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Triangular decomposition of skein algebras

Thang T. Q. Lê1

Abstract. By introducing a finer version of the Kauffman bracket skein algebra, we show

how to decompose the Kauffman bracket skein algebra of a surface into elementary blocks

corresponding to the triangles in an ideal triangulation of the surface. The new skein algebra

of an ideal triangle has a simple presentation. This gives an easy proof of the existence of

the quantum trace map of Bonahon and Wong. We also explain the relation between our

skein algebra and the one defined by Muller, and use it to show that the quantum trace map

can be extended to the Muller skein algebra.
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1. Introduction

1.1. Kauffman bracket skein algebra of surface. Throughout this paper R is a

commutative ring with unit 1 and a distinguished invertible element q1=2 2 R.

Suppose S D xS n P, where xS is a compact oriented 2-dimensional manifold

with (possibly empty) boundary @xS and P is a finite set. The Kauffman bracket
skein algebra V�.S/, introduced by Przytycki [21] and Turaev [26], is defined as

the R-module spanned by isotopy classes of framed unoriented links in S� .0; 1/

modulo the skein relation (1) and the trivial loop relation (2):

D q C q�1 ; (1)

D .�q2 � q�2/ : (2)

For a detailed explanation of these formulas, as well as other formulas and notions

in the introduction, see Section 2. There is a natural product making V�.S/

an R-algebra, which has played an important role in low-dimensional topology

and quantum topology. In particular, it is known that V�.S/ is a quantization

of the SL2.C/-character variety of the fundamental group of S along the Weil-

Petersson-Goldman bracket [26, 2, 22, 3]. The algebra V�.S/ and its cousin

defined for 3-manifolds have helped to establish the AJ conjecture, relating the

Jones polynomial and the A-polynomial of a knot, for a certain class of knots

[15, 17]. A construction of Topological Quantum Field Theory is based on V�.S/ [1].

Recently, V�.S/ is found to have relations with quantum cluster algebras and

quantum Teichmüller spaces [4], and we also discuss these relations in this paper.

The skein algebra V�.S/ is defined using geometric objects in a 3-manifold, and

we want to understand its algebraic aspects.

1.2. Decomposition. Assume that each connected component of the boundary

@S is diffeomorphic to the open interval .0; 1/. Such a S is called a punctured
bordered surface in this paper. Every connected component of @S is called a

boundary edge of S.

Very often S has an ideal triangulation. This means, S can be obtained from

a finite collection of disjoint ideal triangles by gluing together some pairs of edges

of these triangles. Here an ideal triangle is a triangle without vertices. We want

to know if one can build, or understand, the skein algebra of S from those of the

ideal triangles and the way they are glued together. This is reduced to the question

how the skein algebra behaves under gluing of boundary edges.
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By a @S-tangle we mean a compact, framed, one-dimensional proper subman-

ifold ˛ of S � .0; 1/ such that

� at every boundary point of ˛ the framing is vertical and

� for every boundary edge e, the points in ˛\ .e � .0; 1// have distinct heights

(see details in Section 2). A stated @S-tangle is a @S-tangle equipped with a map

sW @˛ ! ¹˙º, called a state of ˛.

We define the stated skein algebra �s.S/ to be the free R-module spanned by

the isotopy classes of stated @S-tangles modulo the usual skein relation (1), the

trivial loop relation (2), and the new boundary relations (3) and (4) (again see

Section 2 for details),

D q�1=2 ; D 0; D 0; (3)

D q2 C q�1=2 : (4)

Suppose a; b are distinct boundary edges of S. Let S0 be the result of gluing a

and b together in such a way that the orientation is compatible, ieS0 D S=.a D b/.

We don’t assume that S is connected. It is clear that if we want to relate V�.S0/ to
V�.S/, we have to enlarge the skein algebra to involve the boundary @S.

Let prWS � S0 be the natural projection, and c D pr.a/ D pr.b/. Suppose

˛ � .S0 � .0; 1// is a stated @S0-tangle such that

˛ is transverse to c � .0; 1/, (5)

the points in ˛ \ .c � .0; 1// have distinct heights and have vertical framing.

(6)

Then

Q̨ WD pr�1.˛/ � S � .0; 1/

is a @S-tangle and inherits states from ˛ at all boundary points, except for those

in .a [ b/ � .0; 1/. For every

"W ˛ \ .c � .0; 1// �! ¹˙º

let Q̨ ."/ be the stated @S-tangle whose states on .a [ b/ � .0; 1/ are the lift of ".
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Theorem 1. Assume S is punctured bordered surface, and S0 D S=.a D b/,
where a; b are boundary edges of S. Let prWS � S0 be the natural projection
and c D pr.a/ D pr.b/.

(a) There exists a unique R-algebra homomorphism �W �s.S
0/ ! �s.S/ such

that if ˛ is a @S0-tangle satisfying (5) and (6), then

�.˛/ D
X

"

Q̨ ."/: (7)

Here the sum is over all maps "W ˛ \ .c � .0; 1//! ¹˙º.

(b) In addition, � is injective.

(c) For any four distinct boundary edges a1; a2; b1; b2 of S, the following dia-
gram is commutative:

�s.S=.a1 D b1; a2 D b2// �s.S=.a1 D b1//

�s.S=.a2 D b2// �s.S/:

 !
�

 !�  ! �

 !
�

(8)

Theorem 1 is proved in Section 3. The significance of the theorem is that the

right hand side of (7) does not depend on the isotopy class of ˛. For example, if

˛ D ; ˛0 D ;

where the directed line is part of c, then ˛ and ˛0 are isotopic in S0, but

�
� �

D C

C C ;

�
� �

D ;

and a priori it is not clear why �.˛/ D �.˛0/.

If we use only the skein relation (1) and the trivial loop relation (2) in the

definition of �s.S/, then we get a bigger algebra y�s.S/, which was first introduced

by Bonahon and Wong in their work [4] on the quantum trace map. This paper is

motivated by the question if one can refine the definition of Bonahon and Wong

to get a triangular decomposition of the skein algebra. Relation (3) was also

implicitly given in [4], but Relation (4) is new. It is this new relation (4) which

is responsible for the existence of the decomposition map �W �s.S
0/ ! �s.S/ of

Theorem 1.
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We will show V�.S/ embeds naturally into �s.S/, which follows from the

consistency of the defining relations (see Theorem 2.8 and Section 2). If we

want the consistency and the well-definedness of the decomposition map, then the

coefficients on the right hand side of relations (3) and (4) are uniquely determined

up to certain symmetries, see Section 3.4. The uniqueness makes the definition of

our skein algebra more or less canonical.

Concerning the structure of �s.S/, we also have the following, whose proof is

given in Section 4.4.

Theorem 2. Suppose the ground ring R is a domain, and S is a punctured
bordered surface. Then �s.S/ is a domain, i.e. if xy D 0 and x; y 2 �s.S/,
then x D 0 or y D 0.

When @S D ;, one has �s.S/ D V�.S/, the original skein algebra, and the

above result had been known in this case, see [23, 8, 4, 19].

1.3. Triangular decomposition. Suppose S has an ideal triangulation �, ie S

can be obtained from a finite collection zF D zF.�/ of disjoint ideal triangles

by gluing together some pairs of edges of these triangles. Choose an order of

the gluing operations and apply Theorem 1 repeatedly, then we get an algebra

embedding

��W �s.S/ ,�!
O

T2zF

�s.T/: (9)

Parts (b) and (c) of Theorem 1 show that �� is injective, and does not depend on

the order of gluing. The map ��, called a triangular decomposition of �s.S/, can

be described explicitly by a state sum formula.

It is natural now to study the stated skein algebra of an ideal triangle T as

every representation of �s.T/ gives us a representation of the stated skein algebra.

In Theorem 4.6 we give an explicit presentation of the stated skein algebra of an

ideal triangle, which has 12 generators with a simple set of relations.

1.4. Application: quantum trace map. To each triangulation � ofS there is as-

sociated the Chekhov–Fock algebra Y.�/, which is built from the Chekhov–Fock

algebra Y.T/ of the ideal triangle. Actually Y.�/ is a subalgebra of
N

T2zF Y.T/,

and is a version of the multupiplicative Chekhov–Fock algebra studied in [18, 4, 9].

Bonahon and Wong constructed a remarkable algebra map Tr�W y�s ! Y.�/, called

the quantum trace map, which when q D 1, is the classical trace map expressing

the PSL2-trace of a curve on the surface in terms of the Thurston shear coordi-

nates of the Teichmüller space. The existence of the quantum trace map had been
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conjectured in [10, 7]. Part of the construction of Bonahon and Wong is based on

difficult calculations.

As an application of our triangular decomposition, we will show that the

quantum trace map of Bonahon and Wong can be easily constructed using the

triangular decomposition (9) as follows. First, using the explicit presentation of

�s.T/, we construct an algebra homomorphism �W �s.T/! Y.T/. Then define ~�

as the composition

~�W �s.S/
��
�!

O

T2zF.�/

�s.T /
˝�
�!

O

T2zF.�/

Y.T/: (10)

Theorem 3. The composition

Tr�W y�s.S/ �! �s.S/
~�
�!

O

T2zF

Y.T/

coincides with the quantum trace map of Bonahon and Wong.

The proof is easy, and is given in Section 5. In essence, we replace the difficult

calculations in [4] by explicit presentation of the stated skein algebra of the ideal

triangle.

For another approach to the quantum trace map using the Muller skein algebra

see [16].

1.5. Relation to Muller’s skein algebra. For a marked surface, i.e. a pair .xS;P/

where xS is a compact oriented 2-dimensional manifold with (possibly empty)

boundary @xS and a finite set P in the boundary @xS, Muller [19] defines the skein

algebra �
Muller.xS;P/ using the tangles whose end points are in P � .0; 1/. See

Section 6 for details. The Muller skein algebra is closely related quantum cluster

algebras of marked surfaces.

