); i.e,

˛i ı �.ri/ D ˛i ;

where ri .li / D �li and r
li
i 2 Diff0.†i�1/. By Lemma 5.9, this is equivalent to

.IdAi�1
˝ �/ ı ıi�1;1 ı �i .ri/ D .IdAi�1

˝ �/ ı ıi�1;1:

Using the MCG.†i ; si�1/-equivariance of ıi�1;1 and that r
si�1

i � Id†i�1
tr1, this

is further equivalent to

.IdAi�1
˝ .� ı �1.r1/// ı ıi�1;1 D .IdAi�1

˝ �/ ı ıi�1;1:

Notice that r1 D t1. If we set i D 1 and apply � ˝ IdA1
to both sides, we obtain

the necessary and sufficient condition

� ı �1.t1/ D � (5.12)

from condition (2) of Definition 5.13.

Next, consider property (3); i.e.,

�iC2.SiC2/ ı !iC1 ı !i D !iC1 ı !i ;

where SiC2 swaps miC1 and miC2, and S
miC1;miC2

iC2 2 Diff0.†i /. By Lemma 5.9

and the associativity of �, this is equivalent to

�iC2.SiC2/ ı �iC1;1.�i;1.x ˝ w/˝ w/ D �iC2.SiC2/ ı �i;2.x ˝ �1;1.w ˝ w//

D �i;2.x ˝ �1;1.w ˝ w//

for every x 2 Ai . Since �i;2 is MCG.†i t†2;Pi;2/-equivariant and SiC2 fixes si

as a framed sphere, in fact, S
si
iC2 D Id†i

t S2, this condition can be expressed as

�i;2.x ˝ �2.S2/ ı �1;1.w ˝ w// D �i;2.x ˝ �1;1.w ˝ w//

for every i 2 N and x 2 Ai . In particular, if we set i D 0 and x D 1, we obtain

the necessary and sufficient condition

�2.S2/ ı �1;1.w ˝ w/ D �1;1.w ˝ w/:

Now consider the diffeomorphism d WD �2 ıS2 ı �2. This swaps the meridians m0

and m1 of †2, but fixes m2, hence lies in Diff.†2; m2/. Furthermore, dm2 is

isotopic to the automorphism t1 of the torus, and we have �1.t1/.w/ D w by

condition (1) of Definition 5.13. Hence,

�2.d/ ı !1.w/ D !1.�1.t1/.w// D !1.w/ D �1;1.w ˝ w/:
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On the other hand, �2.d/ D �2 ı�2.S2/ı�2, hence the left-hand side of the above

equation is �2 ı �2.S2/ ı �2 ı !1.w/: But �1 D IdA1
since �1 is isotopic to IdT 2 ,

hence

�2 ı !1.w/ D �2 ı �1;1.w ˝ w/ D �1;1.w
� ˝ w�/ D �1;1.w ˝ w/:

It follows that

�2.S2/ ı �1;1.w ˝ w/ D �2 ı �1;1.w ˝ w/ D �1;1.w ˝ w/;

establishing property (3).

Similarly, we can prove property (4); i.e.,

˛i�1 ı ˛i ı �i .Li / D ˛i�1 ı ˛i ;

where Li swaps li�1 and li , and L
li�1;li
i 2 Diff0.†i�2/. By the coassociativity

of ı, and since ıi�2;2 is MCG.†i ; si�2/-equivariant and L
si�2

i D Id†i�2
tL2, the

left-hand side is

.IdAi�2
˝ �/ ı ıi�2;1 ı .IdAi�1

˝ �/ ı ıi�1;1 ı �i .Li /

D .IdAi�2
˝ �/ ı .IdAi�2

˝ IdA1
˝ �/ ı .ıi�2;1 ˝ IdA1

/ ı ıi�1;1 ı �i.Li /

D .IdAi�2
˝ �˝ �/ ı .IdAi�2

˝ ı1;1/ ı ıi�2;2 ı �i .Li/

D .IdAi�2
˝ �˝ �/ ı .IdAi�2

˝ ı1;1/ ı .IdAi�2
˝ �2.L2// ı ıi�2;2:

Since L2 is isotopic to �2, we have �2.L2/ D �2, and property (4) is equivalent to

.IdAi�2
˝ �˝ �/ ı .IdAi�2

˝ ı1;1/ ı .IdAi�2
˝ �2/ ı ıi�2;2

D .IdAi�2
˝ �˝ �/ ı .IdAi�2

˝ ı1;1/ ı ıi�2;2:

In particular, if we set i D 2 and apply �˝ IdA2
to both sides, we get the necessary

and sufficient condition

.�˝ �/ ı ı1;1 ı �2 D .�˝ �/ ı ı1;1:

However, since ı1;1 ı �2 D T ı ı1;1, and because �1 D IdA1
as �1 is isotopic to the

identity, the above equation automatically follows from the GNF�-algebra axioms,

and from the MCG.†i ; si�2/-equivariance of ıi�2;2.

We now prove property (5); i.e,

�nC1.hnC1;i / ı !n ı �i;j .x ˝ y/ D !n ı �i;j .x ˝ y/;

where hnC1;i swaps si#mnC1 with mnC1, and hsi #mnC1;mnC1 is isotopic to the
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identity. Using our formula for !n, the above equation becomes equivalent to

�nC1.hnC1;i / ı �n;1.�i;j .x ˝ y/˝ w/ D �n;1.�i;j .x ˝ y/˝ w/:

As hnC1;i fixes si and h
si
nC1;i D Id†i

thjC1;0, using the associativity of � and the

MCG.†nC1; si /-equivariance of �i;jC1, this is further equivalent to

�i;jC1.x ˝ �jC1.hjC1;0/ ı �j;1.y ˝ w// D �i;jC1.x ˝ �j;1.y ˝ w//:

As s0#mjC1 is isotopic to mjC1, the diffeomorphism hjC1;0 is isotopic to the

identity, so property (5) follows.

Property (6) is dual to property (5). It states that

ıi;j ı ˛n ı �n.un;i / D ıi;j ı ˛n;

where un;i 2 Diff.†n/ swaps si#ln and ln, and usi #ln;ln is isotopic to the identity.

Using the coassociativity of ı, the left-hand side becomes

ıi;j ı .IdAiCj
˝ �/ ı ıiCj;1 ı �n.un;i /

D .IdAi
˝ IdAj

˝ �/ ı .ıi;j ˝ IdA1
/ ı ıiCj;1 ı �n.un;i /

D .IdAi
˝ IdAj

˝ �/ ı .IdAi
˝ ıj;1/ ı ıi;jC1 ı �n.un;i /:

Note that un;i fixes si and u
si
n;i D Id†i

t ujC1;0. Since ıi;jC1 is MCG.†nC1; si /-

equivariant, the left-hand side of equation (6) further equals

.IdAi
˝ IdAj

˝ �/ ı .IdAi
˝ ıj;1 ı �jC1.ujC1;0// ı ıi;jC1

D .IdAi
˝ Œ j̨C1 ı �jC1.ujC1;0//�/ ı ıi;jC1:

But s0#ln is isotopic to ln, hence ujC1;0 is isotopic to the identity. Analogously,

the right-hand side of equation (6) is

.IdAi
˝ j̨C1/ ı ıi;jC1;

and so equation (6) follows.

