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Abstract. We show that the limiting Khovanov chain complex of any infinite positive

braid categorifies the Jones–Wenzl projector. This result extends Lev Rozansky’s categori-

fication of the Jones–Wenzl projectors using the limiting complex of infinite torus braids.

We also show a similar result for the limiting Lipshitz–Sarkar–Khovanov stable homotopy

types of the closures of such braids. Extensions to more general infinite braids are also

considered.
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1. Introduction

In the Temperley–Lieb algebra TLn on n strands over the fraction field C.q/,

there is a special idempotent element Pn, the n-strand Jones–Wenzl projector [9].

Such projectors have been studied extensively, and are used in the construction of

various 3-manifold and spin network invariants [3].

In the Bar-Natan categorification of TLn [1], the categorified projector can be

represented by a semi-infinite chain complex Pn of Temperley–Lieb diagrams and

maps (cobordisms) between them (by semi-infinite we mean a complex with ho-

mological degree bounded below but unbounded above). The graded Euler char-

acteristic of this complex recovers a power series expansion in the variable q (or

q�1) of the rational terms in the original Pn. Ben Cooper and Slava Krushkal con-

structed such Pn inductively in [2]. At roughly the same time, in [8], Lev Rozansky

showed that such a Pn could be constructed as the (properly normalized) limiting

Khovanov chain complex KC.T1/ (taken in the sense of [1]; see Section 2.2) asso-

ciated to the infinite torus braid T
1 on n strands. Universality properties described

in [2] ensure that the two constructions must be chain homotopy equivalent.
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The main goal of the paper is to prove the following theorem, showing that the

categorified projector Pn may be obtained using essentially any infinite positive

braid in the place of the infinite torus braid.

Theorem 1.1. Let B be any complete semi-infinite positive braid, viewed as the

limit of positive braid words

B D lim
`!1

�j1
�j2

: : : �j`
:

Then the limiting Khovanov chain complex KC.B/ satisfies

KC.B/ WD lim
`!1

haqb KC.�j1
�j2

: : : �j`
/ ' Pn (1)

where ha and qb denote homological and q-degree shifts, respectively. In other

words, KC.B/ for any such B is chain homotopy equivalent to the categorified

projector Pn.

The completeness assumption means that each standard braid generator �j

appears infinitely often in B. We will clarify the grading shifts a and b in Section

3. Here we quickly note the following simple corollary of Theorem 1.1.

Corollary 1.2. The (suitably normalized) Kauffman bracket of any complete

semi-infinite positive braid B stabilizes to give a power series representation of

the Jones–Wenzl projector Pn.

In [6], Robert Lipshitz and Sucharit Sarkar defined a stable homotopy type in-

variant X.L/ of a link L, which we shall refer to as the Lipshitz–Sarkar–Khovanov

(abbreviated as L-S-K) spectrum of L. X.L/ is a suspension spectrum of a CW

complex with cellular cochain complex satisfying C �.X.L// ' KC�.L/. In [10]

and [11] one of the authors showed that the spectra of closures of infinite twists also

have a well-defined limit with cochain complex recovering the corresponding clo-

sure of Rozansky’s Pn (this result was independently proven in [7]). Abusing the

notation for q-degree shifts, we have the following theorem similar to Theorem 1.1

above.

Theorem 1.3. Let xB denote any closure of a complete semi-infinite positive braid

B as in Theorem 1.1. Let T1 denote the corresponding closure of the infinite twist.

Then

X.xB/ WD lim
`!1

†aqb
X.�j1

�j2
: : : �j`

/ ' X.T1/ (2)

where again a and b stand for homological shifts (via suspensions †) and q-de-

gree shifts.
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Figure 1 illustrates a closure of B and the corresponding closure of T1. Note

that as of this writing, the L-S-K spectrum for braids and/or tangles has not yet

been defined; as such, Theorem 1.3 is the closest notion available to a lifting of

Theorem 1.1 to the stable homotopy category.

Figure 1. A possible closure xB of the infinite braid B, and the corresponding closure T1

of the infinite twist.

The proofs of Theorems 1.1 and 1.3 are essentially the same argument. In short,

we show that KC.B/ contains a copy of KC.T1/ along with some error terms

which are pushed out further and further so that in the limit we see only KC.T1/

(and similarly forX.B/). In slightly more detail, the assumption thatB is complete

will ensure that B ‘contains’ the crossings that would make up the infinite twist

T
1, as well as potentially many other ‘extra’ positive crossings. If we resolve all of

the ‘extra’ crossings as 0-resolutions, we see T1. If we resolve some of the ‘extra’

crossings as 1-resolutions, we see mixtures of twists and turnbacks, which allow

for simplifications via pulling the turnbacks through the twists. Careful tracking

of the homological degrees during this process will show that, in the limit, KCi .B/

will match KCi .T1/ for any i , while careful tracking of the q-degrees will achieve

a similar result for X.B/.

Although the statements of Theorems 1.1 and 1.3 are for complete semi-infinite

positive braids, the results together with properties of the Jones–Wenzl projectors

(and the corresponding spectra) quickly lead to several corollaries involving more

general notions of infinite braids. Roughly speaking, any tangle diagram that

contains positive infinite braids has Khovanov homology and L-S-K spectrum (for

links) matching that of the same diagram with infinite twists replacing the infinite

braids. More precise statements along these lines can be found in the final section

of the paper.

