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Defining and classifying TQFTs via surgery

Andras Juhasz!

Abstract. We give a presentation of the n-dimensional oriented cobordism category Cob,,
with generators corresponding to diffeomorphisms and surgeries along framed spheres, and
a complete set of relations. Hence, given a functor F from the category of smooth oriented
manifolds and diffeomorphisms to an arbitrary category C, and morphisms induced by
surgeries along framed spheres, we obtain a necessary and sufficient set of relations these
have to satisfy to extend to a functor from Cob,, to C. If C is symmetric and monoidal,
then we also characterize when the extension is a TQFT.

This framework is well-suited to defining natural cobordism maps in Heegaard Floer
homology. It also allows us to give a short proof of the classical correspondence between
(1+1)-dimensional TQFTs and commutative Frobenius algebras. Finally, we use it to
classify (2+1)-dimensional TQFTs in terms of J-algebras, a new algebraic structure that
consists of a split graded involutive nearly Frobenius algebra endowed with a certain
mapping class group representation. This solves a long-standing open problem. As a
corollary, we obtain a structure theorem for (2+1)-dimensional TQFTs that assign a vector
space of the same dimension to every connected surface. We also note that there are 22
nonequivalent lax monoidal TQFTs over C that do not extend to (1+1+1)-dimensional ones.
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1. Introduction

Let Man,, be the category whose objects are closed oriented n-manifolds and
whose morphisms are orientation preserving diffeomorphisms, and let Cob,, be
the category of closed oriented n-manifolds and equivalence classes of oriented
cobordisms. Furthermore, Cob; is the subcategory of Cob,, that does not contain
the empty n-manifold, and such that each component of every cobordism has a
non-empty incoming and outgoing end. We denote by Cob? the full subcategory
of Cob), consisting of connected objects (and hence connected cobordisms). Fi-
nally, BSut’ is the category of balanced sutured manifolds and special cobordisms
that are trivial along the boundary; see [15, Definition 5.1]. We denote by Vect the
category of finite-dimensional vector spaces over some field .

In physics, topological quantum field theories (in short, TQFTs) were intro-
duced by Witten [38]. Inspired by Segal’s axioms proposed for conformal field
theories [34], they were first axiomatized by Atiyah [1]. In the more recent termi-
nology of Blanchet and Turaev [4], an (n + 1)-dimensional TQFT is a symmetric
monoidal functor from the category Cob,, to Vect; see Definition 2.5. More gen-
erally, the target category could be any symmetric monoidal category. For the
necessary category theoretical background, we refer the reader to the books of
Mac Lane [22] and Kock [18]. Throughout this paper, all manifolds are smooth
and oriented and all diffeomorphisms are orientation preserving, unless otherwise
stated, though the methods easily generalize to unoriented manifolds.

It is a classical result that (1+1)-dimensional TQFTs correspond to commu-
tative Frobenius algebras. This statement dates back to the birth of the subject,
but completely rigorous proofs are more recent; see the book of Kock [18] that
also discusses the history of this problem. Fully extended (n + 1)-dimensional
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TQFTs constitute a constrained subclass of (n 4+ 1)-dimensional TQFTs, that as-
sign invariants to all oriented manifolds with corners up to dimension n + 1.
These were completely classified by Lurie [21] via proving the “cobordism hy-
pothesis” conjectured by Baez and Dolan. Based on the work of Reshetikhin and
Turaev [36], Bartlett, Douglas, Schommer-Pries, and Vicary [2], [3] classified
3-dimensional oriented TQFTSs extended down to 1-manifolds, which are called
(1+1+41)-dimensional or 1-2-3 TQFTs, in terms of anomaly free modular tensor
categories. This is a restricted subclass of all lax monoidal (2+1)-dimensional
TQFTs according to the following observation that we will prove at the end of
Section 7. (Recall that a TQFT F: Cob, — Vect is lax monoidal if the compar-
ison morphisms &4, p: F(A) ® F(B) — F(A U B) are not necessarily invertible
for surfaces A and B.)

Proposition 1.1. Over C, there exist 22 pairwise non-equivalent (2 + 1)-dimen-
sional oriented lax monoidal TQFTs that do not extend to (1 + 1+ 1)-dimensional
TOFTS.

Our first main result is a presentation of the n-dimensional oriented cobordism
category in terms of generators corresponding to diffeomorphisms and surgeries
along framed spheres, and a complete set of relations. We state the necessary
definitions first.

Definition 1.2. Let M be an oriented n-manifold. For k € {0, ..., n}, a framed k-
sphere in M is an orientation reversing embedding $: S¥ x D"~* < M. Then we
can perform surgery on M along S by removing the interior of the image of S and
gluing in D**1 x §7"=%=1 via §| g« , gn—k—1; after smoothing the corners we obtain
the surgered manifold M ($). We consider two additional types of framed spheres,
namely S = 0 and 5 = @. For S = 0, which we think of as the framed attaching
sphere of a 0-handle, we let M(0) = M U S”. For 5 = 0, we let M(9) = M. We
write

W(S) = (M x I) Ug (D¥+! x D"F)

for the trace of the surgery, where W(0) = (M x I) U D" ' and W(@) = M x I.
Then W(S) is a cobordism from M to M(S). We denote by a($) = S(S¥ x {0}) C
M the attaching sphere and by b(S) = {0} x S*7*=1 c M(S) the belt sphere of
the handle attached along S.

If $: S* x D"* < M is a framed k-sphere for k < n, then let $ be the framed
sphere defined by

S(x. ) = Sk41(). ra—k ().
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where x € S¥ ¢ R¥*!,y € D" % c R"*, and
Fm(X1, X2, ..., Xm) = (=X1, X2, ..., Xm).

Definition 1.3. Let G,, be the directed graph obtained from the category Man,, by
adding an edge eps,g from M to M (S) for every pair (M, S), where M is an oriented
n-manifold and S is a framed sphere inside M. For clarity, we will sometimes
write ey for the edge from M to N corresponding to a diffeomorphismd: M — N.
Then Man,, is a subgraph of G,,. We denote by F(G,) the free category generated
by G,.

Let G, be the subgraph of G, obtained by removing the empty n-manifold,
and edges eprs such that § = 0 or a framed n-sphere. Furthermore, G0 is the
full subgraph of G/, spanned by connected objects. Finally, the vertices of G*
are balanced sutured manifolds, and the edges are diffeomorphisms and surgeries
along framed 0O-, 1-, and 2-spheres in the interior of a balanced sutured manifold.

Definition 1.4. We now define a set of relations R in F(G,,); these can be though of
as 2-cells attached to G,,. If w and w’ are words consisting of composing arrows,
then we write w ~ w’ if w(w’)™! € R.

(1) Firstly, egoqr ~ eq o ey for diffeomorphisms d and d’ that compose. We
have epr,g ~ Idys, and if d € Diffo(M), then ey ~ Iday.

(2) Given an orientation preserving diffeomorphism d: M — M’ between n-
manifolds and a framed sphere $ C M, let$’ = d oS, and let d%: M(S) —
M’(S') be the induced diffeomorphism. Then the following diagram is
commutative:

M M5 M(s)

L

eM/!S/

ML s,

(3) If M is an oriented n-manifold and $ and S’ are disjoint framed spheres in M,
then M(S)($') = M(S')(S); we denote this manifold by M (S, $’). Then the
following diagram is commutative:

eM.s

M

M(S)

eM’S/ eM(S).S/

eM(S).$
_—

M(S) M, 9).
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(4) If $' € M(S) and the attaching sphere a(%’) intersects the belt sphere b(S)
once transversely, then there is a diffeomorphism ¢: M — M(S)(S) (which
is defined in Definition 2.17; it is the identity on M N M($)($') and is unique
up to isotopy), for which

eM(®%),$ °CeMs ~ ¢P.

(5) Finally, em,s ~ €p 5.

We can define a set of relations R® in F(5°) analogously.

Having defined the relations R, we can take the quotient category F(G,)/R.
This is a symmetric monoidal category when equipped with the disjoint union
operation.

Definition 1.5. Let ¢: G, — Cob,, be the graph morphism that is the identity on
the vertices, assigns the cylindrical cobordism ¢4 to a diffeomorphism d as in
Definition 2.3, and assigns the elementary cobordism W (S) to the edge epr,s. This
extends to a symmetric strict monoidal functor c¢: F(G,) — Cob,,. Similarly, we
can define a symmetric monoidal functor ¢*: F(3*) — BSut'.

Remark 1.6. Note that this is not an embedding as, for example, c¢; = ¢4 if and
only if d and d’ are pseudo-isotopic diffeomorphisms; see [24, Theorem 1.9].

In our first main result, we give a presentation of Cob,, where the genera-
tors are diffeomorphisms and surgery morphisms, and the relations are given in
Definition 1.4.

Theorem 1.7. The functor c: F(G,) — Cob, descends to a functor
F(Gn)/R —> Cob,

that is an isomorphism of symmetric monoidal categories.

By slight abuse of notation, we will also denote the functor ¥(G,)/R — Cob,
by c. Then c restricted to F(S,,)/R is an isomorphism onto Cob, and c restricted
to F(S%)/R is an isomorphism onto Cobg. Finally, ¢*: F(3°) — BSut’ descends
to a functor F(G*)/RS — BSut’ that is an isomorphism of symmetric monoidal
categories.

Gay, Wehrheim, and Woodward [13], [37] introduced the notion of Cerf de-
composition to construct TQFTs by assigning maps to elementary cobordisms.
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They showed that any two decompositions of a cobordism into elementary pieces
can be related by a short list of moves. An elementary cobordism is one that admits
a Morse function with at most one interior critical point. Every cobordism can be
decomposed into elementary cobordisms, and two decompositions can be related
by critical point cancelations or creations, critical point reversals, and gluing or
splitting cylinders. This relies on the classification of singularities appearing in
generic 1-parameter families of smooth functions based on Thom transversality,
and is summarised in the work of Cerf [6, pp. 23-24].

However, Cerf decompositions do not keep track of the framed attaching
spheres of the handles in the elementary cobordisms, which feature in the defi-
nition of cobordism maps in Heegaard Floer homology. Furthermore, the moves
are defined on the level of the cobordisms and refer to Morse functions, unlike our
relations in Definition 1.4 for surgeries. Note that the natural definition of Hee-
gaard Floer homology requires taking into account the embedding of the Heegaard
surface into the 3-manifold, hence one has to be particularly careful with various
identifications when defining the cobordism maps; see Section 1.2.

A parameterized Cerf decomposition C of W consists of a decomposition

W =W, U, 1241 U, - Upm,, Wi

into elementary cobordisms W; from M; to M;;, together with framed spheres
$; C M; and diffeomorphisms d;: M;(S;) — M;4+; that extend to the traces of the
surgeries for i € {0, ..., m}; see Definition 2.8 for more detail.

The surjectivity of ¢ onto the morphisms of Cob, means that every cobor-
dism W from M to M’ has a parameterized Cerf decomposition. Indeed, as we
can replace any path of diffeomorphisms with their composition, we can find a
path

€My.So €My.8)

M = My —— My(So) —>M1 —— M;(S1) a4, —>Mm =M

in G, such that
m
W= ([ oems))-
i=0

This is precisely a parameterized Cerf decomposition of W.

A straightforward but very useful consequence of Theorem 1.7 is a simple
and easily applicable framework in all dimensions for constructing all functors
(e.g., TQFTs) from the oriented cobordism category Cob, to an arbitrary target
category C via surgery. This framework is well-suited to the study of Heegaard
Floer homology; see Section 1.2 for more detail. We give a set of necessary and
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sufficient conditions for surgery morphisms to give rise to cobordism morphisms
independent of the surgery description of the cobordism. The big advantage of
considering surgeries as opposed to handle attachments is that, for an (n + 1)-
dimensional TQFT, it suffices to work with n-manifolds and surgeries on these,
without having to consider the (n 4+ 1)-dimensional cobordisms themselves. To
illustrate the power of this approach, we will classify (2+1)-dimensional TQFTs in
terms of a new algebraic structure called J-algebras. According to Segal [35], the
classification problem for TQFTs is one that has been around since the inception
of the subject, and so has been the aim to construct TQFTs via surgery.

Theorem 1.8. Let C be a category. Suppose that we are given a functor
F:Man, — C,

and for every oriented n-manifold M and framed sphere S C M, a morphism
Fys: F(M) — F(M(S)) that satisfy relations (1)—(5) (these are spelled out
explicitly in Section 3). For a parameterized Cerf decomposition C of an oriented
cobordism W, let

F(W.€) = [[(F(di) o Fu,.s,): F(M) — F(M). (1.1)
i=0

Then F(W, C) is independent of the choice of C; we denote it by F(W). Further-
more, F:Cob,, — C is a functor that satisfies F(d) = F(cq) (see Definition 2.3)
and F(W(9)) = Fu s.

In the opposite direction, every functor F: Cob,, — C arises in this way. More
precisely, if we let Fyyg = F(W(S)) and F(d) = F(cg), then these morphisms
satisfy relations (1)—(5), and for any oriented cobordism W, the morphism F(W)
is given by equation (1.1).

Now suppose that (C,®, I¢c) is a symmetric monoidal category. Then the
functor F is a TOFT if and only if F:Man,, — C is symmetric and monoidal,
furthermore, given n-manifolds M and N, and a framed sphere S in M, the
diagram

dym.N

F(M) ® F(N) F(MUN)
lFMl_lN.S (1.2)
Parr(s). N

F(M(S)) ® F(N) 2L p(M(S) U N).

FM,S®IdF(N)l

is commutative, where ®4 p: F(A) ® F(B) — F(A U B) are the comparison
morphisms for F.
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An analogous result holds for Cob),, and we can avoid S = 0 and framed n-
spheres. In the case of Cobg for n > 2, we need to avoid § = 0 and n-spheres,
together with separating (n — 1)-spheres. Finally, for BSut’, we have a similar
result, and we can avoid S = 0 and framed 3-spheres.

Remark 1.9. To illustrate why working with Cerf decompositions without the
parameterization is insufficient to define the cobordism morphism F (W), consider
the simplest possible case when W itself is diffeomorphic to M x I. Then
this is a Cerf decomposition with a single component. Given a diffeomorphism
D:M x 1 — W, letd; = D|yxyy; then it is natural to define F(W) as
F(dyody ). However, D is not unique, and for different choices we only know
that the corresponding d; o d; ! are pseudo-isotopic, not necessarily isotopic, and
hence a priori might induce different homomorphisms via F. To avoid this issue,
we identify each component W; of the Cerf decomposition with a concrete handle
cobordism W (S;), and once we know this induces a TQFT, we obtain as a corollary
that pseudo-isotopic diffeomorphisms induce the same morphism.

When W is cylindrical, one might have to pass through a sequence of moves
between Cerf decompositions to get from one parametrization of W as a prod-
uct to another. For example, by Kwasik and Schultz [20, Corollary], if M is
the connected sum of two metacyclic prism 3-manifolds, then it admits an au-
tomorphism d that is pseudo-isotopic but not isotopic to the identity. Hence
there is a diffeomorphism D: M x I — M x I such that D(x,0) = x and
D(x,1) = (d(x), 1) for every x € M. So, if W is the identity cobordism from M
to M, then W = Wy = M x I with $9 = @ and dy = d is a different parameter-
ized Cerf decomposition than for dy = Idps. The first decomposition arises from
the Morse function f(x,t) = py o D™ '(x,t) on M x I, where p;: M x I — I is
the projection, while the second one from the Morse function p;y. Then f and py
cannot be connected with a family of Morse functions with no critical points, as
otherwise d and Idys would be isotopic.

It might come as a surprise that handleslide invariance does not feature among
the relations in Definition 1.4. This is because the proof of Theorem 1.7 relies on
proper and not self-indexing Morse functions, and a handleslide can be replaced
by moving one of the corresponding critical points to a higher level, isotoping its
framed attaching sphere, then moving it back to the same level. So handleslide
invariance follows from relations (2) and (3).

Segal [35, p. 34] raised a related question on describing TQFTs via surgery in
terms of categories associated to products of spheres (along which the surgered
disks are glued), but this was never completed due to technical difficulties. For a
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related result on 2-framed (2+1)-dimensional TQFTs, see the work of Sawin [33],
where he outlines a Kirby calculus approach. Note that a Kirby calculus approach
to constructing numerical invariants of 3-manifolds was suggested by Reshetikhin
and Turaev in the introduction of [31].

1.1. Applications to the classification of TQFTs. Theorem 1.8 provides a pow-
erful method for classifying TQFTs. As our first application, we give a short, five
pages long proof of the classical theorem that the category of (1+1)-dimensional
oriented TQFTs is equivalent to the category of commutative Frobenius alge-
bras. This also serves as a warmup for the (2+1)-dimensional case: We obtain a
complete classification of (2+1)-dimensional oriented TQFTs with target category
Vect. Specializing to this target allows us to carry out certain computations and
simplifications that are not possible in general symmetric monoidal categories. As
to be expected, the corresponding algebraic structure is more complicated than in
the (1+1)-dimensional case, but surprisingly only moderately, and can probably
be simplified further, which is the subject of future research. For the definition
of split graded involutive nearly Frobenius algebras (or split GNF*-algebras in
short), see Definitions 5.1 and 5.2, and for mapping class group representations
on these, see Definition 5.13. A J-algebra is a split GNF*-algebras endowed with a
mapping class group representation. These form a symmetric monoidal category
that we denote by J-Alg. Similar structures, called weight homogeneous tensor
representations were defined by Funar [11, p. 411], which correspond to certain
lax monoidal (2+1)-dimensional TQFTs. Our second main result is the following,
which answers [25, Problem 8.1].

Theorem 1.10. There is an equivalence between the symmetric monoidal category
of (2+1)-dimensional TQFTs and J-Alg.

Let X, denote a closed oriented surface of genus g. We use Theorem 1.10 to
show that, given a (2+1)-dimensional TQFT F over C such that dim F(Xz) < 2g
for infinitely many g € IN, the action of the mapping class group of ¥; on F(Xg)
is trivial for every k € IN. This implies the following structure theorem, which we
will prove in Proposition 7.7.

Corollary 1.11. Suppose that F is an oriented (2 + 1)-dimensional TQFT over C
such that dim F(X) = n for every connected oriented surface X for some con-
stant n. Then F is naturally isomorphic to the TQFT (Fy)®" given by F{(X) = C
for any surface ¥ and Fi (W) = Idg¢ for any cobordism W (where we identify
C®k with C), and we take the direct sum of TQFTs as defined by Durhuus and
Jonsson [9].
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Example 1.12. To illustrate the non-triviality of this seemingly simple statement
even for n = 1, consider Quinn’s TQFT Q, for some @ € R, restricted to
cobordisms of surfaces [30]. This is defined as Q4 (%) = C for any surface %,
and a cobordism W from X to ¥; induces the map

0a(W)(2) = ei@xW:50);

for any z € Q,(%9) = C. According to Corollary 1.11, this is naturally iso-
morphic to the TQFT F;. Indeed, for a surface X, consider the transformation
Ny(2): F1(X) = Q4 (X) given by

N (2)(z) = ' x®/2;

for z € F;(¥) = C. This is natural since a cobordism W from X, to X satisfies
X(W) = (x(Zo) + x(X1))/2, and hence

X(W, Zo) = (x(Z1) — x(Z0))/2.

Example 1.13. Together with Bartlett, in a forthcoming paper, we will give a non-
trivial example of a functor F: Man, — Vectc together with surgery maps, where
a simple check of the relations of Theorem 1.8 shows that this data gives rise to a
(2+1)-dimensional TQFT. More concretely, let C be a spherical fusion category.
For a surface X, we define F(X) to be the C-vector space generated by string-nets
over C; these are isotopy classes of embedded C-labeled graphs modulo a local
equivalence relation. Given a framed sphere 5 in X, there is a representative of
the string-net in its equivalence class disjoint from it, and performing the surgery
on X along S naturally gives rise to a string-net on X (5).

1.2. Applications to Heegaard Floer homology. We use Theorem 1.8 to con-
struct functorial cobordism maps induced on sutured Floer homology and link
Floer homology, and a splitting of these along Spin® structures using a Spin®
refinement of Theorem 1.8 combined with Kirby calculus [15]. Heegaard Floer
homology will not feature in the rest of the present paper, but as it was a key mo-
tivation for Theorem 1.8, we discuss the relationship below. For further details,
refer to [15].

Heegaard Floer homology, defined by Ozsvath and Szabé [27], [26], consists
of 3-manifold invariants HF*, HF~, HF*, and HF, together with cobordism
maps induced on each, and they admit refinements along Spin® structures. Every
flavor is a type of (3 + 1)-dimensional TQFT, with some caveats such as they are
only defined for connected 3-manifolds and for connected cobordisms between
them, there is no unique way of composing Spin® cobordisms, and to obtain an
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interesting closed 4-manifold invariant (conjectured to coincide with the Seiberg-
Witten invariant), one has to mix the +, —, and oo flavors. In particular, they
are functors from Cobg to the category of Z[U]-modules. Mrowka called such a
theory a “secondary TQFT,” but no precise axioms for these exist to date. Ozsvéth
and Szabé [28] constructed the cobordism maps in Heegaard Floer homology
via composing surgery maps, and to check this is independent of the surgery
description of the cobordism, they used Kirby calculus.

The author noticed that there was a gap in the functorial construction of the
Heegaard Floer invariants due to the lack of connection between the 3-manifold
and the Heegaard diagrams used in their definitions. With Dylan Thurston [16],
we fixed this by considering Heegaard diagrams embedded in the 3-manifold. An
unexpected consequence of this was that HF depends on the choice of a basepoint;
see the work of Zemke [39] for a precise formula describing this dependence.

In light of this, I revisited [15] the construction of the cobordism maps and ex-
tended it to sutured manifold and link cobordisms using Theorem 1.8. A key point
is that one has to keep track of identifications and what happens to the embedding
of the Heegaard diagram while performing the Kirby moves to make the proof
of [28, Theorem 3.8] completely rigorous. For example, see the discussion about
diffeomorphisms induced by handleslides on page 170 of the book of Gompf and
Stipsicz [14].

To get the Spin® refinement, Ozsvéith and Szabé ingeniously attach all 2-
handles simultaneously to circumvent the non-uniqueness of the composition
of Spin® cobordisms, which makes the use of Kirby calculus necessary. They
essentially checked all the necessary invariance properties, modulo the above
mentioned naturality issues due to not keeping track of identifications, and the
sufficiency of these properties is only sketched in the proof of [28, Theorem 3.8].
As it turns out [15], [39], the cobordism maps on HF also depend on an arc
connecting the basepoints, justifying the extra careful approach of this work.

Organization. In Section 2.1, we review cobordism categories and TQFTs. We
define parameterized Cerf decompositions and Morse data in Section 2.2. Lem-
mas 2.15 and 2.16 imply there is an essentially unique correspondence between
the two. We define a set of moves on Morse data in Section 2.3 that arise from
bifurcations in generic 1-parameter families. Furthermore, we translate these to
moves on Cerf decompositions, and show in Theorem 2.24 that any two Morse
data on a cobordism can be connected by a sequence of such moves. We prove
Theorems 1.7 and 1.8 using the machinery of parameterized Cerf decompositions
in Section 3.
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In Section 4, as a warmup, we reprove the classification of (1+1)-dimensional
TQFTs using Theorem 1.8. We explain how to assign a J-algebra to a (2+1)-
dimensional TQFT in Section 5.2. We define split GNF*-algebras in Section 5.3
and mapping class group representations on these in Section 5.4, and study their
algebraic properties. We prove Theorem 1.10 in Section 6, and present some
examples and applications in Section 7.

Acknowledgements. 1 would like to thank Bruce Bartlett, André Henriques,
Oscar Randal-Williams, Graeme Segal, Peter Teichner, and Ulrike Tillmann for
helpful discussions, and the anonymous referees for their constructive suggestions.

