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Abstract. For every oriented surface of finite type, we construct a functorial Khovanov
homology for links in a thickening of the surface, which takes values in a categorification
of the corresponding gl2 skein module. The latter is a mild refinement of the Kauffman
bracket skein algebra, and its categorification is constructed using a category of gl2 foams
that admits an interesting non-negative grading. We expect that the natural algebra structure
on the gl2 skein module can be categorified by a tensor product that makes the surface link
homology functor monoidal. We construct a candidate bifunctor on the target category and
conjecture that it extends to a monoidal structure. This would give rise to a canonical basis
of the associated gl2 skein algebra and verify an analogue of a positivity conjecture of Fock
and Goncharov and Thurston. We provide evidence towards the monoidality conjecture by
checking several instances of a categorified Frohman–Gelca formula for the skein algebra
of the torus. Finally, we recover a variant of the Asaeda–Przytycki–Sikora surface link
homologies and prove that surface embeddings give rise to spectral sequences between
them.
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1. Introduction

After Khovanov’s categorification of the Jones polynomial [23], one of the most
intriguing problems in categorification and quantum topology has been to extend
Khovanov homology to 3-manifolds other than R3. Since there is already more than
one way to extend the Jones polynomial to an invariant of 3-manifolds, we can also
see different approaches to extending Khovanov homology, each posing different
technical challenges and uncovering interesting higher representation-theoretic
structure. For example, an extension along the lines of the Witten–Reshetikhin–
Turaev construction of 3-manifold invariants has to make sense of categorifying
the quantum parameter q at a root of unity, e.g. via (K)hopfological algebra [28].
Another extension in the form of a .4C �/-dimensional TQFT has been outlined
by Morrison and Walker using the technology of disk-like 4-categories [36].

The alternative approach that we follow in the present article seeks to cate-
gorify skein modules of 3-manifolds as introduced by Conway, Przytycki [38] and
Turaev [54]. Skein modules are constructed as abelian groups spanned by links
embedded in the 3-manifold, modulo local relations determined by the Jones poly-
nomial. They can be seen as quantizations of character varieties, see Bullock [9],
and have deep relations to quantum Teichmüller theory and cluster algebras, see
Bonahon and Wong [7, 8], Thurston [52], and references therein. Since skein
modules of 3-manifolds can be disassembled along Heegaard splittings, the focus
of this paper will be on categorifying the skein modules of thickened Heegaard
surfaces.

1.1. Link homology on surfaces. Khovanov homology and related functorial
invariants of links in R3 are usually defined and computed via link diagrams1
and thus depend on a direction of projection, or alternatively, the identification

1 A notable exception being Witten’s approach [59].
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of the ambient manifold R3 with a thickening of R2. Conversely, many features
of the definition of Khovanov homology directly carry over to the case of other
thickened surfaces, and related link invariants have been defined and studied by
Asaeda, Przytycki, and Sikora [2], Turaev and Turner [55], Boerner [6], and others.

The purpose of this article is to develop these constructions into honest
functorial invariants of links in thickened surfaces and smooth cobordism between
them, which take values in target categories that categorify skein modules, and
which have desirable gluing properties that we expect to be useful in defining
categorical 3-manifold invariants. Our first result is the following.

Theorem 1.1. Let S be an oriented surface of finite type (the result of removing
a finite set of points from an oriented compact surface) and let SLink denote the
category with objects given by links embedded in S� Œ0; 1� and morphisms given by
oriented link cobordisms, properly embedded in S � Œ0; 1�2, up to isotopy relative
to the boundary. Then there exists a functor

SKhWSLink �! K.SFoam/;

where the target is the bounded homotopy category of chain complexes in the
additive H1.S/ � Z-graded category SFoam of gl2 webs and foams in S, whose
Grothendieck group is isomorphic to the gl2 skein module SWebq of S. Moreover,
SKh categorifies the evaluation of links from SLink in SWebq .

The main challenge in constructing the functors SKh is in setting up and under-
standing an appropriate target category. We use Blanchet’s foams [5] to construct
the category SFoam in Section 3 and the definition of the functors SKh in Section 4
then follows a well-known recipe involving cubes of resolutions built from local
pieces associated to crossings, and maps induced by link cobordisms computed via
movie presentations (analogues for higher rank Khovanov–Rozansky homologies
can be constructed from results in Ehrig, Tubbenhauer, and Wedrich [16]). The use
of foams instead of, for example, Khovanov’s or Bar-Natan’s cobordisms [23, 3]
in this construction enables properly (i.e. not just projectively) functorial link
invariants. The target K.SFoam/ categorifies the gl2 skein module SWebq of S,
which is spanned by gl2 webs drawn on S modulo certain relations. This skein
module is closely related, but finer than the Kauffman bracket skein module in the
sense that it has an H1.S/-grading instead of just an H1.S;Z=2Z/-grading. We
will define and investigate these skein modules in Section 2. We also prove the
following properties of SKh.

Proposition 1.2. The surface link homologies from Theorem 1.1 satisfy the
following properties.
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� The invariant SKh.L/ of an oriented link L, representing the homology class
ŒL� 2 H1.S � Œ0; 1�/ Š H1.S/, is supported in the H1.S/-degree ŒL� part of
K.SFoam/.

� A link cobordism of Euler characteristic k induces a homogeneous morphism
of Z-degree �k in K.SFoam/, which only depends on the isotopy class of the
cobordism.

� SKh intertwines the natural actions of DiffC.S/ on SLink and K.SFoam/.

� The assignment S 7! SKh is functorial under orientation preserving embed-
dings of surfaces.

While these properties suggest that the functors SKh are very natural objects,
a disadvantage is that their target categories K.SFoam/ are relatively large and
unwieldy. In the search for more manageable algebraic link homology functors,
we take a closer look at the foam categories SFoam in Section 3. An important
observation is that their Z-grading naturally splits into two, one of which is non-
negative.

Theorem 1.3. The category SFoam is H1.S/ � Z�0 � Z-graded, provided S is
not the sphere S2.

As a consequence, there exists a truncation functor SFoam! SFoam0, which
projects on the degree zero component of the non-negative grading. The category
SFoam0 is related (when working over Z=2Z) to a quotient of Bar-Natan’s dotted
cobordism category [3] over the surface S, which Boerner [6] used to describe
the Asaeda–Przytycki–Sikora invariants. Our invariants SKh, in contrast, also
make sense in the untruncated setting, and the action of the truncation functor
uncovers interesting additional structure. Evidence for this is found in the case
of the annulus S D A, where an analogous truncation functor gives rise to a
spectral sequence between the annular Khovanov homology of [2] and the ordinary
Khovanov homology in the thickened plane R2, see Roberts [48]. Moreover, the
annular Khovanov homology has recently been shown by Grigsby, Licata, and
Wehrli [19] to carry an action by the exterior current algebra for sl2, which uses the
positive degree parts with respect to the non-negative grading. In another direction,
Beliakova, Putyra, and Wehrli [4] have constructed a quantized annular Khovanov
homology with an action of Uq.sl2/. Extensions of both types of actions to the
general surface case are intriguing open problems for further research.

In order to define an algebraic version of SKh, we use the following.
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Proposition 1.4. The Karoubi envelope of the truncation SFoam0 is semisimple
for S ¤ T;S2.

Moreover, the simple objects are indexed by pairs of an integer lamination and
a first homology class on S, or alternatively by a standard basis element of the gl2
skein module SWebq , which we define in Section 2.

In Section 5.2, we define an algebraic link homology SKh0 by composing the
functor SKh with functors induced by the degree zero truncation and the embedding
in the Karoubi envelope, and then a representable functor.

Theorem 1.5. There exists a surface link homology functor SKh0 with values in the
category of vector spaces graded by ¹integer laminations on Sº �H1.S/ � Z � Z.

The functor SKh0 factors through SKh by construction, and both functors
categorify the evaluation of links in the skein module SWebq . In Section 5.2
we also sketch the construction of an alternative algebraic surface link homology
SAPS, which agrees with the Asaeda–Przytycki–Sikora invariants when defined
over Z=2Z, but which depends (when defined over Q or Z) on the conjectural
functoriality of Khovanov homology under foams.

Theorem 1.6 (assuming Conjecture 4.8 or with Z=2Z-coefficients). There exists a
surface link homology functor SAPS with values in the category of vector spaces
graded by Z¹essential simple closed curves on Sº �H1.S/ � Z � Z. Moreover, if
�WS! S0 is an embedding of surfaces and L is a link in S� Œ0; 1�, then there exists
a spectral sequence:

SAPS.L/ S0APS.�.L//:

These spectral sequences generalize the well-known spectral sequence between
the annular and the ordinary Khovanov homology, see Roberts [48] and further
Grigsby, Licata, and Wehrli [19] and Hubbard and Saltz [20].

1.2. Skein algebra categorification. The key feature that makes skein modules
of thickened (Heegaard) surfaces useful for the description of skein modules of
3-manifolds is that they inherit a natural algebra structure from the operation
of gluing two copies of the thickened surface along the thickening direction.2
Further 2- and 3-handle attachments to the thickened surface then correspond to

2 This algebra structure was used in the pioneering work of Przytycki [38] and Turaev [54],
and it has since been studied in numerous publications, see e.g. Przytycki and Sikora [40] and
references therein.
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taking quotients by certain ideals with respect to this multiplication. This gives
presentations of the skein modules of all closed orientable 3-manifolds. Finding a
categorification of the skein algebra multiplication is thus a natural problem, which
is open except in simple cases.