LetS D xSn.P[@0.xS//, where @0.xS/ is the union of all connected components

of @.xS/ not intersecting P. Then S is a punctured bordered surface. In Section 6

we show that there is a natural R-algebra isomorphism

�W �Muller.xS;P/
Š
�! �s;C.S/;

where �s;C.S/ is the subalgebra of �s.S/ generated by stated @S-tangles
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whose states are C only. Using the isomorphism �, we can define the quantum

trace map on �
Muller.xS;P/

N~�W �
Muller.xS;P/

�
�! �s;C.S/

~�
�! Y.�/

for any triangulation � of S. The following is an extension of [4, Proposition 29].

Theorem 4. The quantum trace map N~�W �Muller.xS;P/! Y.�/ is injective.

1.6. Remarks. From the decomposition theorem (Theorem 1) one can easily

show that the stated skein algebra �s.B/ of an ideal bigon (see Section 4) has a

natural structure of Hopf algebra, and that the stated skein algebra of any punctured

bordered surface with non-empty border is a co-module over �s.B/. As observed

by F. Costantino, �s.B/ is naturally isomorphic to the quantum matrix algebra

SL2.q/, a quantum deformation of the coordinate rings of the group SL2.C/

(see e.g. [14, Chapter IV]). In a future work (joint with Costantino), we show

that many algebraic operations over SL2.q/ have a transparent interpretation in

terms of the stated skein algebras, and conversely, many equations and statements

concerning stated skein algebras can be expressed by well-known operations in

SL2.q/ theory. For example, the stated skein algebra of an ideal triangle is the

braided tensor product of two copies of �s.B/ D SL2.q/. We will also discuss

questions concerning the geometry and the algebra of the classical limit of the

stated algebra �s.S/, and the meaning of the coefficients appearing in the defining

relations of a state skein algebra.

1.7. Plan of paper. In Section 2 we give a detailed definition of the stated skein

algebra �s.S/ of a punctured bordered surface S, its symmetry, filtrations, and

grading. We prove Theorem 2.8 describing a natural R-basis of �s.S/. The proof

is a standard application of the diamond lemma. In Section 3 we prove Theorem 1.

In Section 4 we give a presentation of �s.S/ when S is an ideal bigon or an ideal

triangle, and prove Theorem 2. We prove Theorem 3 about the quantum trace

map in Section 5. In Section 6 we discuss the Muller skein algebra and prove

Theorem 4.
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2. Punctured bordered surfaces and skein algebras

2.1. Notations. Throughout the paper let Z be the set of integers, N be the set of

non-negative integers, C be the set of complex numbers. The ground ring R is a

commutative ring with unit 1, containing a distinguished invertible element q1=2.

For a finite set X we denote by jX j the number of elements of X.

In this section we fix a punctured bordered surface S, i.e. a surface obtained

by removing a finite set P from a compact oriented surface xS with (possibly

empty) boundary @xS, with the assumption that every connected component of

the boundary @xS has at least one point in P. We don’t require xS be to connected.

Let @S D @xS n P. A connected component of @S is called a boundary edge
of S. Every boundary edge is diffeomorphic to the open interval .0; 1/.

2.2. Tangles and height order. The boundary of the 3-manifold S � .0; 1/ is

@S � .0; 1/. For a point .z; t / 2 S� .0; 1/, t is called its height. A vector at .z; t /

is called vertical if it is parallel to the .0; 1/ factor and points in the direction of

1. A 1-dimensional submanifold ˛ of S � .0; 1/ is framed if it is equipped with a

framing, i.e. a continuous choice of a vector transverse to ˛ at each point of ˛.

In this paper, a @S-tangle is an unoriented, framed, compact, properly embed-

ded 1-dimensional submanifold ˛ � S � .0; 1/ such that:

� at every point of @˛ D ˛ \ .@S � .0; 1// the framing is vertical, and

� for any boundary edge b, the points of @b.˛/ WD @˛ \ .b � .0; 1// have

distinct heights.

Two @S-tangles are isotopic if they are isotopic in the class of @S-tangles. The

emptyset, by convention, is a @S-tangle which is isotopic only to itself.

For a @S-tangle ˛ define a partial order on @.˛/ by: x > y if x and y are in

the same boundary edge and x has greater height. If x > y and there is no z such

that x > z > y, then we say x and y are consecutive.

2.3. Tangle diagrams, boundary order, positive order. As usual, @S-tangles

are depicted by their diagrams on S, as follows. Every @S-tangle is isotopic

to one with vertical framing. Suppose a vertically framed @S-tangle ˛ is in

general position with respect to the standard projection � WS � .0; 1/ ! S, i.e.

the restriction �j˛W ˛ ! S is an immersion with transverse double points as the

only possible singularities and there are no double points on the boundary of S.

Then D D �.˛/, together with the over/underpassing information at every double

point is called a @S-tangle diagram. Isotopies of (boundary ordered) @S-tangle

diagrams are ambient isotopies in S.
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A @S-tangle diagram D with a total order on each set @b.D/ WD D \ b, for all

boundary edge b, is called a boundary ordered @S-tangle diagram. For example,

the partial order on @.˛/ induces such a boundary order on @D.

Every boundary ordered @S-tangle diagram determines a unique isotopy class

of the @S-tangle, where the framing is vertical everywhere. When there is no

confusion, we identify a boundary ordered @S-tangle diagram with its isotopy

class of @S-tangles.

Let o be an orientation of @S, which on a boundary edge may or may not be

equal to the orientation inherited from S. The o-order of a @S-tangle diagram D,

is the order in which points on @b.D/ are increasing when going along the direc-

tion of o. It is clear that every @S-tangle, after an isotopy, can be presented by an

o-ordered @S-tangle diagram, i.e. a @S-tangle diagram with o-order.

If o is the orientation coming from S, the o-order is called the positive order.
Every isotopy class of @S-tangles can be presented by a positively ordered @S-

tangle diagram.

2.4. Framed Reidemeister moves. Every isotopy class of @S-tangle can be

presented by infinitely many boundary ordered @S-tangle diagrams. Just like

in the theory of framed links, two positively ordered @S-tangle diagrams D; D0

represent isotopic @S-tangles if and only if one can be obtained from the other

by a sequence of moves, each is either an isotopy in S or one of the framed

Reidemeister moves RI, RII, and RIII, described in Figure 1. This follows from

the usual arguments in (framed) Reidemeister move theory, see e.g. [20, Theorem

1.8] and [25].

Figure 1. Framed Reidemeister moves RI, RII, and RIII.

If we don’t restrict to positive order, then two boundary ordered @S-tangle

diagrams represent isotopic @S-tangles if and only if one can be obtained from

the other by a sequence of moves, each is either an isotopy in S, one of RI, RII,

RIII, and the exchange move described in Figure 2.

Figure 2. Exchange move. Here the arrowed interval is a part of a boundary edge, and the

order on that part is such that the point closer to the tip of the arrow is higher. Besides,

these two points are consecutive in the height order.
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2.5. Stated skein module/algebra. A stated @S-tangle ˛ is a @S-tangle ˛

equipped with a state, which is a function

sW @˛ �! ¹C;�º:

Similarly, a stated @S-tangle diagram D is an @S-tangle diagram D equipped

with a state

sW @D �! ¹˙º:

The (Kauffman bracket) stated skein module �s.S/ is the R-module freely

spanned by isotopy classes of stated @S-tangles modulo the defining relations,
which are the skein relation (11), the trivial loop relation (12), and the boundary

relations (13) and (14):

D q C q�1 ; (11)

D .�q2 � q�2/ ; (12)

D q�1=2 ; D 0; D 0; (13)

D q2 C q�1=2 : (14)

Here is the convention about pictures in these identities, as well as in other

identities in this paper. Each shaded part is a part of S, with a stated @S-tangle

diagram on it. Each arrowed line is part of a boundary edge, and the order on that

part is indicated by the arrow and the points on that part are consecutive in the

height order. The order of other end points away from the picture can be arbitrary

and are not determined by the arrows of the picture. On the right hand side of the

first identity of (13), the arrow does not play any role; it is there only because the

left hand side has an arrow.

Relation (11) says that if @S-tangle diagrams D1; D2 and D3, each is boundary

ordered and stated, are identical everywhere except for a small disk in which

D1; D2; D3 are like in respectively the first, the second, and the third shaded areas,

then ŒD1� D qŒD2�C q�1ŒD3� in the skein module �s.S/. Here ŒDi � is the isotopy

class of the stated @S-tangle determined by Di . Other relations are interpreted

similarly.

For two @S-tangles ˛1 and ˛2 the product ˛1˛2 is defined as the result of

stacking ˛1 above ˛2. That is, first isotope ˛1 and ˛2 so that ˛1 � S � .1=2; 1/

and ˛2 � S � .0; 1=2/. Then ˛1˛2 D ˛1 [ ˛2. It is easy to see that this gives rise

to a well defined product and hence an R-algebra structure on �s.S/.
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It is clear that if S1 and S2 are two punctured bordered surfaces, then there is

a natural isomorphism

�s.S1 tS2/ Š �s.S1/˝R �s.S2/: (15)

Remark 2.1. If we don’t impose the boundary relations (13) and (14), then we get

a bigger skein module y�s.S/, which was first introduced in [4]. Of course �s.S/

is a quotient of y�s.S/. If @S D ;, then �s.S/ D y�s.S/ D V�.S/.

Remark 2.2. If S is allowed to have a closed boundary component, then unless

q2 D 1, the defining relations are not consistent and the skein module �s.S/ is

small.

2.6. Consequences of defining relations. Define C "
"0 for "; "0 2 ¹˙º by

C C
C D C �

� D 0; C C
� D q�1=2; C �

C D �q�5=2: (16)

Lemma 2.3. In �s.S/ one has

�q�3 D D �q3 ; (17)

D C "
"0 ; (18)

D D �q3C "0

" : (19)

Proof. Identity (17) follows from the skein relation and the trivial loop relation,

see [12].

Except for ."; "0/D .�;C/, (18) is a defining relation. Applying (14), then (12),

then (13),

D q2 C q�1=2

D q2.q�1=2/C q�1=2.�q2 � q�2/ D �q�5=2;

which proves the remaining case of (18).