2. Parameterized Cerf decompositions

2.1. Cobordism categories and TQFTs. When talking about cobordism cate-
gories, it is important to keep the following definition in mind, see Milnor [24,
Definition 1.5].

Definition 2.1. A cobordism from M to M7 is a 5-tuple (W; Vo, Vi:ho, h1),
where W is a compact (n + 1)-manifold such that 0W is the disjoint union of V
and V1, and h;: V; — M; are diffeomorphisms for i € {0, 1}.

If My and M, are oriented, we require that W be oriented as well, such that
if Vp and V; are given the boundary orientation, then / is orientation reversing,
while £, is orientation preserving.

Given cobordisms from M, to My and M to M,, we can glue them together,
but the smooth structure on the result is only well-defined up to diffeomorphism
fixing the boundaries. Hence, to be able to define the composition of cobordisms,
we consider the following equivalence relation.

Definition 2.2. The cobordisms (W; Vy, Vi; ho, h1) and (W'; Vg, V]; hy, b)) from
My to My are equivalent if there is a diffeomorphism g: W — W’ such that
g(V;) =V/and h} o g|ly, = h; fori € {0, 1}.

Definition 2.3. We can assign a cobordism to any diffeomorphism as follows.
Suppose that i: M — M’ is a diffeomorphism of n-manifolds. Then let ¢, be the
equivalence class of the tuple

(M x I; M x {0}, M x {1}; po, h1),

where po(x,0) = x and h;(x, 1) = h(x) for every x € M.
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Recall that two diffeomorphisms /&, h': M — M’ are pseudo-isotopic if there is
a diffeomorphism g: M x I — M’ x I such that g(x,i) = (h;(x),i) fori € {0, 1}
and x € M. Note that g does not have to preserve level sets. Then ¢, = ¢, if
and only if & and h; are pseudo-isotopic; see [24, Theorem 1.9]. Furthermore,
Cp o Cp = Cpon, Where we write the composition of cobordism from right-to-
left, as opposed to Milnor [24, Theorem 1.6]. The following is based on [24,
Definition 1.5].

Definition 2.4. Let Cob, be the category whose objects are closed oriented -
manifolds, and whose morphisms are equivalence classes of oriented cobordisms.
For an n-manifold M, the identity morphism iy := cyq,, .

The description of the identity morphism highlights the role of the parameter-
izations A;, as only using triads (W; Vp, V1), we would not have any morphisms
from M to itself.

Definition 2.5. Let Vect be the category of vector spaces and linear maps over
some field F. An (n+ 1)-dimensional topological quantum field theory is a functor

F:Cob, — Vect
such that for any two closed n-manifolds M and M’, there are natural isomor-

phisms ®ps p: FIM)Q F(M') - F(M UM’) and ®: F — F(¥), which are part
of the data, that make the following diagrams commutative:

Mun, po(@ar, N ®IdF(py)

(F(M)® F(N)) ® F(P)— F((M UN)U P)

l O Nupo(Idr()®PnN. p) l
F(M)® (F(N) ® F(P)) F(M U (N U P)),

@Mugo(IdF(M)®q>)

FM)®F F(M 1 9)
F(M) = F(M).

In other words, F' preserves the monoidal structure on Cob, given by the disjoint
union and on Vect given by the tensor product. Furthermore, the functor F is
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symmetric in the sense that

F(M) ® F(M') —™"_ F(M U MY

lF(Cs) lr
@y

FM')® F(M) Y (M’ u M),

where s: M U M’ — M’ U M is the diffeomorphism swapping the two factors,
andr(x® y) = y ® x.

More generally, Vect could be replaced by any symmetric monoidal category.
Similarly, a TQFT on the category of connected n-manifolds is a functor

F:Cob? — Vect,

but in this case we drop the conditions on disjoint unions.

Given an orientation preserving diffeomorphism /4, we denote the map F(cp)
by h.. We shall see in Lemma 3.1 that if F arises from a functor /': Man,, — Vect
and surgery maps Fys s as in Theorem 1.8, then i, = F(h). If h and i’ are pseudo-
isotopic, then ¢, = ¢y, hence hy = I,

The cobordism maps in a TQFT F satisfy the following naturality property.

Lemma 2.6. Let W = (W; Vy, V1; ho, h1) be an oriented cobordism from M,
to My, and let W = (W'; V3, V] hy, b)) be an oriented cobordisms from M
to M{. If d:W — W' is an orientation preserving diffeomorphism such that
d(V;) = V] fori € {0, 1}, then we write

d|m; = hiodly, oh;i': M; — M.
If F is a TQFT, then the following diagram is commutative:

F(Mo) EiUR F(My)

l(dwo)*

F(My) 2L Fmy),

l(dwl)*

where c is the equivalence class of W and ¢’ is the equivalence class of W'

Proof. As (d|m;)« = F(cq M; ), this follows from the functoriality of F, once we
observe that the cobordisms ¢’ o ¢g|,,. and cq),,, © ¢ are equivalent via d. O
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2.2. Parameterized Cerf decompositions and Morse data. To simplify the
notation for cobordisms, from now on, we will suppress the diffeomorphisms /¢
and /; and identify V; and M;. So an oriented cobordism from M, to M; is
viewed as a compact (n 4+ 1)-manifold W with oW = —M, U M;. With this
convention, two cobordisms W and W' from M, to M are equivalent if there is
a diffeomorphism d: W — W’ that fixes the boundary pointwise. We say that
f:W — [a,b] is a Morse function if f~!(a) = My, f~'(b) = M, and f has
only non-degenerate critical points, all lying in the interior of W.

Recall from Definition 1.2 that, given an oriented n-manifold M, a framed
k-sphere § C M is an orientation reversing embedding of S* x D"~* into M.
We write W(S) for the manifold obtained by attaching the handle D**! x D"~k
to M x I along S x {1}; this is a cobordism from M to the manifold M (5) obtained
by surgery on M along S. We now recall and extend [24, Definition 3.10].

Definition 2.7. A cobordism W from My to M is elementary if there is a Morse
function f: W — [a,b] such that it has at most one critical point. A framed
attaching sphere S for W is @ if f has no critical points; otherwise, it is a framed
sphere in M, such that there is a diffeomorphism D: W (%) — W that is the identity
along M, (where we identify M with My x {0}).

It is a classical result of Morse theory [24, Definition 3.9 and Theorem 3.13]
that every elementary cobordism admits a framed attaching sphere in the above
sense.

Definition 2.8. A parameterized Cerfdecomposition of an oriented cobordism W
from M to M’ consists of

e a Cerf decomposition
W =W, Uwm, Wi Un, + - Unpy, Wi

in the sense of Gay, Wehrheim, and Woodward [13]; i.e., each W¥; is an
elementary cobordism from M; to M;,, where My = M and M, = M’,
e aframed attaching sphere $; C M; for W; of dimension k; fori € {0, ..., m},

e an orientation preserving diffeomorphism d;: M; (5;) — M;+1, well-defined
up to isotopy, such that there is a diffeomorphism D;: W(5;) — W; with
Dilu; x{oy = po and D;|pg;s;) = di, where po(x,0) = x.

Remark 2.9. The existence of the diffeomorphism D; ensures that the cobordism

(W(S:); M; x {0}, M;(S;); po. d;)
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is equivalent to (W;; M;, M;+1;1dp;, Idas, ). So we are replacing each elemen-
tary component in the Cerf decomposition of W by an equivalent handle cobor-
dism. In particular, the composition of these handle cobordisms is equivalent
to (W; M, M’;1dys, Idpg).

The following definition is based on [24, Definition 3.1].

Definition 2.10. Let f be a Morse function on the oriented cobordism W. We
say that the vector field v on W is gradient-like for f if v,(f) > 0 for every
p € W\ Crit(f), and for every point p € Crit( f), there exists a local positively
oriented coordinate system (xy, ..., X,+1) centered at p in which

fF=fp)—x3— o —xF+xP X2, 2.1)

and where v is the Euclidean gradient; i.e.,

v = 2(—xla;i1 —---—xk% + X1 afo Fot X axj+1)‘ 2.2)

The space of positive coordinate systems at a Morse critical point in which f
is of the normal form (2.1) is homotopy equivalent to SO (k,n 4+ 1 — k), and hence
is connected for k € {0,n + 1}, and has two components otherwise; see Cerf [0,
p-168]. However, the space of gradient vector fields v induced by such coordinate
systems is connected for every k. Indeed, if k & {0,n + 1} and (x1, ..., Xp+1) iS
a positive coordinate system in which f is of the form (2.1), then

(_x17 x27 LN xn, _xn—l—l)

is also a positive coordinate system as in (2.1), but which lies in the opposite
component since it reverses the orientation of both the positive and negative
definite subspaces. In both coordinate systems v is of the same form.

Definition 2.11. A Morse datum (cf. [13, Definition 2.1]) for the cobordism W is
atriple (f, b, v), where

e b= (by.....bm+1) € R™2 is an ordered tuple; i.e., by < by < -+ < by+1,

o [ W — |by, bm+1] is a Morse function such that each b; is a regular value
of f,and f has at most one critical value in each interval (b;_1, b;), and

e v is a gradient-like vector field for f.

We now explain how to construct a parameterized Cerf decomposition from a
Morse datum.
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Definition 2.12. Suppose that W is an elementary cobordism from M to M’,
together with a Morse function f and a gradient-like vector field v. If f has no
critical points, then one obtains a diffeomorphism d,,: M — M’ by flowing along
w = v/v(f). When f has one critical point p of index k, then we obtain a framed
sphere $: S¥~1 x D""k+1 _ M and a diffeomorphism dy: M($) — M’, well-
defined up to isotopy, as follows. (Note that Milnor [24, Definition 3.9] calls S
the characteristic embedding. We review his construction to be able to define the
map dy.)

Let W¥(p) be the stable manifold of p. We define the attaching sphere a(5)
to be W¥(p) N M, with the following framing. As in Milnor [23, p. 16], choose a
positive coordinate system

()Cl, . xn+1): U— Rn+1

centered at p in which f is of the form (2.1), and let ¢ be so small that the image of
(X1,...,Xn41) contains a ball of radius +/2¢ centered at the origin. Let ¢ = f(p),
x_ = (x1,...,x¢), and x4+ = (Xg+1,...,Xn+1). Define the cell e to be the subset
of U where |x_|?> < ¢ and x4 = 0. Furthermore, let E be a regular neighborhood
of e of width \/&/2, extending all the way to f~!(c —¢); i.e.,

E={|x+ =e/2)n{c— x> + x4z c—e}.

This is diffeomorphic to the k-handle D¥ x D"~*+1 via the map

X_ 2
e(x_,x4) = (m, \/;X+),
which identifies E N f~'(c — ¢) with S¥~1 x D"=k+1 Fors € Sk—1 x pr—k+1,
flow from e~ 1(s) € E N f~(c — &) along —w to M to obtain S(s).

It is straightforward to check that v is transverse to dE \ f~!(c — ¢). The
diffeomorphism d,, is defined by flowing from M \Im(S) along w to f ' (c—¢)\ E,
and identifying the part D* x §"~* of M(S) with E \ f~'(c — ¢) via ¢!, then
flowing again along w to M’ (as we are not flowing from a level set, for different
points, we need to flow for a different amount of time to reach M’). Note that
dy|m\imes) is simply given by the flow of v. It is easy to see that d, extends to a
diffeomorphism from W(S) to W that is the identity on M ; see [24, Theorem 3.13].

Remark 2.13. The above construction depends on the choice of ¢ and local co-
ordinate system as follows. The attaching sphere a($) is unique, and different
choices give isotopic framings. Furthermore, if S; and d,,;: M(S;) — M’ fori €
{1, 2} arise from different coordinate systems and ¢;, then there is an isotopically
unique diffeomorphism y: M(S1) — M(52) such that d,, ; is isotopic to dy 2 o .
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This ambiguity will not cause any problems in the proof of Theorem 1.7 due to
relation (1) of Definition 1.4.

The framed sphere S and the diffeomorphism d, depend on v only up to
isotopy, since the space of gradient-like vector fields v compatible with a given
Morse function f is connected. The only caveat is that when k & {0, n + 1}, the
space of coordinate systems is homotopy equivalent to SO(k,n + 1 — k), which
has two components. The two components correspond to non-isotopic framed
spheres. If S is one, then S represents the other isotopy class; cf. relation (5) in
Definition 1.4.

Definition 2.14. Let W be an oriented cobordism from M to M’. We say
that the Morse datum ( f, b, v) induces the parameterized Cerf decomposition €
of W if M; = f~Y(b;) and W; = f~Y([b;i,b;+1]). Furthermore, for each
elementary cobordism W;, the framed attaching sphere 3; and the diffeomorphism
di: M;(5;) — M;1 are obtained from f|w, and v|w, as in Definition 2.12 for
some choice of compatible local coordinate systems and radii &; at the critical
points.

Hence, the Morse datum ( f, b, v) gives rise to a well-defined parameterized
Cerf decomposition that we denote by C( f, b, v), up to possibly replacing a framed
sphere S with S, and up to the ambiguity explained in Remark 2.13. The following
result, which is a slight extension of [24, Theorem 3.12] to include the parametriza-
tion, states that this assignment is surjective.

Lemma 2.15. Let C be a parameterized Cerf decomposition of the oriented
cobordism W. Then there exists a Morse datum ( f, b, v) inducing C.

Proof. By definition, each diffeomorphism d;: M;(S;) — M,4+; extends to a
diffeomorphism D;: W(S;) — W;. We claim that there is a Morse function
f{:W(S;) — R and a gradient-like vector field v; on W(S;) such that f; has a
single critical point in the handle if 5; # 0, and the diffeomorphism d,, induced
by f/ and v; on W(S;) as in Definition 2.12 is Idyy, 5;). If $; = @, then we take S
to be the projection p,: M; x I — I and v} to be 9/dt.

If $; # 0 is a framed (k — 1)-sphere, then consider the functions

2 2., .2 2
S(X1, e Xpg1) = /2 =7 — oo =X + X + o0+ X

and

u(xl,...,xn+1) = \/(xf—l-----l-x,f)(x,%H +"'+x3+1)
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on R**1. Let
H={xeR"0<sx) <1lu@ <1}

Consider $;: Sk=1 x D"=k+1 _5 M, then
G = (Im(S;) x I) U (DF x D" *1) c w(S;)

is diffeomorphic to H if we smooth the corners after attaching the handle. We
choose a diffeomorphism ¢: G — H such that it maps Im(5;) x {0} to H N{s = 0}
and D* x S" % to H N{s = 1}. Furthermore, there is a small v € R such that for
any x € H with s(x) € (0,1)andu(x) € [1—v, 1], we have ¢~ (x) € M; x{s(x)}.
For y € (M; x I)\ G, we let f/(y) = p2(y), where p>(x,t) = t, while
for y € G, let f/(y) = s(¢(y)). This is a smooth function by construction.
The gradient-like vector field v; on W($;) is defined on G by pulling back the
Euclidean gradient of s on H via ¢p. We extend this to (M; x 1)\ G via d/dt. It
is now straightforward to check that the function f; and the gradient-like vector
field v/ induce the identity diffeomorphism from M; (S;) to itself if we apply the
construction in Definition 2.12 with the radius ¢ = 1.

Let a;: I — [b;i—1,b;] be the affine equivalence a;(t) = (1 — t)bj—1 + tb;,
and we set f; := a; o fl/ o Di_l. By [13, Lemma 2.6], we can modify the f; by
an ambient isotopy on a collar neighborhood of M; such that they patch together
to a Morse function f. If v; = Dl.*(vlf), possibly modified on a collar of M; so
that for different i they fit together to a smooth vector field v, then the induced
diffeomorphism from M ($;) to M, will be isotopic to d;. O

Lemma 2.16. Let C be a parameterized Cerf decomposition of the cobordism W .
Suppose that the Morse data (f,b,v) and (f’,b’,v’) both induce C, in the sense
that, for given local coordinate systems about the critical points and radii, the
framings of the attaching spheres and the diffeomorphisms d; coincide. Then
there exist orientation preserving diffeomorphisms D: W — W and ¢: R — R
such that

(1) o' = ¢(b),

2 f'=¢ofoD

(3) v-v' = D«(v) for some positive function v € C*®(W,R4), and

4) Dy, =1dy;.

Proof. Suppose that W is an elementary cobordism, b = b’, and |b| = |b’| = 2.

For an illustration, see Figure 1. Let the critical points of f and f’ be p and p’
with values ¢ and ¢/, respectively. Choose coordinate charts x: U — R"*! and
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x': U’ — R"*! about p and p’, respectively, such that their images coincide with
the disk D (0, +/2¢), and in which f and f’ have the normal form of equation (2.1),
while v and v’ have the normal form (2.2). We write K, = W*¥(p) U W*(p) and
Ky = WS(p')UW"(p'), where the stable and unstable manifolds for p are always
with respect to v, while for p’ they are with respect to v’.

a(S)

Figure 1. An elementary cobordism W with two different Morse data that induce the same
framed sphere $ and diffeomorphism d: M — M (S).

Let ¢o: [bo, b1] — [bo, b1] be a diffeomorphism such that ¢o(b;) = b; for
i € {0,1}, and such that ¢o(t) = ¢’ —c + ¢t fort € [¢c — 2¢,¢ + 2¢]. Then v is
also a gradient-like vector field for ¢¢ o f'; moreover, ¢g o f(p) = f(p’), and the
Morse datum (¢g o f, b, v) induces the same parameterized Cerf decomposition C.
Hence, we can assume that f(p) = f(p’) = c.

Let y:Z — Woand y:Z" — W for Z, Z' C W x R be the flows of v
and v’, respectively. For x € W, the set I, := ({x} x R) N Z is a closed
interval {x} x [-a(x), w(x)] when x ¢ K}, a half-interval {x} x [-a(x), oo) when
x € W5(p), and a half-interval {x} x (—oo, w(x)] for x € W¥(p). Using Z’, we
obtain the interval 7 and the functions ¢’ and @’ in an analogous way.
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Let D(p) = p’. We define the diffeomorphism D on W \ {p} as follows. First,
note that WS (p)NM = WS(p)NM = a(3) and W*(p)NM' = W¥(p')NM' =
d(b(8)), where $: S¥=1 x D"~%+1 _ M is the framed sphere and d: M(S) — M’
is the diffeomorphism in the Cerf decomposition € induced by both ( f, b, v) and
(f',b',c"). If x € M Ud(b(S)) and t € I, then there is the unique parameter
value #'(x,t) € I}, for which

FO ' (x0) = fly(x, ).

Indeed, f is monotonically increasing along the flow-line y(x, s) for s € I, and
S’ is monotonically increasing along y’(x, s) for s’ € I,.. Furthermore, we have
J(y(x.inf(Zx))) = f'(¢'(x,inf(1}))) and f(y(x.sup(/x))) = f'(y'(x,sup(l})))
asbg = by, by =bj,andc =c’. If x e M Ud(b(S)) and ¢ € I, then let

D(y(x,1)) = y'(x.t'(x.,1)).
It is clear that D restricts to a diffeomorphism
WAWH(p) — W\ W*(p))

that fixes W \ W¥(p) = oW \ W¥*(p’) pointwise. Indeed, for x € M \ a(9),
we have y(x, w(x)) = y’'(x, »’(x)) since the Morse data (f,b,v) and (f’,b’, v’)
induce the same diffeomorphism d: M($) — M’ in C.

Let E be the subset of R**! constructed in Definition 2.12; it is diffeomorphic
to the k-handle DX x D"**1 We denote by d_E the part of dE corresponding
to Sk~ x D"7k+1 and by 3, E the part corresponding to D* x S*7* Let F
be the smallest subset of W that contains & = x~!(E) and is saturated under
the flow of v, and we define F’ containing & = (x’)~'(E) analogously. Note
that F is a regular neighborhood of K, and F" is a regular neighborhood of K.
Furthermore, let 3+& = x71(0+E), and 0+&" = (x') "1 (0+ E).

Since ( f, b, v) induces C, by definition, the flow of v from

EN f N c—g)=09_&~ Sk x prk+l

gives S. Similarly, the flow of v’ from & N (f')"1(c — &) = 0_& gives &
as (f7,b’,v’) also induces €. If H denotes the handle part of M($), which is
diffeomorphic to D¥ x S"k, then d: M(S) — M’ restricts to a map d |z that
gives a framing of W¥(p) N M’ = W¥(p’) N M’ that is given by either flowing
from 94 & along v to M’, or from 94+ &’ along v’ to M’.
We claim that
Dle =) lox:& —¢&. (2.3)



250 A. Juhdsz
To see this, it suffices to show that, for any point e € €, we have
x'(D(e)) = x(e) € IE. 2.4)

Indeed, if e € £\ W*(p), then there is a unique ¢ € R<¢ for which y(e, t) € d_&;
we write e— = y(e, t). By definition, D(e) is given by flowing back to M along v,
and then forward along v’ until the value of f’ agrees with f(e). We obtain
the same point by flowing back along v to e € 9_&, then forward along v’
from D(e_) = (x')~! o x(e_) until f’ becomes f(e). Since (x’)~! o x takes v
to v/ and f to f’ as they are in normal form in x and x’, respectively, we see
that D(e) = (x") ' o x(e). If e € W¥(p) \ {p}, then there is a unique ¢ € Rxg
for which y(e,t) € 0L E; let e = y(e,t). In this case, we get D(e) by flowing
forward to M along v, then back along v’ until the value of f’ becomes f(e). We
get the same point by flowing back from D(e) = (x')~! o x(e4). Just like in the
previous case, it follows that D(e) = (x')~! o x(e).

We now prove equation (2.4). Let r € 0_E. Since v and v’ both give
the same framed sphere 5, we get the same point m € M if we flow back
along v from x~!(r) € 9_€ or if we flow back along v’ from (x')~!(r). But
S ) = f((@)7H(r) = ¢ — e hence D(x7'(r)) = (x)7'(r). Now let

reS"F =9, EN{x;=---=x,=0}.

Flowing forward along v from x(S"7%) to M’, or along v’ from x'(S"7%) to M’
give the same parametrization of W*(p) N M’ = W¥(p’) N M’. Indeed, they
induce the same map M(8) — M’, and the handle part of M(S) is identified
with 04 E. So if we flow forward from x (r) to M’ along v and then back along v’ to
d+ &', then we get x'(r). However, f(x(r)) = f'(x'(r)), hence D(x(r)) = x'(r).
This concludes the proof of equation (2.4), and by the previous paragraph, the
proof of equation (2.3).

It follows that D is smooth in €. To see that it is smooth along W*(p), note
that if x € W and there is at € R for which y(x,?) € d+&, then D(x) can
also be obtained by flowing forward from D(y(x, t)) along v’ until the value of f’
becomes f(x). Together with equation (2.3), which implies that D smoothly maps
0+ & to 04+ &', and the fact that D maps flow-lines of v to flow-lines of v/, we obtain
that D is also smooth along W¥(p).

That D|y = Idpy and D|wupynp = Idwu(pynm follow from the definition
of D. To see that D|pn\wu(p) = Idp\wu(p), note that v and v’ induce the same
diffeomorphisms M($) — M’. Hence, for every x € M \ a($), the flow-lines of v
and v’ starting at x end at the same point of M’. This concludes the proof when
the cobordism is elementary and b = b'.
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We now consider the case of a general Cerf decomposition €. Choose an orien-
tation preserving diffeomorphism ¢: R — R such that ¢(b) = b’ and such that ¢
is linear in a neighborhood of each critical value of f (the latter is to ensure that v
is also gradient-like at the critical points of ¢ o f'). We can then apply the previous
argument to each elementary piece W; with Morse data (¢o f|w; . (b;_,, b)), v|w;)
and (f'|w, . (b;_,.b}), v'|w;) to obtain diffeomorphisms D;: W; — W; that piece

together to a diffeomorphism D: W — W with the required properties. O

2.3. Moves on Morse data and parameterized Cerf decompositions. We
now define some moves on Morse data. We show that any two Morse data
on the same cobordism can be connected by a sequence of such moves, and
describe what happens to the induced parameterized Cerf decompositions. In the
following, let M = (f,b,v) and M' = (f’,b’,v") be Morse data on the oriented
cobordism W, and let € = C(M) and € = C(M’) be the induced parameterized
Cerf decompositions. Furthermore, we denote by p; the critical point of f in W},
assuming W; is not cylindrical.

