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Twisting, mutation and knot Floer homology

Peter Lambert-Cole

Abstract. LetL be a knot with a fixed positive crossing and Ln the link obtained by replac-

ing this crossing with n positive twists. We prove that the knot Floer homology 1HFK.Ln/

‘stabilizes’ as n goes to infinity. This categorifies a similar stabilization phenomenon of the

Alexander polynomial. As an application, we construct an infinite family of prime, posi-

tive mutant knots with isomorphic bigraded knot Floer homology groups. Moreover, given

any pair of positive mutants, we describe how to derive a corresponding infinite family of

positive mutants with isomorphic bigraded 1HFK groups, Seifert genera, and concordance

invariant � .
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1. Introduction

An interesting open question is the relationship between mutation and knot Floer

homology. While many knot polynomials and homology theories are insensitive

to mutation, the bigraded knot Floer homology groups can detect Conway muta-

tion [19] and genus 2 mutation [14]. Conversely, explicit computations [2] and a

combinatorial formulation [3] suggest that the ı-graded 1HFK groups are invari-

ant under Conway mutation. Recent work of the author has established invariance

of ı-graded 1HFK under Conway mutations on a large class of tangles [11].

In this paper, we construct an infinite family of prime, positive Conway mutants

whose 1HFK groups agree. Recall that a mutation is positive if the mutant links

admit compatible orientations.

Theorem 1.1. There exist an infinite family of positive Conway mutant knots

¹KTn; Cnºn2Z such that

(1) for all n, the knots KTn and Cn are not isotopic,

(2) for all jnj � 0, the knots KTn; Cn are prime, and



750 P. Lambert-Cole

(3) for all jnj � 0, there is a bigraded isomorphism

1HFK.KTn/ Š 1HFK.Cn/:

The families ¹KTnº and ¹Cnº are constructed from the Kinoshita-Terasaka [10]

and Conway knots, respectively, by adding n full twists to the knots just outside the

mutation sphere. Note that while KT and C are distinguished by 1HFK [19, 2]

and their genera [8], adding sufficiently many twists forces their bigraded knot

Floer groups (and therefore genera) to coincide. To distinguish KTn and Cn, we

use tangle invariants introduced by Cochran and Ruberman [7].

The bigraded invariance of 1HFK for these mutant pairs follows from a more

general fact. In a particular sense, ‘most’ positive Conway mutants have isomor-

phic knot Floer homology groups over F2. Specifically, each pair naturally lies

in an infinite family of positive mutants whose pairwise, bigraded 1HFK agree.

Moreover, we can prove that ‘most’ positive Conway mutants have the same con-

cordance invariant � . It remains an compelling open question whether � is pre-

served by Conway mutation.

Theorem 1.2. Let L be an oriented knot with positive Conway mutant L0.

Let Ln;L
0
n denote the Conway mutants obtained by adding n half-twists along

parallel-oriented strands of L just outside the mutation sphere (see Figure 4).

Then for jnj � 0 there is a bigraded isomorphism

1HFK.Ln/ Š 1HFK.L0
n/:

Moreover, for jnj � 0,

g.L2n/ D g.L0
2n/;

and

�.L2n/ D �.L0
2n/:

where g denotes the Seifert genus and � denotes the knot Floer concordance

invariant.

The geometric motivation for this construction is the twist family ¹K2nº ob-

tained from a knot K by � 1
n

surgery on an unknot that links two strands posi-

tively and geometrically twice, as in Figure 1. There has been recent interest in

the relationship between this twisting operation and Heegaard Floer invariants.

Motegi [13] and Baker and Motegi [4] investigated L-space surgeries and Seifert

genera in the twist families obtained by the operation in Figure 1. Conversely,

when the orientation on one of the strands is reversed, Hedden and Watson [9]

found infinite families with isomorphic knot Floer homology.
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Figure 1. Surgery on an unknot  introduces twisting.

The proof of Theorem 1.2 follows from a second result we prove in this paper.

We show that knot Floer homology categorifies the following phenomenon for

the Alexander polynomial of twist families. Let L � S3 be a link with a positive

crossing. For a positive integer n 2 Z, let L2n be the nth link in the twist family,

obtained by the surgery in Figure 1. As n goes to infinity, the Alexander polynomial

of L2n stabilizes to the form

�L2n
.t / D t

2n�k
2 � f .t/C d ��T .2;2n�k/.t /C t�

2n�k
2 � f .t�1/

for some integers k; d and some polynomial f .t/ 2 ZŒ
p
t � (Corollary 2.2). The

Alexander polynomials of the twist family ¹L2n�1º, obtained as a twist family after

resolving one of the new crossings, satisfy the same stabilization phenomenon.

In this paper, we show that the knot Floer homology of this extended twist

family ¹Lnº stabilizes in a similar fashion as jnj goes to infinity.

Theorem 1.3. Let L be an oriented knot,  an unknot as is Figure 1, and let ¹Lnº
be the extended twist family obtained by surgery on  and resolving a crossing.

(1) There exists some k > 0 such that for jnj sufficiently large, the knot Floer

homology of Ln satisfies

1HFK.Ln; j /Š 1HFK.LnC2; j C 1/ for j � �k,

1HFK.Ln; j /Š 1HFK.LnC2; j � 1/Œ2� for j � k,

where Œi � denotes decreasing the Maslov grading by i .

(2) There exists some k > 0 and bigraded vector spaces yFı; yF�; yA; yB such that

for jnj sufficiently large, there is a bigraded isomorphism
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1HFK.L2n/ Š yFıŒ2.n� k/; .n� k/�

˚
0

M

iDk�n�1

yAŒ2.n � k/C 2i C 1; .n� k/C 2i C 1�

˚
0

M

iDk�n

yBŒ2.n� k/C 2i; .n� k/C 2i�˚ yF�Œ0; .k � n/�

where Œi; j � denotes decreasing the homological grading by i and Alexander

grading by j and

(a) yF� (resp. yFı) is supported in positive (resp. negative) Alexander

gradings,

(b) yA; yB are supported in Alexander grading 0.

(3) For n sufficiently large, there is a bigraded isomorphism

1HFK.L2nC1/ Š 1HFK.L2n/˚ 1HFK.L2nC2/Œ1�

where the summands on the right are described in Part (2) and Œi � denotes

decreasing the Maslov grading by i .

A key consequence (Lemma 2.10) of Theorem 1.3 is that, for jnj sufficiently

large, the skein exact triangle for the triple .LnC1;Ln�1;Ln/ splits. We apply this

observation to prove Theorem 1.2.