Finally, consider property (7). More generally, consider

˛iC1 ı �iC1.LiC1/ ı !i D !i�1 ı ˛i :

We first remark that if we apply ˛i to both sides, the resulting equation follows

from property (4) and the split GNF�-algebra axioms. Secondly, we prove that
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this automatically holds on Im.�i�1;1/, and hence for i D 1. Indeed, suppose that

x D �i�1;1.a ˝ b/. Then

˛iC1 ı �iC1.LiC1/ ı !i .x/ D ˛iC1 ı �i�1;2.a˝ �2.L2/ ı �1;1.b ˝ w//

D ˛iC1 ı �i�1;2.a ˝ �1;1.w ˝ b//

D .IdAi
˝ �/ ı ıi;1 ı �i�1;2.a˝ �1;1.w ˝ b//

D .IdAi
˝ �/ ı .�i�1;1 ˝ IdA1

/ ı .IdAi�1
˝ ı1;1/.a˝ �1;1.w ˝ b//

D .�i�1;1 ˝ �/ ı .a˝ Œı1;1 ı �1;1.w ˝ b/�/

D .�i�1;1 ˝ �/ ı .a˝ Œ.�1;0 ˝ IdA1
/ ı .IdA1

˝ ı0;1/.w ˝ b/�/

D .�i�1;1 ˝ �/.a˝ �1;0.w ˝ b.1//˝ b.2//

D �.b.2//.a �w � b.1//:

Here we used that �i�1;2 is MCG.†i�1 t †2;Pi�1;2/-equivariant, L
si�1

iC1 D
Id†i�1

t L2, that �2.L2/ D �2, and the Frobenius condition twice. Furthermore,

ı0;1.b/ D b.1/ ˝ b.2/ in sumless Sweedler notation, and � stands for the algebra

multiplication �. On the other hand, the right-hand side of equation (7) becomes

!i�1 ı ˛i ı �i�1;1.a ˝ b/

D !i�1 ı .IdAi�1
˝ �/ ı ıi�1;1 ı �i�1;1.a ˝ b/

D !i�1 ı .IdAi�1
˝ �/ ı .�i�1;0 ˝ IdA1

/ ı .IdAi�1
˝ ı0;1/.a˝ b/

D !i�1 ı .�i�1;0 ˝ �/.a˝ ı0;1.b//

D Œ.�i�1;0 ˝ �/.a˝ b.1/ ˝ b.2//� �w

D �.b.2//.a � b.1/ �w/:

The claim follows once we observe that b.1/ �w 2 A1, hence b.1/ �w D .b.1/ �w/� D
w� � b�

.1/
D w � b.1/ since �0 D IdA0

and �1 D IdA1
. �

6. The classification of (2+1)-dimensional TQFTs

Both (2+1)-dimensional TQFTs and J-algebras form symmetric monoidal cate-

gories, with morphisms the monoidal natural transformations. Durhuus and Jon-

sson [9] defined the notion of direct sum of TQFTs. Given .n C 1/-dimensional

TQFTs F1 and F2, they let

.F1 ˚ F2/.M/ D F1.M/˚ F2.M/
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for every connected n-manifold M , while in general .F1 ˚ F2/.M/ is the tensor

product of the vector spaces assigned to the components of M . To a connected

cobordismW , they assign the direct sum F1.W /˚F2.W /, and to a disconnected

cobordism the tensor product of the values of the components.

In this section, we shall prove the following classification of (2+1)-dimensional

TQFTs, which is Theorem 1.10 from the introduction.

Theorem. There is an equivalence between the symmetric monoidal category of
(2+1)-dimensional TQFTs and J-Alg.

In Section 5.2, we saw how to assign a J-algebra J.F / to a TQFT F . Now

suppose that we are given a J-algebra A D .A; ˛; !; ¹�i W i 2 Nº/. Then we asso-

ciate to it a TQFT F WD T .A/ as follows. By Theorem 1.8, it suffices to construct

a symmetric monoidal functor F W Man2 ! Vect and maps FM;S for any framed

sphere S in a surfaceM . The following constructions are all determined by the nat-

urality of the TQFT under diffeomorphisms. After constructing the groups F.M/

and the surgery maps FM;S, we check what algebraic properties relations (1)–(5)

of Definition 1.4 translate to.

First, we construct F.M/ for a surface M with k components of genera g1 >

� � � > gr with multiplicities n1; : : : ; nr , respectively. In particular, n1C � � �Cnr D
k, and we denote the vector

.g1; : : : ; g1
„ ƒ‚ …

n1

; : : : ; gr ; : : : ; gr
„ ƒ‚ …

nr

/

of genera by
N
g. Let

†
N
g D

r
a

iD1

nia

jD1

†gi
:

We follow the same scheme of Kan extension as one dimension lower in Section 4.

In particular, let

A
N
g D A˝n1

g1
˝ � � � ˝ A˝nr

gr
;

and F.M/ is defined to be the set of those elements v of

Y

�2Diff.†
N
g;M/

A
N
g

for which

v.�0/ D ..�0/�1 ı �/ � v.�/



300 A. Juhász

for every �, �0 2 Diff.†;M/. Note that here .�0/�1 ı � 2 Diff.†
N
g/, which acts

on A
N
g via the representations �i and permuting the factors with the same genus.

More precisely, the action of Diff.†
N
g/ on A

N
g factors through the action of

MCG.†
N
g/ Š

r
Y

iD1

Mgi
Wr¹1;:::;ni º Sni

;

where Wr denotes the unrestricted wreath product, the group Mgi
acts on Agi

via �gi
, while Sni

permutes the factors of A
˝ni
gi

.

Suppose that M and M 0 are diffeomorphic surfaces; i.e., they have the same

number of components k with genera gi D g0
i and multiplicities ni D n0

i for

every i 2 ¹1; : : : ; rº, and let d 2 Diff.M;M 0/. Given an element v 2 F.M/ and

� 2 Diff.†
N
g ;M/, we let

ŒF.d/.v/�.d ı �/ D v.�/: (6.1)

If M and N are surfaces of diffeomorphism types †
N
g and †

N
h, respectively,

then we define the natural isomorphism

ˆM;N WF.M/˝ F.N/ �! F.M tN/

as follows. Let � 2 MCG.†
N
g ;M/ and  2 MCG.†

N
h; N /. We let

N
g t

N
h

be the vector obtained by putting the coordinates of
N
g and

N
h in nonincreasing

order. Then †
N
g t †

N
h is of diffeomorphism type †

N
gt

N
h. The diffeomorphism

�� 2 MCG.†
N
gt

N
h;M t N/ is defined as follows. If g is a coordinate of

N
g

of multiplicity m and of
N
h of multiplicity n, then for .x; i/ 2 †g � ¹1; : : : ; mº

we let .�� /.x; i/ D �.x; i/, and for .x; j / 2 †g � ¹mC 1; : : : ; mC lº we have

.�� /.x; j / D  .x; j�m/. There is an analogous isomorphism i
N
g;

N
hWA

N
g˝A

N
h !

A
N
gt

N
h. If a 2 F.M/ and b 2 F.N/, then we letˆM;N .a˝b/ D atb 2 F.M tN/

where

.a t b/.�� / D i
N
g;

N
h.a.�/˝ b. // 2 A

N
gt

N
h:

We leave it to the reader to check that the assignment F W Man2 ! VectF defined

above is a symmetric monoidal functor.