This paper is arranged as follows. In Section 2 we review the relevant back-

ground needed for the Khovanov homology of the infinite braids, as well as recall-

ing Rozansky’s results on the infinite twist. In Section 3 we give a detailed proof

of Theorem 1.1. In Section 4 we prove Theorem 1.3, highlighting the slight differ-

ences between this and the first proof. Finally in Section 5 we explore corollaries

of these theorems that give statements about more general infinite braids.
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2. Background and conventions

2.1. The (categorified) Temperley–Lieb algebra and the Jones–Wenzl projec-

tors. In this paper, TLn will denote the Temperley–Lieb algebra on n strands over

the field C.q/, where q is a formal variable. For a full introduction to this algebra

and some of its uses in 3-manifold theory, see [3]. Here we simply recall that TLn

is generated by planar diagrams of crossingless .n; n/ tangles which we shall draw

vertically. Multiplication is defined by (downward) concatenation, and there is the

local relation that a circle can be deleted with the resulting diagram scaled by the

factor .qCq�1/. The multiplicative identity is the diagram of n vertical lines, and

will be denoted by In. It is well-known that TLn is multiplicatively generated by

the diagrams ¹ei ji D 1; : : : ; n � 1º described in Figure 2.

Figure 2. The diagrams ei 2 TLn that form the standard multiplicative basis.

We shall use the notation TLn to denote the graphical categorification of TLn

of Dror Bar-Natan in [1]. An excellent summary of this construction is provided in

Section 2.3 of [2]. The objects are chain complexes of (direct sums of) q-graded

Temperley–Lieb diagrams, with differentials based on ‘dotted’ cobordisms be-

tween such diagrams modulo some local relations that allow for (among other

things) an isomorphism between the circle and the direct sum q�1.;/˚q.;/. The

exact nature of these maps and relations will not be relevant for the arguments in

this paper.

Within TLn there is a special idempotent element Pn characterized by the

following axioms.

I. Pn�ei D ei �Pn D 0 for any of the standard multiplicative generators ei 2 TLn.

This is often described by stating that Pn is “killed by turnbacks.”

II. The coefficient of the n-strand identity tangle In in the expression for Pn is 1.



The Khovanov homology of infinite braids 567

These are the Jones–Wenzl projectors, originally defined in [9]. The simplest

non-trivial example is P2, shown below:

P2 D I2 �
1

q�1 C q

D E

D I2 C .�q C q3 � q5 C � � � /
D E

:

(3)

In the categorified world of TLn there is also a special semi-infinite chain

complex Pn, characterized up to chain homotopy equivalence by the similar

axioms.

I. Pn ˝ ei ' ¹�º for any TLn generator ei viewed as a one-term complex in

TLn. That is, Pn is “contractible under turnbacks.”

II. The identity diagram In appears only once, in homological degree zero.

III. All negative homological degrees and q-degrees of Pn are empty, and the

differentials are made up of degree zero maps.

Such a complex Pn is called a categorified Jones–Wenzl projector. For more

details on this axiomatic definition, see [2] where such complexes are constructed

inductively. The simplest non-trivial example is P2, shown below (compare to

equation (3)):

P2 D �! q �! q3 �! q5 �! � � � : (4)

The maps in the complex (4) are given explicitly in [2]. Note that the graded

Euler characteristic for P2 gives precisely the power series representation of P2

from equation (3). The infinite complex is necessitated by the lack of a straight-

forward notion of categorifying a rational function of q, leading to the use of the

corresponding power series instead.

Remark 2.1. The version of Pn described above is based upon expanding the

ratios in Pn as power series in the variable q. However, it is equally valid to expand

them as power series in the variable q�1. Thus the third axiom of Pn could be

replaced by a similar axiom declaring the positive homological and q-gradings

to be empty. We shall focus on the q-expansion in this paper, leading to the

statements about infinite positive braids; however, the same story could be told

focusing on the q�1-expansion, leading to equivalent statements about infinite

negative braids. See also Remark 2.8.
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2.2. The Kauffman bracket and Khovanov chain complex of a tangle. The

Temperley–Lieb algebra TLn is related to .n; n/-tangles via the Kauffman bracket

h�i, a function converting .n; n/-tangles into elements of TLn (see [3]). The

categorified version of this is the Khovanov chain complex KC.�/ which associates

to an .n; n/-tangle a chain complex in TLn, whose graded Euler characteristic

returns the Kauffman bracket of the tangle (for the original definition of Khovanov

homology, see [4], with the extension to tangles in [5]; we follow the framework

for tangles in [1] where the functor KC.�/ is referred to as the formal Khovanov

Bracket, denoted J�K). There exist several different normalization conventions for

both the Kauffman bracket and the Khovanov chain complex in the literature. In

the hopes of keeping some consistency with one author’s earlier work, we adopt

the following conventions:

D E

D q
D E

� q2
D E

; (5)

D E

D �q�2
D E

C q�1
D E

; (6)

KC
� �

D q1
�

�! q1
�

; (7)

KC
� �

D h�1q�2
�

�! q�1
�

: (8)

Here we use the symbols h and q to indicate homological and q-degree shifts

respectively, as in [8]. The maps in the Khovanov chain complexes are saddle

cobordisms between the two resolutions, and the vertical resolutions are placed

in homological degree zero (so that after the h�1 shift for the negative crossing

, it is the horizontal resolution that is in homological degree zero). Under

this convention, both the Kauffman bracket and the Khovanov chain complex

are true invariants of tangles. That is to say, they are invariant under all three

Reidemeister moves, without the need for any grading shifts. The tradeoff for this

seemingly natural choice is that many of the formulae required for manipulating

the Khovanov complexes of braids will require various shifts of both homological

and q-degrees, as we shall see in the following sections.