Acknowledgement. I would like to thank Matt Hedden, Adam Levine, Tye

Lidman, Allison Moore and Dylan Thurston for their interest and encouragement.

I would also like to thank the organizers of the ‘Topology in dimension 3.5’

conference, as well as Kent Orr, for helping me learn about Tim Cochran’s work.

2. Twisting and knot Floer homology

Throughout this section, let L1 � S3 be an oriented link with a distinguished

positive crossing and for any n 2 Z let Ln denote the oriented link obtained by

replacing this crossing with n half twists.

2.1. Alexander polynomial. Let �L.t / denote the symmetrized Alexander

polynomial of L and let �k.t / denote the symmetrized Alexander polynomial

of the .2; k/-torus link. For brevity, we may omit the variable t .
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The symmetrized Alexander polynomial of T .2; k/ for k ¤ 0 is either

�k.t / D
k�1

2
X

sD� k�1
2

.�t /s or �k.t / D t
1
2

k
2

�1
X

sD� k
2

.�t /s; (1)

according to whether k is odd or even. The unknot T .2; 1/ � T .2;�1/ has

Alexander polynomial �1.t / D ��1.t / D 1; the unlink T .2; 0/ is split and

therefore�0.t / D 0; and the Hopf link T .2; 2/ has Alexander polynomial�2.t / D
t

1
2 � t�

1
2 . The Alexander polynomials of the .2; k/ torus knots satisfy the skein

relation

�2�nC1 D �n�1 ��n (2)

for all n 2 Z.

Proposition 2.1. The Alexander polynomial of Ln satisfies the relation

�Ln
D �nC1�L0

C�n�L�1
:

Proof. The formula is correct when n D 0;�1 since

�L0
D �1�L0

C�0�L�1
D �L0

and

�L�1
D �0�L0

C��1�L�1
D �L�1

:

For positive n, the formula follows inductively by using the oriented skein relation

for the Alexander polynomial:

�LnC1
D �2�Ln

C�Ln�1

D �2.�nC1�L0
C�n�L�1

/C�n�L0
C�n�1�L�1

D .�2�nC1 C�n/�L0
C .�2�n C�n�1/�L�1

D �nC2�L0
C�nC1�L�1

:

The first line is the oriented skein relation, the second is obtained by using the

induction hypothesis, the third is obtained by rearranging the terms and the fourth

is obtained by applying the oriented skein relation to the Alexander polynomials

of torus knots. A similar inductive argument proves the formula for n < �1. �

Corollary 2.2. There exists some k > 0, some d 2 Z, and some polynomial

f .t/ 2 ZŒ
p
t � such that for n sufficiently large, the Alexander polynomial of Ln

has the form

�Ln
.t / D t

n�k
2 � f .t/C d ��T .2;n�k/.t /C t�

n�k
2 � f .t�1/:
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Proof. Without loss of generality, we assume that �L�1
2 ZŒt˙1� and n is odd.

Suppose that the Alexander polynomials of L�1;L0;Ln;LnC2 have the following

forms:

�L�1
D

k�1
X

sD�k�1

ast
s; �L0

D t�
1
2 �

k0C1
X

sD�k0

bst
s;

�Ln
D

kn
X

sD�kn

cst
s; �LnC2

D
knC2
X

sD�knC2

dst
s:

The coefficients of �n are ˙1. Setting q D jnj�1
2

, the coefficients of

�n ��L�1
D .t�q � t�qC1 C t�qC2 C � � � ˙ tq�2 � tq�1 ˙ tq/

� .ak�1
t�k�1 C ak�1�1t

�k�1C1 C � � � C ak�1�1t
k�1�1 C ak�1

t�k�1/

are an alternating sum of some subsets of the coefficients ¹asº. When jnj is

sufficiently large, the degree of�n�L�1
is 2.qCk�1/C 1, the leading coefficient

is ˙ak�1
, and the coefficient of t0 in �n � �L�1

is precisely the determinant

�L�1
.�1/, up to sign. An equivalent statement holds for the coefficients of

�nC1�L0
.

Applying Proposition 2.1, a straightforward computation shows that the coeffi-

cents ¹csº are an alternating sum of some subsets of the coefficients ¹asº and ¹bsº.
For n sufficiently large and s � 0 the coefficients of �Ln

and �LnC2
satisfy the

relation cs D dsC1. This implies that �Ln
has the specified form. �

Corollary 2.3. If L1 is a knot, then the degree of �Ln
goes to infinity as jnj goes

to infinity.

Proof. Since L1 is a knot, the determinant j�Ln
.�1/j is nonzero when n is odd.

Thus, in the formula from Corollary 2.2 the polynomial f .t/ and integer d cannot

both be 0. As a result, the degree of �Ln
is at least n� k for some k independent

of n. �

2.2. Knot Floer homology. In this subsection, we review the basic definitions

of knot Floer homology. For a more thorough treatment, see [17, 20].

A multi-pointed Heegaard diagram H D .†;˛;ˇ; z;w/ for an l-component

linkL � S3 is a tuple consisting of a genus g Riemann surface†, two multicurves

˛ D ¹˛1[� � �[˛gCnº and ˇ D ¹ˇ1[� � �[ˇgCnº, and two collections of basepoints

z D ¹z1; : : : ; znC1º and w D ¹w1; : : : ; wnC1º such that
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(1) .†;˛;ˇ/ is a Heegaard diagram for S3,

(2) each component of†n˛ and†nˇ contains exactly one z-basepoint and one

w-basepoint,

(3) the basepoints z;w determine the link L as follows: choose collections of

embedded arcs ¹1; : : : ; nC1º in†�˛ and ¹ı1; : : : ; ınC1º in†nˇ connecting

the basepoints. Then after depressing the arcs ¹iº into the ˛-handlebody and

the arcs ¹ıj º into the ˇ-handlebody, their union is L.

From a multipointed Heegaard diagram H we obtain a complex CFK�.H/. In

the symmetric product SymgCn.†/ of the Heegaard surface, the multicurves ˛;ˇ

determine .gCn/-dimensional toriT˛ D ˛1[� � �[˛gCn andTˇ D ˇ1[� � �[ˇgCn.

The knot Floer complex CFK�.H/ is freely generated overFŒU1; : : : ; UnC1� by the

intersection points G.H/ D T˛ \ Tˇ .