The first equality of (19) follows from a rotation by � . Using isotopy, we have

D D �q3 D �q3C "0

" ;

where the 2nd and the 3rd identities follow from (17) and (18). �
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Lemma 2.4 (Height exchange move). (a) One has

D q�1 ; D q�1 ; D q ;

(20)

q
3
2 � q� 3

2 D .q2 � q�2/ : (21)

(b) Consequently, if q D 1 or q D �1, then for all "; "0 2 ¹˙º,

D q : (22)

Proof. (a) Using isotopy, then skein relation (11), and then (18), we have

D
"

0

"

D q�1 C q D q�1 C qC "0

" :

(23)

When " D "0, C "0

" D 0, and (23) proves the first two identities of (20).

Suppose " D C; "0 D �. Using (23), then (14) and (12), we have

D q�1 � q�3=2 D q ;

proving the last identity of (20). Now suppose " D C; "0 D �. Rewrite (14) in the

form

D q�2 � q�5=2 (24)

Using (24) in (23), we get (21).

(b) follows from (a). �

Corollary 2.5. If q D 1, then �s.S/ is commutative.

Proof. When q D 1, Identity (22) shows that the height order does not matter in

�s.S/. Besides, the skein relation show that over-crossing is the same as under-

crossing. Hence for any two @S-tangles ˛; ˇ, we have ˛ˇ D ˇ˛. �

Remark 2.6. In general, because of relation (22), �s.S/ is not commutative when

q D �1. For example, whenS is an ideal triangle, �s.S/ is not commutative when

q D �1. This should be contrasted with the case of the usual skein algebra V�.S/,

which is commutative and is canonically equal to the SL2.C/ character variety of

�1.S/ if R D C and q D �1 (assuming S is connected), see [2, 22].
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2.7. Reflection anti-involution

Proposition 2.7. Suppose R D ZŒq˙1=2�. There exists a unique Z-linear anti-
automorphism �W �s.S/ ! �s.S/, such that �.q1=2/ D q�1=2 and �.˛/ D N̨ ,
where ˛ is a stated @S-tangle, and N̨ the image of ˛ under the reflection of
S � .0; 1/, defined by .z; t /! .z; 1� t /. Here � is an anti-automorphism means
for any x; y 2 �s.S/ and r 2 R,

�.x C y/ D �.x/C �.y/; �.xy/ D �.y/�.x/:

Proof. Since �s.S/ is spanned by stated @S-tangles, the uniqueness is clear.

Let L be the free R-module with basis the set of isotopy classes of stated @S-

tangles and Q�WL ! L be the Z-linear map defined by Q�.r˛/ D Nr N̨ , where for

r 2 R, Nr is the image of r under the involution q1=2 ! q�1=2. Using the height

exchange move (Lemma 2.4), one sees that � respects all the defining relations,

and hence descends to a map �W �s.S/ ! �s.S/. It is clear that � is an anti-

automorphism. �

Clearly �2 D id. We call � the reflection anti-involution.

2.8. Basis of stated skein module. A @S-tangle diagram D is simple if it has

neither double point nor trivial component. Here a closed component of D is

trivial if it bounds a disk in S, and an arc component of ˛ is trivial if it can be

homotoped relative to its boundary, in the complement of other components of D,

to a subset of a boundary edge. By convention, the empty set is considered as a

simple stated @S-tangle diagram with 0 component.

We order the set ¹˙º so that C is greater than �. A state sW @D ! ¹˙º of a

boundary ordered @S-tangle diagram D is increasing if for any x; y 2 @D with

x � y, one has s.x/ � s.y/. Thus, in an increasing state, on any boundary edge,

the points with C state are above all the points with � state.

Let B.S/ be the set of of all isotopy classes of increasingly stated, positively

ordered, simple @S-tangle diagrams.

Theorem 2.8. As an R-module, �s.S/ is free with basis B.S/.

Proof. The proof uses the diamond lemma, in the form explained in [24]. For a set

X denote by RX the free R-module with basis X , with the convention RX D ¹0º
when X D ;. In this proof, all the @S-tangle diagrams are assumed to have

positive order.
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Let zB be the set of all isotopy classes of stated @S-tangle diagrams. Then

B D B.S/ is a subset of zB . Define a binary relation! on R zB as follows. First

assume D 2 zB and E 2 R zB . We write D ! E if D is any element in zB presented

by the left hand side of an identity in the defining relations (11)–(14), and E is the

corresponding right hand side.

Now assume E 0; E 00 2 R zB , with E 0 D
Pk

iD1 ciDi , where Di 2 zB . We write

E 0 ! E 00 if there is an index j � k and E 2 R zB with Dj ! E, such that E 00 is

obtained from E 0 by replacing Dj with E in the sum
Pk

iD1 ciDi .

Let
?
! be the reflexive and transitive relation on R zB generated by !, i.e.

E
?
! E 0 if either E D E 0 or there are E1; E2; : : : ; Ek 2 R zB with Ei ! EiC1

for all i D 1; : : : ; k � 1 such that E1 D E; Ek D E 0. If E
?
! E 0, we say E 0 is a

descendant of E.

Let � be the equivalence relation on R zB generated by!. We will prove the

following two lemmas in Subsection 2.9.

Lemma 2.9. One has R zB= � D �s.S/.

Lemma 2.10. The relation! is

(i) terminal, i.e. there does not exist an infinite sequence

E1 �! E2 �! E3 �! � � � ;

and

(ii) locally confluent on zB, i.e. if D ! E1 and D ! E2 for some D 2 zB , then
E1; E2 have a common descendent.

Since! is terminal and locally confluent on zB , [24, Theorem 2.3] shows that
zBirr, the subset of elements D 2 zB for which there is no E 2 R zB such that

D ! E, is a basis of R zB= �, which is �s.S/ (by Lemma 2.9). It remains to

notice that zBirr D B . The theorem is proved. �

2.9. Proofs of Lemmas 2.9 and 2.10

Proof of Lemma 2.9. Two stated @S-tangle diagrams define the same stated @S-

tangle if and only if one can be obtained from the other by a sequence of framed

Reidemeister moves RI, RII and RIII moves of Figure 1. Thus, �s.S/ D R zB=.rel/,

where .rel/ consists of the defining relations (11)–(14) and the the moves RI, RII,

RIII. But the three moves RI, RII, and RIII are consequences of the skein rela-

tion (11) and the trivial knot relation (12) (see [12]). Hence, �s.S/ D R zB=.rel/ D
R zB= �. �
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Suppose sW @.˛/ ! ¹˙º is a state of a @S-tangle ˛. A pair .x; y/ 2 @.˛/2

is s-decreasing if x > y and s.x/ D �; s.y/ D C. Let nd.s/ be the number of

s-decreasing pairs. Then nd.s/ D 0 if and only if s is increasing.

Proof of Lemma 2.10. (a) For D 2 zB , with state s, let deg.D/ be the sum of

four terms: two times the number of double points, the number of components,

the number of boundary points, and nd.D/. By checking each of the rela-

tions (11)–(14), one sees that if D 2 zB and D ! E 2 R zB , then E is a linear

combination of elements Dj 2 zB with deg.Dj / < deg.D/. Hence, by [24, Theo-

rem 2.2] the relation! is terminal.

(b) Suppose D is a stated @S-tangle diagram. For now we don’t consider D

up to isotopy. A disk d � S is called D-applicable if D \ d is the left hand side

of one of the defining relations (11)–(14). In that case let Fd .D/ D
P

j cj Dj be

the corresponding right hand side, so that D ! Fd .D/. Here Dj D D outside d .

Suppose E D
P

ci Di , where 0 ¤ ci 2 R and Di is a stated @S-tangle diagram

for each i . A disk d � S is said to be E-applicable if d is Di -applicable for each i .

In that case, define Fd .E/ D
P

ciFd .Di/. Clearly E
?
! Fd .E/.

If d1; d2 are two disjoint D-applicable disks, then d1 is Fd2
.D/-applicable

and d2 is Fd1
.D/-applicable, and Fd1

.Fd2
.D// D Fd2

.Fd1
.D// is a common

descendant of Fd1
.D/ and Dd2

.D/.

Now suppose D ! E1 and D ! E2. We have to show that E1 and E2

have a common descendant. There are applicable D-disks d1 and d2 such that

E1 D Fd1
.D/ and E2 D Fd2

.D/. If d1 and d2 are disjoint, then E1 and E2 have

a common descendant. It remains the case when d1 \ d2 ¤ ;.

The support of a D-applicable disk d is defined to be

� the double point for the case of (11),

� the closed disk bounded by the loop for the case of (12)

� the closed disk bounded the arc of D and part of the boundary edge between

the two end points of the arc in the case of (13), and

� the closed interval between the two boundary points on the boundary edge

in the case of (14).

In doing the move D ! Fd .D/, we can assume that d is a small neighborhood of

its support. Hence if the supports of d1 and d2 are disjoint, then we can assume

that d1 and d2 are disjoint. By inspecting the left hand sides of (11)–(14) we see

that there are only three cases when supports of d1 and d2 are not disjoint. These

cases are described in Figures 3–5.
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Figure 3. Case 1. The shaded area on the right (resp. left) is d1 (resp. d2). The shaded

area in the middle is d1 [ d2.

Figure 4. Case 2. The shaded area on the right (resp. left) is d1 (resp. d2).

Figure 5. Case 3. The shaded area on the right (resp. left) is d1 (resp. d2).

Note that the proof of (18) actually shows that

?
�! �q�5=2 : (25)

Case 1. From (13) we have E1 D Fd1
.D/ D 0. Using (14) then (25),

E2 D Fd2
.D/

D q2 C q�1=2 ?
�! �q�1=2 C q�1=2

D 0:

Case 2. From (13) we have E1 D Fd1
.D/ D 0. Using (14) then (25),

E2 D Fd2
.D/

D q2 C q�1=2 ?
�! �q�1=2 C q�1=2

D 0:
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Case 3. From (13) we have

E1 D Fd1
.D/ D q�1=2 :

Using (13), we have

E2 D Fd2
.D/ D q2 C q�1=2 ?