Remark 2.2. Moving forward, we will be referring to crossings as right-

handed rather than positive, and braids are then called right-handed if every

crossing within them is right-handed (the usual definition of a positive braid).

As such, the braids of Theorems 1.1 and 1.3 will henceforth be referred to as

right-handed rather than positive. Note that, in the case of a braid viewed as

an .n; n/-tangle with all of the strands oriented upward, right-handedness and
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positivity of crossings are equivalent. However, if the strands of a braid are

oriented in different directions (as may be required if the braid is closed in the

3-sphere by a turnback, say), we could see right-handed crossings that are actually

negative, as in equation (6) above.

The crossing rules (7) and (8) allow us to view the Khovanov chain complex of

a tangle as a mapping cone in the usual way. Using our normalization conventions,

the relevant statement is as follows.

Lemma 2.3. Let T be an oriented tangle, with a specified crossing . Let T0

denote the same tangle with the crossing replaced by its 0-resolution , and let

T1 denote the same with the 1-resolution . Then the shifted Khovanov complex

of T can be viewed as a mapping cone:

hn�

q�N KC.T / D Cone.hn�
0 q�N0 KC.T0/ �! hn�

1 q�N1C1 KC.T1//: (9)

Here n� indicates the number of negative crossings in T , while N indicates

nC � 2n�, the number of positive crossings minus twice the number of negative

crossings in T . The subscripts n�
i and Ni indicate the same counts of crossings

in Ti for i D 0; 1.

The main arguments of this paper will use this construction in an iterated

fashion over many crossings. As such, the Cone.�/ notation and the subscripts

for the grading shifts quickly become unwieldy. For this reason, we drop the word

Cone from the notation and adopt the following convention.

Definition 2.4. The symbols n� and N WD nC � 2n� will count positive and

negative crossings in whatever tangle they appear with. Thus equation (9) will be

written as

hn�

q�N KC.T / D .hn�

q�N KC.T0/ �! hn�

q�N C1 KC.T1// (10)

and it will be understood that the various n� and N are actually different numbers

within this mapping cone.

Corollary 2.5. Given tangles T ; T0, and T1 as in Lemma 2.3, there is a chain map

hn�
q�N KC.T / ! hn�

q�N KC.T0/ with mapping cone that is chain homotopy

equivalent to hn�C1q�N C1 KC.T1/.

Now in our normalization, KC itself is invariant under all Reidemeister moves.

Combining this with the notational convention of Definition 2.4 gives the follow-

ing shifts for the (negative) Reidemeister I and Reidemeister II moves that we shall
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need later:

hn�

q�N KC

� �

' hn�C1q�N C2 KC

� �

(11)

hn�

q�N KC

� �

' hn�C1q�N C1 KC

� �

' hn�

q�N KC

� �

: (12)

Compare these shifts to those that occur using the grading conventions in [8].

Meanwhile, since Reidemeister III moves only change the arrangement of cross-

ings rather than their number or orientation, we see that Reidemeister III moves

incur no shifts to either homological or q-grading even within this renormalized

setting.

2.3. The infinite twist as categorified projector

Definition 2.6. In the braid group Bn on n strands, the symbol T will denote the

fractional (right-handed) twist T WD �1�2 : : : �n�1. The full (right-handed) twist

is then the braid T
n. See Figure 3 for clarification.

Figure 3. The fractional twist T and the full twist Tn in the case n D 4.

In [8] Lev Rozansky provided a notion of a system of chain complexes stabi-

lizing to some limiting complex, and proved the following theorem.

Theorem 2.7 (Theorem 2.2 in [8]). The shifted Khovanov chain complexes

hn�

q�N KC.Tkn/ stabilize to a limiting complex

KC.T1/ WD lim
k!1

hn�

q�N KC.Tkn/ (13)

which satisfies the axioms of a categorified projector Pn.
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Remark 2.8. In fact Rozansky’s original result concerned left-handed rather than

right-handed twisting, but the methods clearly translate to the right handed case

with no trouble. The left-handed version recovers a power series expansion of Pn

in the variable q�1; see Remark 2.1.

For a full account of the notions involved with such limiting complexes, see [8].

Here we recall only the material most helpful for our current purposes, translated

to right-handed twisting.

Definition 2.9. Given a chain map A
f
�! B between chain complexes, let jf jh

denote the maximal degree d for which the complex Cone.f / is chain homotopy

equivalent to a complex C that is trivial below homological degree d .

In essence, jf jh denotes the maximal homological degree through which the

map f gives a chain homotopy equivalence between A and B. Note that all of the

chain complexes being discussed here have differential increasing homological

degree by 1 (as in the Khovanov chain complex).

Definition 2.10. An inverse system of chain complexes is a sequence of chain

maps

¹Ak ; fkº WD A1

f1
 � A2

f2
 � � � � : (14)

Such a system is called Cauchy if the maps fk satisfy jfk jh !1 as k !1.

Definition 2.11. An inverse system ¹Ak; fkº has a (inverse) limit

A1 WD lim
k!1

Ak

if there exist maps Qfk WA1 ! Ak that commute with the system maps fk such

that j Qfkjh !1 as k !1.

Theorem 2.12 (Theorem 2.5 in [8]). An inverse system of chain complexes

¹Ak ; fkº has a limit A1 if and only if it is Cauchy.