Example 1.7. Let S be either R2 or A, then the Khovanov functor SKh is monoidal
and the tensor product on the target category decategorifies to the skein algebra
multiplication in SWebq .

These cases are very special since the monoidal structure on SLink can be
understood as disjoint union and it is well known that the (annular) Khovanov
homology of a disjoint union of links is isomorphic to the tensor product of the
invariants of the component links. Moreover, in these special cases, the Khovanov
functors are actually braided and pivotal.

For other surfaces we conjecture that the functors from Theorem 1.1 can also
be made monoidal, possibly after proceeding to a slightly different target category.

Conjecture 1.8. For every oriented surface of finite type S, there exists a monoidal
functor

SMKh D SM ı SKhWSLink �! K.SFoam/ �! SC

which categorifies the evaluation of links in the gl2 skein module of S. More pre-
cisely, we require that the monoidal target dg category SC isH1.S/ � Z � Z-graded
(the second Z-factor corresponds to the homological grading, the first one to pow-
ers of q) and carries an action of DiffC.S/ that is intertwined by SMKh with the
natural action on SLink. Further, there is an isomorphism K0.SC/ Š SWebq of
H1.S/-graded unital ZŒq˙1�-algebras and DiffC.S/-representations that sends the
class ŒSMKh.L/� of a link L to its skein algebra evaluation. This would give a
categorification of the skein algebra SWebq in the sense of [45, Definition 2].

Our main reason for expecting that K.SFoam/ is not an ideal target category
for a monoidal Khovanov functor is that it seems impossible to directly define the
putative tensor product. To illustrate this, note that the Khovanov functor sends
crossingless links in S essentially to themselves, considered as a chain complex
of a single web, concentrated in homological degree zero. The tensor product of
such objects of K.SFoam/ should, thus, be computed, by lifting these elements
against the Khovanov functor to actual links, where they can be superposed in
SLink, and the tensor product is then given by the image of the superposition
under the Khovanov functor. Under an additional assumption on the functoriality
of the Khovanov functors under foams, this process actually extends to a bifunctor
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SFoam � SFoam ! K.SFoam/, see Proposition 5.3. However, this bifunctor
sends pairs of foams to chain maps, which are well defined only up to homotopy.
It is then unclear how to extend this bifunctor to chain complexes in SFoam, or
to the homotopy category. Indeed, the differentials of the chain complexes in the
two arguments would specify components of the differential of the product chain
complex only up to homotopy. The product would, at best, be determined only up
to isomorphism, which is not sufficient.

This problem suggests to replace K.SFoam/ by a target category SC with
more rigid morphism spaces, in which homotopic chain maps are actually forced
to become equal. A natural candidate for such a replacement is given by the
functor K.SFoam/ ! K.Kar.SFoam0// induced by the degree zero truncation
and the embedding of a category into its Karoubi envelope. By Proposition 1.4
Kar.SFoam0/ is semisimple for S ¤ T;S2, which implies that any chain complex
over this category retracts onto an essentially unique minimal complex with zero
differentials, and homotopic chain maps between such complexes are necessarily
equal. The category of such minimal complexes can be considered as Kar.SFoam0/

equipped with an additional homological grading, or equivalently, as a dg category
Kar.SFoam0/dg D

L
k2Z t

k Kar.SFoam0/ with trivial differential. We define the
ı-grading on objects in Kar.SFoam0/dg as the difference of the q-grading and
the homological grading. It seems possible that Kar.SFoam0/dg could serve as a
target category for a monoidal link homology functor as in Conjecture 1.8.

Questions 1.9. Does the bifunctor �WSFoam � SFoam ! K.SFoam/ induce a
monoidal structure on Kar.SFoam0/dg for S ¤ T;S2? If so, does the tensor
product � respect the parity of the ı-grading in the sense that degı.A � B/ D
degı.A/C degı.B/ in Z=2Z?

The relevance of the second question will soon become clear.

1.3. Positivity in skein algebras. A central motivation for Conjecture 1.8 and
an important hint about the structure of the putative monoidal target category SC
come from positivity phenomena in skein algebras. More specifically, a conjecture
of Fock and Goncharov [17, Conjecture 12.4], reformulated by Thurston [52,
Conjecture 4.20], claims that a particular basis S BT of the gl2 skein algebra
SWebq , which we define in Section 2, has positive structure constants.

Conjecture 1.10. For every oriented surface S of finite type, the products of
elements of S BT in the skein algebra SWebq are NŒ�q˙1�-linear combinations of
elements of S BT .
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A key observation is that the positivity property expressed in Conjecture 1.10
for a surface S would be a natural consequence of successful categorification of the
skein algebra SWebq as in Conjecture 1.8, provided that the tensor product respects
the parity of the ı-grading, i.e. the difference of the q-grading and the homological
grading on SC. A positive basis could then arise as the decategorification of the
set of isomorphism classes of indecomposable objects in SC. Conversely, this
observation feeds the expectation that the putative target category SC should contain
precisely such indecomposable objects, which might be useful for constructing SC.

The elements of the basis S BT of SWebq can be understood as skein algebra
products of Chebyshev polynomials3 of the first kind Tn, evaluated on essential
simple closed curves on S. The Tn 2 ZŒX� are defined by the recursion TnC1 D
XTn�Tn�1 for n � 3with initial conditions T2 D X2�2, T1 D X and T0 D 1. We
have argued in [45, 46] that Tn.c/ for a simple closed curve c should be interpreted
as the curve c colored by the extremal weight spaces Symn

ext.V / in the Uq.gl2/-
representation Symn.V /, where V denotes the vector representation. The more
familiar colorings by Symn.V /, which feature in the definition of the colored
Jones polynomials, can be realized by using Chebyshev polynomials of the second
kind Sn instead. These satisfy the same recurrence, but with initial conditions
S2 D X2 � 1, S1 D X and S0 D 1. In general, any basis for the Z-module ZŒX�
will give rise to an associated basis of SWebq . In the following table, we collect
the three bases that we will use in this article:

SWebq basis ZŒX� basis color categorification strategy
S B Xn V˝n standard Khovanov homology

S BS Sn Symn.V / colored Khovanov homology
S BT Tn Symnext.V / toric colored Khovanov homology

The basis changes from S B to S BS and further onward to S BT are triangular and
positive, which follows from the analogous result for polynomial bases. In the
table, we have also indicated the strategies that can be used to categorify the skein
module basis elements. To warm up, we will describe this process in the case
of the basis S BS , whose elements can be considered as symmetrically colored,
crossingless links in S whose components are pairwise non-isotopic (actually, in
the skein module SWebq , such elements also appear with additional 2-labeled
edges, but we ignore this feature for now). In [26], Khovanov has proposed several
ways of making sense of symmetrically colored links in the framework of Khovanov
homology. These proposals extend to the case of links in thickened surfaces, and
for crossingless link diagrams and ground ring Q it is easy to see that the different
proposals agree.

3 More accurately, since we consider gl2 rather than sl2 skein algebras, we should replace
Chebyshev polynomials by power-sum symmetric polynomials in two variables. We intentionally
blur this distinction in the introduction.
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Let c be an oriented simple closed curve S, which we may also consider as an
object in SFoam. The Symn.V /-colored version of c is defined as an object of
Kar.SFoam/, i.e. an idempotent morphism in SFoam. To describe this idempotent,
consider the multi-curve cn consisting of n parallel copies of c. By virtue of
the functoriality of Khovanov homology, there exists a homomorphism from the
braid group Bn to EndSFoam.c

n/, which takes braids to cobordisms that braid the
components of cn around each other. A simple computation using Reidemeister II
chain maps shows that this homomorphism induces a homomorphism Sn !
EndSFoam.c

n/. The idempotent representing Symn.V /-colored version of c is now
defined to be the image of the symmetric Young symmetrizer in CSn. Alternatively,
a linear combination of foams representing this idempotent can also be described as
rotation foam generated by the gl2 version of the n-th Jones–Wenzl projector. This
uses the fact that rotation foams satisfy the same relations as their web sections,
interpreted as morphisms in a web category at q D 1, see Queffelec and Rose [42]
and Queffelec, Rose, and Sartori [43].

Example 1.11. We illustrate the idempotent representing a Sym2.V /-colored
curve, first as the cobordism version of the second Young symmetrizer 1Cs

2
2 CS2

(embedded in the thickened annulus times a time interval), and then as a linear
combination of rotation foams generated by the second Jones–Wenzl projector for
gl2 (in the thickened annulus).

Sym2 D Im
 
1

2
C 1

2

!

D Im
 

�1
2

!
Using rotation foams generated by higher order Jones–Wenzl projectors for gl2,

we construct categorifications of all elements of the basis S BS , and it is easy to see
that the image of every object of SFoam under the embedding in Kar.SFoam/ is
isomorphic to a direct sum of shifts of such categorified elements of S BS . Moreover,
if S ¤ T, these objects of Kar.SFoam/ have no non-trivial endomorphisms or
morphisms to other objects in degree zero, which implies Proposition 1.4, i.e. that
the category Kar.SFoam0/ is semisimple, and that it decategorifies to SWebq .
This suggests that a tensor product on Kar.SFoam0/dg that is compatible with
a monoidal surface link homology functor SMKh as in Conjecture 1.8 and that
respects the parity of the ı-degree would require an affirmative answer to the
following question.
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Question 1.12. Is the basis S BS positive, i.e. does it have structure constants in
NŒ�q˙1�, for S ¤ T?