�! q�1=2 D E1:

In all three cases, E1 is a common descendant of E1 and E2, completing the

proof. �

The empty set ;, considered as a simple stated @S-tangle diagram, is an

element of the R-basis B.S/ of �s.S/ (see Theorem 2.8). As customary in skein

theory, we identify R with a subset of �s.S/ by x ! x � ;.

2.10. More general boundary order. Let o be an orientation of @S. For a

boundary edge b, we say o is positive on b if it is equal to the orientation inherited

fromS, otherwise it is called negative on b. Equation (14) can be rewritten as (24),

which expresses a positive order term as a sum of a negative order term and a term

of lesser complexity. Let B.oIS/ be the set of of all isotopy classes of increasingly

stated, o-ordered, simple @S-tangle diagrams. The proof of Theorem 2.8 can be

easily modified to give the following more general statement.

Theorem 2.11. SupposeS is a punctured bordered surface and o is an orientation
of @S. Then B.oIS/ is an R-basis of �s.S/.

2.11. Filtration. Note that j@.˛/j is even, for any @S-tangle ˛. For each non-

negative integer m let Fm D Fm.�s.S// be the R-submodule of �s.S/ spanned by

all @S-tangles ˛ such that j@.˛/j � 2m. Clearly Fm � FmC1 and FmFk � FmCk .

In other words, �s.S/ is a filtered algebra with the filtration ¹Fmº. The associated

graded algebra is denoted by Gr.�s.S//, with Grm.�s.S// D Fm=Fm�1 for m � 1

and Gr0 D F0. The following is a consequence of Theorem 2.11.

Proposition 2.12. Let S be a punctured bordered surface and o be an orientation
of @S.

(a) The set ¹˛ 2 B.oIS/ j j@.˛/j � 2mº is an R-basis of Fm.�s.S//.

(b) The set ¹˛ 2 B.oIS/ j j@.˛/j D 2mº is an R-basis of Grm.�s.S//.
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2.12. Grading. For a boundary edge b and a stated @S-tangle ˛ define

ı˛.b/ D
X

u2@b.˛/

s.u/ 2 Z;

where, as usual, we identify C with C1 and � with �1. Let E@ be the set of all

boundary edges. Then ı˛ 2 Z
E@ , the set of all maps E@ ! Z.

For k 2 Z
E@ let Gk D Gk.�s.S// be the R-submodule of �s.S/ spanned by

all stated @S-tangles ˛ such that ı˛ D k. From the defining relations it is clear

that �s.S/ D
L

k2ZE@ Gk and GkGk0 � GkCk0 . In other words, �s.S/ is a graded

algebra with the grading ¹Gkºk2ZE@ .

Fix a boundary edge b. For k 2 Z let Gb;k D Gb;k.�s.S// be theR-submodule

of �s.S/ spanned by all stated @S-tangles ˛ such that ı˛.b/ D k. Again �s.S/ DL
k2Z Gb;k and Gb;kGb;k0 � Gb;kCk0 . In other words, �s.S/ is a Z-graded algebra

with the grading ¹Gb;kºk2Z. The following is a consequence of Theorem 2.11.

Proposition 2.13. Let S be a punctured bordered surface and o be an orientation
of @S.

(a) The set ¹˛ 2 B.oIS/ j ı˛ D kº is an R-basis of Gk.�s.S//.

(b) The set ¹˛ 2 B.oIS/ j ı˛.b/ D kº is an R-basis of Gb;k.�s.S//.

The Z-grading ¹Gb;kº allows to define the b-leading term ltb.x/ of non-zero

x 2 �s.S/. Suppose x D
P

j cj Dj , where 0 ¤ cj 2 R and Dj 2 B.oIS/.

Assume k D maxj ıDj
.b/. Define

ltb.x/ D
X

ıDj
.b/Dk

cj Dj : (26)

2.13. The ordinary skein algebra V�.S/. Recall that the ordinary skein alge-

bra V�.S/ is the R-module freely spanned by isotopy classes of framed links in

S � .0; 1/ modulo the skein relation (11) and the trivial loop relation (12). The

map id�W V�.S/! �s.S/, defined on a framed link ˛ by id�.˛/ D ˛, is an R-alge-

bra homomorphism.

Corollary 2.14. The map id�W V�.S/! �s.S/ is an embedding, and id�. V�.S// D
F0.�s.S//.

Proof. The manifold VS WD S n @S is also a punctured bordered surface without

boundary. It is clear that V�.S/ D �s. VS/, and the R-basis of the latter described

by Theorem 2.8 is the R-basis of F0.�s.S//. The result follows. �
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3. Decomposing and gluing punctured bordered surfaces

3.1. Gluing punctured bordered surfaces. Suppose a and b are distinct bound-

ary edges of a punctured bordered surface S. Let S0 D S=.a D b/, the result

of gluing a and b together in such a way that the orientation is compatible. The

canonical projection prWS! S0 induces a projection eprWS� .0; 1/! S0� .0; 1/.

Let c D pr.a/ D pr.b/.

A @S0-tangle ˛ � .S0 � .0; 1//, is said to be vertically transverse to c if

� ˛ is transverse to c � .0; 1/,

� the points in @c ˛ WD ˛ \ .c � .0; 1// have distinct heights, and have vertical

framing.

Suppose ˛ is a @S0-tangle vertically transverse to c. Then Q̨ WD epr�1.˛/ is a

@S-tangle. Suppose in addition ˛ is stated, with state sW @˛ ! ¹˙º. For any

"W ˛ \ .c � .0; 1// ! ¹˙º define Q̨ ."/ be Q̨ equipped with state Qs defined by

Qs.x/ D s.pr.x// if pr.x/ 2 @˛ and Qs.x/ D ".pr.x// if pr.x/ 2 c. We call Q̨ ."/ a
lift of ˛. If j˛ \ .c � .0; 1//j D k, then ˛ has 2k lifts.

3.2. Proof of Theorem 1. For the reader convenience we reformulate Theorem 1

here.

Theorem 3.1. Suppose a and b are two distinct boundary edges of a punctured
bordered surface S. Let S0 D S=.a D b/, and c be the image of a (or b/ in S0.

(a) There is a unique R-algebra homomorphism �W �s.S
0/! �s.S/ such that if

˛ is a stated @S0-tangle vertically transverse to c, then �.˛/ D
P

ˇ Œˇ�, where
the sum is over all lifts ˇ of ˛, and Œˇ� is the element in �s.S/ represented
by ˇ.

(b) In addition, � is injective.

(c) For four distinct boundary edges a1; a2; b1; b2 of S, the following diagram
is commutative:

�s.S=.a1 D b1; a2 D b2// �s.S=.a1 D b1//

�s..S=.a2 D b2/ �s.S/:

 !
�

 !�  ! �

 !
�

(27)



610 T. T. Q. Lê

Proof. (a) Let T .c/ be the set of all stated @S0-tangles vertically transverse to c

(no isotopy is considered here), and V be the set of all isotopy classes of stated

@S0-tangles. The map isoWT .c/ ! V , sending an element in T .c/ to its isotopy

class as a stated @S0-tangle, is surjective. Define

Q�WT .c/ �! �s.S/; Q�.˛/ D
X

ˇ Wlifts of ˛

Œˇ�:

Claim. If ˛; ˛0 2 T .c/ and iso.˛/ D iso.˛0/, then Q�.˛/ D Q�.˛0/.

Suppose the claim holds. Then Q� descends to a map �0WV ! �s.S/. Recall

�s.S
0/ is defined as the R-span of V modulo the defining relations (11)–(14). The

locality (of these defining relations) shows that �0 respects the defining relations.

Hence �0 descends to an R-homomorphism �W �s.S
0/ ! �s.S/, which is clearly

an R-algebra homomorphism.

It remains to prove the claim. We break the proof into steps.

Step 1. Let D.c/ be the set of all stated @S0-tangle diagrams transverse to c. Each

D 2 D.c/ is equipped with the positive boundary order. For a total order O on

D \ c and a map "WD \ c ! ¹˙º let zD.O; "/ be the stated @S-tangle diagram

obtained from D by splitting along c. Here the height order and the states on a and

b are the lifts of O and ", while the height order and the states on other boundary

edges are the lifts of the corresponding ones of D. Define

Q�.D;O/ D
X

"

zD.O; "/; where the sum is over all maps "WD \ c �! ¹˙º:

Step 2. Recall that ˛ 2 T .c/, i.e. ˛ is a stated @S0-tangle vertically transverse to

c. A small smooth isotopy, keeping framing vertical on c � .0; 1/, does not move

˛ out of T .c/, and does not change Q�.˛/. Thus, after a small smooth isotopy of

this type we can assume that ˛ has a stated @S0-tangle diagram D 2 D.c/. The

height order on ˛\c�.0; 1/ induces a total order O on D\c. From the definition,

Q�.˛/ D Q�.D;O/.

Similarly, ˛0 is presented by .D0;O0/, where D0 2 D.c/ and O0 is a total order

on D0 \ c. To prove the claim, we need to show that Q�.D;O/ D Q�.D0;O0/.

Step 3. Recall that ˛ and ˛0 are isotopic and their diagrams D; D0 are transverse

to c. By considering Reidemeister moves involving D [ c, we see that D0 [ c can

be obtained from D [ c by a sequence of moves, each is

(i) a Reidemeister move RI, RII, or RIII not involving c; or

(ii) move IIa (which involves c) as shown in Figure 6; or
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(iii) move IIIa (which involves c) as shown in Figure 6; or

(iv) move IV which reorders the total order on D \ c, see Figure 6; or an isotopy

of S0 which fixes c as a set during the isotopy.

Figure 6. Move IIa (left), Move IIIa (middle), and Move IV (right). The vertical line is part

of c, and the arrow indicates the order.

It is clear that Q� is invariant under isotopy of S0 which fixes c and moves RI,

RII, and RIII not involving c. We will see that if Q� is invariant under move IIa,

then it is invariant under all other moves.

