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Dual bases in Temperley–Lieb algebras, quantum groups,

and a question of Jones

Michael Brannan and Benoît Collins

Abstract. We derive a Laurent series expansion for the structure coefficients appearing

in the dual basis corresponding to the Kauffman diagram basis of the Temperley–Lieb

algebra TLk.d /, converging for all complex loop parameters d with jd j > 2 cos
�

�
kC1

�

.

In particular, this yields a new formula for the structure coefficients of the Jones–Wenzl

projection in TLk.d /. The coefficients appearing in each Laurent expansion are shown to

have a natural combinatorial interpretation in terms of a certain graph structure we place

on non-crossing pairings, and these coefficients turn out to have the remarkable property

that they either always positive integers or always negative integers. As an application, we

answer affirmatively a question of Vaughan Jones, asking whether every Temperley–Lieb

diagram appears with non-zero coefficient in the expansion of each dual basis element

in TLk.d /, when d 2 Rn
�

� 2 cos
�

�
kC1

�

; 2 cos
�

�
kC1

��

. Specializing to Jones–Wenzl

projections, this result gives a new proof of a result of Ocneanu [27], stating that every

Temperley–Lieb diagram appears with non-zero coefficient in a Jones–Wenzl projection.

Our methods establish a connection with the Weingarten calculus on free quantum groups,

and yield as a byproduct improved asymptotics for the free orthogonal Weingarten function.
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1. Introduction

The Temperley–Lieb algebras form a very important class of finite-dimensional

algebras, arising in a remarkable variety of mathematical and physical contexts in-

cluding lattice models [30], knot theory [22], subfactors and planar algebras [19],

quantum groups [2, 35], and topological quantum computation [1, 37, 14]. Given

a complex number d 2 C� and a natural number k 2 N, the kth Temperley–Lieb

algebra TLk.d/ (with loop parameter d ) is a unital finite-dimensional complex

associative algebra given by a finite set of generators 1; u1; : : : ; uk subject to the

relations uiuj D uj ui when ji � j j � 2, uiuiC1ui D ui , and u2
i D dui . These

algebras admit a canonical tracial linear functional TrW TLk.d/ ! C, called the

Markov trace. Using the Markov trace, once can define a natural symmetric bilin-

ear form h�; �i on TLk.d/, and provided d is not twice the real part of a root of unity,

this bilinear form is non-degenerate (see for example [24, 10, 15]). Within this non-

degenerate regime, a fundamental problem of interest is to compute explicitly the

dual basis (with respect to the pairing h�; �i) corresponding to the standard linear

basis for TLk.d/ consisting of Temperley–Lieb diagrams. See Section 2 for pre-

cise definitions and notation. A special case of this dual basis problem is the much

studied problem of computing the coefficients appearing in the Temperley–Lieb

diagram expansion of famous Jones–Wenzl projections qk 2 TLk.d/. The Jones–

Wenzl projections are certain “highest weight” idempotents qk 2 TLk.d/, and are

key to the structure and applications of Temperley–Lieb algebras in representation

theory, operator algebras and mathematical physics. Despite the importance of the

Jones–Wenzl projections, remarkably very little is known about these idempotents

beyond the fundamental Wenzl recursion formula [33] and its various generaliza-

tions and extensions. See for example [23, 16, 26, 27].

Two fundamental questions pertaining to the Jones–Wenzl projection (and

more generally any dual basis element) in TLk.d/ are listed below.

Question 1. Is there an algorithm or formula for computing the coefficient of each

Temperley–Lieb diagram appearing in such an element?

Question 2 (Vaughan Jones). Does each Temperley–Lieb diagram appear with

non-zero coefficient in such an expansion?

These two questions arose in many contexts, from subfactor theory and rep-

resentation theory [27], to topological quantum computation [14, Problem 3.15].

Over the years, some progress on these questions has been made. Perhaps the

most notable is the announcement of a closed formula for the coefficients of the
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Jones–Wenzl projection qk by Ocneanu [27] which answered both questions in

the affirmative for qk , at least for real-valued loop parameters. This formula of

Ocneanu was later verified in certain special cases by Reznikoff [28, 29]. An-

other complementary approach to the computation of the coefficients of qk was

developed independently by Morrison [26] and Frenkel and Khovanov [16]. With

regards to the more general problem of computing arbitrary dual basis elements

in TLk.d/, very little progress has been made – the only real exception here being

the thesis of Khovanov [23, Chapter 3], where recursive formulas for the dual basis

elements are obtained using compositions of Jones–Wenzl projections. However,

it is not clear how the techniques developed above can be used to gain a full un-

derstanding of the structure coefficients of the entire dual basis and answer the

questions above.

In this paper, we solve the above two questions for a broad class of loop pa-

rameters by connecting the problem of computing the values of the coefficients

of each Temperley–Lieb diagram appearing in the expansion of a dual basis el-

ement in TLk.d/ to a seemingly different problem of computing polynomial in-

tegrals over a class of compact quantum groups, called free orthogonal quantum

groups. Using a combinatorial tool called the Weingarten calculus, we are able to

interpret generic coefficients of dual basis elements (in particular, Jones–Wenzl

projections) in terms of certain moments of coordinate functions over free orthog-

onal quantum groups taken with respect to the Haar integral. This new operator

algebraic quantum group perspective has the advantage of revealing “hidden” al-

gebraic relations between the structure coefficients of the dual basis, and provides

a new streamlined approach to computing the structure coefficients of any dual ba-

sis element, not just the Jones–Wenzl projection. Using these ideas, we are able

to prove the following main theorem of the paper. See Section 2 and Theorem

4.4 for any undefined concepts and a more detailed restatement. Below, NC2.2k/

denotes the set of all non-crossing pair partitions of the ordered set ¹1; : : : ; 2kº.

Theorem A (see Theorem 4.4). Let ¹Dpºp2NC2.2k/ � TLk.d/ denote the lin-

ear basis of Temperley–Lieb diagrams, and denote by ¹ yDpºp2NC2.2k/ the corre-

sponding dual basis with respect to the bilinear form h�; �i induced by the Markov

trace. For each p, write yDp D
P

q Wgd .p; q/Dq, where Wgd .p; q/ 2 C is

the coefficient of Dq in yDp. Then there are positive integers L.p; q/ 2 N and

¹mr .p; q/ºr2N0
� N such that Wgd .p; q/ has the following Laurent series expan-

sion
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Wgd .p; q/ D .�1/jp_qjCk
X

r�0

mr .p; q/d �L.p;q/�2r
�

jd j > 2 cos
� �

k C 1

��

:

(1)

In Section 4, we explain in detail an algorithm for computing the integers

mr .p; q/ and L.p; q/, which turn out to be combinatorially interesting objects in

their own right. The numbers mr .p; q/ count certain collections of paths of a given

length in a directed graph built from pairs of non-crossing pair partitions, and

L.p; q/ measures the length of a certain shortest path in this graph. For example,

when p D ¹1; 4º¹2; 3º¹5; 6º and q D ¹1; 6º¹2; 5º¹3; 4º 2 NC2.6/, our algorithm

turns out to produce the following directed graph:

.p; q/

.;; ;/

From this remarkably simple graph we obtain L.p; q/ D 5 as the length of the

shortest directed path from the node labeled .p; q/ to the node labeled .;; ;/.

Similarly, the coefficients mr .p; q/ D 2rC1 � 1 count the number of distinct

directed paths of length L.p; q/ C 2r between these same two nodes. Putting

this data together, we obtain the formula

Wgd .p; q/ D
X

r�0

.2rC1 � 1/d �5�2r

in this case. We refer the reader to Section 4 and Example 3 for the precise details

of this computation.

Using the above theorem, we obtain in a uniform way a procedure for comput-

ing the dual basis ¹ yDpºp2NC2.2k/ in the generic regime jd j > 2 cos
�

�
kC1

�

, provid-

ing the first significant advancement on Question 1 above. As a byproduct of the

positivity properties of the coefficients of the Laurent series (1), we are also able

to provide an affirmative answer to Jones’ Question 2 on non-zero coefficients for

the dual basis, as follows.
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Theorem B (see Theorem 4.6). For generic loop parameters d , every coefficient

in the diagram expansion of the dual basis (in particular, the Jones–Wenzl pro-

jection) of TLk.d/ is non-zero. More precisely, we have Wgd .p; q/ ¤ 0 when

d 2 Rn
h

� 2 cos
� �

k C 1

�

; 2 cos
� �

k C 1

�i

or jd j is sufficiently large:

Again, specializing to the case of Jones–Wenzl projections, the above two

theorems agree with and confirm the non-zero coefficients result of Ocneanu

[27], and complement the previous works of Morrison [26, Proposition 5.1] and

Frenkel-Khovanov [23, 16].