We say that M and M’ are related by a critical point cancelation (cf. the
analogous move of [13, Definition 2.8]) if there exists a one-parameter family

{(Jft.br,vo) it € [-1,1]}
of triples such that
e (f-1,b-1,v-1) = Mand (f1,b1,v1) =M,
e f; is a family of smooth functions and v, is a family of smooth vector fields,
e (f:,bs,vs)is a Morse datum for every ¢ € [—1, 1]\ {0},

e b, is aconstant b = (bg,...,bymt1) for t € [—1,0), and there is a j €
{1,...,m} suchthat b, = b\ {b;} fort € (0, 1],

e the critical points p;j_1(t) € f,'([bj—1,b;]) and p;(t) € f,7 1 ([bj,bj+1])
of f; fort < Ocancelatt = 0, and f; has no critical values in [b;_1, bj11]
fort > 0,

o W"(pj—1(t))and W¥(pj(t)) are transverse and intersect in a single flow-line
for every ¢t € [—1,0),

e {f;:t € [—1,1]} is a “chemin élémentaire de mort” supported in a small
neighborhood U of

(W (i1 ) U W (p; () N f 7 bj=1(0). bja (0));

see Cerf [6, Section 2.3, p.71]. Inside U, the path f; is of normal form, while
outside U, both f; and v, are constant.
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Cerf [6, Chapter I1.2] proved that, given a pair of ascending and descending mani-
folds for a pair of consecutive critical points that intersect in a single flow-line, the
space of standard neighborhoods is connected, and hence any two “chemin él¢é-
mentaire de mort” starting at f compatible with this stable and unstable manifold
are homotopic through such families. A critical point creation is the reverse of a
critical point cancelation.

We now define the diffeomorphism ¢ appearing in relation (4) of Definition 1.4.
Hatcher proved that Diff(D3, dD3) is contractible, hence every diffeomorphism of
a 3-manifold supported in a ball is isotopic to the identity. So, when n < 3, the
diffeomorphism ¢ is uniquely characterized up to isotopy by the property that it
fixes M N M(S)(S'). However, in higher dimensions, Diff(D”, dD™) might be
disconnected. The reader only interested in the n < 3 case, which covers all the
applications in this paper, can safely skip the following definition.

Definition 2.17. Suppose that S’ C M(S) is a framed sphere such that a($%’)
intersects b(5) transversely in one point. Let W be the cobordism obtained by
attaching a handle & to M x I along $ x {1}, followed by a handle 4’ attached
along $'. Consider

B =Im(S) U (Im(S) N M)

with its corners smoothed. This is diffeomorphic to a disk since |a($")Nb(S)| = 1.
Furthermore, let
H=(BxI)UhUHW;

this is diffeomorphic to B x I. Let F: M x I — W be a diffeomorphism such
that F(x,0) = (x,0) forevery x € M and F(x,t) = (x,t) forevery x € M \ B
and ¢t € I. Then let ¢ = F|px1). To define F, one only needs to choose a
diffeomorphism from B x [ to H that is the identity along (B x {0}) U (dB x I).
If F’ is another such map, then the induced ¢’ differs from ¢ by a pseudo-isotopy
supported in the disk H N M(S)(S’). By Cerf [6], for n > 5, any diffeomorphism
of D" that fixes dD" and is pseudo-isotopic to the identity is actually isotopic
to the identity, as D" is simply-connected. The only case when we do not know
whether ¢ is well-defined up to isotopy is when n = 4.

The following construction works in all dimensions. Now let W be the cobor-
dism obtained by composing W($) and W($'). By Lemma 2.15, there is a Morse
function f on W and a gradient-like vector field v that are compatible with the
natural parameterized Cerf decomposition of W with diffeomorphisms Idpss)
and Idps)s). In particular, f has exactly two critical points p and p’ at the
centers of & and &', respectively. Furthermore, the stable manifold W*(p) is the
core of 4 union $ x 7, the unstable manifold W*(p) N W(9) is the co-core of #,
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and similarly, W*(p’) N W(S') is the core of 4’ union $’ x I, while W*(p') is the
co-core of i’. There is a homotopically unique 1-parameter family

{ fr:it e [-1,1]}

of smooth functions (W, 0W) — (I, dI) such that f_; = f, it has a single death
bifurcation at + = 0, and the stable manifold of the larger critical point and the
unstable manifold of the smaller critical point remain transverse for ¢t € [—1,0).
In the terminology of Cerf [6, Proposition 2, Chapitre III], there is a “‘chemin
élémentaire;” i.e., an elementary path canceling the two critical points that can be
described in a local model in a neighborhood U of W*(p) U W*(p’). Outside U,
the family f; is constant. In particular, f; has no critical points, and according to
Cerf [6], the space of such paths is connected. Hence, if f; and f; are two different
paths, then fi and f| are homotopic through smooth functions with no critical
points. The gradient flows of f; and f| give rise to isotopic diffeomorphisms
from M to M($)(%’), and changing the metric also preserves the isotopy class.

It is important to note that keeping the ascending and descending manifolds
of the canceling critical points transverse throughout (or equivalently, the pair of
spheres obtained by intersecting them with M (5)) is what ensures the uniqueness.
The space of ascending and descending manifolds intersecting in a single flow-
line might have several components, each of which might result in different
cancelations. Also see the First Cancelation Theorem of Morse in the book of
Milnor [24, Theorem 5.4].

Remark 2.18. In relation (1) of Definition 1.4, to prove Theorem 1.8, it would
suffice to assume that d ~ Idy whenever d is isotopic to the identity and
supported in a ball. However, according to the classical result of Palis and
Smale [29], such diffeomorphisms generate Diffy(M ).

Lemma 2.19. Suppose that the Morse data M = (f,b,v) and M' = (f',b', V')
are related by a critical point cancelation { (fy,bs,v;):t € [—1,1]}. Then the
corresponding parameterized Cerf decompositions C = C(M) and €' = C(M')
are related as follows.

The attaching sphere a(Sj+1) intersects d;j(b(S;)) in a single point, where
b(S;) in M;(S;) is the belt sphere of the handle in W;(3;). The cobordism
W; UW; 41 is cylindrical. We obtain €' from C by removing M1, more precisely,

M = M, ifi <j+1,
M1 otherwise.
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We obtain the framed attaching spheres S; and the diffeomorphisms d] fori # j
analogously. We have S; = @, and let Sj+1 = dj_lo i+1 C M;(3;). To determine

di:M[(S}) =Mj — M, = Mj,,
note that there is a diffeomorphism
o Mj —> M;(S;)(Sj+1)
defined as in Definition 2.17. Furthermore, d; induces a diffeomorphism
S4
d;7 T M (S)(Sj+1) —> Mj1(Sj41).

Then
dj ~dipiod) ™ oy, (2.5)

where ‘~’ means ‘isotopic to.’

Proof. We prove equation (2.5), the rest of the statement is straightforward. Let W
be the cobordism obtained by gluing W(5;) and W(S;+1) along M(S;). This
carries a parameterized Cerf decomposition €, with diffeomorphisms Idps;) and
Idm(s;)(s;41)- According to Lemma 2.15, there exists a Morse datum ( £.b, )
inducing €.

Next, we construct a diffeomorphism G: W — W; U Wj4q. Choose an
extension D;: W;(S;) — W; of d; fori € {j,j + 1}. Then D; and D;;; glue
together to a diffeomorphism

Go: W(S;) Ug, W(Sjt1) — W; U Wjqy.
Furthermore, we can glue together Idy (s, and the diffeomorphism
S
DLW (Sj41) — W(Sj+1)

extending dij *! to a diffeomorphism G1: W — W(S;) Ug, W(S;+1). Then we
set G = Gg o Gy.

The Morse datum (f o G, (bj—1.b;.b;+1),G*(v)) on W also induces the pa-
rameterized Cerf decomposition C. Hence, by Lemma 2.16, there exists a diffeo-
morphism D: W — W that fixes M;, M(S;), and M(S;)(S;+1) pointwise, and
suchthat f oG oD = f and (G o D)*(v) = v - 0 for some v € C®(W,Ry). In
particular, f; o G o D fort € [—1,1] is a “chemin élémentaire de mort” starting
from f and ending at a function f; o G o D with no critical points that induces
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the diffeomorphism ¢: M; — M;(5;)(S;j+1), up to isotopy. Indeed, by Cerf [6,
Chapter 2.3], the space of “‘chemin élémentaire” starting at a given Morse function
that cancel two consecutive critical points with a single flow-line between them,
and which is supported in a neighborhood of their stable and unstable manifolds
where it is in normal form is connected, and so their endpoints can be connected
through Morse functions with no critical points. So, for any choice of gradient-
like vector fields, the endpoints induce isotopic diffeomorphisms. Hence f; on
W; U W1 induces a diffeomorphism d;: M; — M;» that is conjugate to ¢
along G. As G|y = Idy and Glys;)s,4,) = dj+1 © djSHI, we obtain
equation (2.5). O

We say that the Morse data M and M’ are related by a critical value crossing
if there exists a one-parameter family

{(.ft7bl7vt):t € [_1’1]}

of triples such that
i (f_17b—17 v—l) = M and (fl, bl’ Ul) = M/’

e f; is a family of Morse functions with critical set Crit(f;) = {po,..., Pm}
independent of ¢, and v; is a family of smooth vector fields,

e (f:,bs,vs)is a Morse datum for every ¢ € [—1, 1]\ {0},

e thereisa j € {0,...,m} suchthatb;(¢t) = b; isindependentof¢ fori # j+1,
where by = (bo(?), . ... bm+1(1)),

e two critical values cross each other; i.e., f;(p;) < fi(pj+1) fort < 0 and
Ji(pj) > fi(pj+1) for t > 0, with equality for t = 0,

o W"(pj) N W¥(pj+1) =@ foreveryt € [-1,1],

o {fi:t € [-1,1]}is a “chemin élémentaire de croisement ascendant or de-
scendant” with support in a small neighborhood U of

WE(p;) N f bj.bjs2] or W(pj+1) N f by, bjsal;

see Cerf [6, Chapter II, p.40]. Inside U, the path f; is of normal form, while
outside U both f; and v, are constant.

Lemma 2.20. Suppose that the Morse data M = (f,b,v) and M' = (f’,b’,v’)
are related by a critical value crossing { (f;, bs,v¢):t € [—1,1]}, and consider
the induced parameterized Cerf decompositions C and C'. Then these satisfy the
Jollowing properties:
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(1) in C, the part W; Uy, Wjt1 is replaced by Wj’ Unms,, Wj/+1’
decomposition is unchanged,

@) Im(S;) N Im(S}) = 0 and Im(S;+1) N d; (D% x §"7%5) = 6,

(3) djoS; =8, (where we consider S; in M;(S})) and dj oS; = S;+1 (where

we consider 5 in M;(S;)), and

the rest of the

(4) the following diagram is commutative up to isotopy:

@)Y
M;(5;.5;) —— M;11(5j+1)

l(d;)Sf ldm
d/

M./‘+1(Sj+1) — Mj .

Proof. Without loss of generality, suppose we are dealing with an ascending
path; i.e., the critical value f;(p;) increases until it gets above f;(pj+1) =
f(pj+1). The deformation of (f;, v;) is supported in a saturated neighborhood U
of W3(p;) N f71([bj, 00)). To see (1), note that if i ¢ {j, j + 1}, then on W;
the function and the vector field remain unchanged, and so do the regular values
b; and b; ;. The deformation is supported inside W; U W; 1, and b; 41 (¢) stays
between the critical values f;(p;) and f;(pj4+1) for every t € [—1,1]. Part (2)
follows from the facts that W*¥(p;) N W¥(p;+1) = ¥ and

W*(p;) " W(pj+1) N M1 = 0.

To prove (3), recall from Definition 2.12 that 5; is given by W*(p;) N M;, with
framing coming from a local normal form of f about p;. Along an elementary
path, this local form remains the same except for a constant shift. In particular,
W?(p;) intersects M; in a(S;) with the same framing, and M/, in a(S} ).
Hence, if we flow from Im(5;) along v; to MJfH, we obtain djf oS = S}+1
as Im(5;) N Im(S}) = (. Similarly, W¥(p;+1) intersects M; in a(S}) and M; 4
in a(S;j+1), so flowing along v = v_;, we see that d; o S;. =9541.

Finally, we show part (4); i.e., that

R .
dir10d,’ (x) =d],, 0 (d)¥ (x)

for every x € M;(5;, S}). Since the deformation ( f;,v;) is supported in a
neighborhood of W*(p;), forevery x € M;\(a(5;)Ua (S})) this is clear since both
compositions are induced by flowing along v from M; to M;_,. When x is in the
handle part of M; (S;, S}) corresponding to S}, both compositions are obtained by
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flowing along v from the corresponding point of a standard neighborhood of p; +;
to Mj1>. When x is in the handle part corresponding to S;, flowing up to M; -
along v or v’ give isotopic diffeomorphisms since for an elementary deformation
Jft — f is constant near p; and v, is the Euclidean gradient. O

We say that M and M’ are related by an isotopy of the gradient if f = f’
and b = b’. Given a parameterized Cerf decomposition €, an isotopy of a framed
attaching sphere is a move described as follows. Let ¢,: M; — M; fort € I be
an isotopy, and let S} = ¢ o 5;. There is an induced map

9 = (p0)¥: M;(S)) — M;(8)),

and we letd; :=d; o (¢})~ L. Itis easy to see that d; extends to a diffeomorphism
D:W(S}) — W; via the formula

Dj(x,1) = (D; o ¢; " (x),1)

for (x,¢) € M; x I, and extending to the handle in the natural way.

Lemma 2.21. Let (f,b) be a Morse datum for the cobordism W. If C and €' are
parameterized Cerf decompositions induced by the triples ( f, b, v) and (f, b, V'),
respectively, then they are related by isotopies of the framed attaching spheres S;
and of the diffeomorphisms d;, and possibly by reversing framed spheres.

Proof. This is a direct consequence of Remark 2.13. |

The Morse data M and M’ are related by adding or removing a regular value
if |b A b'| = 1, where A denotes the symmetric difference. In this case, there is
an i € IN for which either [b;, b; 1] contains no critical value of f, or [b], b;_ ]
contains no critical value of f’. Then the corresponding parameterized Cerf
decompositions are related by merging or splitting a product. Suppose that one
of W; and Wjy, is cylindrical; i.e., $; or S;j1; is empty. We describe the case
when $; = @, the other case is analogous. Then we remove M; 1 and merge W;
and Wj1. We set S = dj_1 08,11 and

dl = dj1 0 (d)%: M;(S) — Mjya,
where (dj)s} :M;(S;) — Mj11(S;+1) is the diffeomorphism induced by d;: M; —

M; ;. Splitting a product is the reverse of the above move. In general, we have
the following result for changing b.
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Lemma 2.22. Suppose that (f, b, v) and (f,b’,v) are Morse data for the cobor-
dism W, and let C and €' be the corresponding parameterized Cerf decomposi-
tions. Then (f,b U b’,v) is also a Morse datum for W, and " = C(f,b U b’,v)
can be obtained from both C and C' by splitting products. In particular, one can
get from C to € by splitting then merging products.

Finally, M and M’ are related by a left-right equivalence if there are diffeo-
morphisms ®: W — W and ¢: R — R such that ' = g o f o @71, b’ = ¢(b),
v = Oy (v), ®|y: M — M is isotopic to Idys, and ®|p: M — M’ is isotopic
to Idas/. Then we obtain C(M’) from C(M) by a diffeomorphism equivalence; i.e.,
setting W/ = ®(W;), S; = ® o §;, and

d} = iyy0d; o (0])7,

where ®; = P|y;.
The content of the following lemma is that an isotopy of one of the d; can be
written in terms of the above moves on parameterized Cerf decompositions.

Lemma 2.23. Suppose that the parameterized Cerf decomposition C' is ob-
tained from C by replacing one of the diffeomorphisms d; by a diffeomor-
phism d]f = ¢ odj, where ¢:Mj1 — Mjy is isotopic to Idpy, . If we ex-
tend ¢ to a diffeomorphism ®: W — W isotopic to Idw and supported in a collar
neighborhood of M 11, then C' can also be obtained from C by performing the dif-
feomorphism equivalence corresponding to ®, and then isotoping ¢ o S;41 back
to S 41

Proof. Itis clear that W; = W/, M; = M/,and $; = S/ foranyi € {0,...,m+1}.

What we do need to check is that d; = d} and dj41 = dj ;. If we use
the notation ®; = ®|y,, then ®; = Idp; unless i = j + 1. Hence, the

diﬁeomorghism equivalence replaces dj by ®;j11 0od;j = ¢ od; and dj4, by
dit10 (@) = dji0 (¢>+1)~1. Then isotoping ¢ o ;1 back to S; 41
replaces d; 41 o (¢%+1)7! by

djt10 @Y +) o it =djy. 0

Theorem 2.24. Let M = (f,b,v) and M' = (f’,b’,v") be Morse data on the
oriented cobordism W. Then they can be connected by a sequence of critical point
creations and cancelations, critical value crossings, isotopies of the gradient,
adding or removing regular values, and left-right equivalences.
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Furthermore, if the ends of each component of the cobordism W are non-
empty, then we can avoid index 0 and n + 1 critical points throughout. If, in
addition, we assume that n > 2, and the cobordism W and each level set f~1(b;)
and (f)~! (b]/-) are connected, then we can choose the above sequence such that in
the corresponding parameterized Cerf decompositions all level sets are connected.
In particular, there are no index 0 or n + 1 critical points throughout, and no
index n critical points with separating attaching spheres.

Proof. Connect f and f’ by a generic one-parameter family { fs:s € [0, 1]} of
smooth functions. This family fails to be a Morse function at the parameter values
c1,...,c1, where either we have a birth-death singularity, or two critical points
have the same value. We also choose parameter values sy, ..., s37+1 such that
50 =0,5041 =1,

S0 <851 <C1 <9< <0< <8102 <8 -1 <C <81 <82/+1>

and s»;—1 and sp; are close to ¢; in a sense to be specified below. For every
i €10,...,2/+1},letv; be a gradient-like vector field for f; = f;;. Furthermore,
foreveryi € {0,...,1}, choose the ordered tuples b»; and b,; 1 such that M,; =
(f2i b2i. v2i) and Mai+1 = (f2i+1,b2i+1,v2i+1) are Morse data, and such that
they can be connected by a continuous path of tuples b(s) consisting of regular
values of f; for s € [s2;, $2;+1]. Then, by [13, Lemma 3.1], the Morse data M5;
and M,; 4+ are related by a left-right equivalence and an isotopy of the gradient.
Furthermore, by Lemma 2.22, different choices of b give decompositions related
by adding and removing regular values.

It remains to prove that M,;_; and My, are related by one of the moves listed in
the statement for a fixedi € {0, ..., /}. To simplify the notation, let M_ = My;_,
My = Myi, s— = $2i—1, S+ = $2i5 J+ = fsy» v+ = v, and ¢ = ¢;. Choose
an ordered tuple b such that there is exactly one element of b between any two
consecutive critical points of f,.

First, suppose that the function f. has a death singularity at p € W with
Je(p) € (bj,bj+1). According to Cerf [6, p. 71, Proposition 2], we can modi-
fying the family f; such that it becomes a “chemin élémentaire de mort” for s in
a neighborhood of c. (Note that this modification does change the function at the
endpoint of the family, but it is left-right equivalent and hence isotopic to the orig-
inal endpoint via a two-sided isotopy. Our modified family is the juxtaposition of
the chemin élémentaire de mort and this two-sided isotopy, and we take s_ and
s+ to be the start and endpoint of the chemin élémentaire de mort.) In particular,
fs is constant in s outside aball B C f,~1([b;, bj+1]) containing p fors € [s_, 5],
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if s+ are very close to ¢. Furthermore, there is a coordinate system about p in
which

s = fe(P) 4+ X7 531 = X5 = = Xg + X4 o+ Xy

We choose v_ and v to be gradient-like vector fields for f_ and f4, respectively,
that coincide outside B. Notice that f.(p) lies between the values of the two
critical points that cancel for s < 0, hence (f—, b—) is a Morse datum for b_ =
bU{fc(p)}. Then (f_,b_,v_) and (f+, b, v4) are Morse data for W. It follows
from the above construction that in M_ the attaching sphere and the belt sphere
of the canceling pair of critical points intersect in a single point. So M_ and M4
are related by a critical point cancelation.
Now consider the case when f. has two critical points at p and ¢ such that

fc(p) = fc(CI) € [bj’bj-i-l]-

Then we can modify the family f; in the interval [s_, s4] such that it becomes
a “chemin élémentaire de 1-croisement” in a neighborhood of c; this is possible
by Cerf [6, p. 49, Proposition 2]. In particular, f; is independent of s outside
a neighborhood N of either W¥*(p) or W*(q), and the points p and ¢ remain
critical throughout. Furthermore, for s € [s—, c), we have fi(p) < fs(q), while
for s € (c, s+], we have fs(q) < fs(p). In fact, we can arrange that a fixed vector
field v on W remains gradient-like for every f;. If we set

by =bU{(fs (p)+ f5.(@)/2},

then (f_, b—, v) and ( f+, b+, v) are Morse data. Then we can get from M_ to M4
by a critical value crossing and isotopies of the gradient.

If each component of the cobordism W has non-empty ends, then we can avoid
index 0 and n + 1 critical points using Cerf theory as in the work of Kirby [17]. The
statement on connected Cerf decompositions follows from [13, Theorem 3.6]. O

3. The presentation of Cob,, and constructing TQFTs

In this section, we describe how Theorem 2.24, together with the lemmas of the
previous section translating moves on Morse data to moves on parameterized Cerf
decompositions, imply Theorem 1.7. Then we show how Theorem 1.8 follows from
Theorem 1.7. We now restate Theorem 1.7 for the reader’s convenience.
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Theorem. The functor c: F(S,) — Cob,, descends to a functor
F(9n)/R —> Cob,

that is an isomorphism of symmetric monoidal categories.

By slight abuse of notation, we will also denote the functor ¥(G,)/R — Cob,
by c. Then c restricted to F(S,)/R is an isomorphism onto Cob,, and c restricted
to F(G2)/R is an isomorphism onto Cobg. Finally, ¢*: F(3°) — BSut’ descends
to a functor F(S%)/R® that is an isomorphism of symmetric monoidal categories.

Proof of Theorem 1.7. To show that ¢ descends to F(G,)/R, it suffices to check
that if we apply ¢ to any relation in R, then the resulting relation holds in the
cobordism category Cob,. Applying ¢ to relation (1) gives cgoq’ = ¢4 © cq’.
Furthermore, if d € Diffo(M), then c¢; = ips. Both of these hold by the discussion
following Definition 2.3. If we apply c to relation (2), then we obtain

cgs o W(S) = W(S') ocy,

where d: M — M’ is a diffeomorphism, $ is a framed sphere in M, and $’ = d oS,
which is straightforward. Relation (3) amounts to

W(M(S),S) o W(M,S) = W(M(S),S) o W(M,S)

for disjoint framed spheres S and S’ in M (here we also specify the manifold we
are performing surgery on in the notation of the trace to avoid ambiguity). This is
standard in handle theory; see the proof of Lemma 2.20. Relation (4), cancelation,
amounts to

W(S) o W(S) = cp.

and follows from the discussion in Definition 2.17. Finally, relation (5), holds as
W(S) = W(S).

