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modules over cohomology rings of partial flag varieties and on the category O of type
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1. Introduction

1.1. Motivation. One important development in representation theory in the last

decade is the theory of categorical actions of Lie algebras, in the sense of Chuang

and Rouquier [9]. The basic object of this theory is a 2-category PU.g/ associated

with a semisimple or Kac–Moody Lie algebra g, introduced independently in two

different presentations by Khovanov and Lauda [22] and by Rouquier [33] (these

were shown to be equivalent by Brundan [5]). The notion of a categorical action

of g is made precise by the structure of 2-morphisms in PU.g/, and it provides an

algebraic way of understanding deep structures of the quantum group U.g/ such

as canonical bases [28, 29, 20].

One case of particular interest is when g D slr , where Schur duality plays a

basic role. The Grothendieck group of PU.slr/ coincides with the modified quantum

group PU D PU.slr /, and the classes of indecomposable 1-morphisms are identified

with Lusztig’s canonical bases [24, 38]. In the quantum setting, Schur duality

relates the quantum group U.slr/ to Hecke algebras of type A, see [18]. Beilinson,

Lusztig, and MacPherson [7] constructed the modified quantum group PU.slr/ as

a limit of a family of finite-dimensional algebras known as Schur algebras, and

they realized the Schur algebras using functions on the points of r-step partial

flag varieties over a finite field. The BLM construction was then adapted in [17]

to realize quantum Schur duality. This geometric realization of PU.slr / has been

lifted to a categorical action of PU.slr/ in [22]. This construction also leads

to a categorified Schur algebra, which is intimately related to singular Soergel

bimodules [40, 31, 39].

Schur duality has been generalized in [8] in connection to the Kazhdan–Lusztig

theory for the BGG category O of type B=C. While other generalizations of Schur

duality have changed slr to a different classical Lie algebra [4, 32], this construc-

tion replaces the Hecke algebra from type A with one of type B=C. Like in type A,

this construction admits a BLM-type realization [6], where U.slr/ is replaced by

the coideal algebra U| associated with the Cartan involution composed with the

diagram involution of the A2r Dynkin diagram. Note that .U.sl2rC1/;U
| / forms

a quantum symmetric pair in the sense of [25]. The commutant of the Hecke

algebra of type B=C in this setting is called | -Schur algebra. They are naturally

quotients of U| , and admit a geometric realization in terms of partial flag varieties

of type B=C over finite fields. The idempotented coideal algebra can be realized

as a limit of the family of | -Schur algebras. Based on this construction, it was

shown in [30] that PU| admits a canonical basis with desirable positivity proper-

ties, analogous to Lusztig’s canonical basis for PU as defined in [29, Chapter 25].

The A D ZŒq; q�1�-span of this basis gives an integral form A
PU| .
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By analogy with the “weak sl2-categorifications” discussed in [9, 5.1], we can

think of the construction of [8] as a weak categorical action of U| . The construc-

tion of [6] shows the existence of a similar weak action of U| on constructible

sheaves on partial flag varieties of type B=C. Following the analogy with type A,

it is natural to expect that we can define a strong categorical action of U| by a

2-category PU| analogous to PU.

The existence of this 2-category together with its basic 2-representations is the

principal result of this paper.

1.2. Main results. To explain the definition of our 2-category PU| , let us first give

a description of PU| . The idempotented algebra PU| can be viewed as a category

with objects indexed by a weight lattice X| and morphisms generated by

Ei W� �! �C ˛i and Fi W� �! � � ˛i ;

for i D ˘;˘C1; : : : ; r�˘with ˘ D 1
2
. See Section 2.3 for a precise definition. For

i > ˘, the generators Ei , Fi satisfy the same relations as standard Chevalley gen-

erators in PU. However, the relations are different when i D ˘: there is no relation

between length 2 monomials in E˘ and F˘. Instead they satisfy inhomogeneous

| -Serre relations (2.9) and (2.10), whose summands are no longer canonical ba-

sis elements. In particular, U| does not have a triangular decomposition like that

of U.

To define PU| , we follow the approach of [24, 22]: we already know of a weak
PU| -action on the modules over cohomology rings of partial flag varieties, so we

can extract the relations in PU| based on computations in this category. While the

2-morphisms acting on Ei and Fi for i ¤ ˘ satisfy the same relations as in PU, new

relations appear for i D ˘.

One can think of these new relations as combining the KLR relations for

the elements ¹E˘; E�˘º in UC.sl3/ and for ¹E˘; F˘º in U.sl2/. In particular,

the usual bicross relations which categorify the commutator relation for Ei and

Fi (3.12)–(3.13) combine with (3.5) to give (3.14)–(3.15). Similarly, there is a

new relation involving a triple point (3.17) which combines the relation of [24,

Proposition 5.8] with (3.6); this relation is used in proving the categorified | -Serre

relations, as we will explain in Section 4 and Appendix A. The bubble relations

and bubble slide formulas for i D ˘ here are also somewhat different from [24].

The complexity of this last triple point relation makes it difficult to verify

the relations of PU| directly (much like the presentation of PU in [22]). However,
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we show that if Ei and Fi satisfy the relations of the coideal subalgebra at the

decategorified level, then (3.17) is forced by the other relations in PU| ; see Propo-

sition 4.10. The reader can think of Proposition 4.10 as a weak version of “control

from K0” theorems, such as [33, 5.27].

Now, let us describe the main results of this paper. The first is that PU| is a

categorification of PU| , in the same sense as the relationship of PU and PU.

Theorem A (Theorem 6.5). There exists an algebra isomorphism between the

Grothendieck group of PU| and A
PU| , with indecomposable self-dual 1-morphisms

matching the canonical basis of A
PU| .

To prove this theorem, and as evidence for the usefulness of this categorifica-

tion, we ask for generalizations of the categorical actions of U discussed earlier.

Let G be either the group SO.2mC1/ or Sp.2m/, and let g be its Lie algebra. One

can define a 2-category Fr;m analogous to the “flag category” of Khovanov and

Lauda [22] using cohomology rings of partial flag varieties of G, see Section 5.2

for the precise definition. The 2-category PU| admits the following categorical ac-

tions.

Theorem B (Theorem 5.8, Theorem 6.1, Proposition 6.3, Theorem 7.6). (a) There

is a functor �W PU| ! Fr;m for each m. This functor is essentially surjective on

1-morphisms (and becomes full on 2-morphisms after a small modification).

(b) The category PU| acts on the category O of g such that an object � 2 X| is

sent to a block of O, and Ei , Fi act by translation functors on blocks.

The actions in Parts (a) and (b) provide the desired enhancements of the weak

categorical actions in [6] and in [8], respectively.

These actions are related via the classic links between projective functors,

Harish-Chandra bimodules and singular Soergel bimodules given by [34, 35, 37]

and [40]. The action of Part (a) allows us to show that PU| acts on any category

of representations of Lie algebra of type B/C which are of finite length and are

closed under tensor product with finite dimensional modules (see Theorem 7.6).

Category O is an example of such a category, as are many of the variations on it.

1.3. Structure of the paper. In Section 2 we will recall the basic structure

results on the algebras U and U| , along with their idempotented forms PU and PU| .

In Section 3, we give the definition of the 2-category PU| , presented in diagram-

matic terms, and study some basic properties of it. In Section 4, we precisely

formulate the categorification of the | -Serre relations, which allows us to define a
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surjective algebra homomorphism PU| ! K0. PU| /. The categorification of | -Serre

relations involves some lengthy diagrammatic computation, which will be given in

Appendix A. We construct the 2-functor �W PU| ! Fr;m in Section 5, and prove it is

locally full in Section 6. This allows us to deduce the isomorphism PU| ' K0. PU| /

and the matching of canonical bases. Finally, we describe the action of PU| on

category O in Section 7.

1.4. Future developments. The construction of this paper seems likely to be

only one of a family of categorifications corresponding to coideal subalgebras,

and relevant to the representation theory of classical groups and Lie algebras of

types B=C=D in many contexts. Whereas categorical actions of any Kac–Moody

algebra are built from categorical sl2-actions, actions of PU include a new basic

building block, which may be useful in other contexts. For reasons of space and

complexity, we have left the consideration of several natural questions that arise

in this framework to future work.

In a sequel to this work, we will consider analogues of cyclotomic KLR

algebras for PU| ; these are algebras which naturally categorify the restrictions to

U| of finite-dimensional simple U-modules and their | -canonical bases defined

in [8]. We will also study the relationship between PU| and PUwhich can be regarded

as a categorical quantum symmetric pair.

The connection between the coideal algebras and category O of type D has

been independently observed in [11], where they also studied relations between

morphisms in O with Nazarov–Wenzl algebras and affine Brauer algebras. We

expect the categorical action of our 2-category PU| will bring a new perspective

on these algebras. Note that there should also be a type D analogue of our main

results; see [1] for Kazhdan–Lusztig theory of type D and [15] for geometric Schur

duality of type D.

The algebra U| is merely a special example of the coideal algebras arising from

quantum symmetric pairs [25, 23]. Particularly important special cases include

the coideal subalgebra U{ � U.sl2r / associated to its diagram automorphism, and

the affine analogues of these algebras, attached to diagram automorphisms for
bsln, see [16]. The former also appears in geometric Schur duality and the study

of category O in type B=C, see [8, 6, 30] while the latter is expected to play a

fundamental role in the study of modular representations of type B/C. These other

symmetric pairs will require more work to categorify. Since these algebras admit

natural geometric realizations and canonical bases, the techniques of this paper

can likely be applied to them as well.
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2. Preliminaries on coideal subalgebras

2.1. Notations and conventions. Let q be a formal variable and let A D
ZŒq; q�1�. For a 2 Z, let

Œa� D qa � q�a

q � q�1
and Œa�Š D Œ1�Œ2� � � � Œa� for a > 0.

The a-th divided power of an element E in a Q.q/-algebra is the element E.a/ WD
Ea=Œa�Š.

Let C be an additive category. For any object x in C, we denote by 1x the

identity endomorphism of x. A grading on C is an auto-equivalence ¹1ºWC! C.

Let ¹`º denote the `-fold composition of the auto-equivalence ¹1º. Given an object

x in C and f D
P
fsq

s 2 A, we write
L

f x or x˚f for the direct sum over s

of fs copies of x¹sº. The split Grothendieck group K0.C/ is the abelian group

generated by symbols Œx� for x an object, with the relation Œx ˚ y� D Œx� C Œy�.
A grading induces an A-module on K0.C/ such that qŒx� D Œx¹1º�. Given two

objects x, y, let Homs.x; y/ denote the space Hom.x¹sº; y/ of morphisms of

degree s. We abbreviate Hom�.x; y/ D
L

s2Z Homs.x; y/. The idempotent

completion (or Karoubi envelope) PC is the category whose objects are pairs .M; e/

of M 2 Ob.C/ and idempotent endomorphisms eWM ! M , with .M; e/ serving

as the image of the idempotent e. The category PC is universal among idempotent

complete categories with a functor from C.

Given a ring k, a graded k-linear 2-category A is a category enriched

over graded additive k-linear categories, that is, a 2-category such that the

Hom categories are graded additive k-linear categories and the composition
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maps HomA.x; y/ � HomA.y; z/ ! HomA.x; z/ form a graded additive k-lin-

ear functor. We will abbreviate A.x; y/ D HomA.x; y/. Objects and mor-

phisms in A.x; y/will be respectively called 1-morphisms and 2-morphisms in A.

A 2-category is called strict if 1-morphisms compose strictly associatively, and a

2-functor is called strict when it preserves compositions of 1-morphisms on the

nose. We will always assume that A.x; x/ has a unit object, denoted by 1x . The

Grothendieck group of A is the categoryK0.A/ with same objects as A, and with

morphisms given by the Grothendieck group of the corresponding Hom-category.

If A is graded, then K0.A/ is an A-linear category.

Recall that a functor is essentially surjective if any object in the target is

isomorphic to an object in the image. It is full/faithful if it is surjective/injective

on Hom sets. A fully faithful, essentially surjective functor is an equivalence.

A 2-functor ˆWA ! B is locally full (resp. faithful, essentially surjective) if

the induced functors A.x; y/! B.ˆ.x/; ˆ.y// is full (resp. faithful, essentially

surjective) for all objects x; y 2 A.

2.2. Reminders on PU. Fix a positive integer r and define

I D I2r D
°
i 2 ZC 1

2

ˇ̌
ˇ � r < i < r

±
: (2.1)

Due to an extensive use of 1
2

throughout the paper, we will often write

˘ D 1

2
:

Consider the root datum of type A2r with Cartan matrix indexed by I, weight

lattice X, simple roots ¹˛iºi2I � X, simple coroots ¹˛_i ºi2I, and the coroot lattice

Y D
L

i2I Z˛
_
i . There is a perfect pairing

h�; �iWY �X �! Z: (2.2)

The entries of the Cartan matrix are given by h˛_i ; j̨ i for i; j 2 I.

Consider the lattice
Lr

aD�r Z"a with the standard pairing h"a; "bi D ıa;b.

We will identify

X D
rM

aD�r

Z"a

.
Z

� rX

aD�r

"a

�
:

Then ˛i D "i�˘ � "iC˘ .modZ
Pr

aD�r "a/ lies in X.
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The quantum group U D Uq.sl2rC1/ is the Q.q/-algebra generated by Ei , Fi ,

K˙1
i , i 2 I subject to the relations

KiKj D KjKi ; KiEjK
�1
i D qh˛

_
i

; j̨ iEj ;

ŒEi ; Fj � D ıij

Ki �K�1
i

q � q�1
; KiFjK

�1
i D q�h˛

_
i

; j̨ iFj ;

and the quantum Serre relations (see (2.3) below). We may write U D U2rC1 if

necessary. It is a Hopf algebra, with a coproduct �WU! U˝U such that

�.Ki / D Ki ˝Ki ; �.Ei / D 1˝EiCEi ˝K�1
i ; �.Fi / D Fi ˝1CKi˝Fi ;

for all i . There is a unique involution (called bar involution)  WU ! U as Q-

algebra which sends q to q�1, Ki to K�1
i and fixes Ei , Fi , for all i .

We will be interested in an idempotented (or modified) form of U introduced

by Lusztig [29]. Consider the Q.q/-linear category PU with the object set X and

morphisms generated by Ei W�! �C ˛i , Fi W�! �� ˛i , subject to the relations

ŒEi ; Fj �1� D ıij Œh˛_i ; �i�1�;

X

aCbD1�h˛_
i

; j̨ i

.�1/aE.a/
i EjE

.b/
i D

X

aCbD1�h˛_
i

; j̨ i

.�1/aF .a/
i FjF

.b/
i D 0; for all i ¤ j: (2.3)

Lusztig’s idempotented algebra (also denoted by PU) can be identified with the

direct sum of all Hom-spaces in this category. Let A PU be the A-linear subcategory

of PU with the same objects and with morphisms generated over A by E
.a/
i , F

.a/
i

for i 2 I, a > 0. This corresponds to Lusztig’s integral A-form of PU.

2.3. The coideal category PU|. Set

I| D I|
r D I\ R>0 D ¹˘;˘C 1; : : : ;˘C r � 1º: (2.4)

We shall consider a Q.q/-algebra U| which admits a presentation with generators

Ei ;Fi ;K
˙1
i for i 2 I| , and a set of relations; see [8, Section 6.1]. There is an

embedding of algebras | WU| ! U such that

Ei 7�! Ei CK�1
i F�i ; Fi 7�! FiK

�1
�i CE�i ; Ki 7�! KiK

�1
�i ;

for all i 2 I| . We will consider the algebra U| as a subalgebra of U under the

embedding | . We may write U| D U
|
r if necessary.

The subalgebra U| has a further compatibility with the coproduct �: it is

a coideal subalgebra of U. That is, the coproduct � on U restricts to a Q.q/-

algebra homomorphism �WU| ! U| ˝ U. The specialization of U| at q D 1 is
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just the enveloping algebra of sl#2rC1, the Lie subalgebra fixed by the involution

#W sl2rC1 ! sl2rC1 given by rotating .2r C 1/ � .2r C 1/-matrices by � radians.

Hence .U;U| / is an example of a quantum symmetric pair [25, 23].