Finally, as mentioned above, our methods in this paper are based on exploiting

a connection between the structure coefficients of the dual basis in TLk.d/ and the

so called Weingarten calculus on free orthogonal quantum groups. Very roughly,

the problem of computing polynomial integrals over this class of quantum groups

is encoded in a family of functions indexed by pairs of non-crossing pairings called

Weingarten functions, which turn out to be exactly the coefficients Wgd .p; q/,

when viewed as functions of d 2 C. The study of the large d asymptotics of

Wgd .p; q/ (and its variants for other quantum groups) has played an extremely

important role in the discovery of quantum symmetries in free probability theory,

and has led to non-commutative de Finetti theorems and other asymptotic freeness

results for the so-called easy quantum groups. See [8, 7, 13, 12]. With regards to

the asymptotics of the Weingarten function, estimates were given [7, 13] in an

attempt to isolate the order and the value of the leading term in the 1
d

-expansion

of Wgd .p; q/. The best among these prior works was Theorem 4.6 in [13], which

isolates the leading non-zero term in Wgd .p; q/ for certain pairs of pairings .p; q/.

On the other hand, it is clear that the Laurent series expansion for Wgd .p; q/

in Theorem A provides the first explicit description of the leading term for all

possible pairs .p; q/. In fact, we shall see in Example 4 how for certain pairs

.p; q/, the leading order of Wgd .p; q/ that one might anticipate based on an

examination of Theorem 4.6 in [13] turns out to differ by a factor of d �2 from

the true value given by Theorem A. In the future, the authors hope to investigate

potential applications of our refined understanding of the Weingarten functions to

operator algebraic/free probabilistic aspects of free quantum groups.

1.1. Organization of the paper. The rest of this paper is organized as follows.

Section 2 gives a brief introduction to the Temperley–Lieb algebras, the Markov

trace, and the Jones–Wenzl projections. Section 3 reviews some facts about free

orthogonal quantum groups and the Weingarten calculus for computing Haar

integrals over these quantum groups. In this section we also explain how to express
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the coefficients of the dual Temperley–Lieb diagram basis in terms of Weingarten

functions. The final Section 4 contains our main results on the structure of the

Weingarten functions and presents the applications to the dual Temperley–Lieb

basis mentioned above. The results in this section are obtained by constructing a

certain directed graph G, with vertex set VG D
F

k2N0
NC2.2k/ � NC2.2k/ , and

edge set EG defined so as to keep track of certain algebraic relations satisfied by

the variables Wgd .p; q/ imposed by the underlying quantum group symmetries.

We call G the Weingarten graph, and use its structure to describe and explicitly

compute the positive integer coefficients mr .p; q/ and L.p; q/ in Theorem A.
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2. Preliminaries and notation

2.1. Non-crossing pair partitions and the Temperley–Lieb algebras. Given

k 2 N, we denote by NC2.2k/ the collection of non-crossing pair partitions

on the ordered set Œ2k� WD ¹1; : : : ; 2kº. This collection has cardinal Ck where

Ck D .2k/Š
kŠ.kC1/Š

is the kth Catalan number. Given p; q 2 NC2.2k/, we write p _ q

for the smallest partition of Œ2k� such that p; q � p _q, where � denotes the usual

refinement partial order on set partitions. We will also write jp_qj for the number

of blocks in the partition p _ q.

We now formally introduce the Temperley–Lieb algebras. A good general

reference for these objects is the book [22].

Definition 1. Let d 2 C
� and k 2 N be fixed parameters. The Temperley–Lieb

algebra is the unital associative C-algebra generated by elements 1; u1; : : : ; uk�1

subject to the following relations:

� uiuj D uj ui when ji � j j � 2;

� uiui˙1ui D ui ;

� u2
i D dui .
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It is well known that the algebra TLk.d/ is always finite dimensional with

dimension equal to Ck , and semisimple if and only if d is not twice the real part

of a root of unity. See for example [18, 20]. When d 2 .0; 1/ there is a natural

conjugate-linear involution on TLk.d/, defined by declaring

u�
i D ui .1 � i � k � 1/:

Thus for d 2 .0; 1/, TLk.d/ may be regarded as an involutive �-algebra, and

it is known that TLk.d/ admits a non-trivial �-representation into a C�-algebra

precisely when d 2 D D Œ2; 1/ [ ¹2 cos
�

�
n

�

W n D 3; 4; 5; : : : º [33]. For our

purposes, however, we will not require the use of a �-structure on TLk.d/.

2.2. Temperley–Lieb diagrams. With k 2 N and d 2 C
� fixed as above, we

plot the set Œ2k� D ¹1; : : : ; 2kº on a square clockwise with ¹1; : : : ; kº on the top

edge and ¹2k; : : : ; k C 1º on the bottom edge. If we connect these points by a

non-crossing pairing p 2 NC2.2k/, this results in a planar diagram Dp, called a

Temperley–Lieb diagram. For example, when k D 3, there are C3 D 5 Temperley–

Lieb diagrams ¹Dpºp2NC2.6/:

; ; ; ; :

On the C-vector space CŒNC2.2k/� spanned by the Temperley–Lieb diagrams

¹Dpºp2NC2.2k/ we define an associative C-algebra structure as follows. The prod-

uct DpDq of diagrams Dp and Dq is obtained by first stacking diagram Dq on top

of Dp, connecting the bottom row of k points on Dq to the top row of k points on

Dp. The result is a new planar diagram, which may have a certain number c of

internal loops. By removing these loops, we obtain a new diagram Dr for some

r 2 NC2.2k/ (which is unique up to planar isotopy). The product DpDq is then

defined to be d cDr . For example, we have

� D d

There is a natural linear anti-multiplicative involution D 7! Dt onCŒNC2.2k/�

given simply by the linear extension of the operation of turning diagrams upside-

down. For example,
t

D

It is well known that the above algebraic structure on CŒNC2.2k/� is isomor-

phic to the Temperley–Lieb algebra TLk.d/, the isomorphism being given picto-

rially in terms of the generators 1; u1; : : : ; uk�1 2 TLk.d/ by
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� � � � � �

1

;
� � �

u1

;
� � �

u2

; : : : ;
� � �

ui

; : : : ;
� � � � � �

uk�1

See for example [21, 22, 11]. As a result, from now on we shall identify these

two algebras as the same object.

2.3. The Markov trace. The Markov trace is the tracial linear functional Tr W

TLk.d/ 7! C that sends a diagram D 2 TLk.d/ to the following complex number,

called the tracial closure of D:

D

� � �

� � �

� � �

In other words, we connect the k points on the top of D to the k points on the

bottom of D as indicated in the above picture. The result is a system of loops in

the plane. The number of resulting loops is denoted by #loops.D/, and then we

have

Tr.D/ D d #loops.D/:

Using the Markov trace and the transpose t , we can define a symmetric bilinear

pairing h�; �iW TLk.d/ � TLk.d/ ! C given by

hD; D0i D Tr.DtD0/ .D; D0 2 TLk.d//:

This bilinear form turns out to be non-degenerate precisely when TLk.d/ is

semisimple, and this is guaranteed to happen when d ¤ 2 cos.�
n

/ for n ¤

2; 3; 4; : : : ; k C 1. See for example [33, 25, 6]. For the remainder of the paper,

we make the assumption that the the bilinear form h�; �i defined above is non-

degenerate.

Remark 1. For future reference, we also note at this time the following well-

known combinatorial formulas for the Markov trace of basic diagrams Dp, p 2

NC2.2k/:

Tr.Dp/ D d jp_1j; hDp; Dqi D Tr.Dt
pDq/ D d jp_qj .p; q 2 NC2.2k//:

In the above formula, 1 D ¹¹1; 2kº; ¹2; 2k�1º; : : : ; ¹k; kC1ºº 2 NC2.2k/ denotes

the “identity” partition (corresponding the the identity 1 D D1 2 TLk.d/). These

identities are easily verified by the reader.
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2.4. The Jones–Wenzl projections. We now come to one of the main objects

of study in this paper.

