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Abstract. We investigate a (potentially infinite) series of subfactors, called 3n subfactors,

including A4, A7, and the Haagerup subfactor as the first three members corresponding to

n D 1; 2; 3. Generalizing our previous work for odd n, we further develop a Cuntz algebra

method to construct 3n subfactors and show that the classification of the 3n subfactors

and related fusion categories is reduced to explicit polynomial equations under a mild

assumption, which automatically holds for odd n. In particular, our method with n D 4

gives a uniform construction of 4 finite depth subfactors, up to dual, without intermediate

subfactors of index 3Cp
5. It also provides a key step for a new construction of the Asaeda–

Haagerup subfactor due to Grossman, Snyder, and the author.
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1. Introduction

The theory of subfactors, introduced by Vaughan Jones [31], is a rich source of a
new kind of symmetries, sometimes called quantum symmetries (see [14]). One
of the ways to describe such a symmetry encoded in a subfactor N � M of finite
index is to consider the category of bimodules generated by two basic bimodules

NMM and MMN via tensor product over M and N , where NMM and MMN are
M regarded asN �M andM �N bimodules respectively. TheM �M bimodules
and N �N bimodules arising in this way form rigid tensor categories, called the
even part of the subfactor, while the M � N bimodules and N � M bimodules
form bimodule categories over them, giving categorical Morita equivalence of
them. All information about the original subfactor can be stated in terms of these
categories. For example, the subfactor is of finite depth if and only if there are
only finitely many isomorphism classes of irreducible bimodules as above, that
is, the two tensor categories are fusion categories. The two principal graphs of
the subfactor are nothing but the induction-reduction graphs with respect to the
basic bimodules between the M � M bimodules and M � N bimodules for the
one principal graph, and the M � N bimodules and N � N bimodules for the
other. Moreover, this process of passing from the subfactor to these categories
can be reversed; namely, the original subfactor is recovered from the category
of N � N bimodules with an algebra object NMN Š N .M ˝M M/N , called a
Q-system [34]. This is the approach we adopt to construct and classify a specific
class of subfactors in this paper.

The categories arising from a subfactor always carry a special analytic struc-
ture. Namely, they are C�-categories, which were introduced by Ghez, Lima, and
Roberts [15] as categorical counterparts of C�-algebras. Therefore to classify a
specific class of finite depth subfactors in our approach, the first task is to classify
a specific class of C�-fusion categories. For this purpose, it is not necessarily con-
venient to realize C�-fusion categories as bimodules over von Neumann factors,
and we take an alternative (but of course, mathematically equivalent) approach
heavily influenced by algebraic quantum field theory. Since his epoch-making
joint work [8] with Sergio Doplicher and Rudolf Haag, John E. Roberts devoted
himself to studying categorical aspects of algebraic quantum field theory and re-
lated mathematical structure ([44], [45], [15], and [35], just to name a few). In their
work, C�-tensor categories naturally appear as categories consisting of endomor-
phisms of relevant operator algebras. In fact, it is known that every C�-fusion
category is uniquely embedded in the category of endomorphisms of the hyperfi-
nite type III1 factor ([43] and [23]; see also [28, Section 2] for a precise statement).
Our Cuntz algebra method relies on this fact.
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Now we turn our attention to specific subfactors appearing in an ongoing
project of the classification of small index subfactors. The fusion categories
arising from the Jones subfactors of index less than 4 can be described by the
quantum SU.2/ at roots of unity. Likewise, general subfactors with index less
than or equal to 4 are related to either the quantum SU.2/ or ordinary groups in
a little more, but not too much, complicated way. Uffe Haagerup [21] was the
first to systematically explore subfactors with index beyond 4, and in the early
90s he came up with countably many candidate principal graph pairs of potential
subfactors with index between 4 and 3 C p

3. Moreover, he showed that the
first candidate indeed arises from a subfactor, now called the Haagerup subfactor

(see [2] for the proof). The Haagerup subfactor is the first subfactor that is not
directly related to either an ordinary group or a quantum group, and whether its
Drinfeld center is related to a quantum group (conformal field theory) or not is
an interesting open problem. At the time of writing, the classification of finite
depth subfactors is completed up to index 5C 1

4
(see [32], [29], [1], and references

therein), and it turns out that three subfactors actually exist among Haagerup’s list,
namely the Haagerup subfactor, Asaeda–Haagerup subfactors constructed in [2],
and the extended Haagerup subfactor constructed in [3]. The original construction
of the Haagerup subfactor in [2] used computation of connections, a special type
of 6j-symbols. Later Peters [42] and the author [27] gave different constructions,
based on the Jones Planar algebra and the Cuntz algebra respectively. This work is
a natural continuation of [27], which used the fact that one of the principal graphs
of the Haagerup subfactor has a Z3-symmetry. It is natural to generalize Z3 to
arbitrary finite groups.

Let us recall our construction in [27] briefly. The principal graphs of the
Haagerup subfactor are as in Figure 1, where � means MMN , or in the endomor-
phism language, the inclusion map �WN ,! M . We denote the upper principal

M �M idM � ˛� ˛2� ˛ ˛2

M �N � � ˛� ˛2�

N �N idN O� � N�˛�

❄❄
❄❄

❄ ⑧⑧⑧⑧⑧ ❄❄
❄❄

❄ ③③③③③③

✐✐✐✐✐✐✐✐✐✐✐✐ ✹✹
✹✹
✹

✹✹
✹✹
✹ ❥❥❥❥❥❥❥❥❥❥❥
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Figure 1. The principal graphs of the Haagerup subfactor.

graph 33 because it has a central vertex � having three legs of length 3 out of
it. The endomorphisms of M corresponding to the three end points are automor-
phisms, and they form a group ¹idM ; ˛; ˛

2º of order three, and the M � M part
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has the following fusion rules.

Œ˛3� D ŒidM �; Œ˛�Œ�� D Œ��Œ˛2�;

Œ�2� D ŒidM �C Œ��C Œ˛��C Œ˛2��:

This fusion category is often referred to as the Haagerup category. In [27],
we explicitly constructed a fusion category with these fusion rules consisting
of the endomorphisms of the Cuntz algebra O4, and with a Q-system giving
the Haagerup subfactor. Moreover, using the explicit formula, we were able to
determine the structure of its Drinfeld center.

In the above construction, we can generalize Z3 to an arbitrary group. We
define 3n graph as a graph with a unique central vertex having exactly n legs of
length 3 out of it. We say that a subfactor N � M is 3n if the principal graph

� � � � � � �

�
�
�

�
�
�

Figure 2. 34 graph.

between the M �M bimodules and the M �N bimodules is the 3n graph. As in
the case of the Haagerup subfactor, a group G of order n naturally arises from a
3n subfactor in the automorphism group ofM , say ¹˛gºg2G . When we would like
to specify this group, we can say that the subfactor is 3G instead of 3n. It is easy
to show that the only possible fusion rules, other than the group part, are

Œ˛g �Œ�� D Œ��Œ˛g� �

Œ�2� D ŒidM �C
X

g2G

Œ˛g��;

where � is a group automorphism of G of order two. In the case where G is an
abelian odd group and � D �1, in [27] we obtained polynomial equations whose
solutions give 3G subfactors via Cuntz algebra endomorphisms, and solved the
equations for G D Z3 and G D Z5. Evans and Gannon [11] showed that there
exist solutions for the polynomial equations when G is an odd cyclic group of
small order. We show that these solutions actually classify 3n subfactor with odd n
(G being abelian and � D �1 automatically hold for odd G, see Theorem 2.2).
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One of the main purposes of this paper is to obtain the polynomial equations in
the even case too. It turns out that we can also classify 3n subfactors with even
n by the polynomial equations with an extra assumption of G being abelian and
� D �1. So far there is no known 3n subfactor not satisfying this condition.

The classification list [1] of small index subfactors shows that there are rel-
atively few finite depth subfactors. However, 3 C p

5 is an exceptionally rich
index value, and there are exactly 4 finite depth subfactors, up to dual, without
non-trivial intermediate subfactors (see [36] and [37]). Our method gives uni-
form construction of them. Namely, the four subfactors are the unique 3Z2�Z2

subfactor and its equivariantization by Z3, and the unique 3Z4 subfactor and its
de-equivariantization by Z2.

Recently, Pinhas Grossman, Noah Snyder, and the author [18] gave a new con-
struction of the Asaeda–Haagerup subfactor based on the study [20] of the Brauer-
Picard groupoid of the corresponding fusion categories. The new construction
requires a similar fusion category to the one as above with the group G D Z4 but
having non-trivial multiplicity in the fusion rules. It turns out that we can construct
the desired fusion category from a 3Z4�Z2 subfactor via de-equivariantization
by Z2. Our new construction solves a lot of open problems about the Asaeda–
Haagerup subfactors. For example, we can compute the Drinfeld center of fusion
categories for the Asaeda–Haagerup subfactor (see [17]).

This paper is organized as follows. In Section 2, we set up an appropriate
class of fusion categories for our classification purpose, which we call general-

ized Haagerup categories. Since the definition of the class involves subtlety of
cohomological nature, we begin with a more general class of fusion categories,
and formulate cohomological invariants for them mimicking the E2-term of the
spectral sequence for the cohomology of semidirect product groups. We also pre-
pare the basics of an operator algebraic method to classify C�-fusion categories.

Using Cuntz algebras, we deduce polynomial equations for generalized
Haagerup categories in Section 3, and give a reconstruction theorem in Section 4
(supplemented by a free product method in the appendix, Section 10). In Section 5,
we obtain a complete classification result for generalized Haagerup categories.
There is a symmetry group � acting on the gauge equivalence classes of the solu-
tions of the polynomial equations, and each �-orbit corresponds to an equivalence
class of generalized Haagerup categories, while the outer automorphism group of
the category is given by the stabilizer subgroup.

In Section 6, we discuss a necessary and sufficient condition for the existence of
aQ-system giving rise to a 3G subfactor, and shows that it significantly simplifies
the polynomial equations. This condition (6.1) was not separated from the other
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conditions in [27], where only odd groups were treated. We also discuss a strategy
to solve the polynomial equations without assuming the existence of theQ-system.
In Section 7, we state our classification results for 3G subfactors putting the results
obtained in the preceding sections together. We also compute the dual principal
graphs.

In Section 8, we discuss several methods to obtain new fusion categories out
of a given generalized Haagerup category, including de-equivariantization and
equivariantization. In Section 9, we give solutions of the polynomial equations for
abelian groups of small order. There exists a unique solution (up to equivalence
in an appropriate sense) for Z2 �Z2, and it gives rise to a 3Z2�Z2 subfactor. There
exist two solutions for Z4, only one of which gives rise to a 3Z4 subfactor.

This work started with a conversation with Terry Gannon in 2010 asking
whether the previous result on odd abelian groups can extend to more general
groups, and the author is grateful to him. The author would like to thank Scott
Morrison for his kind explanation of the use of formal codegrees, Victor Ostrik
for providing an elementary proof of Lemma 2.4, and Vaughan Jones for drawing
the author’s attention to the spectral sequence for the cohomology of a semidirect
product group.

2. Preliminaries

Our basic references are [10] for fusion categories, [14] for operator algebras and
subfactors, and [4] for the category of endomorphisms of von Neumann algebras.
There are unfortunate discrepancies of terminology and notation in [10] and [4].
To avoid possible confusion, we use the symbol � for the dual objects and the dual
morphisms, and idX for the identity morphism of an object X only in Section 2.1,
where general fusion categories are discussed. In the rest of the paper where
only C�-fusion categories are discussed, the symbol � is reserved for the adjoint
operators of the bounded operators acting on Hilbert spaces. Instead, we use N� for
the dual object of � , and we also use the term “conjugate” instead of “dual.” Also
the symbol idM is reserved for the identity morphism of a von Neumann algebra
M , playing the role of the unit object in End.M/, and instead 1� is used for the
identity morphism of an object � .

2.1. Generalized Haagerup categories. The main purpose of this subsection is
to set up an appropriate class of fusion categories for this work. We start with a
little more general class than we need for the classification of 3G subfactors, and
it is a subclass of the so-called quadratic categories.
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A fusion category over the complex numbers C is a rigid semisimple C-lin-
ear tensor category with finitely many simple objects and finite dimensional mor-
phism spaces such that the unit object 1 is simple. Throughout the paper, we as-
sume that fusion categories are strict. For a fusion category C, we denote by O.C/

the set of isomorphism classes of the simple objects in C. For an object X 2 C,
we denote by ŒX� its isomorphism class.

Let C be a fusion category over the complex numbers C. The isomorphism
classes of the invertible objects of C form a finite group, which we denote by G.
We choose a representative from each class g 2 G, and denote it by the same
symbol g. We always assume e D 1. We say that C is a quadratic category if
there exists a non-invertible simple object � such that every simple object of C is
isomorphic to an object in either G or G ˝ �˝G.

Definition 2.1. With the above notation, we say that C is a quadratic category

with .G; �; m/, where � is a group automorphism of G of period two and m is a
natural number, if � is self-dual with

O.C/ D G t ¹Œg ˝ ��ºg2G ;

and they obey the following fusion rules:

Œg�Œh� D Œgh�; g; h 2 G;

Œg�Œ�� D Œ��Œg� �; g 2 G

Œ��2 D Œ1�C
X

g2G

mŒg ˝ ��:

The Haagerup category is a quadratic category with .Z3;�1; 1/. In fact, for
odd groups there exists great restriction for the structure of the quadratic categories
with .G; �; m/.

Theorem 2.2. Let C be a spherical quadratic category with .G; �; m/. If G is

an odd group and m is an odd number, then G is abelian and g� D g�1 for any

g 2 G.

To show the theorem, we first recall the notion of formal codegrees of a
fusion category C introduced by Ostrik [40]. The Grothendieck ring K.C/ of C is
the free module generated by O.C/ with a multiplication given by the monoidal
product in C. Let .�; V�/ be an irreducible representation of K.C/, where V�
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is a finite dimensional vector space over C, and � WK.C/ ! End.V�/ is a ring
homomorphism. Then the formal codegree f� for � is defined by

f� D
X

X2O.C/

Tr.�.X//�.X�/;

where Tr.�.X// is the trace of �.X/. Since f� commutes with �.X/ for every
X 2 O.C/, it is a scalar. Ostrik [40, Theorem 2.13] showed that if C is spherical,
there exists a simple object in the Drinfeld center Z.C/ whose dimension is
dimC=f� , where dimC is the global dimension of C. In particular, the number
dimC=f� is necessarily a cyclotomic integer.

Lemma 2.3. Let the notation be as in Theorem 2.2 and assume that G is an odd

group andm is an odd number. Then for any non-trivial irreducible representation

� of G, the two representations � and � ı � are inequivalent.

Proof. Assume on the contrary that there is an irreducible non-trivial representa-
tion .�� ; V�/ ofG such that � is equivalent to � ı� . Then there exists an invertible
element W 2 End.V�/ satisfying �.g� / D W�.g/W �1 for any g 2 G. Since � is
of order two, W 2 is a scalar, and we may assume that W 2 D 1 holds multiplying
W by a scalar if necessary. Note that since � is non-trivial, we have

X

g2G

�.g/ D 0:

This enables us to introduce an irreducible representation � 0 of K.C/ on V� by
setting� 0.g/ D �.g/ for g 2 G and� 0.Œ��/ D W . To compute the formal codegree
of � 0, we may assume that .�� ; V�/ is a unitary representation. We choose an
orthonormal basis ¹eiºdim �

iD1 , and express �.g/ and W by matrices .�.g/ij / and
.Wij /. Note thatW is a self-adjoint unitary now. The Peter-Weyl theorem implies

.f�0/ij D
X

g2G

Tr.�.g//�.g�1/ij C
X

g2G

Tr.�.g/W /.W�.g/�1/ij

D
X

g;k

�.g/kk�.g/j i C
X

g;k;l;r

�.g/klWlkWir�.g/jr

D jGj
dim�

X

k

ık;iık;j C jGj
dim�

X

k;l;r

ık;j ıl;rWlkWir

D 2jGj
dim�

ıij ;

and f�0 D 2jGj= dim� .
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On the other hand, since we assume that C is spherical and G is odd, the only
possibilities of the dimensions of the simple objects in C are dim g D 1 for g 2 G,

and dim g ˝ � D mjGj˙
p

m2jGj2C4

2
, and so

dimC D jGj C jGj.dim �/2 D jGj.2CmjGj dim �/:

This implies
dimC

f�0

D dim� C mjGj dim� dim �

2
:

Since mjGj dim� is odd, this cannot be an algebraic integer, and we get contra-
diction. �

Recall that an automorphism of a finite group G is called fixed-point-free if
it has no fixed point in G n ¹eº. It is known that G allows a fixed-point-free
automorphism of period two � if and only if G is abelian and g� D g�1 for
any g 2 G (see [46, Exercises 10.5.1]). We say that � 2 Aut.G/ is fixed-point-

free on the dual of G if for any non-trivial irreducible representation � , the two
representation � and � ı � are inequivalent. When G is abelian and � is of
period two, the two definitions are equivalent because the latter is equivalent to
the condition that � acts on the dual group yG by �1, which in tern is equivalent
to the condition that � acts on G by �1. The proof of Theorem 2.2 follows from
the following lemma, which states that the two definitions for a period two � are
always equivalent.

Lemma 2.4. LetG be a finite group, and let � be an automorphism ofG of period

two. If � is fixed-point-free on the dual ofG, the groupG is abelian and g� D g�1

for any g.

Proof. We first claim that the restriction of � to any characteristic subgroup N of
G is again fixed-point-free on the dual of N . Indeed, assume that there exists a
non-trivial irreducible representation � of N such that � and � ı � are equivalent.
Then thanks to the Frobenius reciprocity, for any irreducible representation � of
G, the multiplicity of � in the induced representation IndG

N � is the same as that
of � ı � in IndG

N � . Since IndG
N � does not contain the trivial representation, this

implies that
dim IndG

N � D jG=N j dim �

is even, which contradict the assumption that G is odd. Thus the claim holds.
Let

¹1; �1; �1 ı �; �2; �2 ı �; : : : ; �k; �k ı �º
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be the irreducible representations of G. Then

jGj D 1C 2

kX

iD1

dim�2
i

is odd, and G is solvable thanks to the Feit-Thompson theorem (see [46, p. 148]
and references therein). Let

G D G.0/
B G.1/

B � � � B G.l/ D ¹eº
be the derived series of G. If G is abelian, the statement holds, and so we assume
that l � 2 and get contradiction. For this purpose, it suffices to assume l D 2 by
replacing G with G.l�2/ because G.l�2/ is a characteristic subgroup of G. Thus
we assume that ŒG; G� ¤ ¹eº is abelian. Since ŒG; G� is an abelian characteristic
subgroup, the restriction of � acts on ŒG; G� by �1. On the other hand, since any
representation ofG=ŒG;G� is regarded as a representation ofG, the automorphism
of G=ŒG;G� induced by � is also a fixed-point-free on the dual of G=ŒG;G�, and
hence it acts by �1 for G=ŒG;G� is abelian. This implies that for any g 2 G, we
have g� 2 g�1ŒG; G� and gg� 2 ŒG; G�. Since � acts on ŒG; G� by �1, we have
.gg� /� D .gg� /�1 and we get .g2/� D .g2/�1. Since G is an odd group, this
implies that we have h� D h�1 for any h 2 G, which contradicts the assumption
that G is non-abelian. Thus l < 2 and G is abelian. �

Victor Ostrik kindly informed the author of the following elementary proof of
the above lemma without using the Feit-Thompson theorem. We would like to
thank him for his courtesy.

Second proof of Lemma 2.4. It suffices to show that � is a fixed-point-free auto-
morphism. Let 2a be the number of the conjugacy classes in G that are not fixed
by � , and let b be the number of non-trivial conjugacy classes that are fixed by � .
Our goal is to show that b D 0. Let

¹1; �1; �1 ı �; �2; �2 ı �; : : : ; �k; �k ı �º
be the irreducible representations of G. Then we have 2k D 2aC b.

Let zG be the semidirect product group G Ì� Z2. Since � is fixed-point-free
on the dual of G, the group zG has two 1-dimensional representations, and all the

other irreducible representations are of the form Ind
zG
G �i Š Ind

zG
G �i ı � . Thus zG

has exactly 2C k D 2C aC b
2

irreducible representations. On the other hand, the
number of the conjugacy classes in zG is larger than or equal to 2C aC b, and zG
has at least 2C a C b irreducible representations. Therefore we get b D 0, and �
is a fixed-point-free automorphism. �
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Next we introduce cohomological invariants of a quadratic category C with
.G; �; m/ pursuing a similarity between C and the semidirect product group G Ì�

Z2, which was first observed by Evans and Gannon [11] in the case ofG D Zn with
odd n, � D �1, and m D 1. Note that the E2-term of the Lyndon-Hochschild-
Serre spectral spectral sequence for the group cohomology H�.G Ì� Z2;C

�/ is
given by Ep;q

2 D Hp.Z2; H
q.G;C�//, where the group Z2 acts on H q.G;C�/

through � . We start with

E
0;3
2 D H 0.Z2; H

3.G;C�// D H 3.G;C�/� ;

where H 3.G;C�/� is the set of cohomology classes in H 3.G;C�/ fixed by � .
For g; h 2 G, we choose an isomorphism vg;hW gh ! g˝hwith vg;e D ve;g D

idg . Since both .vg;h ˝ idk/ıvgh;k and .idg ˝vh;k/ıvg;hk are isomorphisms from
ghk to g ˝ h˝ k, there exists !.g; h; k/ 2 C

� satisfying

.idg ˝vh;k/ ı vg;hk D !.g; h; k/.vg;h ˝ idk/ ı vgh;k: (2.1)

Thanks to the pentagon equation, we see that ! D ¹!.g; h; k/ºg;h;k2G form a
3-cocycle in Z3.G;C�/, and we denote by c

0;3.C/ its cohomology class Œ!� 2
H 3.G;C�/, which is a well-known invariant of the fusion category C, or rather
the fusion subcategory generated by G.