Unwinding the definitions and results in [8], we see that the limiting complex

A1 of Theorem 2.12 is, up through homological degree d , chain homotopy

equivalent to the corresponding Ak0
beyond which all of the maps fk�k0

satisfy

jfk�k0
jh � d . In this sense the chain complexes Ak stabilize to give the limiting

complex A1 “one homological degree at a time.” Thus if we have a second

inverse system of B`’s with homotopy equivalences to the Ak’s up through ever-

increasing homological degrees, we should be able to conclude that B1 ' A1.

The following proposition clarifies this idea.
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Proposition 2.13. Suppose ¹Ak ; fkº and ¹B`; g`º are Cauchy inverse systems with

limits A1 D limk!1 Ak and B1 D lim`!1 B` respectively. Suppose there are

maps

F`WB` �! AkDz.`/

(z.`/ is an increasing function of `, not necessarily strict) forming a commuting

diagram with the system maps fk and g`. If jF`jh ! 1 as ` ! 1, then

B1 ' A1.

Proof. Similar to the proof of Proposition 3.13 in [8], the definition of the limit

provides maps that compose with the maps F` to give maps from B1 to all of

the Ak (this may require composing with some of the maps fk). Thus there is

a map F1WB1 ! A1 making commutative diagrams with all of the Qfk (see

Theorem 3.9 in [8]). All of the other maps have homological order going to infinity

as ` and k go to infinity, forcing jF1jh D 1 and thus B1 ' A1. Figure 4

illustrates the situation that will occur within this paper. �

3. Proving Theorem 1.1

3.1. An overview

Definition 3.1. A semi-infinite right-handed braid B on n strands is a semi-infinite

word in the standard generators �i of the braid group Bn

B WD �j1
�j2

: : : : (15)

Such a braid is called complete if each �i for i D 1; 2; : : : ; n� 1 occurs infinitely

often in the word for B.

Such an infinite braid B is called right-handed because there are no left-handed

crossings (��1
i ) allowed.

Definition 3.2. Given a semi-infinite right-handed braid B D �j1
�j2

: : : ; the `th

partial braid of B shall be the braid B` WD �j1
�j2

: : : �j`
.

The proof of Theorem 1.1 will be based upon Proposition 2.13 and, in particular,

Figure 4. With that diagram in mind, we have the following correspondences.

(1) The chain complexes hn�
q�N KC.Tkn/ will play the role of the Ak .

(2) Theorem 2.7 then guarantees that A1 ' Pn.

(3) Given a semi-infinite right-handed braid B WD �j1
�j2

: : : ; the chain com-

plexes hn�

q�N KC.B`/ will play the role of the B`.
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B`�2 Ak�1

B`�1

Ak

B`

B`C1

B`C2 AkC1

B`C3

::: g

:::f

B1 A1

 !

 

!
F`�2

 !

 

!

F
`�

2

 !
 

!

 

!F` 

!

 !g`

 

!

F
`C

1 !

 

!
F`C2

 

!

fk

 !  !F`
C

3

 !  

!
 

!
F1

 

!

 

!

 

!

 

!

Qg
`

 

!

 

!

Qg

 

!

 

!

Qf
k

 

!

Q
f

Figure 4. The diagram for Proposition 2.13. Given the two Cauchy systems ¹Ak ; fkº and

¹B`; g`º, [8] provides the complexes A1; B1 and the maps Qf; Qg. If we can find maps F

(shown in red), then [8] also provides the map F1 (blue). If we can show jF`jh ! 1 as

`!1, then F1 is a chain homotopy equivalence.

(4) Each map g` will be precisely the map of Corollary 2.5 obtained by resolving

the crossing �j`C1
. The maps fk are just compositions of such maps, as in

[8].

(5) The maps F` will be constructed via iterating Corollary 2.5 over a careful

choice of crossings to resolve.

(6) The function k D z.`/ will be based upon how far along the infinite braid B

we must look before we can “see” the braid T
nk sitting within B`.

(7) The estimates on jF`jh will be based upon Corollary 2.5 together with careful

use of equations (11) and (12). Similar arguments will estimate jg`jh to

guarantee that ¹B`; g`º was indeed Cauchy.
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3.2. The details. Fix the number of strands n. We begin with a semi-infinite,

right-handed, complete braid B and set out to prove Theorem 1.1 via Proposi-

tion 2.13 using the list of the overview. The points 1–4 of the overview require no

further explanation. We begin with points 5 and 6, that is, the construction of the

map

F`W h
n�

q�N KC.B`/ �! hn�

q�N KC.Tk/

where k D z.`/ must be determined.

Given the braidB`, we start at the top of the braid (beginning of the braid word)

and seek the first occurrence of generator �1. From that point we go downward

and find the first occurrence of �2, and so forth until we reach �n�1. In this way

we have found crossings within B` that would, in the absence of the crossings we

“skipped”, give a single copy of T1. We connect these crossings with a dashed line

going rightward then downward as in Figure 5, and we call such a set of crossings

a diagonal. The crossings involved are called diagonal crossings. Having found

such a diagonal within B`, we work our way back up the braid B` in the same way

going from the diagonal �n�1 to the previous (not necessarily diagonal) �n�2 and

so forth until we reach another �1 (if there were no skipped crossings, we are now

back at the �1 we started with). We begin the second diagonal from the first �1

that is below this �1 we found at the end of our upward journey. In this way we

find disjoint diagonals with as few “skipped” crossings between them as possible.

See Figure 5 for clarification.

Figure 5. An illustration of finding diagonals within some B`. In step 1, we find the first

diagonal illustrated in red. In step 2, we work our way back up from the diagonal �n�1 as in

the blue arrows until we arrive at the �1 marked by a blue star. In step 3, we begin forming

the second diagonal starting from the first �1 below the starred crossing from step 2.