We now show that ¢: F(G,)/R — Cob, is an isomorphism of symmetric
monoidal categories. Suppose that W is an oriented cobordism from M to M’.
Choose a Morse datum ( f; b, v) for W. By Definition 2.12, this induces a param-
eterized Cerf decomposition C of W, consisting of a decomposition

W = Wo Uy, W1 Up, - Un,,, Wi,

m

together with framed attaching spheres 5; and diffeomorphisms d; from M;(5;)
to M;+1. Whenn > 2 and W, M, and M’ are all connected, we can assume
that each M; is connected as well by [13, Lemma 2.5]. As explained in the
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introduction after the statement of Theorem 1.7, the decomposition € corresponds
to the morphism

m
fe:=[]dioems
i=0

in the category F(Gy,). Then W = c(fe), showing that the functor ¢: F(G,)/R —
Cob,, is surjective onto the morphisms of Cob,,.

Suppose that W and W’ are equivalent cobordisms from M to M’, with
equivalence given by the diffeomorphism #: W — W’ fixing M and M’ pointwise.
Let C be a parameterized Cerf decomposition of W, as above. Then 4 induces a
parameterized Cerf decomposition €' of W’ by setting W/ = h(W;), S, = d o S;,
and

d} = hit1od; o (h})™": M{(S)) — M/,

where h; = h|y, fori € {0,...,m}. We claim that
Je ~ fe,
where fe is the morphism in F(G,,) arising from €. Indeed, consider the diagram

eM;.S;

d;
M; M;(S;) ———— M; 1,

lhi lhf" lhi—H
em!.g, d/

M — M (S}) — Mi/+1'

The rectangle on the left is commutative because of relation (2) of Definition 1.4,
while the rectangle on the right commutes by the above definition of d/ and
relation (1). Putting the above rectangles together for i € {0, ..., m}, and using
the property that 1o = Idys and A,,4+1 = Idpy, the claim follows.

As we shall see, the content of Theorem 2.24 is that, for any two parameterized
Cerf decompositions € and €’ of a cobordism W, we can get from fe to fer via
relations in R. Together with the previous paragraph, this implies that c is injective
on F(G,)/R.

By Lemma 2.15, there exist Morse data M = (f,b,v) and M’ = (f',b’,V’)
inducing C and €', respectively. It suffices to prove that fe ~ fer when M is
obtained from M by one of the moves listed in Theorem 2.24, since any two Morse
data can be connected by a sequence of such moves.

First, suppose that M is obtained from M by a critical point cancelation. Then
what we need to show is that

/
dj+1 o eMj+l’$j+1 o dj o eMj,Sj ~ dj. (31)
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By Lemma 2.19, d] ~ dj 1 odijJrl 0@, where Sj11 = d;"' 08;,. Hence, using
relation (1), equation (3.1) reduces to

S .
eMjir 8, 0djoem;s; ~d T o,
By relation (4) of Definition 1.4, we have

P~ EM;(8)).Sj41 ©EM;.S;
Now, according to relation (2),
S 41
d;? " 0 em;(s;),87 11~ eM;41.8541 04
and the result follows. The case of a critical point creation follows by reversing
the roles of M and M'.
Now assume that M and M’ are related by a critical value crossing. Then we
will show that

/
dit10€M; 18,4, °djoem;s; ~dj g oey

/
j+1’S Od] OeMj’S}. (32)

/.
J+1

Using relation (2) and part (3) of Lemma 2.20,

eM; 41841 O dj ~ (dJ')S} CeM;($)).8;
and similarly,
S 0di ~ (DY oenis)s -
Substitute these into equation (3.2), and notice that, by relation (3) and part (2) of
Lemma 2.20, we have

123V
M;

€M;($)).8) O CM;.8; ~ EMI(S)).5; © M8}
so it suffices to prove that
i / NS
dj+10(dj) ~djyy0(d;)™.

But this follows from part (4) of Lemma 2.20 and relation (1).

Assume now that M’ is obtained from M via an isotopy of the gradient v.
By Lemma 2.21, the induced parameterized Cerf decompositions € and €’ are
related by a sequence of isotopies of the framed attaching spheres 3; and of the
diffeomorphisms d;, and reversing framed 0-spheres. First suppose that € and ¢’
are related by an isotopy of 5;. More precisely, let ¢; be an ambient isotopy of
the framed attaching sphere ;. Recall that d ]/ = d; o (¢})71, where ¢} = (¢1)¥,
everything else remains the same. By relation (2),

/
€M;. 8, ©P1 ™~ Y1 0€EM;S;-



264 A. Juhész
However, ¢, is isotopic to the identity, hence @1 ~ Idp( M;)- Using relation (1),
-1
dioey, s, ~djolp) oey, s ~djoem,s,;.

hence fe ~ fer. If C and € are related by an isotopy of one of the diffeomor-
phisms d;, then invariance follows from relation (1) of Definition 1.4. The map is
also unchanged by reversing a framed sphere by relation (5).

Now consider the case when M’ is obtained from M by adding or removing
a regular value. Then € is obtained from € by merging or splitting a product.
Without loss of generality, suppose we are merging the cylindrical W; to W 4.
The cases when W, is cylindrical and when we are splitting a product are
analogous. Recall that §; = dj_1 oSjt1andd; =djyq 0 (dj)s}. Then

4 9.
djoey;s, ~dit10(dj)V oey s .

According to relation (2), applied to d;: (M}, S}) — (M +1,S;+1), we have

s’
(dj)™7 cen; s, ~ em; 1811 ©dj-
Hence, as en; 9 ~ Ide,
/
d; €M, ~ diy10eM; 8,4, °djoem; o,

and the result follows for merging a product.

Finally, suppose that M’ is obtained from M by a left-right equivalence. In this
case, € and €’ are related by a diffeomorphism equivalence ®: W — W. Then, by
the definition of d;,

m
for=[](®it10di o (@]) o em;s))-

i=0
If we apply relation (2) to the diffeomorphism ®;: (M;, S;) — (M/,5}), we obtain
that

(@) e s ~ ey s, 0 (@)

Substituting this into the previous formula, and using the fact that &, ~ Idys and
®,, ~ Idys, we obtain that fe ~ fes. This concludes the proof of Theorem 1.7 in
the case of Cob,,.

For Cob), and Cobg, we apply the second paragraph of Theorem 2.24. In the
case of BSut’, our objects are 3-manifolds with boundary, but the cobordisms are
products along the boundary, hence we only need to consider handles attached
along the interior, and the proof is completely analogous to the case of Cob}. [
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We now restate Theorem 1.8, spelled out in more detail.

Theorem. Let C be a category. Suppose that we are given a functor
F:Man, — C,

and for every oriented n-manifold M and framed sphere S C M, a morphism
Fys: F(M) — F(M(S)) that satisfy relations (1)—(5):
(1) We have Fy.p = 1dFpar), and if d € Diffo(M), then F(d) = Id p ().
(2) Given an orientation preserving diffeomorphism d: M — M’ between
n-manifolds and a framed sphere S C M, let ' = d o S, and let
d®: M(S) — M'(S') be the induced diffeomorphism. Then the following di-
agram is commutative:

F(M) -5 F(M(8))
F(d) F(d%)
l FM/‘S/ l

F(M) Y pr(8)).

(3) If M is an oriented n-manifold and $ and S’ are disjoint framed spheres in M,
then the following diagram is commutative:

F(M) —5 . F(M($))

lFM'S/ \LFM(S)'S/
Frs.s

F(M(S')) —— F(M(S.5)).

@ IfS € M(S) and a(S') intersects b(3) once transversely, then there is a
diffeomorphism ¢: M — M(S)(S) (see Definition 2.17), for which

Fyus),s © Fus = F(o).

(5) Fus = Fys
For a parameterized Cerf decomposition C of an oriented cobordism W, let

m
F(W.C) = [[(F(di) o Fu,s,): F(M) — F(M"). (3.3)
i=0
Then F(W, @) is independent of the choice of C; we denote it by F(W). Further-
more, F:Cob, — C is a functor that satisfies F(d) = F(cg) (see Definition 2.3)
and F(W(S)) = FM,S-
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In the opposite direction, every functor F: Cob,, — C arises in this way. More
precisely, if we let Fyyg = F(W(S)) and F(d) = F(cg), then these morphisms
satisfy relations (1)—(5), and for any oriented cobordism W, the morphism F(W)
is given by equation (3.3).

Now suppose that (C,®, I¢c) is a symmetric monoidal category. Then the
functor F is a TOFT if and only if F:Man,, — C is symmetric and monoidal,
furthermore, given n-manifolds M and N, and a framed sphere S in M, the
diagram

Pym.N

F(M)® F(N)

F(MUN) (3.4)

FM.S®IdF(N)l lFMuN,s

Prr(s).N

FM@S)) ® F(N) ——— F(M(S) U N).

is commutative, where ®4 p: F(A) ® F(B) — F(A U B) are the comparison
morphisms for F.

An analogous result holds for Cob),, and we can avoid S = 0 and framed n-
spheres. In the case of Cobg for n > 2, we need to avoid § = 0 and n-spheres,

together with separating (n — 1)-spheres. Finally, for BSut’, we have a similar
result, and we can avoid S = 0 and framed 3-spheres.

Proof of Theorem 1.8. Suppose that C is a category, F: Man, — C is a functor,
and we are given morphisms Fjs g that satisfy the relations (1)—(5) listed in
Definition 1.4. Then F extends to a functor F: F(G,)/R — C suchthat F(eps) =
Fpys and F(ey) = F(d). By Theorem 1.7, the map ¢: F(G,)/R — Cob, is an
isomorphism of categories, and F o ¢~!: Cob, — C is the desired functor.
We now show that if W is an oriented cobordism from M to M’, then
F oc™Y([W)) is given by equation (3.3), where [W] is the equivalence class of W.
Choose a parameterized Cerf decomposition € of W, consisting of a decomposi-
tion
W = Wo Uy, W1 Up, - Un,,, Wi,
together with framed attaching spheres $; and diffeomorphisms d; from M;(5;)
to M;11. Whenn > 2and W, M, and M’ are all connected, we can assume that
each M; is connected as well by [13, Lemma 2.5]. Then
m
MWD = fe=]]icem.s):M— M.
i=0
and so F o c™Y([W]) = F(W, €), as required.
In the opposite direction, if we are given a functor F: Cob, — C, then

Foc:F(Gn)/R—C
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is also a functor. Hence, if we let F(h) = F(cy,) for adiffeomorphismh: M — M/,
and, given a framed sphere S in M, we define Fyr5: F(M) — F(M(S)) to be
F(W(9)), then these maps satisfy relations (1)—(5). The correspondence is one-
to-one by the following.

Lemma 3.1. Suppose that F arises from a functor F:Man, — C and surgery
morphisms Fps as in Theorem 1.8. Then, for any diffeomorphism h: M — M’,
we have

F(h) = hs.

Proof. Recall that h, is defined as F(cy), where ¢y, is the cylindrical cobordism
(M x I; M x {0}, M x {1}; po, h1).

Then this is in itself a parameterized Cerf decomposition € of a single level, and
so F(cp,C) = F(h)o Fyg = F(h). A

If (C,®,Ic) is a symmetric monoidal category and F:Man, — C is a
symmetric monoidal functor, then the extension F:Cob, — C automatically
satisfies all properties of a TQFT listed in Definition 2.5 (i.e., it is symmetric and
monoidal) as these properties do not involve cobordisms, except we need to check
that the comparison morphisms @7 y: F(M) ® F(N) — F(M U N) are natural.
This follows from the commutativity of diagram (3.4). Indeed, naturality of the
comparison morphisms amounts to the commutativity of the diagram

o
F(M)® F(N) —22 F(M U N) (3.5)
F(V)@F(W)l lF(VI_IW)
¢M/.N/
FM')® F(N')y —= F(M' U N’),
where V is an oriented cobordism from M to M’ and W is an oriented cobordism

from N to N’. It suffices to show this when either V or W is a trivial cobordism,
according to the following diagram:

Pym.N

F(M)® F(N)

F(M UN)

F(V)®F(iN)l lF(VUiN)

’ ®m’N ’
F(M') ® F(N) -2 F(M’ U N)

’ MmN ’ ’
FM)® F(N') —= F(M’' U N’).
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By the symmetry of F, if diagram (3.5) commutes when W is trivial, then it also
commutes whenever V' is trivial. So, it suffices to show that the diagram

Spm.N
F(M)® F(N) —= F(M UN) (3.6)
F(V)®IdF(N)l lF(VUiN)
, NIV ,
FM)Y® FIN)—= F(M'UN)

is commutative for any oriented cobordism V' from M to M’. Let C be a parame-
terized Cerf decomposition of V. Then

F(V)=F(,C = H(F(di) o Fu,s,) F(M) — F(M').
i=0

Since F:Man, — C is monoidal, the comparison morphisms are natural with
respect to diffeomorphisms, hence the diagram

a1, (5;).N

F(M;i(5i)) ® F(N) ———— F(M;(S;) UN)
F(di)®IdF(N)l/

F(Mi+1) ® F(N)

lF(d,‘ uIdy)

PM; 4N
F(Mijy1 UN)

is commutative. Together with the commutativity of diagram (3.4) for the framed
spheres $; in M;, we obtain that diagram (3.6) is also commutative. Hence, we see
that if F: Man,, — C is symmetric and monoidal and diagram (3.4) commutes,
then the extension F: Cob, — C is also symmetric and monoidal; i.e., a TQFT.
This concludes the proof of Theorem 1.8 in case of the category Cob,,.

The results for Cob/,, Cob?, and BSut’ follow from the respective parts of
Theorem 1.7 analogously. O

4. Classifying (1+1)-dimensional TQFTs

Recall that a Frobenius algebra is a finite-dimensional unital associative IF-algebra
A with multiplication u: A ® A — A and a trace functional 8: A — I such that
ker(9) contains no non-zero left ideal of A. Then o(a,b) = 6(ab) is a non-
degenerate bilinear form. In particular, o sets up an isomorphism between A
and A*. Dualizing the algebra structure, we also get a coalgebra structure on A
with counit; we denote the coproductby §: A — A ® A. Note that § is obtained by
dualizing the product A ® A — A, and using the fact that (4 ® A)* ~ A* ® A*
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since A is finite-dimensional. The Frobenius algebra A is called commutative if
the product u is commutative and the coproduct § is cocommutative.

In this section, we give a short proof of the following classical result on
the classification of (1+1)-dimensional TQFTs using Theorem 1.8; see [18]. This
can be viewed as a warm-up for the following section, where we classify (2+1)-
dimensional TQFTs. Here all 1-manifolds and cobordisms are assumed to be
oriented.

Theorem 4.1. There is an equivalence between the category of (I+1)-dimensional
TQFTs and the category of finite-dimensional commutative Frobenius algebras.

Proof. It is straightforward to see that a (1+1)-dimensional TQFT
F:Cob, — Vecty

gives rise to a Frobenius algebra. Indeed, let 4 := F(S'). If S is a pair-of-pants
cobordism from S! 1 S! to S, then the multiplication is given by

F(S):FS'uSH 2 FSH®F(SYH) =4 4— F(S') =4,

where the first map is the natural isomorphism coming from the monoidal struc-
ture of F. If D denotes the cobordism from S! to @ given by a disk, then
0 := F(D). We can also view the disk as a cobordism from @ to S! which we
denote by D . Then F(D)(1) € A is the unit. It is now straightforward to check
that these form a Frobenius algebra. Commutativity follows from the symmetry
of F.

The non-trivial direction is associating a TQFT to a Frobenius algebra. Given a
Frobenius algebra A, we describe the ingredients of Theorem 1.8 needed to define
a TQFT, namely, a symmetric monoidal functor F: Man; — Vectr and maps
induced by framed spheres that satisfy the required relations.

Throughout this paper, for oriented manifolds X, Y, we denote by Diff(X, Y)
the set of orientation preserving diffeomorphisms from X to Y, and we write
Diff(X) := Diff(X, X). Furthermore,

MCG(X) = Diff(X)/Diffo(X)

is the oriented mapping class group of X. The group Diff(Y) acts on Diff(X, Y)
by composition. By slight abuse of notation, we write

MCG(X, Y) := Diff(X, Y)/Diffo(Y),

even though this is not actually a group, only an affine copy of MCG(X) if X
and Y are diffeomorphic, and the empty set otherwise.
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Let Cx = S x {1,...,k}; i.e., the disjoint union of k copies of S!. Given
a closed 1-manifold M of k components, note that M CG(Cy, M) is an affine
copy of the symmetric group Sg. An element of MCG(Cy, M) can be thought of
as a labeling of the components of M by the integers 1,...,k. Given mapping
classes ¢, ¢’ € MCG(Cy, M), their difference (¢')~! o ¢ is an element o (¢, ¢')
of MCG(Cg, Cg), which is canonically isomorphic to Sk.

For a closed 1-manifold M, let F (M) be the set of those elements a of

HA®k

$eMCG(Cy, M)

such that for any ¢, ¢’ € MCG(Cy, M) the coordinates a(¢) and a(¢’) in A®¥
differ by the permutation of factors given by o(¢,¢’) € Si. Notice that the
function a is uniquely determined by its value a(¢) for any ¢ € MCG(Cy, M);
i.e., for any labeling of the components of M by the numbers 1, ..., k. Note that
this construction is an instance of a Kan extension.

Suppose that M and M’ are diffeomorphic 1-manifolds; i.e., they have the
same number of components k, and let d € Diff(M, M’). Given an element
a € F(M) and ¢ € MCG(Cy, M), we define

(F(d)(a)([d] o ¢) = a(¢).

where [d] € MCG(M, M’) is the isotopy class of d.

If M and N are 1-manifolds of k and / components, respectively, then we
define the natural isomorphism @ n: F(M) ® F(N) — F(M U N) as follows.
Let ¢ € MCG(Cg, M) and ¥ € MCG(Cy, N). The mapping class

¢ Uy € MCG(Cgy;, M LUN)

is defined to be ¢ on S' x {1,....k},and on S x {k + 1,...,k + [} it maps
(x,k+i)toy(x,i). Ifa e F(M) and b € F(N), then we let Py n(a ® b) =
aUbe F(M UN), where (a Ub)(¢pUy) =a(p) @b(y) e APCHD We leave
it to the reader to check that the F: Man; — Vecty defined above is a symmetric
monoidal functor.

We now define the surgery maps. A framed 0-sphere in a closed 1-manifold M
of k components is given by an embedding

$:8%x D' = {1, 1} x[-1,1] —> M.

Since we only consider oriented cobordisms, the framing should be orientation
reversing, and is hence unique up to isotopy. So $ is completely determined by a
pair of points $ = {s_, s+}.
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If s_ and s lie in different components M_ and M. of M, respectively, then
we define the map
Fars: F(M) — F(M(S))

as follows. Leta € F(M), and let ¢ € MCG(Cy, M) correspond to a labeling
of the components of M such that M_ is labeled kK — 1 and My is labeled k.
This gives rise to a labeling ¢s of the components of M (5), where the component
arising from surgery on M_ and M is labeled k — 1, while every other component
is unchanged and retains its label. Then Fas g(a) is the element of F(M(5)) for
which Fas s(a)(¢g) is the image of a(¢) under the map

AP*D @ AR A — AP*D ® 4
that multiplies the last two factors using the algebra product of A4; i.e., maps
a1 @ ®ak—@ax—1 ®ag > a1 Q- ® ag— @ (ak—10ax)-

It is straightforward to see that the above definition of Fys g(a) is independent of
the choice of ¢. Indeed, if ¢’ is another labeling such that M_ is labeled k — 1
and M, is labeled k, then Fazs(a)(¢s) and Fas(a)(¢g) differ by the action of the
permutation o (¢s, ¢g) that fixes k — 1, and maps to (¢, ¢’) under the embedding
Sk—1 — Sk. So, by definition, these two elements of A®*~1 define the same
element Fy s(a) of F(Mg).

Now suppose that s_ and s lie in the same component My of M. Then Mg
has k + 1 components. The component M; splits into a component M_ corre-
sponding to the arc of My \ S going from s_ to sy, and a component M cor-
responding to the arc of M \ S going from s4+ to s—. Let ¢ be a labeling of
the components of M such that M; is labeled k. Then we denote by ¢g the la-
beling of the components of Mg where each component of M \ M; retains its
label, M_ is labeled k, and M is labeled k + 1. Givena € F(M), we de-
fine Fars(a)(¢s) € A®K+D by applying to a(¢) € A®K the map A%k — A8*+D
thatsends a1 ®@-- - ®ag_1 @artoa; ®---Qay—1 ®8(ax), where § is the coproduct
of the Frobenius algebra A. As in the previous case, Fis,g(a) is independent of the
choice of ¢.

Surgery along the framed attaching sphere of a 0-handle results in the man-
ifold M(0) = M u S'. Chose an arbitrary labeling ¢ of the components of M
with the numbers 1, ..., k. We obtain the labeling ¢¢ of the components of M (0)
by labeling the new S' component k + 1. Let 1;: A%% — A®*+D be the
map x(x) = x ® 1, where 1 is the unit of A. For a € F(M), we define
Furo(a)(¢o) = tk(a(@)); the map Fyy o is independent of the choice of ¢.
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Finally, a framed 1-sphere in a 1-manifold M of k components is simply an
embedding $: S' < M. Let S be the image of S, then M($) = M \ S. Let ¢ be
a labeling of the components of M such that S is given the label k, and let ¢g be
the corresponding labeling of M(S). Let t;: A®% — A®*—1 be the map given by
extending linearly

(@ @ ®@ax—1 ®ag) =0(ar) a1 @ ag_.

Fora € F(M), let Fyrs(a)(¢s) = tr(a(¢)). Again, this gives a well-defined
map Fyrg independent of the choice of labeling ¢.

Now all we need to check is that relations (1)—(5) of Definition 1.4 hold and
diagram (1.2) commutes for the data defined above. We only give an outline
here and leave the details to the reader. Axiom (1) is straightforward, as if
d € Diffo(M), then[d]op = ¢ € MCG(M), and (F(d)(a))($) = (F(d)(a))([d]o
$) = a(¢): ie.. F(d) = 1dp ).

Now consider relation (2), naturality. We check this in the case where $ =
{s—, s+} is a framed O-sphere with s_ and s lying in different components M_
and M of M, respectively; the other cases are similar. Choose a labeling ¢ of
the components of M such that M_ is labeled k — 1 and M is labeled k. For
ai,...,ar € A, let a be the element of F(M) for which a(¢) = a1 ® --- ® ag.
Then, by definition,

Fys(a)(gs) =a1 @ -+ ® ax— ® (ax—1ax).

Given a diffeomorphism d: M — M’ this induces a labeling [d] o ¢ of M’. Then
(F(d)(@)([d] o ¢) = a(¢p) = a1 ® --- ® ak. Consider &' = {d(s-),d(s+)}.
Under [d] o ¢, the component M’ of M’ containing d(s—) is labeled k — 1
and the component M containing d(sy) is labeled k. Hence, we can use the
labeling [d] o ¢ of M’ to compute the map Fps ¢. This induces the labeling
([d] o ¢)s/, where the component obtained by taking the connected sum of M’
and M/ is labeled k — 1 and every other component retains its label. With this
notation in place,

[Furs o F(d)(@](([d]od)s) = a1 ® -+ ® ax—s ® (ax—1ak).

The diffeomorphism d® maps M_#M to M’ #M ‘+» and on the other components
it acts just like d. It follows that [d®] o ¢5 = ([d] o ¢)s. Furthermore,

[F(d®) o Fus(@)] ([d°] 0 ¢s) = Fus(a)(¢s) = a1 ® -+ ® ax— ® (ax—1ax).