Let � be the involution of the lattice X induced by letting �."a/ D �"�a for

�r 6 a 6 r . We may write �� D �.�/, for � 2 X. Denote by X� the sublattice

of �-fixed points in X. Note that ˛�
i D ˛�i for all i 2 I, hence � induces an

automorphism of the root system. Set �˛_i D ˛_i � ˛_�i for i 2 I| . Let

X| D X=X� ; Y| D
M

i2I|

Z �˛_i : (2.5)

The lattice X| can be regarded as a weight lattice for U| . The pairing (2.2) induces

a nondegenerate pairing

h�; �iWY| �X| �! Z:

For � 2 X| , we write

�i D h�˛_i ; �i; for all i 2 I| :

For � 2 X we will denote its image in X| again by � if there is no confusion. In

particular, we will often regard ˛i 2 X for i 2 I| as an element in X| . Note the

unusual pairing

h�˛_˘ ; ˛˘i D 3:

Let PU| be the Q.q/-linear category with the object set X| and morphisms

generated by Ei W� 7! � C ˛i D � � ˛�i , Fi W� 7! � � ˛i D � C ˛�i , for all

i 2 I| , subject to the following relations for i ¤ j :

ŒEi ;Fj �1� D 0; (2.6)

ŒEi ;Fi �1� D Œ�i �1�; for all i ¤ ˘; (2.7)

X

aCbD1�h˛_
i

; j̨ i

.�1/aE.a/
i EjE

.b/
i D

X

aCbD1�h˛_
i

; j̨ i

.�1/aF.a/
i FjF

.b/
i D 0; (2.8)

.E
.2/
˘ F˘ � E˘F˘E˘ C F˘E

.2/
˘ /1� D �.q�˘C2 C q��˘�2/E˘1�; (2.9)

.F
.2/
˘ E˘ � F˘E˘F˘ C E˘F

.2/
˘ /1� D �.q�˘�1 C q��˘C1/F˘1�: (2.10)

The definition of PU| here is basically the same as the one in [30] but differs from

the one in [6] which used a different object set. Note that a major difference in the

presentation of PU| with respect to PU is that there is no relation between monomials

of length � 2 in E˘, F˘, but rather they satisfy the inhomogeneous relations (2.9)
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and (2.10), which will be referred as | -Serre relations. Note also that the algebra

U| or PU| does not have any natural triangular decomposition due to the mixture

of E˘ and F˘ in these | -Serre relations.

Let A
PU| be the A-linear subcategory of PU| with the same objects and with

morphisms generated by divide powers E
.a/
i 1�, F

.a/
i 1�, for all i 2 I| , � 2 X| , and

a � 0. It was shown in [6, 30] that A
PU| is a free A-module and Q.q/˝A A

PU| D
PU| .

Denote by $ the unique element in X| such that

$˘ D 1; $i D 0 .i 2 I|n¹˘º/:

The following are the idempotented counterparts of the symmetries for U| given

in [8, Lemma 6.1].

Lemma 2.1. (a) There exists an involution !| on PU| as a Q.q/-algebra which

sends 1� to 1���$ and switches Ei with Fi , for all i and � 2 X| .

(b) There exists an anti-involution �| on PU| as a Q.q/-algebra which sends 1�

to 1���$ and fixes Ei ;Fi , for all i and � 2 X| .

(c) There exists an involution (called bar involution)  | on PU| as a Q-algebra

which sends q to q�1, and fixes 1�, Ei , Fi , for all i and � 2 X| .

In particular, all three (anti-)involutions !| ; �| and  | preserve the A-form

A
PU| .

Proof. Follows by inspection of the defining relations for PU| in (2.6)–(2.10). �

3. Coideal 2-categories

In this section, we introduce the main object of this paper, the 2-category U|

(see Definition 3.3). This is an analogue of the category U introduced in [22,

Section 5.1] (denoted byU therein). Recall thatU is a strict graded additive k-linear

2-category with object set X. Its 1-morphisms are generated by

Ei W� �! �C ˛i ; Fi W� �! � � ˛i .i 2 I/;

with generating 2-morphisms given by diagrams modulo certain diagrammatic

relations. We will not reproduce these here, since they appear in the rela-

tions (3.1)–(3.16) below (with �˛_i everywhere replaced by ˛_i ) which do not in-

volve i D ˘.
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We start by introducing a weak version zU| of this 2-category, which lacks the

most difficult relation to verify. This notion is useful since we will show later that

a representation of zU| satisfying certain conditions on its Grothendieck group

descends to an action of U| (Proposition 4.10).

3.1. The 2-category zU|. Fix a commutative ring k with identity such that 2 is a

unit. For i; j 2 I| we set

tij D
´
�1; if j D i � 1;
1; otherwise.

Definition 3.1. The weak coideal 2-category zU| is the strict graded additive

k-linear 2-category with objects � for all � 2 X| . The 1-morphisms are generated

by

Ei W�! �C ˛i ; Fi W�! � � ˛i ; for i 2 I| :

Here “generated” means taking all the direct sums of compositions of shifts of

these 1-morphisms. The generating 2-morphisms are presented by diagrams:

denote the identity 2-morphisms of Ei1� and Fi1� by �C˛i"
i

� and ��˛i#
i

�, and

the other generators are

x D �
i

�WEi1� ! Ei1�¹�2º;

x0 D �
i

�WFi1� ! Fi1�¹�2º;

� D
i j

� WEiEj1� ! EjEi1�¹h˛_i ; j̨ iº;

� 0 D
i j

� WFiFj 1� ! FjFi1�¹h˛_i ; j̨ iº;

� D
i

�
W 1� ! FiEi1�¹1 � h�˛_i ; �C ˛i iº;

�0 D
i

�
W 1� ! EiFi1�¹�1C h�˛_i ; �iº;



654 H. Bao, P. Shan, W. Wang, and B. Webster

� D
i

�
WEiFi1� ! 1�¹�1C h�˛_i ; �iº;

�0 D
i

�
WFiEi1� ! 1�¹1� h�˛_i ; �C ˛i iº:

The 2-morphisms are subject to the following relations (1)–(7).

(1) (Adjunction)

i

� D
i

� D
i

� ;
i

� D
i

� D �

i

� : (3.1)

(2) (Cyclicity of x and �)

�
i

� D
i

�� D
i

�� ; (3.2)

j i

� D t�1
ji

j i

� D t�1
ij

j i

� : (3.3)

(3) (Quiver Hecke relations)

i j

�� �
i j

�
�
D

i j

�
�

�
i j

�� D

8
<̂

:̂
i j

� if i D j ,

0 otherwise,

(3.4)

i j

�
D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0 if i D j ,

i j

� if ji � j j > 1,

tij

i j

�� C tj i

i j

�� otherwise,

(3.5)

i j k

�
�

i j k

�
D

8
<̂

:̂

tij

i j k
�

if i D k ¤ j and ji � j j D 1,

0 otherwise.

(3.6)
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(4) (Bubble relations)

i
��s D

´
0 if s < h�˛_i ; �i � 1;
2ıi;˘11�

if s D h�˛_i ; �i � 1;
(3.7)

i
� � s D

´
0 if s < 1 � h�˛_i ; �C ˛i i;
11�

if s D 1 � h�˛_i ; �C ˛i i;
(3.8)

X

t;s2Z

tCsDn�h�˛_
i

;˛i i

i
�t

i
� � s D 0 for all n > 0: (3.9)

(5) (Nodal relations) Set

� DW
j

i

� D
i

j

� ; �0 D
j

i

� D
i

j

� : (3.10)

Then for any i we have

i

�
D

X

tCsD�1
i
�t
i

�
�s ;

i

� D �
X

tCsD�1
i
�s

i

�
�t : (3.11)

(6) (Bicross relations)

For i ¤ ˘, we have

i i

� D
X

uCsCtD�2

i

�

i �s
�u

i
�t

�
i i

� ; (3.12)

ii

� D
X

uCsCtD�2

i
�t
i
�

�s
�u

i

�
i i

� : (3.13)
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For i D ˘, we have

˘ ˘

� D
X

uCsCtD�2

˘

�
˘ �s
�u

˘
�t

� �
˘ ˘

� � �
˘ ˘

� ; (3.14)

˘˘

� D
X

uCsCtD�2

˘
�t

˘

�
�s
�u

˘

� �
˘ ˘

� � �
˘ ˘

� : (3.15)

In all the sums above, the indices that are not on a circle run over non-negative

integers.

(7) (Mixed relations) For any i ¤ j ,

i j

� D
i j

� ;

ji

� D
i j

� : (3.16)

Remark 3.2. The bubbles with negative labels are determined by the relation (3.9)

and called fake bubbles. Note that because of (3.7), these can only be defined when

2 is invertible.

We organize the generating 2-morphisms with their degrees (other than the

identity 2-morphisms of degree 0 and x; x0 of degree 2) in the following table.

i

�

i

� i

�

deg h�˛_i ; �C ˛i i � 1 1 � h�˛_i ; �i 1� h�˛_i ; �i

i

�

i j

�

i j

�

deg h�˛_i ; �C ˛i i � 1 �h˛_i ; j̨ i �h˛_i ; j̨ i
The grading on zU| is well defined, i.e., all the relations in the definition are

homogeneous. This can be checked in the same way as in [22]. Note that the main

difference here is that

�1C h�˛_i ; �C ˛i i D
´
1C �i ; if i ¤ ˘;
2C �i ; if i D ˘:
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It follows that the diagrams �, �0 in (3.10) have degree zero unless i D j D ˘,

and in that case they both have degree 1.

Note that subcategory of zU| generated by Ei ;Fi with i > ˘ satisfy the

relations of Khovanov-Lauda’s 2-categoryUr�1 of rank r�1. This yields a functor

Ur�1 ! zU| . We will show in a future work that this functor is faithful.

3.2. The coideal 2-category U|. For the sake of simplicity, we make the fol-

lowing convention.

We will omit the index ˘ from the diagrams, that is, all the strands without labels

should be viewed as labeled by ˘.

Definition 3.3. The coideal 2-category U| is the quotient of the 2-category zU| by

the relation

� D � � � � � � � (3.17)

C
X

sCtCuCvD�3 �t
�u ��s

�v

C
X

sCtCuCvD�3 �t
�u

�
�s
�v

(3.18)

This 2-category U| admits an induced grading from zU| as the relation (3.17)

is homogeneous of degree 0.

We let PU denote the idempotent completion of U| . Note that since the quiver

Hecke relation holds in U| , the divided powers E
.a/
i , F

.a/
i are well defined in PU, see

for example [22, Section 3.5]. We may also write E�i D Fi for i 2 I| whenever

this is convenient.

Remark 3.4. Note that we have automatically the relation

� D � � C � � � � �

C
X

sCtCuCvD�3 �t
�u��s

�v

C
X

sCtCuCvD�3 �t
�u

�
�s
�v

in U| , since it is the image of (3.17) under the isomorphism End.F˘E˘F˘/ Š
End.E˘F˘E˘/ given by adjunction.
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3.3. Symmetries of U|. Recall [22, 3.3.3] that the KLR 2-category U admits

several symmetries which categorify the standard (anti-)involutions for the quan-

tum groups. We will describe the analogues of such symmetries for U| , which cat-

egorify the three (anti-)involutions in Lemma 2.1. We will use the notation of [22,

3.3.3] and let .U| /op; .U| /co; .U| /coop to denote the 2-category U| with the com-

position of 1-morphisms, 2-morphisms and both 1- and 2-morphisms reversed,

respectively.

Definition 3.5. (a) Consider the functor

 | W U| �! .U| /co

which sends

� 7�! �; 1�Ei1 � � �Ei`1�¹tº 7�! 1�Ei1 � � �Ei`1�¹�tº;

for �; � 2 X| , t 2 Z, and i1; : : : ; i` 2 I| . It acts on 2-morphisms by reflection

through the x-axis and reversing orientation of all strands. Note that this action

on 2-morphisms preserves all defining relations on 2-morphisms in U| . It induces

a duality on PU which will be again denoted by  | . We have  2
| D id and in

particular  | is invertible.

(b) Consider the functor

!| WU| �! U| (3.19)

which sends (recall we write E�i D Fi for i 2 I| )

� 7�! �� �$; 1�Ei1 � � �Ei`1�¹tº 7�! 1���$E�i1 � � �E�i`1���$¹tº:

It acts on 2-morphisms by

x 7�! x0; x0 7�! x � 7�! �� 0; � 0 7�! ��;

� 7�! 2�ı˘;i�0; �0 7�! �; � 7�! 2ı˘;i �0; �0 7�! �:

Thus, each diagram is sent to the diagram with reversed orientation, times certain

unit in k. The functor !| is an equivalence. An inverse is provided by the functor

which coincides with !| on objects and 1-morphisms, and acts on 2-morphisms

x 7�! x0; x0 7�! x; � 7�! �� 0; � 0 7�! ��;

� 7�! �0; �0 7�! 2ı˘;i�; � 7�! �0; �0 7�! 2�ı˘;i �:
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(c) Consider the functor

�| WU| �! .U| /op (3.20)

which sends

� 7�! �� �$; 1�Ei1 � � �Ei`1�¹tº 7�! 1���$Ei` � � �Ei11���$¹tº:

It acts on 2-morphisms by

x 7�! x; x0 7�! x0; � 7�! ��; � 0 7�! �� 0;

� 7�! 2�ıi;˘�0; �0 7�! �; � 7�! 2ıi;˘�0; �0 7�! �:

Thus, every diagram is sent to its reflection through the y-axis, times certain unit

in k. The functor �| is an equivalence. An inverse is provided by the functor which

coincides with �| on objects and 1-morphisms and acts on 2-morphisms as

x 7�! x; x0 7�! x0; � 7�! ��; � 0 7�! �� 0;

� 7�! �0; �0 7�! 2ıi;˘�; � 7�! �0; �0 7�! 2�ıi;˘�:

Remark 3.6. The presence of the factors of 2 above reflects an asymmetry in

the definition of U| , specifically in the relations (3.7)–(3.8). We can rescale the

generators �0 and �0 so that the bubbles in (3.7)–(3.8) evaluate to any pair of scalars

whose product is 2ıi;˘ . One obvious choice is to switch the role of clockwise and

counterclockwise bubbles; we denote the resulting (isomorphic) 2-category with

this presentation 0U| . Alternatively, we could give a more symmetric definition by

choosing a square root
p
2, and using

p
2

ıi;˘
in both (3.7) and (3.8). In this case,

the definitions of �| and !| would not require the factors of 2.

One perspective on how these different forms arise is that this 2-category is

connected to geometry and representation theory in types B and C. Many aspects

of these constructions, such as the cohomology rings of the partial flag varieties

and the category of Soergel bimodules only depend on the Weyl group and its

reflection representation, and thus are identical in types B=C. Others, such as the

Demazure operators discussed in Section 5.3, and thus the formulas for integration

on flag varieties do depend on the root systems, and thus differ by powers of 2

between types B and C. The category U| naturally arises from the computations

with type B flag varieties (which we choose to use), while 0U| would arise most

naturally with type C geometry.
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4. The Grothendieck group of PU

Throughout the rest of the paper, we assume that k is a complete local ring and

continue to assume that 2 is a unit; equivalently, we require that the residue field

of k is not of characteristic 2. A particularly important case is when k is itself a

field of characteristic ¤ 2.
In this section, we provide a categorification of the | -Serre relations in the

framework of 2-category PU. This allows us to define a surjective map to the

Grothendieck group of PU from A
PU| .