The Khovanov homology of infinite braids 575

Let y.`/ denote the number of diagonals that can be completed within B` in

this way. The function z.`/ determining the destination of the map F` is

z.`/ WD
jy.`/

n

k

(16)

where b�c denotes the integer floor function. Thus z.`/ gives the number of full

twists that can be seen within B`. The map F` is then the composition of maps

coming from Corollary 2.5 where we are resolving all non-diagonal crossings

in B`. Note that the order in which we resolve the crossings is irrelevant, and

in fact the map F` can be viewed as a projection from the single mapping cone

of the direct sum of the Khovanov maps assigned to each non-diagonal crossing.

However in this paper we shall consider F` as a large composition starting from

resolving the bottom-most (non-diagonal) crossing. From this consideration it

should be clear that the maps F` commute with the maps fk and g` of the two

systems hn�
q�N KC.Tk/ and hn�

q�N KC.B`/, which are also just maps based on

resolving bottom-most crossings.

We now move on to point 7 from the overview. We wish to estimate jF`jh.

Viewing F` as a composition of projections from crossing resolutions as above,

we estimate the homological order of the cone of the i th such projection with the

help of Corollary 2.5. That is, we view hn�
q�N KC.B`/ as an iterated mapping

cone

hn�

q�N KC.B`/

D ...� � � �! hn�

q�N C1 KC.T3// �! hn�

q�N C1 KC.T2//

�! hn�

q�N C1 KC.T1//

and we consider the minimum homological order of

hn�C1q�N C1 KC.Ti /

where Ti is a tangle that is obtained from B` by resolving the first i � 1 non-

diagonal crossings (starting from the bottom of the braid) as 0-resolutions, and

then resolving the i th non-diagonal crossing as a 1-resolution. Iterating Lemma 2.3

over all of the remaining non-diagonal crossings, we can see hn�C1q�N C1 KC.Ti /

as a large multi-cone as illustrated in Figure 6.

Note that every diagram within the large multi-cone for hn�C1q�N C1 KC.Ti /

is made up of diagonal crossings and possible turnbacks from 1-resolutions

between the diagonals. Indeed we are guaranteed at least the one turnback pair

already present within Ti , but there may be many more. Now we turn to the

key lemma that produces the required estimate on jF`jh.
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Figure 6. A multicone presentation for an example hn�C1q�N C1 KC.Ti /. The shifts

and the KC notation are suppressed. Each term carries a shift of hn�C1q�N C1Cr ,

where r is the sum of the three resolution numbers above each diagram indicating which

resolution was taken for each of the three non-diagonal crossings (as numbered in the

starting diagram).
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Lemma 3.3. Let D be any .n; n/ tangle diagram involving precisely y diagonals

of crossings, no other crossings, and at least one pair of turnbacks between the

diagonals (see the diagrams in Figure 6). Then D can be simplified to a new

diagram D
0 via Reidemeister III, Reidemeister II, and negative Reidemeister I

moves. During this process, all of the Reidemeister II and negative Reidemeister I

moves remove crossings, and the total number of such moves is at least y.

Proof. We view the y diagonals as partitioning the diagramD into yC1 zones, and

we call such a zone empty if there are no turnbacks within it. By assumption

there is at least one non-empty zone. We start from the topmost non-empty zone,

and choose the ‘bottommost’ such pair in this zone (ie, the last �jm
within the

given zone where a 1-resolution occurred). The lower turnback can then be

passed through the diagonals below it one at a time via Reidemeister II moves

(Figure 7) and negative Reidemeister I moves (first step of Figure 8) until the

turnback reaches the next non-empty zone. Note that, following a Reidemeister I

move into an empty zone, multiple moves are required to pass through the next

diagonal (also illustrated in Figure 8). Nevertheless, it is clear that during this

process, the number of such Reidemeister moves will be at least the same as the

number of diagonals passed through.

Figure 7. Pulling a turnback downward through a diagonal via Reidemeister II.

Figure 8. An example of pulling a turnback downward through two diagonals via negative

Reidemeister I and Reidemeister II moves.
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Having now reached the second non-empty zone, we find the bottommost

turnback within this zone and continue the process until the final zone is reached.

This accounts for passing through all the diagonals below the topmost non-empty

zone. Finally, we return to that starting zone and choose the ‘topmost’ turnback

within that zone (ie the first �jm
within that zone where a 1-resolution occurred)

and pass this turnback through all of the diagonals above it. If the first move

required is a Reidemeister II move (ie the two strands connected by the turnback

are adjacent on the defining torus of the twist), this process will be the same as the

downward one. If the first move is a (negative) Reidemeister I move, this process

may require some Reidemeister III moves as illustrated in Figure 9. However

it is clear that there will still be at least as many Reidemeister II and negative

Reidemeister I moves as there are diagonals, and thus the total number of such

moves is at least y as desired.

Figure 9. An example of pulling a turnback upward through diagonals. Each step indicates

passing through one diagonal, so that the total number of negative Reidemeister I and

Reidemeister II moves is clearly at least the number of such diagonals.
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More conceptually, a sequence of diagonals with empty zones between them

corresponds to a torus braid. A topmost turnback below this (or bottommost

turnback above this) corresponds to connecting two strands of the torus braid.