This establishes the commutativity of the diagram in relation (2).
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Now consider relation (3), commutativity; i.e., that
Fus),s © Fms = Fus)s o Fus 4.1)

Here we have several cases depending on the dimensions of the attaching spheres.
This is obviously true when § = $ = 0. When S and $’ are framed 1-spheres
glued along distinct components S and S’ of M, then let ¢ be a labeling of M
such that S is labeled k and S’ is labeled k — 1. As above, let a € F(M) be such
that a(¢) = a; ® -+ ® ag. Then

[Fumes),s © Fus(@)](ds,s) = 0(ax—1)0(ax) a1 ® -+ ® ax_.

On the other hand, let ¢’ be the labeling of the components of M where S is
labeled kK — 1 and S’ is labeled k, otherwise it agrees with ¢. The permutation
o(¢,¢’) € S is the transposition of k — 1 and k, and so

a(@)=a1 Q@ ®ar—r ax ® ar_1.
It follows that
[Fuesn.s © Fus (@))(bg g) = 0(ar)0(ax—1) -a1 ® -+ ® ag—a.

Since ¢g.5 = ¢é,,$, the result follows from the commutativity of I in this case.
When ' = 0 and $ is a 1-sphere in a component S of M, then choose a
labeling ¢ such that S is labeled k. Then

[Fams),0 © Fus(@)](¢s,0) = 0(ag) a1 ® - @ ag—1 ® 1,

where ¢s o labels the components of M \ S just like ¢, and the new S !-component
is labeled k. To compute Fys(g),s © Fu,0(a), first note that

Fuo(a)(¢o) =a1 ® - Qag ® 1.
If 7 is the transposition of k and k + 1, then
Fuo@)(togy) =a1 Q- - ®ar—1 @1 Q ag.
As T o ¢pg labels S with k + 1,
[Frm0),s © Fmo(@)]((t 0 do)s) = O(ax) a1 ® - ® ax—1 ® 1,

and (7 o ¢o)s = ¢g,0, Which proves equation (4.1) in this case.
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Now suppose that S§ = {s_, s4} is a framed 0-sphere in M. The cases when
$ = 0 or when §' is a I-sphere disjoint from $ are similar to the previous
one. When §' = {s’ s’ } is also a O-sphere, we have four cases depending on
whether S U § intersects M in ¢ = 1,2, 3, or 4 components. The case ¢ = 1
splits into two subcases depending on whether $ and $ are linked. When they are
linked, both sides of equation (4.1) will be of the form a1 ®- - -®ar_1 @ (Lod(ax)),
where p is the product and § is the coproduct of 4. When $ and $’ are unlinked,
then one side becomes

a1 ® - Qar—1 ® (§ ® Idg)(8(ax)),

while the other side is
a1 Q-+ Qax—1 @ (Idg ® 8)(8(ak)).

The two coincide by the coassociativity of the coalgebra (4,5). When ¢ = 2
and one of S and $' lies in a single component M of M, while the other one
intersects M, in one point, then the equality boils down to the fact that § is a left
and right A-module homomorphism; i.e.,

(1 ® Idg)(ar—1 ® 8(ax)) = (8 o p)(ak—1 ® ax) = (Idg ® p)(S(ar—1) ® ax).

If ¢ = 2 and S, &’ both intersect the same two components of M, then both sides
of equation (4.1) become a; ® -+ ® ax—» ® (6 o w(ax—1,ax)). Whenc = 2
and $ and ' lie in two distinct components of M, then the result is clear as we
have two coproduct maps acting on distinct components of M. When ¢ = 3
and $ and S’ share a component, then the result follows from the associativity of
the algebra (A, u). When ¢ = 3 and S occupies two components and $’ a third,
then we have a non-interacting product and coproduct. The case ¢ = 4 is also
straightforward as we are dealing with two non-interacting product maps.

We now check relation (4), cancelation. When S = 0 and $’ ¢ M(0) is a 0-
sphere that intersects the new S! component in one point, then the result follows
from the fact that 1 is a left and right unit of A. Now suppose that $ is a 0-sphere
and $’ C M(S) is a 1-sphere that intersects »($) in one point. Then $ has to occupy
a single component of M that splits into the components M_ and M when we
perform surgery along S, and $' maps to either M_ or M. The result follows
from the fact that 0 is a left and right counit of the the coalgebra (4, §); i.e., that

(O ®1dg) 08 =1ds = (Id4 ® ) 0 6.
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Considerrelation (5). If $ = {s_, s+ } and s_ and s lie in different components
of M, then Fyrs(a)(¢p) = a1 ® -+~ ® ar_» ® ax_ax. In S we reverse s— and s,
and so Fy,5(a)(¢) = a1 Q@ -+ ® ak—» ® axak—1. These coincide as the Frobenius
algebra is commutative. When s_ and s occupy the same component of M, then
Fus = Fys follows from cocommutativity.

Finally, the commutativity of diagram (1.2) follows automatically from the
construction of F and the surgery maps and does not impose any additional
restrictions.

As explained by Kock [18, p. 173], given a morphism from the TQFT F to
the TQFT G; i.e., a natural transformation n: F = G, the map ng:1: F(S!) —
G(S!) is a homomorphism of Frobenius algebras. Conversely, given commutative
Frobenius algebras A and B and a homomorphism #: A — B, we can extend
this to a natural transformation 1 between the corresponding TQFTs F and G.
Indeed, given a 1-manifold M of k components and a € F(M), choose a mapping
class ¢ € MCG(Cy, M). Then we let nas(a)(¢p) = h®*(a(¢)) € B®*, where
h®k: A®k _ B®k  The naturality of 7 for diffeomorphisms and surgery maps
follows from the fact that 4 is a homomorphism of Frobenius algebras, and
naturality for arbitrary cobordisms then follows via equation (1.1) that defines
the cobordism maps.

The two functors we defined between the category of (1+1)-dimensional TQFTs
and the category of commutative Frobenius algebras are inverses of each other up
to natural isomorphism, hence they are equivalences between the two categories.
This concludes the proof of Theorem 4.1. O

5. The algebra of (2+1)-dimensional TQFTs

In this section, we apply Theorem 1.8 to the study of (2+1)-dimensional TQFTs.
Note that Kontsevich [19] outlined a correspondence between (1+1+1)-dimensional
TQFTs and modular functors. As to be expected, the full (2+1)-dimensional
classification leads to an algebraic structure more complicated than in the (1+1)-
dimensional and (1+1+1)-dimensional cases; cf. Proposition 1.1. The additional
difficulty comes from the fact that the mapping class groups of connected 2-mani-
folds are non-trivial, unlike for connected 1-manifolds. However, we can make
considerable simplifications, leading to a structure just barely more involved than
commutative Frobenius algebras. We expect that the algebra presented below can
be further simplified; this is the aim of future research.
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5.1. Canonical surfaces and framed spheres. For every g > 0, let X, be a
fixed oriented surface of genus g obtained as the connected sum #&(S! x S1),
where S! = {z € C:|z| = 1}, and let My; = MCG(Z,). The connected sums are
taken at the point (1, 1) of component i and the point (—1, 1) of component (i +1).

Letl; = (S! x {—1}); be a longitude of summand i, while mg = ({—1} x S1);
is a meridian of the first summand, and m, = ({1} x S!), is a meridian of the last
summand. Furthermore, fori € {1,..., g — 1}, consider the curves

mi = ({1} x SHi#({—1} x §Viq1.
Ifj e{l,..., g}, we write
sj = { (exp(g cos B/—1),exp(esinf~v/—1)):0 € S1} (ST x §Y);;

this is the connected sum curve between the j-th and (j 4 1)-st S' x S! summands
for j < g. Furthermore, s, is an inessential curve in the last summand (S x S1),.
Finally, let so be an inessential curve in the first summand oriented from the left.
Each s; is oriented as the boundary of the j-th S1 x S! summand; i.e., as the
boundary of the component of X, \ s; with smaller x-coordinates. All the above
curves are naturally parameterized by S!, and if we fix a thin regular neighborhood
of each, we can and will view them as framed spheres S! x D! < X,. For an
illustration when g = 4, see Figure 2.

Figure 2. The curves m;, [;, and s;, and the points p4, g4, and pff on the standard
surface ¥4 of genus four.

Let p; = (—1,1); and ¢; = (1, 1), be points on the first and last S! x S
summands of X, respectively. These have neighborhoods parameterized by D2,
such that restricting these to S!, we obtain the fixed parameterizations of —s
and —sg. For i, j € Zxo, let

Pi; =1{qi. pj} € Zi UZ;.

This is a framed O-sphere with the framing S°® x D2 < X; U X, given by
the parameterizations of the disks containing ¢; and p;. Furthermore, for every
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g € Zsp, let Py, = {q;,q;} be the framed sphere given by two points very
close to g, both lying on (S! x {1}), with framing obtained by translating and
shrinking the normal framing of ¢,, and also reflecting it in case of q;.

From now on, we will use the following isotopically unique identifications:
The diffeomorphism X, (/) ~ X,_; for g > 0 maps the disk obtained by
performing surgery along /, on the component of ¥ \ s,—; containing /, to the
disk bounded by sg_; in X,_;, fixing s,_; pointwise. Furthermore, it maps the
other component of Xz \ sg—1 to Z4_; \ 5g—1 isometrically. The diffeomorphism
Y¢(Pg) ~ Xg41 maps the D! x S glued during the surgery along P, to the
neighborhood of mg4; in X4 given by its framing. Furthermore, it is the
identity on the component of X \ s, disjoint from P, and maps the result of
surgery along P, on the disk component of ¥ \ s¢ to the component of X g1\ 5,
containing mg 1 isometrically. The identification (X2; U X;)(P; ;) ~ X;4+; maps
the D! x S! glued during the surgery along P; ; to the neighborhood of the
circle s; in X;4; given by its framing. Furthermore, it maps X; \ N(g;) and
X; \ N(pj) to the respective components of ¥; 1 ; \ N(s;) isometrically. Finally,
the diffeomorphism X, ;(s;) ~ X; U X; maps the components of X, ; \ N(s;)
to (Z; \ N(¢;)) U (Z; \ N(p;)) isometrically, and the D? x S° introduced during
the surgery along s; to N(g;) C X; and N(p;) C ;.

5.2. Assigning a J-algebra to a TQFT. Suppose that the functor
F:Cob, — Vecty
is a TQFT. We associate to it a tuple
J(F)=WA,a,w,{pi:i € N})

as follow. We write
Ag = F(Zg).

This vector space comes equipped with a representation
pg: Mg —> Aut(Ay).

Indeed, given d € Diff(Xy), let pg(d) = F(cq): F(£g) — F(Xg), where ¢4 is
the cobordism associated to d as in Definition 2.3. We define the involution

xgi Ag —> Ag

as *g = pg(lg), where 1, is mw-rotation of X, in R with center at 0 about the
z-axis
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As defined in Section 5.1, there is a natural identification between X (/4) and
X ¢_1,and so we can view W(lg), the trace of the surgery along /., as a cobordism
from X, to X,_1. We write

ag = F(W(lg)):Ag — Ag_1.
Similarly, we can identify X (s;) with X; LI ¥, _;, and hence we obtain a map
8j.g—j = F(W(sj)): Ag —> Aj @ Ag—;

for every j € {0,..., g}, where we map F(X; U X,_;) to F(S;) ® F(Se—j) =
Aj ® Ag_; via the monoidal structure of F. We can canonically identify
(2; u Zj)(P;,;) with ;4 ;, hence we obtain a map

pij = FW(Pi;)): Ai ® Aj — Ai;.

Again, we used the monoidal structure of F Furthermore, X, (IPg) is canonically
diffeomorphic to X, 4, hence we obtain a map

wg 1= F(W(Pg)): Ag —> Ag+1.
The ball D3, viewed as a cobordism from X = S? to @, gives rise to a map
1:Ag — T,

while viewing D3 as a cobordism from @ to Z, gives a map

& F — Ap.
Finally, we set A = ;e Ai> 1t = DB jew Hi.j» 8 = D jenbij @ = Dien i
0w = P;enwi, and A := (A, 8, 1,%). For an illustration of the above

operations, see Figure 3.

In what follows, we synthesize the above data into a new algebraic structure
called a J-algebra. This consists of the split GNF*-algebra (A, a, ), together
with the mapping class group representation {p;:i € IN}. We proceed to give the
relevant algebraic definitions.

5.3. Split GNF*-algebras. Nearly Frobenius algebras were introduced by Co-
hen and Godin [7]. They are like Frobenius algebras, but without the trace func-
tional, and hence lack the non-degenerate bilinear pairing that identifies the al-
gebra with its dual. Note that a non-degenerate pairing forces every Frobenius
algebra to be finite dimensional, whereas this is not the case for nearly Frobenius
algebras. We now introduce a graded involutive version of this notion.
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Figure 3. Given a (2 4 1)-dimensional TQFT F, we obtain the algebraic operations «, w,
38, 4, &, and t by applying F to the traces of the surgeries in the figure.

Definition 5.1. A graded involutive nearly Frobenius algebra (or GNF*-algebra
for short) is a tuple A = (4, u, 8, &, T, *), where

is an IN-graded IF-vector space such that each A; is finite dimensional. Further-
more,

(1) p:A® A — A is a graded linear map, where A ® A is the graded tensor
product; i.e.,

n
(A A)p =P 4i ® Ayi < AQF 4,

i=0
(2) pis associative and &: I — Ag is a left unit for wu,

(3) 6:A - A ® A is a graded linear map that is coassociative and 7: 49 — F
is a partial left counit for § in the sense that (t ® Idg4 ;)o 8o,; = Idy ;» where
8ij=mjodandm j;: A® A — A; ® Aj is the projection,
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(4) the following diagram is commutative (Frobenius condition):

IdA,- ®8; k
Ai @ Ajik A ®4; ® Ak
lﬂvi.j-i-k l“i.j@)IdAk
Sitj.k
Aitj+k Aivj ® Ag,

(5) *: A — Ais a grading-preserving involution that is an antiautomorphism of
(A, u, 8), and such that it is the identity on Ao and A;. More concretely,
xou=poT,
dox=Tol,
where T = ;% _o Ti.j,and T; j(x ® y) = y* @ x* forx € 4; and y € 4;.

We shall write j1; j = tl4;04;-

Definition 5.2. A modular splitting of the GNF*-algebra A consists of a degree 1
endomorphism w: A — A and a degree —1 endomorphism a: A — A such that
they are both left (A4, n)-module homomorphisms, and such that

Sij—1oaiy; = (Idg; ® aj) 06y 5,
Sij+10wi+; = (Idg; ® wy) 0 6; 5,

aow = Idy,

where o; = aly; and w; = wly,. We call the triple (A, o, ®) a split GNF*-algebra.
Definition 5.3. Let

A, a,w)=(A,1,8,8,1,%, 0, w)
and
(.A/,Ol/, w/) — (A/,,U,’,S’,s/, ‘E/, *’,o/,a)’)
be split GNF*-algebras. A homomorphism from (A, o, ®) to (A',a’, ') is a

graded linear map h: A — A’ that intertwines the operations u, 8, ¢, t, *, «,
o with @/, 8, ¢/, ¢/, ¥/, &/, ', respectively.

The following straightforward lemma restates the definition of a split GNF*-
algebra in terms of the operations w; ;, §;,j, ;, and w;.
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Lemma 5.4. Let (A,a,w) be a split GNF*-algebra. Then the product | is
associative with left unit :

Hi+jk o (i,j ®Iday) = i j+x o (Ida; ® pjg),

(5.1
Ho,j © (e ® IdAj) = IdAj.
The coproduct § is coassociative with left counit t:
(Idg; ® 8jk) © i, j+k = (8i,j ® Iday) 0 8itjk. 52)
(t ® Ida;) 0 0,7 = Ida, . '
The operations p and § satisfy the Frobenius condition
Sitjde © Mij+k = (i, ®1dgy) o (Idg; ® 8j). (5.3)
The operation * is an anti-automorphism:
Wi (X ® ) = pji(y ® x)*,
(5.4)

Tijo8i;(x) = 8ji(x™),

where T; j: A; ® Aj — A; @ Aj is given by T; j(x @ y) = y* ® x*. Furthermore,
* is involutive, and is the identity on Ay and A;.
We have
ait1 0 w; =1Idy;,, (5.5)

and the maps o; and w; are compatible with the product and coproduct in the
Jollowing sense:

Wi+j 0 Wi,j = Ri,j+1 0 (Idg; ® wj),

®itj o pij = pij—1 0 (Idg; ® o),
1T 1] 1] J (56)
Sij+10wi+j = (Idg; ® ;) 04y,

Sij—1oait; = (Idg;, ® aj) 0 ;5.

In the opposite direction, suppose that we are given a sequence of finite-dimen-
sional F-vector spaces A; fori € N, together with products p; j: Ai®Aj — Aitj,
coproducts 8; j: Ai+j — Ai ® Aj, aleft unit e: I — Ay, a left counit t: Ay — I,
embeddings w;: Aj — A;+1, projections o;: A; — A;_1, and involutions x: A; — A;
that satisfy equations (5.1)~(5.6). If we set A = D, Ai, b = Dy jew Hirj»
§ = EBMG]N 8ij, @ = Pen i, and w = Py wi, then (A, 1,8, ¢e, T, %, 2, w) is
a split GNF*-algebra.
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Proof. ltis clear that if (A, «, ®) is a split GNF*-algebra, then the operations 1;_;,
8i,j, & 1, a;, and w; satisfy equations (5.1)—(5.6).

Now consider the opposite direction. It is also straightforward to check that
(A, 1,38, &, x) satisfy the properties listed in Definitions 5.1 and 5.2 required of a
split GNF*-algebra. The only non-trivial part is showing that § is coassociative;
i.e., that (§®Idg) o8 = (Idg ® §) 04. Restricted to A, the left-hand side becomes

D @iy ®1da, )0 8ini = > (Ida; ® §i—jn—i) ©8jn—j

i=0j=0 i=0j=0

n n
=> > (1dg; ® §i—jn—i) ©8jn—j

J=0i=j

n n—j

= > (da; ® 8uic—j) © 8jn—;

j=0k=0

n 1
=3 (da,_; ®81—k.x) © Sni-

1=0 k=0
which is exactly the right-hand side restricted to A4,. Here, the first equality follows
from the coassociativity (5.2) of the (2+1)-algebra operations §; ;, followed by
changing the order of summation, and finally settingk =n—iand/ =n—j. 0O

Proposition 5.5. Let F: Cob, — Vecty be a TQFT, and let
J(F)=WA,a,w,{pi:i € N})

be the associated tuple as in Section 5.2. Then (A, a, w) is a split GNF*-algebra.

Proof. By the second part of Lemma 5.4, it suffices to check that the data A;,
Wi, j>0i ), € T, 0, w; assigned to F as in Section 5.2 satisfy equations (5.1)—(5.6).
According to Theorem 1.8, the TQFT F satisfies relations (1)—(5) of Defini-
tion 1.4. Together with the monoidality of F, these imply equations (5.1)—(5.6)
of Lemma 5.4 as follows.

First, consider equations (5.1). The equation

Ri+jk © (i; ®1day) = pijic o (Ida; @ pjk)
follows by applying relation (3) to X; U X; U X with S = P; ; C £; U X; and
S’ =P, C X; U Xy, together with the pentagon lemma of monoidality. To show
that
Ho,j © (e ® IdAj) = IdAj,
we apply relation (4) to X; with§ =0and $' =Py ; C X U X;.
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Now consider equations (5.2). To show that
(d4; ® 8;6) © 8i,j4k = (8i,j ® Iday) 0 8it jik,
apply relation (3) to X;4 ;¢ with $ = s; and $' = 5,4 ;. For
(t ®1dy;) 0 o,; = Idg,,

apply relation (4) to X; with S = s¢ and $’ being the 2-sphere split off by so.
Equation (5.3), the Frobenius condition

Sitjk 0 Mij+k = (i,j ®Idg, ) o (Idg; ® 8jx),

follows from applying relation (3) to X; U X, 14 with S = P; jix and $' = s5; C
Xtk
For equations (5.4),

pij (XF ® y*) = pji(y ® x)",
follows from relation (2) by applying it to X; U X; with $ = P;; and the

diffeomorphism d: Z; U X; — X; U X; being ¢; U ¢, followed by swapping the
two components. Then note that d S =y j» and the result follows. Now consider

T;,j o6 j(x) =6i(x"),

where T; j: A; ® Aj — A; ® A; is givenby T; j(x ® y) = y* ® x*. This also
follows from relation (2) applied to ;4 ; with § = s; and d = (;4 ;. Furthermore,
*; is involutive since ¢; is, and ¢ = Id4, and *; = Id4, as ¢o and ¢; are isotopic
to the identity, together with relation (1).

To prove equation (5.5),

a1 0w; =1dg,,

we apply relation (4) to X; with $ = IP; and §’ = [;; that form a canceling pair.
The last set of equations is (5.6). The equation

Witj O i j = Wi,j+1 0 (Idg; ® wj),
follows from applying relation (3) to X; U X; with S =P; ;j and §' = P; C X;.
Similarly,

Aigj O Mi,j = Wi j—1 0 (Idg; ® o))
follows from relation (3) applied to X; U X; with S =P; ; and ' = [; C X;. To

obtain
8ij+1 0 wit; = (ldg; ® wj) 0 6i 5,
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apply relation (3) to X;4; with S = P;4; and S’ = ;. Finally,
Sij—100iy; = (Idg; @ aj) 06y ;
follows by applying relation (3) to ¥;; along $ = /;; and &' = s;. |

Lemma 5.6. If A is a GNF*-algebra, then ¢ is also a right unit, t is a partial
right counit, and

Skij O Mjtk,i = (da, ® pji) o (6,; ® Idg;). (5.7

If (o, w) is a modular splitting of A, then A = ker(a) & Im(w), both summands
are left (A, uw)-submodules, and w o « is projection onto Im(w) along ker(a).

Proof. By applying = to the equation u(e(t) ® a) = a fort € Fanda € A, we
obtain that u(a* ® e(t)) = a*, as €(t) € Ap on which * acts as the identity, and
hence (e ® €(t)) = a for every a € A.

Similarly, since 8y, ; o * = Tj9 o 6,0, we have

* = (t®Idg;) 080, j0x =(r®Ids;)0Tj00850=(*x®71)060
as T o x = 7 since * acts as the identity on Ay. Applying * to both sides,
(IdAj ®1)o 0 = IdAj.
To prove equation (5.7), we use the sumless Sweedler notation
S () = 3y © (.
where x € A;;,4,. Then condition (4) of Definition 5.1 can be written as
Wij (@ ® b)) ® by = pij k(@ ® b)) ® pijila ® b)G,

foreverya € A; and b € A; . Applying T to both sides,

(by)* ® i j (@ ® by)" = (i j+1(@ ® D))" ® (i j (@ ® D))"

Since * is an (A, §)-antihomomorphism, (X*)ﬁ) ® (x* ?2) = (x(m2))* ® (x?l))* for
every x € A4, hence

b)) ® Wi (M)} ® @) = (i j 4k (@ ® D))y ® (i j k(@ @ b))y
= Witk (" ® a*)fy) @ pjpiei(b* @ a*) 3.

As this holds for every b* € A;; and a* € A;, we obtain equation (5.7).
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For the last part, ker(«) and Im(w) are left (A, p)-submodules since « and
are left (A, u)-module homomorphisms. Since « o w = Id4, we see that « is
surjective and o is injective. Furthermore, the endomorphism w o« is a projection
since (woa)o (wow) =wow. As a is onto, Im(w o &) = Im(w), and since w is
injective, ker(w o @) = ker(«). It follows that A = ker(«) @ Im(w), and that w o«
is projection onto Im(w) along ker(«). O

Remark 5.7. Since w is not necessarily *-invariant, the splitting A = ker(x) &
Im(w) is not *x-invariant in general. If we introduce the notation @w(a) = w(a™)*,
then

(@) ®b) = pb* @ w(@)* = (wopub* ®a*)* = ouab).