Step 4. Now we show that Q� is invariant under move IIa. We have

Q�
� �

D C C C

D �q5=2 C q1=2

D �q5=2 C q1=2
�
q2 C q�1=2

�

D

D Q�
� �

;

where the second identity follows from the values of trivial arcs given by (13) and

Lemma 2.3, while the third identity follows from (14). Thus, Q� is invariant under

Move IIa.

Step 5. Now we show that the invariance of Moves IIIa and IV follows from the

invariance of Moves RI, RII, RIII (not involving c), and IIa. Consider Move IV.

Using the skein relation at the two crossings, we have

Q�
� �

D Q�
� �

C Q�
� �

C q�2 Q�
� �

C q2 Q�
� �

:

Using Move IIa in the last three terms of the right hand side, then the trivial loop

relation which says a trivial knot is �q2 � q�2, we get

Q�
� �

D Q�
� �

;

which proves that Q� is invariant under Move IV.
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Finally consider IIIa. Using the skein relation, we have

Q�
� �

D q Q�
� �

C q�1 Q�
� �

; (28)

Q�
� �

D q Q�
� �

C q�1 Q�
� �

: (29)

The right hand sides of (28) and (29) are equal by move IIa. Hence the left hand

sides of (28) and (29) are equal. Using Move IV to reverse the arrow on the

left hand side of (29), we get the invariance of IIIa. This completes the proof

of part (a).

(b) Fix an orientation o0 of @S0 and an orientation of c. Define the orientation

o of @S such that the map prWS! S0 preserve the orientation on each boundary

edge of S. We will equip any @S0-tangle diagram (resp. @S0-tangle diagram) with

the o0-order (resp. o-order).

Suppose D is an increasingly stated @S0-tangle diagram transverse to c. Let
zD.C/ be the lift of D in which all the state of every endpoint in a (and hence in b) is

C. Note that the state of zD.C/ is also increasing. In general, zD may not be simple.

After an isotopy we can assume that D is c-normal, i.e. jD\cj D �.D; c/, which is

the smallest integer among all jD0\cj with D0 isotopic to D. Then zD D pr�1.D/

is a simple @S-tangle diagram, and from the definition of � and the b-leading term

(see Section 2.12), we have

lta.�.D// D zD.C/ in �s.S/: (30)

In particular, the isotopy class of zD.C/ does not depend on how we isotope D

to a c-normal position. Note that the isotopy class of zD.C/ totally determine the

isotopy class of D, i.e. the following map is injective:

B.o0IS0/ �! B.oIS/; D �! zD.C/: (31)

Suppose 0 ¤ x 2 �s.S
0/. Then x D

P
j cj Dj , where 0 ¤ cj 2 R and

Dj 2 B.o0IS0/. Assume maxj �.Dj ; c/ D k. From (30) and the injectivity of the

map (31), we have

lta.�.x// D
X

�.Dj ;c/Dk

cj
zDj .C/ ¤ 0: (32)

This proves �.x/ ¤ 0, and � is injective.

(c) The commutativity of Diagram (27) follows immediately from the defini-

tion. �
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3.3. Triangular decomposition. Suppose a punctured bordered surface S is

obtained by removing a finite set P from a compact oriented surface xS.

Suppose � is an ideal triangulation ofS, i.e. a triangulation of xSwhose vertex

set is exactly P. By cutting along all the edges of �, we see that there is a finite

collection zF D zF.�/ of disjoint ideal triangles and a finite collection of disjoint

pairs of elements in zE D zE.�/, the set of all edges of ideal triangles in zF, such

that S is obtained from zS WD
F

T2zF T by gluing the two edges in each pair. It

may happen that two edges of one triangle are glued together.

From Theorem 3.1 we have an injective algebra homomorphism

��W �s.S/ ,�!
O

T2F.�/

�s.T/: (33)

The map �� is described explicitly by Theorem 3.1. It is natural now to study the

stated skein algebra of an ideal triangle.

It is known that S is triangulable, i.e. it has a triangulation, if and only if

jPj � 1 and .xS;P/ is not one of the followings: (i) xS is a sphere with jPj � 2,

(ii) xS is a disk with P � @S and jPj � 2.

3.4. On the uniqueness of the defining relations. Suppose we modify the

defining relations by replacing (13) and (14) with respectively the more general

D z1 ; D z2 ; D z3 ; (34)

D z4 C z5 ; (35)

where zi 2 R. Then it is easy to see that the set B.S/ still spans the new �s.S/.

If we want (i) consistency: B.S/ is a basis of �s.S/ and (ii) decomposition:

Theorem 3.1 holds, then repeating the proofs we can find exactly four solutions

.z1; z2; z3; z4; z5/. In all of them z2 D z3 D 0. The four solutions are

z1 D z5 D "q�1=2; z4 D q2; " 2 ¹˙1º;

z1 D z5 D "q�5=2; z4 D q�2; " 2 ¹˙1º:

The group Z=2 � Z=2, generated by two commuting involutions, acts on the

set of solutions as follows. The first involution replaces each diagram ˛ with k C
states in (34) and (35) by .�1/k˛. The second involution switches all the states

from � to C and C to � in (34) and (35). It is easy to see that each involution

transforms a solution to another solution. Then all the four solutions are obtained

from one of them, say the solution we used in (13) and (14), by the action of this

group Z=2 � Z=2. In this sense our solution is unique.
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Remark 3.2. Using Theorem 3.1 one can interpret the assignment S! �s.S/ as

a co-presentation of a certain modular operad of surfaces. For details of modular

operads, see [27].

4. Ideal bigon and ideal triangle

4.1. Definitions and notations. An arc ˛ in a punctured bordered surface S is

a properly embedded submanifold diffeomorphic to Œ0; 1�. If the two end points of

˛ are in the same boundary edge, we call ˛ a returning arcs.

Suppose sW @.˛/ ! ¹˙º is a state of a @S-tangle ˛, where S is a punctured

bordered surface. A permutation of s is any state of the form s ı � , where

� W @.˛/ ! @.˛/ is a bijection such that if x 2 b, where b is a boundary edge,

then �.x/ 2 b. The only permutation of s which is increasing is denoted by s".

Suppose sW @.˛/! ¹˙º is not increasing. There there is a pair u; v 2 @.˛/ such

that u > v, u and v are consecutive in the height order, and s.u/ D �; s.v/ D C.

The new state s0W @.˛/! ¹˙º, which is equal to s everywhere except s0.u/ D C,

s0.v/ D �, is called a simple positive permutation of s.

For elements x; y of an R-module, x
:
D y will mean there is an integer j such

that x D qj=2y.

4.2. Ideal bigon. Suppose B is an ideal bigon, i.e. B is obtained from a disk by

removing two points on its boundary. Let a and b be the boundary edges of B.

Let ˛ be an arc whose two end points are not in the same boundary edge, and let

˛.k/ be k parallels of ˛. See Figure 7. Unless otherwise stated, the order of each

@B-tangle diagram is positive. For example, the diagram of ˛2 is different from

˛.2/ and is depicted in Figure 7. For "; "0 2 ¹˙º let ˛."; "0/ be ˛ equipped with the

state s such that s.˛ \ a/ D "; s.˛ \ b/ D "0/. Recall that C "
"0 is defined by (16).

Figure 7. From left to right: bigon, arc ˛, ˛.2/, ˛2, and ˛.�;C/.
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Theorem 4.1. Let B be an ideal bigon with the above notations. Then �s.B/ is
the R-algebra generated by X D ¹˛."; "0/ j "; "0 2 ¹˙ºº, subject to the relations

˛.";�/˛."0;C/D q2˛.";C/˛."0;�/� q5=2C "
"0 for all "; "0 2 ¹˙º; (36)

˛.�; "/˛.C; "0/D q2˛.C; "/˛.�; "0/ � q5=2C "
"0 for all "; "0 2 ¹˙º: (37)

Remark 4.2. If �2 is the rotation by � about the center of B, so that �2.a/ D
b; �2.b/ D a, then (37) is the image of (36) under �2.

Proof. The proof is simple, but we want to give all details here, since we will

use a similar proof for the case of an ideal triangle later. The first, and easy, step

is to show that �s.B/ is generated by X and the relations (36)-(37) are satisfied.

Then, since we know an explicit R-basis of �s.S/, an upper estimate argument

will finish the proof.

Step 1. For each k 2 N, the set @.k/ WD @.˛.k// consists of k points in a and k

points in b. Let St.k/ be the set of all states sW @.k/ ! ¹˙º, and St".k/ � St.k/

be the subset of all increasing states. For s 2 St.k/ let ˛.k; s/ be the stated

@B-tangle diagram, which is ˛.k/ equipped with state s. Similarly, .˛k; s/ is

˛k equipped with s. Recall that we have an increasing filtration ¹Fm.�s.B//º of

�s.B/ and its associated graded algebra Gr.�s.B//. By Proposition 2.12, the set

¹˛.m; s/ j s 2 St".m/º is an R-basis of Grm.�s.B//.

By Lemma 4.3, .˛m; s/
:
D ˛.m; s/ .mod Fm�1.�s.B///, which shows that

Bm WD ¹.˛
m; s/ j s 2 St".m/º

is also an R-basis of Grm.�s.B//. It follows that ¹.˛k; s/ j k 2 N; s 2 St".k/º is

an R-basis of �s.B/. Since .˛k; s/ is a monomial in the letters in X , we conclude

that X generates �s.B/ as an R-algebra.

Let us now prove (36). Apply (14) as in Figure 8, then use (17) to remove the

kink; we get

˛.";�/˛."0;C/ D q2˛.";C/˛."0;�/C q�1=2.�q3/C "
"0 ;

which is (36). The proof of (37) is similar.

D q2 C q�
1
2

Figure 8. An application of Relation (14).
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Step 2. Let A be the R-algebra generated by X subject to the relations (36)

and (37). Then A is a filtered R-algebra, where the m-th filtration Fm.A/ is

spanned by the set of monomials in X of degree � m. The R-algebra homo-

morphism !WA ! �s.B/ defined by !.x/ D x for all x 2 X , is a surjec-

tive homomorphism of filtered algebras, and induces an algebra homomorphism

Gr.!/WGr.A/! Gr.�s.B//: The set Mm WD ¹#1 : : : #m j #j 2 Xº spans Grm.A/.