Thurston conjectures that this is true in the analogous framework of unquantized
Kauffman bracket skein algebras whenever S has free fundamental group, i.e. at
least one puncture or boundary component, [52, Conjecture 4.19]. However, to the
best of our knowledge, no counterexample is known among the closed orientable
surfaces of genus greater than one. In any case, the basis S BS passes the basic test
that it admits a positive change of basis to S BT , which is a necessary condition
for positivity according to Lê [33, Theorem 1.2].

It is easy to see that for the torus the basis T BS is not positive. Frohman
and Gelca [18] showed that one should instead consider the finer basis T BT
modeled on the Chebyshev polynomials of the first kind, which are harder to
categorify. Fortunately, the morphism spaces in the category TFoam are controlled
by S1-equivariant foams, i.e. foams obtained by rotating an annular gl2 web along
a slope in T. This allows us to use rotation foams generated by the extremal weight
projectors, which we have introduced in [45, 46], to categorify the basis elements
in T BT . We describe this process and related peculiarities of the torus case in the
next section.

1.4. Toric link homology and a categorified Frohman–Gelca formula. Asso-
ciated with every foam F in a thickened surface S � Œ0; 1� is a properly embedded
compact surface c.F / � S � Œ0; 1�, not necessarily connected or orientable. The
Z-degree of F as a morphism in SFoam is given by 2d � �.c.F // where d is the
number of certain decorations, called dots, on F .

As far as surface link homologies SKh and foam categories SFoam are
concerned, the cases S D T and S D S2 are special because their thickenings
contain boundary-parallel incompressible closed surfaces of non-negative Euler
characteristic. As a consequence, the endomorphism algebra of the empty web ;
is of infinite rank in degree zero in TFoam, and it even contains negative-degree
endomorphisms in S2Foam.

In order to define a more manageable foam category for the torus, we define a
quotient TFoamess of TFoam, in which foams F with boundary-parallel tori in
c.F / are set to zero (while compressible tori still evaluate, as usual, to ˙2). The
category TFoamess has full slope subcategories, see Definition 6.8, in which all
morphisms are linear combinations of rotation foams generated by affine gl2 webs,
where rotation is performed along a chosen slope on the torus. Each of these slope
subcategories is isomorphic to a quotient AWebess of the category of affine gl2
webs at q D 1. The defining quotient map takes essential circles in the annulus to
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zero and precisely corresponds to the quotient map from TFoam to TFoamess that
kills the boundary-parallel essential torus.

We introduced the affine web category AWebess in [46] (denoted 2AWebess

there, to set it apart from its cousins for glN ) and proved that it gives rise to a
presentation of the representation category of the Cartan subalgebra h � gl2.
In particular, AWebess contains idempotent morphisms which correspond to the
projections of the extremal weight spaces in the gl2-representation Symn.V /. We
call them extremal weight projectors and show that they categorify the Chebyshev
polynomials of the first kind in the same sense as the Jones–Wenzl projectors
categorify the Chebyshev polynomials of the second kind.4

Example 1.13. The second Jones–Wenzl projector and the second extremal weight
projector for gl2 in comparison:

� 1
2

; �
�

� 1
2 �

�
� 1
2 �

�
In Section 6 we use the gl2 extremal weight projectors in AWebess and rotation

foams generated by them to prove the following theorem.

Theorem 1.14. The category TFoamess contains idempotent morphisms, which
generate a skeleton of the semisimple Karoubi envelope Kar.TFoamess

0 /, and which
then decategorify to the elements of the positive basis T BT of TWebq .

We conjecture that a homologically graded version Kar.TFoamess
0 /dg of this

category is a suitable target category for a monoidal toric Khovanov homology
functor. Assuming functoriality of Khovanov homology under foams, we construct
a bifunctor � on this category and conjecture that it extends to a monoidal structure
that is compatible with the toric link homology. We provide evidence for this
conjecture by evaluating the bifunctor on certain categorified basis elements.
Assuming the previous conjectures about functoriality of Khovanov homology
and the extension to a monoidal structure, these computations also prove that the
products of categorified Frohman–Gelca basis elements decompose along the gl2
version of the Frohman–Gelca product-to-sum formula from [18]:

.m; n/T � .r; s/T D .mC r; nC s/T C .m � r; n � s/T � ^.r;s/

in TWebq .

4 More accurately, the gl2 extremal weight projectors categorify power-sum symmetric poly-
nomials in two variables, while the gl2 Jones–Wenzl projectors categorify complete symmetric
polynomials. Chebyshev polynomials appear for sl2 instead of gl2.
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Conjecture 1.15. The bifunctor � extends to a monoidal structure on the category
Kar.TFoamess

0 /dg, giving a categorification of the skein algebra TWebq as in
Conjecture 1.8. Moreover, the categorified Frohman–Gelca basis elements tensor
as follows:

.m; n/FT � .r; s/FT Š .mC r; nC s/FT ˚ .m � r; n � s/FT � ^.r;s/ (1)

If the first part of Conjecture 1.15 holds, then the categorified Frohman–Gelca
formula (1) can be proved by induction from a small number of base cases, following
the same strategy as in [18]. In Section 6.4 we check these base cases and then
provide evidence towards Conjecture 1.15 by verifying an additional non-trivial
case of (1).

Acknowledgements. We would like to thank Anna Beliakova, Francis Bonahon,
Cédric Bonnafé, Ben Cooper, Eugene Gorsky, Mikhail Khovanov, Thang Lê, Tony
Licata, Gregor Masbaum, Scott Morrison, Alexandre Nicolas, Jozef Przytycki,
Jake Rasmussen, Peter Samuelson, Dylan Thurston, Daniel Tubbenhauer, and
Emmanuel Wagner for interesting discussions, and an anonymous referee for many
useful comments.

2. The gl2 skein algebras

We will use the skein theory of gl2 webs, which are generated in the planar algebra
sense by the oriented trivalent merge and split vertices between single (1-labeled)
and double (2-labeled) edges, and which satisfy the following ZŒq˙1�-linear web
relations:

D .q C q�1/; D ; D ; D ; (2)

D .q C q�1/ ; D D ; (3)

D ; D (4)

D ; D : (5)

This skein theory encodes the pivotal tensor category of representations of
Uq.gl2/ generated by the vector representation and its exterior square, see e.g. [14,
44, 53]. It is closely related to the Temperley–Lieb skein theory, which describes a
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corresponding category of representations of Uq.sl2/, in which this exterior square
is isomorphic to the trivial representation. For a gl2 web W (in a disk or some
other surface) we denote by c.W / the unoriented multi-curve obtained by erasing
all doubled edges and forgetting orientations in W . It is easy to see that c induces
a map from the gl2 skein theory to the Temperley–Lieb skein theory, since the
images of the gl2 web relations hold in the latter.

In fact, gl2 webs satisfy generalizations of the 1-labeled circle relation in (2),
which we recall from [46, Lemma 64].

Lemma 2.1. LetW be a gl2 web (in a disk or some other surface) and suppose that
c.W / contains a circle c which bounds a disk D in the complement of c.W /. Then
W D .q C q�1/V , where V is a web that agrees with W outside a neighborhood
of the disk D and with underlying curve c.V / obtained by removing the circle in
question from c.W /.

We recall the proof from [46, Lemma 64].

Proof. We only consider W in a neighborhood of the disk D bounded by c. We
will find a sequence of web relations which reduce the interaction of 2-labeled
edges with c until c can be removed via a circle relation in (2). There are three
types of interaction of c with 2-labeled edges to consider in sequence.

(1) Any 2-labeled circle contained in D can be removed using one of the relations
in (2), starting with an innermost one.

(2) Suppose there exists a 2-labeled edge in the interior of D with boundary on c.
We take an innermost such edge, i.e. one which encloses a region in the disk
with no other 2-labeled edges in the interior. Such an intersection edge can be
removed via the digon relations in (3), provided there are no 2-labeled edges
hitting the boundary of D from the outside in the relevant region. Otherwise,
jump to (3) to remove external edges first. Note that they always come in pairs
for orientation reasons.

(3) There is a pair of 2-labeled edges, hitting c from the outside D, which are
adjacent in the sense that an arc along c connects them without hitting other
2-labeled edges. Then one application of the saddle relations in (5) creates
a 2-labeled edge connecting two points on c from the outside (see the right
side of Figure 1), which can be removed as in (2).

This algorithm relates W to a web that contains c as an oriented 1-labeled circle
that can be removed via (2). �
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�!

Figure 1. Types of interaction of 2-labeled edges with a 1-labeled circle bounding a disk:
internal circles, internal and external edges.

In the following, S denotes an oriented surface of finite type, i.e. the result
of removing a finite number of points from a compact oriented 2-manifold. We
usually assume that S is connected and identify it with the quotient space obtained
from gluing the edges of a punctured planar polygon in a suitable way.

Definition 2.2. We let SWebq denote the quotient of the free ZŒq˙1�-module
generated by isotopy classes of gl2 webs embedded in S by the ideal generated by
the local relations 2–5, which we interpret as being supported in disks in S.