We now define the surgery maps FM;S for a surface M of diffeomorphism

type †
N
g , equipped with a framed sphere S � M .

First, suppose that S D 0; then M.S/ D M t S2. If M is of diffeomorphism

type †
N
g , then M.S/ is of type †.

N
g;0/, where .

N
g; 0/ is

N
g with an extra 0 at the

end. Let i
N
g;0W†.

N
g;0/ ! †

N
g t S2 be the natural identification that maps the last

component of †.
N
g;0/ to S2. Given � 2 Diff.†

N
g ;M/, let

�0 D .� t IdS2/ ı i
N
g;0 2 Diff.†.

N
g;0/;M.S//:
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For v 2 F.M/, we let

FM;0.v/.�0/ D v.�/˝ 1 2 A
N
g ˝ A0;

where 1 2 A0 is the image of 1 2 F under the map ". The element FM;0.v/ is

independent of the choice of �.

Now suppose that SWS2 ,! M is a framed 2-sphere with image S � M .

Then M.S/ D M n S . Choose a parametrization � 2 Diff.†
N
g ;M/ such that

�j†gr �¹nr º D S, and let �S D �j†
N
g0 , where

N
g0 D

N
g n ¹.gr ; nr/º. Consider the map

t
N
g WA

N
g �! A

N
g0

defined on monomials by

t
N
g.v1 ˝ � � � ˝ vk/ D �.vk/ � v1 ˝ � � � ˝ vk�1;

and extend it linearly. For v 2 F.M/, let

FM;S.v/.�S/ D t
N
g.v.�//:

Again, this is well-defined; i.e., independent of the choice of �.

Assume that S D ¹s�; sCº is a framed 0-sphere. If s� and sC lie in different

components M� and MC of M of genera ga and gb, respectively, then let

q� D .qga
; na/ 2 †� WD †ga

� ¹naº;
and

pC D .pgb
; nb/ 2 †C WD †gb

� ¹nbº:

Choose a parametrization � 2 Diff.†
N
g ;M/ such that �.q�/ D s� and �.pC/ D

sC, and such that � preserves the framings. Let†
N
g.q�; pC/ be the result of surgery

along the 0-sphere ¹q�; pCº. If na;b is the multiplicity of ga C gb in
N
g, then we

can identify †
N
g.q�; pC/ with the canonical surface †

N
g0 for

N
g0 D

N
g n ¹.ga; na/; .gb; nb/º [ ¹.ga C gb; na;b C 1/º:

There is an induced parametrization �SW†
N
g.q�; pC/ D †

N
g0 ! M.S/ that is the

connected sum .�j†�/#.�j†C/ on †�#†C, and agrees with � on all the other

components. If v 2 F.M/ is an element such that v.�/ is a monomial

˝r
iD1 ˝ni

jD1 v.i;j /;

the integer n0
i is the multiplicity of gi in

N
g0 for i 2 ¹1; : : : ; r 0º, and c is such that

g0
c D ga C gb, then we define FM;S.v/.�S/ as

.˝c�1
iD1 ˝n0

i

jD1 v.i;j //˝ .˝nc

jD1v.c;j / ˝ �ga;gb
.v.a;na/ ˝ v.b;nb///

˝ .˝r 0

iDcC1 ˝n0
i

jD1 v.i;j //:
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In other words, we omit v.a;na/ and v.b;nb/ from v.�/, and insert their �ga;gb
-

product in position n0
1 C � � � C n0

c . The element FM;S.v/ defined above is indepen-

dent of the choice of � since �ga;gb
is MCG.†ga

t†gb
;Pga;gb

/-equivariant.

If s� and sC lie in the same component Ms of M , then let ga D g.Ms/. Con-

sider the framed 0-sphereP D Pga
�¹naº � †ga

�¹naº, and choose a parametriza-

tion � 2 Diff.†
N
g ;M/ such that � ı P D S. The surgered manifold M.S/ is dif-

feomorphic to †
N
g.P/, which in turn can be canonically identified with †

N
g0 for

N
g0

obtained from
N
g by removing a copy of ga and inserting gaC1. The identification

of †
N
g.P/ � †

N
g0 is obtained by applying the identification †g˛

.Pg˛
/ � †g˛C1

defined in Section 5.1 to the n˛-th component of †
N
g and the identity to all the

other components. By surgery, we obtain the parametrization

�S WD �PW†
N
g0 � †

N
g.P/ �! M.S/:

Given an element v 2 F.M/ such that v.�/ D ˝r
iD1 ˝ni

jD1 v.i;j /, the ele-

ment FM;S.v/.�S/ is obtained by applying !ga
to vga;na

. The element FM;S.v/

is independent of the choice of � since !ga
is MCG.†ga

;Pga
/-equivariant by

Lemma 5.17.

Now suppose that S is a framed 1-sphere in M , lying in a component Ms of

genus ga 2
N
g. If S is non-separating, consider the curve l D lga

� ¹naº � †
N
g .

Then there is a diffeomorphism �W†
N
g ! M such that � ı l D S. This is possible

since any two non-separating simple closed curves on a connected surface are

ambient diffeomorphic (indeed, both †ga
n lga

and †s n S are connected, twice

punctured, genus ga � 1 surfaces, hence they are diffeomorphic). We obtain
N
g0 by

removing a copy of ga and replacing it by ga � 1. The surgered manifold M.S/ is

diffeomorphic to †
N
g .l/, which is canonically identified with †

N
g0 by applying the

identification†g˛
.lg˛

/ � †g˛�1 defined in Section 5.1 to the n˛-th component of

†
N
g and the identity to all the other components. Then let

�S WD �l W†
N
g0 � †

N
g.l/ �! M.S/:

If v 2 F.M/ is such that v.�/ is of the form ˝r
iD1 ˝ni

jD1 v.i;j /, then we obtain

FM;S.v/.�S/ by applying ˛ga
to the factor vga;na

. The map FM;S is independent

of the choice of � since ˛ga
is MCG.†ga

; lga
/-equivariant by Lemma 5.17.

Finally, suppose that S separates Ms into pieces of genera g� on the negative

side and gC on the positive side (in particular, ga D g�CgC). Consider the framed

circle c D sg� � ¹naº � †
N
g � ¹naº. Then there is a diffeomorphism �W†

N
g ! M

such that � ı c D S. Let
N
g0 be the vector obtained from

N
g by removing ga

and inserting g� and gC to keep the sequence of coordinates decreasing. There

is a canonical diffeomorphism dc W†
N
g.c/ ! †

N
g0 that maps the components of
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.†ga
� ¹naº/.c/ to the last components of †

N
g of genera g� and gC, respectively.

If g� D gC, then we map the part coming from the negative side of c as the second

to last such component, and the part coming from the positive side of c as the last

component of the appropriate genus. We define the map

�S WD �c ı .dc/�1W†
N
g0 �! M.S/:

If v.�/ is of the form ˝r
iD1 ˝ni

jD1 v.i;j /, then FM;S.v/.�S/ is obtained by applying

the map ıg�;gC to vga;na
, and then permuting the factors according to the diffeo-

morphism dc . In this case, FM;S.v/ is independent of the choice of � since ıg�;gC

is MCG.†ga
; sg�/-equivariant.