For each g 2 G, we choose an isomorphism wg W g ˝ � ! � ˝ g� . Then we
have two isomorphisms id� ˝vg� ;h� and

.wg ˝ idh� / ı .idg ˝wh/ ı .vg;h ˝ id�/ ı w�1
gh ;

from �˝ g�h� to �˝ g� ˝ h� , and there exists �.g; h/ 2 C
� satisfying

.wg ˝ idh� / ı .idg ˝wh/ ı .vg;h ˝ id�/ ıw�1
gh D �.g; h/ id� ˝vg� ;h� : (2.2)

Lemma 2.5. With the above notation, we have

!.g; h; k/ D !.g� ; h� ; k� /�.h; k/�.gh; k/�1�.g; hk/�.g; h/�1: (2.3)

In consequence c0;3.C/ 2 H 3.G;C�/� .

Proof. From eq. (2.1), we get

id� ˝..idg� ˝vh� ;k� /ıvg� ;h� k� / D !.g� ; h� ; k� / id� ˝..vg� ;h� ˝idk� /ıvg� h� ;k� /:

Computing the both sides using eq. (2.2), we get the statement. �
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Now we assume c
0;3.C/ D 0, and we introduce an invariant

c
1;2.C/ 2 H 1.Z2; H

2.G;C�//:

Since c
0;3.C/ D 0, we can choose vg;h so that the relation

.idg ˝vh;k/ ı vg;hk D .vg;h ˝ idk/ ı vgh;k: (2.4)

holds. Then eq. (2.3) shows that �D¹�.g; h/ºg;h2G form a 2-cocycle inZ2.G;C�/.
Choosing appropriate wg , we may further assume that � is normalized, that is,
�.g; g�1/ D 1 for any g 2 G, and in consequence �.g; h/ D �.h�1; g�1/�1. Since
� is self-dual, we can produce an isomorphismw�

g W .g� /�1˝� ! �˝g�1 fromwg

by rigidity (see [10, 2.10] for the definition), where we choose g� D g�1 with the
evaluation and coevaluation maps given by v�1

g�1;g
and vg;g�1 respectively. More

concretely, we set

w�
g D ..vg� �1;g�

�1 ı .idg ˝ev� ˝ idg� //˝ id� ˝ idg�1/

ı .idg� �1 ˝ id�

˝ ..wg ˝ id� ˝ idg�1/ ı .idg ˝coev� ˝ idg�1/ ı vg;g�1//;

Thus there exists �.g/ 2 C
� satisfying

w�
.g� /�1 D �.g/wg : (2.5)

Lemma 2.6. With the above notation, we have

�.g� ; h� /�.g; h/ D �.gh/�.g/�1�.h/�1: (2.6)

In consequence, the 2-cocycle � 2 Z2.G;C�/ gives a class inH 1.Z2; H
2.G;C�//.

Proof. Since � is normalized, it suffices to show

�..h� /�1; .g� /�1/�.gh/ D �.g/�.h/�.g; h/:

Indeed, with the notation gC D .g� /�1, we have

�.g/�.h/.wg ˝ idh� / ı .idg ˝wh/

D .w�
gC ˝ idh� / ı .idg ˝w�

hC/

D ..whC ˝ idg�1/ ı .idhC ˝wgC//�

D �.hC; gC/..id� ˝vh�1;g�1/ ı w.gh/C ı .v�1
h�1;g�1 ˝ id�//

�

D �.hC; gC/.id� ˝vg;h/ ıw�
.gh/C ı .v�1

g;h ˝ id�/

D �.hC; gC/�.gh/.id� ˝vg;h/ ı wgh ı .v�1
g;h ˝ id�/

D �.hC; gC/�.gh/�.g; h/�1.wg ˝ idh� / ı .idg ˝wh/: �
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We denote by c
1;2.C/ the cohomology class inH 1.Z2; H

2.G;C�// given by �,
which does not depend on either the choice of vg;h or that of wg .

Although we need only c
0;3.C/ and c

1;2.C/ for our purpose, we can proceed
further under the additional assumption that C is pivotal. Assume c

1;2.C/ D 0.
Then we can choose vg;h and wg satisfying

.wg ˝ idh� / ı .idg ˝wh/ ı .vg;h ˝ id�/ ıw�1
gh D id� ˝vg� ;h� : (2.7)

and in consequence eq. (2.6) implies � 2 Hom.G;C�/. Replacing g with gC in
w�

gC D �.g/wg , we get w�
g D �.gC/wgC , and w��

g D �.gC/�.g/wg . which
shows � 2 Hom.G;C�/� . We still have freedom to replace vg;h with �.g; h/vg;h

and wg with �.g/wg where � 2 Z2.G;C�/ and �.g/ 2 C
� satisfy �.g; e/ D

�.e; g/ D �.e/ D 1 and �.g/�.h/�.gh/�1 D �.g; h/�1�.g� ; h�/. Since

w�
gC D ..v�1

g;g�1 ı .id� ˝ev� ˝ idg�1//˝ id� ˝ idg� /

ı .id� ˝ id�

˝ ..wgC ˝ id� ˝ idg / ı .idgC ˝coev� ˝ idg� / ı v.g� /�1;g� //;

this amounts to replacing �.g/ with

�.g/�.g; g�1/�1�..g� /�1; g� /�..g� /�1/�.g/�1:

Since the cocycle relation of � implies �.g; g�1/ D �.g�1; g/, this is equal to

�.g/�..g�/�1/�.g�1/:

Note that we can identify

H 2.Z2; H
1.G;C�// D H 2.Z2;Hom.G;C�//

with

Hom.G;C�/�=¹��� 2 Hom.G;C�/I � 2 Hom.G;C�/º:

On the other hand, we have H 0.Z2; H
2.G;C�// D H 2.G;C�/� . Thus � deter-

mines an element in

coker.H 0.Z; H 2.G;C�// �! H 2.Z2; H
1.G;C�//;

which we denote by c
2;1.C/.
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Finally, we just mention that Longo [33] already pointed out that a right
analogue of an element in

H 3.Z2; H
0.G;C�// D H 3.Z2;C

�/ Š Z2

associated with the object � should be, in modern term, the Frobenius-Schur
indicators �2;1.�/ 2 ¹1;�1º (see [39] for the definition). We set c3;0.C/ D �2;1.�/.

In Lemma 7.1, we show that a quadratic category C with .G; �; m D 1/ coming
from a 3G subfactor has trivial c0;3.C/ and c

1;2.C/. To simplify the statements
of our main results, we introduce the following class of quadratic categories.
Our main goal in this paper is to classify them under the C�-condition, which
is probably not too modest a goal in view of Theorem 2.2 and Lemma 7.1.

Definition 2.7. A generalized Haagerup category with a finite abelian group G is
a quadratic category C with .G;�1; 1/ satisfying c

0;3.C/ D 0 and c
1;2.C/ D 0.

When we need a quadratic categoryC satisfying all the above conditions except
for m D 1 (as in the case of our new construction of the Asaeda–Haagerup
subfactor in [18]), we could say that a fusion category C is a generalized Haagerup

category with higher multiplicitym. We could use the adjective twisted to describe
C with non-trivial c0;3.C/ or c1;2.C/ (see [38]), though we do not need them in this
paper. It is known that there exist quadratic categories with .Z3;�1; 1/ having
non-trivial c0;3.C/ 2 H 3.G;C�/ (see [11] and [28, Example 12.14]).

2.2. The category End.M/. In this subsection, we partly follow [28, Section 2]
for presentation. For a Hilbert space H, we denote by B.H/ the set of bounded
operators on H, and by U.H/ the set of unitaries on H. The identity operator of
H is denoted by 1H or simply by 1. For a unital C�-algebra A, we denote by U.A/

the set of unitaries in A. The unit of A is denoted by 1A or simply by 1.
Let M be a properly infinite factor. Then the set of unital endomorphisms

End.M/ forms a tensor category with the monoidal product �˝ � of two objects
�; � 2 End.M/ given by the composition � ı � , and the morphism space from �

to � given by

HomEnd.M /.�; �/ D ¹T 2 M I T�.x/ D �.x/T; for all x 2 M º:

For simplicity, we denote .�; �/ D HomEnd.M /.�; �/. In this tensor category, the
monoidal product T1 ˝ T2 of two morphisms Ti 2 .�i ; �i/, i D 1; 2, are given by

T1�1.T2/ D �1.T2/T1 2 .�1 ı �2; �1 ı �2/:
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This is graphically expressed as

T1

T2

�1

��

�2

��

�1�� �2��

D
T1

T2

�1

��

�2

��

�1�� �2��

:

By definition, two objects �; � are equivalent if and only if there exists a unitary
U 2 U.M/ satisfying � D AdU ı � , where AdU is the inner automorphism of
M given by AdU.x/ D UxU�1. The self-morphism space .�; �/ is nothing but
the relative commutantM \ �.M/0, and when this space consists of only scalars,
we say that � is irreducible (or simple).

The morphism space .�; �/ inherits the Banach space structure from M , and
the �-operation of M sends .�; �/ to .�; �/, which makes End.M/ a C�-tensor
category (see [4, Section 1]). Moreover, if � is irreducible, the space .�; �/ is a
Hilbert space with an inner product given by T �

1 T2 D hT1; T2i1M for T1; T2 2
.�; �/. Throughout the paper, we assume that any functor between C�-fusion
categories preserves the �-structure.

For � 2 End.M/, its dimension d.�/ is defined by ŒM W �.M/�
1=2
0 , where

ŒM W �.M/�0 is the minimal index of �.M/ in M . We denote by End0.M/ the set
of � 2 End.M/ with finite d.�/. The dimension function End0.M/ 3 � 7! d.�/

is additive with respect to the direct sum operation and multiplicative with respect
to the monoidal product operation. The tensor category End0.M/ is rigid in the
following sense: for any � 2 End0.M/, there exist N� 2 End0.M/, called the
conjugate endomorphism of �, and two isometriesR� 2 .id; N�ı�/, xR� 2 .id; �ı N�/
satisfying

xR�
��.R�/ D R�

� N�. xR�/ D 1

d.�/
:

The evaluation morphism ev� is identified with
p
d.�/ xR, and the coevaluation

morphism coev� is identified with
p
d.�/R�.

If we replace End.M/ with the set of unital homomorphisms between two
type III factors, the dimension function and conjugate morphisms still make sense,
and we use the same notation as above (see [25] and [4]).

Every C�-fusion category is realized as a category of bimodules of the hy-
perfinite II1 factor (see [23]), which implies by a tensor product trick, that every
C�-fusion category is realized as a subcategory of End0.M/ for any hyperfinite
type III factor M . For uniqueness, we have the following statement, which is a
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consequence of Popa’s classification theorem for amenable subfactors [43]. Re-
call that a monoidal functor from a strict fusion category C to another strict fusion
category D is a pair .F; L/ consisting of a functor F WC ! D and natural isomor-
phisms

L�;� 2 HomD.F.�/˝ F.�/; F.�˝ �//

satisfying

L�˝�;� ı .L�;� ˝ IF .�// D L�;�˝� ı .IF .�/ ˝ L�;� /

for any �; �; � 2 C (see [10, Definition 2.4.1]). We may and do assume F.1C/ D 1D

and L1C;� D L�;1C D IF .�/. When C and D are C�-categories, we further assume
that L�;� is a unitary.

Theorem 2.8 ([28, Theorem 2.2]). LetM and P be hyperfinite type III1 factors,

and let C and D be C�-fusion categories embedded in End.M/ and End.P /
respectively. Let .F; L/ be a monoidal functor from C toD that is an equivalence of

the two C�-fusion categories C and D. Then there exists a surjective isomorphism

ˆWM ! P and unitaries U� 2 P for each object � 2 C satisfying

F.�/ D AdU� ıˆ ı � ıˆ�1;

F.X/ D U�ˆ.X/U
�
� ; X 2 .�; �/;

L�;� D U�ı�ˆ ı � ıˆ�1.U �
� /U

�
� D U�ı�U

�
� F.�/.U

�
� /:

If � is self-conjugate, we have xR� D �R� with � 2 ¹1;�1º. This sign � can be
identified with the Frobenius-Schur indicators �2;1.�/ (see [39] for the definition).
We say that � is real (or symmetrically self-dual) if � D 1, and � is pseudo-real if
� D �1.

Lemma 2.9. Let � 2 End.M/ be a self-conjugate irreducible endomorphism of

finite d.�/. If dim.�; �2/ D 1, then � is real.

Proof. For T 2 .�; �2/, set j.T / D
p
d.�/T ��.R�/. Then j W .�; �2/ ! .�; �2/ is

an anti-unitary satisfying

j 2.T / D d.�/�.R�
�/T�.R�/ D d.�/�.R�

�/�
2.R�/T D ˙T:

Since dim.�; �2/ D 1, the case j 2 D �1 never occurs, and � is real. �
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2.3. G -kernels and group actions. Cohomological aspects of finite group ac-
tions on factors are well developed in [6], [30], and [47], and we summarize nec-
essary facts for our purposes here.

In the category End.M/, an invertible object is nothing but an automorphism
of M . Thus a finite group G consisting of isomorphism classes of invertible
objects is nothing but a finite subgroup of the outer automorphism group Out.M/.
Let T D ¹z 2 CI jzj D 1º: Since we can always choose a unitary for an
isomorphism between two invertible objects, it is natural for us to consider group
cohomology with coefficient module T rather than C

�. Note that since C
� D

T � R
C as trivial G-modules, we have H i .G;C�/ Š H i .G;T/ for i � 1.

A G-kernel in M is an injective homomorphism from G into the outer auto-
morphism group Out.M/. For a G-kernel, we choose a lifting ˛WG ! Aut.M/,
which is also called a G-kernel. Then there exists a unitary Vg;h 2 U.M/ for each
pair g; h 2 G satisfying ˛g ı˛h D AdVg;h ı˛gh. By associativity .˛g ı˛h/ı˛k D
˛g ı .˛h ı ˛k/, we have Ad.Vg;hVgh;k/ ı ˛ghk D Ad.˛g.Vh;k/Vg;hk/ ı ˛ghk ; and
there exists ! 2 Z3.G;T/ satisfying

˛g.Vh;k/Vg;hk D !.g; h; k/Vg;hVgh;k:

The cohomology class Œ!� 2 H 3.G;T/ is the exact obstruction for a G-kernel to
lift to an genuine G-action, and it is also identified with the cohomology class in
H 3.G;C�/ defined by eq. (2.1).

When Œ!� is trivia, we can choose Vg;h so that the equality

˛g.Vh;k/Vg;hk D Vg;hVgh;k (2.8)

holds. The pair .˛; V D ¹Vg;hº/ satisfying this relation is called a 2-cocycle action

of G on M . It is known that every 2-cocycle action of a finite group G (with the
assumption that G 3 g 7! Œ˛g � 2 Out.M/ is injective) is equivalent to an action,
that is, there exists a unitary Ug 2 U.M/ for each g 2 G so that ¹AdUg ı ˛gºg2G

gives a G-action, and Ug˛g .Uh/Vg;hU
�
gh

D 1.
In the case of abstract fusion categories discussed in Section 2.1, when (2.4)

holds, the other isomorphisms satisfying the same relation are of the form
�.g; h/vg;h with � 2 Z2.G;C�/, and H 2.G;C�/ naturally appears in the picture.
The same mathematical fact takes a different (but of course equivalent) form in
our case because of the following reason. In the case of End.M/, since a G-ac-
tion is a privileged lifting of a given G-kernel, we change the lifting ˛ to be a
G-action. For such ˛, it is natural to consider only 1 as an isomorphism from
˛gh to ˛g ı˛h. Thus instead of considering different isomorphisms between fixed
objects, we consider different G-actions that are lifting of the same G-kernel.
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Let ˇ be another G-action that is an inner perturbation of ˛. Then there exists
a unitary Ug 2 U.M/ for each g 2 G satisfying ˇg D AdUg ı ˛g . Since ˛ and ˇ
are G-actions, we have

ˇgh D ˇg ı ˇh D Ad.Ug˛g .Uh// ı ˛gh D Ad.Ug˛g .Uh/U
�
gh/ ı ˇgh;

and there exists � 2 Z2.G;T/ satisfying Ug˛g.Uh/ D �.g; h/Ugh. When � is a
coboundary, we can choose ¹Ugºg2G to satisfy the 1-cocycle relationUg˛g .Uh/ D
Ugh. In this case, it is known that U D ¹Ugºg2G is a coboundary, that is, there
exists a unitary X 2 U.M/ satisfying Ug D X�1˛g.X/, and in consequence ˇ
and ˛ are inner conjugate, that is ˇg D AdX�1 ı ˛g ı AdX . In summary, the
inner conjugacy classes of the liftings of the same G-kernel to actions are in one-
to-one correspondence withH 2.G;T/, and the correspondence makes sense once
a reference lifting ˛ is chosen.

2.4. The Cuntz algebras. One of the main tools in this note is the Cuntz algebra
On, and we summarize the main feature of it here. Let n be an integer larger than
1. The Cuntz algebra On is the universal C�-algebra with generators ¹Siºn

iD1 and
relations

S�
i Sj D ıi;j1;

nX

iD1

SiS
�
i D 1:

The most peculiar property of the Cuntz algebra is that it is at the same time univer-
sal and simple (see [7]). Therefore if ¹Tiºn

iD1 are noncommutative polynomials of
the generators obeying the same relation as the defining relation, then there exists
a unique endomorphism � 2 End.On/ satisfying �.Si/ D Ti .

Lemma 2.10 ([24, Lemma 2.6]). Let � be a unital endomorphism of the Cuntz

algebra On with the canonical generators ¹S1; S2; : : : Snº. We fix 1 � i � n and

set Tj WD S�
i �.Sj /Si . If ¹T1; T2; : : : ; Tnº satisfy the Cuntz algebra relation, then

S�
k
�.x/Si D 0 for k ¤ i and all x 2 On. In consequence, �.�/ WD S�

i �.�/Si is a

unital endomorphism and Si 2 .�; �/.

3. Polynomial equations for generalized Haagerup categories

In this section, we deduce polynomial equations for a C�-generalized Haagerup
category C with a finite abelian group G. For G, we use additive notation. We set



The classification of 3n subfactors 491

G2 D ¹g 2 GI 2g D 0º. We denote n D #G and

d D d.�/ D nC p
n2 C 4

2
:

Let M be the hyperfinite type III1 factor. Then we may and do assume
C � End.M/.

Definition 3.1. For a C�-generalized Haagerup category C � End.M/ with a
finite abelian group G, we say that a pair Œ�; ˛� of � 2 End.M/ and an action
˛WG ! Aut.M/ satisfying

O.C/ D ¹Œ˛g �ºg2G t ¹Œ˛g �Œ��ºg2G

is a standard lifting of C if � and ˛ satisfy the relation ˛g ı � D � ı ˛�g , and
˛ restricted to G2 acts on .�; �2/ trivially. (We do not use the notation .�; ˛/ for
the pair of � and ˛ in order to avoid possible confusion with the intertwiner space
.�; ˛g/.)

We say that two standard liftings Œ�; ˛� and Œ�0; ˛0� are conjugate (resp. inner

conjugate) if there exist � 2 Aut.M/ (resp. an inner automorphism �) satisfying
�0 D � ı � ı ��1 and ˛0

g D � ı ˛g ı ��1.

Lemma 3.2. For a C�-generalized Haagerup category C � End.M/, there

always exists a standard lifting.

Proof. We can choose � 2 End.M/ and ˛g 2 Aut.M/ with

O.C/ D ¹Œ˛g �ºg2G t ¹Œ˛g �Œ��ºg2G

satisfying the fusion rules

Œ˛g �Œ˛h� D Œ˛gCh�;

Œ˛g �Œ�� D Œ��Œ˛�g �;

Œ�2� D Œid�C
X

g2G

Œ˛g ı ��:

Since c0;3.C/ and c1;2.C/ are trivial, thanks to eq. (2.4) and eq. (2.7), there exist
unitaries Vg;h 2 .˛g ı ˛h; ˛gCh/ and Wg 2 .˛g ı �; � ı ˛�g/ satisfying

˛g.Vh;k/Vg;hCk D Vg;hVgCh;k;

Wg˛g .Wh/Vg;hW
�1

gCh D �.V�g;�h/:



492 Masaki Izumi

The first equation shows that the pair .˛; ¹Vg;hºg;h2G/ is a cocycle action of
G, and there exists a unitary Ug 2 U.M/ for each g 2 G satisfying Vg;h D
˛g .U

�1
h
/U�1

g UgCh and ˛0 defined by ˛0
g D AdUg ı˛g is a G-action. The second

equation implies that if we setW 0
g D �.U�g/WgU

�1
g , thenW 0

g 2 .˛0
g ı �; � ı˛0

�g/

and W 0 D ¹W 0
gºg2G is an ˛0 cocycle. Thus there exists a unitary X 2 U.M/

satisfying Wg D X�1˛g .X/, and we get

˛0
g ı AdX ı � D AdX ı � ı ˛0

�g :

Setting �0 D AdX ı�, we get ˛0
g ı�0 D �0 ı˛0

�g . To simplify the notation, we may
and do assume that ˛ is an action and � and ˛ satisfy the relation ˛g ı� D � ı˛�g

from the beginning by replacing � and ˛ with �0 and ˛0 respectively.
Next we show that ˛ restricted toG2 globally fix .�; �2/. Since dim.�; �2/ D 1.

we can choose an isometry T 2 .�; �2/ with .�; �2/ D CT . Then for any g 2 G,
we have

˛g .T /�.x/ D ˛g .T�.˛g.x/// D ˛g .�
2.˛g .x//T / D �2.˛2g.x//˛g.T /;

and if z 2 G2, we get ˛z.T / 2 CT . Thus there exists a character � 2 cG2 satisfying
˛z.T / D �.z/T . Note that �.z/ 2 ¹1;�1º. Since every character of G2 extends to
a character of G, we choose such an extension �0 2 bG.