Definition 2. Let k 2 N and d 2 Cn¹2 cos.�
n

/º2�n�kC1 be as above. Then

there exists a unique non-zero idempotent qk 2 TLk.d/, called the Jones–Wenzl

projection, with the property that

ui qk D qkui D 0 .i D 1; : : : ; k � 1/: (2)

Although the above defining relations for qk are simple to state, they are not

very useful for determining the structure of qk. For determining the decomposition

of qk as a linear combination of basis diagrams ¹Dpºp2NC2.2k/, we instead have

the Wenzl recursion formula. In what follows, we use the notation

qk D
k

to represent qk, then the Wenzl recursion [33] is given by q1 D , q2 D � 1
d

and qk is given inductively by

qkC1 D
k

� �k�1.d/
�k.d/

� � �

:

Here, �k is the kth Chebyshev polynomial of type 2, defined by

�0.x/ D 1; �1.x/ D x; x�k.x/ D �kC1.x/ C �k�1.x/ .k � 1/:

In fact, �k.d/ D Tr.qk/ is the Markov trace of the kth Jones–Wenzl projection

in TLk.d/. It is relatively straightforward to check that this construction results in

idempotent objects that annihilate the generators u1; : : : ; uk�1 of TLk.d/.

2.5. Jones–Wenzl projections and the dual diagram basis. Given a finite-

dimensional vector space E equipped with a non-degenerate bilinear form h�; �i

and a linear basis B D ¹x1; : : : ; xnº for E, recall that the dual basis associated to

B is the unique linear basis yB D ¹ Ox1; : : : ; Oxnº of E with the property that

hxi ; Oxj i D ıij : .1 � i; j � n/:
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For TLk.d/ (with k 2 N; d 2 Cn¹2 cos.�
n

/º2�n�kC1), equipped with its non-

degenerate bilinear form induced by the Markov trace, we consider the canonical

Temperley–Lieb diagram basis B D ¹Dpºp2NC2.2k/ and the corresponding dual

basis yB D ¹ yDpºp2NC2.2k/.

In terms of the diagram basis and its dual, we have the following (presumably

well-known) lemma relating the Jones–Wenzl projections to certain dual basis

elements.

Lemma 2.1. Let k 2 N and d 2 Cn¹2 cos.�
n

/º2�n�kC1. Then the kth Jones–

Wenzl projection qk 2 TLk.d/ is given by

qk D �k.d/ yD1;

where, as before, 1 D ¹¹1; 2kº; ¹2; 2k � 1º; : : : ; ¹k; k C 1ºº 2 NC2.2k/.

Proof. We first observe that the coefficient of D1 appearing in the expansion of

qk in terms of the diagram basis B is always 1. Indeed, from the definition of qk,

we have qkIk D Ikqk D ¹0º, where Ik C TLk.d/ is the codimension 1 ideal

generated by u1; : : : ; uk�1. In particular, we can uniquely write qk D ˛kD1 C gk ,

where ˛k 2 C and gk 2 Ik . But then we have

qk D q2
k D .˛kD1 C gk/qk D ˛kqk;

which forces ˛k D 1.

Next, we observe that for any 1 ¤ p 2 NC2.2k/, we have

hDp ; qki D Tr.Dt
pqk/ D Tr.0/ D 0 .since Dp; Dt

p 2 Ik/:

Therefore there exists a ck 2 C such that qk D ck
yD1. The conclusion now follows

by combining the well-known fact (see for example [20, 22]) that Tr.qk/ D �k.d/

together with Tr. yD1/ D h yD1; D1i D 1. �

3. Free orthogonal quantum groups and the Weingarten calculus

3.1. Free orthogonal quantum groups. In this section we recall the definition

of the free orthogonal quantum groups, introduced by Van Daele and Wang in [31].

Notation 1. Given a unital complex �-algebra A and a matrix X D Œxij � 2

Mn.A/ (n 2 N), we write xX D Œx�
ij � 2 Mn.A/, X� D Œx�

j i �, and AXB D

Œ
Pn

k;lD1 aikxklbkj � for any A D Œaij �; B D Œbij � 2 Mn.C/. We call X unitary

if X�X D XX� D 1 2 Mn.A/, where Mn.A/ is equipped with its usual unital

�-algebra structure inherited from A.
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Definition 3 ([31]). Fix an integer n � 2 and F 2 GLn.C/ such that F xF D ˙1.

The algebra of polynomial functions on the free orthogonal quantum group is the

universal unital �-algebra with generators and relations given by

O.OC
F / WD � � alg

�

.uij /1�i;j �n j U D Œuij � is unitary in Mn.O.OC
F // and

U D F xUF �1
�

:
(3)

Remark 2. As the above terminology suggests, the algebras O.OC
F / are in fact

a class of Hopf �-algebras associated to operator algebraic compact quantum

groups in the sense of Woronowicz [34, 36]. In particular, when F 2 GLn.C/

is the identity matrix, we write OC
n instead of OC

F , and O.OC
n / is exactly the free

non-commutative analogue of the Hopf �-algebra O.On/ of polynomial functions

on the classical orthogonal group. Since we will need very little quantum group

technology in what follows, we refer the reader to the above references for more

details.

A fundamental feature of the �-algebra O.OC
F / is the existence of a coproduct,

which is a unital �-homomorphism �WO.OC
F / ! O.OC

F / ˝ O.OC
F / determined

by

�.uij / D

n
X

kD1

uik ˝ ukj .1 � i; j � n/;

and satisfying the co-associativity relation .� ˝ �/� D .� ˝ �/�. For the non-

commutative algebras O.OC
F /, � plays the role of the group law on the underlying

“quantum space” OC
F . It then follows from general theory of compact quantum

groups [36] that there exists a unique Haar integral. That is, a faithful state

� D �F WO.OC
F / ! C satisfying the left and right invariance condition

.� ˝ �/� D .� ˝ �/� D �.�/1: (4)

The Haar integral onOC
F is a non-commutative generalization of the Haar measure

on its classical counterpart On.

3.2. Weingarten calculus. For the computation of moments of the the genera-

tors

¹uij º1�i;j �n � O.OC
F /

with respect to the Haar integral, we rely on a combinatorial tool, known as the

Weingarten calculus. The setup is as follows.

Fix a parameter d 2 C
�, and for each k � 1, define a matrix Gd D

ŒGd .p; q/�p;q2NC2.2k/, by

Gd .p; q/ D d jp_qj:
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It is then known that Gd is an invertible matrix [2, 3, 4, 9, 15] for all such

k � 1 and d 2 Cn¹2 cos.�
n

/º2�n�kC1. Denote the inverse matrix G�1
d

by

Wgd D ŒWgd .p; q/�p;q2NC2.2k/. Wgd is called the Weingarten matrix (of order

2k), and any function of the form d 7! Wgd .p; q/ with p; q 2 NC2.2k/ is called a

Weingarten function. The following theorem shows that the Weingarten functions

encode all of the data of the moments of the standard generators of O.OC
F /.

Theorem 3.1 ([4, 5, 9]). Let n � 2, c 2 ¹˙1º and let F 2 GLn.C/ be such

that F xF D c1. Set d WD c Tr.F �F / and consider the generators ¹uij º1�i;j �n

of the free orthogonal Hopf �-algebra O.OC
F /. For each l 2 N and each pair of

multi-indices i; j W Œl � ! Œn�, we have

�.ui.1/j.1/ui.2/j.2/ : : : ui.l/j.l// D 0

if l is odd, and otherwise

�.ui.1/j.1/ui.2/j.2/ : : : ui.l/j.l// D
X

p;q2NC2.l/

c
l
2 Wgd .p; q/ıF

p .j /ıF
q .i/;

where

ıF
p .j / D

Y

¹s;tº2p

Fj.t/j.s/ and ıF
p .i/ D

Y

¹s;tº2q

Fi.t/i.s/;

and ¹s; tº 2 p (resp. ¹s; tº 2 p) means that ¹s; tº is a block of p (resp. a block

of q).

Remark 3. In what follows, we will mainly be interested in two types of matrices

F 2 GLn.C/. The first type is the identity matrix F D 1 2 GLn.C/, and the

second is of the form

F� D

0

@

1n�2 0 0

0 0 �

0 ��1 0

1

A 2 GLn.C/;

where 0 < � < 1.

In both of these cases, the Weingarten formula of Theorem 3.1 is readily seen

to simplify to

�.ui.1/j.1/ui.2/j.2/ : : : ui.l/j.l// D 0

if l is odd, and

�.ui.1/j.1/ui.2/j.2/ : : : ui.l/j.l// D
X

p;q2NC2.l/

ker j �p; ker i�q

Wgd .p; q/ .for all i; j W Œl � ! Œn � 2�/:
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In the above formula, ker i is the partition of Œl � determined by the condition that

s; t belong to the same block of ker i if and only if i.s/ D i.t /, and as mentioned

before, the symbol � denotes the refinement ordering on partitions of Œl �.

