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Irreducibility of quantum representations

of mapping class groups with boundary
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Abstract. We prove that the Witten–Reshetikhin–Turaev SU.2/ quantum representations of

mapping class groups are always irreducible in the case of surfaces equipped with colored

banded points, provided that at least one banded point is colored by 1. We thus generalize

a well-known result due to J. Roberts.
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1. Introduction

Since their inception, the irreducibility of TQFT representations of mapping

class groups has remained an often intractable question, and it remains open in

general for mapping class groups of closed surfaces. In this article, we consider

surfaces with a nonzero number of colored boundary components, under the

assumption that at least one of them is colored by 1. We prove that in this case, the

TQFT representations of the corresponding mapping class groups are irreducible,

without any number–theoretic assumptions on the level of the representation. As is

customary in TQFT, we think of the boundary components of a surface as banded

points, i.e. embedded oriented copies of the closed unit interval.

1.1. Statement of the main result. Let S D Sg be a closed and orientable

surface of genus g � 0, let n � 1 be an integer such that 4 � 2g C n, and let

N
k D .k1; : : : ; kn/ be an n–tuple of positive integers. We denote by .S;

N
k/ the

surface S equipped with n banded points colored by ¹k1; : : : ; knº. We denote by
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Mod.S; n/ the group of diffeomorphisms of S fixing the n banded points up to

isotopy.

For p � 6 an even integer, we write

�pW Mod.S; n/ �! PAut.Vp.S;
N
k//

for the quantum representation of Mod.S; n/ arising from Witten-Reshetikhin-

Turaev SU.2/–TQFT. In order for the representation to be defined, we will always

assume p � maxj kj C 4. The following is our main result.

Theorem 1.1. Let n � 1 and suppose that at least one of the colors k1; : : : ; kn

is 1. Then the representation �p is irreducible for all p.

We state Theorem 1.1 for its brevity. We actually prove a stronger fact: the

restriction of �p to the (banded) point-pushing subgroup of the point colored by 1

is irreducible.

1.2. Notes. Roberts [8] proved that the quantum SU.2/ representations of closed

mapping class groups are irreducible in the case where p=2 is prime. The funda-

mental fact exploited by Roberts is that when p=2 is prime, then the Dehn twists

act by diagonalizable linear maps. Moreover, if we consider a maximal collection

of commuting Dehn twists, then the joint spectrum of their action has no repeated

eigenvalues. The closed mapping class group representations were proved to be

irreducible by Korinman [6] in the cases where p is twice the product of two dis-

tinct odd primes and where p is twice the square of an odd prime. Korinman also

produces examples where the representations are reducible.

Other important examples of reducibility include [3, Theorem 7.9], where it

is proved that in the case where p � 2 .mod 4/ and all the banded points on the

surface are colored by even numbers, the quantum representations are reducible.

In [1], Andersen and Fjelstad found three exceptional levels where the quantum

representations are reducible as well.

The advantage of the present approach is the fact that we do not place any

restrictions on p, other than the minimal conditions required to define the quantum

SU.2/ representation. We really do need banded points on S and at least one of

these colored by 1, since our proof relies on the quantum representations of surface

groups as defined by the authors [5]. Theorem 7.9 of [3] and the work of Korinman

cited above suggest that this is an essential hypothesis, not just an artifact of the

proof.
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2. Background

We retain the notation from the previous section for the remainder of this paper.

Let
N
x D ¹x1; : : : ; xnº be the n banded points on S colored by k1; : : : ; kn respec-

tively, and let yS be the surface S minus n disjoint opened discs containing the xj .

2.1. TQFT vector spaces. In this subsection, we summarize relevant features

of TQFT vector spaces, following [5] nearly verbatim. One can define a certain

cobordism category C of closed surfaces with colored banded points, in which the

cobordisms are decorated by uni-trivalent colored banded graphs. The SU.2/–

TQFT is a functor Zp from the category C to the category of finite dimensional

vector spaces over C. See [3].

LetH be a handlebody with @H D S , and let G be a uni-trivalent banded graph

such that H retracts to G. We suppose that G meets the boundary of H exactly at

the banded points
N
x and this intersection consists exactly of the degree one ends

of G. A p–admissible coloring of G is an assignment of an integer to each edge

of G such that at each degree three vertex v of G, the three (non–negative integer)

colors ¹a; b; cº coloring edges meeting at v satisfy certain natural compatibility

conditions, and where the color of an edge terminating at a banded point xi must

have the color ki . The details of these conditions are not important for this paper,

and the interested reader is directed to [3].