The complex possesses two gradings, the Maslov gradingM and the Alexander

grading A. Given any Whitney disk � 2 �2.x; y/ connecting the two generators,

the relative gradings of two generators x; y 2 T˛ \ Tˇ satisfy the formulas

M.x/ �M.y/ D �.�/ � 2
X

nwi
.�/

A.x/ � A.y/ D
X

nzi
.�/ �

X

nwi
.�/

where �.�/ is the Maslov index of � and nzi
.�/ and nwi

.�/ denote the algebraic

intersection numbers of � with respect to the subvarieties ¹wiº � SymgCn�1.†/

and ¹ziº � SymgCn�1.†/. Note that while there are formulations of link Floer

homology with an independent Alexander grading for each link component, we

restrict to a single Alexander grading. In addition, multiplication by any formal

variable Uwi
decrease the Maslov grading by 2 and the Alexander grading by 1.

The graded Euler characteristic of the complex is a multiple of the Alexander

polynomial of the link. Specifically, it satisfies the formula

.t
1
2 � t�

1
2 /l�1 ��L.t / D

X

j 2Z

t j �
�

X

i2Z

.�1/i dimF
1CFK.H/i;j

�

;

where l is the number of components of L.

The differential is defined by certain counts of pseudoholomorphic curves in

SymgCn.†/. We review some of the analytic details from [18]. Fix a complex

structure j and Kahler form � on † and let J be the induced complex struc-

ture on SymgCn.†/. The basepoints z determine a complex hypersurface Vz of

SymgCn.†/. These choices determine a set J.j; �; Vz/ of almost-symmetric com-

plex structures on SymgCn.†/. Take D to be the infinite strip Œ0; 1� � iR � C.

If j is generic, then we can choose a generic path Js in a small neighborhood of
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J 2 J.j; �; Vz/ such that for any pair x; y 2 T˛ \ Tˇ and any � 2 �2.x; y/, the

moduli space of maps

MJs
.�/ WD

8

ˆ

<

ˆ

:

uWD �! SymN .†/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u.¹1º � iR/ � T˛ lim
t!�1

u.s C i t / D x

u.¹0º � iR/ � Tˇ lim
t!1

u.s C i t / D y

du
ds

C Js
du
dt

D 0 Œu� D �

9

>

=

>

;

is transversely cut out. Translation in D induces an R-action on MJs
.�/ and

the unparametrized moduli space yMJs
.�/ is the quotient space of this action. If

�.�/ D 1, then yMJs
.�/ is a compact 0-manifold consisting of a finite number of

points.

Let Js be a generic path of almost-symmetric complex structures. Define

@�x D
X

y2T˛\Tˇ

X

�2�2.x;y/;
�.�/D1;
nz.�/D0

# yMJs
.�/ � U nw1

.�/

1 : : : U
nwnC1

.�/

nC1 � y:

This map preserves the Alexander grading, decreases the Maslov grading by 1,

and satisfies .@�/2 D 0.

There are several versions of knot Floer homology we can define from the

complex CFK�.H/:

(1) Minus. If L is a knot, the ‘minus’ version of knot Floer homology HFK�.L/

is the homology of the complex CFK�.H/: It is independent of the choice of

Heegaard diagram H encoding L and the generic path Js of almost-complex

structures. Multiplication byUi is a chain map on CFK�.H/ and the mapsUi

and Uj are chain-homotopic for any i; j . Thus, HFK�.L/ is a FŒU �-module.

(2) Collapsed minus. When L is a link, we define the a collapsed version of

the ‘minus’ version as follows. Given a collection of basepointswi1 ; : : : ; wil ,

one on each component of the link L, define the quotient complex

CFK�
C.H/ WD CFK�.H/=hUi1 D � � � D Uili:

The homology of this complex HFK�
C.L/ is well-defined, independent of the

diagram H and the chosen basepoints, and is also an FŒU �-module.

(3) Hat. Choose a collection of basepointswi1 ; : : : ; wil , one on each component

of the link L, and define

1CFK.H/ WD CFK�.H/=hUi1 D � � � D Uil D 0i:
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Let 1HFK.L/ denote the homology of this complex. It decomposes as the

direct sum of its bigraded pieces:

1HFK.L/ Š
M

s;m2Z

1HFKm.L; s/

(4) Tilde. Let eCFK.H/ be quotient complex of CFK�.H/ obtained by setting

all formal U -variables equal to 0:

eCFK.H/ WD CFK�.H/=hU1 D � � � D UnC1 D 0i:

The homology 1HFK is related to the ‘hat’ homology by a bigraded isomor-

phism

AHFK Š 1HFK ˝W ˝.nC1�l/

where W is a bigraded vector space supported in bigradings .0; 0/ and

.�1;�1/.

Knot Floer homology satifies a skein exact triangle that categorifies the skein

relation for the Alexander polynomial.

Theorem 2.4 (skein exact triangle [17, 15, 21]). Let LC;L�;L0 be three links that

differ at a single crossing. If the two strands of LC meeting at the crossing lie in

the same component, then there is an Alexander grading-preserving exact triangle

1HFKs.L0/
Of

// 1HFKs.LC/

Ogww♣♣
♣♣
♣♣
♣♣
♣♣
♣

1HFKs.L�/

OhŒ1�

gg◆◆◆◆◆◆◆◆◆◆◆

where Œi � denotes decreasing the Maslov grading by i .

If the two strands ofLC meeting at the crossing lie in two different components,

then there is an Alexander grading-preserving exact triangle

1HFKs.L0/˝ V
Of

// 1HFKs.LC/

Ogww♣♣
♣♣
♣♣
♣♣
♣♣
♣

1HFKs.L�/

OhŒ1�

hhPPPPPPPPPPPP
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where Œi � denotes decreasing the Maslov grading by i and V is a bigraded vector

space satisfying

Vm;s D

8

ˆ

ˆ

<

ˆ

ˆ

:

F
2 if .m; s/ D .�1; 0/;

F if .m; s/ D .0; 1/ or .�2;�1/;
0 otherwise.

2.3. A multi-pointed Heegaard diagram for Ln. Choose an N C 1-bridge

presentation for L1 so that near its distinguished crossing it has the form in the top

right of Figure 2. The bridge presentation consists of N C 1 bridges ¹a0; : : : ; aN º
and N C 1 overstrands ¹b0; : : : ; bN º. Label the arcs in the bridge presentation

so that a1 and a0 are the left and right bridges in Figure 2 and the overstrands

b1 and b0 share endpoints with a1 and a0, respectively. We can also obtain a

bridge presentation for L0, the link obtained by taking the 0-resolution of the

distinguished crossing, in the top left of Figure 2. Let z1 and z0 denote the

endpoints of the left and right bridges, respectively, in the local picture of the

crossing.

From these initial bridge presentations, we can obtain a bridge presentation for

Ln. Let  be a curve containing the points z1 and z0. Orient  counter-clockwise,

as the boundary of a disk containing the two points. If n is even, apply n
2

negative

Dehn twists along  to the arcs b1 and b0 to obtain a bridge presentation for Ln.