Presenting each #j as a stated arc on B, we see that there is state s 2 St.m/

such that #1 : : : #m D .˛m; s/, and we use this to identify Mm with the set

¹.˛m; s/ j s 2 St.m/º.

Step 3. Since the second term on the right hand side of (36) has degree less than

other terms, in Gr.A/ we have relation (36), with the second term of the right hand

side removed:

˛.";�/˛."0;C/ D q2˛.";C/˛."0;�/:

There are states r; r 0 2 St.2/ such that the left hand side and the right hand side

of the above are respectively .˛2; r/ and .˛2; r 0/, and the above relation can be

rewritten as

.˛2; r/ D q2.˛2; r 0/ in Gr.A/: (38)

The upshot is that r 0 is a simple positive permutation of r , see Figure 8.

Step 4. Let us show that the subset M ".m/ WD ¹.˛m; s/ j s 2 St".m/º spans

Grm.A/. Suppose #1 : : : #m D .˛m; s/ 2 M.m/ with nd.s/ > 0. Then there

is a consecutive s-decreasing pair .u; v/ 2 @.m/2. Both u; v belong to the same

boundary edge, say b. Assume u is an end point of #j , then v must be an end point

of #j C1. Then #j #j C1 look like in the left hand side of Figure 8, i.e. #j #j C1 is

exactly the left hand side of (36), or the left hand side of (38). Replacing #j #j C1

by the right hand side of (38), we get

.˛m; s/
:
D .˛m; s0/ .mod Fm�1.A//; (39)

where s0 is a simple positive permutation of s. An induction on nd.s/ shows that

for any s 2 St.m/, we have

.˛m; s/
:
D .˛; s"/ .mod Fm�1.A//; (40)

which, in turns, shows that M
"
m also spans Grm.A/.

Both sets M
"
m and Bm are paremeterized by St".m/ and hence have the same

order, and Gr.!/ maps M
"
m bijectively onto Bm. Since Bm, being an R-basis

of Grm.�s.B//, is R-linearly independent, M
"
m must be R-linearly independent.

Thus, M
"
m is an R-basis of Grm.A/, and Gr.!/WGrm.A/ ! Grm.�s.B// is an

isomorphism. It follows that !WA! �s.B/ is an isomorphism. �
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The following lemma is used in the proof of Theorem 4.1, and we use notations

there.

Lemma 4.3. Suppose D is a stated @B-tangle diagram with @D D @.k/ and each
component of D is an arc. Let s 2 St.k/ be the state of D.

(a) If D contains a returning arc, then, as an element in �s.B/, D2Fk�1.�s.B//.

(b) If D has no returning arcs, then, as elements in �s.B/,

D
:
D ˛.k; s/ .mod Fk�1.�s.B///:

Proof. (a) If there is no double point on a returning arc, then D 2 Fk�1.�s.B//

by relation (18). Suppose there is a double point on a returning arc. Each of the

two smooth resolutions of this double point contains a returning arc, which has

less double points than the original returning arc does (see Figure 9). The skein

relation and induction show that D 2 Fk�1.�s.B//.

(b) If D has no double point, then D D ˛.k; s/. Suppose D has a double

point. Of the two resolutions of the double point, exactly one does not have a

returning arc; see Figure 10. By the skein relation, part (a), and induction, we

have D
:
D ˛.k; s/ .mod Fk�1/: �

Figure 9. A returning arc with a double point on it (middle), and two of its resolutions (left

and right).

Figure 10. A double point of two non-returning arcs (middle) and its two resolutions (left

and right).

Proposition 4.4. Suppose R is a domain. Then �s.B/ is a domain.

Proof. We say an R-basis ¹bi j i 2 I º of an R-algebra A is compatibly ordered,

if I is a monoid equipped with a total order such that if i � i 0 and j � j 0 then

i C j � i 0 C j 0, and bibj
:
D biCj . We first prove the following lemma.
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Lemma 4.5. Suppose R is a commutative domain and an R-algebra A has a
compatibly ordered basis. Then A is a domain.

Proof. Suppose x 2 A is non-zero. Then x D
P

i xibi 2 A, with ci 2 R. The

leading term lt.x/ is defined to be cj bj , where j is the largest index such that

cj ¤ 0. Suppose y ¤ 0 and lt.y/ D c0
l
bl . From the assumptions lt.xy/

:
D

cj c0
l
bj Cl ¤ 0. 4

Return to the proof of the proposition. Let I � N
3 be the set of all k D

.k; ka; kb/ 2 N
3 such that ka; kb � k. For k 2 I define bk D .˛k; s/, where

s 2 St".k/ is the only increasing state which has ka pluses on edge a and kb pluses

on edge b. Then ¹bk j k 2 I º is an R-basis of �s.B/. Order I lexicographically.

Lemma 4.3 shows that

z.k/z.k0/
:
D z.kC k

0/ in Gr.�s.B//: (41)

In other words, ¹bk j k 2 Qº is a compatibly ordered basis of Gr.�s.B//. By

Lemma 4.5, Gr.�s.B// is a domain. Hence, �s.B/ is a domain. �

4.3. Ideal triangle. Let T be an ideal triangle, with boundary edges a; b; c and

arcs ˛; ˇ;  in counterclockwise order, as in Figure 11.

Figure 11. Ideal triangle T (left), with arcs ˛; ˇ;  (middle), and ˛.C�/ (right).

Let � be the counterclockwise rotation by 2�=3, so that �.T/ D T and � gives

the cyclic permutation a ! b ! c ! a and ˛ ! ˇ !  ! ˛. For "; "0 2 ¹˙º,
let ˛."; "0/ be ˛ with the state s given by s.˛ \ c/ D "; s.˛ \ b/ D "0. Let

ˇ."; "0/ D �.˛."; "0// and ."; "0/ D �2.˛."; "0//:

Note that � defines an automorphism of the algebra �s.T/.
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Theorem 4.6. Suppose T is an ideal triangle, with the above notations. Then
�s.T/ is the R-algebra generated by the set of twelve generators

X D ¹˛."; "0/; ˇ."; "0/; ."; "0/ j "; "0 2 ¹˙ºº

subject to the the following relations and their images under � and �2:

ˇ.�; "/ ˛.�0; "0/ D q˛."; "0/ ˇ.�; �0/ � q2C "
�0 ."0; �/; (42)

˛.�; "/ ˛.C; "0/ D q2˛.C; "/ ˛.�; "0/ � q5=2C "
"0 ; (43)

˛.";�/ ˛."0;C/ D q2˛.";C/ ˛."0;�/� q5=2C "
"0 ; (44)

˛.�; "/ ˇ."0;C/ D q2˛.C; "/ ˇ."0;�/� q5=2."; "0/; (45)

˛.";�/ .C; "0/ D q2˛.";C/ .�; "0/C q�1=2ˇ."0; "/: (46)

Throughout the proof, the order of each @T-diagram is positive. For example,

the diagrams of ˛2, ˇ , and ˇ are depicted in Figure 12.

Figure 12. Diagrams of ˛2, ˇ , and ˇ.

Proof. First we show that X generates �s.T/ and all the relations (42)–(46) are

satisfied. Then an upper bound estimate argument will finish the proof.

Step 1. Let us show that X generates �s.T/. For k D .k1; k2; k3/ 2 N
3 let

jkj WD k1C k2C k3. Let �.k/ be the simple @T-tangle diagram which consists of

k1 parallels of ˛, k2 parallels of ˇ, and k3 parallels of  , and �k D ˛k1ˇk2k3 ,

see Figure 13.

Figure 13. Diagram �.2; 3; 1/ (left) and diagram ˛2ˇ3 (right).
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The set @.k/ WD @.�.k// D @.�k/, considered up to isotopy of T, consists of

k2Ck3 points on a, k1Ck3 points on b, and k1Ck2 points on c. Let St.k/ be the

set of all states sW @.k/! ¹˙º, and St".k/ � St.k/ be the subset of all increasing

states. For s 2 St.k/ let �.k; s/ be �.k/ with state s. Similarly, .�k; s/ is �k with

state s. By Proposition 2.12,

Bm WD ¹�.k; s/ j k 2 N
3; jkj D m; s 2 St".k/º

is an R-basis of Grm.�s.T//. By Lemma 4.7,

�.k; s/
:
D .�k; s/ .mod Fjkj�1.�s.T///;

which implies that ¹.�k; s/ j k 2 N
3; s 2 St".k/º is also an R-basis of �s.T/.

Since each .�k; s/ is a monomial in X , X generates �s.T/.

Let now prove all the relations (42)–(46) are satisfied. Consider (42). Using

the skein relation as in Figure 14, we have

˛."; "0/ˇ.�; �0/ D qC "
�0."0; �/C q�1ˇ.�; "/˛.�0; "0/; (47)

which proves (42).

D q C q�1

Figure 14. Proof of (47).

Now prove (43). Using Relation (14) as in Figure 15 and then (17), we have

˛.�; "/ ˛.C; "0/ D q2˛.C; "/ ˛.�; "0/C q�1=2.�q3/C "
"0 ; (48)

which proves (43). The proof of (44)–(46) is similar.

D q2 C q�
1
2

Figure 15. Proof of (48).



Triangular decomposition of skein algebras 621

Step 1. Let A be the R-algebra generated by X subject to the relations (42)–(46).