So, instead of w, it is @ thatis aright (A4, )-module homomorphism, and similarly
for (4, §).

Remark 5.8. Given a split GNF*-algebra (A, o, w), consider the direct system of
vector spaces
wi,j = wj_10---owj: A —> Aj

fori < j,and let
o0
MZIi_H)lAi :]_[Ai/N,
i=0

where x; ~ x; for x; € A; and x; € A; if and only if there is some k > i,
J for which w; ¢ (x;) = wj(x;). Since each w; is injective, we can choose k =
max{i, j }. Furthermore, we can canonically identify A; with a subspace M; of M,
under which w; becomes the embedding M; < M; ;. For simplicity, we also use
the notation w; for this embedding. Using the same identification, «; descends to
amap o;: M; — M;_, which we also denote by «;. Since o; o w;—1 = Idpy;,_|,
we have o; (x) = x for every x € M;_y;i.e., wi—1 o a;: M; — M, is a projection
onto M;_1.

Next, we show that the y; ; descend to a well-defined product u;: A; QM — M.
Givenm € M, we define u(a ®m) for a € A; by taking an arbitrary representative
x € Aj of m, and we let u(a ® m) = p;,j(a ® x). The equivalence class of this
product is independent of the representative x. Indeed, given two representative
x ~ x"such that x € 4;, x" € A, and w; x(x) = x’, we have

Migk(a @ wj k(X)) = it itk o Mi,j(@®x)~ i jla®x)

as w is a left (A4, u)-module homomorphism.



286 A. Juhdsz

Similarly, the maps §; ; descend to a map §;: M — A; @ M as w is a left
(A, §)-comodule homomorphism. In particular, for m € M, we define §; (m) to be
i n—i (x) for some representative x € A, of m. We now show this is independent
of the choice of x. Indeed,

Sin—i(x) ~ (Idg; ® wp—i) 0 8; n—i(x) = i n—i+1 0 wu(x).

It follows that M is a left A-module.

By taking the direct limit of A; along the maps @;, we get aright A-module M.
It follows from Remark 5.7 that % provides an anti-isomorphism between M
and M ; in particular, M = M°P.

Next, we present an alternate, simpler definition of a modular splitting. Let
1:=e(lp) € Ao \ {0}

be the unit of the GNF*-algebra A.

Lemma 5.9. There is a bijection between modular splittings (a, w) of the GNF*-
algebra A, and pairs of elements (w, 1) € Ay x A} for which

(I, ® 1) 0 80,1 (w) = 1.
Given (w, A), we get (o, w) by the formulae

w;i (X) = pi1(x ® w)
and

ai(x) = (Idg;_, ® A) 0 8i—1,1(x).

In the opposite direction, given (a, ), we let w = wo(1) and A = t o a;.

Proof. Suppose we are given a modular splitting («, w) of A, andletw := wo(1) €
A1. Then

Kin(x @ w) = i 1(x ® wo(1)) = w; o iolx ® 1) = w;(x)

foreveryi € IN and x € A; since w is a left (A4, u)-module homomorphism and 1
is a unit. Hence, the element w € A; completely determines w; for every i € IN.
Indeed, if we define w; by the formula

wi (x) 1= Wi 1(x @ w),
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then it is a left (A4, u)-module homomorphism by the associativity of u; ;:
Wi+j © i j (X, ¥) = it (i, j(x, y), w)
= Wi, j+1(x @ pji(y, w))

= M,-,H_l(x ® CU/()’))

Furthermore, o is a left (4, §)-comodule homomorphism as § is a right (A4, w)-
module homomorphism according to Lemma 5.6:

8i,j+1 0 Wit (X) = 8i j+1 0 Pitj(x, w)
= (Idg; ® pj1) o (i,; ®ldag;)(x ® w)
= (Idg; ® wj) 0 &, (x).
Similarly, if we are given the splitting (¢, w) and let A = 7 o &1, then
(Idg,_, ®A)08i—1,1 = (Idg;_, ® 1) o (Idg;,_, ® @1) 0 ;1,1
= (Idg;_, ® 1) 08i—1000;
= q;

as « is a left (A4, §)-comodule homomorphism and 7 is a counit. So A € A7
completely determines ¢; for every i € IN via the formula

o;(x) :=(Id4,_, ® ) 0 8i—11.

The o defined this way is a left (A4, i)-module homomorphism by the Frobenius
condition (4):

ditjopi; = (Ida; ;_; ® A)08itj—1,10 i
= (Id4; ;_, ®A) o (i, j—1 ®1dg,) o (Idg; ® j-1.1)
= pij—1 0 (Idg; ® a;).
Similarly, « is a left (A4, §)-comodule homomorphism by the coassociativity of §:
Sij—10@iy; =6 j—10(dg; ;,_, ®A)0ditj—1.1
= (Idg;, ® Id4,;_; ® 1) 0 (8;,j—1 ® Ida,) 0 8i4j-1.1
= (Idg;, ® Id4,_, ® A) o (Idg; ® §;—1,1) 0 d; ;
= (Idg; ® @j) 0 ;5.
Finally, consider the condition ;41 o w; = Idy4;. Since

i1 0wi(X) = a1 011 (x @ w) = pio(x @ ar(w)),
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this is equivalent to having p; o(x ® o1 (w)) = x foreveryi € N and x € 4;. In
particular, if we seti = 0 and x = 1, we must have «; (w) = 1, and clearly this is
also sufficient. But oy (w) = (Id4, ® 1) 080,1(w), so the condition &; 41 ow; = Idy;
is equivalent to

(Iday ® A) 0 80,1(w) = 1.

This concludes the proof of the lemma. O
Remark 5.10. From now on, we use the notation («, w) and (w, A) interchange-
ably for a modular splitting. Notice that the polynomial algebra IF[w] is a subal-
gebra of (A4, 1), and F[A] is a subalgebra of (A%, §*).

We saw in Section 5.2 that if the split GNF*-algebra (A, a, ) arises from
a (2+1)-dimensional TQFT F, then the map w; geometrically corresponds to
performing a surgery on a genus i surface ¥; along a framed pair of points PP;,

while the operation w;,; amounts to connected summing ¥; with 72, and w €
F(T?).

5.4. Mapping class group representations on split GNF*-algebras. Let
F:Cob, — Vecty

be a TQFT, and let
J(F)=A,a,w,{pi:i € N})

be the associated tuple as in Section 5.2. Then the mapping class group actions p;
on A; are compatible with the GNF*-algebra structure of (A, o, @) in a sense that
we now formalize.

Definition 5.11. Let $: S* x D"~* < M be a framed sphere in the #-manifold M.
Then let
Diff(M,S) = {d  Diff(M):d o$ = S},

and we set MCG(M, $) = Diff(M, 5)/Diffy(M, ).
Note that there is a natural forgetful map
fs: MCG(M, $) — MCG(M).
For d e Diff(M, S), the induced map d° € Diff(M(S)) fixes the framed belt sphere
§*: DKL §nk+1 < py(S)
of the handle attached along 3, hence

d® e Diff(M(S), $*).
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As d%5" = d, this correspondence gives an isomorphism
MCG(M, S) =~ MCG(M(S), $%). (5.8)
We denote the image of ¢ € MCG(M, $) under this isomorphism by ¢®.

Definition 5.12. Let $ be a framed sphere in the manifold M. Suppose we are
given representations p: MCG(M) — Aut(V) and p’: MCG(M(S)) — Aut(V’).
Then we say that a linear map h: V — V'’ is MCG(M, S)-equivariant if

hop(fs(9)) = o' (fs= (¢%)) ok

for every ¢ € MCG(M, S).

Definition 5.13. Let (A, o, ) be a split GNF*-algebra. Then a sequence of
homomorphisms
{pi:M; — Aut(4;)|i e N}

is called a mapping class group representation on (A, o, w) if it satisfies the fol-
lowing properties: The map pu; ; is MCG(X; U X;, P; j)-equivariant and §; ;
is MCG(Z; 4, si)-equivariant. Furthermore, *|4, = p(t;), and the representa-
tions p; satisfy the following conditions:

(1) p1(71)(w) = w and p1 (tm) (W) = w,
(2) Aopi(t1) =Aand Ao pi(y) = A,
() ajiy10piv1(Lit1)ow; =wj—joa; fori > 1,
(4) dnt10 pnt+1(0n+1,i) © Wn = in—i ©8ip—i forn € Nand0 <i <n,
where w = o1(1) and A = 7 o &g are as in Lemma 5.9, and
e (; is w-rotation of the standard ¥; in R> with center at 0 about the z-axis,
e 1 is m-rotation of the standard torus in R3 about the x-axis,

e 7, 7y € Diff(T?) are right-handed Dehn twists about the meridian and
longitude, respectively,

e [; eDiff(X;) swaps /; and [;_; counterclockwise, and Lﬁ"’l"‘l eDiffy (Z;-»),

® Op+1, — dnp+1 © hn+1,i € Diff(2n+1), where An+1 is the identity on the
componentof X, \s, containing p, 1, and it satisfies a, +1(Mp+1) = l14+1
and ay41(ln+1) = —mp41, while hy11; € Diff(X,41) swaps m,4+; and
si#my+, for some connected sum arc, and (h,41,;)™+15i%mn+1 s isotopic
to the identity. For more detail, see the proof of Proposition 5.16 and Figure 4.
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Figure 4. Given a TQFT, this figure illustrated why the condition o, 1 © pp+1(0n41.i) ©
®n = Wi n—i o8 n—; holds. Note that both ¥ and v% are isotopic to Idy,,.

Definition 5.14. A J-algebra is a four-tuple
(A a0 {pi:i € N}),

where (A, a, ®) is a split GNF*-algebra and {p;:i € IN} is a mapping class group
representation on it.

Definition 5.15. A homomorphism between two J-algebras is a homomorphism
of the underlying split GNF*-algebras that intertwines the mapping class group
representations. The direct sum of two J-algebras is the direct sum of the under-
lying split involutive GNF*-algebras, together with the direct sum of the mapping
class group representations. Then J-algebras together with such homomorphisms
form a symmetric monoidal category that we denote J-Alg.

Proposition 5.16. Let F: Cob, — Vecty be a TQFT. Then the tuple
J(F)=A,a,w,{pi:i € N})

defined in Section 5.2 is a J-algebra.
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Proof. By Proposition 5.5, the tuple (A,«,w) is a split GNF*-algebra. We
now show that {p;:i € IN} is a mapping class group representation on it. It
follows from Lemma 2.6 that the map o, is MCG(Z, [,)-equivariant, §; ; is
MCG(Z;+;, si)-equivariant, u; ; is MCG(Z; U X;, IP; ;)-equivariant, and finally,
wg is MCG(X,, Pg)-equivariant (see Definition 5.12).

The equation pq(#1)(w) = w is equivalent to p;(¢1) o @y = wy. Let ¢y be n-
rotation of Xy about the x-axis. This satisfies t; = (f)'°, tg o Py = Po, and is
isotopic to Idsx,,. Hence, if we apply relation (2) of Definition 1.4, naturality of the
surgery maps, to ¢y and Py, then we obtain that

p1(t1) o wo = Fy p, © po(to) = wo,

as Fy p, = Fxo,p, = wo by relation (5) of Definition 1.4.

Similarly, p; (7, )(w) = w is equivalent to p1 (7)) © @y = wp. This holds since
we can apply the MCG(Xy, Py)-equivariance of wy to the diffeomorphism d that
is a Dehn twist on X about a circle that separates the two points of Py, which is
isotopic to the identity in MCG(Xy) (but not in MCG(ZX, IPy)), and because d Po
is isotopic to .

The equation A o p;(¢1) = A is equivalent to oy o p1(¢1) = «;. This, in turn,
follows from relations (2) and (5) of Definition 1.4 applied to ¢; and [, as (t;)! = ¢,
is isotopic to Idyx,,. Similarly, A o p1(r;) = A is equivalent to a; o p1(17) = a1,
which follows from the MCG(X, /;)-equivariance of «; applied to ;.

Now consider the condition «;+1 © pj+1(Li+1) © w; = w;j—1 o ;. Relation (3)
of Definition 1.4 for X; with § = /; and $’ = P; yields

Fyi).5 0 Fr8 = Frp 50 Fy 0

Under the identification X;(/;) ~ X;_;, the framed sphere P; becomes P;_q,
giving Fx,s)s © Fy; s = wi—1 o ;. To compute Fy, s, we apply the nat-
urality relation (2) to the diffeomorphism L;41: ;41 — ¥;4+; and the framed
sphere ;. As Li+1(l;) = li+1 and (Liy1)b is isotopic to Idy; after the nat-
ural identifications X¥;+1(/;) ~ X; and X;+1(li+1) ~ X;, we obtain that
Fsi 10 = i1 0 pit1(Lit1). So

Fs, 180 Fs; 5 = dit10piv1(Lit1) o w;.

Finally, we prove that o, 4+1 © Pp+1(On+1,i) © Wy = Win—i © i n—i holds for
every n € N and 0 < i < n. This also follows from relation (3), applied to X,
with $ = s;, and ' = P being a framed pair of points in X, such that there is
exactly one point of IP,, on each side of s; very close to it. Then

Fus),s © Fus = Fs,).p © Fx,.5; = Min—i © 8in—i,
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where we identify X, (s;, IP) with X, as in Figure 4; i.e., the connected sum tube
along s; between the i-th and (i + 1)-st S! x S'! summand of %,, is mapped to the
D! x S! glued during the surgery along P.

Consider now

Fueys o Fus = Fx,p).s; © Fx,.p.

To compute Fx, p, we need to identify the pair (¥,, P) with the model framed
pair of points (£,,, P,). Let ¢ € Diff(Z,) be such that ¥»~! maps P to IP,,, and acts
via a finger move on s;. In particular, ¥ ! is isotopic to Idyx,,. The identification
between X, (P,) and X, 11 defined in Section 5.1 maps ¥ ~!(s;) to the connected
sum s;#my, 1, where the connected sum depends on the choice of finger move. If
we apply relation (2) of Definition 1.4 to %, P, and ¥ !, then we obtain that

P -1 P
an,]Pzw*noa)nOW* =W*"°wn

as ¥, ' = Idp(x,) since ¥~ ! € Diffy(Z,); see the left-hand square in Figure 4.

To compute Fy,p),s;, we identify the pair (3, (IP), s;) with the model non-
separating framed circle (X, +1, [,+1). Consider the framed pairs of points b ([, +1)
in ¥,41(lp+1) ~ X, and b(s;) in X, (P, s;) ~ X,. By the homogeneity of 3,
there is a diffeomorphism vy € Diffy(%,) such that vy o b(s;) = b(l,+1), and
letv := vg(si). Then v(s;) = Iy+1 and V¥ = vy is isotopic to Idx,. Hence, by
relation (2),

Fz,@).s = (Vsi);1 Oln+1 0O Vi = Op41 O Vx;

see the bottom square in Figure 4. Consequently,
Fs,(®).s; © F5,,p = 0nt1 0 Vs 0 YE" 0 .
What remains is to show thato,41; = vo ¥ Note that
v=dpt10 W) o hppy,,

where hpp) 5, swaps the curves b(P) and s;, and (hp(p),s;)? )% is isotopic to the
identity of ¥; U ¥,,_;. Hence

Vot = a0 (YT o hpm)y o YT

The conjugate d := (YF7) ™ o hpp) 5, 0 Y swaps the curves (yF7)~1(b(P)) =
mpsq and (Y7)71(s;) = s;#my,4 1, and d™Mn+1sSitmn g g isotopic to the identity
of X,+1(mp+1, si#mpu41), hence d = hy4q ;. It follows that

P
VoY " =dpt10hpt1i = On+tii-

This concludes the proof of Proposition 5.16. |
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A mapping class group representation on a split GNF*-algebra automatically
satisfies some additional relations that we will need in the classification of (2+1)-
dimensional TQFTs:

Lemma 5.17. Let p;: M; — Aut(A;) be a mapping class group representation on
the split GNF*-algebra (A, o, ). Then the map «; is MCG(Z;, I;)-equivariant,
w; is MCG(Z;, P;)-equivariant, and
(1) pi+1(ti+1) o wi = w;,
(2) a0 p(ri) = ai,
(3) pi+2(Sit2) 0o wit1 0w = w10 w; fori €N,
4) aj—joa;opi(Li) =0a_joq; fori >0,
(5) pnt+1(hnt1,i) © 0 © i j = wp o i j for 0 <i <n,
(6) 8i,j ooy 0 pp(Un,i) = bi,j o an,
(7) az0pa(La)ow; = wooa,
wheren =i + j, and
e 1i(m;) = —m;, andt"" € Diffo(Z;—1),
e ri(l;) = —I;, and (r;)" € Diffy(Z;_1).
o S;1, € Diff(Z; 1) swaps m; 1 and m; 1>, and Sﬁ_’;l’m"“ € Diffy (%),
o u,; € Diff(X,) swaps si#l, and I,, and (un,i)si#l”’l” is isotopic to the
identity.

Proof. The MCG(ZX,; 41, m;41)-equivariance of w; is equivalent to

p1(Tm) (W) = w

from condition (1) of Definition 5.13, where t,,, € Diff(X) is a right-handed Dehn
twist about the meridian 7. This follows from the MCG(X; U X1, P; 1)-equiva-
riance of p;,; and the fact that w; (x) = p;,1(x ® w). Indeed, for an arbitrary
diffeomorphism d € Diff(¥;4+1,m;+1), we have d™i+1 e Diff(%;,P;). The
MCG(X;+1,m;i+1)-equivariance of w; translates to

pit1(d) o piy(x @ w) = pia(pi(d™+1)(x) ® w). (5.9)

But d fixes the isotopy class of s;, and we can isotope it in Diff(Z; 1, m;41)
such that d(s;) = s; as framed spheres. Then d* is isotopic to t& in the torus
component of X, 1(s;) containing m; 1 for some k € Z, and is isotopic to d™i+1
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in the other component. By the MCG(Z; Ul ¥;, IP; 1)-equivariance of u; 1, we get
that

pi+1(d) o puin(x ® w) = i1 (pi (d™+1)(x) ® pr(zp)(w)). (5.10)
Comparing equations (5.9) and (5.10), we obtain that
i1 (pi (d™ 1) (x) ® p1(Ti) (W) = pi,1 (i (d™+1)(x) ® w).

If we consider this fori = 0, x = 1 € Ay, and d = 1, € Diff(Z,), then k = 1,
and we obtain that p; (t,,) (w) = w. In the opposite direction, p; (7, )(w) = w and
equation (5.10) together imply equation (5.9).

Similarly, the MCG(X;, /;)-equivariance of «; is equivalent to

Aopi(z) =4

from condition (2) of Definition 5.13, where t; € Diff(X,) is a right-handed Dehn
twist about the longitude /;. This follows from the MCG(Z; 4 ;, s;)-equivariance
of 6; ;, together with the fact that

o = (Idg; , ®A)08i—1,1.
Now consider property (1); i.e.,

pi+1(ti+1) o Wi = w;,

where ;11 (mi11) = —m;41 and 1;}';" € Diffo(Z;). Since #;41 fixes s; and 1, |

is isotopic to Ids, Lit;, we can apply the MCG(X; U X1, IP; 1)-equivariance of ;i
to obtain

Pi+1(ti+1) 0 wi(x) = pi1(ti+1) © pin(x @ w) = pi,1(x ® p1(11)(w)).
In particular, property (1) is equivalent to
Mi1(x ® p1(t1)(w)) = pi1(x ® w)
for every i € IN and x € A;. In particular, if we take i = 0 and x = 1, we obtain
p1(t)(w) = w (5.11)

from condition (1) of Definition 5.13, and this is clearly also sufficient, hence
equivalent to property (1).
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Now look at property (2); i.e,
ai o p(ri) = o,
where r;(l;) = —I; and rl.l" € Diffy(¥;-1). By Lemma 5.9, this is equivalent to
(Idg,_, ® A)o8i—1,10pi(r;) = (Idg;,_, ® A) 08 —1,1.
Using the MCG(X;, s;—1)-equivariance of §;_; ; and that rl.s"_1 ~ Idg,_, Ury, this
is further equivalent to

(Idg;,_, ® (Ao p1(r1))) 0 8i—1,1 = (Idg;_, ® A) 0 8;—1.1.

Notice that ry = #;. If we seti = 1 and apply r ® Idy4, to both sides, we obtain
the necessary and sufficient condition

Aopi(ty) = A (5.12)

from condition (2) of Definition 5.13.
Next, consider property (3); i.e.,
Pi+2(Si+2) 0 Wit1 0 W; = Wi41 ° W;,
where S; 1, swaps m; 4 and m; 5, and S;nj[;"m"“ € Diffy(X;). By Lemma 5.9
and the associativity of u, this is equivalent to

Pi+2(Sit+2) © i+1,1(Hi1(x ® w) @ w) = Pi+2(Si+2) 0 wi2(x @ 1,1 (w ® w))
= pi2(x @ p1,1(w ® w))

for every x € A;. Since ;5 is MCG(X; U X, P; »)-equivariant and S; 1> fixes s;

as a framed sphere, in fact, Sis iz = Idy; U S, this condition can be expressed as

Wi2(x ® p2(S2) o 1, 1(w @ w)) = ti2(x @ pr,1(w @ w))

for every i € N and x € A;. In particular, if we seti = 0 and x = 1, we obtain
the necessary and sufficient condition

p2(S2) oy 1(w® w) = p11(w @ w).

Now consider the diffeomorphism d := i5 o S5 o 1,. This swaps the meridians m,
and m, of X,, but fixes m,, hence lies in Diff(X,,m,). Furthermore, d™2 is
isotopic to the automorphism #; of the torus, and we have p;(#;)(w) = w by
condition (1) of Definition 5.13. Hence,

p2(d) o w1 (w) = w1(p1(t1)(w)) = w1(w) = p1,1(w @ w).
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On the other hand, p2(d) = *; 0 p2(S3) o x5, hence the left-hand side of the above
equation is *; o p»(S2) 0 *5 o w1 (w). But *; = Idy4, since (; is isotopic to Idz2,
hence

)3 0w (w) =*20 pu,1(wQw) = p1(w* w*) = pu1(ww).
It follows that

p2(S2) o pp1(w @ w) = *30 g 1(w @ w) = i1 (w® w),

establishing property (3).
Similarly, we can prove property (4); i.e.,

aj—10a;opi(L;) =aj—100;,

where L; swaps /;_; and /;, and Lgi_l’l" € Diffg(XZ;-2). By the coassociativity
of §, and since 8; —» » is MCG(X;, s;—»)-equivariant and Lf"_z = Idx,_, UL, the
left-hand side is

(Idg;_, ® A)08i—2,10(Idg,_, ® A) 08;—1,1 0 pi(L;)
= (Idg;_, ®A)o(Idy;,_, ®Idg, ® A) 0 (8;—2,1 ®Idg,) 0 8i—1,1 0 pi(Li)
=(Idg, ,®A®A)o(dy, , ®61,1)08i—220p;i(L;)
= (Idyg;, ® A ®A) o (Idg;_, ® 81,1) o (Idy; _, ® p2(L2)) 0 §i—22.
Since L, is isotopic to t», we have p,(L2) = *,, and property (4) is equivalent to
(Idg; , ® A ®A)o(Idg;_, ®81,1) o (Idg;_, @ *2) 0822
= (Idg;_, ® A ®A) o (Idg;,_, ®81,1) ©8i—2,2.

In particular, if we seti = 2 and apply r ® Id4, to both sides, we get the necessary
and sufficient condition

A®A)od10%=(AQA)0d,.