Link diagrams and tangled web diagrams drawn on S give elements of SWebq
by resolving crossings:

WD � q ; WD � q�1 ;

WD �q ; WD �q ;

WD �q�1 ; WD �q�1 ;

WD q2 ; WD q�2 :

(6)

Tangle web diagrams that differ by Reidemeister type II and III or fork slide moves
have the same image in SWebq . In particular, SWebq carries a well-defined
ZŒq˙1�-linear associative multiplication �, which is defined on webs W1 and W2
as the element W1 � W2 obtained by superposing W2 with W1 and resolving all
crossings. We call .SWebq;�/ the gl2 skein algebra of S.

Remark 2.3. Alternatively, SWebq can be defined as the quotient of the free
ZŒq˙1�-module generated by isotopy classes of framed, tangled gl2 webs embedded
in S � Œ0; 1�, by the relations (2)–(5) and (6). One can then also choose to either
impose these relations in every 3-ball embedded in S� Œ0; 1�, where the shown web
diagrams arise by projection onto a specified equatorial plane with an appropriate
blackboard framing, or just in balls of the form D� Œ0; 1� with D ,! S. The results
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are isomorphic via the obvious inclusions, and we will freely switch between these
descriptions.

Example 2.4. We compute the product of two simple closed curves in the toric
skein algebra TWebq:

� WD D � q :

In the following, we associate simple topological invariants to webs in S.

Definition 2.5. Let W be a web on S. The class ŒW � 2 H1.S/ is defined as the
homology class of the multi-curve xW obtained fromW by replacing each 2-labeled
edge by two parallel 1-labeled edges and smoothing out trivalent vertices in the
process.

Note that the homology class of a web as defined above is invariant under all
gl2 web relations.

Lemma 2.6. SWebq is a H1.S/-graded algebra.

Proof. Let c 2 H1.S/, then the component of SWebq of degree c is spanned by
those webs with homology class c. It is also clear from the crossing resolution
rules (6) that the grading is respected by the multiplication, i.e. ŒW1 � W2� D
ŒW1�C ŒW2�. �

Lemma 2.7. The subalgebra of 2-labeled webs in SWebq is spanned by a collection
of 2-labeled multi-curves^.x/ parametrized by x 2 H1.S/, with elements satisfying
Œ^.x/� D 2x and ^.0/ D ;. The skein algebra multiplication is given by

^.x/ � ^.y/ D q2x�y^.xCy/

where x � y denotes the intersection pairing. In particular, any element of the form
^.x/ is invertible in SWebq with inverse given by ^.�x/.

Another topological invariant of webs in S is their underlying integer lamination.

Definition 2.8. An integer lamination on S is an unordered collection ¹.Ci ; ni /º
(possibly empty) where the ni are positive integers and the Ci are disjointly
embedded and pairwise non-isotopic, unoriented simple closed curves in S. We
further require that the Ci are essential in the sense that they do not bound disks
in S. Curves that bound disks are called inessential.
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Given a web W on S and its underlying unoriented multi-curve c.W / we let
l.W / denote the integer lamination obtained from c.W / by erasing all inessential
curves and then recording one copy Ci of each isotopy class of remaining essential
simple closed curves together with the number ni of its parallel copies. A web W
is called inessential if l.W / D ;.

Note that the integer laminations associated to webs are invariant under all web
relations.

In the following, we denote by L.S/ a set of representatives of equivalence
classes of integer laminations on S up to isotopy, or equivalently, for the set of
crossingless links in S without inessential components, including the empty link.
For the laminations in the set L.S/ we choose (arbitrarily, but once and for all) an
orientation on each Ci , which we also put on its parallel copies.

Lemma 2.9. Every web W in SWebq is equal to a ZŒq˙1�-multiple of an element
of the set S B WD ¹L � ^.x/jL 2 L.S/; x 2 H1.S/º.

Proof. First of all, by Lemma 2.1 we may assume that c.W / has no inessential
components. Then c.W / D l.W / is equivalent to precisely one lamination El.W /
in L.S/, which furthermore comes with a prescribed orientation. Next we want to
writeW D El.W /�W2 for some 2-labeled multi-curveW2. Indeed, up to a power of
�q, the underlying oriented multi-curve ofW2 can be taken to be the concatenation
of all 2-labeled edges in W and all those 1-labeled edges in W which carry the
opposite orientation than the one prescribed by El . Finally, by relation (2) we may
assume that W2 has no inessential components. �

Example 2.10. We illustrate the rewriting process from the proof of Lemma 2.9
for a toric web. Here we have chosen a web which already contains no inessential
components, but which has interactions between its 1-labeled and 2-labeled edges.
Note that the two underlying 1-labeled edges are parallel and their desired consistent
orientations can only be achieved by having a compensating horizontal wrapping
of the 2-labeled curve:

D q2 :

Proposition 2.11. SWebq is a free ZŒq˙1�-module and S B is a basis.

We call this the standard basis.
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Proof. We have already seen that this set spans SWebq . Provided that all elements
of S B are neither ZŒq˙1�-torsion nor zero, they are linearly independent since each
element is uniquely characterized by its homology class and underlying integer
lamination. The absence of torsion and non-triviality follows via Lemmas 2.16
and 2.17 from the analogous results for the Kauffman bracket skein algebra, see
e.g. [39, Theorem 3.1] or [52, Proposition 3.8]. Alternatively, it can also be proved
directly using a Diamond Lemma argument. �

The products of elements in S B are usually quite complicated, but some easy
cases can be explicitly described. Below we give some examples.

Lemma 2.12. Let X be an oriented 1-labeled essential simple closed curve with
ŒX� D x 2 H1.S/ and denote by �X the same curve with the opposite orientation,
and by Xn D ¹.X; n/º respectively .�X/n for n 2 N their powers in the skein
algebra. Then,

Xn � ^.�nx/ D .�X/n; (7)
Xn � ^.y/ D q2nx�y ^.y/ �Xn; (8)
Xn �Xm D XmCn: (9)

In the following, we describe two alternative bases. Let ¹.Ci ; ni /º be an
element of L.S/, which we can interpret as a link on S and thus also as a
web. More precisely, we identify ¹.Ci ; ni /º with the skein algebra productQ
i C

ni
i . Then we define ¹.Ci ; ni /ºT to be the Z-linear combination of webs

obtained as the skein algebra product
Q
i Tni .Ci / where T1.Ci / D Ci , T2.Ci / D

C 2i �2^.ŒCi �/ and all higher order operations are recursively defined as TmC1.Ci / D
Tm.Ci / � Ci � Tm�1.Ci / � ^.ŒCi �/. Similarly, ¹.Ci ; ni /ºS is defined as the skein
algebra product

Q
i Sni .Ci / where S1.Ci / D Ci , S2.Ci / D C 2i �^.ŒCi �/ and higher

order operations are defined by the same recursion as the Ti .

Example 2.13. Consider the annulus A and choose an oriented 1-labeled essential
simple closed curve X with ŒX� D x 2 H1.S/. Then we have a ZŒq˙1�-linear
algebra isomorphism

AWebq Š ZŒq˙1�Œx1; x2�S2 Œ.x1x2/�1�

sending X 7! x1 C x2 and ^.x/ 7! x1x2. For a 2 N this isomorphism
sends Ta.X/ 7! xa1 C xa2 , Sa.X/ 7! xa1 C xa�11 x2 C � � � C x1xa�12 C xa2 , and
Xa 7! .x1 C x2/

a. In particular, Xa is an N-linear combination of certain
Sb.X/ � ^.xb0/ with b � a, which themselves are N-linear combinations of certain
Tc.X/ � ^.xc0/ for c � b.
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Definition 2.14. We consider the bases

S BT WD ¹LT � ^.x/ j L 2 L.S/; x 2 H1.S/º
and

S BS WD ¹LS � ^.x/ j L 2 L.S/; x 2 H1.S/º:

It is clear that S BT and S BS are bases, because they are triangularly equivalent
to S B. In fact, as in the case of the annulus, the basis changes from S BT to S BS
and further to S B are positive: every element of S B is a N-linear combination of
elements of S BS , which are further N-linear combination of elements of S BT .

2.1. Positivity conjectures. The main appeal of S BT is that it seems to have
positive structure constants in NŒ�q˙1�.

Conjecture 2.15. For every oriented surface S of finite type, the products of
elements of S BT in the skein algebra SWebq are NŒ�q˙1�-linear combinations of
elements of S BT .

We now argue that this conjecture is equivalent to an analogous conjecture of
Fock and Goncharov [17, Conjecture 12.4] and Thurston [52, Conjecture 4.20] for
the Kauffman bracket skein algebra SkA.S/. The latter is defined as the quotient of
the free ZŒA˙1�-module generated by unoriented framed links in S� Œ0; 1� modulo
the following skein relations:

D A C A�1 ; D �A2 � A�2: (10)

In order to relate this to the gl2 skein algebra SWebq , we have to extend scalars in
the latter to ZŒA˙1� by letting q act as �A�2. We abusively denote the result by

SWebA WD SWeb�A2 ˝ ZŒA˙1�

and see that the skein relation for the trivial 1-labeled circle agrees with the one
in SkA.S/, but we also have to adjust the skein relations involving crossings. For
example, in SWebA we have the relation:

D C A�2 :

Instead, we consider the skein algebra SWeb0A defined just as SWebA, but with
positive crossings between i- and j -labeled strands rescaled by Aij (and negative
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crossings by the inverse scalar), i.e.:

D A C A�1 ; D A C A�1

D ; D ; D ;

D ; D ; D :

(11)

Lemma 2.16. SWebA is isomorphic to SWeb0A as a ZŒA˙1�-module via the map
that is the identity on the elements of S BT (or equivalently S B). Moreover, the
pull-back F of the multiplication on SWeb0A to SWebA is related to the usual
multiplication � as follows:

W1FW2 D AŒW1��ŒW2�W1 �W2
Here W1 and W2 denote webs, and ŒW1� � ŒW2� is the intersection pairing of their
first homology classes.