4.1. Reformulation of |-Serre relations. First let us rewrite the | -Serre

relation (2.10) in the form (4.1)–(4.3) and the | -Serre relation (2.9) in the

form (4.4)–(4.6), respectively:

� if �˘ � 2,
F˘E˘F˘1� D F

.2/
˘ E˘1� C .E˘F.2/

˘ � Œ�˘ � 2�F/1� C Œ�˘� � F˘1�I (4.1)

� if �˘ D 1,
F˘E˘F˘1� D F

.2/
˘ E˘1� C E˘F

.2/
˘ 1� C 2 � F˘1�I (4.2)

� if �˘ � 0,
F˘E˘F˘1� D E˘F

.2/
˘ 1� C .F.2/

˘ E˘ � Œ��˘�F/1� C Œ��˘ C 2� � F˘1�I (4.3)

� if �˘ � �3,
E˘F˘E˘1� D E

.2/
˘ F˘1�C.F˘E.2/

˘ �Œ�3��˘�E˘/1�CŒ�1� �˘��E˘1�; (4.4)

� if �˘ D �2,
E˘F˘E˘1� D F˘E

.2/
˘ 1� C E

.2/
˘ F˘1� C 2 � E˘1�I (4.5)

� if �˘ � �1,
E˘F˘E˘1� D F˘E

.2/
˘ 1�C .E.2/

˘ F˘� Œ1C�˘�E˘/1�C Œ�˘ C 3� �E˘1�: (4.6)

In each of the formulas (4.1)–(4.6) above the right-hand side is the expansion of

the left hand side in terms of canonical basis elements of A
PU| . Knowing these ex-

pansions facilitates understanding the structure of the corresponding 1-morphisms

in U| , but we will not use explicitly the fact that this is the canonical basis expan-

sion. It can be proved in several ways, but we will leave aside the proof. In fact,

we can also derive this from Theorem 6.5 below by showing that the factors on

the right-hand sides correspond to indecomposable self-dual 1-morphisms in the

2-category PU (see Remark 4.2 below).
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4.2. Categorification of |-Serre (4.1). We denote by E˘F
.2/
˘ 1� the idempotent

�
�

in End.E˘F
2
˘1�/ as a 1-morphism in PU.

Lemma 4.1. Let � 2 X| such that �˘ D h�˛_˘ ; �i � 2.

(a) The element

� D
�

� C 1

2

X

aCbCcD�2

�a

�b

�

�c

�

� 1

2

X

aCbCcD�3

�a

�b

�

��c

�

2 End.E˘F
2
˘1�/

is an idempotent. We denote the image of this element in E˘F
2
˘ by

.E˘F
.2/
˘ � Œ�˘ � 2�F˘/1�

when considered as a 1-morphism in the idempotent completion of zU| .

(b) We have the following isomorphism of 1-morphisms in the idempotent com-

pletion of zU| ,

E˘F
.2/
˘ 1� Š .E˘F.2/

˘ � Œ�˘ � 2�F˘/1� ˚ F˘1
˚Œ�˘�2�

�
:
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Proof. We shall prove the two statements together. We first have the following

system of 2-morphisms

E˘F
.2/
˘ 1�

F˘1�¹�˘�3º ˚ F˘1�¹�˘�5º ::: F˘1�¹5��˘º ˚ F˘1�¹3��˘º

E˘F
.2/
˘ 1�

�0

�1 ��˘�4
��˘�3

�0
�1 ��˘�4

��˘�3

where the 2-morphisms �s and �s are defined as follows (0 � s � �˘ � 3)

�s WD
1

2

X

aCbDs��˘C1

��a

�b � 1

2

X

aCbDs��˘

���a

�b

and

�s WD �
�

�
�˘�3�s

�

:

We have (0 � s; s0 � �˘ � 3)

�s � �s0 D � 1
2

X

aCbDs��˘C1

�a

�b

�

��˘�3�s0

�

C 1

2

X

aCbDs��˘

��a

�b

�

��˘�3�s0

�

:
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Then we have

�1
2

X

aCbDs��˘C1

�a

�b

�

��˘�3�s0

�

D �1
2

X

aCbDs��˘C1

�a

�bC�˘�3�s0

�

D 1

2

X

aCdCcDs�s0�3

�c

�a

�d

�

D

8
<̂

:̂
� s�s0 ; if s � s0 � 0I

0; if s � s0 < 0:

Therefore �s � �s0 D ıs;s0 . Hence we know �s�s (0 � s � �˘ � 3) are mutually

orthogonal idempotents in U| .E˘F
2
˘1�;E˘F

2
˘1�/. The idempotent

� D id
E˘F

.2/
˘ 1�
�

X

0�s��˘�3

�s�s

can then be expressed diagrammatically as in the lemma. �

Remark 4.2. One can show that .E˘F
.2/
˘ �Œ�˘�2�F˘/1� is indecomposable in PU| .

In fact, since �t� D ��s D 0, a direct diagrammatic computation implies that the

algebra End.E˘F
.2/
˘ 1�/ is spanned by � and �sCtx

s�t for 0 � s � sC t � �˘ � 3.
In particular, the algebra � End.E˘F

.2/
˘ 1�/� is a rank one k-module spanned

by �. It is a local ring, hence .E˘F
.2/
˘ � Œ�˘ � 2�F˘/1� is indecomposable.

Similar arguments can be used to show that all the individual terms appearing

in the sums on the right-hand sides of (4.1)–(4.6) correspond to indecomposable

1-morphisms.

We denote by F
.2/
˘ E˘1� the 1-morphism in the idempotent completion of QU|

(or in PU) defined as the image of the idempotent

�
� 2 End.F2

˘E˘1�/:
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Proposition 4.3. Let � 2 X| with �˘ D h�˛_˘ ; �i � 2. Then,

(a) we have the following split surjection in the idempotent completion of QU|

(and in PU),

F
.2/
˘ E˘1� ˚ .E˘F.2/

˘ � Œ�˘ � 2�F˘/1� ˚ F˘1
˚Œ�˘�

�
�� F˘E˘F˘1�I

(b) we have the following isomorphism in PU

F˘E˘F˘1� Š F
.2/
˘ E˘1� ˚ .E˘F.2/

˘ � Œ�˘ � 2�F˘/1� ˚ F˘1
˚Œ�˘�

�
:

Proof. We introduce the following diagrams (0 � k � �˘ � 1):

B1 D �
� �

; B2 D
� �

; Pk D �
�˘�1�k

� ; (4.7)

C1 D
�
; C2 D

�

; Ik D
1

2

X

sCtDk
�

��˘�2Ct

�

� s

: (4.8)

Following (A.8)–(A.9), we introduce modifications of I�˘�1 and P0 as follows:

I 0�˘�1 D
1

2

X

sCtD�˘�1
�

��˘�2Ct

�

� s

�
�

C 1

2

X

sCtCuD�˘�1
�

��˘�2Ct

�

� s

�u ;

(4.9)

P 00 D �
�˘�1

� � 2
�
C

X

sCtCuD�3 � t

��s�u

C �
�1

�� � � :

(4.10)

Recall the 2-morphism � 2 End.E˘F
2
˘1�/ in Lemma 4.1. We define the 2-mor-

phisms:

2
666666664

B1

� � B2

P 00
P1

:::

P�˘�1

3
777777775

WF˘E˘F˘1� �! F
.2/
˘ E˘1� ˚ .E˘F.2/

˘ � Œ�˘ � 2�F˘/1� ˚ F˘1
˚Œ�˘�

�
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and
h
C1 C2 � � I0 � � � I 0

�˘�1

i
W

F
.2/
˘ E˘1� ˚ .E˘F.2/

˘ � Œ�˘ � 2�F˘/1� ˚ F˘1
˚Œ�˘�

�
�! F˘E˘F˘1�:

The proof of the proposition is reduced to verifying the identities (4.11)–(4.12)

below:
2
666666664

B1

� � B2

P 00
P1

:::

P�˘�1

3
777777775

�
h
C1 C2 � � I0 � � � I�˘�2 I 0

�˘�1

i
D id.�˘C2/�.�˘C2/ in QU|

;

(4.11)

and

h
C1 C2 � � I0 � � � I 0

�˘�1

i
�

2
6666664

B1

� � B2

P 00
:::

P�˘�1

3
7777775
D idF˘E˘F˘1�

in PU|
: (4.12)

The proofs of the identities (4.11)–(4.12) via elementary but lengthy diagrammatic

computations are given in the Appendix A (see Proposition A.14 and Proposi-

tion A.22). �

4.3. Categorification of |-Serre (4.2) . In this subsection we shall assume

� 2 X| with �˘ D h�˛_˘ ; �i D 1, and recall in this case the expression of the

| -Serre relation in (4.2). We denote by F
.2/
˘ E˘1� the image of the idempotent

�
� 2 End.F2

˘E˘1�/

and by E˘F
.2/
˘ 1� the image of the idempotent

�
� 2 End.F2

˘E˘1�/

in the idempotent completion of QU|
(or PU).
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Proposition 4.4. Let � 2 X| with �˘ D h�˛_˘ ; �i D 1. Then,

(a) we have the following split surjection in the idempotent completion of QU|

(and in PU|
):

F
.2/
˘ E˘1� ˚ E˘F

.2/
˘ 1� ˚ F˘1� ˚ F˘1� �� F˘E˘F˘1�I

(b) we have the following isomorphism in PU|
:

F˘E˘F˘1� Š F
.2/
˘ E˘1� ˚ E˘F

.2/
˘ 1� ˚ F˘1� ˚ F˘1�:

Proof. In this case, the relation (3.17) simplifies to the form

� D � � � � � � � C � C 2 � :

(4.13)

We introduce the following diagrams

B1 D �
� �

; B2 D
� �

;

P0 D
�

�
�

; P1 D
�

;

C1 D
�
; C2 D

�
;

I0 D
�

�
�

; I1 D
�

:

We consider the following 2-morphisms:

2
6664

B1

B2

P0

P1

3
7775 WF˘E˘F˘1� �! F

.2/
˘ E˘1� ˚ .E˘F.2/

˘ � Œ�˘ � 2�F˘/1� ˚ F˘1
˚Œ�˘�

�

and

�
C1 C2 I0 I1

�
W

F
.2/
˘ E˘1� ˚ .E˘F.2/

˘ � Œ�˘ � 2�F˘/1� ˚ F˘1
˚Œ�˘�

�
�! F˘E˘F˘1�:
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The proof of the proposition is reduced to verifying the two identities

2
6664

B1

B2

P0

P1

3
7775 �

�
C1 C2 I0 I1

�
D id4�4 in zU|

; (4.14)

and

�
C1 C2 I0 I1

�
�

2
6664

B1

B2

P0

P1

3
7775 D idF˘E˘F˘1�

in PU|
: (4.15)

The identities (4.14) and (4.15) admit proofs which are analogous (and much

easier) to those of the identities (4.11) and (4.12) given in the Appendix A. We

will leave the details of these computations to the reader. �

4.4. Categorification of |-Serre (4.3)–(4.6). In this subsection, we complete

the categorification of the | -Serre relations (2.9) and (2.10) in the remaining cases

(4.3)–(4.6) by using results from Sections 4.2 and 4.3 and the equivalences (3.19)

and (3.20).

Indeed the categorification of the | -Serre relation (4.1) implies the categori-

fication of the | -Serre relation (4.3) under the equivalence (3.20). Then entirely

similarly the categorification of the | -Serre relations (4.1)–(4.3) implies the cate-

gorification of the | -Serre relations (4.4) – (4.6) under the equivalence (3.19). We

shall only prove the categorification of the | -Serre relation (4.3) here and leave

the other cases to the reader.

Proposition 4.5. Let � 2 X| with �˘ D h�˛_˘ ; �i � 0.
(a) We have the following isomorphism of 1-morphisms in PU:

F
.2/
˘ E˘1� Š .F.2/

˘ E˘ � Œ��˘�F˘/1� ˚ F˘1
˚Œ��˘�

�
;

where .F
.2/
˘ E˘ � Œ��˘�F˘/1� is the image of the idempotent � in Lemma 4.1

under the equivalence �| in (3.20).

(b) We have the following split surjection in the idempotent completion of QU|

(and in PU):

E˘F
.2/
˘ 1� ˚ .F.2/

˘ E˘ � Œ��˘�F˘/1� ˚ F˘1
˚Œ��˘C2�

�
�� F˘E˘F˘1�:
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(c) We have the following isomorphism in PU:

F˘E˘F˘1� Š E˘F
.2/
˘ 1� ˚ .F.2/

˘ E˘ � Œ��˘�F˘/1� ˚ F˘1
˚Œ��˘C2�

�
:

Proof. Let �0 D �� C ˛˘ � $ . We have �0˘ D ��˘ C 2 � 2 by assumption.

Thus, the desired maps are just the image under the equivalence �| of the split

surjection and the isomorphism in Lemma 4.1 and Propositions 4.3–4.5 applied to

F˘E˘F˘1�0 . �

4.5. The Grothendieck group

Lemma 4.6. The assignment � 7! �, E
.a/
i 1� 7! ŒE

.a/
i 1��, F

.a/
i 1� 7! ŒF

.a/
i 1��

for all � 2 X| , i 2 I| , a 2 N defines an A-linear functor @WA PU| ! K0. PU/.
Furthermore, we have @ ı  | D  | ı @.

Proof. It suffices to prove that the assignment in the lemma defines a Q.q/-linear

functor PU| ! Q.q/˝A K0. PU/. To this end, we must check that all defining rela-

tions (2.6)–(2.10) in PU| are satisfied in K0. PU/. For (2.6)–(2.8) this follows from

the same argument as in [22, Proposition 3.27]. The | -Serre relations (2.9)–(2.10)

are proven in Proposition 4.3. �

Our goal in this subsection is to show that the functor @WA PU| ! K0. PU/ is

full (see Proposition 4.8). We achieve this by showing that the graded category

associated with a filtration on U| is equivalent to the KLR categorification of the

positive half of A
PU. Let us explain this in details.

Fix � 2 X| . Recall from (2.1) and (2.4) that I D I| [ �I| , and that we

write E�i WD Fi for i 2 I| . Given a sequence i D .i1; i2; : : : ; im/ 2 Im we write

Ei D Ei1Ei2 � � �Eim . Consider the category

C D
M

�2X|

PU.�; �/:

We will always view Ei as the object Ei1� in C, hence omit 1� from the notation.

Since @ is the identity on objects, it is enough to prove that K0.C/ is in the

image of @. The category C is Krull-Schmidt, hence its Grothendieck group is

a free A-module generated by indecomposable objects. Up to a grading shift, any

indecomposable object P 2 C is a direct summand of Ei for some sequence i.

We define the width of P to be the minimum length of such a sequence i. We

define the width of a morphism ˇWu ! v in C to be the minimal m such that

ˇ factors through a sum of objects of width � m. Let C6m (respectively, C<m)

be the full subcategory of C generated by indecomposable objects of width 6 m
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(respectively of width < m). The quotient category grm C D C6m=C<m is the

additive category with the same objects as in C6m, and Hom-space given by the

quotient of the Hom-space in C6m by the 2-sided ideal of morphisms of width

< m. The indecomposable objects in grm C are in bijection with those in C of

length m. Hence we have K0.C/ D K0.grC/, where grC D
L

m>0 grm C.

Let CC be the monoidal category (under induction) of graded projective mod-

ules over the quiver Hecke algebra of type A2r (with I identified with the Dynkin

diagram of this type). This is a graded k-linear monoidal category with objects

generated by Ei , i 2 I, and the morphisms generated by

x D �
i

WEi ! Ei¹�2º; � D
i j

WEiEj ! EjEi¹h˛_i ; j̨ iº

subject to quiver Hecke relations (3.4)-(3.6). By [21, Proposition 3.18],K0.C
C/ is

isomorphic to AUC, the positive part of A
PU generated by E

.a/
i , i 2 I. Let …� be

the polynomial ring in the commuting variables (for i 2 I| )

i
��s W 1� �! 1�¹�2.s C 1 � h�˛_i ; �i/º; for s � h�˛_i ; �i � 1;

Then K0.…�/ D A and we have K0.C
C ˝ …�/ ' K0.C

C/; see [22, Proposi-

tion 3.35] for more details.

Lemma 4.7. There is a full functor �WCC ˝…� ! grC which sends Ei to Ei, for

all sequences i and a diagramD to .�1/d times that diagram with the orientation

on the i-th strands reversed for all i < 0. Here d is the number of dots on strands

whose orientation was reversed.

Proof. Let us first show that � is well defined. It is enough to show that

the assignment in the lemma defines an algebra homomorphism from Rm D
EndCC˝…�

.
L
jijDmEi1�/ to Sm D Endgrm C.

L
jijDm Ei1�/. In other words �.x/

and �.�/ satisfy the quiver Hecke relations for all i; j 2 I. This is obvious

if i and j have the same sign. Next, note that indecomposable summands of

Em D
L
jijDm Ei are in bijection with primitive idempotents in A D EndC.Em/.

By definition Sm is the quotient of A by the 2-sided ideal I of morphisms of

width < m. Now, relations (3.14), (3.15), (3.17) in U| modulo morphisms of

width < 2 give the quiver Hecke relations for i; j of different sign. We deduce

that �WRm ! A=I D Sm is well defined.