However, since 61,1 o x; = T 08;,1, and because x; = Idy4, as ¢; is isotopic to the
identity, the above equation automatically follows from the GNF*-algebra axioms,
and from the MCG(X;, s;—»)-equivariance of §;_ ».

We now prove property (5); i.e,

Prn+1(An+1,i) 0 @p 0 i j(x ® ¥) = wp 0o Wi j(x @ y),

where h,41,; swaps si#mu+; with m,1, and hSi#mn+1:ma+1 g jsotopic to the
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identity. Using our formula for w,, the above equation becomes equivalent to

Prn+1(hn+1,i) © n 1 (i (X @ y) @ W) = pp1 (i j(Xx ® y) @ w).

As hy41,; fixes s; and hfjH,i = Idy; Uhj11,0, using the associativity of  and the

MCG(XZ,+1. si)-equivariance of u; j11, this is further equivalent to

Mi,j+1(X ® pj+1(hj+1,0) 0 pj1(y @ w)) = i j+1(x @ wj1(y ® w)).

As so#tm;j4 is isotopic to m;yq, the diffeomorphism /j11 ¢ is isotopic to the
identity, so property (5) follows.
Property (6) is dual to property (5). It states that

8i,joan o pp(Un,;) =8ij oy,

where u, ; € Diff(X,) swaps s;#/, and /,,, and u* #lnaln g isotopic to the identity.
Using the coassociativity of §, the left-hand side becomes

Si,j o (Ida;,; ® ) 08i4j,1 0 pn(utn,i)
= (Idg; ®Idg; ® 1) 0 (8;,; ® Ida,) 0 i 1.1 © Pu(tin,i)
= (IdAl. ® IdAj ®A)o (IdA,- (39 5]',1) o 5i,j+1 0 P (Un.i).

Note that uy ; fixes s; and u,’; = Ids; Uuji1,0. Since §; j11 is MCG(Zy+1, 5)-
equivariant, the left-hand side of equation (6) further equals

(Idg; ® Ida; ® A) o (Idg; ® 8.1 © pj+1(Uj+1,0)) © i j+1
= (Id4; ® [@j+1 0 pj+1(Uj+1,0)]) © i, j+1.

But so#l, is isotopic to I, hence u; 1, is isotopic to the identity. Analogously,
the right-hand side of equation (6) is

(Idg; ® aj+1) 0 8;,j+1,

and so equation (6) follows.
Finally, consider property (7). More generally, consider

®i+10 Pi+1(Lit1) o wi = wi—1 0q;.

We first remark that if we apply «; to both sides, the resulting equation follows
from property (4) and the split GNF*-algebra axioms. Secondly, we prove that
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this automatically holds on Im(x;—1,1), and hence for i = 1. Indeed, suppose that
X = pi—1,1(a ® b). Then
410 pi+1(Lit1) 0 @i (x) = 410 i—12(a ® p2(L2) o p1,1(b ® w))

= ai+1 0 fi-1,2(a ® p1,1(w ® b))

= (Idg; ® 1) 08,1 0 pi—1,2(a ® py,1(w ® b))

= (Id4; ® A) o (1i—1,1 ® Idyg;) o (Idg,_, ® §1,1)(a ® p1,1(w ® b))

= (i-1,1 ® A) o (a ® [81,1 0 pu1,1(w ® D)])

= (Ui—1,1 ® L) o (a ® [(1,0 ®Ida,) o (Idg, ® o,1)(w ® b)])

= (Hi—1,1 ® A)(a ® p1,0(w ® b)) ® b(z))

= A(bw))(a-w-bqy).
Here we used that p;_1» is MCG(Z;_y U ;,P;_i)-equivariant, L7}
Ids, , U Ly, that p5(L2) = *3, and the Frobenius condition twice. Furthermore,

80,1(b) = ba) ® b(zy in sumless Sweedler notation, and - stands for the algebra
multiplication p. On the other hand, the right-hand side of equation (7) becomes

wi—10a; o pi—1,1(a ®b)
=wj—10(ldg;_, ® L) 0 8i—1,1 0 i—1,1(a ® b)
=wj—10(Idg,_; ®A) o (i—1,0 ® Ida,) o (Idsg;_, ® 80,1)(a ® b)
= wj—1 0 (Ri-1,0 ® A)(a @ o,1(b))
= [(Hi-1,0 ® V) (@ ® b1) ® bz))] - w
= Ab@))(a - bq) - w).

The claim follows once we observe that b(1)-w € Ay, hence by-w = (bpy-w)* =
w* -ba) = w - b(y) since xo = Idy, and *; = Idy,. O

6. The classification of (2+1)-dimensional TQFTs

Both (2+1)-dimensional TQFTs and J-algebras form symmetric monoidal cate-
gories, with morphisms the monoidal natural transformations. Durhuus and Jon-
sson [9] defined the notion of direct sum of TQFTs. Given (n + 1)-dimensional
TQFTs F; and F5, they let

(F1 @ F2)(M) = Fi(M) & F2(M)
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for every connected n-manifold M, while in general (F; & F>)(M) is the tensor
product of the vector spaces assigned to the components of M. To a connected
cobordism W, they assign the direct sum F; (W) @ F»(W), and to a disconnected
cobordism the tensor product of the values of the components.

In this section, we shall prove the following classification of (2+1)-dimensional
TQEFTs, which is Theorem 1.10 from the introduction.

Theorem. There is an equivalence between the symmetric monoidal category of
(24+D)-dimensional TQFTs and J-Alg.

In Section 5.2, we saw how to assign a J-algebra J(F) to a TQFT F. Now
suppose that we are given a J-algebra A = (A, o, w, {p;:i € IN}). Then we asso-
ciate to it a TQFT F := T(A) as follows. By Theorem 1.8, it suffices to construct
a symmetric monoidal functor F: Man, — Vect and maps Fjs g for any framed
sphere S in a surface M. The following constructions are all determined by the nat-
urality of the TQFT under diffeomorphisms. After constructing the groups F (M)
and the surgery maps Fys g, we check what algebraic properties relations (1)—(5)
of Definition 1.4 translate to.

First, we construct F (M) for a surface M with k components of genera g; >
-+ > g, with multiplicities n1, . . ., n,, respectively. In particular, ny +---+n, =
k, and we denote the vector

(glv'--7g1"--’gra---’gr)
—— S——

ni nr

of genera by g. Let
r n;
e =] L] =e-
i=1 j=1

We follow the same scheme of Kan extension as one dimension lower in Section 4.
In particular, let
= A®" & ... ®n
Ag_Agl ® ®Agrr’

and F (M) is defined to be the set of those elements v of

[14s

$EDiff(S¢. M)

for which

v(@) = ()" og) - v(e)
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for every ¢, ¢’ € Diff(X, M). Note that here (¢")"' o ¢ € Diff(X¢), which acts
on Ag via the representations p; and permuting the factors with the same genus.
More precisely, the action of Diff(X¢) on Ag factors through the action of

MCG(Z,) = ]_[ Mg, Wrg1, i} Sn;
i=1
where Wr denotes the unrestricted wreath product, the group Mg, acts on Ag;
via pg,, while S,,, permutes the factors of Ag."".

Suppose that M and M’ are diffeomorphic surfaces; i.e., they have the same
number of components k with genera g; = g; and multiplicities n; = n; for
everyi € {l,...,r},and let d € Diff(M, M’). Given an element v € F(M) and
¢ € Diff(X,, M), we let

[F(d)(v)](d 0 §) = v(P). (6.1)

If M and N are surfaces of diffeomorphism types X, and X, respectively,
then we define the natural isomorphism

dyn: F(M)® F(N) — F(M U N)

as follows. Let ¢ € MCG(Zg, M) and ¥ € MCG(X,, N). We let g U h
be the vector obtained by putting the coordinates of g and & in nonincréasing
order. Then X, U X is of diffeomorphism type Xgi,. The diffeomorphism
o0y € MCG(Eguh M 1 N) is defined as follows. If g is a coordinate of g
of multiplicity m and of h of multiplicity », then for (x,i) € g x{l,....,m}
we let (¢Oy)(x,i) = ¢(x,i),andfor (x,j) € g x{m+1,...,m+ [} we have
(¢0OY)(x, j) = ¥ (x, j—m). There is an analogous isomorphism iz p: A, ® Ay —
Agup. Ifa € F(M)andb € F(N), then we let ®p n(a®b) = alb € F(MUN)
where
(aUb)(@OY) =ignla(p) ®b(Y)) € Agup.

We leave it to the reader to check that the assignment F: Man, — Vecty defined
above is a symmetric monoidal functor.

We now define the surgery maps Fys,g for a surface M of diffeomorphism
type X, equipped with a framed sphere S C M.

First, suppose that $ = 0; then M(S) = M U S2. If M is of diffeomorphism
type Xg, then M(S) is of type Z(g.0)> where (g,0) is g with an extra 0 at the
end. Let ig0: X(g,0) > Zg US 2 be the natural identification that maps the last
component of X (g g) to S2. Given ¢ € Diff(Z g M), let

$o = (¢ Uldg2) 0 ig0 € Diff(S(g.0. M(S)).
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Forv € F(M), we let
Fpo(0)(go) = v(9) ® 1 € 4, ® Ao,

where 1 € A is the image of 1 € F under the map ¢. The element Fjso(v) is
independent of the choice of ¢.

Now suppose that $: S? <> M is a framed 2-sphere with image S C M.
Then M(S) = M \ S. Choose a parametrization ¢ € Diff(X,, M) such that
Pls,, xin,} = S, and let ¢s = @[z, where g' = g \ {(gr,nr)}. Consider the map

lg: A[g — Ag/
defined on monomials by
lg(1 ® -+ @ ug) = 1(v) - V1 @ -+ ® Vg1,
and extend it linearly. For v € F(M), let
Frus(v)(¢s) = 15 (v(9)).

Again, this is well-defined; i.e., independent of the choice of ¢.
Assume that $ = {s_, s4} is a framed O-sphere. If s_ and sy lie in different
components M_ and M, of M of genera g, and g, respectively, then let

qd— = (qg,.na) € T_ 1= Zg, X {ng},
and
P+ = (Pgy-1p) € T4 1= g, X {np}.

Choose a parametrization ¢ € Diff(X¢, M) such that ¢(g—) = s— and ¢(py) =
S+, and such that ¢ preserves the framiﬁgs. Let X¢ (g—., p+) be the result of surgery
along the 0-sphere {g_, p4+}. If n,p is the multiplicity of g, + gp in g, then we
can identify X¢(g—, p+) with the canonical surface X for

g =g\ {(ga.na). (gp.1p)} U{(ga + &b-Nap + 1)}

There is an induced parametrization ¢g: X g(q_, p+) =X g > M (S) that is the
connected sum (¢|x_)#(¢|x ) on T_#X,, and agrees with ¢ on all the other
components. If v € F(M) is an element such that v(¢) is a monomial

r ni L
®;—1 ®;Z1 VG, )

the integer n; is the multiplicity of g; in g’ fori € {I,...,r’}, and c is such that
g. = ga + gp, then we define Fuss(v)(¢s) as

_ n; c
(®F21 ®;L1 Vi) ® (B V(e,) ® Hea.gr (Viana) ® Vibny))
/ n;
® (®;=C+1 ®j=1 U(i,j))-
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In other words, we omit v, ,,) and v ,,) from v(¢), and insert their ug, ¢, -
product in position ) + - - -+ n... The element Fas,g(v) defined above is indepen-
dent of the choice of ¢ since g, 4, is MCG(Zg, U Xg,, Py, ¢, )-€quivariant.

If s_ and s lie in the same component M, of M, then let g, = g(M;). Con-
sider the framed O-sphere P = P, x{n,} C X4, x{n,}, and choose a parametriza-
tion ¢ € Diff(=Z g M ) such that ¢ o P = S. The surgered manifold M(9) is dif-
feomorphic to 3¢ (), which in turn can be canonically identified with X, for g’
obtained from g by removing a copy of g, and inserting g, + 1. The 1dent1ﬁcat10n
of X (P) ~ X, is obtained by applying the identification X, (Pg,) ~ Xg,+1
defined in Sectfon 5.1 to the ng-th component of X, and the identity to all the
other components. By surgery, we obtain the parametrization

¢s = ¢": Ty ~ g (P) — M(S).

Given an element v € F(M) such that v(¢) = ®]_, ®;’"=1 v, ), the ele-
ment Fys 5(v)(¢s) is obtained by applying wg, to vg, »,. The element Fass(v)
is independent of the choice of ¢ since wg, is MCG(X,,, Pg,)-equivariant by
Lemma 5.17.

Now suppose that S is a framed 1-sphere in M, lying in a component M of
genus g, € g. If S is non-separating, consider the curve | = Iz, x {ngs} C X,.
Then there is a diffeomorphism ¢: X, — M such that ¢ o/ = S. This is possible
since any two non-separating simple closed curves on a connected surface are
ambient diffeomorphic (indeed, both ¢, \ /;, and X, \ S are connected, twice
punctured, genus g, — 1 surfaces, hence they are diffeomorphic). We obtain g’ by
removing a copy of g, and replacing it by g, — 1. The surgered manifold M (S) is
diffeomorphic to X, (/), which is canonically identified with X, by applying the
identification X, (I, ¢4) ~ Xg,—1 defined in Section 5.1 to the na—th component of
X, and the identity to all the other components. Then let

s = ¢': Ty ~ Te(l) — M(S).

If v € F(M) is such that v(¢) is of the form ®!_, ®7"=1 v(, ), then we obtain
Fu 5(v)(¢s) by applying o, to the factor vg, ,,. The map Fys g is independent
of the choice of ¢ since ag, is MCG(Xg,, I, )-equivariant by Lemma 5.17.
Finally, suppose that $ separates M; into pieces of genera g_ on the negative
side and g on the positive side (in particular, g, = g—+g+). Consider the framed
circle ¢ = sg_ x {ny} C g x {na} Then there is a diffeomorphism ¢: ¥, — M
such that ¢ o ¢ = 8. Let g’ be the vector obtained from g by removmg 8a
and inserting g_ and g+ to keep the sequence of coordinates decreasing. There
is a canonical diffeomorphism d.: X,(c) — X/ that maps the components of
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(Xg, x {nq})(c) to the last components of X, of genera g_ and g, respectively.
If g_ = g, then we map the part coming from the negative side of ¢ as the second
to last such component, and the part coming from the positive side of ¢ as the last
component of the appropriate genus. We define the map

¢s i= ¢ o (de) ' g —> M(S).

If v(¢) is of the form ®!_, ®;.”=1 VG, ), then Fyy s(v)(¢s) is obtained by applying
the map 8g_ ¢, 10 vg, n,, and then permuting the factors according to the diffeo-
morphism d.. In this case, Fas,5(v) is independent of the choice of ¢ since 6 4,
is MCG(Xg,, sg_)-equivariant.

This concludes the construction of the vector spaces F(M) and maps Fyss.
By Theorem 1.8, these completely determine the (2+1)-dimensional TQFT F,
assuming they satisfy relations (1)—(5) of Definition 1.4. We check these next.

Proposition 6.1. Let A be a J-algebra. Then the functor
F =T(A):Man, — Vect

and the maps Fy g constructed above satisfy relations (1)—(5) of Definition 1.4
and diagram (1.2).

Proof. Relation (1) follows analogously to the (1+1)-dimensional case and the fact
that the Diff (X, )-action on A, factors through a MCG(X)-action, and it does not
impose any additional algebraic restrictions.

Relation (2) also follows analogously to the (1+1)-dimensional case, and re-
quires no additional assumptions. As an illustration, we check relation (2) when M
is a connected surface of genus g, and $ is a non-separating 1-sphere. In particular,
g = (g). Choose a parametrization ¢ € Diff(X,, M) for which ¢ o/, = S, and
let ¢s € Diff (41, M(S)) be the induced parametrization. Let d: M — M’ be a
diffeomorphism, S’ = d o S, and choose an element v € F(M). Then v(¢) € A,,
and, by equation (6.1) defining F(d®), we have

[F(d®) o Fars()](d® 0 ¢s) = Fars(v)(¢s) = ctg(v()) € Ag—1.
On the other hand,
[Fyrs 0 F(d)()]((d 0 )%) = ag ([F(d)(0)](d © $)) = g (v(9)).

The result follows once we observe that d® o ¢g = (d o ¢)'.

Now consider relation (3). In particular, let $ and $’ be disjoint framed spheres
in the surface M. The roles of $ and $' are symmetric, and — as in the (1+1)-
dimensional case — it is straightforward to check the relation whenS = O or S is a
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framed 2-sphere. This leaves us with three cases depending on the dimensions of
the two spheres.

First, suppose that both S and $’ are framed 0-spheres. Relation (3) is true if
they occupy distinct components of M. There are four remaining subcases:

(1) S and S’ occupy the same component My of M,

(2) S intersects both M, and another component M/, and &' lies in M,

(3) both $ and ' intersect two components that coincide, namely M, and M/,
(4) S intersects two components M, and M, while $’ intersects M, and M/’

Consider case (1). Without loss of generality, we can assume that M is
connected, as we can deal with multiple components similarly to the (1+1)-
dimensional case. Let C = b(8) and C’ = b($'). Choose parameterizations

¢, ¢’ € Diff(Zg42, M(S,5))

such that ¢(mg41) = C, ¢p(mgi2) = C', ¢'(mg11) = C', ¢'(mg42) = C, and
suchthaty := ¢™s+1""s+2 and ' 1= (¢')"s+1""¢+2 are isotopic in Diff (X, M).
Furthermore, let v € F(M). Note that ¥g ¢ = ¢, hence

Fus)s © Fus(0)(@) = wg+1 0 Fus(v)(Ys) = wgt1 0 wg(v(¥)).
Similarly, (¥)s',s = ¢’, hence
Fue),s © Fus (0)(@) = wgi1 0 wg ().
Since ¢ and ¥’ are isotopic, v(y) = v(y’). Finally,

Fu)s © Fus (0)(@) = pg42(@) 7" 0 @) o Frsrys © Furs (v)(9).

As v is an arbitrary element of F (M), it follows that v(¢) is an arbitrary element
of Ag. Furthermore, d = (¢’)~o¢ is an automorphism of X4, that swaps mg 41
and mg 5, and for which d™s+1-"s+2 is isotopic to Idx,. Hence, relation (3)
holds in case (1) if and only if for some diffeomorphism d € Diff(X44,) that
swaps mg 11 and mg 45, and for which d™s+1-"¢+2 € Diff(Z) is isotopic to Idyg, ,
the automorphism pg2(d) of Ag 4> is the identity on Im(wg 41 0 wg); i.e.,

pg+2(d) 0 Wg41 0 Wg = Wgt1 0 Wg.

This holds by part (3) of Lemma 5.17.

Now consider case (2). Again, without loss of generality, assume that M has
only two components, namely M; of genus g and M, of genus g’. Furthermore,
by relation (5), which we will check later, we can replace $ by § if necessary to
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ensure that $(—1,0) € M, and 5(1,0) € M/. Similarly to the previous case, one
can deduce that commutativity of the two surgery maps holds if and only if

Me.g'+1 0 (Ida, @ wgr) = wgtg' 0 ig,e,

which is true by equation (5.6) of Lemma 5.4.

Case (3) is similar to case (1). Without loss of generality, we can assume
that M consists of only two components of genera g and g’, respectively. Let s
be an arbitrary curve on X4,/ that becomes isotopic to sg after doing surgery
along m := mg4/41; We can obtain s by taking the connected sum sg#mg 1 ¢/11
along any path. Let C = b(S) and C’ = b(S'). Then there is a diffeomorphism
¢ € Diff (2442, M(S,5)) such that ¢(s) = C and ¢(m) = C’. As s is isotopic
to sg in M(m), we can canonically identify M(m, s) with X, LI X,/, and we let

¥ 1= ¢™* € Diff(S, U S, M).

By construction, ¥ (Pg ¢/) = S and ¢ (Pgy44) = &', hence Y55 = ¢. There
exists a diffeomorphism & € Diff(X¢44/41) such that h(s) = m and h(m) = s,
and such that 2™ is isotopic to the identity. Then we set ¢’ := ¢ o h™!; this
satisfies ¢’(s) = C’ and ¢'(m) = C. Again, if ¥’ = (¢')™*, then ¢' = (V') s.
For any v € F(M), we have

Fus),s © Fus(0) (@) = wgtg 0 Fyrs(v)(Ys) = wgy1 0 pgrg (v(¥)),
and

Fuen,s o FM,S’(U)(¢/) = Wg+g’' © Mg+g’(v(‘ﬁ/))-

Since 1™ is isotopic to the identity, ¥ and ¥’ are isotopic, hence v(¥) = v(y').
Furthermore,

Fas).s © Fius (0)(@) = pgrgr+1((@) 7! 0 d) 0 Farqsnys © Fars (v)(9).
and (¢')~! o ¢ = h. Hence, in this case, relation (3) translates to
Pg+g/+1(h) 0 wgygr 0 g g = Wgtgr O tg,g’ (6.2)

for some diffeomorphism / € Diff(X¢ 4 4/41) that swaps the curves sg#mg 14711
and mg¢/+1, and such that h™s+e'+1-55" Mg +¢/+1 jg isotopic to the identity. This
holds by part (5) of Lemma 5.17.

Finally, in case (4), we obtain the associativity relation

/_,Lg+g/,g// [e] (/_,Lg,g/ ® IdAg//) = /,(/g’g/+g// o) (IdAg ® /_,Lg/,g//)’

which follows from equation (5.1) of Lemma 5.4.
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We now study relation (3) when both $ and S’ are framed 1-spheres. This is
straightforward if S and $’ occupy different components of M. Hence, without
loss of generality, we can assume that M is connected of genus g. Then we have
the following three cases:

(1) Both $ and $' are non-separating. There are two subcases depending on
whether S U §' is separating or not.
(2) S separates M into components of genera j and g — j, and §' is non-

separating. By relation (5), we can assume that $’ lies on the positive side of
S.

(3) Both $ and ' are separating. By relation (5), we can assume that $’ lies on
the positive side of $, and that S is on the negative side of §’. They divide M
into pieces of genera i, j, and k.

First, consider case (1), and suppose that $ U §’ is non-separating. Then
we can choose parameterizations ¢, ¢’ € Diff(£4, M) for which ¢(lg) = S,
P(lg—1) =5,¢'(lg) =S, and ¢'([g—1) = S, and such that ¢’='s=1 and (¢')/s-=—1
are isotopic. Furthermore, let v € F(M). Then, by definition,

Fues),s © Fus()(¢s,s) = ag—1 0 ag(v(¢h)),

and, symmetrically,
Fysny.s © Fus (V) (g 5) = ag—1 0 ag (v(¢)).

Since ¢s,5 = ¢'els=1 and ¢{, ¢ = (¢')'#"!s—1 are isotopic, we have

Frue).s © Fus()(¢ss) = Fue)s © Fus (0) (g g).

Furthermore, v(¢’) = pg((¢') ! 0 ¢)(v(¢)). Hence relation (3) holds in this case
if and only if for some diffeomorphism d € Diff(X) that swaps /, and /;_; and
for which dlslz—1 ¢ Diffy(X¢—>), we have

tg—100g 0 pg(d) =gy 0ag.

This is precisely part (4) of Lemma 5.17.

If, in case (1), the union $ U $’ separates M into pieces of genera i and j,
respectively, then g =i 4+ j + 1. The model case is when M = X,, S = s;#lg,
and S’ = /. Similarly to equation (6.2), we obtain the relation

8i,joag 0 pg(u) =6; ooy,

g,

where u € Diff(Z,) swaps s;#l, and 4, and such that u*#¢-is is isotopic to the

identity. This follows from part (6) of Lemma 5.17.
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Now consider case (2). This leads to the relation
8j.g—j—100g = (Ida; ® ag—j) 0 djg—;,

which is part of equation (5.6) of Lemma 5.4. Case (3) leads to the coassocitivity
relation
(Idg; ® 8j k) 08 j+k = (8i,; ®1day) 0 8iyjik,

which holds by equation (5.2) of Lemma 5.4.