Finally, let us introduce a notion of generic monomials, that will allow in some

cases to reformulate conveniently certain statements and formulas in this paper,

and describe an explicit link between Haar integration over quantum groups and

coefficients of the dual diagram basis in certain Temperley–Lieb algebras. Let

F D 1 or F D F� as in the preceding remark and fix p; q 2 NC2.2k/. We

shall call a degree 2k monomial of the form ui.1/j.1/ : : : ui.2k/j.2k/ 2 O.OC
F / a

.p; q/-generic monomial if the only partition in NC2.2k/ that is finer than ker j

(respectively ker i) is p (respectively q). Any such .p; q/-generic monomials will

be denoted by up;q . In particular, �.up;q/ D Wgd .p; q/ in the regimes described

in the previous remark.

It is easy to see that for any p; q 2 NC2.2k/, a .p; q/-generic monomial exists

provided that n � 2 � k.

3.3. Weingarten calculus and the dual diagram basis in TLk.d/. We are now

ready to establish the main result of this section, setting a link between the Haar

measure over free orthogonal quantum groups and the dual diagram basis for the

Temperley–Lieb algebra. We recall that ¹Dpºp2NC2.2k/ denotes the Temperley–

Lieb diagram basis for TLk.d/, and ¹ yDpºp2NC2.2k/ denotes the dual basis.

Fix k 2 N and d 2 Œ2; 1/. Choose n D n.d/ 2 N and F D F.d/ 2 GLn.C/

so that

F.d/ D 1 2 GLd .C/

if d 2 N, and otherwise

F.d/ D F� D

0

@

1n�2 0 0

0 0 �

0 ��1 0

1

A 2 GLn.C/;

where 0 < � < 1 is chosen so that d D Tr.F �F / D n � 2 C �2 C ��2.

Theorem 3.2. With the notations fixed as above, the dual basis element yDp

associated to a diagram Dp 2 TLk.d/ is given by

yDp D
X

q2NC2.2k/

Wgd .p; q/Dq D
X

q2NC2.2k/

�F .d/.up;q/Dq .p 2 NC2.2k//;

where the first equality holds for d 2 Cn¹2 cos.�
n

/ºkC1
nD2 and the second equality

holds at least for d � k.
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Proof. The first equality follows from the fact that the transfer matrix from a

basis to its dual basis is the inverse of the Gram matrix of the basis. This matrix

is exactly the Weingarten matrix in our case. Indeed, the Gram matrix for the

basis ¹Dpºp2NC2k
has coefficients hDp; Dqi D Tr.Dt

qDp/ D d jp_qj D Gd .p; q/.

For the second equality, we just observe that the condition d � k implies that

n � 2 � k, and this implies the existence of .p; q/-generic monomials for all

p; q 2 NC2.2k/. �

As for the Jones–Wenzl projections, we have the following consequence

Theorem 3.3. The k-th Jones–Wenzl projection qk 2 TLk.d/ is given by

qk D
X

q2NC2.2k/

Wgd .1; q/

Wgd .1; 1/
Dq D

X

q2NC2.2k/

�F .d/.u1;q/

�F .d/.u1;1/
Dq;

where the first equality holds for d 2 Cn¹2 cos.�
n

/ºkC1
nD2 and the second equality

holds at least for d � k.

Proof. In view of Lemma 2.1 and Theorem 3.2, all we need to show is that

h yD1; yD1i D Wgd .1; 1/. But this just follows from the calculation

h yD1; yD1i D
X

q;q02NC2.2k/

Wgd .1; q/ Wgd .1; q0/hDq ; Dq0i

D
X

q02NC2.2k/

ı1q0 Wgd .1; q0/ D Wgd .1; 1/: �

4. The Laurent series expansion for Wgd.p; q/

and applications to the dual TLk.d/ basis

We now come to the main section of the paper, where we study the structure

of the Laurent series expansions of the free orthogonal Weingarten functions

d 7! Wgd .p; q/ (p; q 2 NC2.2k/) on the annuli jd j > 2 cos
�

�
kC1

�

. Our

first goal here is to give more precise formulations of Theorems A and B (see

Theorems 4.4–4.6) with the aid of some graph theoretical tools, followed by a

presentation of the proofs of these results.

Before we proceed any further, let us say a quick word about our general

strategy for establishing the Laurent series expansion in Theorem A: since the

Weingarten functions are rational functions in the variable d 2 C, it suffices

by uniqueness of Laurent series expansions to establish the desired formula only
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for sufficiently large non-negative integers d ! 1 belonging to the domain of

analyticity of the Weingarten function under consideration. This is precisely what

we do. It is by restricting to these integer values d 2 N that we are able to take

advantage of the algebraic relation between the Weingarten functions and integrals

over the quantum groups OC
d

outlined in the previous section.

We begin by introducing some technical tools that will be used to formulate

and prove Theorem 4.4.

4.1. Non-crossing neighbors in NC2.2k/

Definition 4. Fix k � 2. Given two non-crossing partitions p ¤ p0 2 NC2.2k/,

we say that p0 is a non-crossing neighbor of p (denoted by p ! p0), if there exists

an interval ¹t; t C 1º 2 p and another pair ¹x; yº 2 p with the property that

(1) the partition

p00 D ¹t; t C 1; x; yº [
[

¹r;sº¤¹t;tC1º;¹x;yº

¹r; sº is non-crossing;

and

(2) p0 � p00 is the unique element of NC2.2k/ such that p0 ¤ p.

In other words, given p 2 NC2.2k/, all non-crossing neighbors p ! p0 can

be constructed via the following four-step algorithm.

(1) Select an interval ¹t; t C 1º of p.

(2) Find another pair-block ¹x; yº of p with the property if we merge the two

blocks ¹t; t C 1º and ¹x; yº, we produce a non-crossing partition p00 2

NC.2k/.

(3) The partition p00 2 NC.2k/ admits precisely two refinements contained in

NC2.2k/: we have the original pairing p � p00 that we started with, as well

as one one other pairing p0 � p00.

(4) Find this other pairing p0 and declare p ! p0.

The above definition is understandably hard to digest, so let us further illustrate

it with an example.

Example 1. Consider the pairing p D
®

¹1; 4º; ¹2; 3º; ¹5; 6º
¯

2 NC2.6/, which we

depict using a typical non-crossing arch diagram:

p D (5)
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If we select the interval ¹5; 6º 2 p, our only choice is to merge ¹5; 6º with the pair

¹1; 4º 2 p to produce the non-crossing partition p00 D
®

¹1; 4; 5; 6º; ¹2; 3º
¯

. The

unique p0 ¤ p 2 NC2.6/ that is a refinement of p00 is p0 D
®

¹1; 6º; ¹2; 3º; ¹4; 5º
¯

.

Pictorially, we have

p D D p0

(6)

If, on the other hand, we selected the interval ¹2; 3º 2 p and follow the same

procedure as above, we arrive at the only other non-crossing neighbor p ! p0:

p D D p0

(7)

Remark 4. It is important to note that the above notion is not symmetric, i.e.,

p !p0 does not necessarily imply p0 !p. Take for example p D ¹1; 2º¹3; 4º¹5; 6º

and p0 D ¹1; 6º¹2; 4º¹3; 5º.

Our reason for considering the above notion of non-crossing neighbors is that

it is intimately connected to certain algebraic relations between Haar integrals of

generic monomials (or equivalently Weingarten functions) over the free orthog-

onal quantum groups OC
d

(d 2 N). Indeed, suppose p; q 2 NC2.2k/ with k � d 2

N and consider a .p; q/-generic monomial up;q D ui.1/j.1/ui.2/j.2/ : : : ui.2k/j.2k/ 2

O.OC
d

/, where i; j W Œ2k� ! Œd � are fixed multi-indices satisfying ker i D p and

ker j D q. Now fix an interval ¹t; t C 1º 2 p and assume without loss of gener-

ality that i.t / D i.t C 1/ D 1. Let us now modify up;q by allowing the indices

i.t / D i.t C 1/ to vary freely from 1 to d while keeping all other indices fixed.