The simpler cases above correspond to these two strands being adjacent, while

the more complex case of Figure 9 corresponds to connecting two non-adjacent

strands. Either way, the turnback can be pulled up (or down) through the center

of the torus as in Figure 10. Passing through diagonals corresponds to passing

by other strands, which must eliminate crossings, thus necessitating at least one

Reidemesiter I or II move. The Reidemeister I moves must be negative because

they are undoing right-handed twisting. �

Figure 10. A topmost turnback entering a set of diagonals corresponds to a turnback being

pulled through the center of a torus braid as shown here. The blue arrow indicates the

direction of the pulling.

Corollary 3.4. Every term hn�C1q�N C1Cr KC.D/ in the multicone expansion of

any hn�C1q�N C1 KC.Ti / (see Figure 6) is chain homotopy equivalent to a com-

plex of the form hn�C1Cshq�N C1CrCsq KC.D0/ where sh and sq are homological

and q-degree shifts depending on the expansion term, and r is the number of 1-res-

olutions taken to arrive at D from Ti . Moreover, for any term in the expansion,

sq � sh � y.

Proof. The shifts come from equations (11) and (12). �
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As an example of Corollary 3.4, consider the .111/-entry from Figure 6. We

illustrate the process of Lemma 3.3, keeping track of the shifts, for this entry in

Figure 11. In this case we get sh D 4 D y, while sq D 5. As an illustration of

the case where Reidemeister III moves are also required, we show the process for

the .001/-entry in Figure 12 where sh D 8 > y and sq D 10. Notice that further

simplifications are possible in the first case, indicating that our given bounds will

rarely be sharp.

Proof of Theorem 1.1. We build a commuting diagram as in Figure 4 using the

listed points of the overview. The construction of F` as a composition of mapping

cone projections p ensures jF`jh is at least as large as the minimum jpjh amongst

all such p. As described above, this is precisely the minimum homological order

amongst all the hn�C1q�N C1 KC.Ti / via Corollary 2.5. Corollary 3.4 guarantees

that the minimal homological degree of any term in the multicone expansion of

such a complex (and thus for the entire complex) is at least y, the number of

diagonals found in B`. Thus we have

jF`jh � y:

The assumption that the semi-infinite braid B is complete ensures that y ! 1

as ` ! 1. The mapping cones of the maps g` also involve diagrams with

turnbacks, so that a similar (and simpler) argument also ensures jg`jh ! 1 as

` ! 1, verifying that this system is Cauchy and has a limit. Thus we may use

Proposition 2.13 to conclude the proof. �

4. Proving Theorem 1.3

The proof of Theorem 1.3 is a very simple generalization of the proof of Theo-

rem 1.1 to the setting of the L-S-K spectrum. In short, we build a diagram similar

to Figure 4 out of spectra instead of chain complexes. Then instead of tracking

the homological order below which the maps are chain homotopy equivalences,

we track the q-degree below which the maps are stable homotopy equivalences.

Corollary 3.4 ensures that this maximal q-degree of equivalence goes to infinity

as the sequence of maps goes to infinity.

To begin with, we recall some of the key properties of the spectrum X.L/ of

an oriented link L. The first will allow us to focus on a single q-degree at a time.
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Figure 11. The process of Lemma 3.3 shown for the (111)-entry from Figure 6, illustrating

the degree shifts of Corollary 3.4. The turnback that is about to be ‘pulled’ is indicated by

a blue star.

Figure 12. The process of Lemma 3.3 shown for the (001)-entry from Figure 6, illustrating

the degree shifts of Corollary 3.4. The turnback that is about to be ‘pulled’ is indicated by

a blue star.
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Proposition 4.1 (Theorem 1 in [6]). The L-S-K spectrum X.L/ of an oriented link

L decomposes as a wedge sum over q-degree

X.L/ D
_

j 2Z

X
j .L/ (17)

where for each j 2 Z, the cochain complex of Xj .L/ matches the Khovanov chain

complex in q-degree j

C i .Xj .L// D KCi;j .L/: (18)

Note that for any link L the number of non-empty q-degrees is finite, and so

the wedge sum of Proposition 4.1 is actually finite.

The following property lifts Lemma 2.3.

Proposition 4.2 (Theorem 2 in [6]). Let L be an oriented link, with a specified

crossing . Let L0 denote the same link with the crossing replaced by its

0-resolution , and let L1 denote the same with the 1-resolution . Then for

each q-degree j 2 Z, the corresponding spectra fit into a cofibration sequence

†n�

X
j �N .L0/ ,�! †n�

X
j �N .L/ �� †n�C1

X
j �N C1.L1/ (19)

where † denotes the suspension operator, and the notations n� and N follow the

conventions set out in Definition 2.4.

The cofibration sequence (19) can be combined over the wedge sum (17) to give

a cofibration sequence over the full spectrum that we write as

†n�

q�N
X.L0/ ,�! †n�

q�N
X.L/ �� †n�C1q�N C1

X.L1/ (20)

where, abusing notation slightly, we again use the q operator to indicate a shifting

of the q-degrees assigned to each wedge summand of X.L/.

Corollary 4.3. If for some q-degree j 2 Z we have KCj �N C1.L1/ homologically

trivial, then the inclusion map

†n�

X
j �N .L0/ ,�! †n�

X
j �N .L/ (21)

is a stable homotopy equivalence.

Proof. The cofibration sequence (19) gives rise to a long exact sequence on ho-

mology, and the assumption ensures that the map above gives isomorphisms on all

homology. Therefore by Whitehead’s theorem it is a stable homotopy equivalence

(there is no notion of a �1 obstruction in the stable homotopy category). �
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We now generalize the definitions needed to discuss stable limits of infinite

sequences of L-S-K spectra, as in Definition 2.10 and Theorem 2.12. We do not

need a notion of sequences of spectra being ‘Cauchy’, but we do need some notion

of stability.