Let Y 2 U.M/ be a unitary satisfying ˛g .Y / D �0.g/Y for any g 2 G. Let
�0 D Ad Y ı�, and let T 0 D Y�.Y /T Y �1. ThenY 0 2 .�0; �02/ and˛gı�0 D �0ı˛�g .
For z 2 G2, we have

˛z.T
0/ D ˛z.Y�.Y /T Y

�1/

D ˛z.Y /�.˛�z.Y //˛z.T /˛z.Y
�1//

D �.�z/�.z/T 0

D T 0:

Thus Œ˛; �0� is a standard lifting. �

In what follows, we fix one standard lifting Œ�; ˛� for C and obtain polynomial
equations for it.

We first choose an isometry S 2 .id; �2/. Then we have ˛g.S/ 2 .id; �2/

because

˛g.S/x D ˛g .S˛�g.x// D ˛g .�
2˛�g .x/S/ D �2.x/˛g .S/:

Lemma 3.3. With the above notation, we have

˛g.S/ D S: (3.1)
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Proof. Since

dim.id; .˛g�/
2/ D dim.id; �2/ D 1;

dim.˛g�; .˛g�/
2/ D dim.˛g�; �

2/ D 1;

Lemma 2.9 implies that the endomorphism ˛g� is real. Since ˛�g .S/ is a scalar
multiple of S and

S��.˛�g.S// D S�˛g�.S/ D 1

d
;

we get ˛�g.S/ D S . �

Remark 3.4. The above lemma shows that c2;1.C/ and c
3;0.C/ are trivial too.

Indeed, since Œ�; ˛� is a standard lifting, we can choose vg;h and wg in section 2.1
to be 1. Then �.g/ in eq. (2.5) is given by d˛g .S

��.˛g.S/// D 1, and c
2;1.C/ is

trivial. Since � is real, c3;0.C/ is trivial too.

Now we examine the anti-unitaries on .˛g�; .˛g�/
2/ D .˛g�; �

2/ coming from
the Frobenius reciprocity. For T 2 .˛g�; .˛g�/

2/ D .˛g�; �
2/ we set

j1;g.T / D
p
dT �˛g�.S/ D

p
dT ��.S/; (3.2)

j2;g .T / D
p
d˛g�.T /

�S: (3.3)

Then j1;g and j2;g are anti-unitaries of .˛g�; �
2/ with j 2

1;g D j 2
2;g D 1. We

choose an isometry Tg 2 .˛g�; �
2/ satisfying j1;g.Tg/ D Tg , which is uniquely

determined up to sign. Then ¹Sº [ ¹Tgºg2G satisfy the Cuntz algebra relation.
We denote by OnC1 the C�-algebra generated by these isometries. We have
˛h.Tg/ 2 .˛gC2h�; �

2/ because

˛h.Tg/˛gC2h�.x/ D ˛h.Tg˛g�˛�h.x// D ˛h.�
2˛�h.x/Tg/ D �2.x/˛h.Tg/:

Moreover, since

˛h.Tg/ D ˛h.j1;g.Tg//

D
p
d˛h.T

�
g �.S//

D
p
d˛h.Tg/

��.˛�g.S//

D j1;gC2h˛h.Tg/;

we have

˛h.Tg/ D �h.g/TgC2h; (3.4)
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with �h.g/ 2 ¹1;�1º satisfying the cocycle identity:

�hCk.g/ D �h.g/�k.g C 2h/: (3.5)

Since Tg is uniquely determined only up to sign, we have freedom to replace
Tg with ıgTg satisfying ıg 2 ¹1;�1º. This amounts to replacing �h.g/ with
�h.g/ıgıgC2h, that is, multiplying by a coboundary term.

There exists a character �g ofG2 for each g 2 G satisfying ˛z.Tg/ D �g.z/Tg

for all z 2 G2, or equivalently, �z.g/ D �g.z/. Note that we have�0.z/ D 1. Since
˛z.˛h.Tg// D ˛h.˛z.Tg//, we have �gC2h D �g for any g; h 2 G.

Remark 3.5. Since ˛z.T0/ D T0 for any z 2 G2, we may assume ˛h.T0/ D T2h

and �h.0/ D 1 for any h 2 G. In a similar way, we can see that the cohomology
class of the cocycle ¹�h.g/ºg;h is determined by ¹�gºg2G .

Since dim.˛g�; �
2/ D 1, there exists �g 2 T satisfying j2;g .Tg/ D �gTg .

Since

j2;gC2h.˛h.Tg// D
p
d˛gC2h�.˛h.Tg/

�/S

D
p
d˛gCh�.Tg/

�S

D ˛hj2;g .Tg/;

we have

�gC2h D �g : (3.6)

The unitary j2;gj1;g is called the rotation map, and it does not depend on the
choice of S . In our case, it reduces to the scalar �g .

Now we determine the form of � on S and Tg . We set P D SS� and
Q D P

g2G TgT
�
g . In order to determine �.Tg/, it suffices to determine ˛g�.Tg/

as we have ˛g�.Tg/ D �˛�g .Tg/ D ��g.g/�.T�g/.

Lemma 3.6. We have

�.S/ D 1

d
S C 1p

d

X

g2G

TgTg : (3.7)

There exists Ag.h; k/ 2 C satisfying

˛g�.Tg/ D �gTgSS
� C �gp

d
ST �

g C
X

h;k2G

Ag.h; k/TgChTgChCkT
�
gCk : (3.8)
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Proof. Since P CQ D 1, we get

�.S/ D
�
SS� C

X

g2G

TgT
�
g

�
�.S/

D 1

d
S C 1p

d

X

g2G

Tgj1;g.Tg/

D 1

d
S C 1p

d

X

g2G

TgTg :

We compute each of P˛g�.Tg/, ˛g�.Tg/P and Q˛g�.Tg/Q now:

P˛g�.Tg/ D SS�˛g�.Tg/ D 1p
d
Sj2;g.Tg/

� D �gp
d
ST �

g ;

˛g�.Tg/P D ˛g�.j1;g.Tg//P

D
p
d˛g�.T

�
g �.S//P

D
p
d˛g�.T

�
g /SSS

�

D j2;g .Tg/SS
�

D �gTgSS
�:

For h; k 2 G, we claim T �
gCh

˛g�.Tg/TgCk 2 .˛gChCk; �
2/. Indeed,

T �
gCh˛g�.Tg/TgCk˛gChCk�.x/

D T �
gCh˛g�.Tg/TgCk˛gCk�.˛�h.x//

D T �
gCh˛g�.Tg/�

2.˛�h.x//TgCk

D T �
gCh˛g�.Tg˛g�.˛�h.x///TgCk

D T �
gCh˛g�.�

2.˛�h.x//Tg/TgCk

D T �
gCh�

3.˛�g�h.x//˛g�.Tg/TgCk

D ˛gCh�
2˛�g�h.x/T

�
gCh˛g�.Tg/TgCk

D �2.x/T �
gCh˛g�.Tg/TgCk:

Therefore there exists a scalar Ag.h; k/ 2 C satisfying

Q˛g�.Tg/Q D
X

h;k2G

Ag.h; k/TgChTgChCkT
�
gCk:

This finishes the proof. �
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Now we examine how the choices of S and Tg effect on .�h.g/; �g ; Ag.h; k//.
Let c 2 T, and let c1=2 be one of its square root. If we replace S with cS , then
j1;g is replace by cj1;g , and it fixes c1=2Tg . The choices of cS and c1=2Tg instead
of S and Tg do not change .�h.g/; �g ; Ag.h; k// at all. Therefore we don’t need
to think of a different choice of S from .idM ; �

2/, and we fix S . If we replace
Tg with ıgTg satisfying ıg 2 ¹1;�1º, then .�h.g/; �g ; Ag.h; k// is replaced with
.�0

h
.g/; �g ; A

0
g.h; k// where

�0
h.g/ D ıgıgC2h�h.g/; (3.9)

A0
g.h; k/ D ıgıgChıgCkıgChCkAg.h; k/: (3.10)

Definition 3.7. We call the above transformation from .�h.g/; �g , Ag.h; k// to
another triplet .�0

h
.g/; �g ; A

0
g.h; k// a gauge transformation by ¹ıgºg2G . We say

that two triplets are gauge equivalent if they are transformed to each other by a
gauge transformation.

For a gauge transformation by ¹ıgºg2G , we may always assume ı0 D 1.
Note that thanks to Lemma 3.6, any intertwiner between two endomorphisms

obtained by composing endomorphisms in ¹�; ˛gº in arbitrary times is a poly-
nomial of ¹S; S�; Tg ; T

�
g º, and we can show as in [48] that the 6j-symbols of

the fusion category C is completely determined by the numerical data .�h.g/; �g ,
Ag.h; k//. Thus we obtain the following theorem.

Theorem 3.8. Let C;C0 � End0.M/ be a generalized Haagerup categories with

a finite abelian group G, and let Œ�; ˛� and Œ�0; ˛0� be standard lifting of C and C0.
If Œ�; ˛� and Œ�0; ˛0� have gauge equivalent numerical data, there exists a monoidal

functor .F; L/ from C to C0 with trivialL, which is an equivalence of the two fusion

categories, satisfying F.�/ D �0, F.˛g / D ˛0
g .

Remark 3.9. Our primary goal in this paper is to classify the 3G subfactors, and
for this goal we classify the generalized Haagerup categoriesCwith a finite abelian
group G and a distinguished simple object � by the triplet .�h.g/; �g ; Ag.h; k//.
To obtain the triplet from C � End.M/, we made the following choices:

(1) identification of G with the group of the invertible objects of C,

(2) the standard lifting Œ�; ˛�,

(3) the isometry S 2 .id; �2/, and

(4) the isometry Tg 2 .˛g�; �
2/ satisfying j1;g.Tg/ D Tg .
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In view of Theorem 2.8, to classify C with G and a distinguished simple object �
by the triplet .�h.g/; �g ; Ag.h; k//, it is necessary and sufficient to describe how
different choices in (1),(2),(3), and (4) transform the triplets. Different choices
in (1) can be describe by the action of Aut.G/, and those in (3) and (4) altogether
can be described by the gauge transformations. Thus it is essential to describe
how different choices of standard liftings transform the triplets, which involves
H 2.G;T/. We will show in Section 5 that the equivalence classes of C with a
distinguished object � are in one-to-one correspondence with the H 2.G;T/ Ì

Aut.G/-orbits of the gauge equivalence classes of the triplets. To classify C

without specifying �, we still have freedom to replace � with ˛g�, which makes
an action of G (in fact G=2G) on the gauge equivalence classes of the triplets.

We now deduce polynomial equations among .�h.g/; �g ; Ag.h; k//.

Lemma 3.10 (orthogonality). We have

X

h2G

Ag.h; 0/ D ��g

d
; (3.11)

X

h2G

Ag.h � g; k/Ag0.h � g0; k/ D ıg;g0 � �g�g0

d
ık;0: (3.12)

Proof. �.S/�˛g�.Tg/ D ˛g�.S
�Tg/ D 0 implies the first equation.

˛g0�.Tg0/�˛g�.Tg/ D ��g0.g0/��g .g/�.T
�
�g0T�g/ D ıg;g0 implies the second.

�

The equalities ˛g� D �˛�g and ˛h.Tg/ D �h.g/TgC2h imply the following:

Lemma 3.11. We have

AgC2h.p; q/ D �h.g/�h.g C p/�h.g C q/�h.g C p C q/Ag.p; q/; (3.13)

Proof. Since

˛gC2h�.TgC2h/ D �h.g/˛gC2h�˛h.Tg/

D �h.g/˛gCh�.Tg/

D �h.g/˛h.˛g�.Tg//;

we get the statement. �
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The equalities j1;g.Tg/ D Tg and j2;g.Tg/ D �gTg imply the following:

Lemma 3.12.

Ag.k; h/ D Ag.h; k/; (3.14)

�3
g D 1; (3.15)

Ag.h; k/ D �g��k.g C h/��k.g C k/��k.g C hC k/Ag.�k; h� k/
D �2

g��h.g C h/��h.g C k/��h.g C hC k/Ag.k � h;�h/:
(3.16)

Proof. Since

˛g�.Tg/ D ˛g�.j1;g.Tg//

D
p
d˛g�.T

�
g �.S//

D
p
d˛g�.T

�
g /
�
SSS� C

X

h2G

Th�.S/T
�
h

�

D j2;g .Tg/SS
� C

X

h2G

1

d
˛g�.T

�
g /ThST

�
h

C 1p
d

X

h;k2G

˛g�.T
�
g /ThTkTkT

�
h

D �gTgSS
� C �gp

d
ST �

g

C 1p
d

X

h;k2G

˛g�.T
�
g /TgChTgChCkTgChCkT

�
gCh

D �gTgSS
� C �gp

d
ST �

g C 1p
d

X

h;k2G

Ag.h; k/TgCkTgChCkT
�
gCh;

the first equation holds.
Since

˛g�.Tg/ D �g˛g�.j2;g.Tg//

D �g

p
d˛g�.˛g�.Tg/

�S/

D �g

p
d�2.Tg/

��.S/

D �g

p
d�2.Tg/

�
� 1
d
S C 1p

d

X

k2G

Tg�kTg�k

�

D �gp
d
ST �

g C �g

X

k2G

Tg�k˛g�k�.Tg/
�Tg�k
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D �gp
d
ST �

g C �g

X

k2G

Tg�k˛�k.˛g�.Tg/
�˛k.Tg�k//

D �gp
d
ST �

g C �g

X

k2G

�k.g � k/Tg�k˛�k.˛g�.Tg/
�TgCk/

D �gp
d
ST �

g C �g
2TgSS

�

C �g

X

h;k2G

Ag.k; h/�k.g � k/Tg�k˛�k.TgChT
�
gChCk/

D �gp
d
ST �

g C �g
2TgSS

�

C �g

X

h;k2G

Ag.k; h/�k.g � k/��k.g C h/��k.g C hC k/

Tg�kTgCh�2kT
�
gCh�k;

and �k.g � k/ D ��k.g C k/, we get

Ag.�k; h� k/ D Ag.k; h/ �g��k.g C k/��k.g C h/��k.g C hC k/;

which finishes the statement. �

Remark 3.13. Assume that h 2 G satisfies 3h D 0 (e.g. h D 0). Then we have

Ag.h; 2h/ D �g�h.g/�h.g C h/�h.g C 2h/Ag.h; 2h/:

This shows that Ag.h; 2h/ ¤ 0 implies �g D 1.

From S��2.Tg/S D Tg , we get

Lemma 3.14. We have

Ag.h; k/ D AgChCk.h; k/�h.g C k/�k.g C h/�hCk.g/�gCh�gCk: (3.17)

Proof. We compute

S��2.Tg/S D S�˛g�.˛g�.Tg//S

D �gS
�˛g�.TgSS

�/S C �gp
d
S�˛g�.ST

�
g /S

C
X

h;k2G

Ag.h; k/S
�˛g�.TgChTgChCkT

�
gCk/S:

The first term is

�gS
�˛g�.TgSS

�/S D 1

d
p
d
T �

g ˛g�.S/ D 1

d2
Tg :
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The second term is
�gp
d
S�˛g�.ST

�
g /S D 1

d2
Tg :

The third term is
X

h;k2G

Ag.h; k/S
�˛g�.TgChTgChCkT

�
gCk/S

D
X

h;k2G

Ag.h; k/˛�h.S
�˛gCh�.TgCh//˛g�.TgChCk/˛�k.˛gCk.T

�
gCk/S/

D 1

d

X

h;k2G

Ag.h; k/�gCh �gCk˛�h.T
�
gCh/˛g�.TgChCk/˛�k.TgCk/

D 1

d

X

h;k2G

Ag.h; k/�gCh �gCk�k.g C h/�h.g C k/

˛�h�k.T
�
gChC2k˛gChCk�.TgChCk/TgC2hCk/

D 1

d

X

h;k2G

Ag.h; k/AgChCk.k; h/�gCh �gCk�k.g C h/�h.g C k/

˛�h�k.TgC2hC2k/

D 1

d

X

h;k2G

Ag.h; k/AgChCk.h; k/ �gCh �gCk

�k.g C h/�h.g C k/��h�k.g C 2hC 2k/Tg

D 1

d

X

h;k2G

Ag.h; k/AgChCk.h; k/�gCh�gCk

�k.g C h/�h.g C k/�hCk.g/Tg :

Since d
�
1 � 2

d2

� D n � 1
d

, we get

X

h;k2G

Ag.h; k/AgChCk.h; k/�gCh�gCk�k.g C h/�h.g C k/�hCk.g/ D n� 1

d
;

which implies
X

g;h;k2G

Ag.h; k/AgChCk.h; k/ �gCh�gCk�k.g C h/�h.g C k/�hCk.g/

D
�
n � 1

d

�
n:

On the other hand, we have

X

g;h;k2G

jAg.h; k/j2 D
�
n � 1

d

�
n;

from Lemma 3.10. This proves the statement. �
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We compute the both sides of the equation

˛g�.T
�
gCh˛g�.Tg//TgCk D ˛g�.T

�
gCh/TgCk˛gCk�.Tg/; (3.18)

and obtain the following statement.

Lemma 3.15. We have

Ag.h; k/ D AgCh.h; k/�g�gCk�gCh�gChCk�h.g/�h.g C k/

D AgCk.h; k/�g�gCh�gCk�gChCk�k.g/�k.g C h/;
(3.19)

and
X

l2G

Ag.x C y; l/Ag�pCx.�x; l C p/Ag�qCxCy.�y; l C q/

D �g�gCqCx�gCpCqCy�gCp�gCxCy�gCqCxCy

Ag�p.q C y; p C x C y/Ag.p C x; q C x C y/

�p.g � p C x/�pCx.g � p C q C y/

�q.g � q C x C y/�qCy.g � q C x/

� ıx;0ıy;0

d
�g�gCp�gCq:

(3.20)

Proof. The left-hand side of (3.18) is

ıh;0�g˛g�.SS
�/TgCk C

X

l2G

Ag.h; l/˛g�.TgChClT
�
gCl /TgCk

D ıh;0�gp
d
�.S/T �

gCk

C
X

l2G

Ag.h; l/�l.g C k/˛g�.TgChCl/˛�l .˛gCl�.T
�
gCl/TgCkC2l /

D ıh;0�gp
d
�.S/T �

gCk C Ag.h;�k/��k.g C k/�g�k˛g�.TgCh�k/SS
�

C
X

l;r2G

Ag.h; l/AgCl.k C l; r/�l .g C k/

˛g�.TgChCl/˛�l .TgClCrT
�
gCkC2lCr/:

The first term is
ıh;0�g

d
p
d
ST �

gCk C ıh;0�g

d

X

s2G

TgCsTgCsT
�
gCk:

The second term is

Ag.h;�k/��k.g C k/�g�k˛k�h.˛gCh�k�.TgCh�k/SS
�/

D Ag.h;�k/��k.g C k/�k�h.g C h � k/�g�k�gCh�kTg�hCkSS
�:
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The last term is
X

l;r2G

Ag.h; l/AgCl.r; k C l/�l .g C k/�l .g C k C r/

˛�h�l .˛gChCl�.TgChCl/˛h.TgClCr//T
�
gCkCr

D
X

l;r2G

Ag.h; l/AgCl.r; k C l/�l .g C k/�l .g C k C r/�h.g C l C r/

˛�h�l .˛gChCl�.TgChCl/TgC2hClCr/T
�
gCkCr

D 1p
d

X

l2G

Ag.h; l/AgCl.�h; k C l/

�l .g C k/�l .g � hC k/�h.g � hC l/�gChClST
�
g�hCk

C
X

l;r;s2G

Ag.h; l/AgCl.r; k C l/AgChCl.hC l C s; hC r/

�l .g C k/�l .g C k C r/�h.g C l C r/

˛�h�l .TgC2hC2lCsTgC3hC2lCrCs/T
�
gCkCr

D 1p
d

X

l2G

Ag.h; l/AgCl.�h; k C l/

�l .g C k/�l .g � hC k/�h.g � hC l/�gChClST
�
g�hCk

C
X

l;r;s2G

Ag.h; l/AgCl.r; k C l/AgChCl.hC l C s; hC r/

�l .g C k/�l .g C k C r/

�h.g C l C r/�hCl .g C s/

�hCl .g C hC r C s/TgCsTgChCrCsT
�
gCkCr :

On the other hand, the right-hand side of (3.18) is

˛g�.T
�
gCh/TgCk˛gCk�.Tg/

D ˛�h.˛gCh�.T
�
gCh/˛h.TgCk//˛gCk�.Tg/

D �h.g C k/˛�h.˛gCh�.T
�
gCh/TgC2hCk/˛gCk�.Tg/

D ıhCk;0�h.g � h/�gChS˛�h.S
�˛g�.Tg//

C �h.g C k/
X

s2G

AgCh.hC k; s C h/˛�h.TgC2hCsT
�
gC3hCkCs/˛gCk�.Tg/:

The first term is
1p
d
ıhCk;0�h.g � h/�gCh�gS˛�h.T

�
g /

D 1p
d
ıhCk;0�h.g � h/��h.g/�gCh�gST

�
g�2h:

The second term is

�h.g C k/
X

s2G

AgCh.hC s; hC k/�h.g C s/

TgCs˛k.˛�h�k.T
�
gC3hCkCs/˛g�.Tg//
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D �h.g C k/
X

s2G

AgCh.hC s; hC k/

�h.g C s/�hCk.g C h � k C s/

TgCs˛k.T
�
gCh�kCs˛g�.Tg//

D AgCh.k; hC k/�h.g C k/�h.g � hC k/�hCk.g/�gTg�hCkSS
�

C �h.g C k/
X

s;r2G

AgCh.hC s; hC k/Ag.h � k C s;�k C r/

�h.g C s/�hCk.g C h � k C s/

TgCs˛k.TgCh�2kCsCrT
�
g�kCr /

D AgCh.k; hC k/�h.g C k/�h.g � hC k/�hCk.g/�gTg�hCkSS
�

C �h.g C k/
X

s;r2G

AgCh.hC s; hC k/Ag.h � k C s;�k C r/

�h.g C s/�hCk.g C h � k C s/

��k.g C hC s C r/��k.g C k C r/

TgCsTgChCsCrT
�
gCkCr :

Thus we obtain

Ag.h;�k/��k.g C k/�k�h.g C h � k/�g�k�gCh�k

D AgCh.k; hC k/�h.g C k/�h.g � hC k/�hCk.g/�g ;
(3.21)

X

l2G

Ag.h; l/AgCl.�h; k C l/�l .g C k/�l .g � hC k/�h.g � hC l/�gChCl

D ıhCk;0�h.g � h/��h.g/�gCh�g � ıh;0�g

d
;

(3.22)

and
X

l2G

Ag.h; l/AgCl.r; k C l/AgChCl.hC l C s; hC r/

�l .g C k/�l .g C k C r/�h.g C l C r/�hCl.g C s/�hCl .g C hC r C s/

D AgCh.hC s; hC k/Ag.h � k C s;�k C r/�h.g C k/�h.g C s/

�hCk.g C h � k C s/��k.g C hC s C r/��k.g C k C r/

� ıh;0ır;0�g

d
:

(3.23)

Lemma 3.12 implies

AgCh.h; k/ D �gCh��k.gC 2h/��k.gChCk/��k.gC 2hCk/AgCh.�k; h�k/;
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and (3.21) is equivalent to

Ag.h; k/ D AgCh.�k; h� k/�k.g � k/��k�h.g C hC k/�h.g � h � k/�h�k.g/

�h.g � k/�g�gCk�gChCk

D AgCh.�k; h� k/�h�k.g C k/��k.g C hC k/��k.g C 2h/

�h.g/�g�gCk�gChCk

D AgCh.h; k/�h�k.g C k/��k.g C 2hC k/�h.g/�g�gCk�gCh�gChCk

D AgCh.h; k/�h.g C k/�h.g/�g�gCk�gCh�gChCk:

Therefore the first equation of (3.19) holds. The second equation follows from this
and Lemma 3.12.