Then, using the defining orthogonality relations

d
X

sD1

usrusr 0 D ırr 01 D

d
X

sD1

ursur 0s .1 � r; r 0 � d/

for the generators of O.OC
d

/, we obtain the relation

d
X

i.t/Di.tC1/D1

ui.1/j.1/ui.2/j.2/ : : : ui.2k/j.2k/

D up;q C

d
X

i.t/Di.tC1/D2

ui.1/j.1/ui.2/j.2/ : : : ui.2k/j.2k/

D ıj.t/j.tC1/u Qpt Qqt

D ı¹t;tC1º2qu Qpt Qqt
;
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where Qpt ; Qqt 2 NC2.2k � 2/ are the natural partitions obtained from p; q by

removing the common interval ¹t; t C 1º. Integrating this relation over OC
d

and

using the Weingarten formula, we obtain

�.up;q/ C

d
X

i.t/Di.tC1/D2

�.ui.1/j.1/ui.2/j.2/ : : : ui.2k/j.2k// D ı¹t;tC1º2q�.u Qpt Qqt
/

() Wgd .p; q/ C

d
X

i.t/Di.tC1/D2

X

p0
t 2NC2.2k/

ker i�p0
t

Wgd .p0
t ; q/ D ı¹t;tC1º2q Wgd . Qpt ; Qqt/:

But for 2 � i.t / D i.t C 1/ � d , p0
t 2 NC2.2k/ is easily seen to satisfy ker i � p0

t

if and only if either p0
t D p or p0

t is a non-crossing neighbor of p. In particular,

we have the relation

d Wgd .p; q/ C
X

p0
t 2NC2.2k/

p!p0
t

Wgd .p0
t ; q/ D ı¹t;tC1º2q Wgd . Qpt ; Qqt/ (8)

(p; q 2 NC2.2k/). Of course there is an obvious analogue of equation (8) where

the summation occurs over the second variable in Wgd instead of the first variable:

d Wgd .p; q/ C
X

q0
t 2NC2.2k/

q!q0
t

Wgd .p; q0
t/ D ı¹t;tC1º2p Wgd . Qpt ; Qqt / (9)

.p; q 2 NC2.2k//. Equations (8) and (9) will be of crucial importance in what

follows, and we shall refer to them as the Weingarten orthogonality relations

associated to an interval ¹t; t C 1º belonging to one of the pairings p or q.

Example 2. It is perhaps worthwhile to clarify the above Weingarten orthog-

onality relations with a concrete example. Let k D 4, p D ¹1; 2º¹3; 4º and

q D ¹1; 4º¹2; 3º. Then the orthogonality relation associated to the interval

¹1; 2º 2 p gives the Weingarten orthogonality relation

d Wgd .p; q/ C Wgd .q; q/ D 0;

since in this case the only non-crossing neighbor of p is q, and ¹1; 2º … q which

explains why the right hand side is zero.

As a motivation for the ideas to come, let us suppose we are interested in eval-

uating Wgd .p; q/. Noting that the above Weingarten orthogonality relation ex-

presses Wgd .p; q/ in terms of Wgd .q; q/, this suggests we next consider a Wein-

garten orthogonality relation associated to the pair .q; q/. Taking the orthogonality
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relation associated to the interval ¹1; 2º 2 q, we get

d Wgd .q; q/ C Wgd .p; q/ D Wgd . Qq; Qq/ D d �1;

where Qq 2 NC2.2/ is the unique pairing obtained by deleting the interval ¹1; 2º

from q. We thus obtain two equations in two unknowns which can readily be

solved to obtain

Wgd .p; q/ D
�1

d 3 � d
and Wgd .q; q/ D

1

d 2 � 1
:

This informally suggests that sequences of judiciously chosen Weingarten orthog-

onality relations allows one to solve a system of equations to evaluate general

Weingarten functions Wgd .p; q/.

Remark 5. The Weingarten orthogonality relations (8) and (9) are special ex-

amples of the relations that Weingarten initially used in his study of the large

d -asymptotics of polynomial integrals over the unitary groups Ud [32]. What is

nowadays called the “Weingarten calculus” for compact (quantum) groups focuses

on analyzing the Weingarten function directly, without direct reference to the un-

derlying orthogonality/unitarity relations, and with more powerful and conceptual

tools such as representation theory, combinatorics, etc. However, as we shall see,

the present paper shows that getting back to the defining orthogonality relations for

the quantum groups OC
d

at hand turns out to yield the strongest results available.

4.2. The Weingarten Graph. We now define a directed graph structure on pairs

of non-crossing pairings which is designed to help keep track of what kinds of

new non-crossing pairings arise when considering the Weingarten orthogonality

relations (8) and (9).

Definition 5. We define an infinite directed graph G D .VG; EG/ as follows. The

vertex set is given by

VG D
G

k2N0

NC2.2k/ � NC2.2k/;

where by convention we define NC2.0/ � NC2.0/ D ¹.;; ;/º. The set of directed

edges EG � VG � VG given by the following two rules.

(1) If p; q; p0; q0 2 NC2.2k/, then ..p; q/; .p0; q0// 2 EG if and only if

(a) p ! p0 and q D q0, or

(b) q ! q0 and p D p0
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(2) If p; q 2 NC2.2k/ and p0; q0 2 NC2.2k � 2/, then ..p; q/; .p0; q0// 2 EG if

and only if there exists a common interval ¹t; t C 1º 2 p; q and p0; q0 are the

pairings obtained from p; q by removing this common interval.

We call G the Weingarten graph. As mentioned above, the edge set EG

is constructed exactly to encode all pairs of non-crossing pairings that might

arise in the Weingarten orthogonality relations (8) and (9). In particular, using

the structure of G, we can succinctly rewrite the two Weingarten orthogonality

relations (8) and (9) associated to an interval ¹t; t C 1º (belonging to at least one

of p; q 2 NC2.2k/) as

d Wgd .p; q/ C
X

..p;q/;.p1 ;q1//

Wgd .p1; q1/ D ı¹t;tC1º2pı¹t;tC1º2q Wgd . Qp1; Qq1/: (10)

Here, the sum above runs over all edges ..p; q/; .p1; q1// 2 EG with p1; q1 2

NC2.2k/ which appear as a result of the chosen OC
d

-orthogonality relation taken at

¹t; tC1º, and the Wgd . Qp1; Qq1/ term corresponds to the edge ..p; q/; . Qp1; Qq1// 2 EG

that exists if and only if p and q share ¹t; t C 1º as a common interval.

Of course, not all edges in EG with source .p; q/ appear in the above sum,

just those associated the particular choice of interval ¹t; t C 1º made in (10). We

will address this issue again in Section 4.3, but first we derive some useful basic

properties of the Weingarten graph G.

Proposition 4.1. For every pair .p; q/ 2 NC2.2k/ � NC2.2k/, there exists a

(generally non-unique) directed path in the Weingarten graph G connecting the

vertex .p; q/ to the vertex .;; ;/.

Proof. Denote by �.G/ the diagonal of VG. I.e., �.G/ D
F

k2N0
¹.p; p/W p 2

NC2.2k/º � VG. We first observe if .p; p/ 2 NC2.2k/ � NC2.2k/ � �.G/, then

there always exists a directed path from .p; p/ to .;; ;/ of length k. Indeed one

can successively delete intervals from p to build a chain of k edges connecting

.p; p/ to .;; ;/.

Next, consider a vertex .p; q/ 2 VG, with p ¤ q 2 NC2.2k/. In view of

the observation of the previous paragraph, the proof will be complete if we can

show that .p; q/ can be connected to �.G/ via a directed path. In fact, we will

show that such a vertex .p; q/ can always be connected to .p0; p0/ 2 �.G/, where

p0 D ¹1; 2º¹3; 4º : : : ; ¹2k � 1; 2kº is the interval pairing. To do this, we will show

that p is connected by a sequence of non-crossing neighbors to p0. The same

argument will apply to q, and the result will then follow. To this end, we proceed

by the following inductive argument.
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� If k D 1, p D p0 and there is nothing to prove.

� Suppose that for some k0 � 1, every p 2 NC2.2k0/ is connected by a

sequence of non-crossing neighbors to p0 2 NC2.2k0/.

� Let k D k0 C 1, p 2 NC2.2k/ and let ¹t; t C 1º 2 p be the rightmost interval

when we scan the blocks of p from left to right.

� If t C 1 ¤ 2k, let ¹x; t C 2º 2 p be the block containing t C 2 and let

p0 be the non-crossing neighbor of p uniquely determined to have pairs

¹t C 1; t C 2º; ¹x; tº 2 p0.