It remains to show that �WRm ! Sm is surjective. To this end, note that

EndC.
L
jijDm Ei1�/ is spanned by diagrams where no pair of strands cross twice

and all bubbles are at far left. Every such diagram either has no cups or caps
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(except in bubbles) or has width < m. Thus Sm is spanned over …� by diagrams

without cups or caps. The image of � contains all diagrams of this type, so the

surjectivity follows. �

Proposition 4.8. The functor @WA PU| ! K0. PU/ is full, i.e., for any �; � 2 X| , it

defines a surjective map

A
PU| .�; �/ �� K0. PU.�; �//:

It will be proved in Theorem 6.5 that @WA PU| ! K0. PU/ is in fact an equiva-

lence.

Proof. The same argument as in [22, Section 3.8.3] implies that the map

K0.�/WAUC ' K0.C
C ˝…�/ �! K0.grC/: (4.16)

is surjective.

By [27, 7.8], the algebra AUC has an A-basis M whose elements are mono-

mials in divided powers E
.a/
i . Hence K0.�/ maps them to a spanning set of the

A-module K0.grC/ which are monomials in E
.a/
i for i 2 I. By the isomorphism

K0.C/ D K0.grC/, we deduce that K0.C/ is also spanned by these monomials,

which are contained in the image of @. Hence @ is full. �

Let M be a monomial basis of AUC in the sense of [27, 7.8]. Let

A
PU| .�;�/ D

M

�2X|

A
PU| .�; �/:

For m D E.c1/
i1

E
.c2/
i2
� � � , we write m| D E

.c1/
i1

E
.c2/
i2
� � � accordingly. The corollary

below was known only for some special choice of the monomial bases (see the

proof of [6, Theorem 4.7]).

Corollary 4.9. For any � 2 X| , the assignmentm 7! m| for allm 2M yields an

isomorphism of A-modules

& WA PUC
��! A

PU| .�;�/:

Proof. The proof of [23, Proposition 6.2] adapted to the idempotented algebra

case implies that & is an isomorphism after base change to Q.q/. Since A
PUC is

free over A, we get injectivity of & . The surjectivity follows from the proof of

Proposition 4.8. �
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4.6. Control from the Grothendieck group

Proposition 4.10. Let C be any idempotent complete 2-category. A 2-functor

�W zU| ! C induces a 2-functor PU ! C if and only if the classes of �.E˘1�/

and �.F˘1�/ satisfy the | -Serre relations (2.9)–(2.10) in K0.C/, for any � 2 X| .

Proof. Let„ denote the right hand side of (3.17). SinceC is idempotent complete,

the 2-functor � factors through PU if and only if �.„/ is identity for all �. We may

assume �˘ > 2, as the proof for the other cases are similar. By Proposition 4.3,

we have a split surjective map

�WF˘E˘F˘1� �! F
.2/
˘ E˘ ˚ .E˘F.2/

˘ � .�˘ � 2/F˘/1� ˚ F˘1
˚Œ�˘�

�

in the idempotent completion of zU| given by � D B1˚.� �B2/˚P 00˚� � �˚P�˘�1.

A splitting is provided by � 0 D C1C.C2 ��/CI0C� � �CI�˘�1, that is, � ı� 0 D id;

see the proof of Proposition 4.3 for the notation. Furthermore, we have„ D � 0ı�
by Proposition A.22. It follows that „ is an idempotent in zU| . Hence �.„/ D 1

if and only if �.�/ is an isomorphism, if and only if the | -Serre relation holds in

K0.C/. �

5. The Schur 2-category

5.1. Soergel bimodules. We start by reviewing some standard facts about sin-

gular Soergel bimodules from [40] that will be used below.

Let W be a Weyl group with the set of simple reflections S, and let t be a faithful

k-linear reflection representation of W. Consider the graded ring of symmetric

product R D S.t/ with elements in t in degree 2. Then the W-action on t induces

a homogeneous action on R.

Given I � S, let WI be the parabolic subgroup generated by I . We write

RI D RWI for the invariants in R under WI . Given a triple I � K � J , we view

RK as an .RI ; RJ /-bimodule via the canonical embeddings RI ,! RK  - RJ .

Let BimW denote the 2-category with objects consisting of subsets in S,

and BimW.J; I / D RI -gmod-RJ , with composition given by tensor product

of bimodules. The category of singular Soergel bimodules SBimW is the full

2-subcategory of BimW generated by the same objects and 1-morphisms RI ,!
RK  - RJ for all triples I � K � J . In particular, indecomposable objects in

SBimW.J; I / are direct summands of

RI1 ˝RJ1 R
I2 ˝RJ2 ˝ � � � ˝RJn�1 R

In
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for certain sequence I D I1 � J1 � I2 � J2 � � � � � Jn�1 � In D J . Let

 WSBimW ! SBimW be the duality given by taking graded duals. In particular

 ı ¹1º D ¹�1º ı  .

Consider the Schur algebroid SW associated with W. This is an A-linear cat-

egory with objects finitary I � S , and morphisms from I to J given by intersec-

tions of parabolic modules over the Hecke algebra HW, see [40, Definition 2.7].

Note that SW.;; ;/ D HW.

Theorem 5.1 ([36, 40]). (a) There is an equivalence of categories

�WK0.SBimW/
��! SW

which is the identity on objects, and is given by the character map on morphisms.

(b) The equivalence � intertwines  with the bar involution on SW.

(c) For each element w in WInW=WJ , there is a unique self-dual inde-

composable object Bw in SBimW.I; J / characterized by a support condition.

These objects form a complete and irredundant set of indecomposable objects

in SBimW.I; J / up to isomorphism and grading shift.

(d) If the residue field of k has characteristic zero, then � sends ŒBw � to the

element in the canonical basis of SW.I; J / indexed by w.

We have a geometric interpretation of SBimW as follows. Let G be a connected

reductive group with Weyl group W. Fix a Borel subgroup B and a maximal

torus T. Take t to be the k-module spanned by the characters of T. For I � S let

B � PI � G be the parabolic subgroup corresponding to I . The diagonal G-orbits

in G=PI � G=PJ are parametrized by WInW=WJ . Then SW.I; J / is the generic

algebra of A-valued functions on Gn.G=PI �G=PJ / arising from the convolution

product of functions on PI .Fq2/nG.Fq2/=PJ .Fq2/ over finite fields Fq2 .

Proposition 5.2. The category SBimW .I; J / is equivalent to the category of

G-equivariant parity complexes on G=PI �G=PJ , with Bw corresponding to the

unique parity sheaf Ew whose support is the closure of the orbit Ow .

All the machinery needed to prove this result is given in [19, 4.1] but it is not

stated there. In type A, this is discussed in greater detail in [39, Theorem 6], and

the proof is identical in other types. When the residue field of k has characteristic

zero, the parity sheaf Ew is an intersection cohomology complex.
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5.2. Schur category in type B=C. From now on let W DWm be the Weyl group

of typeBm=Cm with simple reflections S D ¹s0; s1; : : : ; sm�1º. Take t D
Lm

iD1 kti

with si acting by permuting ti and tiC1, and s0.ti / D .�1/ıi;1ti . We have

R D S.t/ D kŒt1; : : : ; tm�:

Let G D SO.V/ with V D C2mC1 equipped with a standard nondegenerate

symmetric bilinear form.

Recall I
|
r from (2.4). Let †r;m be the set of (weakly) increasing maps from

I
|
r ! Œ0; m�, and we write an element a 2 †r;m as an increasing sequence

a D .a˘; a˘C1; : : : ; a˘Cr�1/. To a 2 †r;m we associate the subset Ia of S with

sap
removed for all p such that ap < m. Note that if r > m, then every subset of

S is of this form. Given a 2 †r;m and i 2 I
|
r let

aCi D .: : : ; ai�1; ai ; ai C 1; aiC1; : : :/; a�i D .: : : ; ai�1; ai � 1; ai ; aiC1; : : :/;

Cia D .: : : ; ai�1; ai C 1; aiC1; : : :/; �ia D .: : : ; ai�1; ai � 1; aiC1; : : :/:

For any sequence a of r integers, we write

Ra D
´
RIa ; if a 2 †r;m;

0; if a 62 †r;m:

Then Ra˙i
is naturally an .R˙i a; Ra/-bimodule. Indeed a˙i is a sequence of

r C 1 integers. If it belongs to †rC1;m, then ˙ia also belongs to †r;m, moreover

I
˙i a � Ia˙i � Ia, hence Ra˙i

is an .R˙ia; Ra/-bimodule. If a˙i 62 †rC1;m, then

Ra˙i D 0, the statement is trivial. The partial flag variety {Gra WD G=PIa is the

variety of isotropic flags

0 D F�r�˘ � � � � � F�˘ � F˘ � � � � � F˘Cr D V

such that Fp D F?�p , dimF�p D m � ap (and so dimFp D m C 1 C ap) for all

p 2 I| .

Consider the following 1-morphisms in SBimW for all i 2 I
|
r

1a WD Ra 2 Ra -gmod-Ra;

Ei1a WD RaCi ¹1C ai � aiC1º 2 RCi a -gmod-Ra;

Fi1a WD Ra�i ¹1C ai�1 � aiº 2 R�i a -gmod-Ra:

Here and below, we use the convention

a�˘ D �a˘; a˘Cr D m:
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We define the Schur 2-category Fr;m as the locally fully faithful monoidal

2-subcategory of SBimW with object set †r;m and with 1-morphisms given by

direct summands of direct sums of products of 1a, Ei1a, Fi1a, for a 2 †r;m,

i 2 I
|
r . Recall that the locally fully faithfulness here means that we impose for any

1-morphisms M , N in Fr;m that HomFr;m
.M;N/ D HomSBimW

.M;N/.

Recall that the Schur category S
|
r;m (also called the | -Schur algebra) is the

category with object set †r;m and S
|
r;m.a; b/ WD SW .Ia; Ib/, for a; b 2 †r;m.

Similarly, we have a fully faithful functor S
|
r;m ! SW : For a 2 †r;m, let �.a/ 2 X|

be such that

h�˛i ; �.a/i D �ai�1 C 2ai � aiC1; for all i 2 I|
r : (5.1)

In this way †r;m can be viewed as a subset of X| . It is easy to see that �.a/ D
a˘"0 C

PrC˘
iD˘C1.ai � ai�1/"i�˘ 2 X| .

By [6, Proposition 3.1, Corollary 3.13], there is a well-defined functor

 W PU| �! S|
r;m (5.2)

such that for � 2 X| we have .�/ D a if there exists a 2 †r;m (which must

be unique by (5.1)) such that � D �.a/, and .�/ D 0 otherwise. The images

ei D .Ei/, fi D .Fi /, for i 2 I
|
r , generate S

|
r;m ˝A Q.q/.

Proposition 5.3. (a) For a, b 2 †r;m, we have Fr;m.a; b/ D SBimW.a; b/.

(b) There is an equivalence �WK0.Fr;m/
�! S

|
r;m such that

�.a/ D a; �.ŒEi1a�/ D ei1a; �.ŒFi1a�/ D fi1a:

It intertwines the duality  on Fr;m and the bar involution.

(c) If the residue field of k has characteristic zero, then � sends self-dual

indecomposable objects in Fr;m to canonical basis in S
|
r;m.

Proof. The nontrivial statement here is part (a). The rest follows automatically

from Theorem 5.1 and (a). To prove (a), let F0r;m be the 2-subcategory of SBimW

with object set†r;m and such that F0r;m.a; b/ D SBimW.a; b/ for any a, b 2 †r;m.

By definition, we have a locally fully faithful embedding �WFr;m ! F0r;m, which

sends indecomposable 1-morphisms to indecomposable ones. We must show that

� is full, that is all indecomposable 1-morphisms in F0r;m are in the image. This is

true if and only if the fully faithful functor Œ��WK0.Fr;m/ ,! K0.F
0
r;m/ induced by

� is an equivalence. Note that the morphism spaces of both Grothendieck groups

are free A-modules with bases given by classes of indecomposable 1-morphisms,

hence Œ�� is a split injection. Hence it is an equivalence if and only if it is so after



Categorification of quantum symmetric pairs I 675

base exchange from A to Q.q/. Now, by Theorem 5.1, we have K0.F
0
r;m/ Š S

|
r;m.

Therefore K0.F
0
r;m/ ˝A Q.q/ is generated by 1a, ei1a, fi1a, i 2 I

|
r . By the

definition of Fr;m, all these generators lie in the image of Œ��. Therefore Œ�� is an

equivalence after base change to Q.q/. Part (a) is proved. �

Remark 5.4. We write Fa
r;m for the 2-category defined with the sameR D S.t/ as

for Fr;m but with Wm replaced by the symmetric group Sm D hs1; s2; : : : ; sm�1i.

Remark 5.5. We will also consider a quotient S PU of the 2-category PU by setting

to 0 all objects of weight which are not of the form �.a/. The functor �W PU ! Fr;m

factors through this quotient. We claim that

K0.S PU/ Š S|
r;m: (5.3)

Indeed, consider the following composition of functors

A
PU| �! K0. PU/ �! K0.S PU/ �! K0.Fr;m/

��! S|
r;m:

Since the map A
PU| ! S

|
r;m is surjective, with kernel generated by the objects not

of the form 1�.a/, see [6, Proposition 4.11, Lemma A.20, Theorem A.21], we must

have K0.S PU/ Š S
|
r;m.

5.3. Frobenius forms and Demazure operators. Let I be a subset of Œ1; m�.

Let ƒI be the ring of symmetric functions in ¹ti I i 2 I º. For p > 0, let

ep;I D ep.ti I i 2 I / be the p-th elementary symmetric polynomial, and let

hp;I D hp.ti I i 2 I / be the p-th complete symmetric polynomial. They are

defined by the following generating functions

X

p>0

ep;I z
p D

Y

i2I

.1C tiz/;
X

p>0

hp;I z
p D

Y

i2I

.1� tiz/�1;

where z is a formal variable. Note that

X

pCsDk

.�1/pep;Ihs;I D ık;0: (5.4)

We also write ƒ
|
I for the ring of symmetric functions in ¹t2i I i 2 I º, and e

|
p;I D

ep.t
2
i I i 2 I /, h

|
p;I D hp.t

2
i I i 2 I /. For future use, we introduce the convention

that h
|
p;I D 0 if p 62 N.
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LetB be a k-algebra, andA a finitely generatedB-algebra which is free as aB-

module. A .B; B/-linear map �WA! B is a Frobenius form ifA! HomB.A; B/;

a 7! .b 7! �.ab// is an isomorphism. The Casimir element associated with � is

an element � 2 .A˝BA/
A such that .�˝1/.�/ D .1˝�/.�/ D 1. The restriction

from A to B is left adjoint to A ˝B � with counit given by � and unit given by

A 7! A˝B A, 1 7! � . See for example [33, Section 2.3] for more details.

We recall some basic facts on Demazure operators. Let ˛_s0
D �2t1, and

˛_sp
D tp � tpC1 for p > 0. For any reflection � 2 W, let ˛_� denote the

corresponding positive coroot. For s 2 S the Demazure operator @sWR ! R

is given by

@s.f / D
f � s.f /
˛_s

; for all f 2 R:

For w 2 W let @w D @si1
@si2

: : : for a reduced expression si1si2 : : : of w. It is a

well defined operator of degree�2`.w/, where `.w/ is the length ofw. For I � S,

let wI be the longest element inWI . Let dI be the product of ˛_� for all reflections

� in WI . Then

@wI
.f / D 1

jWI j
X

w2WI

w.d�1
I f /; for all f 2 R:

It yields a Frobenius form @wI
WR¹�2`.wI/º ! RI , see e.g. [41, Section 3.1].

Remark 5.6. As mentioned before, everything we have done up to this point only

depends on the Weyl group, not on the underlying root system. However, dI does

depend on the choice of a root system; if we let d 0I be the corresponding product

of coroots in type C rather than type B, dI and d 0I differ by a power of 2.

For I 0 � I � S, let wI;I 0 D wIw
�1
I 0 , dI;I 0 D dI=dI 0 . Let W I;I 0

be the set of

minimal coset representatives of WI=WI 0 . Then

@wI;I 0 WRI 0¹�2`.wI 0w�1
I /º �! RI ; f 7�! 1

jWI=WI 0 j
X

w2WI;I 0

w.d�1
I;I 0f /

(5.5)

is also a Frobenius form by [33, Lemma 2.12]. Let us compute this form in some

useful examples.
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Example 5.7. Let 1 6 a < b 6 m.