This concludes the construction of the vector spaces F.M/ and maps FM;S.

By Theorem 1.8, these completely determine the (2+1)-dimensional TQFT F ,

assuming they satisfy relations (1)–(5) of Definition 1.4. We check these next.

Proposition 6.1. Let A be a J-algebra. Then the functor

F D T .A/W Man2 �! Vect

and the maps FM;S constructed above satisfy relations (1)–(5) of Definition 1.4

and diagram (1.2).

Proof. Relation (1) follows analogously to the (1+1)-dimensional case and the fact

that the Diff.†g/-action onAg factors through a MCG.†g/-action, and it does not

impose any additional algebraic restrictions.

Relation (2) also follows analogously to the (1+1)-dimensional case, and re-

quires no additional assumptions. As an illustration, we check relation (2) whenM

is a connected surface of genus g, and S is a non-separating 1-sphere. In particular,

N
g D .g/. Choose a parametrization � 2 Diff.†g ;M/ for which � ı lg D S, and

let �S 2 Diff.†g�1;M.S// be the induced parametrization. Let d WM ! M 0 be a

diffeomorphism, S0 D d ı S, and choose an element v 2 F.M/. Then v.�/ 2 Ag ,

and, by equation (6.1) defining F.dS/, we have

ŒF.dS/ ı FM;S.v/�.dS ı �S/ D FM;S.v/.�S/ D ˛g.v.�// 2 Ag�1:

On the other hand,

ŒFM 0;S0 ı F.d/.v/�..d ı �/S0
/ D ˛g.ŒF.d/.v/�.d ı �// D ˛g .v.�//:

The result follows once we observe that dS ı �S D .d ı �/S0
.

Now consider relation (3). In particular, let S and S0 be disjoint framed spheres

in the surface M . The roles of S and S0 are symmetric, and – as in the (1+1)-

dimensional case – it is straightforward to check the relation when S D 0 or S is a
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framed 2-sphere. This leaves us with three cases depending on the dimensions of

the two spheres.

First, suppose that both S and S0 are framed 0-spheres. Relation (3) is true if

they occupy distinct components of M . There are four remaining subcases:

(1) S and S0 occupy the same componentMs of M ,

(2) S intersects both Ms and another componentM 0
s, and S0 lies in M 0

s ,

(3) both S and S0 intersect two components that coincide, namely Ms and M 0
s ,

(4) S intersects two components Ms and M 0
s , while S0 intersects M 0

s and M 00
s .

Consider case (1). Without loss of generality, we can assume that M is

connected, as we can deal with multiple components similarly to the (1+1)-

dimensional case. Let C D b.S/ and C 0 D b.S0/. Choose parameterizations

�; �0 2 Diff.†gC2;M.S; S
0//

such that �.mgC1/ D C , �.mgC2/ D C 0, �0.mgC1/ D C 0, �0.mgC2/ D C , and

such that WD �mgC1;mgC2 and 0 WD .�0/mgC1;mgC2 are isotopic in Diff.†g ;M/.

Furthermore, let v 2 F.M/. Note that  S;S0 D �, hence

FM.S/;S0 ı FM;S.v/.�/ D !gC1 ı FM;S.v/. S/ D !gC1 ı !g.v. //:

Similarly, . 0/S0;S D �0, hence

FM.S0/;S ı FM;S0.v/.�0/ D !gC1 ı !g.v. 0//:

Since  and  0 are isotopic, v. / D v. 0/. Finally,

FM.S0/;S ı FM;S0.v/.�0/ D �gC2..�
0/�1 ı �/ ı FM.S0/;S ı FM;S0.v/.�/:

As v is an arbitrary element of F.M/, it follows that v.�/ is an arbitrary element

ofAg . Furthermore, d D .�0/�1ı� is an automorphism of†gC2 that swapsmgC1

and mgC2, and for which dmgC1;mgC2 is isotopic to Id†g
. Hence, relation (3)

holds in case (1) if and only if for some diffeomorphism d 2 Diff.†gC2/ that

swapsmgC1 andmgC2, and for which dmgC1;mgC2 2 Diff.†g/ is isotopic to Id†g
,

the automorphism �gC2.d/ of AgC2 is the identity on Im.!gC1 ı !g/; i.e.,

�gC2.d/ ı !gC1 ı !g D !gC1 ı !g :

This holds by part (3) of Lemma 5.17.

Now consider case (2). Again, without loss of generality, assume that M has

only two components, namely Ms of genus g and M 0
s of genus g0. Furthermore,

by relation (5), which we will check later, we can replace S by xS if necessary to
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ensure that S.�1; 0/ 2 Ms and S.1; 0/ 2 M 0
s . Similarly to the previous case, one

can deduce that commutativity of the two surgery maps holds if and only if

�g;g0C1 ı .IdAg
˝ !g0/ D !gCg0 ı �g;g0 ;

which is true by equation (5.6) of Lemma 5.4.

Case (3) is similar to case (1). Without loss of generality, we can assume

that M consists of only two components of genera g and g0, respectively. Let s

be an arbitrary curve on †gCg0C1 that becomes isotopic to sg after doing surgery

along m WD mgCg0C1; we can obtain s by taking the connected sum sg#mgCg0C1

along any path. Let C D b.S/ and C 0 D b.S0/. Then there is a diffeomorphism

� 2 Diff.†gC2;M.S; S
0// such that �.s/ D C and �.m/ D C 0. As s is isotopic

to sg in M.m/, we can canonically identify M.m; s/ with †g t†g0 , and we let

 WD �m;s 2 Diff.†g t†g0 ;M/:

By construction,  .Pg;g0/ D S and �m.PgCg0/ D S0, hence  S;S0 D �. There

exists a diffeomorphism h 2 Diff.†gCg0C1/ such that h.s/ D m and h.m/ D s,

and such that hm;s is isotopic to the identity. Then we set �0 WD � ı h�1; this

satisfies �0.s/ D C 0 and �0.m/ D C . Again, if  0 D .�0/m;s , then �0 D . 0/S0;S.

For any v 2 F.M/, we have

FM.S/;S0 ı FM;S.v/.�/ D !gCg0 ı FM;S.v/. S/ D !gC1 ı �gCg0.v. //;

and

FM.S0/;S ı FM;S0.v/.�0/ D !gCg0 ı �gCg0.v. 0//:

Since hm;s is isotopic to the identity,  and  0 are isotopic, hence v. / D v. 0/.

Furthermore,

FM.S0/;S ı FM;S0.v/.�0/ D �gCg0C1..�
0/�1 ı �/ ı FM.S0/;S ı FM;S0.v/.�/;

and .�0/�1 ı � D h. Hence, in this case, relation (3) translates to

�gCg0C1.h/ ı !gCg0 ı �g;g0 D !gCg0 ı �g;g0 (6.2)

for some diffeomorphism h 2 Diff.†gCg0C1/ that swaps the curves sg#mgCg0C1

and mgCg0C1, and such that hmgCg0C1;sg#mgCg0C1 is isotopic to the identity. This

holds by part (5) of Lemma 5.17.