� Iterating the previous two steps, we eventually arrive (after 2k � t � 1

iterations) to a new partition Qp 2 NC2.2k/ of the form

Qp D p1 [ ¹2k � 1; 2kº with p1 2 NC2.2k � 2/ D NC2.2k0/:

� By the induction hypothesis, we can connect p1 to ¹1; 2º¹3; 4º : : :

¹2k0 � 1; 2k0º by a sequence of non-crossing neighbors in NC2.2k0/. But

under the embedding NC2.2k0/ ,! NC2.2k/I z 7! z [ ¹2k � 1; 2kº, this se-

quence is easily seen to be a sequence of non-crossing neighbors in NC2.2k/.

The proof is then complete by induction. �

Since we now know that every vertex in G is connected to .;; ;/, we can

consider directed paths of shortest length:

Definition 6. Given .p; q/ 2 NC2.2k/ � NC2.2k/ � VG, we denote by L.p; q/ 2

N0 the length of the geodesic ( = shortest directed path) from .p; q/ to .;; ;/.

Remark 6. Of course there are in general many geodesics connecting a given

.p; q/ to .;; ;/. As an example, consider .p; p/ 2 VG with p 2 NC2.2k/.

Then L.p; p/ D k, and unless p is the fully nested pairing ¹1; 2kº¹2; 2k � 1º : : :

¹k; k C 1º, there are at least 2 geodesics connecting .p; p/ to .;; ;/, since p has

at least 2 intervals.

The following parity result for edges in G will be crucial in what follows.

Proposition 4.2. For each edge ..p; q/; .p0; q0// 2 EG in the Weingarten graph

G, we have

jp0 _ q0j D jp _ qj ˙ 1: (11)
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Proof. There are two cases to consider.

Case a. Assume p; q 2 NC2.2k/ and .p0; q0/ 2 NC2.2k � 2/. Then by definition

of ..p; q/; .p0; q0// 2 EG, .p0; q0/ is obtained from .p; q/ by removing a common

interval pair. It is then immediate that jp _ qj D jp0 _ q0j C 1.

Case b. Assume that p; q; p0; q0 2 NC2.2k/ for some k � 2. By symmetry, we

can then assume without loss of generality that q D q0 and p ! p0. I.e., p0 is a

non-crossing neighbor of p. Moreover, by applying a cyclic rotation to the index

set Œ2k�, we may without loss of generality assume that p D ¹1; 2º¹x; yº [ p00 and

p0 D ¹1; yº¹2; xº [ p00 for some p00 2 NC2.Œ2k�n¹1; 2; x; yº/ Š NC2.2k � 4/.

(This is possible since such rotations preserve the non-crossing structure, as well

as the quantity jp _ qj.) Note in particular that in this case x must be odd and y

must be even, in order for our partitions to be non-crossing.

Consider now the partition p _ q. There are two possible sub-cases.

(1) The blocks ¹1; 2º; ¹x; yº 2 p are connected by a block of p _ q. We begin by

recalling that there is a canonical identification of the set of pairings P2.2k/

of Œ2k� with the subset of permutations p 2 S2k having no fixed points in

Œ2k� and satisfying p2 D 1. Under this identification, note that the blocks of

p _ q correspond to the distinct “orbits”

Op;q.i/ D ¹i ! p.i/ ! qp.i/ ! pqp.i/ ! � � � ! iº .i 2 Œ2k�/;

associated to alternating applications of p and q to points i 2 Œ2k�.

Let us now consider the single orbit Op;q.1/ which, by assumption on p _ q,

contains the elements 1; 2; x; y. Since we have p.1/ D 2 and p.x/ D y, this

orbit has the following structure:

Op;q.1/ D ¹1 !p 2 !q � � � !q x !p y !q � � � !q 1º:

Replacing p by p0, we now have p0.1/ D y, p0.2/ D x and p0 D p

elsewhere. In particular, Op;q.1/ gets broken into two orbits Op0;q.1/ and

Op0;q.2/, containing 1 and 2, respectively:

Op0 ;q.1/ D ¹1 !p0

y !q � � � !q 1º

and

Op0 ;q.2/ D ¹2 !p0

x !q � � � !q xº:

Since all other orbits are unchanged by replacing p with p0, we conclude in

this case that

jp0 _ q0j D jp0 _ qj D jp _ qj C 1:
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(2) The blocks ¹1; 2º; ¹x; yº 2 p belong to distinct blocks of p _ q. In this case

we have two orbits Op;q.1/ and Op;q.x/ as follows:

Op;q.1/ D ¹1 ! 2 ! � � � ! 1º and Op;q.x/ D ¹x ! y ! � � � ! xº:

Now, if we replace p by p0, we connect have p0.1/ D y and p0.2/ D x and

thus the two orbits collapse to the orbit

Op0;q.1/ D ¹1 ! y ! � � � ! x ! 2 ! � � � ! 1º: �

Since all other orbits are unchanged by replacing p with p0, we have in this

case

jp0 _ q0j D jp0 _ qj D jp _ qj � 1:

Remark 7. Using Proposition 4.2, it is relatively straightforward to see that we

always have the lower bound

L.p; q/ � 2k � jp _ qj .p; q 2 NC2.2k//:

Indeed, to travel from .p; q/ to .;; ;/ along a path in G, one has to successively

delete k common interval pairs from p and q. Each removal of a loop constitutes

one edge along this path, and we require at least k � jp _ qj more edge traversals

on this path to form a total of k common intervals, yielding a total path length of

at least k C .k � jp _ qj/ D 2k � jp _ qj.

Based on this observation, it is tempting to guess that we might always have

equality in the above inequality. This in fact turns out to be false in some cases,

as can be seen from Example 4.

The following corollary of Proposition 4.2 will be of use in the proof of

Theorem 4.4.

Corollary 4.3. For each vertex .p; q/ ¤ .;; ;/ in G, the length of any directed

path from .p; q/ to .;; ;/ has the same parity as jp _ qj. In particular, the length

of any such directed path is of the form L.p; q/ C 2r for some r 2 N0.

Proof. Consider any path P D .p0; q0/.p1; q1/ : : : .p`.P/; q`.P// in G of length

`.P/, where .p0; q0/ D .p; q/ and .p`.P/; q`.P// D .;; ;/. Consider also the

function

fPW ¹0; : : : ; `.P/º �! N0I fP.i/ D jpi _ qi j;

where we define j; _ ;j D 0. For any such P, we have

fP.0/ D jp _ qj; fP.`.P// D 0; (12a)
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and

fP.i C 1/ D fP.i/ ˙ 1 .0 � i � `.P/ � 1/; (12b)

where the last set of equalities follows from Proposition 4.2. In particular, these

equalities taken together imply that if jp _ qj is even (respectively odd) `.P/ must

also be even (respectively odd). �

4.3. Weingarten subgraphs. In this subsection we describe a connected sub-

graph H of the Weingarten graph G. It has the same vertex set VH D VG, but

fewer edges. More specifically, to each vertex .p; q/ different from .;; ;/, we as-

sociate one and only one Weingarten orthogonality relation of the form (8) or (9)

with the property that it involves a vertex .p0; q0/ such that the following conditions

are satisfied:

(H1) ..p; q/; .p0; q0// 2 EG

(H2) L.p0; q0/ D L.p; q/ � 1

By Proposition 4.1 it is always possible to make such a choice. For each

.p; q/, the above choice of edge ..p; q/; .p0; q0// generally produces several edges

..p; q/; .p1; q1// according to equations (8) and (9) (the edge ..p; q/; .p0; q0// be-

ing one of those edges). The edge set EH � EG is then defined to be collection

of all edges ..p; q/; .p1; q1// arising in the above discussion. It is clear that H is

a subgraph of G, and we call H a Weingarten subgraph of G. In particular, the

Weingarten orthogonality relation for a given vertex .p; q/ 2 VH chosen when

defining H is expressed concisely in terms of H-data as

d Wgd .p; q/ C
X

..p;q/;.p1 ;q1//2EH

p1;q12NC2.2k/

Wgd .p1; q1/ D ı¹t;tC1º2pı¹t;tC1º2q Wgd . Qp1; Qq1/; (13)

where ..p; q/; . Qp1; Qq1// 2 EH is the unique edge with Qp1; Qq1 2 NC2.2k � 2/ (if it

exists).

It is important to note, however, that the Weingarten subgraph H is not

uniquely defined. There are many graphs that fulfill the above definition, depend-

ing on the choices of orthogonality relations that are made. But for the purpose of

the forthcoming statements, we need to make a choice. Surprisingly, the choice of

Weingarten subgraphH does not affect our statements or proofs (and to our mind,

this is a highly non-trivial fact from a combinatorial point of view, although it fol-

lows naturally from our analysis).