If n is odd, apply n�1
2

negative Dehn twists.

We can obtain a multipointed Heegaard diagram encoding Ln from its bridge

presentation. For i D 1; : : : ; N , let ˛i be the boundary of a tubular neighborhood

of the arc ai and let ˇi be the boundary of a tubular neighborhood of bi . Label the

endpoints of the bridges as z- andw-basepoints so that the oriented boundary of ai

iswi �zi . Set z D .z0; z1; : : : ; zN /I w D .w0; w1; : : : ; wN /I ˛ D .˛1; : : : ; ˛N /I and

ˇ D .ˇ1; : : : ; ˇN /. Let Hn WD .S2;˛;ˇ; z;w/ denote this multipointed Heegaard

diagram. Note that locally, the diagrams H0 and H1 are identical. In addition, the

diagram HnC2 can be obtained from the diagram Hn by applying a negative Dehn

twist along  to the multicurve ˇ.

Let T W S2 ! S2 denote the positive Dehn twist along  and let T �
 W

SymN .S2/ ! SymN .S2/ be the induced map. If Hn D .S2;˛;ˇ; z;w/ is a

multipointed Heegaard diagram for Ln then HnC2 D .S2;˛; .T/
�1ˇ; z;w/ is a

multipointed Heegaard diagram for LnC2. The generators G.Hn/ of eCFK.Hn/

are T˛ \ Tˇ and the generators G.HnC2/ of eCFK.HnC2/ are T˛ \ .T �
 /

�1
Tˇ .

The negative Dehn twist introduces four new intersection points between ˛1 and

ˇ1 and does not destroy any. Thus, there is a set injection from T˛ \ Tˇ to

T˛ \ .T �
 /

�1
Tˇ . If x 2 T˛ \ Tˇ is a generator, let x0 be the corresponding
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generator in T˛ \ .T �
 /

�1
Tˇ . The map .T �

 /
�1 also induces a bijective map on

Whitney disks from �2.x; y/ to �2.x
0; y0/. If � 2 �2.x; y/ is a Whitney disk, let �0

denote the corresponding Whitney disk.

For n sufficiently large, we partition the generators G.Hn/ into three sets

according to their vertex along ˛1. The curves ˛1; ˇ1 intersect twice near the

basepoint z1 and we label these points C;D as in Figure 3. The i th negative Dehn

twist along  introduces four new intersection points, which we label ai ; bi ; ci ; di .

See Figure 3. Let x D .v1; : : : ; vN / be a generator where vi 2 ˛i . Define three

sets:

G.Hn/C WD ¹x D .v1; : : : ; vN / j v1 D C or Dº ;

G.Hn/twist WD ¹x D .v1; : : : ; vN / j v1 2 ¹ai ; bi ; ci ; diº for some iº ;

G.Hn/� WD G.Hn/ X .G.Hn/C [ G.Hn/twist/ :

Lemma 2.5. Choose x; y 2 G.Hn/ and � 2 �2.x; y/. Let x0; y0 be the correspond-

ing generators in G.HnC2/ and �0 the corresponding Whitney disk in �2.x
0; y0/.

(1) If x; y 2 G.Hn/� [ G.Hn/twist then

nz.�
0/ D nz.�/; nw.�

0/ D nw.�/; �.�0/ D �.�/:

(2) if x; y 2 G.Hn/C then

nz.�
0/ D nz.�/; nw.�

0/ D nw.�/; �.�0/ D �.�/:

(3) If x 2 G.Hn/C and y 2 G.Hn/� [ G.Hn/twist then

nz.�
0/ D nz.�/ � 2; nw.�

0/ D nw.�/; �.�0/ D �.�/ � 2:

Proof. Let D.�/ be the domain in † corresponding to �. Orient  counterclock-

wise, as the boundary of the disk containing the basepoints z1; z0. In the first two

cases, the algebraic intersection of the ˇ-components of @D.�/ with  is 0. Thus,

the intersection numbers nz and nw and the Maslov index � are unchanged by the

Dehn twist.

To prove the third case, choose some x D .C; v2; : : : ; vN / 2 G.Hn/� and let

xt D .ck ; v2; : : : ; vN / where k D bn
2
c. There is a Whitney disk � 2 �2.xt ; x/

satisfying

nz.�/ D 1; nw.�/ D 0; �.�/ D 1:

The corresponding disk �0 2 �2.x
0
t ; x

0/ satisfies

nz.�
0/ D 3; nw.�

0/ D 0; �.�0/ D 3:
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The final case now follows from the first two and this observation since nz; nw ;

and � are additive under the composition

�2.x1; x2/ � �2.x2; x3/ �! �2.x1; x3/: �

L0 L1

L2

a1 a0

b0 b1b1 b0

a1 a0

Figure 2. Local pictures for L0;L1;L2 in bridge position. The diagram for L2 can be

obtained from the diagram for L0 by applying a negative Dehn twist along  to the

overstrands.

Lemma 2.6. Let x 2 G.Hn/. For n sufficiently large, if A.x/ � 1 then x 2
G.Hn/� [ G.Hn/twist.

Proof. Choose x; y 2 G.Hn/C. By abuse of notation, let x; y denote the cor-

responding generators in G.Hn0/C for any n0 � 0. From Lemma 2.5, we can

conclude that A.x/ � A.y/ is independent of n. Moreover, since G.Hn/C is fi-

nite, there is some constant K, independent of n, such that jA.x/ � A.y/j < K

for all n. Similarly, there is some constant L such that if x; y 2 G.Hn/�, then

jA.x/ � A.y/j < L for any n. However, if x 2 G.Hn/C and y 2 G.Hn/�, then

Lemma 2.5 also implies that A.x/ � A.y/ grows without bound as n limits to

infinity. In particular, A.x/ � A.y/ > 0 when n is sufficiently large.

Let Amax denote the maximal Alexander grading of any generator x 2 G.Hn/.

We claim that if n is sufficiently large, then A.x/ D Amax implies x 2 G.Hn/C.

To prove this claim, suppose that x satisfiesA.x/ D Amax. If n is sufficiently large,

then x must be in G.Hn/twist [ G.Hn/C by the above argument. Thus x has the

form

x D .V; v2; : : : ; vn/

where V 2 ¹C;D; a1; b1; c1; d1; : : : ; ak; bk ; ck; dkº and k D bn
2
c. However, if

V ¤ D define

y WD .D; v2; : : : ; vn/:



Twisting, mutation and knot Floer homology 761

There is a domain � 2 �2.y; x/ with nz.�/ > 0 and nw.�/ D 0. This contradicts

the assumption that A.x/ D Amax. Consequently, V D D and x 2 G.Hn/C.