Definition 4.4. A map between L-S-K spectra f W†n�

q�N
X.L/!†n�

q�N
X.L0/

is called q-homogeneous if f preserves normalized q-degrees between wedge

summands. That is,

f D
_

j 2Z

f j (22)

for q-preserving maps

f j WXj �N .L/ �! X
j �N .L/:

In this case, we let jf jq denote the maximal q-degree d for which f j is a stable

homotopy equivalence for all j � d .

It is clear from the definitions that the maps of equation (20) are q-homoge-

neous.

Definition 4.5. An infinite sequence of q-homogeneous maps

†n�

q�N
X.L0/

f0
�! †n�

q�N
X.L1/

f1
�! †n�

q�N
X.L2/ �! � � � (23)

will be called a direct q-system of L-S-K spectra, denoted ¹X.Lk/; fkº. Such a

system is called q-stable if jfk jq !1 as k !1.

Theorem 4.6. A q-stable direct q-system ¹X.Lk/; fkº has homotopy colimit

X.L1/ WD hocolim.†n�

q�N
X.L0/

f0
�! †n�

q�N
X.L1/

f1
�! †n�

q�N
X.L2/ �! � � � /;

D
_

j 2Z

X
j .L1/

(24)

where

X
j .L1/ WD hocolim.Xj �N .L0/

f0
�! X

j �N .L1/
f1
�! X

j �N .L2/ �! � � � /

and for each j , there exists lower bound kj such that

X
j .L1/ ' X

j �N .Lk/ for all k � kj :
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Proof. This is clear from the properties of a homotopy colimit after unwinding

the definitions. �

Remark 4.7. Notice that the maps of the sequence (23) go in the opposite direc-

tion as those of equation (14) considered earlier for chain complexes. This is to

be expected, since the inverse system of equation (14) should be recovered by the

singular cochain functor C � which is contravariant. Similarly, our limits here are

homotopy colimits, as opposed to the inverse limits considered in the previous

section.

With these ideas in place, we can state and prove the stable homotopy version

of Proposition 2.13 providing the diagram corresponding to Figure 4.

Proposition 4.8. Suppose ¹X.Lk/; fkº and ¹X.M`/; g`º are q-stable direct q-sys-

tems with homotopy colimits X.L1/ andX.M1/ respectively, as in equation (24).

Suppose there are q-homogeneous maps

F`W†
n�

q�N
X.Lz.`// �! †n�

q�N
X.M`/

(z.`/ is an increasing function of `, not necessarily strict) forming a commuting

diagram with the system maps fk and g`. If jF`jq !1 as `!1, then we have

X.L1/ ' X.M1/:

Proof. The proof is very similar to that of Proposition 2.13. See Figure 13. The

properties of homotopy colimits provide the existence of q-homogeneous maps
Qfk W†

n�
q�N

X.Lk/ ! X.L1/ and Qg`W†
n�

q�N
X.M`/ ! X.M1/ as well as

the map F1WX.L1/ ! X.M1/ which must commute with all of the other

maps. Fixing some q-degree j , Theorem 4.6 and the assumption on the maps

F` guarantee that the wedge summand maps Qf
j

k
, Qg

j

`
and F

j

`
all become stable

homotopy equivalences once k and ` are large enough. Thus F1 must also provide

a stable homotopy equivalence F
j
1WX

j .L1/
'
�! X

j .M1/. This happens for all j ,

so in fact F1 is the desired (q-homogeneous) stable homotopy equivalence. �

Proof of Theorem 1.3. Given a specified closure xB of a complete semi-infinite

right-handed braid B on n strands, we build the diagram of Figure 13 in a manner

completely analogous the building of the diagram of Figure 4.

� The links Lk are the corresponding closures of the full twists Lk WD Tnk.

� The maps fk are compositions of the cofibration maps of equation (21)

coming from resolving the crossings of the last full twist in Tn.kC1/ as

0-resolutions (see [10]).
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X.Lk�1/ X.M`�2/

X.M`�1/

X.Lk/

X.M`/

X.M`C1/

X.LkC1/ X.M`C2/

X.M`C3/

:::f

::: g

X.L1/ X.M1/

 !  !

 

!
F`�2

 

!
 !

 

!

 

!F`�1

 

!

F
` 

!

fk

 ! g`

 ! 

!F`C
1

 

!

F
`C

3

 

!
F`C2

 

!
 !

 !

 

!
F1

 

!

 

!

Q
f

k

 

!

Q
f

 

!

 

!

 

!

 

!

Qg
`

 

!

 

!

Qg

Figure 13. The diagram for Proposition 4.8, omitting the normalization shifts †n�

q�N

on each term. Compare to Figure 4. Given the two q-stable systems ¹X.Lk/; fkº and

¹X.M`/; g`º, the homotopy colimits X.L1/ and X.M1/ come with maps Qf and Qg. If we

find the q-homogeneous maps F (red) and show that jF`jq !1 as `!1, then the map

F1 on the colimits (blue) is a stable homotopy equivalence.

� The links M` are the corresponding closures of the partial braids B`, that is,

M` WD B`.

� The maps g` are the inclusion maps of equation (20) coming from resolving

the last crossing of B`C1 as a 0-resolution.