Before stating our main result, we need one more definition in order to describe

the Laurent coefficients of Wgd .p; q/.
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Definition 7. Fix a Weingarten subgraph H � G. For each vertex .p; q/ 2 VH

and each r 2 N0, we denote by mr .p; q/ the number of directed paths from .p; q/

to .;; ;/ of length L.p; q/ C 2r that are contained in H.

Remark 8. A priori, one might expect that the number mr .p; q/ depends on our

choice of Weingarten subgraph H, however, we shall see in Corollary 4.5 that this

is not the case.

Let us now state the main theorem of the paper.

Theorem 4.4. Fix once and for all a Weingarten subgraph H � G and fix

p; q 2 NC2.2k/ Then the Weingarten function d 7! Wgd .p; q/ admits the

following absolutely convergent Laurent series expansion

Wgd .p; q/ D .�1/jp_qjCk
X

r�0

mr .p; q/d �L.p;q/�2r
�

jd j > 2 cos
� �

k C 1

��

;

(14)

where L.p; q/ 2 N0 is the distance from .p; q/ to .;; ;/ in the Weingarten graph

G, and mr .p; q/ is the number of paths of length L.p; q/ C 2r in H as defined in

Definition 7.

In particular, the leading order term of Wgd .p; q/ is given by

Wgd .p; q/ � m0.p; q/.�1/kCjp_qjd �L.p;q/ ¤ 0 .jd j ! 1/:

Corollary 4.5. The number mr .p; q/ of paths of length L.p; q/C2r from a vertex

.p; q/ to .;; ;/ in any Weingarten subgraph H � G is independent of the choice

of H.

Proof. This is an immediate consequence of the uniqueness of the coefficients of

a Laurent series expansion for an analytic function on an annulus. �

Example 3. As an illustration of Theorem 4.4, let us compute Wgd .p; q/, where

p D ¹1; 4º¹2; 3º¹5; 6º, q D ¹1; 6º¹2; 5º¹3; 4º 2 NC2.6/. Using downward

(resp. upward) facing arches to depict the pairs of p (resp q) in the interval

¹1; 2; : : : ; 6º D Œ6�, we can graphically represent the pair .p; q/ with the following

arch diagram.

(15)
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To compute Wgd .p; q/, we choose a Weingarten subraph H � G and draw the

component of H that is relevant to the pair .p; q/ we started with. In this example,

we make the following choice for this component of H (here the blue arrows

indicate the directed edges that appear and the white nodes connected by a starred

arch indicate the choice of interval for the Weingarten orthogonality relation taken

in forming H):

.p; q/ ? ? ?

?

?

? .;; ;/

(16)

From the graph (16), we immediately see that L.p; q/ D 5 and there is only

one path from .p; q/ to .;; ;/ with this length. Moreover, any path of length

L.p; q/ C 2r from .p; q/ to .;; ;/ corresponds to a choice of 0 � s � r loops to

traverse within the NC2.6/�NC2.6/-component of H, followed by r �s traversals

of the single loop in the NC2.4/�NC2.4/-component of H. Counting the number

of such distinct choices easily gives

mr .p; q/ D

r
X

sD0

2s D 2rC1 � 1 .r � 0/;

and consequently, we get

Wgd .p; q/ D .�1/jp_qjCk
X

r�0

mr .p; q/d �L.p;q/�2r D
X

r�0

.2rC1 � 1/d �5�2r

Remark 9. At this point the reader may object to the fact that in Example 3,

we did not explain why the graph (16) is indeed a (component of a) Weingarten

subgraph H. In particular condition .H2/ for H has not been explicitly verified.
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In this particular example it is easy to verify this by hand. Remarkably however,

it turns out to follow from the proof of Theorem 4.4 that condition .H2/ does

not need to be verified. Indeed, in Section 4.4 we shall see that any subgraph

H0 � G constructed according to the rules defining a Weingarten subgraph without

insisting on condition .H2/ turns out to automatically satisfy condition .H2/

anyway. In particular, H0 is automatically a Weingarten subgraph. This shows that

one has considerable ease and flexibility in constructing Weingarten subgraphs.

Before giving the proof of Theorem 4.4, we first present our main application

of this result, stating that the coefficients of any element of the dual basis associ-

ated to the Temperley–Lieb diagram basis TLk.d/ is non-zero.

Theorem 4.6. Let yDp 2 TLk.d/ be the basis element dual to the Temperley–

Lieb diagram Dp, with p 2 NC2.2k/ and loop parameter d . Then every co-

efficient of yDp in the Dq-basis expansion is generically non-zero, in the sense

that Wgd .p; q/ D 0 for at most finitely many d 2 C. More precisely, we have

Wgd .p; q/ ¤ 0 when

d 2 Rn
h

� 2 cos
� �

k C 1

�

; 2 cos
� �

k C 1

�i

or jd j is sufficiently large:

Proof. If d 2 Rn
�

� 2 cos
�

�
kC1

�

; 2 cos
�

�
kC1

��

, then Theorem 4.4 implies that

j Wgd .p; q/j D
X

r�0

mr .p; q/jd j�L.p;q/�2r > 0 since m0.p; q/ ¤ 0:

For the case of jd j ! 1, Theorem 4.4 gives the asymptotic

Wgd .p; q/ � m0.p; q/.�1/kCjp_qjd �L.p;q/ ¤ 0;

and we are done. �

We now present the proof of Theorem 4.4.

Proof of Theorem 4.4. To begin with, we note that for any k 2 N0 and any

p; q 2 NC2.2k/, the function d 7! Wgd .p; q/ is a rational function in the variable

d 2 C. In fact, the determinant of the Gram matrix Gd is well-known (see for

example in [15, Theorem 1]), and it follows from that result and the definition of

the matrix inverse in terms of cofactors that the poles of Wgd .p; q/ always lie in

the interval
�

� 2 cos
�

�
kC1

�

; 2 cos
�

�
kC1

��

. As a consequence, the rational function

d 7! Wgd .p; q/ is analytic on the annulus A D
®

d 2 CW jd j > 2 cos
�

�
kC1

�¯

and

has an absolutely convergent Laurent series expansion there.
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To determine this Laurent series, we recall from elementary complex vari-

able theory that it suffices to determine the evaluation of the Laurent series for

Wgd .p; q/ along a sequence of points in A tending to infinity. For our purposes,

it will be convenient to take the sequence of points ¹d 2 NW d � k C 1º, whenever

.p; q/ 2 NC2.2k/2.

Notation 2. In order to simplify some notation, we will work with the following

re-signed Weingarten functions

eWgd .p; q/ WD .�1/kCjp_qj Wgd .p; q/:

Let us now fix once and for all a Weingarten subgraph H � G, k � 1,

p; q 2 NC2.2k/ and d 2 N with d � k C 1. Consider the distinguished

Weingarten orthogonality relation (13) associated to .p; q/ by H. Multiplying

that equation by .�1/kCjp_qjd �1 and rearranging terms, we obtain the following

equivalent equation (with the help of Proposition 4.2):

eWgd .p; q/ D d �1
X

..p;q/;.p1 ;q1//2EH

eWgd .p1; q1/: (17)

We note that the number of terms appearing in (17) is at most k. (This follows

from the fact any z 2 NC2.2k/ can have at most k � 1 non-crossing neighbors

associated to a fixed interval ¹t; t C 1º 2 z. In particular, the degree any vertex

.p; q/ 2 VH is at most k). Note also that for each .p1; q1/ appearing in (17),

we have L.p1; q1/ D L.p; q/ ˙ 1 with at least one vertex .p1; q1/ satisfying

L.p1; q1/ D L.p; q/ � 1.