(a) Consider I 0 D ¹spI p 2 Œa C 1; b � 1�º � I D ¹spI p 2 Œa; b � 1�º. Then

wI;I 0 D sb�1 : : : sa. We will write @Œb;a� D @wI;I 0 . The Frobenius form (5.5)

in this case becomes

@Œb;a�WkŒta�˝ƒŒaC1;b�¹2.a � b/º �! ƒŒa;b�;

f 7�!
bX

pDa

s.a;p/

�
f

bY

uDaC1

.ta � tu/�1
�
:

Here we have ignored the variables ti for i 62 Œa; b�, since @Œa;b� acts trivially

on them. An easy computation shows that @Œb;a�.t
k
a / D hk�bCa;Œa;b� for all

k. Therefore ¹tka º and ¹.�1/rer;ŒaC1;b�º are dual bases with respect to the

Frobenius form @Œb;a�. Hence the Casimir element is given by

�Œb;a� D
b�aX

rD0

tb�a�r
a ˝ .�1/rer;ŒaC1;b�:

(b) Consider I 0 D ¹spI p 2 Œa; b � 2�º � I D ¹spI p 2 Œa; b � 1�º. Then

wI;I 0 D sa : : : sb�1. We will write @Œa;b� D .�1/b�a@wI;I 0 . The Frobenius

form (5.5) in this case becomes

@Œa;b�WƒŒa;b�1� ˝ kŒtb�¹2.a � b/º �! ƒŒa;b�;

f 7�!
bX

pDa

s.p;b/

�
f

b�1Y

uDa

.tb � tu/�1
�
:

We have @Œa;b�.t
k
b
/ D hk�bCa;Œa;b� for all k, and the Casimir element is

�Œa;b� D
b�aX

rD0

.tb/
b�a�r ˝ .�1/rer;Œa;b�1�:

(c) Consider I 0 D ¹spI p 2 Œ0; a � 2�º � I D ¹spI p 2 Œ0; a � 1�º. We have

wI;I 0 D sa�1 : : : s1s0s1 : : : sa�1. Call this element a. Note that a.ti / D
.�1/ıi;a ti . Write Q@Œ1;a� D .�1/a@wI;I 0 . The Frobenius form (5.5) in this case

becomes

Q@Œ1;a�Wƒ|

Œ1;a�1�
˝ kŒta�¹2.1� 2a/º �! ƒ

|

Œ1;a�
;

f 7�!
aX

pD1

s.p;a/.1C a/
�
f

a�1Y

uD1

.t2a � t2u/�1.2ta/
�1

�
:
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Let us compute Q@Œ1;a�.t
k
a /. Note that .1C a/.t

k
a / D 2tka if k is even, and zero

otherwise. Hence Q@Œ1;a�.t
k
a / is nontrivial only when k is odd, and in this case

by Example (b)

Q@Œ1;a�.t
k
a / D

aX

pD1

s.p;a/

�
tk�1
a

a�1Y

uD1

.t2a � t2u/�1
�

D h|

.k�1/=2�aC1;Œ1;a�
:

The Casimir element is given by

Q�Œ1;a� D .ta ˝ 1C 1˝ ta/
b�aX

rD0

t2.a�1�r/
a ˝ .�1/re|

r;Œ1;a�1�
:

5.4. Action of U| on the Schur 2-category. Recall Khovanov and Lauda de-

fined a 2-functor �aWU! Fa in [22], giving a 2-representation in terms of (equi-

variant) cohomology rings of partial flag varieties of type A. We now define an

analogous 2-functor

�WU| �! Fr;m: (5.6)

On objects � is given by

X| 3 � 7�!
´
Ia if � D �.a/;
0 otherwise :

On the generating 1-morphisms � sends

1�¹sº 7�!
´
Ra¹sº if � D �.a/;
0 otherwise;

Ei1�¹sº 7�!
´
RaCi ¹s C 1C ai � aiC1º if � D �.a/;
0 otherwise;

Fi1�¹sº 7�!
´
Ra�i ¹s C 1C ai�1 � aiº if � D �.a/;
0 otherwise :
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On the generating 2-morphisms � is given as follows.

� If M is a monomial in only Ei ’s or only Fi ’s, then the multiplication map

identifies the bimodules �.M/ with a subring of R. Thus we will write the

image of � on diagrams consisting of only upward arrows or only downward

arrows in terms of endomorphism of R which preserves the corresponding

subrings. Then

�
�
�
i

�

�
D taiC1; �

�
�
i

�

�
D tai

; (5.7)

�
�

�

i j

�
D

8
ˆ̂<
ˆ̂:

@aiC1 if i D j;
.tajC1 � taiC1/ if i D j C 1;
1 otherwise;

(5.8a)

�
�

�

i j

�
D

8
ˆ̂<
ˆ̂:

@ai�1 if i D j;
.tai
� taj

/ if j D i C 1;
1 otherwise :

(5.8b)

� The adjunction maps are given by

�
�

i

� �
WRaCi ˝RCi a RaCi ¹1 � ıi;˘ C ai�1 � aiC1º

�! Ra¹1� h�˛_i ; �C ˛i iº;
f ˝ g 7�! @ŒaiC1;aiC1�.fg/;

(5.9)

�
� i

�

�
WRa �! Ra�i ˝R�i a Ra�i ¹ai�1 � aiC1 C h�˛_i ; �iº;

1 7�! �ŒaiC1;ai �;

(5.10)

�
�

i

� �
WRa�i ˝R�i a Ra�i ¹1C ai�1 � aiC1º

�! Ra¹�1C h�˛_i ; �iº;

f ˝ g 7�!
´Q@Œ1;ai �.fg/; if i D ˘;
@Œai�1C1;ai �.fg/; otherwise;

(5.11)
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�
� i

�

�
W

Ra �! RaCi ˝RCi a RaCi ¹2� ıi;˘ C ai�1 � aiC1 � h�˛_i ; �C ˛i iº;

1 7�!
´
Q�Œ1;aiC1� if i D ˘;
�Œai�1C1;aiC1� otherwise :

(5.12)

Theorem 5.8. The above assignments define a locally essentially surjective

2-functor

�WU| �! Fr;m:

Proof. Obviously � induces ��1 ı  on the Grothendieck group; see Proposi-

tion 5.3 and the paragraph above it for the notation. Hence it is enough to check it

is well defined on 2-morphisms.

First, let us check the compatibility with the grading. This is obvious on the

generators x and � . For
�

, note that the coefficient ai�1 for Cia is the same as

the one for a if i ¤ ˘, but it differs from the one for a by�1 for i D ˘. This is why

�ıi;0 appears in the degree shift on the left. Recall that �i D �ai�1C 2ai � aiC1

and h�˛_i ; ˛ii D 2C ıi;˘. Hence

1 � ıi;˘ C ai�1 � aiC1 � 1C h�˛_i ; �C ˛i i D 2C 2ai � 2aiC1

D deg.@ŒaiC1;aiC1�/:

Using similar computations, we can verify that the other three adjunction maps

are compatible with grading.

Next, let us check the relations in zU| . By definition, the 2-morphism generators

which do not involve i D ˘ act in the same way as in [22], hence all the

relations involving only these generators are satisfied. The computations for

relations (3.2)–(3.6), (3.11), (3.16), even with i D ˘ involved, are also entirely

similar to loc. cit. , and we omit the details. The adjunction (3.1) for i D ˘ follows

from the fact that Q@Œ1;ai � is a Frobenius form, see Example 5.7(c).

To check the bubble relations and the bicross relations for i D ˘, let us write

a D a˘, b D a˘C1. By Example 5.7, we have

�
�

��
s

�
D 2

aX

pD0

.�1/pe|

p;Œ1;a�
h��˘C1�2pCs;ŒaC1;b�; (5.13)

�
�

��
s

�
D

b�aX

pD0

.�1/pep;ŒaC1;b�h
|
�˘C2�pCs

2
;Œ1;a�

: (5.14)
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Let z be a formal variable. Then we have

X

s2Z

�
�

��
�˘�1Cs

�
zs D 2

X

s2Z

X

p>0

.�1/pe|

p;Œ1;a�
z2phs�2p;ŒaC1;b�z

s�2p

D 2
Qa

iD1.1 � t2i z2/
Qb

iDaC1.1 � tiz/
;

(5.15)

X

s2Z

�
�

��
��˘�2Cs

�
zs D

X

s2Z

X

p>0

.�1/pep;ŒaC1;b�z
ph

|
s�p

2
;Œ1;a�

zs�p

D
Qb

iDaC1.1 � tiz/Qa
iD1.1� t2i z2/

:

(5.16)

All bubble relations for i D ˘ now follow from that

LHS (5.15) � LHS (5.16) D RHS (5.15) � RHS (5.16) D 2:

To check the bicross relations (3.14)–(3.15), note that we have

�
� �

� .1˝ 1/

D �
� �

�
� b�aX

sD0

1˝ 1˝ tb�a�s
a ˝ .�1/ses;ŒaC1;b�

�

D �
� �

�
� b�a�1X

sD0

b�a�s�1X

kD0

1˝ tb�a�s�k�1
aC1 ˝ tka ˝ .�1/ses;ŒaC1;b�

�

D 1˝ 1;

�
� �

� .1˝ 1/

D �
� �

�
� aX

sD0

.�1/a�s.taC1e
|

s;Œ1;a�
˝ t2.a�s/

aC1

C e|

s;Œ1;a�
˝ t2.a�s/C1

aC1 /˝ 1˝ 1
�

D �
� �

�
� aX

sD0

.�1/a�s�1
� 2.a�s/�1X

kD0

taC1e
|

s;Œ1;a�
˝ t2.a�s/�k�1

aC1 ˝ tka

C
2.a�s/X

kD0

e
|

s;Œ1;a�
˝ t2.a�s/�k

aC1 ˝ tka
�
˝ 1

�

D �taC1 ˝ 1 � 1˝ taC1:

:
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The last equality follows by noting that only the terms with k D 2a � 1; s D 0

contribute. This shows that the relations (3.14) and (3.15) are correct on 1˝1. On

the other hand, a direct diagram computation shows that both sides of each of these

relations have the same commutator with multiplication by x˝ 1 or 1˝ x, so the

relations are correct on all elements of the form .xp˝xq/ � .1˝1/ D tpaC1˝ t
q
aC1.

This completes the verification of all relations of generating 2-morphisms

under �, and so � is well defined on zU| .

Finally, by Proposition 5.3 and (5.2), the | -Serre relations hold in the Grothen-

dieck group, so Proposition 4.10 implies that this representation of zU| factors

through U| . We are done. �

Remark 5.9. A cyclic version of U was introduced in [2]. There is also an

analogue of the cyclic version forU| , and let us denote it byU|;cyc. In the definition

of �, if we use adjunctions defined by Demazure operators @wI;I 0 in Example 5.7

instead of @Œa;b�, then the same formulas define a 2-functor U|;cyc ! Fr;m; we will

not use this version in this paper.

5.5. Decategorification. A 2-representation of a 2-category C is a 2-functor

from C to the 2-category of k-linear categories. That is to each object of C,

we associate a graded k-linear category, to each 1-morphisms a functor between

corresponding categories, and 2-morphisms are sent to natural transformation

of functors. The 2-category Fr;m has a 2-representation given by sending a to

Ra -proj for a 2 †r;m and the 1-morphisms sent to the functors

Ei D RaCi ˝Ra � W Ra -proj �! RCia -proj;

Fi D Ra�i ˝Ra � W Ra -proj �! R�i a -proj :

Combining it with � defines a 2-representation of U| on
L

a2†r;m
Ra -proj.

Since Ra is a polynomial ring, all projective modules over it are free, so

K0.R
a -proj/ Š A for all a. We will identify this with the constant A-valued

functions on the set of the Fq2 points of G=Pa; these have a natural action of the

| -Schur algebra S
|
r;m via convolution (and hence of U| by the pullback of  (5.2)).

Let AL.m/ denote
L

a2†r;m
K0.R

a -proj/, which we have identified with locally

constant A-valued functions on
F

a G=Pa.

Under the duality of [6], if we identify Schubert constant functions on[aG=Pa

as the tensor product V˝m, then this space has mutually commuting actions of

U| and the Hecke algebra HW . The subspace AL.m/ � V˝m is precisely the

invariants of HW ; if we set q D 1, then L.m/jqD1 D Symm.L.1//.
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6. Categorification and canonical bases

In this section we will show that a slightly extended version of the 2-functor

�WU| �! Fr;m is locally full. This leads to the completion of the proof of the

main theorem that the 2-category PU| categorifies AU| . Moreover, the natural

projection from AU| to the | -Schur algebra sends canonical basis elements to

canonical basis elements or to 0.

6.1. Local fullness of � . Following the idea of [39, Theorem 9, Proof #2], we

prove the theorem below.

Theorem 6.1. If r > m, the 2-functor �WU|
r �! Fr;m is locally full.

Proof. We must prove that for any �, � 2 X, the functor

HomU| .�; �/ �! HomFr;m
.�.�/; �.�//

is full, that is, it is surjective on morphisms. We may assume � D �.a/, � D �.b/
for some a, b 2 †r;m, otherwise the statement is trivial. By definition, the right

hand side is a full subcategory of the category of Rb -gmod-Ra. So it is enough

to prove the following (here we recall notation Hom� from Section 2.1).

Claim (?). For any M;N 2 HomU| .�; �/ monomials in Ei , Fi , the map

�M;N WHom�U| .M;N/ �! Hom�
Rb -gmod- Ra.�.M/; �.N//

induced by � is surjective.

The proof will be carried out in two steps. Set

o D .0; 1; 2; : : : ; m� 1;m;m; : : :/ 2 †r;m: (6.1)

Step 1 . The case a D b D o . In this case, we are considering the category of

(nonsingular) Soergel bimodules, since Io D ; and Ro D R. Let

Bsa
D �.F˘CaE˘Ca/1o D R˝Rsa R¹�1º for 0 6 a 6 m � 1:

Such bimodules are called Bott-Samelson bimodules. They are generators for the

1-morphisms o! o, since they generate the tensor category of Soergel bimodules.
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Next, recall the 2-category S PU from Remark 5.5, by definition the 2-functor
PU ! S PU is full, and � factorises through this quotient. Hence it is enough to show

(?) for 1-morphismsM ,N in S PU. ButK0.S PU.�.o/; �.o/// is the same as SW .o; o/

by (5.3). Since the classes ŒBsa
� generate the algebra SW .o; o/, the 1-morphisms

F˘CaE˘Ca for 0 6 a 6 m � 1 also generate the 1-morphisms in S PU.�.o/; �.o//.
Thus it suffices to show (?) for all M , N that are tensor products of F˘CaE˘Ca’s.

The category of Bott-Samelson bimodules has a description due to Elias and

Williamson [13], using Soergel calculus, via a set of generators and relations

for homomorphisms between them. We will not need the full power of this

presentation, just that it gives us a small set of generators for all morphisms; this

was shown earlier by Libedinsky using his light leaf basis [26]. Given a monoidal

category C and a collection C of objects which is closed under tensor product,

we say that morphisms between these objects are locally generated by a finite

collection F of morphisms if there is no proper subset of morphisms between the

objects in C which containsF , and the identity on each object, and is closed under

composition and tensor product.

Proposition 6.2 ([26, 5.1], [13, 6.28]). The morphisms between Bott-Samelson

bimodules are locally generated by ( for s; t 2 S):

(a) all polynomial multiplications on the left and right;

(b) the unit, counit, multiplication and comultiplication for the Frobenius exten-

sion R � Rs;

(c) the unique nonzero (up to scalar) degree 0 morphism

bWBs ˝R Bt ˝R Bs � � �„ ƒ‚ …
mst

�! Bt ˝R Bs ˝R Bt � � �„ ƒ‚ …
mst

where mst denotes the order of st in the Weyl group.

Thus, in order to complete Step 1, we must find 2-morphisms in PU| whose

images are the morphisms listed in Proposition 6.2. Let us consider these in turn:

(a) By the equations (5.13)–(5.14), we see that the degree 1 bubbles with label

˘ give ˙t1. Those with label a C ˘ give ˙ta � taC1 by [22, (6.23)], for

1 � a � m � 1. Together, these generate all elements of R acting on the

identity 1-morphism of o.