Then A is a filtered R-algebra where the m-th filtration Fm.A/ is spanned by the

set of monomials in X of degree� m. The R-algebra map !WA! �s.B/, defined

by !.x/ D x for all x 2 X , is a surjective homomorphism of filtered algebras,

and induces an algebra homomorphism

Gr.!/WGr.A/ �! Gr.�s.B//:

The set Mm WD ¹#1 : : : #m j #j 2 Xº spans Grm.A/. If ˛i 2 ¹˛; ˇ; º is #i with-

out state, then by presenting each #j as a stated arc on B, there is a state

sW @.˛1 : : : ˛m/ ! ¹˙º such that #1 : : : #m D .˛1 : : : ˛m; s/. Thus, we can iden-

tity

Mm D ¹.˛1 : : : ˛m; s/ j ˛i 2 ¹˛; ˇ; º; sW @.˛1 : : : ˛m/ �! ¹˙ºº:

Step 3. Let us now show that the subset EMm �Mm, defined by

EMm WD ¹.�
k; s/ j jkj D m; s 2 St.k/º;

spans Grm.A/. Ignoring the second term of the right hand side of Relation (42)

which is of less degree, we get that for any state r of ˛ˇ,

.ˇ˛; r/ D q.˛ˇ; r/ in Gr.A/: (49)

Here .˛ˇ; r/ (resp. .ˇ˛; r/ is the diagram ˛ˇ (resp. ˇ˛) with state r . Together with

its images under � and �2, (49) shows that for any permutation � of ¹1; : : : ; mº,

.˛1 : : : ˛m; s/
:
D .˛�.1/ : : : ˛�.m/; s/ in Gr.A/: (50)

In particular, if the numbers of ˛; ˇ;  among ˛1; : : : ; ˛m are components of

k D .k1; k2; k3/, then .˛1 : : : ˛m; s/
:
D .�k; s/. This shows the subset EMm also

spans Grm.A/.

Step 4. Let us show that the subset EM "
m � EMm, defined by

EM "
m WD ¹.�

k; s/ j jkj D m; s 2 St".k/º;

spans Grm.A/. First we make the following observation. Suppose #1#2 is the left

hand side of one of (43)–(46), and N#i 2 ¹˛; ˇ; º is #i without states. There is a

state r 2 St. N#1
N#2/ such that #1#2 D . N#1

N#2; r/, and (43)–(46), ignoring the second

term of the right hand side, give

. N#1
N#2; r/ D q2. N#1

N#2; r 0/ in Gr.A/; (51)

where r 0 is a simple positive permutation of r .
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Now assume #1 : : : #m D .�k; s/ 2 EMm with nd.s/ > 0. Then there is a

consecutive s-decreasing pair .u; v/ 2 @.k/2. Let u be an end point of #i and v be

an end point of #j . There are two cases: N#i D N#j and N#i ¤ N#j .

If u; v 2 b, then #1#2 D ˛.�; "/˛.C; "0/, the left hand side of (43)

(see Figure 16); and if x1; x2 2 c, then #1#2 D ˛.";�/˛."0;C/, the left hand

side of (44). Using (51), we get

.�k; s/
:
D .�k; s0/ in Gr.A/ for some s0 with nd.s0/ < nd.s/: (52)

Case 1: N#i D N#j . Say, N#i D N#j D ˛. Then one has j D i C 1 because u and v

are consecutive. Besides, either u; v 2 b or u; v 2 c.

Figure 16. Case 1. We have ˛.�; "/˛.C; "0/ on the left and ˛.";�/˛."0;C/ on the right.

Case 2: N#i ¤ N#j . There are three subcases: (i) u; v 2 c, (ii) u; v 2 b, and (iii):

u; v 2 a. See Figure 17.

Figure 17. Case 2. From left to right we have ˛.�; "/ˇ."0;C/, ˛.";�/.C; "0/, and

ˇ.� "/."0;C/.

Subcase 2(i): u; v 2 c. One has j D i C 1, and #i#iC1 D ˛.�; "/ˇ."0;C/,

which is the left hand side of (43) (see Figure 17). Again, using (51), we get (52).

Subcase 2(iii) is similar. Actually applying the rotation � , one gets Sub-

case 2(iii) from 2(i).
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Subcase 2(ii): u; v 2 b. Then #i#j D ˛.";�/.C; "0/, the left hand side of (46),

see Figure 17. But we might not have j D i C 1. We only have i D k1 and

j D k1 C k2 C 1, so that N#i is the last ˛ and N#j is the first  in the product

�k D ˛k1ˇk2k3 . However, we can bring N#i next to N#j using (50): in Gr.A/ we

have

.�k; s/ D .˛k1ˇk2k3 ; s/

:
D .˛k1�1ˇk2.˛/k3�1; s/

:
D .˛k1�1ˇk2.˛/k3�1; s0/

:
D .�k; s0/;

for some state s0 with nd.s0/ < nd.s/. Here the second and the last identities

are (50), and the third identity follows from (51).

Thus, in all cases we always have (52). An induction shows that for all

.�k; s/ 2 EMm,

.�k; s/
:
D .�k; s"/ in Gr.A/: (53)

This shows EM "
m also spans Grm.A/.

Step 5. Note that j EM "
mj D jBmj, since both are paremeterized by

S
jkjDm St".k/,

and Gr.!/ maps EM "
m bijectively onto Bm. Since Bm is an R-basis of Grm.�s.T//,

the set EM "
m is R-linearly independent. Thus, EM "

m is an R-basis of Grm.A/, and

Gr.!/WGrm.A/ ! Grm.�s.T// is an isomorphism. It follows that !WA ! �s.B/

is an isomorphism. �

The following lemma is used in the proof of Theorem 4.6, and we use notations

there.

Lemma 4.7. Suppose D is a stated @T-tangle diagram with @D D @.k/ and each
component of D is an arc. Let s 2 St.k/ be the state of D.

(a) If D contains a returning arc, i.e. an arc whose two ends are in one edge of
T, then D, as an element of �s.T/, is Fjkj�1.

(b) If D has no returning ars, then, as elements in �s.T/,

D
:
D �.k; s/ .mod Fjkj�1/:

Proof. (a) The proof of Lemma 4.3(a) works also for this case.

(b) If D has no double point, then D D �.k; s/. Suppose D has a double

point. Of the two resolutions of the double point, exactly one does not have a

returning arc; see Figure 18. By the skein relation, part (a), and induction, we

have D
:
D �.k; s/ .mod Fjkj�1/: �
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Figure 18. There are two types of double points (up to isotopies and rotations); in each case

the only resolution without returning arc is drawn. Other resolutions have returning arcs.

Proposition 4.8. Suppose R is a domain. Then �s.T/ is a domain. More over, if
zF is a collection of ideal triangles, then

N
T2zF �s.T/ is a domain.

Proof. For k D .k1; k2; k3; ka; kb; kc/ 2 I , where

I WD ¹.k1; k2; k3; ka; kb; kc/ 2 N
6 j ka � k2 C k3; kb � k1 C k3; kc � k1 C k2º;

define bk D .˛k1ˇk2k3 ; s/, where s 2 St".k/ is the only increasing state such

that there are ka pluses on edge a, kb pluses on edge b, and kc pluses on edge c.

Then ¹bk j k 2 I º is an R-basis of Gr.�s.T//. We order I using the lexicographic

order. Lemma 4.7 shows that

z.k/z.k0/
:
D z.kC k

0/ in Gr.�s.T//: (54)

Lemma 4.5 shows that Gr.�s.T// is a domain. Hence �s.T/ is a domain.

By combining the above basis of �s.T/, with the lexicographic order, we get a

compatibly ordered basis of
N

T2zF �s.T/. Hence
N

T2zF �s.T/ is a domain. �

4.4. Zero-divisor

Proof of Theorem 2. If @S is a closed manifold, then �s.S/ D V�.S/, and the

result is well known and was proved in [23]. Assume @S ¤ ;. There are only a

few simple cases when S is not triangulable, listed in (i)–(iv) below. In each case,

S D xS n P.

(i) xS D S2, jPj D 1. Then �s.S/ D V�.S/ D R, which is domain.

(ii) xS D S2, jPj D 2. Then �s.S/ D V�.S/ D RŒx�, which is a domain. Here x

is the only non-trivial simple loop in S.

(iii) xS is a disk and jPj D 1. Then �s.S/ D R, a domain.

(iv) S is an ideal bigon. Then �s.S/ is a domain by Proposition 4.4.

Now suppose S has an ideal triangulation. By the triangular decomposition,

�s.S/ embeds into
N

T2zF �s.T/, which is a domain by Proposition 4.8. It follows

that �s.S/ is a domain. �
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Remark 4.9. Besides the case when @S is a closed manifold, when @S D ;, we

also have �s.S/ D V�.S/, and the fact that V�.S/ is a domain was known before,

see [23, 4, 8]. Our proof in these special cases is different from those in [23, 4, 8].

Later we will show that the Muller skein algebra embeds into �s.S/, hence it is

also a domain, a fact proven by Muller before using another method [19].

Remark 4.10. Suppose R D C, q D �1, and S is a triangulated punctured

bordered surfaced with a triangulation �. Then V�.S/ is canonically isomorphic

to the ring of regular functions on the SL2.C/-character variety of �1.S/. The

triangular decomosition shows there is a natural embedding of the commutative

ring V�.S/ into
N

T2zF �s.T/, which is non-commutative. Even in this case of

q D �1, the ring �s.T/ and the triangular decomposition seem new.

5. Chekhov–Fock algebra and quantum trace

5.1. Chekhov–Fock triangle algebra, Weyl normalization. Suppose T is an

ideal triangle with boundary edges a; b; c and arcs ˛; ˇ;  as in Figure 11. Define

Y.T/ to be the R-algebra

Y.T/ D Rhy˙1
a ; y˙1

b ; y˙1
c i=.yayb D q ybya; ybyc D q ycyb; ycya D q ycya/:

Then Y.T/ belongs to a type of algebras called quantum tori, see e.g. [16, Sec-

tion 2].

Suppose x; y are elements of anR-algebra such that xy D qkyx, where k 2 Z.