Corollary 2.3 implies that there exists some k > 0 such that Amax � n � k

for n sufficiently large. This further implies that if x 2 G.Hn/C then A.x/ >

n� k �K. Thus, for n sufficiently large, no generator x with A.x/ � 1 can live in

G.Hn/C. �

L0=L1 L2=L3

˛1

ˇ1

a1

b1

c1

d1

˛1

ˇ1

C

D

C

D

Figure 3. Local pictures of the Heegaard diagram for L0 or L1 (on left) and L2 or L3

on right. The Heegaard diagram on the right can be obtained from the left by applying a

negative Dehn twist along  to ˇ. Both basepoints are z-basepoints.

Define a linear map

 W
M

s�1

eCFKs.Hn/ �! eCFK.HnC2/

by setting  .x/ D x0 for each generator in G.Hn/.

Lemma 2.7. Suppose x 2 G.Hn/� [ G.Hn/twist. Then A. x/ D A.x/ � 1.

Proof. From Lemmas 2.5 and 2.6 we can conclude that  preserves relative

gradings. Thus for all x, the Alexander gradings satisfy A. x/ D A.x/ C a for

some a 2 Z.

The Alexander grading shift follows from the computation of the Alexander

polynomial in Corollary 2.2. Let s be the minimal Alexander grading in which

the Euler characteristic of eCFK.Hn/ is nonzero. The Euler characteristics of the
eCFK.Hn/�;j and eCFK.HnC2/�;j Ca agree if j � 1. Thus s C a is the minimal

Alexander grading for which the Euler characteristic of eCFK.HnC2/ is nonzero.

The Alexander polynomial computation implies that s C a D s � 1 and thus

a D �1. �
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Proposition 2.8. For n sufficiently large, the map

 W
M

s�1

eCFK.Hn/s �!
M

s�0

eCFK.HnC2/s

is a bijection of chain complexes.

Proof. From Lemmas 2.5 and 2.6 we can conclude that  is an isomorphism of

bigraded F-vector spaces and that it preserves relative gradings. Thus, we just

need to check that  is a chain map.

Fix x; y 2 G.Hn/� [ G.Hn/twist and some � 2 �2.x; y/ with nz.�/ D 0 and

�.�/ D 1. We can choose an open neighborhood W of D.�/ to be disjoint from

the curve  in Figure 3. Thus, we can assume that the support of T is disjoint

fromW and that the support of T �
 is disjoint from SymN .W /. Genericity of paths

of almost-complex structures is an open and dense condition. Thus we can choose

some path Js such that the moduli spaces MJs
.�x/ and MJs

.�y/ are transversely

cut out for all choices of x1; x2 2 T˛ \Tˇ ; �x 2 �2.x1; x2/, y1; y2 2 T˛ \T �
 Tˇ ,

and �y 2 �2.y1; y2/.

Choose some u 2 MJs
.�/. The Localization Principle [22, Lemma 9.9] states

that the image of u is contained in SymN .W / � SymN .S2/. Since T �
 is the

identity on SymN .W /, it is clear that u 2 MJs
.�0/ as well. Conversely, all

maps u0 2 MJs
.�0/ also lie in MJs

.�/. After quotienting by the R-action, this

implies that # yMJs
.�/ D # yMJs

.�0/. It is now clear that  .y@x/ D y@ x for any

x 2 eCFK.Hn/�1. �

2.4. 1HFK computations

Proposition 2.9. There exists some k > 0 such that for n sufficiently large, the

knot Floer homology of Ln satisfies

1HFK i .Ln; j /Š 1HFKi .LnC2; j C 1/ for j � �k;
and

1HFK i .Ln; j /Š 1HFKi .LnC2; j � 1/Œ2� for j � k,

where Œi � denotes decreasing the homological grading by i .

Proof. Let  be the map from Proposition 2.8 and let  � be the induced map on

homology. Proposition 2.8 implies that for some m 2 Z, the map

 � W AHFK i .Ln; j / �! AHFK iCm.LnC2; j � 1/
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is an isomorphism for all i 2 Z and j � 1. If jnj is much greater than the number

of basepoints, then a corresponding isomorphism

1HFKi .Ln; j / Š 1HFK iCm.LnC2; j � 1/

holds for the ‘hat’ version of knot Floer homology for all i 2 Z and j � 1. To

prove the second isomorphism of the proposition, we need to show that m D �2.
To compute the Maslov grading shift, we apply the skein exact triangle. Fix n

sufficiently large. Let s be the minimal Alexander grading in which 1HFK.Ln/ is

supported. Thus s� 1 is the minimal Alexander grading in which 1HFK.LnC2/ is

supported. Applying the skein exact sequence to the triple .LnC2;Ln;LnC1/, we

can see that

Of W 1HFK.LnC1; s � 1/ �! 1HFK.LnC2; s � 1/

is a graded isomorphism. Moreover, since 1HFK.LnC2; j / Š 1HFK.Ln; j / Š 0

for j < s � 1, exactness implies that s � 1 is also the minimal Alexander grading

in which 1HFK.LnC1/ is supported.

Now apply the skein exact triangle to the triple .LnC1;Ln�1;Ln/. The modules
1HFK.LnC1/ and 1HFK.Ln/ ˝ V are supported in Alexander grading s � 1 but
1HFK.Ln�1; s � 1/ Š 0. Thus

Of W .1HFK.Ln/˝ V /�;s�1 �! 1HFK�.LnC1; s � 1/

is an isomorphism. Combining the above two steps, this implies that there is a

bigraded isomorphism 1HFK.Ln; s/Œ2� Š 1HFK.LnC2; s � 1/. Thus, the grading

shift must be m D �2. This proves the second formula.