Finally, in case (4), we obtain the associativity relation

�gCg0;g00 ı .�g;g0 ˝ IdAg00 / D �g;g0Cg00 ı .IdAg
˝ �g0;g00/;

which follows from equation (5.1) of Lemma 5.4.
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We now study relation (3) when both S and S0 are framed 1-spheres. This is

straightforward if S and S0 occupy different components of M . Hence, without

loss of generality, we can assume that M is connected of genus g. Then we have

the following three cases:

(1) Both S and S0 are non-separating. There are two subcases depending on

whether S [ S0 is separating or not.

(2) S separates M into components of genera j and g � j , and S0 is non-

separating. By relation (5), we can assume that S0 lies on the positive side of

S.

(3) Both S and S0 are separating. By relation (5), we can assume that S0 lies on

the positive side of S, and that S is on the negative side of S0. They divideM

into pieces of genera i , j , and k.

First, consider case (1), and suppose that S [ S0 is non-separating. Then

we can choose parameterizations �, �0 2 Diff.†g ;M/ for which �.lg/ D S,

�.lg�1/ D S0, �0.lg/ D S0, and �0.lg�1/ D S, and such that �lg;lg�1 and .�0/lg;lg�1

are isotopic. Furthermore, let v 2 F.M/. Then, by definition,

FM.S/;S0 ı FM;S.v/.�S;S0/ D ˛g�1 ı ˛g.v.�//;

and, symmetrically,

FM.S0/;S ı FM;S0.v/.�0
S0;S/ D ˛g�1 ı ˛g.v.�0//:

Since �S;S0 D �lg;lg�1 and �0
S0;S D .�0/lg ;lg�1 are isotopic, we have

FM.S/;S0 ı FM;S.v/.�S;S0/ D FM.S0/;S ı FM;S0.v/.�0
S0;S/:

Furthermore, v.�0/ D �g..�
0/�1 ı �/.v.�//. Hence relation (3) holds in this case

if and only if for some diffeomorphism d 2 Diff.†g/ that swaps lg and lg�1 and

for which d lg;lg�1 2 Diff0.†g�2/, we have

˛g�1 ı ˛g ı �g.d/ D ˛g�1 ı ˛g :

This is precisely part (4) of Lemma 5.17.

If, in case (1), the union S [ S0 separates M into pieces of genera i and j ,

respectively, then g D i C j C 1. The model case is when M D †g , S D si#lg ,

and S0 D lg . Similarly to equation (6.2), we obtain the relation

ıi;j ı ˛g ı �g.u/ D ıi;j ı ˛g ;

where u 2 Diff.†g/ swaps si#lg and lg , and such that usi #lg ;lg is isotopic to the

identity. This follows from part (6) of Lemma 5.17.
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Now consider case (2). This leads to the relation

ıj;g�j�1 ı ˛g D .IdAj
˝ ˛g�j / ı ıj;g�j ;

which is part of equation (5.6) of Lemma 5.4. Case (3) leads to the coassocitivity

relation

.IdAi
˝ ıj;k/ ı ıi;jCk D .ıi;j ˝ IdAk

/ ı ıiCj;k;

which holds by equation (5.2) of Lemma 5.4.

Finally, we consider relation (3) when S is a framed 0-sphere and S0 is a

framed 1-sphere. Without loss of generality, we can assume that S intersects the

component of M that S0 occupies. Here we distinguish the following cases:

(1) S lies in a single componentMs and S0 � Ms is non-separating.

(2) S lies in a single component Ms and S0 separates Ms into pieces of genera i

and g � i . There are three subcases depending on whether S lies completely

to the left of S0, on both sides, or completely to the right.

(3) S occupies the componentsMs and M 0
s , and S0 � M 0

s is non-separating.

(4) S occupies the componentsMs andM 0
s , and S0 separatesM 0

s into components

of genera i and g0�i . There are two subcases depending on whether the point

of S inM 0
s lies to the left or to the right of S0. By relation (5), we can assume

it lies to the left.

In case (1), without loss of generality, we can assume that M is connected.

Furthermore, by naturality, we can assume that M D †g , S D Pg , and S0 D lg

(or, more precisely, we work with a parametrization � 2 Diff.†g ;M/ such that

�.Pg/ D S and �.lg/ D S0). Let d 2 Diff.†gC1/ be such that d.lg / D lgC1,

and d lg D Id†g
after the natural identifications of †gC1.lg/ and †gC1.lgC1/

with†g . As we already know the surgery maps are natural, the following diagram

is commutative:

F.†gC1/ D AgC1

˛gC1 // F.†g / D Ag

AgC1

F†gC1;lg //

�gC1.d/

OO

F.†gC1.lg// Š Ag :

F .d lg /

OO

By construction, d lg is isotopic to Id†g
, so F.d lg / D IdAg

, and

F†gC1;lg D ˛gC1 ı �gC1.d/:
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Hence, from relation (3), we obtain the condition

!g�1 ı ˛g D ˛gC1 ı �gC1.d/ ı !g ;

where d 2 Diff.†gC1/ is such that d.lg/ D lgC1, and d lg D Diff0.†g/ after

the natural identifications of †gC1.lg/ and †gC1.lgC1/ with †g . Notice that the

diffeomorphism d coincides with LgC1 acting on †gC1 and interchanging lg

and lgC1. Hence, this holds by part (7) of Lemma 5.17 for g D 1, and by

property (3) of Definition 5.13 for g > 1.

In case (2), when S lies to the left of S0, we replace S0 by xS0 and apply

relation (5). The other two cases lead to the relations

ıi;jC1 ı !g D .IdAi
˝ !j / ı ıi;j (6.3a)

and

˛gC1 ı �gC1.�gC1;i / ı !g D �i;g�i ı ıi;g�i : (6.3b)

The first line of equation (6.3) follows from equation (5.6) of Lemma 5.4. The

second equation, which is condition (4) of Definition 5.13, can be derived by

reversing the argument in the proof of Proposition 5.16 showing that this holds

for every J -algebra assigned to a TQFT. Indeed, for the model case when S D P

and S0 D si , see the second surface on the top of Figure 4. In the proof of

Proposition 5.16, we derived the commutativity of the large pentagon from the

commutativity of the upper right square. We now use the reverse implication,

which follows from the commutativity of the other two small squares and the lower

left triangle, which in turn is a consequence of naturality.

In case (3), the necessary and sufficient condition for relation (3) to hold is

˛gCg0 ı �g;g0 D �g;g0�1 ı .IdAg
˝ ˛g0/;

which follows from equation (5.6) of Lemma 5.4. There is a corresponding rela-

tion if S0 lies on the other side of S, but that follows from this one by relation (5).

Finally, in case (4), we obtain

ıgCi;g0�i ı �g;g0 D .�g;i ˝ IdAg0�i
/ ı .IdAg

˝ ıi;g0�i /;

which is the Frobenius condition (5.3) in Lemma 5.4.

We now consider relation (4); i.e., where S0 � M.S/ intersects the belt sphere

of S once. If S D 0 and S0 is a 0-sphere that has one point on the new S2

component and another point on a component of M of genus g, then we can

assume S0.�1; 0/ 2 S2 by relation (5). This leads to the relation

�0;g ı ."˝ IdAg
/ D IdAg

I
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i.e, that 1 D ".1/ is a left unit for �. If S is a 0-sphere, it has to lie in a single

component of M . Then we obtain the relation

˛gC1 ı !g D IdAg
;

which is equation (5.5) of Lemma 5.4. If S is a 1-sphere, then it has to be

inessential, and S0 is the 2-sphere split off by S. By relation (5), we can assume

this 2-sphere lies on the negative side of S. We obtain the relation

.� ˝ IdAg
/ ı ı0;g D IdAg

;

which holds since � is a left counit for the coproduct ı.