In what follows, A is a 2p–primitive root of unity, where p is a sufficiently

large integer as in the assumptions of Theorem 1.1. To any p-admissible coloring

c of G, there is a canonical way to associate an element of the skein module

Gc 2 SA.H; .S;
N
k//;

by cabling the edges of G by appropriate Jones-Wenzl idempotents (see [3, Sec-

tion 4] for more detail). There is natural surjective map (see [3, Proposition 1.9])

sW SA.H; .S;
N
k// �! Vp.S;

N
k/:

It turns out that the images of the vectors associated to p–admissible coloring give

a finite basis for Vp.S;
N
k/.

The vector space Vp.S;
N
k/ is endowed with a natural hermitian form denoted

by h�; �i, and the basis ¹Gc j c is p-admissibleº is orthogonal with respect to this

hermitian form (see [3, Theorem 4.11]).

2.2. The skein algebra of a surface. We denote by SA. yS/ the skein algebra of
yS � Œ0; 1� with complex coefficients. Recall that it is the complex vector space
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generated by isotopy classes of banded links in the interior of yS � Œ0; 1�, subject

to the following local relations:

D A C A�1 ;

D �A2 � A�2:

By stacking banded links, one obtains an algebra structure on SA. yS/.

2.3. Curve operators. Let L be a banded link in the interior of yS � Œ0; 1�.

We define the cobordism CL as S � Œ0; 1� equipped with the colored banded tangle

L [ .x � Œ0; 1�/;

where here x D x1 [ � � � [ xn and where each xj � Œ0; 1� is colored by kj .

By the axioms of the TQFT, one can show that CL defines an operator Zp.L/ 2

End.Vp.S;
N
k//, called the curve operator associated to L. Here, End.Vp.S;

N
k//

denotes the endomorphisms of Vp.S;
N
k/ viewed as a complex vector space, or in

other words a matrix algebra over C. It is well known that

Zp W SA. yS/ 3 L 7�! Zp.L/ 2 End.Vp.S;
N
k//

is a morphism of algebras.

Any multi-curve (disjoint union of simple closed curves) 
 can be viewed as

an element of SA. yS/ by associating


 7�! 
 �
h1

2
;
3

4

i

2 SA. yS/:

It is well known that the set of isotopy classes of multi-curves forms a basis for

SA. yS/.

2.4. The Birman Exact Sequence and quantum representations. We recall

the construction of quantum representation of surface groups as carried out by the

authors [5]. Let S 0 be the surface Sn¹x2; : : : ; xnº and let Mod.S; n�1/ be the group

of diffeomorphisms of S fixing the x2; : : : ; xn up to isotopy. From the Birman

Exact Sequence, the kernel of the canonical map Mod.S; n/ ! Mod.S; n � 1/

is a central extension of �1.S 0; x1/ (See [2, 4]). Hence by restriction, we have a

representation

�pW �1.S 0; x1/ �! PAut.Vp.S;
N
k//:
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Since x1 is a banded point, �1.S 0; x1/ has to be understood that the fundamen-

tal group of S 0 based at a fixed point chosen on x1.

For the proof of Theorem 1.1, it is useful to have a cobordism description of

the representation �p restricted to the point pushing subgroup. Let 
 W Œ0; 1� ! S 0

be a loop such that 
.0/ D 
.1/ is a point on x1. Let O
 be a banded tangle in

S � Œ0; 1� which retracts to t 2 Œ0; 1� 7! .
.t/; t / and which agrees with x1 � ¹0; 1º

on S � ¹0; 1º. Let x0 D x2 [ � � � [ xn. We define the cobordism C
 as S � Œ0; 1�

with the colored banded tangle O
 [ .x0 � Œ0; 1�/ where each xj � Œ0; 1� is colored

by kj and where O
 is colored by k1.

The TQFT functor takes C
 and outputs an operator which is by definition

�p.
/. We now show how to compute the action of the loop 
 on the basis of

TQFT described in Subsection 2.1. Let H be a handlebody with @H D Sg , let

G be a uni-trivalent banded graph such that H retracts to G, and let Gc be a

p-admissible coloring of this graph. In the TQFT language, applying �p.
/ to Gc

simply means that we glue the cobordism C O
 to the handlebody H decorated by

Gc . Through this gluing, one obtains the same handlebody H, but with a different

colored banded graph inside. To express this new banded colored graph in terms of

the basis mentioned above, we apply the colored version of the Kauffman bracket

and the Jones–Wenzl idempotents. Since the formulas are complicated, we refer

the reader to [7].

3. Proof of Theorem 1.1

Let �p D �p.�1.S 0; x1// and let CŒ�p� be the subalgebra of End.Vp.S;
N
k// gener-

ated by �p.