The first statement follows from the second using the symmetry

1HFKi .Ln; j / Š 1HFKi�2j .Ln;�j /: �

Lemma 2.10. For jnj sufficiently large, the skein exact triangle for the triple

.LnC1;Ln�1;Ln/ is a split short exact sequence. Consequently, either

1HFK.Ln/ ' 1HFK.Ln�1/Œ1�˚ 1HFK.LnC1/; (3)

or

1HFK.Ln/˝ V ' 1HFK.Ln�1/Œ1�˚ 1HFK.LnC1/; (4)

depending on whether the two strands through the twist region of Ln lie in distinct

components or the same component of the link.
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Proof. Without loss of generality, we assume that n is chosen so that in Ln, the

two strands through the twist region lie in different components. For any j 2 Z,

the triangle inequality applied to the skein exact triangle proves that

rk 1HFK i .Ln; j / � rk 1HFK iC1.Ln�1; j /C rk 1HFKi .LnC1; j /; (5)

rk .1HFK.LnC1/˝ V /i�1;j � rk 1HFK i .Ln; j /C rk 1HFKi�1.LnC2; j /: (6)

Suppose that j � 0. Then applying Proposition 2.9 to jnj sufficiently large,

we can conclude that

rk .1HFK.LnC1/˝ V /i�1;j D rk 1HFK iC1.LnC1; j C 1/ (7)

C 2 � rk 1HFK i .LnC1; j /

C rk 1HFK i�1.LnC1; j � 1/
D rk 1HFK i�1.LnC3; j /C rk 1HFKi .LnC1; j / (8)

C rk 1HFK i .LnC1; j /C rk 1HFK iC1.Ln�1; j /

� rk 1HFKi�1.LnC2; j /C rk 1HFKi .Ln; j /: (9)

Equation 7 follows from the definition of V and Equation 8 can be obtained from

Equation 7 using Proposition 2.9. Finally, applying Inequality 5 twice yields

Inequality 9. Combining Inequalities 6 and 9 proves that

rk 1HFKi .Ln; j /C rk 1HFK i�1.LnC2; j / D rk .1HFK.LnC1/˝ V /i�1;j : (10)

Furthermore, the symmetry rk 1HFK i�2j .Ln;�j / D rk 1HFKi .Ln; j / implies

that Equation 10 holds for all j 2 Z. This proves that the rank of Og is 0 in the

skein exact triangle for the triple .LnC2;Ln;LnC1/.

Now we consider the triple .LnC1;Ln�1;Ln/. For j � 0, we can conclude that

.V ˝ 1HFK.Ln//i;j ' 1HFK i .Ln; j C 1/˚ 1HFKi�1.Ln; j / (11)

˚ 1HFKi�1.Ln; j /˚ 1HFKi�2.Ln; j � 1/
' 1HFK i�2.Ln�2; j /˚ 1HFKi�1.Ln; j / (12)

˚ 1HFKi�1.Ln; j /˚ 1HFKi .LnC2; j /

Š V ˝ .1HFK.Ln�1/Œ1�˚ 1HFK.LnC1///i;j : (13)

The isomorphism in Line 11 follows from the definition of V ; Line 12 is obtained

by applying Proposition 2.9; and the isomorphism in Line 13 follows from the

isomorphism in Line 4, which has already been proven. Thus

V ˝ .1HFK.Ln�1/Œ1�˚ 1HFK.LnC1// Š V ˝ 1HFK.Ln/:
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Removing the V factors on both sides proves the statement for j � 0 and the

statement for j � 0 follows from symmetry. �

Proof of Theorem 1.3. The first statement is Proposition 2.9.

To prove the second, fix some n0 sufficiently large so that Part (1) applies. Set

k D n0 and

yFı WD
�2
M

j D�1

1HFK.Ln0
; j / yA WD 1HFK.Ln0

;�1/Œ�1�;

yF� WD
1

M

j D2

1HFK.Ln0
; j / yB WD 1HFK.Ln0

; 0/:

Then the statement holds for n D n0. Applying Part (1) inductively for n > n0

proves Part (2).

Finally, Part (3) follows from Part (2) and Lemma 2.10. �

3. Positive mutants

Throughout this section, let L be an oriented link with an essential Conway sphere

as in Figure 4. Let Lk;l denote the link obtained by adding k half-twists above and

l half-twists below. Note that applying two flypes along the horizontal axis to the

tangle T is an isotopy between Lk;l and LkC2;l�2. Thus, for any k; l; i 2 Z, the

link LkC2i;l�2i is isotopic to Lk;l . Furthermore, LkC1;l�1 can be obtained from

Lk;l by the positive mutation and then a flype.

3.1. Bigraded invariance. We prove the first part of Theorem 1.2 in this subsec-

tion and leave the second piece to the following subsection. In addition, we then

use Theorem 1.2 to prove Theorem 1.1.

Theorem 3.1. For jnj sufficiently large, the mutants Ln;0 and LnC1;�1 have

isomorphic knot Floer homology

1HFK.Ln;0/ ' 1HFK.LnC1;�1/:

Proof. Let jnj be sufficiently large. Suppose that at the nth-crossing above the mu-

tation sphere, the two strands of Ln;0 lie in different components. By Lemma 2.10,

the knot Floer homology for the two mutant links is given by

1HFK.Ln;0/ ' 1HFK.Ln�1;0/Œ1�˚ 1HFK.LnC1;0/;

1HFK.LnC1;�1/ ' 1HFK.LnC1;�2/Œ1�˚ 1HFK.LnC1;0/:

The statements now follows from the fact that Ln�1;0 and LnC1;�2 are isotopic.
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Similarly, if at the nth-crossing the two strands lie in the same component, then

1HFK.Ln;0/˝ V ' 1HFK.Ln�1;0/Œ1�˚ 1HFK.LnC1;0/;

1HFK.LnC1;�1/˝ V ' 1HFK.LnC1;�2/Œ1�˚ 1HFK.LnC1;0/;

and it is clear that 1HFK.Ln;0/ and 1HFK.LnC1;�1/ are isomorphic. �

Tl k

Figure 4. The link Lk;l near the Conway sphere containing the tangle T.

We can now use the Kinoshita-Terasaka and Conway knots to prove Theo-

rem 1.1. LetKT denote the Kinoshita-Terasaka knot (11n42) and let C denote the

Conway knot (11n34). Figure 5 contains a diagram of KT . The knots KT and

C are positive mutants and thus Theorem 3.1 applies. Let  be the curve on the

Conway sphere for KT that is fixed by the involution of S2 corresponding to the

positive mutation. Let eKT and zC denote links given by the unions ofKT and C ,

respectively, with  .

S1

a1

a2 b1

b2

S2

d2
c2

d1

c1

Figure 5. The Kinoshita-Terasaka knot 11n42 linked with an unknotted curve  . The two

Conway spheres are marked in dotted outline and the arcs of KT cut out by S1 are labeled

a1; a2; b1; b2.

Let S1; S2 denote the Conway spheres in Figure 5. Then S1 decomposes KT

into the tangles T1; T2 while S2 decomposes KT into R1; R2. The tangle T1

consists of two arcs a1; a2 with a1 unknotted and a2 an arc with a right-handed

trefoil tied in. The tangle T2 consists of two arcs b1; b2, each unknotted. Similarly,
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the tangle R1 consists of two arcs c1; c2, with c1 unknotted and c2 an arc with a

left-handed trefoil tied in, while R2 consists of two unknotted arcs d1; d2. We can

obtain C from KT by mutating the tangle T2. Orient KT so that its are are, in

order, a1; b1; a2; b2. With this orientation, after the positive mutation, the ordering

on the arcs of C is a1; b2; a2; b1.