Finally, we consider relation (3) when S is a framed O-sphere and &' is a
framed 1-sphere. Without loss of generality, we can assume that $ intersects the
component of M that $’ occupies. Here we distinguish the following cases:

(1) S lies in a single component M, and $' C M, is non-separating.

(2) S lies in a single component My and §’ separates Mj into pieces of genera i
and g — i. There are three subcases depending on whether S lies completely
to the left of $’, on both sides, or completely to the right.

(3) S occupies the components M and M/, and $' C M/ is non-separating.
N N

(4) S occupies the components My and M/, and ' separates M, into components
of generai and g’—i. There are two subcases depending on whether the point
of $ in M/ lies to the left or to the right of §'. By relation (5), we can assume
it lies to the left.

In case (1), without loss of generality, we can assume that M is connected.
Furthermore, by naturality, we can assume that M = X,, S = Pg,and §' = [,
(or, more precisely, we work with a parametrization ¢ € Diff(X,, M) such that
¢p(Pg) = Sand ¢(ly) = §). Letd € Diff(X441) be such that d(lg) = lg41,
and d's = Idg, after the natural identifications of Xg1(lg) and Zg41(lg+1)
with ¥¢. As we already know the surgery maps are natural, the following diagram
is commutative:

Og+1

F(2g+l) = Ag+1 F(Eg) = Ag

,Og+1(d)T TF(d’g)
Frgiite

Agr1 ———— F(Zg11(lg)) = Ag.
By construction, d's is isotopic to Ids,, so F(d’g) = Id4,, and

Fggy10, = Qg1 0 pg+1(d).
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Hence, from relation (3), we obtain the condition

Wg—100g = Ugt1 0 pg+1(d) 0wy,

where d € Diff(Zz41) is such that d(l;) = lg+1, and d's = Diffp(Z,) after
the natural identifications of X441 (lg) and X441 (/g4+1) with X,. Notice that the
diffeomorphism d coincides with L,y acting on X,4; and interchanging /,
and /;4;. Hence, this holds by part (7) of Lemma 5.17 for g = 1, and by
property (3) of Definition 5.13 for g > 1.

In case (2), when § lies to the left of §, we replace $’' by S’ and apply
relation (5). The other two cases lead to the relations

i,j+10wg = (Idg; ® wj) 0 d;,; (6.3a)
and
Ug+10 Pg+1(0g+1,i) © Wg = Wig—i © Si,g—i- (6.3b)

The first line of equation (6.3) follows from equation (5.6) of Lemma 5.4. The
second equation, which is condition (4) of Definition 5.13, can be derived by
reversing the argument in the proof of Proposition 5.16 showing that this holds
for every J-algebra assigned to a TQFT. Indeed, for the model case when 5 = P
and ' = s;, see the second surface on the top of Figure 4. In the proof of
Proposition 5.16, we derived the commutativity of the large pentagon from the
commutativity of the upper right square. We now use the reverse implication,
which follows from the commutativity of the other two small squares and the lower
left triangle, which in turn is a consequence of naturality.
In case (3), the necessary and sufficient condition for relation (3) to hold is

Ug+g’ © Hg,g' = [gg—1 0 (Ida, ® agr),

which follows from equation (5.6) of Lemma 5.4. There is a corresponding rela-
tion if §’ lies on the other side of S, but that follows from this one by relation (5).
Finally, in case (4), we obtain

Sgtigi—i © hgg = (Ugi ®Ida,,_;) o (Ida, ® 8ier—i),

which is the Frobenius condition (5.3) in Lemma 5.4.

We now consider relation (4); i.e., where S’ C M($) intersects the belt sphere
of $ once. If $ = 0 and ' is a O-sphere that has one point on the new S2
component and another point on a component of M of genus g, then we can
assume $'(—1,0) € S? by relation (5). This leads to the relation

Mo,g © (¢ ®Ida,) = Ida,:
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i.e, that 1 = ¢(1) is a left unit for u. If S is a O-sphere, it has to lie in a single
component of M. Then we obtain the relation

ag-l—l Oa)g = IdAgs

which is equation (5.5) of Lemma 5.4. If S is a l-sphere, then it has to be
inessential, and ' is the 2-sphere split off by 3. By relation (5), we can assume
this 2-sphere lies on the negative side of 5. We obtain the relation

(r ®Ida,) 0 do,g = Idg,,

which holds since 7 is a left counit for the coproduct §.

Finally, consider relation (5). Think of X, as being standardly embedded in R>
with center lying at the origin, and such that the x-axis intersects it in the points pg
and g,. Let 1z € Diff(X,) be the involution of X that is a w-rotation about the
z-axis and swaps the i-th and (g —i)-th S x S? factor of ¥,. The z-axis passes
through s/, if g is even, and through the hole of the (g+1)/2-th S x S? summand
when g is odd. This has the property that 1 (s;) = sg—; foreveryi € {0,...,g}.

First, suppose that S is a 0-sphere that occupies two components of M. Then
the model scenariois M = X; U X; and 5 = P; ;. Leto: 3, U X, — X; U3,
be the diffeomorphism that swaps the two components of X; L ¥;, then acts via
ti U;. Then U(I_Pi,j) = P;; and oS = ti+;. Hence, using that Fjs g = Fuys and
the naturality of the surgery maps, relation (5) amounts to the relation

p(itj) o pij(x @ y) = wji(pj (L)(y) ® pi(Li)(x))

forevery x € A;and y € A;. As x* = p(y;)(x) foreveryi € Zso and x € A4;, we
can rewrite this relation as

Wit (x, )" = pii(y* ® x¥),

which is equation (5.4) of Lemma 5.4.

Now consider the case when $ is a O-sphere in a single component of M. Then
the model caseis M = X, and S = P,. Lett, € Diff(X;) be the diffeomorphism
that is characterized by ¢4 (mg) = —mg and t;" ¢ e Diffy(X¢g—1). Then relation (5)
in this case is equivalent to the relation

Pe+1(fg+1) 0 g = Wy,

which is part (1) of Lemma 5.17.
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Applied to separating 1-spheres, we obtain the relation
Ti,j 0 8ij(x) = 8, (x™),

where 7; ;: A; ® A; — Aj @ A; is givenby T; j (v @ w) = w* ® v*. This is part
of equation (5.4) of Lemma 5.4
When § is a non-separating 1-sphere, we obtain that

g = ag 0 p(rg),

where ry € Diff(X,) is characterized by rg (/) = —/, and (rg)lg € Diffy(Z4-1).
This is precisely part (2) of Lemma 5.17. |

Proof of Theorem 1.10. By Proposition 5.16, for every (2+1)-dimensional TQFT F,
the tuple J(F) defined in Section 5.2 is a J-algebra. Conversely, Proposition 6.1
ensures that, given a J-algebra A, the associated functor 7(A) is a TQFT. Both
of these assignments are functorial: Given a natural transformation n: F = F’ of
TQFTs, the maps nx,: F(X;) — F'(X;) form a J-algebra homomorphism

J(n): J(F) — J(F").

Conversely, a J-algebra homomorphism 4: A — A’ extends to a natural isomor-
phism 7'(h): T(A) = T(A’) in a straightforward manner. Indeed, for a surface M
of diffeomorphism type X, we obtain T (h)p: T(A)(M) — T(A')(M) by map-
ping the factor Ag of T(A)(M) corresponding to ¢ € Diff(Xg, M) to the factor
Ay of T(A')(M) corresponding to the same parametrization ¢ via

hg :=h{" @ ® h®"r,

where h; = h|aq;: Ai — A

We finally show that the functors J o 7 and T o J are naturally isomorphic
to the identity. Let A = (A, o, w, {p;:i € IN}) be a J-algebra. Then the J-algebra
JoT(A)ingrading g is givenby T'(A)(Xg). Thisis a subset of [ [ epifr(z,,x,) Ag-
and projecting it onto the Idy, factor gives a natural isomorphism to A, .

Now consider T o J. Let F:Cob, — Vect be a TQFT, and let A = J(F)
be the corresponding J-algebra. We are going to construct a monoidal natural
isomorphism 7: T o J = Id. In particular, we define

ng:ToJ(F)=T(A)— F,

which is itself is a monoidal natural isomorphism. If M is a surface, then we need
to give an isomorphism

nrm:T(A) (M) — F(M).
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Pick a parametrization ¢ € Diff(X,, M); then this induces an isomorphism
F(¢): F(Zg) — F(M).

The monoidal structure of F gives an isomorphism ®¢: 4, — F(Zg), as A =
J(F) and hence A; = F(X;) foreveryi € IN. If

po:[[Ae — Ag
Y eDIff(Sg.M)

is the projection onto the ¢ factor, then it restricts to an isomorphism

PolTymn): T(A) (M) — Ag.

Finally, we set

N = F(@) o Pg o pylraym)-
We leave it to the reader to check that this is independent of the choice of ¢, that
nr is indeed a monoidal natural isomorphism, and that 5 is a monoidal natural
isomorphism from 7 o J to the identity. O

7. Examples and applications

Dijkgraaf [8] noted that if F' is an (n + 1)-dimensional TQFT, then F(S") carries
the structure of a commutative Frobenius algebra that acts on F' (M) for every con-
nected n-manifold M. We say that F is based on the Frobenius algebra F(S").
Sawin [32, Theorem 1] proved the following result about direct sum decomposi-
tions of TQFTs.

Proposition 7.1. Suppose the TQFT F is based on a direct sum A = A; & A,
of Frobenius algebras. Then there exist TQFTs F1 and F5, based on Ay and A,
respectively, such that F =~ F; @ F,. Conversely, if F decomposes as a direct sum
of TQFTs, then the associated Frobenius algebra decomposes as a corresponding
direct sum of Frobenius algebras.

He also gave a classification of indecomposable commutative Frobenius alge-
bras over an algebraically closed field . For each A € F*, let S be the algebra IF
with counit 7(x) = A7 x. Also, let 4 be a commutative algebra spanned by the
identity and at least one nilpotent, and suppose the socle, the space of all x € A
such that ax = 0 for all nilpotent a € A, is one-dimensional. Let t be any linear
functional on A which is non-zero on the socle. We denote by N4, the algebra A
together with the functional 7. The following is [32, Proposition 2].
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Proposition 7.2. S, and Ny . are indecomposable Frobenius algebras. Further,
every commutative indecomposable Frobenius algebra is isomorphic to one of
these, and these are nonisomorphic up to algebra isomorphism.

We now turn our attention to (2+1)-dimensional TQFTs. By Proposition 7.1,
it suffices to focus on irreducible theories as every TQFT is a direct sum of
these. An important class of (2+1)-dimensional TQFTs are ones that extend to
one-manifolds, these are called (1+1+1)-dimensional TQFTs. Bartlett et. al [2],
[3] showed that (1+1+1)-dimensional TQFTs correspond to anomaly free modu-
lar tensor categories. Given an anomaly free modular tensor category, they also
describe how to obtain F'(X,) by taking the vector space generated by string dia-
grams inside the handlebody bounded by X, in R? and labeled by simple objects,
modulo equivalence relations in the category. They give the action of elemen-
tary cobordisms as well. This is essentially the construction of Reshetikhin and
Turaev [31]. It is a fundamental open question whether every (2+1)-dimensional
TQFT F comes from a (1+1+1)-dimensional theory. If it does and if F is irre-
ducible, then dim F(S?) = 1, so it has to be based on one of the Frobenius alge-
bras S, according to Proposition 7.2.

Consider condition (4) of Definition 5.13 forn = 0 andi = 0:

@1 © )01(01,0) o wo = Ho,0 ° 50,0- (7.1

The diffeomorphism 01,90 = a1 0 Hy o € Diff(7?) induces the S-matrix

0 -1
(i o)
on H;(T?) in the basis (m,[) since hy o is isotopic to the identity. If p;(01,0) =
Id4,, then the left-hand side of equation (7.1) becomes o owg = Idy4,,. This means
that p10,0 © 80,0 = Idy,; i.e., that the Frobenius algebra A is special. The only
special Frobenius algebra among S, and Ny . is So. So, if the (2+1)-dimensional

TQFT satisfies p1(01,0) = Idy,, then it is based on the direct sum of finitely many
copies of Sy, and is based on Sy if it is indecomposable.

Example 7.3. Consider the GNF*-algebra A = (A4, u,§, €, 7, *), where (4, p) is
the polynomial algebra F[x] with grading 4; = IF(x"), coproduct

n
8(x") = in ® x" 7,

i=0

unit ¢ = Idp: F — Ay, partial counit t = Idp: A9 — F, and involution x = Id4.
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We define the modular splitting (, ) by taking a(x’) = x*~! for i > 0 and
a(1) = 0, and w is multiplication by x. If we define each p;: M; — End(4;) to be
trivial, then this satisfies all the properties of a mapping class group representation.
Hence, this data gives rise to a (2+1)-dimensional TQFT F;. This assigns I to any
surface, and the identity morphism to any cobordism between two surfaces, under
the identifications F® ~ .

Lemma 7.4. Let (A, a, w) be a split GNF*algebra with a mapping class group
representation such that p;: M; — A; is trivial for some i € N. Then p; is also
trivial for every j <.

Proof. It suffices to show that p;_; is also trivial. Pick an arbitrary diffeomor-
phism d € Diff(¥;_;). We isotope d such that it fixes the disk bounded by the
curve s;—1 C Xj_1, and let d; € Diff(¥;) be the diffeomorphism of ¥; that agrees
with d to the left of the curve s;_; C X;, and is the identity to the right of s;_;.
Then, by the MCG(X,;—; U X;, P;_;,1)-equivariance of u;_1,1, and since p; is
trivial, we have

pi-1,1(pi—1(d)(x) @ w) = pi (di)(Hi-1,1(x @ W)) = pi—1,1(x @ W)
for every x € A;_;. It follows that
i1 ((pi—1(d) = 1da,_ )(¥)) = tiz1,1 ((pi—1(d) = 1dg,_)(x) @ w) = 0
for every x € A;—1. As w;_1 is injective, this implies that p; _1(d) =1d4,_,. O
Proposition 7.5. Let (A, a, w) be a split GNF*-algebra over C such that
dim A; < 2i

for some i > 2. Then pj is trivial for every j < i. Hence, if dim A; < 2i for
infinitely many i € N, then every mapping class group representation on A is
trivial.

Proof. Franks and Handel [10] proved that any representation of M; in GL(n, C)
is trivial assuming that i > 2 and n < 2i. The result now follows from
Lemma 7.4. U

Proposition 7.6. Let F: Cob, — Vectc be a TQFT such that F(X) = C for every
surface X. Then there is a natural isomorphism between F and the TQFT F,
constructed in Example 7.3.
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Proof. Let (A, a,w) be the split GNF*-algebra associated to the TQFT F. By
Proposition 7.5, the mapping class group action is trivial. Since dimA4; = 1
for every i € IN, the map w; is a bijection for every i € IN. As w is given by
right-multiplication with an element w € A, it follows that A =~ C[x], where
the isomorphism maps w” € A, to x". From the formula o; 11 o w; = Idy;,
we obtain that ;11 = ] '; ie., ¢41(w't) = w’. Since u is associative,
wij(w' ® w/) = w'*/. By condition (4) of Definition 5.13, and since p,+1 is
trivial,
Min—i © Si,n—i = 0Op+1©° Pn—f—l(an-i—l,i) CWn = IdAn-

It follows that Si,n—i = (/Li,n_i)_liAn — A; ® A,_;; hence, Si,n_i(w”) =
w’ ® w"™". Finally, since (t ®1d4,)080,0(1) = (1) = 1, we have r = Id¢. So the
GNF*-algebra (A, @, ) is isomorphic to the GNF*-algebra C[x] of Example 7.3.
It follows that F is isomorphic to Fj. O

Proposition 7.7. Let F:Cob, — Vectc be a TQFT, and suppose that there is
a number n € N such that dim F(X) = n for every connected surface X. Then
there is a natural isomorphism between F and (Fy)®", where Fy is the TOFT
constructed in Example 7.3.

Proof. By Proposition 7.5, the mapping class group representation corresponding
to F is trivial in every genus. In particular, p;(01,0) = Id4,, and hence, by
equation (7.1), the commutative Frobenius algebra Ao is special, and so it is
a direct sum of finitely many copies of So. By Proposition 7.1, the TQFT F
splits as a direct sum Z; & --- & Z, of TQFTs, each based on Sy. In particular,
dim Z;(5?) = 1, and so, by the injectivity of the map w, we have dim Z; () >1
foreveryi € {1,...,n}. Since

> dim Z(Z,) = F(Z,) = n,
i=1

we must have dim Z;(X;) = 1 foreveryi € {1,...,n}. So Proposition 7.6
implies that Z; >~ F; foreveryi € {1,...,n}, hence F == (F;)®". |

Example 7.8. This is an extension of Example 7.3, and gives an explicit descrip-
tion of the split GNF*-algebra associated to the TQFT (F;)®" appearing in Propo-
sition 7.7. Let (Ao, i, 8, €, T) be a commutative special Frobenius algebra over a
field IF, where by special we mean that p1o$ = Id4,. We know from above that this
is a direct sum of copies of Sy if I is algebraically closed. Then we can associate
to Ao a split GNF*-algebra

A = A(Ao) = (A, pi,j.0ij. 8T, %, Qi w;)
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with a trivial mapping class group action, as follows. Let A = Ay ® F[x] with the
grading A; = Ay ® F(x?) fori € IN, where we identify Ao with A9 ® IF(1). For
elements a, b € Ay, we define

Wi (ax’ ® bx’) = abx' T/,

where ab stands for p(a ® b). This product is clearly associative.
Fora € A,letd(a) = a1y ®a(z) in sumless Sweedler notation. Then we define

51',]' (axi+'i) = a(l)xi ® a(z)x"'.

We now show §; ; is coassociative. The coassociativity of § in Sweedler notation
can be written as

a@) ® ae)) ® ae)e) = ama) ® dne) ®de)-
Then we have
(Id4; ® 8 ) 0 8,4k (ax'T7K) = (Idy, ® 8jx)(@1)x’ ® a@yx’ )
= amx’' ® agym ¥’ ® ap) @)
= amymyx’ ® auya)x’ ® agx*
= (8, ® lda)(a)x' ™ ® a@)x*)
= (8i,j ®Ida,) 0 81k (ax'HITF),

The unit e: ' — Ao of A is defined to be the unit of the Frobenius algebra Ay.
Indeed, if (1) = 1 € Ay, then 1 - x° is a unit of A as g ;(1-x° ® ax?) = ax’.
The counit t: A9 — IF of the Frobenius algebra A, will be the partial left counit
of our GNF*-algebra A. More precisely, we set (ax®) = 7(a). Indeed, we have

t(aq) ®aw) = tlaa))ae) =a,
hence
(r ® 1d4,) 0 8o (ax’) = (r ® Ida; ) (a1)x° ® a)x’)
= t(agy)ae)x’
=ax’.
The Frobenius condition for Ay can be written as

(ab)(l) ® (ab)(g) = ab(l) ® b(2).
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This implies the Frobenius condition for A, as

(Hiy ® 1) o (dy, ® 8;)(ax! ® b/ +)
= (i, ® ldgy)(ax’ & bayx’ & bayx*)
= ab(l)xi” ® b(g)xk
= (ab)(l)xiﬂ ® (ab)(2)xk
= 5i+j,k(abxi+j+k)

= 8itjk © i j+k(ax’ @ bx/ 1),
We define the involution * to be the identity; then this is an anti-automorphism
since Ag is commutative. Indeed,

(ax’ - bx7)* = abx'™/ = bax’T" = (bx?)* - (ax)*,

and similarly for the coproduct.

The modular splitting is defined by the formulas w(ax’) = ax**! fori € N
and a(ax’) = ax’~! for i > 0 and a(ax®) = 0. These satisfy the necessary
conditions as

8i,j—1 0 itj(ax'T7)y =§; j_i(ax’T/ 7
= amx' ® agx’™!
= (Idg; ® &) 0 &, (ax"*7),
and similarly,
8ij+1 0 witj(ax'™) = aqyx’ @ agyx’™!
= (Idg; ® wj) o Si,j(axHj).

Finally, we show that the trivial mapping class group representation satisfies
the required properties. Except for the following two, all properties of a mapping
class group representation trivially hold. Condition (3) of Definition 5.13 translates
to

Qi+1 0 W = Wj—1 0.
Indeed,
i1 0wi(ax’) = appr(ax'")
= ax’
= wi—1(ax’"")

= Wj—10; (axi).
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To check condition (4), observe that the left-hand side equals ;41 0 w, = Idg,,.
Furthermore,

Min—i © 8in—i (ax") = pin—i(a@)x’ ® a@yx""")
=amap)x"

= oé(a)x"
=ax",

where, in the last step, we used that the Frobenius algebra Ay is special.

In summary, if one would like to find a (2+1)-dimensional TQFT F over C
that does not extend to a (1+1+1)-dimensional one by constructing an irreducible
TQFT that is based on one of the nilpotent Frobenius algebras Hy4 ., then one
must have F(Xg) > 2g with a non-trivial mapping class group action for each
g > 0. Otherwise, the commutative Frobenius algebra F(S2) will be irreducible
and special, and hence isomorphic to S;.

In contrast, as stated in Proposition 1.1, there are 22 pairwise non-equivalent
(2+1)-dimensional oriented lax-monoidal TQFTs over C that do not extend to
(1+1+1)-dimensional TQFTs. We now prove this claim.

Proof of Proposition 1.1. According to Funar [11, p. 410], a C-valued homeo-
morphism invariant f of oriented 3-manifolds is multiplicative it f(M#N) =
f(M) f(N) for any pair of oriented 3-manifolds (M, N), where # denotes the
connected sum, f(—M) = f(M), and f(S3) = 1. By [ll1, Corollary 2.9] (cf. [36,
Theorem 4.4]), any multiplicative invariant canonically extends to a (2+1)-dimen-
sional lax monoidal TQFT. On the other hand, Funar [12, Corollary 1.1] con-
structed manifolds N and N’ such that, for any modular tensor category C, their
Reshetikhin—Turaev invariants agree:

RT¢(N) = RT¢(N').

By the work of Bartlett, Douglas, Schommer-Pries, and Vicary [3], every (1+1+1)-
dimensional TQFT is of the form RT¢ for some anomaly free modular tensor cat-
egory C. It follows that N and N’ cannot be distinguished by (1+1+1)-dimensional
TQFTs.

Let {M;:i € IN} be an enumeration of all prime oriented 3-manifolds such that

Mo, ..., M, are the prime components of N LI N’ without multiplicity, and let
Do - - ., pn be distinct prime numbers. Then we define £(S3) = 1 and f(M;) = p;
for every i € {0,...,n}, and f(M;) is an arbitrary complex number for i > n.

As 3-manifolds have unique prime decompositions, f uniquely extends to a
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multiplicative invariant of 3-manifolds. Since N and N’ are not homeomorphic,
they have distinct prime components, and so f(N) # f(N’) as they have different
prime factorizations. It follows that the TQFT arising from such an f is not
(1+1+1)-dimensional. We have 2¢ different choices for f(M;) for every i > n,
giving rise to 22” different multiplicative invariants f, each distinguishing N
and N'.

Alternatively, by the work of Bruillard, Ng, Rowell, and Wang [5, Theo-
rem 3.1], there are only countably many modular tensor categories up to equiv-
alence, while there are 22¢ multiplicative 3-manifold invariants, so, with count-
ably many exceptions, a (2+1)-dimensional lax monoidal TQFTs is not (1+1+1)-
dimensional. O
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