Lemma 2.17. The map forget that forgets orientations and 2-labeled edges in webs
induces an ZŒA˙1�-algebra epimorphism from SWeb0A to SkA.S/.

The following proposition expresses the equivalence of Conjecture 1.10 and
the conjecture of Fock and Goncharov [17, Conjecture 12.4] as presented by
Thurston [52, Conjecture 4.20]. Indeed, the sets forget.S BT /, forget.S BS /, and
forget.S B/ coincide with Thurston’s bracelets, bands and bangles bases of SkA.S/.
This follows directly from Definition 2.14 and [52, Propositions 4.4 and 4.8].

Proposition 2.18. The multiplication of elements in S BT is positive in �q in
SWebq if and only if the multiplication of elements of forget.S BT / is positive in
A in SkA.S/.

Proof. First of all, by Lemma 2.16 and the formula .�q/ D A�2, positivity in �q
in SWebq is equivalent to positivity in A in SWeb0A.

Given two elements x; y of forget.S BT /, we lift them to elements Nx; Ny of S BT
in SWeb0A, which are automatically H1.S/-homogeneous. Assuming that Nx � Ny
has an expansion in terms of elements of S BT with coefficients in NŒA˙1�, we
use Lemma 2.17 to deduce that x � y D forget. Nx � Ny/, which is thus manifestly
positive as well.

Conversely, suppose that X and Y are elements of S BT with an expansion
X � Y DP˛iZi , where Zi are distinct elements of S BT with ŒZi � D ŒX�C ŒY �.
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Then, again by Lemma 2.17, forget.X/ � forget.Y / DP˛i forget.Zi /. Now note
that distinct elements of S BT of a fixed first homology class are sent to distinct
elements of forget.S BT /. Thus, positivity in SkA.S/ implies ˛i 2 NŒA˙1�, which
finishes the proof. �

�

�

2.2. The skein algebra of the torus. In this section we study
TWebq , the gl2 skein algebra of the torus and its basis T BT ,
which satisfies a suitably modified Frohman–Gelca formula that
is manifestly positive. We also show that TWebq is isomorphic
to the symmetric subalgebra of a suitable quantum torus.

We choose, once and for all, two oriented simple closed curves � and � that
give generators for the first homology of T. The ordered pair .�,�/ determines an
orientation of T and fixes a convention for illustrating T.

We say that an oriented simple closed curve on T is an .a; b/-curve if it
represents the homology class aŒ�� C bŒ�� for a; b 2 Z and .a; b/ ¤ .0; 0/.
These curves are essential and satisfy gcd.a; b/ D 1. More generally, .ka; kb/-
(multi)curves for k � 1 are defined to be k-fold oriented parallels of .a; b/-curves.
Here we reserve the notation .0; 0/ for the empty curve.

We choose such oriented multi-curves .m; n/ as representatives of integer
laminations on T:

L.T/ WD ¹.m; n/ j m; n 2 Z; m > 0 or n � m D 0º:
The slope of a simple closed curve on T in the homology class mŒ�� C nŒ��, is
defined to be m=n 2 xQ D Q [ ¹1º. Inessential curves can be considered to have
any element of xQ as slope. A multi-curve has slope m=n if each of its components
has this slope. In the following, we also assign slopes to webs.

Definition 2.19. LetW be a web on T. We sayW has slopem=n if the underlying
1-labeled multi-curve c.W / has this slope. If every component of c.W / is
inessential we call W inessential and otherwise essential.

Note that the slope as defined above is invariant under all gl2 web relations.
A sufficient (though not necessary) condition for a webW to have slopem=n is that
W is supported in a tubular (or rather, annular) neighborhood of an .m; n/-curve.

Remark 2.20. The subalgebra of 2-labeled webs in TWebq is spanned by the
multi-curves ^.m;n/ which satisfy Œ^.m;n/� D .2m; 2n/ in H1.T/ Š Z2. The skein
algebra multiplication is given by

^.m;n/ � ^.r;s/ D q2.ms�nr/ ^.mCr;nCs/ :
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In particular, the elements ^.m;n/ are invertible in TWebq . This is a special case
of Lemma 2.7.

We now reformulate the two bases from the previous section in the special case
of the torus. The standard basis and the T -basis for TWebq are given by

T B WD ¹.m; n/ � ^.r;s/ j m; n; r; s 2 Z; m > 0 or n � m D 0º;
T BT WD ¹.m; n/T � ^.r;s/ j m; n; r; s 2 Z; m > 0 or n > m D 0º

[ ¹^.r;s/jr; s 2 Zº;

where .m; n/T is defined by induction on gcd.m; n/ as follows:8̂̂̂̂
<̂
ˆ̂̂:
.m; n/ if gcd.m; n/ D 1;
.m; n/ � 2^.m=2;n=2/ if gcd.m; n/ D 2;
.m � a; n � b/T � .a; b/ � .m � 2a; n � 2b/T � ^.a;b/ if gcd.m; n/ D d � 3

and .m; n/ D .da; db/:

Note that the definition of .m; n/T makes sense for any m; n 2 Z, also for those
pairs that do not play a role in T BT . We also set .0; 0/T WD 2. The following result
is straightforward generalisation of a theorem due to Frohman and Gelca [18] to
the gl2 setting, which admits an analogous proof.

Theorem 2.21. The ZŒq˙1�-algebra TWebq is generated by the elements .m; n/T
^.m;n/ with .m; n/ 2 Z2, and a complete set of relations is given by

.m; n/T � .r; s/T D .mC r; nC s/T C .m � r; n � s/T � ^.r;s/
.m; n/T � ^.r;s/ D q2.ms�nr/ ^.r;s/ �.m; n/T

.m; n/T � ^.�m;�n/ D .�m;�n/T
^.m;n/ � ^.r;s/ D q2.ms�nr/^.mCr;nCs/
.0; 0/T D 2; ^.0;0/ D 1 (12)

We will refer to the multiplication rule (12) as the Frohman–Gelca formula.

Remark 2.22. In [37] Morton and Samuelson give presentations for the glN and
HOMFLY-PT skein algebras of the torus. In the case of gl2, their generators agree
with our basis elements .m; n/T . However, in choosing a different scaling for
crossings, they avoid the use of 2-labeled basis elements ^.a;b/, which comes at
the cost of passing from multiplication rules as in (12) to commutator identities.
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Example 2.23. We expand .2; 1/T �.0; 1/T , which equals .2; 1/�.0; 1/, as follows:

D Cq2

q

q

(after collapsing the digons in the two middle webs)

D .

q2

q2

Cq2

The left three webs sum to .2; 2/T , while the right three webs give .2; 0/T � ^.0;1/.

Frohman and Gelca [18] showed that the Kauffman bracket skein algebra of
the torus is isomorphic to the invariants in the quantum torus

ZŒA˙1�hX˙1; Y ˙1i=hYX D A2XY i

under the involution that inverts X and Y . The gl2 skein algebra of the torus has
an analogous characterization that we describe next.

Consider the algebra A over ZŒq˙1� generated by invertible generators X1, X2,
Y1, Y2, subject to the q-commutation relations:
(1) X1X2 D X2X1, Y1Y2 D Y2Y1;
(2) Y1X1 D X1Y1, Y2X2 D X2Y2;
(3) Y1X2 D q�2X2Y1, Y2X1 D q�2X1Y2:

This algebra is graded by H1.T/ Š Z2 by letting Xi have degree .1; 0/ and Yi to
have degree .0; 1/. S2 acts on A, with the transposition switching X1 $ X2 and
Y1 $ Y2.

Proposition 2.24. There is an isomorphism ˆWTWebq ! AS2 sending

.m; n/T 7�! .Xm1 Y
n
1 CXm2 Y n2 /; ^.r;s/ 7�! q�2rsX r1X

r
2Y

s
1 Y

s
2 :

Proof. Straightforward and omitted. �
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Recall from Section 2.1 the skein algebra TWeb0A, which results from twisting
the multiplication in TWebq by a half-integer power of �q depending on the
intersection form on the first homology. This skein algebra is isomorphic to the
S2-invariants in the quantum torus A0 whose q-commutation relations are more
symmetric:

(1) X1X2 D X2X1, Y1Y2 D Y2Y1,
(2) Y1X1 D qX1Y1, Y2X2 D qX2Y2,
(3) Y1X2 D q�1X2Y1, Y2X1 D q�1X1Y2.

From the twisted versions SWeb0A Š A0S2 , the Kauffman bracket skein algebra
SkA.T/ can be obtained by erasing 2-labeled edges, and the Frohman–Gelca
quantum torus is obtained by specializing X1 7! X , X2 7! X�1, Y1 7! Y , and
Y2 7! Y �1 in A0.

3. Foam categories on surfaces

After Khovanov’s categorification of the Jones polynomial [23], a categorification
of the skein module of R2 was constructed by Bar-Natan [3]. The resulting category
has objects corresponding to unoriented curves, but it also has an additional layer
of morphisms given by cobordisms between these curves, modulo certain relations.
Khovanov homology gives a projective functor from the category of links and link
cobordisms up to isotopy to this categorified skein module [24, 3]. The inherent
sign defect in this theory was later on solved by Clark, Morrison, and Walker [15],
Caprau [10], and Blanchet [5] by means of refined categories of cobordisms.