Lemma 3.2. There exist exactly 2 essential Conway spheres for KT and C .

Proof. Suppose there is a third essential Conway sphere S . The tangles T1; T2 are

prime, so we can assume that either (a) S lies completely within T1 or T2, or (b)

it intersects both T1 and T2 along essential 2-punctured disks.

It is useful to think of the Kinoshita-Terasaka knot as the union of five rational

tangles. This is not obvious from Figure 5 but is clear in [19, Figure 1]. To

describe the composition of rational tangles, let Œp� denotes the tangle with p

positive horizontal twists, let Œ� 1
q
� denote the tangle with q positive vertical

twists; let addition refer to horizontal composition and let multiplication refers

to vertical compositions. Then, for example, Figure 6 depicts the tangle T2 as

Œ2� �
��

1
3

�

C
�

�1
2

��

. Its complement T1 in KT can be expressed as
�

�1
3

�

C
�

1
2

�

.

Rational tangles have no essential disks or spheres. Therefore the tangle T1

contains a unique essential disk, where the rational tangles Œ�1
3
� and Œ1

2
� were

joined, and no essential Conway spheres. Similarly, the tangle T2 contains a

unique essential disk where the tangles Œ2� and R1 were joined and no essential

spheres. However, the boundaries of these two disks are not isotopic. Specifically,

the boundary of the disk in T1 separates the endpoints of a1 from the endpoints

of b1. The boundary of the disk in T2 separates the endpoints of b1 from the

endpoints of b2.

Finally, there are the same two corresponding disks in C with the same bound-

aries up to isotopy. �

LetKTn be the knot obtained by performing � 1
n
-surgery to  and letCn denote

the corresponding positive mutant. Diagrammatically, this surgery corresponds to

applying 2n half-twists just outside the mutation sphere. The mutantsKTn andCn

have the same Conway spheres. In particular, each knotKTn is obtained from the

union of T1 and T2, however the gluing map that identifies S2 with S2 is modified

by n Dehn twists along  :

KTn D T1 [�n
T2 Cn D T1 [�nı� T2: (14)

Lemma 3.3. There exist exactly 2 essential Conway spheres for KTn and Cn for

all n 2 Z.



768 P. Lambert-Cole

Proof. KTn and Cn are comprised of the same pair of tangles T1; T2 as KT and

C . Thus, there are unique essential disks with boundaries in the mutation sphere.

However, the boundaries of the disks determine different partitions of the 4 points

where the knot intersects S1. Thus, the Dehn twists along  cannot match up the

boundaries to give a closed sphere. �

To distinguishKTn fromCn, we will adopt a strategy similar to the one in [7].1

LetL be an ordered, oriented 2-component link and label the components x and y.

When L has linking number 0, Cochran [6] defined a sequence of higher-order

linking invariants ˇi
x ; ˇ

i
y for i � 0. The invariants ˇ1

x.L/ D ˇ1
y.L/ are the

Sato–Levine invariant. The higher invariants are defined inductively by taking

‘derivatives’ of the original link L as follows. Since lk.x; y/ D 0, we can choose

a Seifert surface F for x disjoint from y and similarly a Seifert surface G for y

disjoint from x. We can further assume that F and G intersect transversely along

a knot K. The ‘partial derivatives’ of L are the links

Dx.L/ WD x [K and Dy.L/ WD y [K: (15)

The derived links also have linking number 0 and therefore the process can be

iterated. Cochran’s higher order linking invariants are then defined inductively by

ˇiC1
x .L/ WD ˇi

x.Dx.L// and ˇiC1
y .L/ WD ˇi

y.Dy.L//: (16)

In general, these higher order invariants are manifestly non-symmetric in x and y.

In [7], Cochran and Ruberman apply the higher-order linking invariants to

define invariants of tangles. Let T be a tangle consisting of an ordered pair of

two disjoint arcs in B3. Let C.T / be any 2-component rational closure of T . That

is, C.T / is the union of T and .B3; T0/, the tangle consisting of two boundary-

parallel arcs. The difference

I i .T / WD ˇi
x.C.T // � ˇi

y.C.T // (17)

is well defined and independent of the choice of rational closure C.T / [7, Theo-

rem 4.1]. Therefore it defines an invariant of the tangle T for each i � 0. Reversing

the ordering of the arcs of T changes the sign of I i .T / for all i . Thus, it follows

that if there is a diffeomorphism of T that exchanges the two arcs, then I i .T / D 0

for all i � 0 [7, Lemma 4.3].

Lemma 3.4. Let T2 and R2 be the tangles for the KT knots. Then I 2.T2/ and

I 2.R2/ are nonzero.

1 I would also like to thank Chuck Livingston for providing an unpublished draft of [7].
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Proof. R2 is the mirror of T2, so it suffices to prove the statement for T2. Take

the rational closure L of T2 in Figure 6 and let x and y denote the components

labeled in the figure. Both components are unknots and the linking number is 0.

Let F and G be the Seifert surfaces of x and y, respectively, obtained by Seifert’s

algorithm. Then F intersects y in two points. We can remove this intersection

by tubing between the intersection points along an arc of y connecting them. Let

F 0 denote this new surface. Similarly, G intersects x in two points and by adding

a tube we can choose G0 disjoint from x. Then K D F 0 t G0 is the union of

0-framed pushoffs of the arcs in x and y corresponding to the tubes. See Figure 6.

K

x
y

Figure 6. A rational closure L of the tangle T2.

The link Dx.L/ D x [ K is isotopic to the Whitehead link, while the link

Dy.L/ is the unlink. Let W denote Dx.L/ and fix an orientation on W . Let V

be obtained by changing one positive crossing of W to a negative crossing and

let Z be the oriented 0-resolution of W at this crossing. The oriented resolution

splits x into two components x1; x2. Let Z1; Z2 be the 2-component sublinks of

Z consisting of x1 and K or x2 and K, respectively. Then the crossing change

formula for the Sato-Levine invariant (see e.g.[12]) implies that

ˇ1.V / � ˇ1.W / D lk.Z1/ � lk.Z2/:

The linking numbers ofZ1 andZ2 are nonzero while V is the unlink, so ˇ1.W / D
ˇ2

x.L/ ¤ 0. However, Dy.L/ is the unlink and so ˇ2
Y .L/ D 0. Thus I 2.T2/ D

ˇ2
x.L/ � ˇ2

y.L/ ¤ 0. �
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Proposition 3.5. For all n, the knots KTn and Cn are not isotopic.