(b) The adjoints in U| are sent under � to the adjoints induced by the standard

Frobenius structure for R � Rs by the definitions (5.9)–(5.12).
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(c) Fix i; j 2 I| and let a D i � ˘ and b D j � ˘. Let s D sa and t D sb. If

ji � j j > 1, then we simply need an isomorphism Bsa
Bsb
Š Bsb

Bsa
, which

is supplied by the following mutual inverse diagrams:

B D

ji i j

; C D

ij j i

: (6.2)

If j D i C 1 with i > ˘, then b (up to a scalar multiple) is given by the

diagrams

B D

i j ii j i

j i jj i j

; C D

j i jj i j

i j ii j i

: (6.3)

If i D ˘ and j D ˘ C 1, then b (up to a scalar multiple) is given by the

diagrams

B D

j i ji ji j i

i j ij i j ij

; C D

jij ij iji

iji jiji j

:

(6.4)

The confirmation that the morphisms of (6.2) act correctly is straightforward

from the definition. The case of (6.3) is confirmed by [31, 6.8]. Of course, we

could verify (6.4) by direct calculation, but in fact, we have arrived at this formula

systematically by applying the results of Elias [12] on Soergel bimodules for

dihedral groups. This gives a formula [12, 6.4] for writing the degree 0 morphism

in terms of the Frobenius square R � Rs; Rt � Rs;t . This square gives four

Frobenius extensions:

A D R; A0 D RsI (6.5a)

A D R; A0 D Rt I (6.5b)

A D Rs; A0 D Rs;t I (6.5c)

A D Rt ; A0 D Rs;t : (6.5d)
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Elias’s formula allows us to write the desired morphism in terms of

(i) all polynomial multiplications on the left and right;

(ii) the unit, counit, multiplication and comultiplication for the Frobenius exten-

sions A � A0 listed in (6.5);

(iii) the obvious isomorphism of .Rs;t ; R/-bimodules

Rs;tRs;t ˝Rs;t Rs ˝Rs RR Š Rs;tRR Š Rs;tRs;t ˝Rs;t Rt ˝Rt RR: (6.6)

Here and below, the left and right subscripts indicate the bimodule structure.

For example, Rs;tRR stands for R viewed as an .Rs;t ; R/-bimodule. In order to

describe these 2-morphisms in terms of the category U| , we need to consider

some auxiliary objects:

� oa D .0; 1; : : : ; a� 1; aC 1; aC 1; aC 2; aC 3 : : : / satisfies Ioa
D ¹saº and

Roa D Rsa .

� oa;aC1 D .0; 1; : : : ; a � 1; a C 2; a C 2; a C 2; a C 3; : : : / satisfies Ioa
D

¹sa; saC1º and Roa D Rsa;saC1 .

Furthermore, recalling a D i�˘ and b D j �˘, we have bimodule isomorphisms

(ignoring grading shifts):

1oa
Ei1o Š RsaRR; 1oFi1oa

Š RRRsa ;

1oa;b
EiEj1oa

Š Rsa;sbR
sa

Rsa ; 1oa;b
E

.2/
i 1ob

Š Rsa;sbR
sb

Rsb ;

1oa
FjFi1oa;b

Š RsaRsa
Rsa;sb ; 1ob

F
.2/
i 1oa;b

Š RsbR
sb

Rsa;sb :

In order to apply Elias’s formula, we must find a 2-morphism which induces an

isomorphism EiEjEi1o Š E
.2/
i Ej1o, since this will give (iii). Note that EjE

.2/
i 1o D

0, since the flag variety corresponding to .0; 1; : : : ; aC2; aC1; aC2; : : : / is empty.

The equation (3.5) shows that the 2-morphisms

B D �

i

�

i j

; C D

i ji

;

are inverse to each other and thus give the desired isomorphism. Substituting these

into [12, Notation 6.4] gives the equations (6.3) and (6.4). Hence Claim (?) in the

case of Step 1 is proved.
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Step 2. The general case. Let us first assume b D o and a is arbitrary.
First, assume that we have found an object P 2 U| .�.o/; �.a// such that �.P / D
aR and such that for Q 2 U| .�.a/; �.o// the adjoint of P , the product PQ has
1�.a/ as a direct factor in degree zero. Let �W 1�.a/ ,! PQ be a split embedding.
Then � sends it to a split embedding Ra Š �.1�.a// ! R Š �.PQ/, with the
latter viewed as a .Ra; Ra/-bimodule. We have a commutative diagram

HomU| .MP; NP / HomU| .MPQ; N / HomU| .M; N /

HomFr;m
.�.MP /; �.NP // HomFr;m

.�.M /˝Ra R; �.N // HomFr;m
.�.M /; �.N //:

 ! �

(

(

 ! �

 

!
.�/

 ! �

(

(

 

!
�.�/

Here .�/ is the transpose of the map M�WM ! MPQ. It is surjective, so is

its image by �. Since MP and NP belong to U| .o; o/, Step 1 implies that the

leftmost vertical map is surjective. Hence, the rightmost vertical map is surjective

too. The case for arbitrary b follows from the same argument by considering

HomU| .QMP;QNP / on the left top corner for the Q defined for b.

It remains to find P . Without loss of generality, we may assume

a˘ < a˘C1 < � � � < a˘Cs D a˘CsC1 D � � � D m; for some p: (6.7)

Indeed, if there is any index p such that a˘Cp�1 D a˘Cp < a˘CpC1, then let a0

be the sequence with a0˘Cp D a˘CpC1 and a0i D ai for i ¤ ˘ C p C 1. We have

a split surjection F
.a˘CpC1�a˘Cp/

˘Cp 1�.a0/ E
.a˘CpC1�a˘Cp/

˘Cp 1�.a/ � 1�.a/, and hence
we get the following commutative diagram

HomU| .MF
.a˘CpC1�a˘Cp/

˘Cp
; NF

.a˘CpC1�a˘Cp/

˘Cp
/ HomU| .M;N /

HomFr;m
.�.MF

.a˘CpC1�a˘Cp/

˘Cp
/; �.NF

.a˘CpC1�a˘Cp/

˘Cp
// HomFr;m

.�.M/;�.N //:

 ! �

 !

 ! �

 !

The surjectivity of the left vertical arrow implies the surjectivity of the right one.

Hence, up to replacing a by a0 inductively, we are reduced to consider the sequence

of the form (6.7).

For such a, we have k 6 a˘Ck for all k. We choose a sequence i D
.i1; i2; : : : ; in/ such that the weight �.k/ D �.o/ C ˛i1 C � � � C ˛ik satisfies

�.n/ D �.a/ and h�˛_ik ; �
.k/i > 0 for all k > 0. To do so, we proceed induc-

tively: set a.0/ D o and define a.k/ D Cik a.k�1/ for all k > 0. Let i1 be the largest

element such that i1 � ˘ < ai1 . Given ik , we then

� if the set ¹j < ik j a.k/
j < aj º is non-empty, then we let ikC1 be the maximal

element in this set;

� otherwise, we let ikC1 be the largest element of ¹j � ik j a.k/
j < aj º.
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Then for each k, we always have a
.k/
ikC1 � a

.k/
ik
D 1 and a

.k/
ik
� a.k/

ik�1 6 2. For

ik D ˘ this inequality follows from the fact that a
.k/
ik

> 1. Thus, we have that

h�˛_ik ; �
.k/i > 1 for all k. We then define the mutually adjoint 1-morphisms:

P D 1�.a/Ein : : : 1�.2/Ei21�.1/Ei11�.o/;

Q D 1�.o/Fi11�.1/Fi21�.2/ : : :Fin1�.a/:

Since h�˛_ik ; �
.k/i > 1 for all k, it follows from (3.7) and (3.9) that

ik

�� h�˛_
ik

;�.k/i�1 WEiFi1� �! 1�

is split surjective. Hence 1�.k/ is a direct factor of EikFik1�.k/ of degree zero.

Applying this successively, we obtain that 1�.a/ is a direct factor of PQ of degree

zero.

This completes the proof of Claim (?) and hence the proof of Theorem 6.1. �

For an arbitrary r , there is an obvious problem with extending Theorem 6.1:

the images of the bubbles under � do not generate Ra unless ai D aiC1 for some

i or a˘ D 0. We are able to make the proof work for r � m, since one of these

conditions will be forced by the pigeonhole principle, but for r < m, the obvious

extension of Theorem 6.1 fails. However, this failure to surject to Ra is easily

fixed, and it proves to be the only obstruction to fullness.

Fixing this issue requires us to add more 2-morphisms to U
|
r , analogous to the

extension of U discussed in [39, Section 2.1]. Let us write U| ; � and X| as U
|
r ; �

r

and X|;r to indicate the dependence on rank r . Note that for r < s, there is a

natural embedding X|;r ! X|;s given by sending the class of
Pr

iD�r ki"i to the

class denoted by the same notation in X|;s. We have a well-defined 2-functor

�r;s WU|
r �! U|

s

which is given by the above embedding on objects, sending Ei , Fi to themselves

for i 2 I
|
r , and sending the generators of 2-morphisms in U

|
r to the same diagram

in U
|
s . Now, for each � 2 X|;r , consider the ring Z

.s/

�
D EndU

|
s
.1�/. Using

arguments as in [22, Proposition 3.6], we can see thatZ
.s/

�
is generated by bubbles

indexed by i 2 I
|
s , and that for any pair of 1-morphisms M;N 2 U

|
r , the space

Hom�
U

|
s
.M;N/ is generated by the image �r;s

�
Hom�

U
|
r
.M;N/

�
andZ

.s/

�
. We define

U
|;ext
r as the full 2-subcategory of U

|
rC1 generated by objects and 1-morphisms in

the image of �r;rC1.
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Next, consider the embedding jr;sW†r;m ,! †s;m which sends a D .a1; : : : ; ar/

to jr;s.a/ D .a1; : : : ; ar ; m;m; : : :/. This induces a tautological 2-functor Fr;m !
Fs;m which is fully faithful, since Ra D Rjr;s.a/. Moreover � intertwines �r;s with

this 2-functor. Hence we obtain a commutative diagram

Hom�
U

|
r
.M;N/ Hom�

U
|
s
.M;N/

Hom�
Rb -gmod- Ra.�.M/; �.N//:

 !�r;s

 

!�r
M;N

 

! �s
M;N

Hence � extends to a 2-functor �extWU|;ext
r ! Fr;m, and we have a similar

commutative diagram with U
|
r , �r

M;N on the left-downward arrow replaced by their

extended version. Now, if s > m, then the theorem implies that in the diagram

above the map �M;N on the right is surjective. Further by formulas similar to

(5.13)–(5.14), � sends positive degree bubbles labeled by i to 0 if i > r C 1.
Therefore we have established the following extension of Theorem 6.1.

Proposition 6.3. The 2-functor �extWU|;ext
r ! Fr;m is locally full for any r andm.

Note that U
|;ext
r only differs from U

|
r by bubbles labeled by ˘ C r , which

live in strictly positive degree. Hence the canonical embedding PU|
r ! PU|;ext

r

sends indecomposable 1-morphisms to indecomposable ones, and induces an

isomorphism on Grothendieck groups (as argued in [39, Proposition 3]). Applying

[39, Lemma 10], we have established the following corollary.

Corollary 6.4. The map K0. PU| / ! K0.Fr;m/ induced by � sends the classes of

indecomposable 1-morphisms in PU| which are not annihilated by � bijectively to

the classes of indecomposable 1-morphisms in Fr;m.

6.2. Canonical basis. Recall the functor@WA PU|!K0. PU/ defined in Lemma 4.6,

and the equivalence � in Proposition 5.3. By construction, we have a commutative

diagram

A
PU| K0. PU/

S
|
r;m K0.Fr;m/:

 !@

 !   ! �

 !

�

�

(6.8)

Recall also the canonical basis B| for A
PU| defined in [30, Proposition 5.4, Theo-

rem 5.5]. It can be characterized as the unique basis such that  maps each element

in it to an element in the canonical basis of S
|
r;m for infinitely many m.
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Theorem 6.5. (a) The functor @WA PU| ! K0. PU/ is an equivalence of categories.

(b) Assume the residue field of k has characteristic zero. Then @ sends canon-

ical basis of A
PU| to the classes of self-dual indecomposable 1-morphisms in PU.

Proof. To prove (a), note that @ is identity on objects, and it is full by Propo-

sition 4.8. It remains to show it is faithful, i.e., the map @�;�WA PU| .�; �/ !
K0. PU.�; �// is injective. Note that if u is in the kernel of @�;�, by the commu-

tativity of (6.8) and the fact that � is invertible, we deduce that .u/ D 0 for all

m 2 N. By [6, Theorem 4.7], this is possible only when u D 0. We are done.

Part (b) follows from the characterization of B| and Corollary 6.4. �

As a corollary of Theorem 6.5 and Corollary 6.4, we obtain the following

refinement of [30, Proposition 5.11].

Corollary 6.6. The map  WA PU| ! S
|
r;m in (5.2) sends B| n.B|\ker / bijectively

to the canonical basis of S
|
r;m for all m.

7. Categorical action on category O

In this section, we assume k D C.

7.1. Reminders on Harish-Chandra bimodules. Let g be a complex semisim-

ple Lie algebra and t � g a Cartan subalgebra. Let U D U.g/ be the enveloping

algebra of g and let Z be the center of U . We view the ring R D S.t/ as the co-

ordinate ring of t�. Recall that the Harish-Chandra morphism �WZ ! R is a ring

homomorphism such that an element z 2 Z acts on a Verma module of highest

weight � by the value of �.z/ at �.

Consider the dot action of the Weyl group W on t� by w � � D w.�C �/ � �,

where � is the half sum of positive roots. Then � sendsZ isomorphically ontoW -

invariant functions on t� for the dot action. Equivalently, the central characters of

Z are in bijection with W -dot-orbits in t�. For � 2 t�, denote the corresponding

central character by �� and write I� D ker��.

We say that �� is integral if � is an integral weight of g. Let yZ� be the

completion of Z at �. Let �#WR ! R be the pull back of the translation map

t� ! t�, x 7! x C �. Then �# ı �WZ ! R induces an isomorphism yZ� ' yRW� ,

where yR is the completion ofR at the ideal generated by t, andW� is the stabilizer

of� under the dot action. We abbreviate yR� D yRW� and denote bym� the maximal

ideal of yRW� .
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Recall that a Harish-Chandra bimodule over g is a .U; U /-bimodule for which

the adjoint action of g is locally finite [3, 35]. Typical examples of Harish-Chandra

modules are E ˝ U , where E is a finite dimensional left U -module. The left U -

action onE˝U is induced by the g-action such that u.x˝y/ D .ux/˝yCx˝.uy/
for u 2 g, and the right action is the right action of U on itself. In other words,

it is the tensor product of U with E considered as a bimodule with the usual left

action and trivial right action.

Let H be the category of finitely generated Harish-Chandra bimodules of finite

length. It is a direct sum of subcategories of the form

�H� D ¹M 2 H j I n
�M DMI n

� D 0 for n� 0º

for �; � 2 t�. Let �H
n
� be the full subcategory of �H� consisting of modules M

such that MI n
� D 0. Let yU� be the completion of U at I�. Let �

yH� denote the

category of finitely generated . yU�; yU�/-bimodules.

Theorem 7.1 ([35, 37]). (a) There is a unique exact functor

VW �H� �! yR� -mod- yR�

defined by the property that it sends the unique simple module of maximal

Gelfand–Kirillov dimension to the trivial module C, and all the other simple mod-

ules to zero. For each n > 0, it induces an exact functor

VW �Hn
� �! yR� -mod-. yR�=mn

�/:

(b) For any n > 0, the category �H
n
� has enough projective objects, given by

direct sums of direct summands of modules of the form E˝U=.UI n
�/, where E is

a finite dimensional g-module.

(c) For any n > 0, the functor V restricts to a fully faithful functor on the full

additive subcategory �P
n
� of projective objects in �H

n
�.

Proof. The definition of V is given in [37, p. 357], Part (b) is proved in [37,

Theorem 1.1], and Part (c) follows from [37, Theorem 4.1]. �

LetM be the category of (left)U -modulesM over whichZ acts locally finitely.