We now repeatedly apply equation (17) to each term on the right hand side of

(17). In particular, after 1 � s < L.p; q/ iterations, equation (17) gets transformed

into the equation

eWgd .p; q/ D d �s
X

..ps�1;qs�1/;.ps ;qs//2EH

eWgd .ps ; qs/; (18)

where the edges ..ps�1; qs�1/; .ps; qs// 2 EH appearing above correspond to

all the paths .p; q/.p1; q1/ : : : .ps�1; qs�1/.ps; qs/ of length s in H with ini-

tial point .p; q/ that arise from the edge choices made in defining H. Note

that when s D L.p; q/, this will be the first time that we will produce a

path .p; q/.p1; q1/ : : : .ps�1; qs�1/.ps; qs/ in H of length L.p; q/ with endpoint

.ps ; qs/ D .;; ;/. Recalling that m0.p; q/ 2 N denotes the number of such paths

in H, we can equivalently write (18) as

eWgd .p; q/ D m0.p; q/d �L.p;q/ C d �L.p;q/
X

..ps�1 ;qs�1/;.ps ;qs//2EH

.ps ;qs/¤.;;;/

eWgd .ps; qs/; (19)
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Continuing to apply (17) to the remaining eWgd terms on the right hand side, we

inductively obtain the following general formula after s D L.p; q/C2N iterations

(with N 2 N0).

eWgd .p; q/ D

N
X

rD0

mr .p; q/d �L.p;q/�2r C d �L.p;q/�2N
X

..ps�1;qs�1/;.ps ;qs//2EH

.ps ;qs/¤.;;;/

eWgd .ps; qs/; (20)

where mr .p; q/ 2 N0 is the number of directed paths of length L.p; q/ C 2r

from .p; q/ to .;; ;/ contained in H. Note in particular that no paths of length

L.p; q/ C 2r C 1 exist from .p; q/ to .;; ;/, thanks to Corollary 4.3.

From equation (20), it follows that we obtain the desired formula

eWgd .p; q/ D

1
X

rD0

mr .p; q/d �L.p;q/�2r .d � k C 1/;

provided we can show that

lim
N !1

d �L.p;q/�2N
ˇ

ˇ

ˇ

X

..ps�1;qs�1/;.ps ;qs//2EH

.ps ;qs/¤.;;;/

eWgd .ps ; qs/
ˇ

ˇ

ˇ
D 0:

To this end, note that after s D L.p; q/ C 2N iterations there are at most ks terms

being summed in the above remainder term. Moreover, the set ¹eWgd .ps ; qs/º

of numbers being summed is uniformly bounded in s, since the qs; ps that give

rise to these terms are constrained to live in
S

0�j �k NC2.2j /. Thus the Hölder

inequality gives

d �L.p;q/�2N
ˇ

ˇ

ˇ

X

..ps�1;qs�1/;.ps ;qs//2EH

.ps ;qs/¤.;;;/

eWgd .ps; qs/
ˇ

ˇ

ˇ �
� k

d

�L.p;q/C2N

sup
.ps ;qs/¤.;;;/

jeWgd .ps ; qs/j �! 0;

completing the proof. �

Remark 10. The idea of counting paths as it is done in the proof of Theorem 4.4

is also heavily used in subfactor theory, for example for the computation of

dimensions of relative commutants. See for example [17, 19]. We are not able

at this point to interpret the numbers mr .p; q/ that we introduce as the dimension

of an object of something alike, but it is natural to speculate that there is one such

interpretation.
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Our graphs are different from principal graphs of subfactors because they are

oriented, but we believe that there is a relation that deserves further investigation.

The fact that the choice of the Weingarten subgraph does not affect the compu-

tation of the Weingarten function possibly hints at the fact that there is a “type”

of graph associated to a pair of non-crossing partitions, possibly related to known

series of principal graphs. Note also that just as for the graphs arising in subfactor

theory, there seems to be some duality present in our graphs.

4.4. On the problem of selecting a Weingarten subgraph. A natural question

that arises from the above analysis is: In practice, how does one efficiently select

a Weingarten subgraph H? In particular, condition .H2/ in the definition of a

Weingarten subgraph H � G seems to require “global information” about the

graph G in order to select orthogonality relations that produce edges that decrease

the distance from a vertex .p; q/ to .;; ;/. The following proposition asserts

the highly non-obvious fact that condition .H2/ essentially “comes for free” in

the construction of a Weingarten subgraph H. This has profound applications

for the practical implementation of Theorem 4.4, since it implies that H can be

constructed from purely local information about vertices.

Proposition 4.7. Let .p; q/ ¤ .;; ;/ be a vertex in the Weingarten graph G.

For any choice of Weingarten orthogonality relation of the form (8) and (9) at

.p; q/, the resulting collection of edges ¹..p; q/; .p1; q1//º � EG associated to

this relation contains at least one element ..p; q/; .p1; q1// satisfying

L.p1; q1/ D L.p; q/ � 1:

In particular, in the process of selecting a Weingarten graph H � G, condition

.H2/ is automatically satisfied for any choice of Weingarten orthogonality rela-

tion.

Proof. Suppose, to get a contradiction, that there exists a .p; q/ ¤ .;; ;/ and a

Weingarten orthogonaliy relation at .p; q/ such that L.p1; q1/ D L.p; q/ C 1 for

all the resulting edges ..p; q/; .p1; q1// associated to this relation. Consider the

(positive) quantity eWgd .p; q/ defined in the proof of Theorem 4.4. On the one

hand, Theorem 4.4 gives

eWgd .p; q/ D
X

r�0

mr .p; q/d �L.p;q/�2r D m0.p; q/d �L.p;q/ C O.d �L.p;q/�2/:

(21)
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On the other hand, repeating the argument in the proof of that theorem, we can

equally write
eWgd .p; q/ D

X

eWgd .p1; q1/;

where the above sum runs over all edges ..p; q/; .p1; q1// 2 EG that are associated

to our chosen orthogonality relation. Applying Theorem 4.4 again to the terms on

the right side of the above, we get

eWgd .p; q/ D
X

r�0

X

.p1;q1/

mr .p1; q1/d �L.p1;q1/�2r

D
�

X

.p1;q1/

mr .p1; q1/
�

d �L.p;q/�1 C O.d �L.p;q/�3/:

(22)

Clearly the asymptotics (21) and (22) contradict each other, completing the proof.

�

We now conclude the paper by discussing applications of our results to the

asymptotic theory of the free orthogonal Weingarten functions.

4.5. Optimal Weingarten estimates. As mentioned in the introduction, the

problem of computing the large d asymptotics of the Weingarten function has

recieved a lot of attention in recent years in the context of distributional symme-

tries in free probability. Of particular interest there is the problem of identifying

the leading non-zero coefficient in the Laurent expansion of Wgd .p; q/ centered

at the origin (provided such a coefficient exists). Partial results along these have

been obtained previously, and are usually given the term Weingarten estimates.

See for example [4, 7, 13]. It is important to note, however, that Theorem 4.4 pro-

vides the first complete answer to this problem by showing that such a non-zero

coefficient must always exist and by describing the degree of the leading term in

Wgd .p; q/ by way of graph theoretical data. More precisely, the results of [7] give

Weingarten estimates of the form

Wgd .p; q/ D

´

O.d �2kCjp_qj/; p ¤ q;

d �k C O.d �k�2/; p D q
.d ! 1/;

while in Theorem 4.6 of [13], a sharper result is obtained which obtains the leading

non-zero coefficient in the Laurent series expansion of Wgd .p; q/ precisely when

a certain Moebius function they introduce on NC2.2k/ � NC2.2k/ is non-zero at

.p; q/. Unfortunately these prior results are far from covering all values. Let us

conclude by presenting a simple example to illustrate this.
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Example 4. Let k D 4,

p D ¹1; 6º¹2; 5º¹3; 4º¹7; 8º; and q D ¹1; 2º¹3; 8º¹4; 7º¹5; 6º:

Using arch diagrams as in Example 3, we can depict the pair .p; q/ as follows:

(23)

Evidently jp _ qj D 2, and it easily follows that the results of [7, 13] yield a

Weingarten asymptotic of the form

Wgd .p; q/ D O.d �2kCjp_qj/ D O.d �6/:

But in fact the leading order of Wgd .p; q/ turns out to be much smaller in this

example. Using the notation of Theorem 4.4, one actually has m0.p; q/ D 1,

L.p; q/ D 8, and therefore

Wgd .p; q/ D d �8 C O.d �10/:

To see why this is the case, we proceed as in Example 3 by choosing a Weingarten

subraph H and drawing the component of H relevant to .p; q/. The following

picture depicts such a component (where as before the blue arrows indicate the

directed edges that appear and the white nodes connected by a starred arch indicate

the choice of interval for the Weingarten orthogonality relation in forming H).

?.p; q/ ? ? ? � � �

? ? ?

?

?

? .;; ;/

(24)

In the above picture, the dots on the top right corner indicate further vertices of

H that lie in NC2.8/ � NC2.8/ that we have ommitted. We are not concerned

with these other vertices because they are not relevant for the computation of the
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leading order data L.p; q/ or m0.p; q/ (they give rise to paths strictly longer than

the single shortest path from .p; q/ to .;; ;/ of length 8). We thus conclude from

inspection of this graph that m0.p; q/ D 1 and L.p; q/ D 8.
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