Proof. Suppose there is an isotopy ofKTn to Cn. We can assume that this isotopy

acts transitively on the set of Conway spheres. According to Lemma 3.3, there are

two such spheres and so the isotopy either fixes them or swaps them.

If the isotopy swaps the Conway spheres, then the arc a2 must be sent to one

of the arcs c1; c2; d1; d2. However, the arc a2 contains a right-handed trefoil and

none of the latter four arcs do. Thus, it is impossible for an orientation-preserving

diffeomorphism to send S1 to S2 and the isotopy must fix the Conway spheres.

Of the four arcs a1; a2; b1; b2, only a2 is knotted so the isotopy must send

a2 to itself and therefore a1 to itself as well. Consequently the isotopy must

send the tangles T1; T2 to themselves. However, the isotopy now must exchange

b1 and b2 since the mutation exchanged these arcs. This implies there is a

diffeomorphism from T2 to itself that exchanges the arcs. This is a contradiction

since I 2.T2/ ¤ 0. �

Remark 3.6. Proposition 3.5 also shows that the standard Kinoshita-Terasaka and

Conway knots are not isotopic.

Proof of Theorem 1.1. Let bKT be the union of KT with  and let yC be the union

of C with  . A computation in SnapPy [5] shows that the links bKT and yC
are hyperbolic with volume � 23:975. Thus, by the hyperbolic Dehn surgery

theorem, surgery on  with slope � 1
n

is hyperbolic for all but finitely many values

of n. Consequently, for jnj sufficiently large the knot KTn is hyperbolic and thus

prime. Again for jnj sufficiently large, Theorem 3.1 states that there is a bigraded

isomorphism
1HFK.KTn/ Š 1HFK.Cn/:

Thus ¹.KTn; Cn/º for jnj � 0 is the required family of prime mutants. �

Remark 3.7. It is possible that jnj D 1 is sufficiently large for the family in

Theorem 1.1. A computation with the py_hfk Python module [1] shows that all

four of the knots KT1; C1; KT�1; C�1 are 1HFK homologically thin. Thus, the

Alexander polynomial determines the knot Floer homology and

1HFK.KT1/ Š 1HFK.C1/ and 1HFK.KT�1/ Š 1HFK.C�1/:

3.2. Concordance invariants. The knot Floer group HFK�.K/ contains a well-

known concordance invariant �.K/ [16]. The free part HFK�.K/=Tors is isomor-

phic to the polynomial ring FŒU � and ��.K/ is the maximal grading of a nontor-

sion element. More specifically,

�.K/ WD �max¹A.x//W x is not U k-torsion for any k > 0º:
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More generally, if L is a 2-component link, we can choose a pair of elements

x1; x2 with homogeneous bigradings that generate HFK�.L/=Tors Š FŒU �2. The

�-set of L is the set �.L/ D ¹�A.x1/;�A.x2/º.

Lemma 3.8. Let K be a knot, let L a 2-component link, and suppose K can be

obtained from L by an elementary merge cobordism. Then

�.K/ 2 �.L/:

Proof. The statement follows easily from the following three inequalities, proven

in [21, Chapter 8]. Since L andK are related by an elementary saddle move, their

� values satisfy the inequalities

�.K/ � 1 � �min.L/ � �.K/ and �.K/ � �max.L/ � �.K/C 1:

In addition, sinceL has 2 components, the maximum and minimum values satisfy

�max.L/ � �min.L/ � 2 � 1 D 1: �

Theorem 3.9. Let K be a knot with an essential Conway sphere as in Figure 4

and let K 0 D K1;�1 be its positive mutant. For all n 2 Z, the knots K2n;0 and

K 0
2n;0 D K2nC1;�1 are positive mutants and for jnj � 0, we have

�.K2n;0/ D �.K 0
2n;0/:

Proof. From Theorem 1.3, we can conclude that there exist integers a; b such that

for n � 0, if 1HFK0.K2n;0; s/ is nontrivial, then s lies in the interval ŒaCn; bCn�.
Moreover, Theorem 3.1 implies that 1HFK0.K

0
2n;0; s/ is supported in the same

interval of Alexander gradings.

Set cn WD �.K2n;0/ � n and consider the sequence ¹cnº for n � 0. Since

�.K2nC2;0/ � �.K2n;0/ � 1, the sequence is monotonically decreasing. It is also

bounded from below by a and thus limn!1 cn D C exists. Define the sequence

¹c0
nº and limit C 0 similarly for the family ¹K 0

2n;0º.
Choose n0 so that �.K2n;0/ D C C n and �.K 0

2n;0/ D C 0 C n for all n � n0.

Set Ln D K2nC1;0. There are elementary merge cobordisms from Ln to K2n;0

and K2nC2;0 given by resolving and introducing a positive crossing, respectively.

Thus �.Ln/ D ¹C C n; C C nC 1º. There are also elementary merge cobordisms

from Kn to K2nC1;1 D K 0
2nC2;0 and K2nC1;�1 D K 0

2n given by introducing a

positive and negative crossing, respectively. Thus, �.Ln/ D ¹C 0 Cn; C 0 CnC 1º.
Clearly C D C 0 and the statement for n > 0 follows immediately. The statement

for n < 0 follows by an identical argument. �
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Proof of Theorem 1.2. The theorem is a combination of Theorems 3.1 and 3.9,

along with the easy corollary that Ln and L0
n have the same genera because the

Seifert genus is exactly the highest Alexander grading supporting 1HFK. �

The following proposition is also an easy consequence of Lemma 3.8. We do

not need it to prove Theorem 3.9 but it may be interesting in its own right.

Proposition 3.10. LetK be a knot with an essential Conway sphere as in Figure 4

and let K 0 D K1;�1 be its positive mutant. Furthermore, set L D K1;0 D K 0
0;1

and L0 D K0;1 D K 0
1;0. Then either

�.K/ D �.K 0/

or

�.L/ D �.L0/:

Proof. Resolving a positive crossing gives an elementary merge cobordism from

L D K1;0 to K2;0. Introducing a negative crossing gives an elementary merge

cobordism from Ln D K1;0 to K1;�1 D K 0. There are similar elementary merge

cobordisms from L0 to K and K 0. Thus, by Lemma 3.8,

�.K/; �.K 0/ 2 �.L/ and �.K/; �.K 0/ 2 �.L0/:

Moreover, the sets �.L/ and �.L0/ have at most 2 elements. Thus, if �.K/ ¤ �.K 0/

then �.L/ D �.L0/ D ¹�.K/; �.K 0/º. �
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