It is a direct sum over � 2 t� of subcategories �M � M consisting of modules

over which I� acts locally nilpotently. Denote by pr�WM ! �M the projection

functor. Let n
�M � �M be the full subcategory consisting of modules over which

I n
� acts trivially.
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Recall that a projective functor M ! M is a direct summand of E ˝ �
for some finite dimensional U -module E. Direct sums and compositions of

projective functors are again projective functors. Given E a finite dimensional

representation, consider the projective functor

F W �M �! �M; M 7�! pr�.E ˝M/:

It is nontrivial if and only if � � � is a weight of E. The restriction of F to the

subcategory n
�M is represented by a direct factor �ˆ.E/

n
� of E ˝U=UI n

� , which

is an object of �P
n
�. For m > n, we have a projection �ˆ.E/

m
� � �ˆ.E/

n
� D

�ˆ.E/
m
�=I

n
� . Taking the limit yields an object �ˆ.E/� D lim � �ˆ.E/

n
� in �

yH�

which represents the functor F . Let �
yP� be the full additive subcategory of �

yH�

generated by direct summands of �ˆ.E/� for all E.

Corollary 7.2. The functor V induces a fully faithful functor

yVW �yP� �! yR� -mod- yR�:

Proof. To see this, note that for any objectM in �
yP� we haveM D lim �M=MI

n
� .

ApplyingV to the natural projectionM=MIm
� !M=MI n

� yields a surjective map

V.M=MIm
� /! V.M=MI n

�/. Define yV.M/ as the limit of the projective system

¹V.M=MI n
�/ºn�0. It is still an object in yR� -mod- yR�. We have yV.M/=mn

� D
V.M=MI n

�/. Finally, for two objects M , N in �
yP�, we have

Hom
�
yP�
.M;N/ D lim �Hom OH.M;N=NI

n
�/

D lim �Hom
�H

n
�
.M=MI n

� ; N=NI
n
�/

D lim �Hom yR�˝ yR�.V.M=MI
n
�/;V.N=NI

n
�//

D lim �Hom yR�˝ yR�.yV.M/=mn
�;
yV.N /=mn

�/

D Hom yR�˝ yR�.yV.M/; yV.N //:
where the first equality is the universal property of projective limit and the second

one is because I n
� � Z is central, the third equality is given by Theorem 7.1(c). �

Lemma 7.3. For M 2 �
yP� and N 2 �

yP� we have M ˝ yU�
N 2 �

yP� : Moreover

there is a natural isomorphism yV .M ˝ yU�
N/ Š yV.M/ ˝ yR�

yV.N /, which is

functorial with respect to M and N .

Proof. The first statement follows from the fact that composition of projective

functors is again a projective functor. The proof of the second statement is similar

to [35, Proposition 13], details are left to the reader. �
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7.2. The case of types B and C. Now, let us apply the above results to

the type B=C situation. Let g D so2mC1 or g D sp2m. We choose a D
.a˘; a1C˘; : : : ; ar�˘/ 2 †r;m; by convention, we have arC˘ D m. To this vec-

tor, we associate a weight �hai 2 t� such that

�hai C � D .0; : : : ; 0;�1; : : : ;�1; : : : ;�r; : : : ;�r/

with 0 appearing a˘ times, and �k appearing akC˘ � ak�˘ times for k > 0. By

definition, we have that W�hai is the subgroup of W generated by the reflections

in Ia � S (see Section 5.2 for notation). Thus, we have RW�hai D Ra. Note that

if g D sp2m then every integral central character is of this form for r sufficiently

large. For g D so2mC1, we have � 2
Pm

aD1.ZC 1
2
/�a, and so the highest weights

for modules with central character �.a/ lie in
Pm

aD1.ZC 1
2
/�a; in particular, the

block of the spin representation lies in this image and the block of the trivial

representation does not.

The weights of the natural representation V are ˙�k for k D 1; : : : ; m for

g D sp2m (and 0 in addition for g D so2mC1). Hence we have �ˆ.V /�hai is

nontrivial precisely when � D �h˙iai for some i 2 I| (for ˙ia as in Section 5.2),

or � D �hai if g D so2mC1. Recall the bimodules Ei1a, Fi1a from Section 5.2,

and let yEi1a, yFi1a be their completions with respect to their grading.

Lemma 7.4. We have

yV.�hCi aiˆ.V /�hai/ D yEi1a; yV.�h�iaiˆ.V /�hai/ D yFi1a: (7.1)

Proof. The image yV.�hCiaiˆ.V /�hai/ is a completed singular Soergel bimodule.

Its rank as a left module over yRCi a is the number ` of weights � of V such that

�haiC � is in the dot-orbit of �hCiai. This is precisely ai �ai�1 if i > ˘ and 2a˘

if i D ˘.

We claim that yEi1a is the only completed singular Soergel bimodule with this

property. By [40, Theorem 1], the indecomposable singular Soergel bimodules

are in bijection with the cosetsW
Ci anW=Wa. By [40, Section 7.5], the rank of the

bimodule associated to a longest double coset representative w as a free left yRCia

module is the sum
P

u2W=Wa
pa

w;u.1/ where pa
w;u.x/ is the parabolic Kazhdan–

Lusztig polynomial. The constant term of pa
w;u.x/ is 1, and all its coefficients are

non-negative by [10, 3.11, 4.1], so pa
w;u.1/ � 1 whenever uWa � wWa in Bruhat

order. Thus, the rank of an indecomposable singular Soergel bimodule over yRCia

corresponding to w is at least the number of left cosets less than wWa in Bruhat

order. This number is ` for the double coset of the identity, and thus > ` for any

other coset.
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Thus, yEi1a is the unique singular Soergel bimodule with rank `, which shows

the equality yV.�hCiaiˆ.V /�hai/ Š yEi1a. The same argument with left and right

hand actions reversed shows that yV.�h�i aiˆ.V /�hai/ Š yFi1a. �

For � D �hai, � D �hbi, recall that by Proposition 5.3(a) the category F.a; b/

defined in Section 5.2 is a full subcategory in Ra -mod-Rb, hence we have an

obvious completion functoryWF.a; b/! yRa -mod- yRb.

Lemma 7.5. There exists a unique functor

UWF.a; b/ �! �
yP�

such that

yV ıUWF.a; b/ �! yRa -mod- yRb

is the completion functor.

Proof. By Corollary 7.2, the functor yV induces an equivalence between �
yP� and

its image. Hence to prove the lemma, it is enough to prove that the image of F.a; b/

under the completion functor lands in V.�yP�/. This is a consequence of (7.1) and

Lemma 7.3. �

This shows that the 2-category Fr;m has 2-representations given by sending a to

the category �haiM, or more generally, to any subcategory of �haiM closed under

the action of projective functors. Composing with �WU|
r ! Fr;m from (5.6), we

obtain the following theorem.

Theorem 7.6. The category U
|
r has a representation sending � in X| to the

category �haiM if � D �.a/ for a 2 †r;m, and to zero otherwise. This action

descends to the intersection of �haiM with any subcategory of U -mod which is

closed under the action of projective functors, including:

� the subcategory of finite length U -modules,

� the subcategory of finite dimensional U -modules,

� the subcategory of modules locally finite for a subalgebra k � g,

� the BGG category O and its parabolic generalizations Op,

� the subcategory of projective-injective modules in these categories.
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Tracing through the definitions, this action sends the 1-morphisms E˙i to the

translation functor from the block �haiM to
˙i �haiM. By (7.1), these are always

given by summands of the functor V ˝ � of tensor product with the defining

representation. In future work, we will expand the discussion of this categorical

action in greater detail and describe further applications.

Appendix A. Categorification of the |-Serre relations

In this appendix we shall derive some bubble slide formulas. We then prove the

identities (4.11) and (4.12). This completes the proof of Proposition 4.3 on the

categorification of the | -Serre relations.

A.1. Bubble slides. We first provide several bubble slide formulas for U| , which

are the counterparts of Lauda’s bubble slide formulas [24, Propositions 5.6, 5.7].

We recall our convention that all the strands without labels should be viewed as

labeled by ˘.

Lemma A.1 (bubble slides). The following relations hold for all � 2 X| (recall

�˘ D h�˛_˘ ; �i):

�
��˘C˛�3

�� C �
��˘�2C˛

� D
X̨

sD0

.s C 1/ �
��˘�5C˛�s

�� s I (A.1)

�
�˘C˛C1

�� C �
�˘C2C˛

� D
X̨

sD0

.s C 1/ �
�˘�1C˛�s

�� s I (A.2)

�
�˘�1C˛

� D �
�˘C˛�1

��3 � �
�˘C˛

��2 � �
�˘C˛C1

�� C �
�˘C2C˛

� I

(A.3)

�
��˘�5C˛

� D �
��˘C˛�5

��3 � �
��˘C˛�4

��2 � �
��˘C˛�3

�� C �
��˘C˛�2

� :

(A.4)

Proof. We shall first prove the case when �˘ � �2. Note that in this case only

real bubbles appear on the left hand side of the equation (A.2), since bubbles with

negative degree are set to be 0. We shall proceed in the following steps:
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� prove (A.1) for ˛ � �˘ C 3, and prove (A.2) for all ˛;

� prove (A.3) by using (A.2);

� to complete the proof of (A.1) for 0 � ˛ � �˘ C 2 (fake bubbles), we use

induction on ˛ based on the definition of fake bubbles, with the help of (A.3).

� prove (A.4) by using (A.1) (similar to (b)).

We now proceed with Step (a).

From the relation (3.14), we have (for m � 0)

�
m

�� C �
mC1

�

D � �
m

�

C
�˘C3X

jD0

.�˘ C 4 � j / �
��˘�5Cj

��
�˘C3�jCm

D
m�1X

aD0

aC�˘C4X

jD0

�
��˘�5Cj

��
�˘C3�jCm

C
�˘C3X

jD0

.�˘ C 4� j / �
��˘�5Cj

��
�˘C3�jCm

D
�˘C3CmX

jD0

.�˘ C 4 � j Cm/ �
��˘�5Cj

��
�˘C3�jCm

:

Replacing mC �˘ C 3 D ˛ above, we have proved (A.1) for ˛ � �˘ C 3 (thanks

to m � 0).
In an entirely similar way, we can prove (for ˛ � �1� �˘):

�
�˘C˛C1

�� C �
�˘C2C˛

� D
X̨

sD0

.s C 1/ �
�˘�1C˛�s

�� s
:

On the other hand, if ˛ � �2 � �˘, then ˛ � 0 by the assumption in (a). If

˛ < 0, both left and right hand sides of the identity (A.2) are 0. If ˛ D 0 (which

is non-trivial only when �˘ D �2), then both sides are equal to 2"�. So we have

established (A.2) for all ˛.
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Let us proceed with Step (b). We can rewrite the right hand side of (A.3) as

follows:

�
�˘C˛�1

��3 � �
�˘C˛

��2 � �
�˘C˛C1

�� C �
�˘C2C˛

�

D
�

�
�˘C˛�1

��3 C �
�˘C˛

��2
�
� 2

�
�

�˘C˛

��2 C �
�˘C˛C1

��
�

C
�

�
�˘C˛C1

�� C �
�˘C2C˛

�

�
:

Then by applying (A.2) three times, we obtain the identity (A.3).

Now we proceed with Step (c), that is, we prove (A.1) for 0 � ˛ � �˘ C 2 by

induction on ˛. Thanks to the bubble relations (3.7)–(3.9), we have

�
��˘�2

�
D 1; �

�˘�1

�
D 2;

and a recursive definition of fake bubbles as follows, for ˛ > 0:

2 �
��˘�2C˛

�
D �

X̨

lD1

�
�˘�1Cl

�
��˘�2C˛�l

�

D �
1X

lD�1

�
�˘�1Cl

�
��˘�2C˛�l

�
:

(A.5)

The base case ˛ D 0 of (A.1) is trivial, since both sides of identity (A.1) are

�
:
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The case ˛ D 1 of (A.1) can be verified using (A.3) by writing the fake bubbles

in terms of the real ones using (A.5). For ˛ > 1, it follows by (A.5), the inductive

assumption, and (A.3) that

2
�

�
��˘C˛�3

�� C �
��˘�2C˛

�

�

D �
X̨

lD1

�
�

�˘�1Cl
� �

��˘�3C˛�l

�
C �

�˘�1Cl
�

��˘�2C˛�l

� �

D
X̨

lD1

�
� �

�˘Cl�1

��4 C �
�˘Cl

��3

C �
�˘ClC1

��2 � �
�˘ClC2

��
�

�
��˘�3C˛�l

�

C
X̨

lD1

�
� �

�˘Cl�1

��3 C �
�˘Cl

��2

C �
�˘ClC1

�� � �
�˘ClC2

�

�
�

��˘�2C˛�l

�
:

To simplify the right-hand side above, we will compute 4 sums (each of 2 sum-

mands which line up vertically) as follows. First, by the induction hypothesis and

using the relation (3.9), we have

X̨

lD1

�
� �

�˘Cl�1

�4
�

��˘�3C˛�l

� �
C

X̨

lD1

�
� �

�˘Cl�1

�3
�

��˘�2C˛�l

� �

D
X̨

lD1

�
� �

�˘�1Cl

� ˛�lX

sD0

.s C 1/ �
��˘�5C˛�l�s

�sC3
� ��

D
˛�1X

sD0

.s C 1/
�
�

˛�sX

lD1

�
�˘�1Cl

�
��˘�5C˛�l�s

�C˛˘
�
� sC3

�

D �2.˛ � 2/ �˛

�

:
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Similarly we have

X̨

lD1

�
�

�˘Cl

�3
�

��˘�3C˛�l

� �
C

X̨

lD1

�
�

�˘Cl

�2
�

��˘�2C˛�l

� �

D 2.˛ � 1/ �˛

�

;

X̨

lD1

�
�

�˘ClC1

�2
�

��˘�3C˛�l

� �
C

X̨

lD1

�
�

�˘ClC1

�1
�

��˘�2C˛�l

� �

D 2˛ �˛

�

:

Finally, by the definition of fake bubbles in (A.5) we have

X̨

lD1

�
� �

�˘ClC2

� �
��˘�3C˛�l

� �
C

X̨

lD1

�
� �

�˘ClC2

�
��˘�2C˛�l

� �

D
˛�1X

sD0

.s C 1/
�
�

˛�sX

lD1

�
�˘C2Cl

�
��˘�5C˛�l�s

�C˛˘
�
� s

�

D 2
˛�1X

sD0

.s C 1/ �
��˘�5C˛�s

� s
:

Summing up the above 4 identities, we finish the proof of (A.1).

The proof of Step (d) that the identity (A.4) follows from (A.1) is entirely

similar to the proof of Step (b) that the (A.3) follows by (A.2). We skip the detail.

This finishes the proof of the bubble slide formulas for the case �˘ � �2.
The case �˘ � �3 is entirely similar, where the left hand side of the identity (A.1)

involves only real bubble, hence can be easily proved, as well as the identity (A.4).

The proof of the identities (A.2) and (A.3) follows a similar argument as above.

Alternatively, we could simply apply symmetries of U| in Section 3.3. �

Corollary A.2. The following relations hold for all � 2 X| :

�
��˘�2C˛

� D
X̨

sD0

ls C 1
2

m
�

��˘�5C˛�s

�� s I

�
�˘C2C˛

� D
X̨

sD0

ls C 1
2

m
�

�˘�1C˛�s

�� s
:
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Proof. The proof follows from Lemma A.1 by induction on ˛. �

We can also formulate the downward arrow counterparts of the bubble slide

relations in Lemma A.1. The proof is similar, hence shall be omitted.

Proposition A.3. The following relations hold for all � 2 X| :

�
�˘C˛�2

�� C �
�˘�1C˛

� D
X̨

sD0

.s C 1/ �
�˘�4C˛�s

�� s I

�
��˘C˛

�� C �
��˘C1C˛

� D
X̨

sD0

.s C 1/ �
��˘�2C˛�s

�� s I

�
��˘�2C˛

� D �
��˘�2C˛

��3 � �
��˘�1C˛

��2 � �
��˘C˛

�� C �
��˘C1C˛

� I

�
�˘C˛�4

� D �
�˘C˛�4

��3 � �
�˘C˛�3

��2 � �
�˘C˛�2

�� C �
�˘C˛�1

� I

�
�˘�1C˛

� D
X̨

sD0

ls C 1
2

m
�

�˘�4C˛�s

�� s I

�
��˘C1C˛

� D
X̨

sD0

ls C 1
2

m
�

��˘�2C˛�s

�� s
:

A.2. Proof of Proposition A.6 . In this subsection, we shall first establish a vari-

ant of the identity (4.11), as a preparation toward the proof of the identity (4.11).