Finally, consider relation (5). Think of†g as being standardly embedded inR3

with center lying at the origin, and such that the x-axis intersects it in the points pg

and qg . Let �g 2 Diff.†g/ be the involution of †g that is a �-rotation about the

z-axis and swaps the i-th and .g � i/-th S1 � S2 factor of †g . The z-axis passes

through sg=2 if g is even, and through the hole of the .gC1/=2-th S1�S2 summand

when g is odd. This has the property that �g .si / D sg�i for every i 2 ¹ 0; : : : ; g º.
First, suppose that S is a 0-sphere that occupies two components of M . Then

the model scenario is M D †i t †j and S D Pi;j . Let � W†i t †j ! †j t †i
be the diffeomorphism that swaps the two components of †i t †j , then acts via

�i t �j . Then �.xPi;j / D Pj;i and �
xS D �iCj . Hence, using that FM;S D FM;xS and

the naturality of the surgery maps, relation (5) amounts to the relation

�.�iCj / ı �i;j .x ˝ y/ D �j;i .�j .�j /.y/˝ �i .�i /.x//

for every x 2 Ai and y 2 Aj . As x� D �.�i /.x/ for every i 2 Z�0 and x 2 Ai , we

can rewrite this relation as

�iCj .x; y/
� D �j;i.y

� ˝ x�/;

which is equation (5.4) of Lemma 5.4.

Now consider the case when S is a 0-sphere in a single component ofM . Then

the model case isM D †g and S D Pg . Let tg 2 Diff.†g/ be the diffeomorphism

that is characterized by tg.mg/ D �mg and t
mg
g 2 Diff0.†g�1/. Then relation (5)

in this case is equivalent to the relation

�gC1.tgC1/ ı !g D !g ;

which is part (1) of Lemma 5.17.
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Applied to separating 1-spheres, we obtain the relation

Ti;j ı ıi;j .x/ D ıj;i .x
�/;

where Ti;j WAi ˝ Aj ! Aj ˝ Ai is given by Ti;j .v ˝ w/ D w� ˝ v�. This is part

of equation (5.4) of Lemma 5.4

When S is a non-separating 1-sphere, we obtain that

˛g D ˛g ı �.rg/;

where rg 2 Diff.†g/ is characterized by rg.lg / D �lg and .rg/
lg 2 Diff0.†g�1/.

This is precisely part (2) of Lemma 5.17. �

Proof of Theorem 1.10. By Proposition 5.16, for every (2+1)-dimensional TQFTF ,

the tuple J.F / defined in Section 5.2 is a J-algebra. Conversely, Proposition 6.1

ensures that, given a J-algebra A, the associated functor T .A/ is a TQFT. Both

of these assignments are functorial: Given a natural transformation �WF ) F 0 of

TQFTs, the maps �†i
WF.†i / ! F 0.†i/ form a J-algebra homomorphism

J.�/W J.F / �! J.F 0/:

Conversely, a J-algebra homomorphism hWA ! A0 extends to a natural isomor-

phism T .h/WT .A/ ) T .A0/ in a straightforward manner. Indeed, for a surfaceM

of diffeomorphism type †
N
g , we obtain T .h/M WT .A/.M/ ! T .A0/.M/ by map-

ping the factor A
N
g of T .A/.M/ corresponding to � 2 Diff.†

N
g ;M/ to the factor

A0

N
g of T .A0/.M/ corresponding to the same parametrization � via

h
N
g WD h

˝n1

1 ˝ � � � ˝ h˝nr
r ;

where hi D hjAi
WAi ! A0

i .

We finally show that the functors J ı T and T ı J are naturally isomorphic

to the identity. Let A D .A; ˛; !; ¹�i W i 2 Nº/ be a J-algebra. Then the J-algebra

J ıT .A/ in grading g is given by T .A/.†g/. This is a subset of
Q

d2Diff.†g ;†g/
Ag ,

and projecting it onto the Id†g
factor gives a natural isomorphism to Ag .

Now consider T ı J . Let F W Cob2 ! Vect be a TQFT, and let A D J.F /

be the corresponding J-algebra. We are going to construct a monoidal natural

isomorphism �WT ı J ) Id. In particular, we define

�F WT ı J.F / D T .A/ �! F;

which is itself is a monoidal natural isomorphism. IfM is a surface, then we need

to give an isomorphism

�F;M WT .A/.M/ �! F.M/:
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Pick a parametrization � 2 Diff.†
N
g ;M/; then this induces an isomorphism

F.�/WF.†
N
g / �! F.M/:

The monoidal structure of F gives an isomorphism ˆ
N
g WA

N
g ! F.†

N
g /, as A D

J.F / and hence Ai D F.†i / for every i 2 N. If

p� W
Y

 2Diff.†
N
g;M/

A
N
g �! A

N
g

is the projection onto the � factor, then it restricts to an isomorphism

p� jT .A/.M/WT .A/.M/ �! A
N
g :

Finally, we set

�F;M WD F.�/ ıˆ
N
g ı p� jT .A/.M/:

We leave it to the reader to check that this is independent of the choice of �, that

�F is indeed a monoidal natural isomorphism, and that � is a monoidal natural

isomorphism from T ı J to the identity. �

7. Examples and applications

Dijkgraaf [8] noted that if F is an .nC 1/-dimensional TQFT, then F.Sn/ carries

the structure of a commutative Frobenius algebra that acts onF.M/ for every con-

nected n-manifold M . We say that F is based on the Frobenius algebra F.Sn/.

Sawin [32, Theorem 1] proved the following result about direct sum decomposi-

tions of TQFTs.

Proposition 7.1. Suppose the TQFT F is based on a direct sum A D A1 ˚ A2

of Frobenius algebras. Then there exist TQFTs F1 and F2, based on A1 and A2,
respectively, such that F Š F1˚F2. Conversely, if F decomposes as a direct sum
of TQFTs, then the associated Frobenius algebra decomposes as a corresponding
direct sum of Frobenius algebras.

He also gave a classification of indecomposable commutative Frobenius alge-

bras over an algebraically closed field F. For each � 2 F�, let S� be the algebra F

with counit �.x/ D ��1x. Also, let A be a commutative algebra spanned by the

identity and at least one nilpotent, and suppose the socle, the space of all x 2 A

such that ax D 0 for all nilpotent a 2 A, is one-dimensional. Let � be any linear

functional on A which is non-zero on the socle. We denote by NA;� the algebra A

together with the functional � . The following is [32, Proposition 2].
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Proposition 7.2. S� and NA;� are indecomposable Frobenius algebras. Further,
every commutative indecomposable Frobenius algebra is isomorphic to one of
these, and these are nonisomorphic up to algebra isomorphism.