Lemma 3.12 and (3.19) imply

AgCl.�h; k C l/ D AgCl .hC k C l; h/�gCl�h.g � hC l/�h.g C k C 2l/

�h.g � hC k C 2l/

D Ag�h�k.hC k C l; h/�gCl�gChCl�g�k�g�h�k

�hCkCl .g � h � k/�hCkCl .g � k/�gCl

�h.g � hC l/�h.g C k C 2l/�h.g � hC k C 2l/

D Ag�h�k.hC k C l; h/�gChCl�g�k�g�h�k

�kCl .g � h � k/�kCl .g � k/�h.g � hC l/:

Thus the left-hand side of (3.22) is

X

l2G

Ag.h; l/Ag�h�k.h; hC k C l/�k.g � k/�k.g � h � k/�g�h�k�g�k

D
�
ıhCk;0 � ıh;0�g�g�h�k

d

�
�k.g � k/�k.g � h � k/�g�h�k�g�k

D ıhCk;0��h.g C h/��h.g/�g�gCh �
ıh;0�g�

3
g�k

d
:

This shows that (3.22) does not give any new condition.

By the change of variables

r D �x; hD x C y;

k D p; s D q � x;
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equation (3.23) becomes

X

l2G

Ag.x C y; l/AgCl.�x; l C p/AgClCxCy.l C q C y; y/

�l .g C p/�l .g C p � x/�xCy.g C l � x/
�lCxCy.g C q � x/�lCxCy.g C q � x C y/

D AgCxCy.q C y; p C x C y/Ag.�p C q C y;�p � x/
�xCy.g C p/�xCy.g C q � x/�pCxCy.g � p C q C y/

��p.g C q � x C y/��p.g C p � x/

� ıx;0ıy;0�g

d
:

(3.24)

By (3.17) we get

AgCl.�x; l C p/ D Ag�pCx.�x; l C p/��x.g C l C x/�lCp.g � p/

�lCp�x.g � p C x/�gClCx�g�p:

By (3.19) and Lemma 3.12, we get

AgClCxCy.l C q C y; y/

D �gClCxCyAgClCxCy.�y; l C q/

��y.g C 2l C q C x C 2y/

��y.g C l C x C 2y/��y.g C 2l C q C x C 3y/

D �g�qCxCy�g�qCx�gClCxAg�qCxCy.�y; l C q/

�lCq.g � q C x C y/�lCq.g � q C x/

�y.g C 2l C q C x/�y.g C l C x/�y.g C 2l C q C x C y/:

Thus the left-hand side of (3.24) is

�gCqCxCy�gCqCx�gCpX

l2G

Ag.x C y; l/Ag�pCx.�x; l C p/Ag�qCxCy.�y; l C q/

�l .g C p/�l .g C p � x/�xCy.g C l � x/
�lCxCy.g C q � x/�lCxCy.g C q � x C y/

��x.g C l C x/�lCp.g � p/�lCp�x.g � p C x/

�lCq.g � q C x C y/�lCq.g � q C x/

�y.g C 2l C q C x/�y.g C l C x/�y.g C 2l C q C x C y/
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D �g�qCxCy�g�qCx�g�p�p.g � p/�p�x.g � p C x/
X

l2G

Ag.x C y; l/Ag�pCx.�x; l C p/Ag�qCxCy.�y; l C q/

�xCy.g C l � x/��x.g C l C x/�y.g C l C x/

�lCq.g � q C x C y/�lCq.g � q C x/

�lCx.g C q � x/�lCx.g C q � x C y/

D �g�qCxCy�g�qCx�g�p

�p.g � p/�p�x.g � p C x/�q�x.g � q C x C y/�q�x.g � q C x/
X

l2G

Ag.x C y; l/Ag�pCx.�x; l C p/Ag�qCxCy.�y; l C q/

By (3.19) and Lemma 3.12, we have

AgCxCy.q C y; p C x C y/ D Ag�p.q C y; p C x C y/�g�p�g�pCqCy

�gCxCy�gCqCxC2y

�pCxCy.g � p/�pCxCy.g � p C q C y/

and

Ag.�p C q C y;�p � x/ D Ag.p C x; q C x C y/�g

�pCx.g � p C q C y/�pCx.g � p � x/
�pCx.g � 2p C q � x C y/:

Thus the right-hand side of (3.24) is

�g�gCp�gCpCqCy�gCxCy�gCqCx

Ag�p.q C y; p C x C y/Ag.p C x; q C x C y/

�xCy.g C p/�xCy.g C q � x/�pCxCy .g � p C q C y/

��p.g C q � x C y/��p.g C p � x/�pCxCy .g � p/

�pCxCy.g � p C q C y/

�pCx.g � p C q C y/�pCx.g � p � x/
�pCx.g � 2p C q � x C y/

� ıh;0ır;0�g

dD �g�gCp�gCpCqCy�gCxCy�gCqCx

Ag�p.q C y; p C x C y/Ag.p C x; q C x C y/

�p.g � p/�pCx.g � p C q C y/

�x.g C p � x/�x.g C q � x C y/�xCy.g C q � x/

� ıh;0ır;0�g

d
:
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Therefore (3.23) is equivalent to

X

l2G

Ag.x C y; l/Ag�pCx.�x; l C p/Ag�qCxCy.�y; l C q/

D �g�gCp�gCpCqCy�gCxCy�gCqCx�gCp�gCqCxCy�gCqCx

Ag�p.q C y; p C x C y/Ag.p C x; q C x C y/

�p.g � p/�pCx.g � p C q C y/�x.g C p � x/
�x.g C q � x C y/�xCy.g C q � x/

�p.g � p/�p�x.g � p C x/�q�x.g � q C x C y/�q�x.g � q C x/

� ıx;0ıy;0

d
�g�gCp�

2
gCq

D �g�gCqCx�gCpCqCy�gCp�gCxCy�gCqCxCy

Ag�p.q C y; p C x C y/Ag.p C x; q C x C y/

�p.g � p C x/�pCx.g � p C q C y/

�q.g � q C x C y/�qCy.g � q C x/

� ıx;0ıy;0

d
�g�gCp�gCq;

and (3.20) holds. �

Remark 3.16. (3.17) follows from (3.19).

4. Reconstruction

In this section, we discuss how to recover the C�-generalized Haagerup category
from a solution of the polynomial equations we got in the previous section.

Assume that G is a finite abelian group of order n. We set d D nC
p

n2C4
2

.
We consider �h.g/ 2 ¹1;�1º, �g 2 T, Ag.h; k/ 2 C satisfying the following
condition:

�hCk.g/ D �h.g/�k.g C 2h/; �h.0/ D 1; (4.1)

�gC2h D �g ; �3
g D 1; (4.2)

X

h2G

Ag.h; 0/ D ��g

d
; (4.3)

X

h2G

Ag.h � g; k/Ag0.h � g0; k/ D ıg;g0 � �g�g0

d
ık;0; (4.4)
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AgC2h.p; q/ D �h.g/�h.g C p/�h.g C q/�h.g C p C q/Ag.p; q/; (4.5)

Ag.k; h/ D Ag.h; k/; (4.6)

Ag.h; k/ D Ag.�k; h� k/�g��k.g C h/��k.g C k/��k.g C hC k/

D Ag.k � h;�h/�g��h.g C h/��h.g C k/��h.g C hC k/;
(4.7)

Ag.h; k/ D AgCh.h; k/�g�gCk�gCh�gChCk�h.g/�h.g C k/

D AgCk.h; k/�g�gCh�gCk�gChCk�k.g/�k.g C h/;
(4.8)

X

l2G

Ag.x C y; l/Ag�pCx.�x; l C p/Ag�qCxCy.�y; l C q/

D Ag.p C x; q C x C y/Ag�p.q C y; p C x C y/

�g�gCqCx�gCpCqCy�gCp�gCxCy�gCqCxCy

�p.g � p C x/�pCx.g � p C q C y/

�q.g � q C x C y/�qCy.g � q C x/

� ıx;0ıy;0

d
�g�gCp�gCq :

(4.9)

We denote by OnC1 the Cuntz algebra with the canonical generators ¹Sº [
¹Tgºg2G . We can introduce a G-action ˛ on OnC1 and an endomorphism � of
OnC1 satisfying ˛g� D �˛�g by

˛h.S/ D S; ˛h.Tg/ D �h.g/TgC2h;

�.S/ D 1

d
S C 1p

d

X

g2G

TgTg ;

˛g�.Tg/ D �gTgSS
� C �gp

d
ST �

g C
X

h;k2G

Ag.h; k/TgChTgChCkT
�
gCk:

Theorem 4.1. S 2 .id; �2/, Tg 2 .˛g�; �
2/.

Proof. Direct computation shows S��2.S/S D S , and the proof of Lemma 3.14
shows S��2.Tg/S D Tg . Thus Lemma 2.10 implies S 2 .id; �2/.
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Direct computation shows

�.S��.S//TgCk D ˛gCk�.S/
�TgCk˛gCk�.S/;

˛g�.T
�
g ˛g�.S//TgCk D ˛g�.Tg/

�TgCk˛gCk�.S/;

˛g�.S
�˛g�.Tg//TgCk D ˛g�.S

�/TgCk˛gCk�.Tg/;

and the proof of Lemma 3.15 shows

˛g�.T
�
gCh˛g�.Tg//TgCk D ˛g�.S

�/TgCk˛gCk�.Tg/:

Thus we have

�2.S/Th D �
�
SS� C

X

g2G

T�gT
�
�g

�
�2.S/Th

D �.S/�.S��.S//Th C
X

g2G

˛g�.TgT
�
g ˛g�.S//Th

D �.S/�.S�/Th˛h�.S/C
X

g2G

˛g�.TgT
�
g /Th˛h�.S/

D �
�
SS� C

X

g2G

T�gT
�
�g

�
Th˛h�.S/ D Th˛h�.S/;

�2.Tg/TgCk D ˛g�
�
SS� C

X

h2G

TgChT
�
gCh

�
�2.Tg/TgCk

D ˛g�.SS
�˛g�.Tg//TgCk C

X

h2G

˛g�.TgChT
�
gCh˛g�.Tg//TgCk

D ˛g�.SS
�/TgCk˛gCk�.Tg/

C
X

h2G

˛g�.TgChT
�
gCh/TgCk˛gCk�.Tg/

D TgCk˛gCk�.Tg/;

and Lemma 2.10 implies TgCk 2 .˛gCk�; �
2/. �

As in [24] and [28, Appendix], we introduce a weighted gauge action 
 on
OnC1 by 
t .S/ D e2itS , and 
t .Tg/ D eitTg . Then 
 commutes with ˛g and �.
There exists a unique KMS-state for 
 , and ˛g and � extend to the weak closure
of OnC1 in the GNS representation of the KMS state, which is the hyperfinite type
III1=d factor. Taking the tensor product with the hyperfinite type III1 factor, we
get ˛ and � acting on the the hyperfinite type III1 factor.
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Let N D ¹h 2 G2 j �g.h/ D 1; for all g 2 Gº. If N D ¹0º, then we can re-
cover a C�-generalized Haagerup category having the same solution of the poly-
nomial equations with the original category C in this way. If N ¤ ¹0º, the action
˛ is not faithful, and the resulting fusion category is de-equivariantization of the
original category C byN . In the appendix (Section 10), we will give a free product
trick to recover the original category in this case.

5. The classification of generalized Haagerup categories

In this section, we deduce a complete classification invariant for C�-generalized
Haagerup categories with a fixed finite abelian groupG following our observation
in Remark 3.9. Throughout this section, we make the same assumption as in
Section 3.

We start from an easy case.

Lemma 5.1. If H 2.G;T/ is trivial, there exists a one-to-one correspondence

between the equivalence classes of C�-generalized Haagerup categories with a

finite abelian group G and a distinguished simple object �, and the Aut.G/-
orbits of the gauge equivalence classes of the solutions .�h.g/; �g ; Ag.h; k// of

the polynomial equations (4.1)–(4.9).

Proof. Thanks to Theorem 2.8 and Remark 3.9, it suffices to show that two
different standard liftings of a generalized Haagerup category C � End0.M/ give
the same gauge equivalence class of the solutions. Assume that Œ�; ˛� and Œ�0; ˛0�
are standard liftings of Cwith Œ�� D Œ�0� and Œ˛g � D Œ˛0

g �. Then there exist unitaries
Ug 2 U.M/ and V 2 U.M/ satisfying �0 D AdV ı � and ˛0

g D AdUg ı �.
Since H 2.G;T/ is trivial, we may further assume that ¹Ugºg2G is an ˛-cocycle.
Since it is a coboundary, the two actions ˛ and ˛0 are inner conjugate. Since inner
conjugate standard liftings give gauge equivalent triplets, by conjugating Œ�0; ˛0�
by an inner automorphism, we may assume ˛0 D ˛.

Since ˛g ı� D �ı˛�g and ˛g ı�0 D �0 ı˛�g , we see that ˛g.V / is proportional
to V , and there exists a character � 2 bG satisfying ˛g .V / D �.g/V . Since
V�.V /T0V

� 2 .�0; �02/ and Œ�0; ˛� is a standard lifting, the character is trivial on
G2. From this condition, we can choose a character �0 2 bG satisfying �2

0 D �

(use the fundamental theorem of finitely generated abelian groups).
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Let

S 0 D V�.V /S 2 .idM ; �
02/:

Then the two anti-unitaries on .˛g�
0; �02/ take the forms

j 0
1;gT

0 D
p
dT 0��0.S 0/;

j 0
2;gT

0 D
p
d˛g�

0.T 0/�S 0:

Let

T 0
g D �0.g/

�1V�.V /TgV
�1 2 .˛g�

0; �02/:

Then we have

j 0
1;gT

0
g D T 0

g ;

˛h.T
0
g/ D �h.g/T

0
gC2h;

j2;gT
0
g D �gT

0
g :

Moreover,

˛g�
0.T 0

g/ D �0.g/
�1V˛g�.V�.V /TgV

�1/V �1

D �0.g/V�.V /�
2.V /˛g�.Tg/�.V

�1/V �1

D �0.g/V�.V /�
2.V /

�
�gTgSS

� C �gp
d
ST �

g

C
X

h;k2G

Ag.h; k/TgChTgChCkT
�
gCk

�
�.V �1/V �1

D �gT
0
gS

0S 0� C �gp
d
S 0T 0�

g C
X

h;k2G

Ag.h; k/T
0
gChT

0
gChCkT

0�
gCk:

This shows the statement. �

Now we proceed to the general case. The above computation shows that if
Œ�0; ˛0� is another standard lifting with Œ�0� D Œ�� and ˛0 inner conjugate to ˛,
then the change from Œ�; ˛� to Œ�0; ˛0� leave the gauge equivalence class of the
triplet .�h.g/; �g ; Ag.h; k// invariant. This means that in general, the effect of
replacing Œ�; ˛� with Œ�0; ˛0� satisfying Œ�� D Œ�0� and Œ˛0

g � D Œ˛g � depends only on
the cohomology class inH 2.G;T/ determined by the difference of ˛0 from ˛. We
give an explicit description of the action of the cohomology group H 2.G;T/ on
the gauge equivalence classes of the solutions of the polynomial equations.
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Recall that a cocycle ! 2 Z2.G;T/ is normalized if it satisfies !.g; 0/ D
!.0; g/ D !.g;�g/ D 1 for all g 2 G. The cocycle relation implies that any
normalized cocycle satisfies !.g; h/�1 D !.�h;�g/. It is known that every
cohomology class in H 2.G;T/ is represented by a normalized cocycle.

Lemma 5.2. For a finite abelian group G, every cohomology class in H 2.G;T/

is represented by a normalized cocycle ! satisfying

!.g; h/!.h; g/ D !.g; h/!.�g;�h/ D 1: (5.1)

Proof. Since the group automorphism G 3 g 7! �g 2 G acts on H 2.G;T/

trivially, the two cocycles !.g; h/ and !.�g;�h/ are cohomologous, and there
exists �WG ! T satisfying

!.g; h/!.h; g/ D !.g; h/!.�g;�h/ D �.g/�.h/�.gC h/:

Since the left hand side is normalized, we have �.0/ D �.g/�.�g/ D 1. Note
that � restricted to G2 is a character, and there exists a character � 2 bG extending
�jG2

. By replacing �.g/ with �.g/�.g/ if necessary, we may and do assume
�.z/ D 1 for all z 2 G2. Thus we can choose a square root �.g/1=2 for
each g 2 G satisfying �.0/1=2 D �.g/1=2�.�g/1=2 D 1. Replacing !.g; h/
with !.g; h/�.g/1=2�.h/1=2�.g C h/1=2, we get a normalized cocycle satisfying
eq. (5.1). �

In what follows, we assume that ! is a normalized cocycle satisfying eq. (5.1).
We choose unitaries ¹Ugºg2G in M satisfying Ug˛g.Uh/ D !.g; h/UgCh with
U0 D 1, and set ˇg D AdUg ı ˛g . Then ˇ is an outer action of G on M , and we
have

� ı ˇ�g D Ad.�.U�g/U
�1
g / ı ˇg ı �:

Since

�.U�g/U
�1
g ˇg.�.U�h/U

�1
h / D �.U�g/˛g.�.U�h/U

�1
h /U�1

g

D �.U�g˛�g.U�h//˛g.U
�1
h /U�1

g

D !.�g;�h/!.g; h/�.U�g�h/U
�1
gCh

D �.U�g�h/U
�1
gCh;

the family ¹�.U�g/U
�1
g ºg2G forms a ˇ-cocycle. Thus there exists a unitary

V 2 U.M/ satisfying �.U�g/U
�1
g D V �1ˇg .V /, and so Ug˛g.V / D V�.U�g/.

Let � D AdV ı �. Then we have ˇg ı � D � ı ˇ�g .
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Lemma 5.3. The pair Œ�; ˇ� is a standard lifting.

Proof. It suffices to show that G2 acts on .�; �2/ trivially. Note that we have
V�.V /T0V

�1 2 .�; �2/, and for z 2 G2 we have

ˇh.V�.V /T0V
�1/ D Uh˛h.V�.V /T0V

�1/U�1
h

D Uh˛h.V /�.˛�h.V //T2h˛h.V
�1/U�1

h

D V�.U�h/�.U
�1
�hV�.Uh//T2h�.U

�1
�h /V

�1

D V�.V /�2.Uh/T2h�.U
�1
�h /V

�1

D V�.V /T2h�.˛�2h.Uh/U
�1
�h /V

�1

D V�.V /T2h�.U
�1
�2hU�2h˛�2h.Uh/U

�1
�h /V

�1

D !.�2h; h/V�.V /T2h�.U
�1
�2h/V

�1:

D !.�2h; h/V�.V /T2h˛2h.V
�1/U�1

2h :

Thus for z 2 G2 we get ˇh.V�.V /T0V
�1/ D V�.V /T0V

�1. �

Remark 5.4. Thanks to the cocycle relation and normalization, we have

!.�h;�h/!.�2h; h/D !.�h; h/!.�h; 0/D 1;

and we have !.�2h; h/ D !.h; h/. Thanks to eq. (5.1) and normalization, we have
!.h; h/ D !.�h;�h/ 2 ¹1;�1º. The above computation implies

ˇh.V�.V /T0V
�1/ D !.h; h/V�.V /T2h˛2h.V

�1/U�1
2h :

Since the left-hand side depends only on the class hC G2, so does !.h; h/. Thus
we can choose �WG ! ¹1;�1º satisfying �.2h/ D !.h; h/.