� The maps F` are compositions of inclusions coming from resolving non-

diagonal crossings as 0-resolutions precisely as in the proof of Theorem 1.1.
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See Figure 1 for the notion of corresponding closures of braids. It is shown

in [10] that the direct system ¹X.Tnk/; fkº is q-stable, with homotopy colimit

X.T1/ satisfying many properties similar to closures of the Jones–Wenzl pro-

jectors Pn. The proof that jF`jq and jg`jq go to infinity with ` is analogous to

the similar statement about jF`jh and jg`jh in the proof of Theorem 1.1. In short,

we use Corollary 4.3 to change the question to one of homological triviality of

KCj �N C1.Ti / for closures of braids Ti involving diagonals and turnbacks, as be-

fore. The estimate of Corollary 3.4 still holds, but now we are concerned with

the minimum q-value (rather than minimum homological value) of a complex of

the form hn�C1Cshq�N C1CrCsq KC.D0/ (where again D
0 came from a partial res-

olution D of Ti by pulling turnbacks through diagonals). For this purpose we

define

]ı.L.0// WD the number of circles in the all-zero resolution of the link L: (25)

Then we have that the minimum q-degree for generators of the complex

hn�C1Cshq�N C1CrCsq KC.D0/ is precisely

min
q

.hn�C1Cshq�N C1CrCsq KC.D0// D 1C r C sq � ]ı.D0.0// (26)

since each circle in the all-zero resolution of the link can contribute a generator

v� with q-degree �1.

Now the number of circles in a resolution is bounded above by the number of

local maxima present in the diagram. The number of such maxima in the

all-zero resolution of any D0 is comprised of two parts, those within the tangle

D
0 and those without (so those due to the specified closure). The second category

will contribute some constant c that is independent of the tangle D
0, and indeed

independent of the infinite braid B at all. The first category will be bounded above

by the number of 1-resolutions that were taken to arrive at D from B` (note that

the process of pulling turnbacks through diagonals does not create maxima). But

this number is precisely 1C r . Thus we have

min
q

.hn�C1Cshq�N C1CrCsq KC.D0// D 1C r C sq � ]ı.D0.0//

� 1C r C sq � .1C r C c/

� y � c

which certainly goes to infinity as y does. The assumption of completeness

ensures y ! 1 as ` ! 1, and so we have jF`jq ! 1 as ` ! 1. As in

the proof of Theorem 1.1, the argument for jg`jq is a simpler version of this, and

so we are done. �
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5. More general infinite braids

In this section we collect a handful of corollaries of Theorems 1.1 and 1.3 for dealing

with other types of infinite braids.

Corollary 5.1. Let B be a complete semi-infinite braid containing only finitely

many left-handed crossings . Then KC.B/ is chain homotopy equivalent to a

shifted categorified Jones–Wenzl projector haqb
Pn, and similarly for the L-S-K

spectra X.xB/ ' †aqb
X.T1/.

Proof. If there are only finitely many left-handed crossings, we can view B as the

product of the finite partial braid Bm which contains all of these crossings, and

the infinite braid B
0 which consists of the rest of B. Then the result follows from

the similar properties of Pn (see [8]) and X.T1/ (see [10]). The shifts a and b will

depend on the orientations of the crossings in the finite Bm. �

To give the most general possible statement, we start with a definition.

Definition 5.2. A tangle involving semi-infinite braids is a tangle diagram Z

where any finite number of interior discs D
i containing only the identity tan-

gles Ini
are formally replaced by complete semi-infinite right-handed braids B

i

(see Figure 14).

Figure 14. An example of a closed tangle involving semi-infinite braids B1 and B2. As

long as both are right-handed and complete, the resulting Khovanov chain complex and

L-S-K spectrum will match those of the same diagram with infinite twists in place of the

B1 and B2.
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Theorem 5.3. For any tangle Z involving finitely many complete semi-infinite

right-handed braids B
i on ni strands, the Khovanov chain complex KC.Z/

(defined in a limiting sense analogous to that of KC.B/ in Theorem 1.1) is chain ho-

motopy equivalent to the Khovanov complex of the same tangle where the Bi have

been replaced with the corresponding Pni
. Similarly, if the tangle Z is closed,

then X.Z/ is stably homotopy equivalent to the same tangle where the B
i have

been replaced with the corresponding infinite twist T1
ni

.

Proof. This is immediate for the projectors Pni
which are defined via braids that

allow for stitching; the corresponding statement for spectra of tangles involving

infinite twists was proved in [10], which allows for this generalization. �

Theorem 5.3 allows us to consider many sorts of infinite (right-handed) braids

by breaking them up into complete semi-infinite (right-handed) braids. For in-

stance, a non-complete semi-infinite braid is equivalent to a tangle involving a

finite braid and two or more complete semi-infinite braids below it (see Fig-

ure 15). As another example, a bi-infinite braid B D : : : �j�2
�j�1

�j0
�j1

�j2
: : :

can be viewed as the composition of two semi-infinite braids B D B
� � BC (see

Figure 16). In this way we see that many different notions of infinite braids have

limiting Khovanov complex (and L-S-K spectrum, if closed) made up of combina-

tions of Jones–Wenzl projectors (or spectra involving closures of infinite twists).

Choices of how to arrange the diagrams (for instance, where to begin the semi-

infinite complete braid in Figure 15) lead to normalization shifts within the result-

ing complex or spectrum similar to those in [10] and [8] (as in Corollary 5.1).

Figure 15. Viewing a non-complete infinite braid as a combination of two complete ones,

which limit to their respective Pni
.
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Figure 16. Viewing a bi-infinite braid as a combination of two semi-infinite ones, which

limit to their respective Pni
.
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