Just as in the case of Bar-Natan cobordisms [2, 6], these categories extend to
more general thickened surfaces. We will use Blanchet’s version of cobordisms,
called foams, to construct properly functorial surface link homologies and cate-
gorifications of the gl2 surface skein modules. It is interesting to note that foams
were first used by Khovanov in the context of sl3 link homology [25], and then
extended by Khovanov and Rozansky [29] and Mackaay, Stošić, and Vaz [35] to
slN (or rather glN ) link homologies for larger rank. Here, we only consider foams
for gl2, but we will comment on glN link homologies in Section 4.

3.1. Foams in thickened surfaces. As before, S denotes a connected, oriented
surface of finite type.

Definition 3.1. We define the foam category SFoam to be the graded category
with:
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� objects, (direct sums of q-shifted) webs embedded in S. We highlight the fact
that here, webs are not considered up to any relation.

� morphisms, (matrices of Q-linear combinations of ) gl2 foams properly
embedded in S � Œ0; 1�.

Foams for gl2 are embedded CW-complexes assembled from 1-and 2-labeled
compact oriented surfaces, called facets. These facets are glued along their boundary
such that precisely two boundary components of 1-labeled facets are identified
with a single boundary component of a 2-labeled facet. Around such seams, foams
have the shape of the letter Y times an interval or a circle and we require that the
orientations of the seam induced by the orientations on the 1-labeled facets agree
with each other and disagree with the orientation induced by the 2-labeled facet.
Facets with label 1 are furthermore allowed to carry dots. We consider foams
modulo isotopy relative to the boundary and Blanchet’s local foam relations [5],
which we illustrate in the following with 1-labeled facets shaded red and 2-labeled
facets shaded yellow:

D 0; � D 1; D
�
C
�

: (13)

The neck-cutting relation in (13) implies that a 1-handle on a 1-labeled facet
simplifies to twice a dot:

D �1; D � ; (14)

�

�

˛

ˇ
D

8̂̂<̂
:̂
1 if .˛; ˇ/ D .1; 0/;
�1 if .˛; ˇ/ D .0; 1/;
0 if .˛; ˇ/ D .0; 0/ or .1; 1/;

(15)

D � ; (16)
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D ; (17)

D

�

�

�

: (18)

(More generally, such relations also make sense for foams that are not embedded.
In this case, a (local) cyclic ordering of the faces around each seam needs to be
specified. When embedded in an oriented 3-manifold, this ordering is defined to
be induced via the orientation on seams by the right-hand rule.) We furthermore
impose that two dots on a facet are zero. This in particular implies that non-degree-
zero bubbles and blisters are sent to zero, and a dot-sliding relation, see (19):

�� D 0 H)
�
D �

�
: (19)

We have imported the figures in (13)–(18) from Lauda, Queffelec, and
Rose [32],5 who prove that Blanchet’s foam relations also arise in certain Schur
quotient of categorified quantum groups of type A. In fact, the Schur quotient for
categorified quantum gl1 has the structure of a (weak) 3-category, and SFoam
can be considered as the integral of this 3-category over the 2-manifold S. The
relations shown here are also compatible with the more recent construction of foam
categories by Robert and Wagner [47].

The foam categories SFoam are furthermore graded. Let F be a foam, d its
number of dots, and c.F / the underlying 1-labeled surface, which is obtained
by deleting all 2-labeled facets. Then the q-degree of F is given by deg.F / WD
2d � �.c.F //. If F W qkW1 ! qlW2, then we require that deg.F / D l � k. Note
that a single foam is always a homogenous morphism and the notion of degree
then extends to matrices of linear combinations of foams.

5 First published in Algebraic & Geometric Topology 15 (2015), no. 5. Published by
Mathematical Sciences Publishers.
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Remark 3.2. Relation (19) can be deformed to yield a foam-based construction
of Lee’s deformed Khovanov homology [34] or an equivariant link homology [27].
Deformations of this type have been studied in greater generality in [50].

Remark 3.3. SFoam carries a natural action of the orientation preserving diffeo-
morphism group of S.

Remark 3.4. In [5], Blanchet introduces a trivalent category, a category of abstract
closed webs and foams. These Blanchet foams are not considered as embedded in
any particular manifold, but they are required to satisfy stricter gluing constraints
than our foams. In Blanchet foams, the two boundary components glued along
each seam are required to come from two distinct facets and part of the data of a
foam is an ordering of the two 1-labeled facets at each seam. The following figure
shows an example of a foam TFoam, which does not qualify as a Blanchet foam.

Note that for a foam in SFoam, one can specify a
local cyclic ordering of the facets along a seam by using
the right-hand rule and the orientation of the seam. This
precisely fails to produce an abstract foam in Blanchet’s
sense if the two pieces of facets that locally meet on the
seam actually belong to the same facet. We will prove
in Proposition 3.15 that this does not happen in a certain
subcategory of orientable foams in SFoam.

Blanchet then goes on to define a TQFT from his trivalent category to the
category of graded abelian groups. An alternative way of encoding this TQFT is to
linearize the morphism spaces in the Blanchet foam category and take the quotient
by the relations in the kernel of the TQFT. We denote the resulting abstract linear
foam category Foam. Blanchet’s TQFT can then be recovered as the representable
functor HomFoam.;;�/. The embedded foam relations in Definition 3.1 arise in
the morphism spaces of Foam by embedding the foams in a 3-manifold and cutting
out the relevant 3-balls.

The following local relations hold in the category SFoam and will be used
throughout the paper to simplify webs and foams.

Lemma 3.5. There are isomorphisms between webs in SFoam which differ only
in a disk as shown:

Š q; ˚ q�1; Š ; Š ; Š ; (20)
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Š Œ2� ; Š Š ; (21)

Š ; Š ; Š : (22)

Proof. As in [5]. �

We will need a more general neck-cutting relation for identity foams on 1-labeled
circles that have arbitrary interaction with 2-labeled edges.

Lemma 3.6. Let F be a foam in SFoam whose underlying 1-labeled surface c.F /
has a compression diskD inside S� Œ0; 1�, surgery along which produces a surface
S . Then F can be expressed as a linear combination of foams with underlying
surface S , each of which carries one more dot than F .

Proof. The compression disk D may be assumed to be transverse to F . The proof
then follows the same strategy as the one of Lemma 2.1 to reduce the interaction
of the foam with D by locally modifying the foam via the web isomorphisms from
Lemma 3.5. Once D intersects the foams in the resulting linear combination only
in a 1-labeled circle, the neck-cutting relation in (13) can be applied to produce
foams with underlying surface S and the desired number of dots. �

Corollary 3.7. LetW be a web in SFoam, whose underlying curve c.W / contains
a circle which bounds a disk in S n c.W /. Then W Š qV ˚ q�1V , where V is a
web that agrees with W outside a neighborhood of the disk and with underlying
curve obtained by removing the circle in question from c.W /.

Recall the standard basis S B for SWebq , which consists of (signed) webs that
are given by the skein algebra multiplication of an integer lamination L 2 L.S/
and a 2-labeled multi-curve ^.x/ for some x 2 H1.S/. From now on we interpret
S B as a collection of objects in SFoam (ignoring minus signs). Lemma 2.9 then
has the following categorified version which admits an analogous proof.

Lemma 3.8. Every web W in SFoam is isomorphic to a direct sum of grading
shifts of copies of one element of S B.

Lemma 3.9. Every closed foam that is contained in an embedded 3-ball in S�Œ0; 1�
equals a scalar multiple of the empty foam in SFoam.
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Proof. Let F be such a foam and c.F / its underlying 1-labeled surface. By
Lemma 3.6, we may apply generalized neck-cutting relations and then assume that
c.F / is a union of spheres, possibly dotted. Starting with an innermost sphere,
we choose a point on it (disjoint from the interaction with 2-labeled facets) and
consider the complementary disk. Using the same strategy as in the proof of
Lemma 2.1 we can free the disk, and thus the sphere, from all 2-labeled interaction.
The sphere can then be removed at the expense of multiplying what remains by
a scalar. Now inductively proceed to remove all spheres in c.F / until a purely
2-labeled foam remains. This equals a scalar multiple of the empty foam by virtue
of 2-labeled neck-cutting and 2-labeled sphere evaluation. �

The following lemma implies that the categories SFoam (and all its versions
considered in this paper) decompose into blocks indexed by first homology classes.

Lemma 3.10. If W1 and W2 are webs in SFoam with ŒW1� ¤ ŒW2�, then
SFoam.W1; W2/ D 0.

Proof. Suppose there is a foam F between W1 and W2. Interpreting 2-labeled
edges and facets as doubled up, we can perform a small push-off to obtain an
oriented cobordism xF between the multi-curves xW1 and xW2, which are thus
homologous. �

We say a foam F is (un)orientable if its underlying 1-labeled surface c.F /
has this property. The following proposition is similar to [41, Proposition 2.2.1]
and ensures that the presence of unorientable foams does not lead to unexpected
relations between orientable foams.

Proposition 3.11. The span of unorientable foams in SFoam with a given boundary
datum is closed under the local relations from Definition 3.1.