Let S 0 D V�.V /S . Then S 0 is an isometry in .id; �2/, and we define two anti-
unitaries on .ˇg�; �

2/ by

j 0
1;gT D

p
dT ��.S 0/ D

p
dT �V�.V�.V /S/V �;

j 0
2;gT D

p
dˇg�.T

�/S 0 D
p
dUg˛g.V /˛g�.T

�/˛g.V
�1/U�1

g V�.V /S:

Let

T 0
g D �.g/V�.V /Tg˛g.V

�1/U�1
g :

Then T 0
g is an isometry in .ˇg�; �

2/ satisfying ˇg.T
0
0/ D T 0

2g .
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Lemma 5.5. With the above notation, we have j 0
1;gT

0
g D T 0

g .

Proof. We have

j 0
1;gT

0
g D �.g/

p
dUg˛g .V /T

�
g �.V

�1/V �1V�.V�.V /S/V �1

D �.g/
p
dUg˛g .V /T

�
g �

2.V /�.S/V �1

D �.g/
p
dUg˛g .V /�.˛�g.V //T

�
g �.S/V

�1

D �.g/V�.U�g/�.U
�1
�gV�.Ug//TgV

�1

D �.g/V�.V /�2.Ug/TgV
�1

D �.g/V�.V /Tg�.˛�g.Ug//V
�1;

and

�.˛�g.Ug //V
�1 D �.U�1

�gU�g˛�g.Ug//V
�1

D !.�g; g/�.U�1
�g /V

�1

D ˛g.V
�1/U�1

g ;

which shows j 0
1;gT

0
g D T 0

g . �

Now we define �0
h
.g/ and A0

g.h; k/ by ˇh.T
0
g/ D �0

h
.g/T 0

gC2h
and

ˇg ı �.T 0
g/ D �gT

0
gS

0S 0� C �gp
d
S 0T 0�

g C
X

h;k2G

A0
g.h; k/T

0
gChT

0
gChCkT

0�
gCk:

Theorem 5.6. The action of the cohomology group H 2.G;T/ on the gauge

equivalence classes of the solutions .�h.g/; �g ; Ag.h; k// of the polynomial equa-

tions (4.1)–(4.9) is given as follows. Let ! 2 Z2.G;T/ be a normalized cocycle

satisfying eq. (5.1). We choose �WG ! ¹1;�1º satisfying �.2g/ D !.g; g/ for

any g 2 G. Then Œ!� transforms Œ.�h.g/; �g ; Ag.h; k//� to Œ.�0
h
.g/; �g ; A

0
g.h; k//�

with

�0
h.g/ D �h.g/�.g/�.g C 2h/!.h; g/!.g C h; h/

D �h.g/�.g/�.g C 2h/�.2h/b!.g; h/!.g; 2h/:

A0
g.h; k/ D Ag.h; k/�.gC k/�.g/�.g C hC k/�.g C h/!.g C k; h/!.h; g/;

where b!.g; h/ D !.g; h/!.h; g/ is the antisymmetric bicharacter associated with

the 2-cocycle !. In particular, we have �0
z.g/ D �z.g/b!.g; z/ for z 2 G2.
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Proof. We first compute ˇh.T
0
g/ as

ˇh.T
0
g/ D �.g/Uh˛h.V�.V /Tg˛g.V

�1/U�1
g /U�1

h

D �.g/�h.g/Uh˛h.V /�.˛�h.V //TgC2h˛gCh.V
�1/˛h.U

�1
g /U�1

h

D �.g/�h.g/V�.U�h/�.U
�1
�hV�.Uh//TgC2h˛gCh.V

�1/!.h; g/U�1
gCh

D �.g/�h.g/!.h; g/V�.V /TgC2h˛gC2h ı �.Uh/˛gCh.V
�1/U�1

gCh

D �.g/�h.g/!.h; g/V�.V /TgC2h˛gCh.�.˛�h.Uh//V
�1/U�1

gCh:

Here we have

˛gCh.�.˛�h.Uh//V
�1/U�1

gCh D ˛gCh.�.U
�1
�hU�h˛�h.Uh//V

�1/U�1
gCh

D !.�h; h/˛gCh.�.U
�1
�h /V

�1/U�1
gCh

D ˛gCh.˛h.V
�1/U�1

h //U�1
gCh

D !.g C h; h/˛gC2h.V
�1/U�1

gC2h:

This shows

ˇh.T
0
g/ D �h.g/�.g/!.h; g/!.g C h; h/V�.V /TgC2h˛gC2h.V

�1/U�1
gC2h;

and so

�0
h.g/ D �h.g/�.g/�.gC 2h/!.h; g/!.g C h; h/

D �h.g/�.g/�.gC 2h/b!.g; h/!.g; h/!.g C h; h/

D �h.g/�.g/�.gC 2h/b!.g; h/!.h; h/!.g; 2h/:

For A0
g.h; k/, we have

T 0�
gChˇg ı �.T 0

g/T
0
gCk D �.g C h/�.gC k/UgCh˛gCh.V /T

�
gCh

Ad.�.V �1/V �1Ug˛g.V // ı ˛g ı �.T 0
g/

TgCk˛gCk.V
�1/U�1

gCk

D �.g C h/�.gC k/UgCh˛gCh.V /T
�
gCh

Ad.�.V �1U�g// ı �.˛�g.T
0
g//

TgCk˛gCk.V
�1/U�1

gCk

D �.g C h/�.gC k/UgCh˛gCh.V /

T �
gCh�.V

�1U�g˛�g .T
0
g/U

�1
�gV /

TgCk˛gCk.V
�1/U�1

gCk:
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Here we have

V �1U�g˛�g.T
0
g/U

�1
�gV

D �.g/V �1U�g˛�g .V�.V /Tg˛g .V
�1/U�1

g /U�1
�gV

D �.g/V �1U�g˛�g .V /�.˛g.V //˛�g.Tg/V
�1˛�g .U

�1
g /U�1

�gV

D �.g/!.�g; g/V �1U�g˛�g .V /�.˛g.V //˛�g .Tg/

D �.g/�.Ug/�.U
�1
g V�.U�g//˛�g.Tg/

D �.g/�.V�.U�g//˛�g.Tg/

D �.g/�.Ug˛g.V //˛�g.Tg/:

Thus we get

T 0�
gChˇg ı �.T 0

g/T
0
gCk

D �.g C h/�.g C k/�.g/

UgCh˛gCh.V /T
�
gCh�

2.V�.U�g//˛g ı �.Tg/

TgCk˛gCk.V
�1/U�1

gCk

D �.g C h/�.g C k/�.g/

UgCh˛gCh.V /˛gCh ı �.V�.U�g//T
�
gCh˛g ı �.Tg/

TgCk˛gCk.V
�1/U�1

gCk

D �.g C h/�.g C k/�.g/Ag.h; k/

UgCh˛gCh.V /�.˛�g�h.V //�
2.˛gCh.U�g//

TgChCk˛gCk.V
�1/U�1

gCk

D �.g C h/�.g C k/�.g/Ag.h; k/

V�.U�g�h/�.U
�1
�g�hV�.UgCh//�

2.˛gCh.U�g//

TgChCk˛gCk.V
�1/U�1

gCk

D �.g C h/�.g C k/�.g/!.g C h;�g/Ag.h; k/

V�.V /�2.Uh/TgChCk˛gCk.V
�1/U�1

gCk

D �.g C h/�.g C k/�.g/!.g C h;�g/Ag.h; k/

V�.V /TgChCk˛gChCk ı �.Uh/˛gCk.V
�1/U�1

gCk:

Here we have

˛gChCk ı �.Uh/˛gCk.V
�1/U�1

gCk D ˛gChCk.V
�1U�h˛�h.V //˛gCk.V

�1/U�1
gCk

D ˛gChCk.V
�1/˛gChCk.U�h/U

�1
gCk
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D ˛gChCk.V
�1/˛gCk.U

�1
h Uh˛h.U�h//U

�1
gCk

D !.h;�h/˛gChCk.V
�1/˛gCk.U

�1
h /U�1

gCk

D !.g C k; h/˛gChCk.V
�1/U�1

gChCk :

Therefore we get

T 0�
gChˇg ı �.T 0

g/T
0
gCk

D �.g C h/�.g C k/�.g/!.g C h;�g/!.gC k; h/Ag.h; k/

V�.V /TgChCk˛gChCk.V
�1/U�1

gChCk

D �.g C hC k/�.g C h/�.g C k/�.g/

!.g C h;�g/!.g C k; h/Ag.h; k/T
0
gChCk:

The cocycle relation implies !.h; g/!.h C g;�g/ D !.g;�g/ D 1, and we get
the statement. �

In summary we obtain the following theorem.

Theorem 5.7. The equivalence classes of C�-generalized Haagerup categories

with a finite abelian group G and a distinguished object � are in one-to-one

correspondence with the H 2.G;T/ Ì Aut.G/-orbits of the gauge equivalence

classes of solutions .�h.g/; �g ; Ag.h; k// of the polynomial equations (4.1)–(4.9),

where the action of H 2.G;T/ is given as in Theorem 5.6.

To classify generalized Haagerup categories with G without specifying a dis-
tinguished simple object �, we still have freedom to reparametrize the simple ob-
jects; namely replacing � with p̨� gives rise to an action of G (in fact G=2G,
see below) on the gauge equivalence classes of the solutions of the polynomial
equations.

We fix p 2 G. Then . p̨�; . p̨�/
2/ D . p̨�; �

2/ and G2 acts on . p̨�; . p̨�/
2/

by the character �p. We choose an extension � 2 bG of �p and choose a unitary
V 2 U.M/ satisfying ˛g.V / D �.g/V . Let � D p̨ ı AdV ı �. Then the pair
Œ�; ˛� is a standard lifting. Let S 0 D V�.V /S . Then S 0 is an isometry in .id; �2/,
and we define two anti-unitaries on .˛g�; �

2/ by

j 0
1;gT D

p
dT ��.S 0/ D

p
dT �V�.V�.V /S/V �;

j 0
2;gT D

p
d˛g�.T

�/S 0 D
p
dV p̨Cg�.T

�/�.V /S:
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For each g, we choose a square root of �.g/ and denote it by �.g/. Let

T 0
g D �.p C g/V�.V /TpCgV

�:

Then T 0
g is an isometry of .˛g�; �

2/ satisfying j1;gT
0
g D T 0

g . As before we define
�0

h
.g/, �0

g and A0
g.h; k/ by ˛h.T

0
g/ D �0

h
.g/T 0

gC2h
, j 0

2;gT
0
g D �0

gT
0
g , and

˛g ı �.T 0
g/ D �gT

0
gS

0S 0� C �gp
d
S 0T 0�

g C
X

h;k2G

A0
g.h; k/T

0
gChT

0
gChCkT

0�
gCk:

We can choose � to satisfy �.p C 2h/ D �.h/�h.p/�.p/ for any h 2 G, which
makes �0

h
.0/ D 1.

Lemma 5.8. Let the notation be as above. Then

�0
h.g/ D �h.p C g/�.p C g C 2h/�.p C g/�.h/;

�0
g D �pCg ;

A0
g.h; k/ D ApCg .h; k/�.pCgChCk/�.pCgCh/�.pC g C k/�.p C g/�.h/:

When p D 2q 2 2G, the character �p is trivial, and we can choose � D � D 1.
Then we have

�0
h.g/ D �h.2q C g/ D �hCq.g/�q.g/ D �h.g/�q.g C 2h/�q.g/;

�0
g D �2qCg D �g ;

A0
g.h; k/ D ApCg.h; k/ D Ag.h; k/�q.g/�q.g C h/�q.g C k/�q.g C hC k/:

This shows that 2G acts trivially on the gauge equivalence classes of the solu-
tions. This corresponds to the fact that the action of 2G comes from the inner
automorphisms ˛q ˝ � ˝ ˛�q of the category C.

In summary, we get the following classification result.

Theorem 5.9. Let G be a finite abelian group and let

� D .H 2.G;T/ �G=2G/ Ì Aut.G/:

The equivalence classes of C�-generalized Haagerup categories with G are in

one-to-one correspondence with the �-orbits of the gauge equivalence classes of

solutions .�h.g/; �g ; Ag.h; k// of the polynomial equations (4.1)–(4.9).
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In view of the above argument and Theorem 3.8, we get the following result.

Theorem 5.10. Let G and � be as above, and let C be a generalized Haagerup

category with G having a solution .�h.g/; �g ; Ag.h; k// of the polynomial equa-

tions (4.1)–(4.9). We assume Ag.h; k/ ¤ 0 for any g; h; k 2 G. Then the outer

automorphism group Out.C/ of C is the stabilizer subgroup �0 of � for the gauge

equivalence class of the solution .�h.g/; �g ; Ag.h; k//.

Proof. Let Œ�; ˛� be a standard lifting of C � End0.M/, and let S 2 .id; �2/ and
Tg 2 .˛g ; �

2/ be isometries for which we have the solution .�h.g/; �g ; Ag.h; k//

of the polynomial equations (4.1)–(4.9). Let .F; L/ be a monoidal functor from C

to itself giving an element in Out.C/. Thanks to Theorem 2.8, we may assume,
up to natural transformation, that there exists ˆ 2 Aut.M/ such that L is trivial
and F is given by F.�/ D ˆ ı � ı ˆ�1 for objects � and by F.X/ D ˆ.X/ for
morphisms X . Thus the pair ŒF.�/; F.˛�/� is a standard lifting of C too, and there
exist p 2 G, � 2 Aut.G/, ! 2 Z2.g;T/, V 2 U.M/, and Ug 2 U.M/ such that

F.�/ D AdV ı ˛�.p/ ı �;

F.˛g / D AdU�.g/ ı ˛�.g/;

Ug˛g .Uh/ D !.g; h/UgCh:

We define a homomorphism � W Out.C/ ! �0 sending Œ.F; L/� to .Œ!�; pC2G; �/.
Thanks to Theorem 3.8, it is a surjection.

Assume Œ.F; L/� 2 ker� . Perturbing .F; L/ by an inner automorphism of C if
necessary, we may assume p D 0, � D id, and ! D 1. This implies that ¹Ugºg2G

is an ˛-cocycle, which is always a coboundary, and so we may assume Ug D 1 by
perturbing ˆ with an inner automorphism of M . Thus

F.�/ D ˆ ı � ıˆ�1 D AdV ı �;
F.˛g / D ˆ ı ˛g ıˆ�1 D ˛g ;

and

F.S/ 2 .id; F.�/2/ D CV�.V /S;

F.Tg / 2 .F.˛g /F.�/; F.�/
2/ D CV�.V /Tg˛g.V

�/:
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Note that ŒF.�/; F.˛�/� is a standard lifting of C, Since F.˛g / ı F.�/ D F.�/ ı
F.˛�g /, we see that ˛g .V / is a multiple of V , Since F.˛z/.F.T0// D F.T0/ for
any z 2 G2, we have ˛z.V / D V . Moreover as in the proof of Lemma 3.2, we
may further assume that ˛g .V / D V for any g 2 G by perturbing ˆ with an inner
automorphism of M if necessary.

By replacing V with a multiple of V , we may assume F.S/ D V�.V /S .
We still have freedom to replace V with �V maintaining this equality. Since
F.Tg / is proportional to V�.V /TgV

�, there exists cg 2 T satisfying F.Tg / D
c.g/V�.V /TgV

�. Applyingˆ to the both sides of the two equations in Lemma 3.6,
we get c.g/ 2 ¹1;�1º, and

Ag.h; k/ D c.g/c.g C h/c.g C k/c.g C hC k/Ag.h; k/: (5.2)

Since Ag.h; k/ ¤ 0, the map cWG ! ¹1;�1º is a group homomorphism. Since
F.˛h/.F.Tg // D �h.g/F.TgC2h/, we get

c.g C 2h/ D c.g/: (5.3)

By replacing V with �V if necessary, we may further assume

c.0/ D 1: (5.4)

Now it is easy to construct a natural transformation to make .F; L/ equivalent
to the identify functor as in the proof of [28, Theorem 13.3]. �

Remark 5.11. In general, we can show that there exists an exact sequence

0 �! ker� �! Out.C/ �! �0 �! 0;

where ker� is isomorphic to the quotient group of the set of maps cWG ! ¹1;�1º
satisfying (5.2)–(5.4) modulo the subgroup

¹c 2 Hom.G; ¹1;�1º/I c.g C 2h/ D c.g/; c.0/ D 1º:

To the best knowledge of the author, there is no known example not satisfying the
assumption Ag.h; k/ ¤ 0 for any g; h; k 2 G.

When G is an odd abelian group, the polynomial equations were already
obtained in [27] under the additional assumption that id ˚� has a Q-system, and
they were extensively studied in [11]. They take a very simple form, and so does the
H 2.G;T/-action (andG=2G is trivial). SinceG2 is trivial, we can take �h.g/ D 1,
and the gauge freedom disappears. Since 2G D G, neither Ag.h; k/ nor �g
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depends on g, and we denote them by A.h; k/ and � respectively. The polynomial
equations are reduced to

�3 D 1; (5.5)
X

h2G

A.h; 0/ D � N�
d
; (5.6)

X

h2G

A.h � g; k/A.h� g0; k/ D ıg;g0 � ık;0

d
; (5.7)

A.k; h/ D A.h; k/; (5.8)

A.h; k/ D A.�k; h� k/� D A.k � h;�h/ N�; (5.9)

X

l2G

A.x C y; l/A.�x; l C p/A.�y; l C q/

D A.p C x; q C x C y/A.q C y; p C x C y/ � ıx;0ıy;0

d
:

(5.10)

Since G is an odd abelian group, every cohomology class in H 2.G;T/ can be
represented by a anti-symmetric bicharacter !. Under this assumption, the action
of H 2.G;T/ is now given by

A0.h; k/ D A.h; k/!.h; k/: (5.11)

The smallest odd abelian group G with non-trivial H 2.G;T/ is Z3 � Z3.
However, Evans and Gannon [11] showed that there is no generalized Haagerup
category for Z3 � Z3 with a Q-system for id ˚�. We do not know if there exists
a solution of (5.5)–(5.10) for Z3 � Z3 without a Q-system for id ˚�.

6. Q-systems

6.1. When id ˚� has a Q-system. When a C�-generalized Haagerup category
comes from a 3G subfactor, the object id ˚� has a Q-system. It is shown in [27,
Section 7] that id ˚� has a Q-system if and only if

A0.h; 0/ D ıh;0 � 1

d � 1
: (6.1)

As we will see later, it is often the case that any solution of (4.1)–(4.8) and (6.1)
in fact satisfies

Ag.h; 0/ D ıh;0 � 1

d � 1; (6.2)

for any g; h 2 G (e.g G D Z4;Z2 � Z2). In other words, once id ˚� has a Q-
system, so does any other id ˚˛g� in this case.
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As in [27, Lemma 7.3], we will simplify part of (4.9) under the assump-
tion (6.2).

Lemma 6.1. If .�; �; A/ is a solution of (4.1)–(4.8), the following holds:

X

l2G

Ag�pCx.�x; l C p/Ag�q.x; l C q/

D ıp�qCx;0�gCq�x.g � p � x/ � ıx;0

d
�gCp�gCq:

(6.3)

Proof. By (4.7) and (4.5), we have

Ag�pCx.�x; l C p/

D Ag�pCx.l C p C x; x/�g�pCx�x.g � p/�x.g C l C x/�x.g C l/

D Ag�p�x.l C p C x; x/�g�pCx�x.g � p � x/:

Therefore by (4.6) and (4.4), we get the statement. �

Lemma 6.2. Let .�; �; A/ be a solution of (4.1)–(4.8), and let g 2 G. We assume

that (6.2) holds for any h 2 G. Then (4.9) with x C y D 0 is equivalent to

Ag.�x; p/Ag.x; q/�x.g � x/�x.g C p � x/
� Ag.p C x; q/Ag.q � x; p/�x.g C q � x/�x.g C p C q � x/

D ıp�qCx;0

d � 1
�x.g C p/ � ıx;0

d � 1:
(6.4)

In particular, (4.9) with x D y D 0 is equivalent to

jAg.p; q/j2 D ıp;0ıq;0 � ıp;0 C ıq;0 C ıp;q

d � 1 C d

.d � 1/2
: (6.5)

Proof. Note that since Ag.0; 0/ ¤ 0, we have �g D 1. By (6.2) and (6.3), the
left-hand side of (4.9) with x C y D 0 is

X

l2G

�
ıl;0 � 1

d � 1

�
Ag�pCx.�x; l C p/Ag�q.x; l C q/

D Ag�pCx.�x; p/Ag�q.x; q/ � ıp�xCq;0�gCq�x.g � p � x/
d � 1

C ıx;0�gCp�gCq

d.d � 1/ :
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The right-hand side is

Ag.p C x; q/Ag�p.q � x; p/�gCqCx�gCpCq�x�gCp�gCq

�p.g � p C x/�pCx.g � p C q � x/�q.g � q/�q�x.g � q C x/

� ıx;0�gCp�gCq

d
;

and so

Ag�pCx.�x; p/Ag�q.x; q/

� Ag.p C x; q/Ag�p.q � x; p/�gCqCx�gCpCqCx�gCp�gCq

�p.g � p C x/�pCx.g � p C q � x/�q.g � q/�q�x.g � q C x/

D ıp�xCq;0�gCq�x.g � p � x/
d � 1

� ıx;0�gCp�gCq

d � 1
:

By (4.7),

Ag�pCx.�x; p/ D Ag.�x; p/�g�p�gCx��x.g C x/�p.g � p/�p�x.g � p C x/

D Ag.�x; p/�gCp�gCx�x.g � x/�x.g C p � x/�p.g � p/
�p.g � p C x/;

Ag�q.x; q/ D Ag.x; q/�gCx�g�q�g�qCx�q.g � q/�q.g � q C x/;

Ag�p.q � x; p/ D Ag.q � x; p/�gCq�x�g�p�g�pCq�x�p.g � p/
�p.g � p C q � x/:

Therefore we get (6.4). By setting x D 0, we get (6.5). �

6.2. In the case without Q-systems. When eq. (6.2) is not satisfied, we still
have a counterpart of eq. (6.5).

Let

xg;h D ��h.g/Ag.�h;�h/ D �gAg.h; 0/ D ��1
g Ag.0; h/ 2 R:

Then (4.7) implies

�gxg;0 D xg;0; (6.6)

and we see that �g ¤ 1 could occur only if xg;0 D 0. Equations (4.5) and (4.8)
imply

xg;h D xgC2l;h D xgCh;h: (6.7)
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Equations (4.3), (4.4), and (4.9) with x D y D p D 0 imply

X

l2G

xg;l D � 1
d
; (6.8)

X

l2G

xg;l�gxg0;l�g0 D ıg;g0 � 1

d
; (6.9)

X

l2G

x2
g;lxg�h;lCh D x2

g;h � 1

d
: (6.10)

We first solve this system of equations. With a solution, the absolute value of
Ag.h; k/ is determined by

X

l2G

xg;lxg�h;lChxg�k;lCk D jAg.h; k/j2 � 1

d
; (6.11)

where we used (4.9) with x D y D 0.
When G is odd, we may assume xg;h D x0;h, which we denote by xh. Then

these equations become

�gx0 D x0; (6.12)

X

h2G

xh D � 1
d
; (6.13)

X

h2G

xhxhCg D ıg;0 � 1

d
; (6.14)

X

h2G

x2
hxhCg D x2

g � 1

d
; (6.15)

X

l2G

xlxlChxlCk D jA.h; k/j2 � 1

d
: (6.16)

Remark 6.3. From the above relation, we can see that the existence of aQ-system
for id ˚� solely implies that eq. (6.5) holds for g D 0. Indeed, eq. (6.1) implies

jA0.h; k/j2 D 1

d
C
X

l2G

x0;lx�h;lChx�k;lCk

D 1

d
C
X

l2G

�
ıl;0 � 1

d � 1
�
x�h;lChx�k;lCk
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D 1

d
C x�h;hx�k;k � 1

d � 1
X

l2G

x�h;lChx�k;lCk

D 1

d
C x0;hx0;k � 1

d � 1
�
ıh;k � 1

d

�

D ıh;0ık;0 � ıh;0 C ık;0 C ıh;k

d � 1
C d

.d � 1/2

7. The structure of the 3G subfactors

In this section, we prove our classification theorems for the 3G subfactors using
results obtained so far.