Define the Weyl normalization of xy by

Œxy� WD q�k=2xy D qk=2yx:

The advantage is that Œxy� D Œyx�. For example, for yb; ycc 2 Y.T/ and

"; "0 2 ¹˙1º, we have

Œ.yc/".yb/"0

� D q""0=2.yc/".yb/"0

: (55)

The rotation � WT! T, which gives the cyclic permutations ˛ ! ˇ !  ! ˛

and a ! b ! c ! a, induces algebra automorphisms of the algebras �s.T/ and

Y.T/.
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Proposition 5.1. There exists a unique R-algebra homomorphism

�W �s.T/ �! Y.T/

which is �-equivariant and satisfies

�.˛.""0// D

´
0 if " D �; "0 D C;

Œc"b"0

� otherwise:
(56)

Proof. The proof follows from an easy checking that the definition (56) respects

all the defining relations of �s.T/ described in Proposition 4.6. �

5.2. Quantum trace. Let � be a triangulation of a punctured bordered surface

S and zF D zF.�/ be the collection of disjoint ideal triangles obtained by splitting

S along the edges of �, see Section 3.3. Let E be the set of all edges of �, and zE
be the set of all edges of all triangles in zF.

Using the triangular decomposition (33) and the algebra map � of Section 5.1,

define ~� as the composition

~�W �s
��
�!

O

T2zF.�/

�s.T/
˝�
�! Y.zF/ WD

O

T2zF.�/

Y.T/:

Bonahon and Wong [4] constructed an algebra homomorphism (quantum trace

map)

Tr�W y�s.S/ �! Y.�/;

where Y.�/, a version of the Chekhov–Fock algebra, is an R-subalgebra of Y.zF/.

For now, we consider Tr� as a map with target Y.zF/. We recall the definition of

Y.�/ in Section 5.3.

Theorem 5.2. If � is an ideal triangulation of a punctured bordered surface S,

then the composition c~�W b�s.S/! �s.S/
~�
�! Y.zF/ is equal to the quantum trace

map of Bonahon and Wong.

Proof. (i) The case S D T, an ideal triangle with notations of Figure 11. In this

case y�s.T/ is generated by ˛."; "0/, the arcs ı."; "0/, and their images under �; �2.

Here ı."; "0/ is a returning arc with states "; "0. For each of these generators, the

image of Tr� described in [4, Theorem 11] is exactly the image of ~� given by (18)

and (56). Hence c~� D Tr�.
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(ii) Now return to the case of general punctured surfaces. Suppose e1; e2 are

edges of S and S0 D S=.e1 D e2/. Then S0 inherits a triangulation �0 from �,

where the set E0 of edges of �0 is the same as E, except that the two edges e1; e2

of E are glued together, giving an edge e of E0. Both S and S0 are obtained from

the same collection zF of ideal triangles by identifications of edges, with S0 having

one more identification.

By [4, Theorem 11], Tr� is uniquely characterized by its values for ideal

triangles and the following condition: for any such pair S;S0 and any stated @S0-

tangle ˛ vertically transverse to e,

tr�0.˛/ D
X

ˇ

Tr�.ˇ/; (57)

where ˇ runs the set of all lifts of ˛, see Section 3.1. The sequence of maps

�s.S
0/

�
�! �s.S/

��
�!

O

T2zF.�/

�s.T/
˝�
�! Y.zF/

shows that ~�0 D ~� ı �. Hence, from the definition of �, we have

b~�0.˛/ D
X

ˇ

c~�.ˇ/;

i.e. c~� also satisfies the above condition (57). This proves c~� D Tr�. �

We have seen that the triangular decomposition (33) gives a simple proof of

the existence of the quantum trace map of Bonahon and Wong [4]. Because there

is no analog of � relating y�s.S
0/ and y�s.S/, in [4] the quantum trace map has to

be defined directly on y�s.S0/, and the proof of well-definedness involves difficult

calculations. For yet another proof of the existence of the quantum trace map, the

reader can consult [16].

5.3. Chekhov–Fock algebra. We continue with the notation of the previous

subsection. For each T 2 zF we consider Y.T/ as a subalgebra of Y.zF/ DN
T2zF.�/ Y.T/ under the natural embedding. Then Y.zF/ is the R-algebra gen-

erated by y˙1
e with e 2 zE, subject to the relation ye1

ye2
D ye2

ye1
if e1 and e2

are edges of different triangles, and ye1
ye2
D qye2

ye1
if e2 and e1 are edges of a

triangle and e2 follows e1 in counterclockwise order.
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Under the natural projection prW zE! E D E.�/, an edge e 2 E has one or two

pre-images in zE; each is called a lift of e. For each e 2 E define ya 2 Y.zF/ as

follows:

� if e has a unique lift e0 2 zE, then ye D ye0 ;

� if e has two lifts e0; e00 2 zE, then ye D Œye0ye00 �.

Let Y.�/ be the R-subalgebra of Y.T/ generated by y˙1
a ; a 2 E. Then Y.�/ is

a version of the (multiplicative) Chekhov–Fock algebra of S associated with the

triangulation �. In [4], it proved that the image of Tr� is in Y.�/, which can also

be proved easily from the definition of ~�.

6. Relation with the skein algebra of Muller

6.1. Skein algebra of marked surface. Recall that a marked surface .xS;P/

consists of a compact oriented 2-dimensional manifold xS with (possibly empty)

boundary @xS and a finite set P � @xS. We recall the definition of the Muller skein

algebra [19], following [16].

LetS D xSn.P[@0.xS//, where @0.xS/ is the union of all connected components

of @xS which do not intersect P. Then S is a punctured marked surface.

A P-tangle ˛ is defined just like a @S-tangle, only with @.˛/ � P�.0; 1/. More

precisely, a P-tangle ˛ is a compact, framed, properly embedded 1-dimensional

non-oriented smooth submanifold ˛ of xS � .0; 1/ such that @.˛/ � P � .0; 1/ and

at every boundary point of ˛ the framing is vertical. Two P-tangles are isotopic
if they are isotopic through the class of P-tangles. Define �Muller.xS;P/ to be

the R-module freely spanned by isotopy classes of P-tangles modulo the skein

relation (11), the trivial loop relation (12), and the new trivial arc relation (see

Figure 19).

D 0

Figure 19. Trivial arc relation.

More precisely, the trivial arc relation says ˛ D 0 for any P-tangle ˛ of the

form ˛ D ˛0 t a, where a � xS � .0; 1/ n ˛0 is an arc with two end points in

p � .0; 1/ for some p 2 P, such that a and the part of p � .0; 1/ between the two

end points of a co-bound a disk in xS � .0; 1/ n ˛0.
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As usual, the product of two P-tangles is obtained by stacking the first on top

of the second. With this product, �
Muller.xS;P/ is an R-algebra.

Let �s;C.S/ � �s.S/ be theR-submodule spanned by stated @S-tangles whose

states are all C. For an P-tangle ˛ define a stated @S-tangle z�.˛/ by moving all

the boundary points of ˛ slightly to the left (i.e. along the positive direction of

@xS), keeping the same height, and equipping z�.˛/ with stateC at every boundary

points. Relations (11)–(13) show that z� descends to a well-defined R-linear map

�W �Muller.xS;P/ �! �s;C.S/:

Proposition 6.1. The map � is an R-algebra isomorphism.

Proof. It is easy to see that �s;C.S/ is the R-module freely spanned by @S-

tangles with C states, subject to those relations from (11)–(14) which involve

only C states; namely relations (11), (12), and the middle relation of (13).

Since z� maps the set of isotopy classes of P-tangles isomorphically onto the

set of isotopy classes of C stated @S-tangles, and maps the defining relations

of �
Muller.xS;P/ onto the defining relations of �s;C.S/, it induces an isomorphism

�W �Muller.xS;P/! �s;C.S/:

Alternatively, the R-basis of �
Muller.xS;P/, given explicitly in [19, Lemma 4.1],

is mapped by � to the R-basis of �s;C.S/ given in Theorem 2.8, with allC states.

This shows � is an isomorphism. �

6.2. Proof of Theorem 4

Proof. Recall that we define the quantum trace map on �
Muller.xS;P/

N~�W �
Muller.xS;P/

�
�! �s;C.S/

~�
�! Y.�/:

Number the set E of edges of � so that ED¹e1; : : : ; enº. For kD .k1; : : : ; kn/ 2
Z

n let

yk WD .ye1
/k1.ye2

/k2 : : : .yen
/kn 2 Y.�/:

The set ¹yk j k 2 Zº is an R-basis of Y.�/. We order all yk using the

lexicographic order of k 2 Z
n, and use this order to define the leading term lt.x/

of any 0 ¤ x 2 Y.�/.

Let zS D
F

T2zF T, and prW zS ! S be the natural projection. Suppose D

is a simple @S-tangle diagram which is �-normal, i.e. it is e-normal for all

edge e of � (see Proof of Theorem 3.1(b)). Then zD WD pr�1.D/ is a @ zS-

tangle diagram consisting of non-returning arcs in ideal triangles in zF. Define

kD D .kD;1; : : : ; kD;n/ 2 Z
n, where kD;i D jD \ ei j. Then kD totaly determines
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the isotopy class of D. Every simple @S-tangle diagram is isotopic to a �-normal

one.

An edge e of � is interior if it is not a boundary edge of S. Let VE be the union

of all the interior edges of �. Fix an orientation of VE and provide the boundary

edges of S with the positive orientation. Lift these orientations to edges of zE, and

get an orientation o of @ zS. Suppose D is a positively ordered, �-normal, simple

@S-tangle diagram, with C states. For every map r WD \ VE ! ¹˙º, let zD.r/ be
zD with o-order, and states defined by the lift of r on VE and C on all other edges.

From the definition, we have the following state sum

~�.D/ D
X

r WD\ VE!¹˙º

�. zD.r//: (58)

Let rC be the map rCWD\ VE ! ¹Cº. Since zD.rC/ consists of non-returning arcs

with C states, (56) and Lemma 4.7 show that �. zD.rC// is non-zero and

lt.�. zD.rC///
:
D ykD :

More over (56) and Lemma 4.7 show that the leading term of any �. zD.r//, with

r ¤ rC, is smaller than that of �. zD.rC//. Hence

lt.~�.D//
:
D ykD : (59)

From here it is easy to see that the image under ~� of a non-trivial linear combi-

nation of C stated, positively ordered, �-normal, simple @S-tangle diagrams is

non-zero, which proves that N~� is injective. �
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