Proposition 3.1. If k1 D 1 then

Zp.SA. yS// D CŒ�p�

Proof. Let 
 be simple closed curve in S and let

O
 D 
 �
h1

2
;

3

4

i

:

Let U � S be an open annulus containing x1 and with core curve 
 . Applying the
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skein relations inside U � Œ0; 1�, we have the following in End.Vp.S;
N
k//:

D A C A�1 :

Observe that the image of ıp in PAut.Vp.S;
N
k// is precisely �p.ı/ where ı 2

�1.S 0; x1/. Hence

Zp.
/ 2 CŒ�p�:

This implies that

Zp.SA. yS// � CŒ�p�;

since the algebra SA. yS/ is generated (as an algebra) by isotopy classes of simple

closed curves. The reverse inclusion

CŒ�p� � Zp.SA. yS//

is completely general and is established in [3]. �

In Proposition 3.1, we are unable to comment on the case k1 > 1. In particular,

the analysis of curve operators as carried out in the proof of Proposition 3.1 breaks

down and we are unable to determine whether the inclusion

Zp.SA. yS// � CŒ�p�

remains valid.

The following result can be deduced from Proposition 1.9 of [3]. The statement

given there is somewhat more technical, and we extract a statement more directly

applicable to our context, and include a proof for the convenience of the reader.

Proposition 3.2. Let
N
k D .k1; : : : ; kn/ be arbitrary colors (i.e. without the

assumption k1 D 1). Then the map ZpW SA. yS/ ! End.Vp.S;
N
k// is surjective.

Proof. Let † D @. yS � Œ0; 1�/ and let ¹˛1; : : : ; ˛nº be the boundary curves of yS .

These curves can be seen on † and thus act on Vp.†/ by operators

¹Zp.˛1/; : : : ; Zp.˛n/º:
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We set

E.
N
k/ D ker.Zp.˛1/CA2k1C2CA�2k1�2/\� � �\ker.Zp.˛n/CA2knC2CA�2kn�2/:

An explicit basis for E.
N
k/ can be extracted from the discussion below.

Since yS � Œ0; 1� is a handlebody whose boundary is †, it follows from [3] that

the canonical map

sW SA. yS/ �! Vp.†/

is surjective. Hence the composition of s with the projection to E.
N
k/ is also

surjective.

We claim that E.
N
k/ is canonically isomorphic to End.Vp.S;

N
k//. To see this,

we suppose that S is embedded in S3 in a way which is unknotted on both sides,

and we build the handlebody

H D S3 n yS � .0; 1/:

Let G � H be a banded trivalent graph such that H retracts to G. Recall

that yS was obtained from S by removing n discs ¹D1; : : : ; Dnº about the points

¹x1; : : : ; xnº. These discs are included in H , and cutting H along these discs

results in two handlebodies H1 and H2 bounded by S . See Figure 1.

H2

H1

G2

G1

D1 D2

yS

Figure 1. This is the setup when S has genus 2 and when n D 2. The solid black denotes the

surface yS �I cut out of S3, which leaves the handlebody H D H1 [H2. The handlebodies

H1 and H2 meet along discs D1 and D2. The trivalent graph G D G1 [ G2 (in red) is a

retract of H . Here, Gi D G \ Hi .
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We set G1 D H1 \ G and G2 D H2 \ G, and let �.p;
N
k/ be the set of p-

admissible colorings of G such that for 1 � j � n, the edge of G encircled by

the curve j̨ has color kj . For c 2 �.p;
N
k/, we denote by Gc the corresponding

colored graph in Vp.†/. Finally, we write Gc
1 and Gc

2 for the restricted colored

graphs. Note that these are naturally elements in Vp.S;
N
k/.

Note that ¹Gc j c 2 �.p;
N
k/º is a basis of E.

N
k/, so we can define the linear

map

�W Gc 2 E.
N
k/ 7�!

hGc ; Gci

hGc
1 ; Gc

1ihGc
2 ; Gc

2i
Gc

1 ˝ Gc
2 2 Vp.S;

N
k/? ˝ Vp.S;

N
k/

D End.Vp.S;
N
k//

Here, h�; �i is the canonical hermitian form defined on Vp.S;
N
k/, and the identifi-

cation between Vp.S;
N
k/? and Vp.S;

N
k/ is made via the bilinear pairing. It is not

difficult to see that � is an isomorphism of vector spaces, because a basis for E.
N
k/

is sent to a basis for End.Vp.S;
N
k//.

A straightforward computation using the Hermitian structure shows that the

following diagram is commutative:

SA. yS/

Zp
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼

s
// Vp.†/

projection
// E.

N
k/

�
xxqq
qq
qq
qq
qq
q

End.Vp.S;
N
k//:

The map s composed with the projection onto E.
N
k/ is surjective, and � is an

isomorphism. Hence the map Zp is surjective. �

Proof of Theorem 1.1. Combining Proposition 3.1 and 3.2, we have that if k1 D 1

then CŒ�p� D End.Vp.S;
N
k//, and hence �p is irreducible. �
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