Lemma 7.1. LetG be a (not necessarily commutative) finite group. If a quadratic

category C with .G; �; 1/ comes from a 3G subfactor, then c
0;3.C/ and c

1;2.C/ are

trivial.

Proof. Let N � M be a 3G subfactor realizing the quadratic category C as
M � M bimodules. We may assume that M is of type III. Let �WN ,! M be
the inclusion map. Then, we have Œ�N�� D Œid� C Œ��, and � generates C. Thus we
have O.C/ D ¹Œ��º t ¹Œ˛g �Œ��ºg2G with the fusion rules

Œ˛g �Œ˛h� D Œ˛gh�;

Œ˛g �Œ�� D Œ��Œ˛g� �;

Œ��2 D Œid�C
X

g2G

Œ˛g �Œ��:

Since the principal graph is 3G , we have a homomorphism �WN ! M with
irreducible image satisfying

Œ��Œ�� D Œ��C Œ��;

Œ�N�� D
X

g2G

Œ˛g �Œ��;

(see Figure 1). By symmetry, we have Œ˛g �Œ�� D Œ�� for any g 2 G, and we can
choose a representative ˛g satisfying ˛g ı � D �. These representatives ¹˛gºg2G

form a group and the class c0;3.C/ vanishes.



526 Masaki Izumi

There exist unitaries Ug 2 U.M/ and ! 2 Z2.G;T/ satisfying

� ı ˛g� D AdUg ı ˛g ı �;

Ug˛h.Uh/ D !.g; h/Ugh:

To show that the class c1;2.C/ vanishes, it suffices to show that the cohomology
class Œ!� 2 H 2.G;T/ is trivial. Let H D .�; ��/. We introduce a projective
representation of G on H. For X 2 H,

Ug˛g.X/�.x/ D Ug˛g.X�.x//

D Ug˛g.��.x/X/

D Ug˛g��.x/˛g .X/

D �˛g� �.x/Ug˛g.X/

D ��.x/Ug˛g.X/:

Thus we get a linear transformation of H mapping X to Ug˛g.X/, which is
denoted by Vg . For g; h 2 G, we have

VgVhX D Ug˛g.Uh˛h.X//

D Ug˛g.Uh/˛gh.X/

D !.g; h/Ugh˛gh.X/

D !.g; h/VghX;

and ¹Vgºg2G form a projective representation of G. On the other hand, since
Œ��Œ�� D Œ��C Œ��, we have

dimH D dim.�; ���/ � dim.�; ��/

D dim
�
�;
�

id ˚
M

g2G

˛g�
�
�
�

� 1

D
X

g2G

.dim.�; ˛g�/C dim.�; ˛g�// � 1

D jGj � 1:

Thus we get
detVg detVh D !.g; h/jGj�1 detVgh;

and .jGj � 1/Œ!� D 0 in H 2.G;T/, which implies Œ!� D 0 (see [5, Corollary
10.2]). �
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Theorem 7.2. LetG be a finite abelian group. The 3G subfactors giving quadratic

categories with .G;�1; 1/ are completely classified by the H 2.G;T/ Ì Aut.G/-
orbits of the gauge equivalence classes of the solutions of equations (4.1)–(4.9)
and (6.1).

Proof. The statement follows from Theorem 5.7 and Lemma 7.1. �

Theorem 7.3. Let G be a finite group with odd order. Then a 3G subfactor exists

only if G is abelian. Moreover, the 3G subfactors are completely classified by the

H 2.G;T/ Ì Aut.G/-orbits of the solutions of (5.6)–(5.10) and (6.1).

Proof. The statement follows from Theorem 2.2, Theorem 5.7, and Lemma 7.1.
�

In the rest of this section, we give an algorithm to compute the other principal
graph and the fusion rules of the dual category for the 3G subfactors.

LetM , C, G, ˛, �, and .�h.g/; �g ; Ag.h; k// be as in Section 3, and we assume
than eq. (6.1) holds. We describe the Q-system for id ˚� now (see [16]). Let
MG be the fixed point subalgebra of M under the G-action ˛. We choose two
isometries V0; V1 2 MG with V0V

�
0 C V1V

�
1 D 1, and set


.x/ D V0xV
�

0 C V1�.x/V
�

1 :

Let

W D 1p
d C 1

V0 C 1p
d C 1

V1�.V0/V
�

1

C
s

d

d C 1
V1�.V1/SV

�
0 C

s
d � 1
d C 1

V1�.V1/T0V
�

1 :

Then .
; V0; W / is aQ-system, and the corresponding 3G subfactorN is given by

N D ¹x 2 M I Wx D 
.x/W; Wx� D 
.x�/W º:
Let �WN ,! M be the inclusion map. Then N� is identified with 
 regarded as a map
from M into N .

We denote by D the fusion category in End0.N / arising from the subfactor
N � M , which is the dual category of C with respect to the above Q-system.
Note that the set ¹Œ˛g ��ºg2G t¹Œ��º exhausts the equivalence classes of irreducible
M�N sectors associated with the subfactorN � M . To determine the irreducible
objects in D, it suffices to compute the irreducible decomposition of N�˛g � and N��.
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Since

dim.N��; N��/ D dim.�N�; �N�/ D 2;

there exists an irreducible O� 2 D with ŒN��� D Œid� C Œ O��. From the principal
graph 3G , we get Œ� O�� D Œ�� C Œ��. We have d. O�/ D d , d.�/ D p

d C 1, and
d.�/ D .d � 1/

p
d C 1.

For z 2 G2, we have ˛z
 D 
˛z and ˛z.W / D W . Thus ˛z globally
preserves N , and we denote by ˇz the restriction of ˛z to N . By definition, we
have ˛z � D �ˇz , and we get

ŒN�˛z�� D ŒN��ˇz � D Œˇz�C Œ O��Œˇz�:

Thus ˇz ; O�ˇz 2 D. For z1; z2 2 G2 with z1 ¤ z2, we have

dim.N�˛z1
�; N�˛z2

�/ D dim.�N�˛z1
; ˛z2

�N�/ D dim.˛z1
; ˛z2

/C dim.�˛z1
; ˛z2

�/ D 0;

which implies Œˇz1
� ¤ Œˇz2

� and Œ O�ˇz1
� ¤ Œ O�ˇz2

�. In particular ˇ is an outer action
of G2 on N . Since

Œ��Œ O�ˇz � D Œ�ˇz �C Œ�ˇz �;

�ˇz is equivalent to either � or ˛g �. Comparing dimensions, we get Œ�ˇz� D Œ��,
and dim.�; � O�ˇz/ D 1.

For g; h 2 G nG2, we have

dim.N�˛g �; N�˛h�/ D dim.�N�˛g ; ˛h�N�/ D dim.˛g ; ˛h/Cdim.�˛g ; ˛h�/ D ıg;hCıg;�h:

Thus N�˛g � is irreducible and ŒN�˛g �� D ŒN�˛h�� if and only if either g D h or g D �h.
We introduce an equivalence relation in G n G2 as g � h if and only if either
g D h or g D �h, and choose a transversal J0 � G of the equivalence relation.
For g 2 J0, we set �g D N�˛g � 2 D. Then

Œ��g � D Œ˛g ��C Œ�˛g �� D Œ˛g ��C Œ˛�g��� D Œ˛g ��C Œ˛�g ��C Œ��;

and dim.�; ��g/ D 1.
It remains to compute the irreducible decomposition of N��. By Frobenius

reciprocity, we get dim.N��; O�ˇz/ D dim.N��; �g/ D 1. Thus there exists mutually
inequivalent irreducible endomorphisms ¹�j ºj 2J1

� D and natural numbers nj

satisfying

ŒN��� D
X

z2G2

Œ O�ˇz�C
X

g2J0

Œ�g �C
X

j 2J1

nj Œ�j �: (7.1)
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Since
dim.��j ; ˛g �/ D dim.�j ; N�˛g �/ D 0;

we have Œ��j � D nj Œ��, and

d.�j / D njd.�/

d.�/
D nj .d � 1/:

Comparing the dimensions of the both sides of eq. (7.1), we get

X

j 2J1

n2
j D jGj � jG2j

2
:

Summing up the above argument, we get

Proposition 7.4. With the above notation,

O.D/ D ¹Œˇz�ºz2G2
t ¹Œ�g �ºg2J0

t ¹Œ�j �ºj 2J0
;

Our goal is to show the following result.

Theorem 7.5. nj D 1 for any j 2 J1.

M �M idM � ˛1� ˛5� ˛2� ˛4� ˛3� ˛1 ˛5 ˛2 ˛4 ˛3

M �N � � ˛1� ˛5� ˛2� ˛4� ˛3� D �ˇ3

N �N idN O� �1 �2 �1 �2 O�ˇ3 ˇ3

✳✳
✳✳
✳✳
✳ ✏✏✏✏✏✏✏ ✳✳

✳✳
✳✳
✳ ✏✏✏✏✏✏✏

✈✈✈✈✈✈✈✈✈✈✈

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣ ❍❍
❍❍

❍❍
❍❍

❍❍
❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍
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❍❍
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❍❍

❍❍
❍

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗ ❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
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Figure 3. The principal graphs of the 3Z6 subfactor.

To prove the above theorem, we consider a finite dimensional C�-algebra
A D .N���; N���/. Since

ŒN���� D ŒN���C ŒN��� D Œid�C 2Œ O��C
X

z2G2n¹0º
Œ O�ˇz�C

X

g2J0

Œ�g �C
X

j 2J1

nj Œ�j �;

it is isomorphic to

C ˚M2.C/˚ C
G2n¹0º ˚ C

J0 ˚
M

j 2J1

Mnj
.C/:
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Let ŒA;A� be the linear span of ¹xy � yx 2 AI x; y 2 Aº. To show that nj D 1

for any j 2 J1, it suffices to show dimŒA;A� < 6.

In what follows we use graphical expression of intertwines as follows:

� �

D
p
dS;

� �

D
p
dS�;

� �

�

rrrr
▲▲▲▲ D T0;

� �

�

▲▲▲
▲

rrr
r D T �

0 ;

� N�
D
p
d.�/V0;

� N�
D
p
d.�/V �

0 ;

N� �

D
p
d.�/W;

N� �

D
p
d.�/W;

� N�

�

rrrr
▲▲▲▲ D V1;

� N�

�

▲▲▲
▲

rrr
r D V �

1 :

Since j1;0.T0/ D j2;0.T0/ D T0, we have

� �

�

❄❄❄❄❄
D

��

�

⑧⑧⑧⑧⑧
D
� �

�

▲▲▲
▲

rrr
r
;

� �

�

⑧⑧
⑧⑧
⑧

D
��

�

❄❄
❄❄

❄

D
� �

�

rrrr
▲▲▲▲ :

Note that we have

� �

� �

� ❡❡❡❡❡❡ D T �
0 �.T0/ and

� �

� �

�
❨❨❨❨❨❨ D �.T0/

�T0:
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On the other hand, Lemma 3.6 and eq. (6.1) imply

T �
0 �.T0/ D �.T0/

�T0

D SS� C T0T
�
0 � 1

d � 1
X

g2G

TgT
�
g

D � 1

d � 1 C d

d � 1
SS� C T0T

�
0 :

Thus it makes sense to express the above two diagrams simply by

� �

� �

�
;

or by the letter H, and we get the relation

1

d � 1

� �

� �

C

� �

� �

� D 1

d � 1

� �

� �

C

� �

� �

❄❄
❄❄

❄

⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧

❄❄
❄❄

❄

� :

We frequently use this relation without mentioning it.
We define

�

� �
rrr
r WD

�

� �

▲▲▲
▲

D
p
d.�/V �

1 W;

and its conjugate

�

� �▲▲▲▲ WD
 �

� �
rrr
r

!�
:

Then direct computation shows
p
dS��.V �

1 W / D W �V1, and we get the relation

��

�

D
�

� �▲▲▲▲
:

In a similar way, we define

N�

�N�
▲▲▲

▲ WD
p
d.�/
.V0/

�W;
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and its conjugate

N�

�N�
rrrr WD

� N�

�N�
▲▲▲

▲

��
:

Then we have
N� �

N�
D

N�

�N� rrrr :

Lemma 7.6. With the above notation, we have

(1)

�

�

� D d

d.�/

�

�

,

(2)

�

�

�

�

✟✟
✟✟
✟

�②②
②② D

s
d � 1

d.�/

�

�

�
☎☎
☎☎
☎,

(3)

� �

�

�
⑤⑤
⑤⑤
⑤⑤
⑤⑤

⑧⑧
⑧⑧
⑧ D 1

d.�/

� �

�

�

C
s
d � 1

d.�/

� �

�

�
⑧⑧
⑧ ❄❄
❄

�

③③
③③
③③

,

(4)

N�

N�

� D d

d.�/

N�

N�

,

(5)

�

N�

N�
� ✻✻
✻✻

✻
�
❊❊

❊❊ D
s
d � 1

d.�/

�

N�

N�
✿✿

✿✿
✿ ,

(6)

��

N�

N�
❇❇

❇❇
❇❇

❇❇

❄❄
❄❄

❄ D 1

d.�/

��

N�

N�

C
s
d � 1
d.�/

��

N�

N�
❄❄

❄
⑧⑧
⑧

� ❉❉
❉❉

❉❉
.
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Proof. We show only (1)–(3) because the rest follows from similar arguments.
(1) The left-hand side is

d.�/W �V1V
�

1 W D d.�/W �.1� V0V
�

0 /W D d.�/.1 � 1

d.�/2
/ D d

d.�/
:

(2) The left-hand side is

d.�/T �
0 �.V

�
1 W /V

�
1 W D d.�/T �

0 �.V
�

1 /V
�

1 
.W /W

D d.�/T �
0 �.V

�
1 /V

�
1 WW

D d.�/

s
d � 1
d C 1

V �
1 W

D
p
d � 1V �

1 W:

(3) The statement follows from (1), (2), and 1 D SS� C P
g2G TgT

�
g with

consideration that .˛g �; �/ D ¹0º for any g 2 G n ¹0º. �

For X 2 .�2; �2/, we set

f .X/ D X

N� � �

N� � �

✪✪
✪

✪✪
✪

�
❖❖❖

❖

�
❖❖❖

❖
2 A:

We define Xi 2 A, 1 � i � 5, by

X1 D
N� � �

N� � �

�
;

X2 D
N� � �

N� � �

�
;

X3 D f .1/ D
N�

N�

�

�

�

�
▲▲▲

▲ ▲▲▲
▲

;

X4 D f .dSS�/ D
N�

N�

�

�

�

�

rrrr rrrr
;
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X5 D f .T0T
�
0 / D

N�

N�

�

�

�

�

:

Let B be the linear span of ¹1; X1; X2; X3; X4; X5º. In view of the linear isomor-
phism,

.N���; N���/ Š .
�; �
/ D ..id ˚�/�; �.id˚�//;
we see that B and ¹f .TgT

�
g /ºg2Gn¹0º linearly spanA. It is easy to showX�

1 D X1,
X�

2 D X2, X�
3 D X4,

X�
5 D f .H/ D � 1

d � 1X3 C 1

d � 1X4 CX5;

and B is closed under the adjoint operation.
In what follows we compute the multiplication table of A modulo B using

Lemma 7.6 (3),(6). For X2
1 , we have

X2
1 D

N�

N�

�

�

�

�

��

�

�

D 1

d.�/

N�

N�

�

�

�

�

� � C
s
d � 1

d.�/

N�

N�

�

�

�

�

�
�
❘❘❘❘

�
❧❧❧❧

�

D 1

d.�/
C d � 2p

d.�/.d � 1/X1;

where we used

�

� �

�

✟✟
✟✟
✟ �

✻✻
✻✻

✻

�

D T �
0 �.T0/T0 D d � 2

d � 1T0 D d � 2
d � 1

�

� �
☎☎
☎☎
☎

✿✿
✿✿

✿
:

In particular X2
1 2 B. In a similar way, we have X2

2 2 B. From the definition of
X5, we get X1X2 D X5 2 B, and so X2X1 D .X1X2/

� D X�
5 2 B. We can easily

show XiXj 2 B for 1 � i; j � 4 by the same type of computation as above.

Lemma 7.7. Let the notation be as above, and let Qg D TgT
�
g . Then

(1) X1f .Qg/ 2 B C
q

d�1
d.�/

f .HQg/,

(2) f .Qg/X1 2 B C
q

d�1
d.�/

f .�.T0/
�Qg�.T0//,
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(3) X2f .Qg/ 2 B C
q

d�1
d.�/

f .T �
0 �.Qg/T0/,

(4) f .Qg/X2 2 B C
q

d�1
d.�/

f .QgH/,

(5) X3f .Qg/ 2 B,

(6) f .Qg/X3 2 B,

(7) X4f .Qg/ 2 B,

(8) f .Qg/X4 2 B,

(9) f .Qg1
/f .Qg2

/ 2 B C f .�.T0/
�Qg1

�.Qg2
/T0/.

In particular B is a �-subalgebra.

Proof. In the proof we suppress the labeling of edges unless there is possibility of
confusion. The left external edges are always labeled by N�, the right external edges
are always labeled by �, and internal edges are always labeled by �. (1)–(6) are
easy to verify. From (5) we get X3A � B, and since X4 D X�

3 , we get (7). (8)
follows from (6) in the same way.

For g1; g2 2 G,

f .Qg1
/f .Qg2

/ D
Qg2

Qg1

✱✱
✱✱

❲❲❲❲❲

✹✹
✹✹
✹

❙❙❙
❙❙ ❙❙❙

❙❙

✱✱✱✱
❲❲❲❲❲

2 B C d � 1
d.�/

Qg2

Qg1

✱✱
✱✱

❳❳❳❳❳❳

✹✹
✹✹
✹

✳✳
✳✳
✳✳
✳✳
✳✳

✳✳
✳✳
✳✳
✳✳
✳✳

✱✱✱✱
❳❳❳❳❳❳

D B C d � 1
d.�/

f

�
Qg2

Qg1

❄❄
❄❄

�
D B C f .�.T0/

�Qg1
�.Qg2

/T0/;

and we obtain (9).

Putting g D g1 D g2 D 0 in the above, we see that B is a subalgebra. �
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Lemma 7.8. The minimal central projection z.id/ of A corresponding to the

irreducible component id contained in N��� belongs to B.

Proof. Since

N� ��

✸✸✸✸✸✸ 2 .id; N���/, and

N� ��

✸✸✸✸✸✸

☛☛
☛☛
☛☛

D d

d.�/
N� � D d;

we have

z.id/ D 1

d

N� ��

✸✸✸✸✸✸

N� ��

☛☛
☛☛
☛☛

Using

� N�

� N�

D 1

d.�/

� N�

� N�

C

� N�

� N�
✻✻

✻✻
✻

✟✟
✟✟
✟

�

✟✟✟✟✟

✻✻✻✻✻

;

we get

N� ��

✸✸✸✸✸✸

N� ��

☛☛
☛☛
☛☛

D

N� ��

N� ��

☛☛
☛☛
☛☛

✹✹✹✹✹

D 1

d.�/

N�

N�

�

�

�

�

rrr
r

▲▲▲▲
C

N�

N�

�

�

�

�

rrr
r

▲▲▲▲
2 B C 1

d.�/

N�

N�

�

�

�

�

❄❄
❄❄

❄

❄❄
❄❄

❄ C
s
d � 1
d.�/

N�

N�

�

�

�

�

▲▲▲▲
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D B C 1

d.�/

s
d � 1
d.�/

N�

N�

�

�

�

�

C d � 1
d.�/

N�

N�

�

�

�

�

✱✱
✱✱

✱✱✱✱

D B C d � 1

d.�/
f .H/ D B;

which shows the statement. �

Proof of Theorem 7.5. We first claim that it suffices to show ŒA;A� � B. Indeed,
we have already observed that if dimŒA;A� � 5, we are done. On the other hand,
since z.id/ is a central projection, we have z.id/ŒA;A� D 0. Thus if ŒA;A� � B,
we get

ŒA;A� D .1 � z.id//ŒA;A� � .1� z.id//B;
and dimŒA;A� � dim.1 � z.id//B D 5.