Proof. Let F be a connected unorientable dotted foam with underlying 1-labeled
surface c.F /, possibly with boundary. We want to see whether there are orientable
representatives in the equivalence class of c.F / under the local relations from
Definition 3.1.

The only relations that could change orientability are the neck-cutting relation
in (13) and (18), that, up to the 2-labeled facet and a sign, look exactly alike.
Using (16) and (19), one can even deduce the latter one from the former one, so
we will focus on this one.

Assume that there exists a compression disk where we can perform neck-cutting,
so that the underlying surface S of the resulting foam is orientable. Since c.F / is
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unorientable and S is orientable, there is a path  in c.F / starting on the annulus
A where we perform the relation, and coming back after having crossed an odd
number of seams:

 � D
�

 C
�

: (23)

We can assume that this path  goes only once through A. Indeed, if this is not the
case, we locally have

�

�! �

1

2

or �

�! �

1 2

:

Then, either 1 is a disorientation path, and we focus on it, or 2 is. Applying this
reduction process as many times as necessary, we end up with a path going one or
zero time through A. Zero corresponds to the case where S is unorientable, which
contradicts our assumption.

So, applying the neck-cutting relation, we get a sum as shown in (23). The
image of  after neck-cutting transports the dot of the left term to the place where
the one of the right term lies. This is done by crossing an odd number of seams,
and therefore it produces a �1 coefficient by (19), and the sum is actually zero. �

Remark 3.12. The previous proposition implies in particular that the subcategory
of orientable foams SFoamo r is isomorphic to the quotient of the foam category
by the unorientable foams.

Remark 3.13. A similar argument can be used to show that an unorientable foam
F that carries a dot on an unorientable component of c.F / must be zero.

Remark 3.14. We denote by SCob the category of Bar-Natan cobordisms in
S � Œ0; 1�. Its objects are unoriented multi-curves in S and its morphisms are
Q-linear combinations of dotted cobordisms, properly embedded in S � Œ0; 1�,
modulo isotopy relative to the boundary and the relations (13) and (19), see [3,
Section 11.6] and [1]. It is clear from the definition, that SCob and SFoam are
closely related when defined over Z=2Z. One of the disadvantages of SCob is that
the analogues of Proposition 3.11 and Remark 3.12 are false. Another one is that
Khovanov homology has a sign-ambiguity, when defined via SCob.

Proposition 3.15. Every orientable foam in SFoam is a Blanchet foam.



158 H. Queffelec and P. Wedrich

Proof. Suppose a foam F in SFoam is not a Blanchet foam, i.e. there exists a seam
to which one connected oriented 1-labeled facet is glued along two of its boundary
components. Then we choose a path in the facet from one boundary to the other,
with start and end points that are identified by the gluing. The orientation of the
facet is preserved along the path, but it switches across the seam. After erasing the
2-labeled sheet, the path thus becomes an orientation reversing loop, and so F is
not orientable. �

Definition 3.16. We let SFoamred denote the full subcategory of SFoam with
objects given by direct sums of grading shifts of webs without inessential 1-labeled
components.

Note that by Corollary 3.7 the subcategory SFoamred is equivalent to SFoam.
All objects in the latter can be decomposed into webs without inessential 1-labeled
components, and so the inclusion is an equivalence.

The simple but key fact in our analysis is that SFoamred is non-negatively
graded, which follows from an elementary topological lemma.

Lemma 3.17. Suppose that S ¤ S2. Then a connected surface, properly embedded
in S � Œ0; 1�, is either a disk, a sphere bounding a ball, or it has non-positive
Euler characteristic. In particular, non-orientable surfaces are of negative Euler
characteristics (this also holds for S D S2).

Proof. Recall that the Euler characteristics of an orientable surface of genus g
with l boundary components is given by 2 � 2g � l . This will be non-positive,
unless g D 0 and l � 1. The g D 0 and l D 1 case corresponds to a disk. The
l D 0, g D 0 case corresponds to a sphere, but all spheres in thickened surfaces
(except the thickened sphere) bound balls. If S is a disk, this is due to Alexander.
For closed surfaces of positive genus, the same result can be deduced from the case
of the disk via a covering argument. Finally, it is easy to see that adding punctures
cannot create new essential spheres.

Let us now turn towards the unorientable case, when the Euler characteristics is
2 � g � l where g � 1 is the number of crosscaps of the surface and l the number
of boundary components. The case of l D 0 is empty since no unorientable surface
can be embedded in R3 and thus in a thickened surface (which could itself be
embedded in R3). Finally, for the l D 1 case, note that such a surface bounding
a 1-component curve could be made into a closed unorientable surface by taking
the union with a Œ0; 1� ! Œ0;�1�-reflection of it. An embedding of the former
in S � Œ0; 1� would give rise to an embedding of a closed unorientable surface in
S � Œ�1; 1�, which we have already ruled out. Thus l � 2 and 2 � g � l < 0. �
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Corollary 3.18. Suppose that S ¤ S2. Then the morphism spaces in SFoamred

are non-negatively graded. That is SFoamred.W1; qkW2/ D 0 if k < 0, for any
webs W1 and W2 in SFoamred.

Proof. Let F be a foam with d dots between webs in SFoamred and c.F / its
underlying 1-labeled surface. Then deg.F / D 2d � �.c.F // and by Lemma 3.17
the only negative contribution to this degree can come from disks or undotted
spheres in c.F /. However, disks are explicitly ruled out in SFoamred and we claim
that undotted spheres in c.F / evaluate to zero under the foam relations. This
follows directly from the sphere-freeing argument in the proof of Lemma 3.9 and
the fact that undotted 1-labeled spheres evaluate to zero. �

Definition 3.19. We denote by SFoamred
0 the degree-zero subcategory of SFoamred,

i.e. the category with the same objects as SFoamred, but with

SFoamred
0 .qkW1; q

lW2/ D
´

SFoamred.qkW1; qkW2/ if k D l;
0 if k ¤ l:

The non-negative grading of the morphism spaces of SFoamred implies that
SFoamred

0 can alternatively be seen as a subcategory or as a quotient category of
SFoamred.

Examples for morphisms in SFoamred
0 are shown on the right-hand side of the

display in Example 1.11.

Definition 3.20. Let SFoam0 denote the quotient category of SFoam induced
from the quotient SFoamred

0 under the equivalence of SFoam with SFoamred. We
will call the induced non-negative grading of SFoam the essential q-grading.

Corollary 3.21. Unorientable foams in SFoam are sent to zero in SFoam0.

Proof. This follows from Lemma 3.17. �

The following proposition implies that these categories are non-degenerate.

Proposition 3.22. Consider a collection of foams in a morphism space of
SFoamred

0 , which have incompressible underlying 1-labeled surfaces that are pair-
wise non-isotopic. Then the elements of this collection are linearly independent
and, in particular, non-zero.

An analogous result for Bar-Natan cobordism categories SCob is well known,
see e.g. [1] and [22].
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Proof. By the proof of Lemma 3.17, the underlying 1-labeled surface of a foam F

from the chosen collection consists of incompressible annuli and tori.
We first argue that F is non-zero in SFoam. Since F is of degree zero, it is

orientable. By forgetting the embedding information, F can also be regarded
as an abstract Blanchet foam with boundary, see Proposition 3.15. It can then
be completed by another suitable abstract foam—e.g. another copy of F with
orientations reversed—to give an abstract foam without boundary. We now use
Blanchet’s TQFT to evaluate this foam to a scalar in Z and we claim it is non-zero.

In fact, the envisioned doubling of F has a non-zero evaluation ˙2t where t
is the number of 1-labeled tori in the underlying surface of the doubled abstract
foam. To see this, one can first abstractly neck-cut all 2-labeled facets and remove
2-labeled spheres, so that only 2-labeled disks with boundaries on 1-labeled tori
remain. This only changes the abstract foam evaluation by at most a sign. Now there
are two possibilities for the remaining disks. Either they bound a disk on the torus,
in which case they can be removed, or their boundary is an essential curve on the
torus. In the latter case, these disks come in parallel pairs for orientation reasons,
and after neck-cutting and one application of relation (16), they can be removed
as well. Finally, each remaining 1-labeled torus without 2-labeled interaction
evaluates to 2.

Now, since Blanchet’s foam evaluation is constant under all foam relations, in
particular those performed in the embedded sense in S � Œ0; 1�, the foam F cannot
be zero in SFoam. We conclude that a non-trivial linear relation between the foams
from the chosen collection would need to involve several distinct foams, whose
underlying 1-labeled surfaces are pairwise non-isotopic by assumption. Such a
linear relation would, thus, involve foam relations which change the topology of
the underlying 1-labeled surfaces, i.e. generalized neck-cutting relations as in
Lemma 3.6. However, the foams in question, having incompressible underlying
surfaces, could only appear on the neck-cut (i.e. dotted) side of neck-cutting
relations. Since they also do not carry dots, this implies that there cannot be a
non-trivial linear relation between them. �

3.2. Jones–Wenzl foams. In this section we describe a set of idempotent foams
in SFoam that are categorified analogues of the elements of the basis S BS of
SWebq . In the next section we will see that these idempotents generate all objects
in the idempotent completion Kar.SFoam/ if S ¤ T. The foams we will consider
are modeled on gl2-versions of the famous Jones–Wenzl projectors, which we now
recall.
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Definition 3.23. Let Webq denote the category of gl2 webs in a horizontal strip,
with
� objects, finite sequences of elements of the set ¹1; 2; 1�; 2�º, including the

empty sequence;
� morphisms, Q.q/-linear combinations of gl2 webs properly embedded in the

horizontal strip R�Œ0; 1�, viewed as mapping from the sequence on the bottom
boundary to the one on the top boundary. These webs are considered up to
isotopy relative to the boundary and modulo the gl2 web relations (2)–(5).