Let � 2 X| with �˘ � 2. Recall the 2-morphism � 2 End.E˘F
2
˘1�/ in

Lemma 4.1. The following lemma follows from the proof therein.

Lemma A.4. We have � � �t D 0, for 0 � t � �˘ � 3.

Let us define

�2 D
1

2

X

aCbCcD�2

�a

�b

�

�c

�

and �3 D
1

2

X

aCbCcD�3

�a

�b

�

��c

�

:
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Recall the definition of � in Lemma 4.1 uses �s, which consists of the top parts

of �2 and �3. An alternative way of decomposing � is available by use of the low

parts of �2 and �3. To that end, we set

Q�s D
�s

and Q�s D �
1

2

X

aCcD�s�2

�

�c

�a

C 1

2

X

aCcD�s�3

�

�c

�a �
:

Then clearly we also have

� D id
E˘F

.2/
˘ 1�
�

X

0�s��˘�3

Q�s Q�s: (A.6)

The following lemma is a counterpart of Lemma A.4, whose proof is skipped.

Lemma A.5. We have Q�t Q�s D ıs;t idF˘1�
, for 0 � s � �˘� 3 and 0 � t � �˘� 3.

Moreover, we have Q�t � � D 0 for 0 � t � �˘ � 3.

Recall the diagrams B1; B2; Pk; C1; C2 and Ik , for 0 � k � �˘ � 1,

from (4.7)–(4.8). We shall establish first a simpler version of the identity (4.11).

Proposition A.6. The following identity holds in QU|
:

2
6666664

B1

� � B2

P0

:::

P�˘�1

3
7777775
�
�
C1 C2 � � I0 � � � I�˘�1

�
D id.�˘C2/�.�˘C2/: (A.7)

The proof of the identity in Proposition A.6 is divided into Lemmas A.7–A.13

below. As we shall not need the relation (3.17) in the process, the identity holds

in QU|
.

Lemma A.7. We have B2 � C1 D 0 and B1 � C2 D 0.

Proof. We have

B1 � C2 D �
� �

D �
� �

D 0:

The proof for the second identity is similar and will be skipped. �
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Lemma A.8. We have Pk � I` D ık;` idF˘1�
, for 0 � k; ` � �˘ � 1.

Proof. By the bubble relation (3.9), we compute

Pk � I` D
1

2

X

sCtDl

�
�˘�1�kCs

�
��˘�2Ct

D ık;l : �

Lemma A.9. We have B1 � Ik D 0 and Pk � C1 D 0, for 0 � k � �˘ � 1.

Proof. We have

B1 � Ik D �
1

2

X

sCtDk
��

��˘�2Ct

� s

�
D 1

2

X

uCvCtDk�1
��

��˘�2Ct

�v

�u

�

D 0

thanks to the vanishing of bubbles of negative degree in relations (3.7)–(3.8).

Again because of the vanishing of bubbles of negative degree in relation (3.7),

we have

Pk � C1 D �
��˘�1�k

D 0: �

Lemma A.10. We have � � B2 � Ik D 0, for 0 � k � �˘ � 1.

Proof. We have

B2 � Ik D
1

2

X

sCtDk
��

��˘�2Ct

� s

�
D 1

2

X

uCsCtDk�1
��

��˘�2Ct

� s

�u �
:

Hence B2 � Ik is of the form

B2 � Ik D
X

0�t��˘�3

�t � xt ;

for some suitable xt . By Lemma A.4, we have

� � B2 � Ik D
X

t

��txt D 0: �

Lemma A.11. We have Pk � C2 � � D 0, for 0 � k � �˘ � 1.
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Proof. We have

Pk � C2 D �
��˘�1�k

;

which is of the form

Pk � C2 D
X

0�s��˘�2

ys Q�s;

for some suitable ys . This implies by Lemma A.5 that Pk � C2 � � D 0. �

Lemma A.12. We have B1 � C1 D id
F

.2/
˘ E˘1�

:

Proof. Using equation (3.15), we compute that

B1 � C1 D �
�

D �
� �

C
�
�

�

�
X

aCbCcD�2

�

�a

�b
�c

�

D
��
;

where

X

aCbCcD�2

�

�a

�b
�c

�

D 0; for �˘ � 2;

because of the bubble relation (3.7). �

Lemma A.13. We have � � B2 � C2 D �.

Proof. We compute that

B2 � C2 D
� �

D
X

aCbCcD�2

�

�a

�b
�c

�

�
�

�
�

�
�

�
�

Note that the third summand above equals id
E˘F

.2/
˘ 1�

and the second equals 0.

Denote by Y the first summand above. It remains to show that � �Y D 0. Note that

Y is of the form Y D
P

0�t��˘�3 �tzt for some zt . This implies by Lemma A.4

that � � Y D 0. The lemma follows. �

Therefore, we have completed the proof of Proposition A.6.
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A.3. Proof of the identity (4.11) . Now we would like to modify some 2-mor-

phisms involved in Proposition A.6. Introduce

A D � ; B D 1

2

X

uCsCtD�3 �t�
s ��u ; C D � ;

D D 1

2

X

uCsCtD�3
� s �

� t

�u ; E D 1

2
� � 1

2
���

�1

:

We define I 0
�˘�1

D .1 � C CD/ � I�˘�1. It is easy to show that

I 0�˘�1 D
1

2

X

sCtD�˘�1
�

��˘�2Ct

�

� s

�
�
C 1

2

X

sCtCuD�˘�1
�

��˘�2Ct

�

� s

�u

D I�˘�1 � I.2/C I.3/:
(A.8)

The second line above defines I.2/ and I.3/ as the second and third summands

without signs in the first line; these notations will be used below.

We also define P 00 D P0 � .1� AC B �E/: Then we can show readily that

P 00 D �
�˘�1

� � 2
�
C

X

uCsCtD�3 � t

��s�u

C �
�1

�� � �

D P0 � P.2/C P.3/ � P.4/C P.5/:

(A.9)

The second line above defines P.2/, P.3/, P.4/, and P.5/ as the second to fifth

summands without signs in the first line.

We would like to redo Proposition A.6 with I�˘�1 and P0 replaced by I 0
�˘�1

and P 00, respectively.

Proposition A.14. The identity (4.11) holds, that is, we have
2
6666664

B1

� � B2

P 00
:::

P�˘�1

3
7777775
�
h
C1 C2 � � I0 � � � I 0

�˘�1

i
D id.�˘C2/�.�˘C2/:
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Thanks to Proposition A.6, we only need to consider the relations involving

P 00 or I 0
�˘�1

. The computation is divided into Lemmas A.15–A.21 below.

Lemma A.15. We have B1 � I 0�˘�1
D 0.

Proof. Recall from (A.8) that I 0
�˘�1

D I�˘�1 � I.2/ C I.3/. By Lemma A.9

that B1 � I�˘�1 D 0. By the same argument as for Lemma A.9, we show that

B1 � I.3/ D 0. Finally, we have

B1 � I.2/ D �

�
D 0:

The lemma is proved. �

Lemma A.16. We have � � B2 � I 0�˘�1
D 0.

Proof. We compute that

B2 � I.2/ D �

�
D

X

tCsD�1 ��s
� t

�
;

B2 � I.3/ D
X

aCbCtD�˘�1
��

��˘�2Ct

�b

�a

�
D 1

2

X

uCsCtD�˘�2

.s C 1/
��

��˘�2Ct

� s

�u �
:

Observe that B2 � I.k/ for k D 2; 3 are of the form

B2 � I.k/ D
X

�t � ˛t

for some ˛t , and this implies by Lemma A.4 that � � B2 � I.k/ D 0. Recall

� � B2 � I�˘�1 D 0 from Lemma A.10. The lemma follows. �

Lemma A.17. We have Pk � I 0�˘�1
D 0, for 0 < k < �˘ � 1.

Proof. We have Pk � I�˘�1 D 0 by Lemma A.8. Now we compute that

PI � .�I.2/C I.3// D �
��

�˘�1�k

C 1

2

X

uCsCtD�˘�1

�u
�
��˘�2�t

�
sC�˘�1�k

�

D �
�

�
�˘�1�k

C
�

�
�˘�1�k

D 0:

The lemma follows. �
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Lemma A.18. We have P 00 � C2 � � D 0.

Proof. Recall from (A.9) that P 00 D P0 � P.2/C P.3/ � P.4/C P.5/. First we

note that

P.4/ � C2 D � D 0I

similarly it can be shown that P.5/ � C2 D 0.
On the other hand, we compute that

P.2/ � C2 D
�

D
X

aCbD�1

�

�a

�b
;

and

P.3/ � C2 D
X

uCsCtD�3

�

� t

�s�u

D
X

uCsCtD�4

.uC 1/
�

� t

�s�u
:

The particular forms of P.k/ � C2, for k D 2; 3, allow us to apply Lemma A.5 to

conclude that P.k/ � C2 � � D 0. Note P0 � C2 � � D 0 by Lemma A.11. The lemma

now follows. �

Lemma A.19. We have P 00 � C1 D 0.

Proof. First we compute that

P.2/ � C1 D
� D 0:

On the other hand, recall from Lemma A.9 thatP0 �C1 D 0 thanks to the vanishing

of bubbles of negative degrees. Similar computations show that P.i/ � C1 D 0

.i D 3; 4; 5/ again thanks to the relations (3.7) and (3.8). The lemma is proved.

�
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Lemma A.20. We have P 00 � Ik D 0, for 0 < k < �˘ � 1.

Proof. Recall P0 � Ik D 0 by Lemma A.8. We now compute that

.�P.2/CP.3//�Ik D
X

sCtDk

� s

�
��˘�2Ct

�

C 1
2

X

uCvCwD�3

X

sCtDk

�
w

�
u

�
vCs

�
��˘�2Ct

�

D 0:

by the bubble relation (3.9). In addition, thanks to the vanishing of bubbles of

negative degrees, we have P.i/ � Ik D 0 for i D 4; 5. The lemma follows. �

Lemma A.21. We have P 00 � I 0�˘�1
D 0.

Proof. We compute that

P 00 � I 0�˘�1 D P0 � I�˘�1 � �
�˘�1

� C 1

2

X

uCsCtD�˘�4

�u

�
s

�
t

�

�
X

sCtD�3

� s

� t

�

C 2
�

�
X

sCtD�3

.s C 1/ � s

� t

�

C
X

sCtD�3

� s

� t

�

�
X

sCtD�3

.s C 1/ � s

� t

�

C 1

2

X

aCbCcD�3

uCsCtD�3

�
aCu

�
b

�
cCs

�
t

�

�
�

C
�

�
�

C
�
��

�1

�
�
��

�1

C
�
��

�1

D
�

C
�
��

�1

�
X

sCtD�3

.s C 1/ � s

� t

�

D 0;

where the last identity follows from Lemma A.1. �

This completes the proof of Proposition A.14.
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A.4. Proof of the identity (4.12)

Proposition A.22. The identity (4.12) holds in PU|
, that is, we have

h
C1 C2 � � I0 � � � I 0

�˘�1

i
�

2
6666664

B1

� � B2

P 00
:::

P�˘�1

3
7777775

D � � C � C
X

tCsCuCvD�3 �t
��s

�v

�u � � � �

D � :

The last identity follows from the relation (3.17). So it suffices to prove only the

first identity. We first compute ŒC1 C2 �� � �
h

B1

��B2

i
. We list the relevant computation

in the following lemma.

Lemma A.23. We have

C1 � B1 D � �

�

D � � ;(a)

C2 � id
E˘F

.2/
˘ 1�
�B2 D �

�

D � ;(b)

C2 � �2 � B2 D
1

2

X

sCtCuD�2

�

�t
�
u�2�

s

C 1

2

X

sCtCuD�2

�

�t
�uC1

��
s

C 1

2

X

sCtCuD�2

�

�tC1

�u
��

s

C 1

2

X

sCtCuD�2

�

�tC1

�uC1

�
s

;

(c)
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C2 � �3 � B2 D
1

2

X

sCtCuD�3

�

�t
�
u�3�

s

C 1

2

X

sCtCuD�3

�

�t
�uC1

�2�
s

C 1

2

X

sCtCuD�3

�

�tC1

�u
�2�

s

C 1

2

X

sCtCuD�3

�

�tC1

�uC1

��
s

;

(d)

C2 � �2 � B2 � C2 � �3 � B2

D 1

2

X

sCtCvD�3

�

� t
�

s

�v

C 1

2
.uC 1/

X

sCtCuCvD�4

u�1

�

� t
�

s

�v

�u

� 1
2

X

sCuCvD�3

��
s

�v

�u � 1
2
u

X

sCtCuCvD�4

�

� t
�

s

�v

�uC1

� 1
2

X

sCuCtD�3

�

� t
�

s
�u C1

2
� �

1

2
���

�1

:

(e)

Proof. The first four items are straightforward. Here we show the computa-

tion for (e). We remind the reader that we shall use the bubble slides lemma

(Lemma A.1) extensively here. We have

C2 � �2 � B2 � C2 � �3 � B2

D 1

2

X

sCtCvD�2

�

�tC1

�v
��

s

C 1

2

X

sCtCvD�2

�

�tC1

�vC1

�
s

� 1
2

X

sCtCvD�3

�

�t
�
v�3�

s

� 1

2

X

sCtCvD�3

�

�t
�vC1

�2�
s

C 1

2

X

sCtCvD�2

�

�tC1

�v
��

s

C 1

2

X

sCtCvD�2

�

�tC1

�vC1

�
s

� 1

2

X

sCtCvD�3

�

�tC1

�v
�2�

s

� 1
2

X

sCtCvD�3

�

�tC1

�vC1

��
s

D 1

2

X

sCuCvCtC1D�3

.uC 1/ �

�tC1
�

s

�v

�u � 1

2

X

sCtC1D0

�

� t
�

s

� 1
2

X

sCuC1CvCtD�3

u �

� t
�

s

�v

�uC1 C 1

2

X

sC2CtD0

�

� t
�2�

s

C 1

2

X

sCuCvCtD�3

.uC 1/ ��
s

�v

�uC1 � 1

2

X

sD�1

���
s
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D 1

2

X

sCuCvCtD�4

.uC 1/ �

�tC1
�

s

�v

�u C 1

2

X

sCuCvD�3

.uC 1/ ��
s

�v

�uC1

� 1
2

X

sCuCvCtD�4

u �

� t
�

s

�v

�uC1 � 1

2

X

sCtD�1

�

� t
�

s

C 1

2

X

sCtD�2

�

� t
�2�

s

� 1

2

X

sD�1

���
s

D 1

2

X

sCtCvD�3

�

� t
�

s

�v

C 1

2

X

sCuCvCtD�4

u�1

.uC 1/ �

� t
�

s

�v

�u

� 1
2

X

sCuCvD�3

��
s

�v

�u � 1
2

X

sCuCvCtD�4

u �

� t
�

s

�v

�uC1

� 1
2

X

sCuCtD�3

�

� t
�

s
�u C1

2
� �

1

2
���

�1

:

This finishes the computation. �

Then we compute the product

h
I0 � � � I 0

�˘�1

i
�

2
64

P 00
:::

P�˘�1

3
75 :

Recall the definition of P 00 and I 0
�˘�1

in (A.8) and (A.9). We list the relevant

computation in the following lemma. The computations are straightforward, hence

the proof shall be omitted.

Lemma A.24. We have

�˘�1X

kD0

Ik � Pk D
1

2

X

tCsCvD�3 �t
��s

�v

;(a)

.�I.2/C I.3// � P��1 D � � C
1

2

X

vCsCuD�3

��s
�v

�u ;(b)

I0 � .�P.2/C P.3// D � � C
1

2

X

tCsCuD�3 �t
��s�u ;(c)

I0 � .�P.4/C P.5// D �
1

2
� C

1

2
���

�1

:(d)
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Now combining Lemma A.23 and Lemma A.24 gives us Proposition A.22.

Finally Proposition 4.3 follows by Proposition A.14 and Proposition A.22. This

completes the categorification of the | -Serre relations.
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