Let B0 be the linear span of ¹1; SS�; T0T
�
0 º. In view of Lemma 7.7, it suffices

to show that both HQg � �.T �
0 /Qg�.T0/ and T �

0 �.Qg/T0 � QgH, as well as
�.T �

0 /Qg1
�.Qg2

/T0 ��.T �
0 /Qg2

�.Qg1
/T0 belong B0 for any g; g1; g2 2 G n ¹0º.

Indeed, we have HQg D QgH D � 1
d�1

Qg and

T �
0 �.Qg/T0 D �.T �

0 /Qg�.T0/ D
X

k2G

jA0.g; k/j2Qk;

Thanks to Remark 6.3, the right-hand side is

1

.d � 1/2 .1 � SS�/ � 1

d � 1Qg ;

and we get

HQg � �.T �
0 /Qg�.T0/ D QgH � T �

0 �.Qg/T0 D 1

.d � 1/2 .SS
� � 1/ 2 B0:

We finally show that �.T �
0 /Qg1

�.Qg2
/T0 is symmetric in g1 and g2. Indeed,

it is equal to

�.T0/Tg1
T �

g1
�.Tg2

T �
g2
/T0 D �.T0/Tg1

T �
g1
˛�g2

�.T�g2
T �

�g2
/T0

D
X

l2G

A0.g1; l/TlT
�
g1ClT

�
g1
˛�g2

�.T�g2
T �

�g2
/T0

D
X

l2G

A0.g1; l/A�g1
.g1 C g2; l/

TlT
�
�g2Cl˛�g2

�.T �
�g2

/T0
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D
X

l2G

A0.g1; l/A�g1
.g1 C g2; l/A�g2

.g2; l/TlT
�
l

D
X

l2G

A0.g1; l/A0.g2; l/A�g2
.g1 C g2; l/

�l��g2
��g2Cl�g2

.�g2/�g2
.�g2 C l/TlT

�
l ;

where we used eq. (4.8) at the end. Thus it suffices to show that

A�g2
.g1 C g2; l/��g2

��g2Cl�g2
.�g2/�g2

.�g2 C l/;

is symmetric in g1 and g2, which follows from (4.8) and (4.5). �

Remark 7.9. Let z.�j / be the minimal projection in A corresponding to �j . We
can determine how the conjugation acts on ¹�j ºj 2J1

by computing the rotation of
z.�j / by 180 degrees, which can be easily done once we concretely write down
z.�j / . We can determine the fusion coefficient dim.�j3

; �j1
�j2
/ by computing

dim
�
z.�j3

/.N���; .N���/2/z.�j1
/N���.z.�j2

//
�
:

Since we can concretely write down a basis of .N���; .N���/2/ by using the isomor-
phism

.N���; .N���/2/ Š .
�; �
�
/;

we can compute the fusion coefficient in principle, though it is a challenging
problem to implement it in a concrete example.

8. Orbifold construction

8.1. De-equivariantization. Let M , C, G, ˛, �, .�h.g/; �g ; Ag.h; k// be as in
Section 3. We assume z 2 G n¹0º satisfies 2z D 0 and �z.z/ D 1. We also assume
that the map G 3 g 7! �z.g/ 2 ¹1;�1º is a character, which is always the case if
A0.g; h/ ¤ 0 for all g; h 2 G thanks to Lemma 3.11. Let P D M Ì˛z

Z2 be the
crossed product, which is the von Neumann algebra generated byM and a unitary
� satisfying �2 D 1 and �x��1 D ˛z.x/ for all x 2 M . Since ˛z is outer, P is a
factor.

We can extend ˛g and � to P by Q̨g.�/ D �z.g/� and Q�.�/ D �. Then Q̨ is a
G-action on P , and Q̨z D Ad� thanks to the assumption on �z.g/. Thus it makes
sense to write Œ Q̨ Pg � D Œ Q̨g � for Pg 2 G=¹0; zº as we have Œ Q̨gCz� D Œ Q̨g � for all
g 2 G. It is easy to show the following theorem by using P D M CM�.
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Theorem 8.1. Let the notation be as above. Then

(1) Œ Q�� is irreducible,

(2) Œ Q̨g Q�� D Œ Q̨h Q�� if and only if g � h 2 ¹0; zº,

(3) Œ Q�2� D Œid�˚L
Pg2G=¹0;zº 2Œ Q̨ Pg Q��;

(4) if id ˚� has a Q-system, so does id ˚ Q�.

Proof. We show only (3). For x 2 M we have Q�2.x/Tg D Tg Q̨g Q�.x/. For �, we
have

Q�2.�/Tg D �Tg D ˛z.Tg/� D �z.g/Tg� D Tg Q̨g .�/ D Tg Q̨g Q�.�/:

This shows

Œ Q�2� D Œid�˚
M

g2G

Œ Q̨g Q�� D Œid�˚
M

Pg2G=¹0;zº
2Œ Q̨ Pg Q��: �

Remark 8.2. One can compute the obstruction class of ¹Œ Q̨ Pg �º Pg2G=¹0;zº in the
cohomology group H 3.G=¹0; zº;T/ easily from �z.g/.

Remark 8.3. We can easily generalize the above argument to a subgroup H of
G2 satisfying �h.k/ D 1 for any h; k 2 H .

8.2. Equivariantization. Let .�h.g/; �g ; Ag.h; k// be a solution of (4.1)–(4.9)
invariant under a group automorphism � 2 Aut.G/, that is, ��.h/.�.g// D �h.g/,
��.g/ D �g , and A�.g/.�.h/; �.k// D Ag.h; k/. Let ˇ be an automorphism of the
Cuntz algebra OnC1 defined by ˇ.S/ D S and ˇ.Tg/ D T�.g/. Then it is easy to
show ˇ ı � D � ı ˇ and ˇ ı ˛g D ˛�.g/ ı ˇ.

Let M be the weak closure of OnC1 in the GNS representation of a KMS-
state as in [24], and we use the same symbols ˛, �, and ˇ for their extensions
to M . Then we may assume (replacing .M; �; ˛/ with . zM; Q�; Q̨ / in the appendix
(Section 10) if necessary) that ˛ and ˇ generate an outer action of the semi-direct
product group G Ì� Zm on M , where m is the order of � . Let P D M Ìˇ Zm

be the crossed product, which is the von Neumann algebra generated by M and a
unitary � satisfying �m D 1 and �x��1 D ˇ.x/ for any x 2 M . We extend � to P
by Q�.�/ D �. Then since S and T0 are invariant under ˇ, we have S 2 .id; Q�2/ and
T0 2 . Q�; Q�2/. We will compute the fusion rule of the fusion category generated
by Q�.
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Let

G D
pG

iD0

Oi

be the �-orbit decomposition of G with O0 D ¹0º, and let li D m=#Oi . For
0 � i � p, we set

Pi D
X

g2Oi

TgT
�
g ;

which is a projection in the fixed point algebra M ˇ . Since M ˇ is a type III
factor, there exists an isometry Vi 2 M ˇ whose range projection is Pi . We define
�i 2 End.M/ by

�i .x/ D V �
i

�X

g2Oi

Tg˛g.x/T
�
g

�
Vi :

By construction, we have
Œ�i � D

M

g2Oi

Œ˛g �:

Note that ˇ ı �i D �i ı ˇ holds for any 0 � i � p.

Lemma 8.4. The endomorphism �i extends to Q�i 2 End.P / by Q�i .�/ D V �
i �Vi D

V �
i ˇ.Vi/�.

Proof. Since the range projection of Vi is invariant under ˇ, the operator V �
i �Vi

is unitary. As

V �
i �ViV

�
i �

kVi D V �
i �Pi�

kVi D V �
i Pi�

kC1Vi ;

we can show .V �
i �Vi /

k D V �
i �

kVi by induction, and so .V �
i �Vi /

m D 1. For
x 2 M , we have

V �
i �Vi�i .x/ D V �

i �Pi

X

g2Oi

Tg˛g.x/T
�
g Vi

D V �
i

X

g2Oi

T�.g/ˇ.˛g.x//T
�
�.g/�Vi

D V �
i

X

g2Oi

T�.g/˛�.g/.ˇ.x//T
�
�.g/ViV

�
i �Vi

D �i .ˇ.x//V
�

i �Vi ;

which shows the statement. �
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For i D 0, we can choose V0 D T0, and so Q�0 D id.

Theorem 8.5. Let the notation be as above.

(1) Let Ǒ be the dual action of ˇ. For 0 � k; l � li �1, we have . Ǒk Q�i Q�; Ǒ l Q�j Q�/ D
ık;lıi;jC1: In particular, Ǒk Q�i Q� is irreducible.

(2) Œ Q�2� D Œid�˚Lp
iD0Œ Q�i Q��:

(3) If id ˚� has a Q-system, so does id ˚ Q�.

Proof. (1) It suffices to show the statement for l D 0. Note that any element
X 2 P has a unique expansion X D Pm�1

aD0 Xa�
a with Xa 2 M . Thus

X 2 . Ǒk Q�i Q�; Q�j Q�/ if and only if Xa 2 .ˇa�i�; �j�/ and �k
mXaˇ

a.V �
i ˇ.Vi// D

V �
i ˇ.ViXa/, where �m D e2�i=m. Since

dim.ˇa�i�; �j�/ D dim.�jˇ
a�i ; �

2/

D dim.�j�iˇ
a; �2/

D
X

g2Oi ;

h2Oj

dim.˛g�hˇ
a; id/

D ıi;j #Oi ;

we have Xa D 0 for a ¤ 0 and X0 has the following form:

X0 D V �
i

X

g2Oi

cgTgT
�
g Vi ; cg 2 C:

Now the condition �k
mX0V

�
i ˇ.Vi / D V �

i ˇ.ViX0/ is equivalent to cg� D ��1
m cg .

However, this implies cg D c�#Oi .g/ D �
�k#Oi
m cg . Since 0 � k � li � 1, we have

�
�k#Oi
m ¤ 1 except for k D 0, and we get the statement.

(1) It suffices to show Vi 2 . Q�i Q�; Q�/. For x 2 M , we have

Vi Q�i Q�.x/ D Pi

X

g2Oi

Tg˛g .�.x//T
�
g Vi D Tg˛g.�.x//T

�
g Vi D �2.x/Vi D Q�2.x/Vi :

For �,

Vi Q�i Q�.�/ D Pi�Vi D �PiVi D �Vi D Q�2.�/Vi ;

which shows Vi 2 . Q�i Q�; Q�2/:

(3) The statement follows from .�; �2/ D . Q�; Q�2/ D CT0. �
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LetM ˇ be the fixed point subalgebra ofM under ˇ, and let � D yGÌ� Z=mZ.
Then we have P D M ˇ

Ì �. Let �1WM ,! P and �2WM ˇ ,! M be the inclusion
maps. Then we have

Œ Ǒk Q�i �Œ�1� D
M

g2Oi

Œ�1�Œ˛g �;

and

Œ Ǒk Q�i �Œ�1�2� D #Oi Œ�1�2�:

This shows that Œ�1�2�Œ�1�2� contains Œ Ǒk Q�i � with multiplicity #Oi . Since

pX

iD0

li .#Oi/
2 D m

pX

iD0

#Oi D m#G D #�;

we get

Œ�1�2�Œ�1�2� D
pM

iD0

li �1M

kD0

#Oi Œ Ǒk Q�i �;

and ¹ Ǒk Q�iº form the set of irreducibles in a fusion category equivalent to the
representation category y� of �. This shows that we can describe the fusion rules
for the category generated by Q� in terms of y�.

Remark 8.6. We can easily generalize the above argument to a subgroup of
Aut.G/ leaving the solution .�h.g/; �g ; Ag.h; k// invariant.

8.3. Accompanying solutions. Let M , C, G, ˛, �, .�h.g/; �g ; Ag.h; k// be
as in Section 3. For a subgroup H � G, we can extend � to the crossed
product M Ì˛ H by Q�.�h/ D ��h, where ¹�hºh2H is the implementing unitary
representation of H . It often happens that Q� generates a generalized Haagerup
category with a group whose order is the same as that ofG (see [19]), which gives
a new solution of equations (4.1)–(4.9). We call it the accompanying solution

of .�h.g/; �g ; Ag.h; k// with respect to the subgroup H . In this subsection, we
compute it in easy cases.

Assume first that G is an odd group and H D G. In this case the solution
reduces to .A.g; h/; �/. For � 2 yG, we set

yT� D 1p
jGj

X

g2G

hg; �iT2g�2g :
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Then yT� is an isometry in . Ǫ� Q�; Q�2/, where Ǫ is the dual action of ˛, and Ǫ� . yT�/ D
yT�C2� holds. We have S 2 .id; Q�2/,

p
d yT �

� �.S/ D
s

d

jGj
X

g2G

h�g; �i��2gT
�
2g�.S/

D 1p
jGj

X

g2G

h�g; �i��2gT2g

D 1p
jGj

X

g2G

h�g; �iT�2g��2g

D yT�;

and

p
dS� Ǫ� ı Q�. yT �

� /S D
s

d

jGj
X

g2G

h�g; �i

Ǫ�. Q�.��2gT
�
2g/S/

D
s

d

jGj
X

g2G

h�g; �i Ǫ�.�2g�.T
�
2g/S/

D
s

d

jGj
X

g2G

h�g; �i Ǫ�.˛2g ı �.T �
2g/S�2g/

D �p
jGj

X

g2G

h�g; �i Ǫ�.T2g�2g/ D � yT�:

Theorem 8.7. When G is an odd abelian group, the accompanying solution of

.A.g; h/; �/ with respect to G is . yA.�1; �2/; �/ with

yA.�1; �2/ D 1

jGj
X

h;k2G

A.2h; 2k/hh; �2ihk; �1i:

Proof. The statement follows from

yA.�1; �2/

D yT �
�1C�2

yT �
�1

Q�. yT0/ yT�2

D 1

jGj2
X

g;h;k;l2G

hk; �2ihh; �1ihl; �1 C �2i��2lT
�
2l��2hT

�
2h Q�.T2g�2g/T2k�2k
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D 1

jGj2
X

g;h;k;l2G

hk; �2ihh; �1ihl; �1 C �2i��2lT
�
2l��2hT

�
2h�.T2g/��2gT2k�2k

D 1

jGj2
X

g;h;k;l2G

hk; �2ihh; �1ihl; �1 C �2i
��2h�2lT

�
4hC2lT

�
2h˛�2g�.T�2g/T�4gC2k��2gC2k

D 1

jGj2
X

g;h;k;l2G

hk; �2ihh; �1ihl; �1 C �2iA.2g C 2h;�2g C 2k/ıhCl;�gCk :

�

Now we consider the case G D H D Z2m: We assume that the cocycle
�h.g/ is non-trivial, and we have �m.g/ D .�1/g . In this case Q� generates a
generalized Haagerup category with bZ2m Š Z2m. For a natural number n, we
denote �n D e

2�i
n . The dual action Ǫ is given by Ǫk.�l/ D �kl

2m�l . For 0 � a < m,
we set

yT2a D 1p
m

m�1X

kD0

�ak
m T2k�2k;

yT2aC1 D �2aC1
4mp
m

m�1X

kD0

�
.2aC1/k
2m ˛k.T1/�2kC1:

Then yTb 2 . Ǫb Q�; Q�2/. We have Ǫb. yT2a/ D yT2aC2b and

Ǫ1. yT2aC1/ D
´ yT2aC3 if 0 � a < m � 1;

� yT1 if a D m � 1:

We can easily compute the accompanying solution in this case too.
ForG D Z2 �K with oddK, we can compute the accompanying solutions for

H D K;G in a similar way too.

9. Examples

Under assumption of eq. (6.2), we have eq. (6.4) that is extremely useful for
solving the whole equations (4.1)–(4.9) (see [27] and [11]). When we do not assume
eq. (6.2), our strategy to solve (4.1)–(4.9) is as follows. We first solve (6.8)–(6.10),
and we get (6.11). Next we try to solve (4.4) and (4.9) with p D q D x C y D 0.
The author has checked that this strategy works at least up to jGj � 6 with help of
Mathematica.
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9.1. G D Z2. When G D Z2, it is easy to show that there is no solution
of (4.1)–(4.9) with trivial �, and the only remaining case is �h.g/ D .�1/gh.
In this case, there exists a unique solution �0 D �1 D 1,

A0 D 1

d � 1

�
d � 2 �1
�1 �1

�
; A1 D 1

d � 1
�
d � 2 �1
�1 1

�
;

with d D 1 C p
2. This solution comes from the even part of the A7 subfactor,

which is discussed in [24, Example 3.6].

9.2. G D Z3. Those solutions of (4.1)–(4.9) for G D Z3 satisfying (6.1) are
already given in [27], and we look for those not satisfying (6.1), which should
exist as the corresponding fusion category was found in [19] (see also [12]). Since
G is an odd group, we can choose �h.g/ satisfying �h.g/ D 1. In this case neither
Ag.h; k/ nor �g depends on g, which we denote A.g; h/ and � respectively.

We can set

A D
 x0 �x1 �x2

N�x1 x2 y

N�x2 Ny x1

!
;

with x0; x1; x2 2 R, y 2 C, � 2 T satisfying �3 D 1. If � ¤ 1, we have
x0 D y D 0, which contradicts (4.4). Thus we have � D 1.

Equations (6.13)–(6.15) allow three different solutions up to group automor-
phism:

.x0; x1; x2/

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�7 � p
13

6
;
1� p

13

6
;
1 � p

13

6

�
;

�2 � p
13

3
;
5� p

13C
q
6.1C p

13/

12
;
5� p

13 �
q
6.1C p

13/

12

�
;

�
0;
3 � p

13C
q
2.�1C p

13/

4
;
3� p

13 �
q
2.�1C p

13/

4

�
:

(9.1)

Now (4.1)–(4.8) are equivalent to

A D
 x0 x1 x2

x1 x2 y

x2 Ny x1

!
;

x2
1 C x2

2 C jyj2 D 1; (9.2)

x1x2 C x1 Ny C x2y D 0: (9.3)
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By (9.3), we have either x1 D x2 or y 2 R. Assume x1 D x2 first. Then we have
x0 D .d � 2/=.d � 1/, x1 D x2 D �1=.d � 1/, which satisfies 6.1, and

y D 1˙ i
p
4d � 1

2.d � 1/ :

We can check that .x0; x1; x2; y/ satisfy the whole system of equations, and we
conclude that there exists a unique solution, up to group automorphism, satisfy-
ing (6.1).

Assume y 2 R now. Then y satisfies

y2 D 1 � x2
1 � x2

2 ;

y D � x1x2

x1 C x2

;

and the only second solutions in (9.1) is allowed with y D .1 C p
13/=2. This

solution is the accompanying solution of the previous one.

Theorem 9.1. There exists exactly two solutions of (4.1)–(4.9) for G D Z3 up to

group automorphism. One of them satisfies (6.1), and the other does not.

9.3. G D Z4. When G D Z4, we have d D 2 C p
5, and we may assume that

�1.3/ D �3.1/ D �, �2.g/ D �g with � 2 ¹1;�1º, and �h.g/ D 1 otherwise. All the
solutions of (6.8)–(6.10) satisfy xg;h D x0;h, and they are as follows up to group
automorphism:

.x0; x1; x2; x3/

D

8
ˆ̂̂
<
ˆ̂̂
:

�5 � p
5

4
;
1 � p

5

4
;
1� p

5

4
;
1 � p

5

4

�
;

�2 � p
5

2
;
1 � p

5C
q
2.�1C p

5/

4
;
1

2
;
1� p

5 �
q
2.�1C p

5/

4

�
:

(9.4)

where xg D xh;g . Since x0 ¤ 0, we have �g D 1 for any g 2 G.
Let y D A0.1; 2/. Then

A0 D

0
BBB@

x0 x1 x2 x3

x1 x3 y �y

x2 Ny x2 y

x3 � Ny Ny x1

1
CCCA ; A1 D

0
BBB@

x0 x1 x2 x3

x1 x3 y y

x2 Ny �x2 �y

x3 Ny � Ny �x1

1
CCCA ;
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A2 D

0
BBB@

x0 x1 x2 x3

x1 x3 �y y

x2 � Ny x2 �y

x3 Ny � Ny x1

1
CCCA ; A3 D

0
BBB@

x0 x1 x2 x3

x1 �x3 �y y

x2 � Ny �x2 y

x3 Ny Ny x1

1
CCCA ;

and (4.4) are equivalent to

x2
1 C x2

3 C 2jyj2 D 2x2
2 C 2jyj2 D 1; (9.5)

x1y C x3 Ny C x1x3 C �jyj2 D 0; (9.6)

.1C �/x2.y C Ny/ D 0; (9.7)

.y C � Ny/.x1 C �x3/ D 0; (9.8)

2x2
2 C �.y2 C Ny2/ D 0: (9.9)

Equation (9.6) implies that either x1 D x3 or y 2 R.
Assume that x1 D x3. Then x0 D 1 � 1

d�1
, and x1 D x2 D x3 D � 1

d�1
, and

so (6.2) is satisfied. Solving (9.4)–(9.9), we get � D �1 and

y D �1
2

˙ i
1p

2.d � 1/
:

We can show that this satisfies the whole equations.
Assume now that y is real. Then (9.4)–(9.9) allow only the second solution

of (9.4), and they imply � D �1 and y D �1
2

. This is the accompanying solution
of the previous one.