We now turn our attention to (2+1)-dimensional TQFTs. By Proposition 7.1,

it suffices to focus on irreducible theories as every TQFT is a direct sum of

these. An important class of (2+1)-dimensional TQFTs are ones that extend to

one-manifolds, these are called (1+1+1)-dimensional TQFTs. Bartlett et. al [2],

[3] showed that (1+1+1)-dimensional TQFTs correspond to anomaly free modu-

lar tensor categories. Given an anomaly free modular tensor category, they also

describe how to obtain F.†g / by taking the vector space generated by string dia-

grams inside the handlebody bounded by†g in R3 and labeled by simple objects,

modulo equivalence relations in the category. They give the action of elemen-

tary cobordisms as well. This is essentially the construction of Reshetikhin and

Turaev [31]. It is a fundamental open question whether every (2+1)-dimensional

TQFT F comes from a (1+1+1)-dimensional theory. If it does and if F is irre-

ducible, then dimF.S2/ D 1, so it has to be based on one of the Frobenius alge-

bras S� according to Proposition 7.2.

Consider condition (4) of Definition 5.13 for n D 0 and i D 0:

˛1 ı �1.�1;0/ ı !0 D �0;0 ı ı0;0: (7.1)

The diffeomorphism �1;0 D a1 ıH1;0 2 Diff.T 2/ induces the S -matrix

�
0 �1
1 0

�

on H1.T
2/ in the basis hm; li since h1;0 is isotopic to the identity. If �1.�1;0/ D

IdA1
, then the left-hand side of equation (7.1) becomes ˛1ı!0 D IdA0

. This means

that �0;0 ı ı0;0 D IdA0
; i.e., that the Frobenius algebra A0 is special. The only

special Frobenius algebra among S� and NA;� is S0. So, if the (2+1)-dimensional

TQFT satisfies �1.�1;0/ D IdA1
, then it is based on the direct sum of finitely many

copies of S0, and is based on S0 if it is indecomposable.

Example 7.3. Consider the GNF�-algebra A D .A; �; ı; "; �; �/, where .A; �/ is

the polynomial algebra FŒx� with grading Ai D Fhxi i, coproduct

ı.xn/ D
n

X

iD0

xi ˝ xn�i ;

unit " D IdFWF ! A0, partial counit � D IdFWA0 ! F, and involution � D IdA.
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We define the modular splitting .˛; !/ by taking ˛.xi / D xi�1 for i > 0 and

˛.1/ D 0, and ! is multiplication by x. If we define each �i WMi ! End.Ai / to be

trivial, then this satisfies all the properties of a mapping class group representation.

Hence, this data gives rise to a (2+1)-dimensional TQFT F1. This assigns F to any

surface, and the identity morphism to any cobordism between two surfaces, under

the identifications F˝k Š F.

Lemma 7.4. Let .A; ˛; !/ be a split GNF�algebra with a mapping class group
representation such that �i WMi ! Ai is trivial for some i 2 N. Then �j is also
trivial for every j < i .

Proof. It suffices to show that �i�1 is also trivial. Pick an arbitrary diffeomor-

phism d 2 Diff.†i�1/. We isotope d such that it fixes the disk bounded by the

curve si�1 � †i�1, and let di 2 Diff.†i / be the diffeomorphism of†i that agrees

with d to the left of the curve si�1 � †i , and is the identity to the right of si�1.

Then, by the MCG.†i�1 t †i ;Pi�1;1/-equivariance of �i�1;1, and since �i is

trivial, we have

�i�1;1.�i�1.d/.x/˝ w/ D �i .di /.�i�1;1.x ˝ w// D �i�1;1.x ˝ w/

for every x 2 Ai�1. It follows that

!i�1
�

.�i�1.d/ � IdAi�1
/.x/

�

D �i�1;1
�

.�i�1.d/ � IdAi�1
/.x/˝ w

�

D 0

for every x 2 Ai�1. As !i�1 is injective, this implies that �i�1.d/ D IdAi�1
. �

Proposition 7.5. Let .A; ˛; !/ be a split GNF�-algebra over C such that

dimAi < 2i

for some i > 2. Then �j is trivial for every j � i . Hence, if dimAi < 2i for
infinitely many i 2 N, then every mapping class group representation on A is
trivial.

Proof. Franks and Handel [10] proved that any representation of Mi in GL.n;C/

is trivial assuming that i > 2 and n < 2i . The result now follows from

Lemma 7.4. �

Proposition 7.6. Let F W Cob2 ! VectC be a TQFT such that F.†/ Š C for every
surface †. Then there is a natural isomorphism between F and the TQFT F1
constructed in Example 7.3.
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Proof. Let .A; ˛; !/ be the split GNF�-algebra associated to the TQFT F . By

Proposition 7.5, the mapping class group action is trivial. Since dimAi D 1

for every i 2 N, the map !i is a bijection for every i 2 N. As ! is given by

right-multiplication with an element w 2 A1, it follows that A Š CŒx�, where

the isomorphism maps wn 2 An to xn. From the formula ˛iC1 ı !i D IdAi
,

we obtain that ˛iC1 D !�1
i ; i.e., ˛iC1.w

iC1/ D wi . Since � is associative,

�i;j .w
i ˝ wj / D wiCj . By condition (4) of Definition 5.13, and since �nC1 is

trivial,

�i;n�i ı ıi;n�i D ˛nC1 ı �nC1.�nC1;i / ı !n D IdAn
:

It follows that ıi;n�i D .�i;n�i/
�1WAn ! Ai ˝ An�i ; hence, ıi;n�i.w

n/ D
wi˝wn�i . Finally, since .�˝IdA0

/ıı0;0.1/ D �.1/ D 1, we have � D IdC. So the

GNF�-algebra .A; ˛; !/ is isomorphic to the GNF�-algebra CŒx� of Example 7.3.

It follows that F is isomorphic to F1. �

Proposition 7.7. Let F W Cob2 ! VectC be a TQFT, and suppose that there is
a number n 2 N such that dimF.†/ D n for every connected surface †. Then
there is a natural isomorphism between F and .F1/˚n, where F1 is the TQFT
constructed in Example 7.3.

Proof. By Proposition 7.5, the mapping class group representation corresponding

to F is trivial in every genus. In particular, �1.�1;0/ D IdA1
, and hence, by

equation (7.1), the commutative Frobenius algebra A0 is special, and so it is

a direct sum of finitely many copies of S0. By Proposition 7.1, the TQFT F

splits as a direct sum Z1 ˚ � � � ˚ Zn of TQFTs, each based on S0. In particular,

dimZi .S
2/ D 1, and so, by the injectivity of the map !, we have dimZi .†g/ � 1

for every i 2 ¹ 1; : : : ; n º. Since

n
X

iD1

dimZ.†g / D F.†g / D n;

we must have dimZi .†g/ D 1 for every i 2 ¹ 1; : : : ; n º. So Proposition 7.6

implies that Zi Š F1 for every i 2 ¹ 1; : : : ; n º, hence F Š .F1/
˚n. �

Example 7.8. This is an extension of Example 7.3, and gives an explicit descrip-

tion of the split GNF�-algebra associated to the TQFT .F1/
˚n appearing in Propo-

sition 7.7. Let .A0; �; ı; "; �/ be a commutative special Frobenius algebra over a

field F, where by special we mean that�ıı D IdA0
. We know from above that this

is a direct sum of copies of S0 if F is algebraically closed. Then we can associate

to A0 a split GNF�-algebra

A D A.A0/ D .A; �i;j ; ıi;j ; "; �; �; ˛i; !i/
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with a trivial mapping class group action, as follows. Let A D A0˝FŒx� with the

grading Ai D A0 ˝ Fhxi i for i 2 N, where we identify A0 with A0 ˝ Fh1i. For

elements a, b 2 A0, we define

�i;j .ax
i ˝ bxj / D abxiCj ;

where ab stands for �.a˝ b/. This product is clearly associative.