Theorem 9.2. There exist exactly two solutions, up to gauge equivalence and

group automorphism, of (4.1)–(4.9) for G D Z4, and they satisfy �g D 1 and

�1.2/ D �1. They are mutually accompanying solutions, and only one of them

satisfies (6.1), which is given by

A0 D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 �1 z �z
�1 Nz �1 z

�1 �Nz Nz �1

1
CCCA ;

A1 D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 �1 z z

�1 Nz 1 �z
�1 Nz �Nz 1

1
CCCA ;
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A2 D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 �1 �z z

�1 �Nz �1 �z
�1 Nz �Nz �1

1
CCCA ;

A3 D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 1 �z z

�1 �Nz 1 z

�1 Nz Nz �1

1
CCCA ;

with

z D �d � 1

2
˙ i

r
d � 1
2

D �1C p
5

2
˙ i

s
1C p

5

2
:

This gives a subfactor of index 3C p
5 whose canonical endomorphism is id ˚�

(see [36]).

Note that the above solution satisfies �2.2/ D 1, to which Theorem 8.1 applies.
Using the notation in Section 8 with G D Z4 and z D 2, we get

Œ Q�2� D Œid�˚ 2Œ Q��˚ 2Œ Q̨ Q��;
Œ Q̨ Q�� D Œ Q� Q̨ �; Œ Q̨ 2� D Œid�;

where we denote Q̨ D Q̨1 for simplicity. Since Q̨ 2 D Ad� and Q̨ .�/ D �2.1/� D
��, the homomorphism Z2 3 1 7! Œ˛� 2 Out.M/ has an non-trivial obstruction
in H 3.Z2;T/. Since id ˚ Q� has a Q-system, we get the following result.

Corollary 9.3. There exists a subfactor of index 3C p
5 with one of the principal

graph as in Figure 4 (see [37]).

Figure 4. 3Z4 /Z2.

9.4. G D Z2 � Z2. We use the parametrization G D Z2 � Z2 D ¹0; a; b; cº of
the elements of the group G, and fix the order 0; a; b; c, to express every function
f on G �G by the matrix

f D

0
BBB@

f .0; 0/ f .0; a/ f .0; b/ f .0; c/

f .a; 0/ f .a; a/ f .a; b/ f .a; c/

f .b; 0/ f .b; a/ f .b; b/ f .b; c/

f .c; 0/ f .c; a/ f .c; b/ f .c; c/

1
CCCA :
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There exists a unique solution of (6.8)–(6.10), which is

xg;0 D
p
5� 1
2

D 1� 1

d � 1
;

xg;a D xg;b D xg;c D 1 � p
5

4
D � 1

d � 1:
Since xg;0 ¤ 0, we have �g D 1, and (4.5) with g D 0 shows that �.h; g/ WD �h.g/

is a bicharacter. Therefore we can put

A0 D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 �1 z Nz
�1 Nz �1 z

�1 z Nz �1

1
CCCA :

Theorem 9.4. The solutions of (4.1)–(4.9) for G D Z2 � Z2 are

A0 D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 �1 z Nz
�1 Nz �1 z

�1 z Nz �1

1
CCCA ;

Aa D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 1 �.a; b/z �.a; c/ Nz
�1 �.a; b/ Nz ��.b; a/ �z
�1 �.a; c/z �Nz ��.c; a/

1
CCCA ;

Ab D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 ��.a; b/ �.b; a/z �Nz
�1 �.b; a/ Nz 1 �.b; c/z

�1 �z �.b; c/ Nz ��.c; b/

1
CCCA ;

Ac D 1

d � 1

0
BBB@

d � 2 �1 �1 �1
�1 ��.a; c/ �z �.c; a/ Nz
�1 �Nz ��.b; c/ �.c; b/z

�1 �.c; a/z �.c; b/ Nz 1

1
CCCA ;

where

� D

0
BBB@

1 1 1 1

1 �1 s �s
1 �s �1 s

1 s �s �1

1
CCCA
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and s 2 ¹1;�1º, z 2 ¹
p
d;�

p
d; i

p
d;�i

p
d º. By gauge transformations and

group automorphisms, those solutions with z 2 R (respectively z 2 iR) are

transformed to each other. Up to gauge transformations, group automorphisms,

and H 2.G;T/-actions, there is only one equivalence class of the solutions.

Let C be the generalized Haagerup category generated by �. Then Out.C/ is

isomorphic to the alternating group A4 D .Z2 � Z2/ Ì Z3.

Proof. It is routine work to obtain the solutions. The gauge transformations can
switch only z and �z and leave s invariant. Note that the automorphism group of
Z2 � Z2 is the permutation group S3. The even permutations leave the solutions
invariant, and odd permutations switch s and �s and switch z and Nz.

The non-trivial element of H 2.Z2 � Z2;T/ Š Z2 is represented by a cocycle
! 2 Z2.Z2 � Z2;T/ given as

! D

0
BBB@

1 1 1 1

1 1 i �i
1 �i 1 i

1 i �i 1

1
CCCA ;

which satisfies !.g; h/!.h; g/ D 1. Thus in Theorem 5.6, we may choose
�.g/ D 1, and the action of H 2.Z2 � Z2;T/ on the solutions is given by
�h.g/ 7! �h.g/b!.g; h/ and Ag.h; k/ 7! Ag.h; k/!.g C k; h/!.h; g/, where

b! D

0
BBB@

1 1 1 1

1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1
CCCA :

Thus the action of Œ!� affects the parameters as s 7! �s and z 7! iz up to gauge
transformation.

Finally we compute the action of G=2G D G. We use the notation in
Lemma 5.8. Note that �.g/ is identified with �.g; p/. For the action of p on
s, we have

�0
h.g/ D �h.p C g/�.h/ D �.h; pC g/�.h; p/ D �.h; g/ D �h.g/;

which shows that the action of p on s is trivial. Recall that �.g/ is a square root
of �.g; p/. Thanks to Lemma 5.8, we have

A0
0.a; b/ D Ap.a; b/�.p C c/�.p C a/�.p C b/�.p/�.a; p/;
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and

.�.p C c/�.p C a/�.p C b/�.p/�.a; p//2

D �.p C c; p/�.p C a; p/�.pC b; p/�.p; p/

D �.0; p/ D 1:

This implies A0
0.a; b/ D ˙A0.a; b/ for any p 2 G, which shows that p acts on z

trivially up to gauge transformation.
The above computation shows that the group

� D .H 2.G;T/ �G=2G/ Ì Aut.G/ D Z2 � ..Z2 � Z2/ Ì S3/

acts on the gauge equivalence classes of the solutions of (6.8)–(6.10) transitively,
and the point stabilizer is

.Z2 � Z2/ Ì Z3;

which is isomorphic to the alternating group A4. �

Pinhas Grossman is the first to obtain the outer automorphism group Out.C/ Š
A4. He also determined that the order of the Bauer-Picard group of C is 360.

Let � 2 Aut.G/ be given by �.a/ D b, �.b/ D c, �.c/ D a. Then the above
solutions are invariant under � , to which Theorem 8.5 applies. We use the notation
in Section 8 for this � . Then

� D yG Ì� Z3 Š .Z2 � Z2/ Ì Z3 Š A4:

For simplicity, we denote Œ Q�� D Œ Q�1�. Then

Œ Q�2� D Œid�˚ Œ Ǒ�˚ Œ Ǒ2�˚ 2Œ Q��:

Thus we get the following fusion rule:

Œ Q�2� D Œid�˚ Œ Q��˚ Œ Q� Q��;

Œ Q� Q��Œ Q�� D Œ Q��˚ Œ Q� Q��˚ Œ Q�2�Œ Q�� D Œ Q��˚ 3Œ Q� Q��˚ Œ Q��˚ Œ Ǒ Q��˚ Œ Ǒ2 Q��:
Since id ˚ Q� has a Q-system, we get the following result first shown by Morrison
and Penneys [36]:

Corollary 9.5. There exists a subfactor for the 4442 graph.

Recently the generalized Haagerup category for Z2 � Z2 attracts attention of
specialists (see [50]) and we finish this section with the following statement.
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Proposition 9.6. Let C be a C�-quadratic category with .Z2�Z2; id; 1/. If c0;3.C/

vanishes (i.e. the associator for the group of invertible objects is trivial), so does

c1;2.C/, and in consequence C is a generalized Haagerup category.

Proof. We may assume C � End0.M/ for a type III factor, and

O.C/ D ¹Œ˛g �ºg2G t ¹Œ˛g �Œ��ºg2G;

where G D Z2 �Z2. Since c0;3.C/ D 0, we may assume that ˛ is a G-action, and
there exist Ug 2 U.M/ and ! 2 Z2.G;T/ satisfying

� ı ˛g D AdUg ı ˛g ı �; Ug˛g .Uh/ D !.g; h/UgCh:

Let �WM ,! M Ì˛ G be the inclusion map, and let Ǫ be the dual action of ˛,
which is an action of yG on M Ì˛ G. We first compute the algebra structure of
A WD .��N�; ��N�/.

We set
g C h

g h
rrr
r ▲▲▲
▲ D 1 and

g C h

g h▲▲▲▲ rrrr D 1;

and choose
�

� g
▲▲▲

▲ and
N�

N�g
rrr
r

satisfying

�

� g C h

g

❄❄
❄❄

❄❄
❄❄

❄

h ▲▲
▲▲

▲▲
▲ D

�

� g C h
❊❊

❊❊
❊❊

❊❊ and

N�

N�g C h

g
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

h

rr
rr
rr
r D

N�

N�g C h
②②
②②
②②
②②:

Let

Xg D Ug

� g N�

� � N�

✪✪
✪

✪✪
✪

g
❖❖❖

❖

g
❖❖❖

❖
2 A:
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In view of the linear isomorphism

A Š .N���; �N��/ Š
��M

g2G

˛g

�
�; �

�M

g2G

˛g

��
;

we see that ¹Xgºg2G forms a basis of A. Since

XgXh D
Uh

Ug

✱✱
✱✱

❲❲❲❲❲

✹✹
✹✹
✹

❙❙❙
❙❙ ❙❙❙

❙❙

✱✱✱✱
❲❲❲❲❲

D
Uh

Ug

✱✱
✱✱

❳❳❳❳❳❳

✹✹
✹✹
✹

✳✳
✳✳
✳✳
✳✳
✳✳

✳✳
✳✳
✳✳
✳✳
✳✳

✱✱✱✱
❳❳❳❳❳❳

D Ug˛g .Uh/

✦✦
✦✦
✦✦
✦✦

✦✦
✦✦
✦✦
✦✦

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

D !.g; h/XgCh;

and A is isomorphic to the twisted group algebra C!G.
We assume that the cohomology class Œ!� is not trivial in H 2.G;T/, and

deduce contradiction. The algebra A is noncommutative with dimA D 4, and
it is isomorphic to the 2 � 2 matrix algebra. Thus there exists an irreducible
� 2 End0.M Ì˛ G/ satisfying Œ��N�� D 2Œ��. On the other hand, we have

Œ��N��Œ��N�� D
h
��
�M

g2G

˛g

�
�N�
i

D
X

g2G

Œ�˛g�
2N��

D 4Œ��2N��

D 4
�
Œ�N��C

X

g2G

Œ�˛g�N��
�

D 4
�X

�2 yG

Œ Ǫ��C 4Œ��N��
�

D 4
�X

�2 yG

Œ Ǫ��C 8Œ��
�
;

and
Œ��Œ�� D

X

�2 yG

Œ Ǫ��C 8Œ��:

This means that � generates a near-group category with group yG Š Z2 � Z2 and
multiplicity 8. However, such a category does not exist (see [28, Theorem 10.24]).

�
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10. Appendix

Let .�h.g/; �g ; Ag.h; k// be a solution of the polynomial equations (4.1)–(4.9),
and let OnC1, ˛, and � 2 End.OnC1/ be as in Section 4. As in [24] and [28,
Appendix], we introduce a weighted gauge action 
 on OnC1 by 
t .S/ D e2itS ,
and 
t .Tg/ D eitTg , and we denote by ' the unique KMS state of 
 . Since ' ı �
is a KMS state for 
 too, we have '.�.x// D '.x/. We denote by M the weak
closure of OnC1 in the GNS representation for '. We still use the same symbols
˛; �; ' for their extension to M . Let E�.x/ D �.S��.x/S/ for x 2 M , then E� is
a '-preserving normal conditional expectation from M onto �.M/ (see [24]).

If ¹h 2 G2 j �g.h/ D 1; for all g 2 Gº ¤ ¹0º, the fusion category in End0.M/

generated by ˛ and � does not give the original data .�h.g/; �g ; Ag.h; k// back
because ˛ is not a faithful action of G. In this section, we give a remedy for this
problem by using a free product method. For the basics of free products of von
Neumann algebras with general faithful normal states, the reader is referred to [49]
and references therein.

We setM0 D M ,  0 D ', �0 D �. Let � be the trace on `1.G/ defined by

�.f / D 1

jGj
X

g2G

f .g/:

We set .Mi ;  i/ D .`1.G/; �/ for i D 1; 2. Let

. zM; / D .M0;  0/ � .M1;  1/ � .M2;  2/;

be the free product von Neumann algebra, which is a factor of type III 1
d

(see [49,

Theorem 3.4]). Although zM is not hyperfinite, it is enough for our purpose of
constructing a generalized Haagerup category having .�h.g/; �g ; Ag.h; k//. Let
�i WMi ! zM be the embedding map for i D 0; 1; 2. Whenever there is no
possibility of confusion, we suppress �i .

Let � WG ! Aut.`1.G// be the left translation. We define a G-action Q̨ WG !
Aut. zM/ by Q̨g D ˛g � �g � ��g , which is an outer action of G on zM . We define
unital homomorphisms �i WMi ! zM for i D 1; 2 by �1.�1.f // D �2.f / and

�2.�2.f // D S�1.f /S
� C

X

g2G

Tg Q̨g .�2.f //T
�
g :

Then .�1.f // D  1.f / holds, and the KMS condition of implies .�2.f // D
 2.f /. Recall that we have  .�0.x// D  0.x/.
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Lemma 10.1. With the above notation, the three von Neumann algebras �i .Mi /,

i D 0; 1; 2, are free independent with respect to  .

Proof. It suffices to show the free independence of the three sets:

�0.M0/; M2; SM1S
� C

X

g2G

TgM2T
�
g :

Note that we have S; Tg 2 ker 0. Let x 2 ker 0. The KMS condition of  0

implies

 0.S
��.x/S/ D d2 0.�.x/SS

�/ D d2 0.�.x/E�.SS
�// D  0.�.x// D 0;

 0.T
�
g �.x/Tg/ D d 0.�.x/TgT

�
g / D d 0.�.x/E�.TgT

�
g // D  0.�.x// D 0:

Since E�.Tg/ D 0, we also have  0.�.x/Tg/ D  0.T
�
g �.x// D 0. Using these

conditions, we claim that any alternative word of �0.ker 0/ and �2.ker 2/ is a
linear combination of words of the form y1y2 : : : yn such that yi 2 ker j.i/ with
j.i/ ¤ j.i C 1/ and j.1/; j.n/ ¤ 2. It is clear that the claim implies the lemma.

We denote by W the set of words z D z1z2 : : : zn with zi 2 Mj.i/ and
j.i C 1/ ¤ j.i/ satisfying the following properties:

(1) when j.i/ D 1; 2, we have zi 2 ker j.i/;

(2) when j.i/ D 0 and i ¤ 0; n, the element zi 2 M0 belongs to either of the
following set: ker 0, T �

g �0.ker 0/S , S��0.ker 0/Tg ;

(3) z1 belongs to either of the following set: ker 1, �0.ker 0/, �0.ker 0/S ;

(4) zn belongs to either of the following set: ker 1, �0.ker 0/, S��0.ker 0/.

We define l.z/ by the number of 1 � i � n with

zi 2 �0.ker 0/S [ S��0.ker 0/ [
[

g2G

T �
g �0.ker 0/S [

[

g2G

S��0.ker 0/Tg :

(10.1)

Note that any alternative word of �0.ker 0/ and �2.ker 2/ is a linear combination
of words in W.

We prove that any word z D z1z2 : : : zn 2 W is a linear combination of words
of the desired form by induction of l.z/, which will finish the proof. When l D 0,
the word z is of the desired form. Assume that the statement holds for l D L,
and assume l.z/ D L C 1. Then there exists i with (10.1). Assume i D 1 and
z1 2 �0.ker 0/S first. Then z2 2 ker 1, and

z1z2 : : : zn D Vz1z2 : : : zn C  0.z1/z2 : : : zn;
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where Vz1 D z1 �  0.z1/. Applying the induction hypothesis to Vz1z2 : : : zn and
z2 : : : zn, we see that z is a linear combination of words of the desired form. The
case with i D n can be handled in a similar way. Assume that 1 < i < n and
zi 2 T �

g �0.ker 0/S . Then zi�1 2 ker 2 and ziC1 2 ker 1, and

z1z2 : : : zn D z1 : : : zi�1 VziziC1 : : : zn C  0.zi /z1 : : : zi�1ziC1 : : : zn:

Applying the induction hypothesis to the two words z1 : : : zi�1 VziziC1 : : : zn and
z1 : : : zi�1ziC1 : : : zn, we see that z is a linear combination of words of the desired
form. The case with zi 2 S��0.ker 0/Tg can be handled in the same way. �

Thanks to the above lemma, we can defined an endomorphism Q� 2 End. zM/

extending �i for iD0; 1; 2. Thanks to [49, Corollary 3.2], we have Q�. zM/0\ zMDC.

Theorem 10.2. With the above notation, we have Q̨g ı Q� D Q� ı Q̨�g and

Q�2.x/ D SxS� C
X

g2G

Tg Q̨g ı Q�.x/T �
g ; for all x 2 zM:

Proof. It is easy to show the first relation on zM , and the second relation on M0

and M1. For x 2 `1.G/,

Q�2.�2.x// D Q�
�
S�1.x/S

� C
X

g2G

Tg �2.��g.x//T
�
g

�

D �.S/.�2.x//�.S/
� C

X

g2G

�.Tg/.S�1.��g.x//S
�

C
X

h2G

Th�2.��g�h.x//T
�
h /�.Tg/

�

D �.S/.�2.x//�.S/
� C

X

g2G

�.Tg/S�1.��g.x//S
��.T �

g /

C
X

g;h2G

�.Tg/Th�2.��g�h.x//T
�
h �.T

�
g /:

The first term is

1

d2
S�2.x/S

� C 1

d
p
d

X

g2G

S�2.x/T
�
g T

�
g

C 1

d
p
d

X

g2G

TgTg �2.x/S
� C 1

d2

X

g;h2G

TgTg �2.x/T
�
h T

�
h :
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The second term is
X

g2G

˛g�.Tg/S�1.�g .x//S
�˛g�.T

�
g / D

X

g2G

TgS�1.�g.x//S
�T �

g :

The third term is
X

g;k2G

˛g�.Tg/TgCk�2.��k/T
�
gCk˛g�.T

�
g /

D
X

g;k2G

���1
g ık;0p
d

S C
X

h2H

Ag.h; k/TgChTgChCk

�
�2.��k.x//

��gık;0p
d
S� C

X

l2G

Ag.l; k/T
�
gClCkT

�
gCl

�

D n

d
S�2.x/S

� C 1p
d

X

g;h2G

�gAg.h; 0/TgChTgCh�2.x/S
�

C 1p
d

X

g;l2G

�gAg.l; 0/S�2.x/T
�
gClT

�
gCl

C
X

g;h;k;l2G

Ag.h; k/Ag.l; k/TgChTgChCk�2.��k.x//T
�
gClCkT

�
gCl

D n

d
S�2.x/S

� C 1p
d

X

g;h2G

�gAg.h � g; 0/ThTh�2.x/S
�

C 1p
d

X

g;l2G

�gAg.l � g; 0/S�2.x/T �
l T

�
l

C
X

g;h;k;l2G

Ag.h � g; k/Ag.l � g; k/ThThCk�2.��k.x//T
�
lCkT

�
l

Thanks to (4.8) and (4.5), we have

X

g2G

�gAg.g � h; 0/ D �h

X

g2G

Ah.h � g; 0/ D � 1
d

and
X

g2G

Ag.h � g; k/Ag.l � g; k/

D
X

g2G

Ah.h � g; k/Al.l � g; k/�l�lCk

�h�hCk�h.�g/�h.k � g/�l .�g/�l .k � g/
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D
X

g2G

A�h.h � g; k/A�l.l � g; k/�l�lCk�h�hCk

�h.�h/�h.k � h/�l .�l/�l .k � l/

D
�
ıh;l � ��l�

�1
�h

d

�
�l�lCk�h�hCk�h.�h/�h.k � h/�l .�l/�l .k � l/

D ıh;l � 1

d
ık;0:

Therefore the third term is equal to

n

d
S�2.x/S

� � 1

d
p
d

X

h2G

ThTh�2.x/S
� � 1

d
p
d

X

l2G

S�2.x/T
�
l T

�
l

C
X

h;k2G

ThThCk�2.��k.x//T
�
hCkT

�
h � 1

d

X

h;l2G

ThTh�2.x/T
�
l T

�
l ;

and

Q�2.�2.x// D S�2.x/S
� C

X

h2G

ThS�1.�h.x//S
�T �

h

C
X

h;k2G

ThThCk�2.��k.x//T
�
hCkT

�
h

D S�2.x/S
� C

X

h2G

Th Q̨h Q�.�2.x//T �
h : �
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