For a 2 A, let ı.a/ D a.1/˝a.2/ in sumless Sweedler notation. Then we define

ıi;j .ax
iCj / D a.1/x

i ˝ a.2/x
j :

We now show ıi;j is coassociative. The coassociativity of ı in Sweedler notation

can be written as

a.1/ ˝ a.2/.1/ ˝ a.2/.2/ D a.1/.1/ ˝ a.1/.2/ ˝ a.2/:

Then we have

.IdAi
˝ ıj;k/ ı ıi;jCk.ax

iCjCk/ D .IdAi
˝ ıj;k/.a.1/x

i ˝ a.2/x
jCk/

D a.1/x
i ˝ a.2/.1/x

j ˝ a.2/.2/x
k

D a.1/.1/x
i ˝ a.1/.2/x

j ˝ a.2/x
k

D .ıi;j ˝ IdAk
/.a.1/x

iCj ˝ a.2/x
k/

D .ıi;j ˝ IdAk
/ ı ıiCj;k.axiCjCk/:

The unit "WF ! A0 of A is defined to be the unit of the Frobenius algebra A0.

Indeed, if ".1/ D 1 2 A0, then 1 � x0 is a unit of A as �0;i.1 � x0 ˝ axi / D axi .

The counit � WA0 ! F of the Frobenius algebra A0 will be the partial left counit

of our GNF�-algebra A. More precisely, we set �.ax0/ D �.a/. Indeed, we have

�.a.1/ ˝ a.2// D �.a.1//a.2/ D a;

hence

.� ˝ IdAj
/ ı ı0;j .axj / D .� ˝ IdAj

/.a.1/x
0 ˝ a.2/x

j /

D �.a.1//a.2/x
j

D axj :

The Frobenius condition for A0 can be written as

.ab/.1/ ˝ .ab/.2/ D ab.1/ ˝ b.2/:
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This implies the Frobenius condition for A, as

.�i;j ˝ IdAk
/ ı .IdAi

˝ ıj;k/.ax
i ˝ bxjCk/

D .�i;j ˝ IdAk
/.axi ˝ b.1/x

j ˝ b.2/x
k/

D ab.1/x
iCj ˝ b.2/x

k

D .ab/.1/x
iCj ˝ .ab/.2/x

k

D ıiCj;k.abx
iCjCk/

D ıiCj;k ı �i;jCk.ax
i ˝ bxjCk/:

We define the involution � to be the identity; then this is an anti-automorphism

since A0 is commutative. Indeed,

.axi � bxj /� D abxiCj D baxjCi D .bxj /� � .axi /�;

and similarly for the coproduct.

The modular splitting is defined by the formulas !.axi / D axiC1 for i 2 N

and ˛.axi / D axi�1 for i > 0 and ˛.ax0/ D 0. These satisfy the necessary

conditions as

ıi;j�1 ı ˛iCj .axiCj / D ıi;j�1.ax
iCj�1/

D a.1/x
i ˝ a.2/x

j�1

D .IdAi
˝ j̨ / ı ıi;j .axiCj /;

and similarly,

ıi;jC1 ı !iCj .axiCj / D a.1/x
i ˝ a.2/x

jC1

D .IdAi
˝ !j / ı ıi;j .axiCj /:

Finally, we show that the trivial mapping class group representation satisfies

the required properties. Except for the following two, all properties of a mapping

class group representation trivially hold. Condition (3) of Definition 5.13 translates

to

˛iC1 ı !i D !i�1 ı ˛i :

Indeed,

˛iC1 ı !i .axi / D ˛iC1.ax
iC1/

D axi

D !i�1.ax
i�1/

D !i�1 ı ˛i .axi /:
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To check condition (4), observe that the left-hand side equals ˛nC1 ı !n D IdAn
.

Furthermore,

�i;n�i ı ıi;n�i.ax
n/ D �i;n�i.a.1/x

i ˝ a.2/x
n�i /

D a.1/a.2/x
n

D � ı ı.a/xn

D axn;

where, in the last step, we used that the Frobenius algebra A0 is special.

In summary, if one would like to find a (2+1)-dimensional TQFT F over C

that does not extend to a (1+1+1)-dimensional one by constructing an irreducible

TQFT that is based on one of the nilpotent Frobenius algebras HA;� , then one

must have F.†g / � 2g with a non-trivial mapping class group action for each

g > 0. Otherwise, the commutative Frobenius algebra F.S2/ will be irreducible

and special, and hence isomorphic to S1.

In contrast, as stated in Proposition 1.1, there are 22
!

pairwise non-equivalent

(2+1)-dimensional oriented lax-monoidal TQFTs over C that do not extend to

(1+1+1)-dimensional TQFTs. We now prove this claim.

Proof of Proposition 1.1. According to Funar [11, p. 410], a C-valued homeo-

morphism invariant f of oriented 3-manifolds is multiplicative if f .M#N/ D
f .M/f .N/ for any pair of oriented 3-manifolds .M;N/, where # denotes the

connected sum, f .�M/ D f .M/, and f .S3/ D 1. By [11, Corollary 2.9] (cf. [36,

Theorem 4.4]), any multiplicative invariant canonically extends to a (2+1)-dimen-

sional lax monoidal TQFT. On the other hand, Funar [12, Corollary 1.1] con-

structed manifolds N and N 0 such that, for any modular tensor category C , their

Reshetikhin–Turaev invariants agree:

RTC .N / D RTC .N
0/:

By the work of Bartlett, Douglas, Schommer-Pries, and Vicary [3], every (1+1+1)-

dimensional TQFT is of the form RTC for some anomaly free modular tensor cat-

egory C . It follows thatN andN 0 cannot be distinguished by (1+1+1)-dimensional

TQFTs.

Let ¹Mi W i 2 Nº be an enumeration of all prime oriented 3-manifolds such that

M0; : : : ;Mn are the prime components of N t N 0 without multiplicity, and let

p0; : : : ; pn be distinct prime numbers. Then we define f .S3/ D 1 and f .Mi / D pi

for every i 2 ¹0; : : : ; nº, and f .Mi / is an arbitrary complex number for i > n.

As 3-manifolds have unique prime decompositions, f uniquely extends to a
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multiplicative invariant of 3-manifolds. Since N and N 0 are not homeomorphic,

they have distinct prime components, and so f .N/ ¤ f .N 0/ as they have different

prime factorizations. It follows that the TQFT arising from such an f is not

(1+1+1)-dimensional. We have 2! different choices for f .Mi / for every i > n,

giving rise to 22
!

different multiplicative invariants f , each distinguishing N

and N 0.

Alternatively, by the work of Bruillard, Ng, Rowell, and Wang [5, Theo-

rem 3.1], there are only countably many modular tensor categories up to equiv-

alence, while there are 22
!

multiplicative 3-manifold invariants, so, with count-

ably many exceptions, a (2+1)-dimensional lax monoidal TQFTs is not (1+1+1)-

dimensional. �
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