Here 1 and 2 encode upward pointing boundary points of associated label, and
1� and 2� encode downward pointing boundary points. Composition is given by
stacking strips with matching boundary data. We will also consider the version
Web, which is defined over Q instead of Q.q/, with all relations (2)–(5) specialized
to q D 1.

Definition 3.24. The Uq.gl2/ Jones–Wenzl projectors Pm 2 Webq ˝ Q.q/ are
defined by P1 D id1 and then:

PmC1 WD Pm � Œm�

ŒmC 1� Pm

Pm

:

C.f. Wenzl [58] in the case of Uq.sl2/.

We give two examples:

P2 D � 1

Œ2�

and

P3 D � Œ2�
Œ3�

0@ C
1AC 1

Œ3�

0@ C
1A:

For gl2, we get analogous projectors in Web by replacing the quantum integers
Œm� and ŒmC 1� in the recursion by the corresponding integers. It is easy to check
that the morphisms Pm are idempotent and that they annihilate turnbacks if m � 2:

Pm
D 0 D Pm :
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Remark 3.25. Checking idempotency and turnback annihilation property of the
Jones–Wenzl projectors only requires the use of the following web relations:

D 2 ; D ; D : (24)

The key to obtaining idempotent foams from Jones–Wenzl projectors is the
following well-known fact about foams in the thickened annulus A � Œ0; 1�.

Lemma 3.26. There exists a functor Web! AFoam, which sends webs W to the
annular rotation foams W � S1.

Proof. A direct computation verifies that the foam relations from Definition 3.1
imply that rotation foams satisfy the gl2 web relations at q D 1. �

Any choice of annular neighborhood of an oriented simple closed curve on S
determines an embedding AFoam! SFoam and thus a functor Web! SFoam.
The images of Jones–Wenzl projectors under such a functor are idempotent foams,
and we call them Jones–Wenzl foams.

Example 3.27. The second Jones–Wenzl projector P2 spun around the longitude
of the torus:

� 1
2

:

Given several disjoint oriented simple closed curves on S, we can simultaneously
embed one spun Jones–Wenzl foam per curve.

Definition 3.28. Let L D ¹.Ci ; ni /º 2 L.S/ be an oriented integer lamination
on S (see Definition 2.8), then we denote by LFS the idempotent foam in SFoam
obtained by simultaneously embedding the spun Jones–Wenzl projectors Pni � S1
in A � Œ0; 1� along the oriented simple closed curves Ci into S � Œ0; 1�.

The foams LFS are designed to decategorify to the basis elements LS 2 S BS
(we will see that they do so in Lemma 3.34). However, a generic basis element
in S BS is of the form LS � ^.x/ where x is a multi-curve on S representing a
certain first homology class of S. We also need idempotent foams LFS � ^.x/
corresponding to such basis elements LS � ^.x/. In Section 5.1 we will describe a
general framework for how superposition with 2-labeled multi-curves give auto-
equivalences � � ^.x/ of the foam categories SFoam, which allow LFS � ^.x/ to
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be obtained from LFS . Since this framework is best explained after introducing the
Khovanov functors in Section 4 and since it depends on an additional Functoriality
Conjecture 4.8, we will here give a self-contained description of the idempotent
foams LFS � ^.x/.

Recall that the Jones–Wenzl projectorsPm can be written as linear combinations
of webs built from the following elementary webs:

id WD ; id2 WD ; M WD ; S WD :

Here M stands for merge and S for split. The following local models (and their
back-to-front reflections) are used to define superposed rotation foams wherever
the 2-labeled curve ^.x/ has an intersection with the annulus A � S, along which
the spun webs id � S1, M � S1 and S � S1 are embedded:

.id � S1/ � ^.x/ WD ; .id2 � S1/ � ^.x/ WD ;

.M � S1/ � ^.x/ WD W

unzip���! non-local��������!
digon closure

;

.S � S1/ � ^.x/ WD � W

non-local��������!
digon opening

�zip���! :

Away from these intersections, we do not change the spun foam, but we add vertical
2-labeled sheets over ^.x/.
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There are also canonical choices for the local replacements in the case of identity
webs with more than two strands and for split and merge vertices with several parallel
strands added. Any web can be written as the compositionW D Wm ı � � � ıW2 ıW1
of such piecesWi and we now define .W �S1/�^.x/ to be the foam obtained from
the rotation foam W � S1 by the appropriate composition of local replacements

Remark 3.29. The minus sign in the local replacement for .S � S1/ � ^.x/ may
appear arbitrary to the reader. This is because it is indeed arbitrary, although not
unmotivated. In Section 5.1 we will explain how superposition � � ^.x/ induces
an auto-equivalence of SFoam, which is defined via the Khovanov functor. In this
framework, the local replacements for .M � S1/ � ^.x/ and .S � S1/ � ^.x/ are
induced by mutually inverse fork-slide moves (see e.g. the first isomorphism in
Lemma 4.7). In order for the fork-slide foams to be inverse to each other, one has
to carry a sign. Which one carries a sign depends on an ordering of the resolutions
of crossings between 1- and 2-labeled edges. In the following computations
concerning superposed rotation foams, this arbitrary choice is irrelevant, as long
as it is chosen consistently on the equal domain and target webs.

Definition 3.30. Let L D ¹.Ci ; ni /º 2 L.S/ be an oriented integer lamination on
S and ^.x/ a 2-labeled multi-curve on S transverse to all Ci , which minimizes the
intersection number with all Ci in its homology class. Then we define LFS � ^.x/
to be the foam in SFoam obtained from LFS by local replacements as described
above for every intersection between Ci and ^.x/. We call them Jones–Wenzl basis
foams.

Definition 3.31. A foam F WW1 ! W2 in SFoamred is said to have a turnback atWi
if c.F / contains a boundary-parallel annulus with both boundary circles on c.Wi /.
It is said have a standard turnback if F D F 0 ı FS (or F D FM ı F 0), where FS
is given by a superposed split foam .S � S1/ � ^.x/ near the above-mentioned
boundary circles, and the identity foam elsewhere (similarly, FM is modeled on
a merge foam). A morphism GWW1 ! W2 in SFoamred annihilates turnbacks if
F2 ıG D 0 D G ı F1 whenever Fi has a turnback at Wi .

Lemma 3.32. Let W be the source web of one of the Jones–Wenzl basis foams
LFS � ^.x/ from Definition 3.30. Then any foam F which has a turnback at W can
be expressed as a linear combination of foams having standard turnbacks at W .

Proof. Consider the two circles c1; c2 in c.W /which are connected by the turnback
annulus in c.F /. We choose two points p1 2 c1 and p2 2 c2, such that
corresponding 1-labeled edges inW have the orientation prescribed by the oriented
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integer lamination L. By assumption there exist paths �i on the 1-labeled facets
of F , which connect the points pi to a point on a seam. Due to orientation reasons,
the composite path � D ��12 ı �1 passes an odd number of seams. By applying
foam relations as in Lemma 3.6 we may assume this number of seams to be one. The
cycle c resulting from a small push-off of c�12 ı��12 ı�1 ıc1 bounds a compression
disk and we perform neck-cutting along it using Lemma 3.6. We illustrate a simple
case, in which we focus only on the neighborhood of c1 and c2 in the bottom web
and suppress dots arising from neck-cutting:

c1

c2

c

�1 �2 �! :

The result is a linear combination of two foams, both of which have a standard
turnback (up to isotopy) and a dot each. In fact, one of the summands has a dot
on its turnback annulus, but this summand is equal to zero, because its underlying
surface contains an undotted sphere. The remaining summand has a dotted sphere
in its underlying surface, which can be removed at the expense of a sign. �

For the next proposition, we need two foam relations, which follow from the
ones in Definition 3.1:

D
�
�

�

; (25)

b�
a�

D .ıa;1ıb;0 � ıa;0ıb;1/ : (26)

Proposition 3.33. The morphisms LFS � ^.x/ in SFoamred are idempotent and
annihilate turnbacks.

Proof. It suffices to prove that the relations (24) on foams that are spun webs
continue to hold after the local replacements necessitated by the superposition
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with ^.x/. Then the two claimed properties follow from the corresponding
properties of the gl2 Jones–Wenzl projectors via Lemma 3.26, Remark 3.25 and the
fact that Jones–Wenzl basis foams annihilate turnbacks if they annihilate standard
turnbacks, see Lemma 3.32.

We inspect the first relation in (24), whose left-hand side is a digon. A spun
digon superposed with ^.x/ can be written as ..M ı S/ � S1/ � ^.x/. Locally, at
each intersection (spinning direction horizontal, ^.x/ vertical) we see a foam of
the following type:

non-local��������!
digon opening

�zip���! unzip���!

non-local��������!
digon closure

D non-local��������!
digon opening

� � �
��������������!

non-local��������!
digon closure

:

Here we have used relation (25). If the relevant annulus has k transverse inter-
sections with ^.x/, then all will be either of the type shown, or its reflection (this
follows from the assumed minimality of the intersection number). Then the entire
morphism will be a sum of 2k signed foams, each of which is the composition of
opening k digons, placing k dots and closing the k digons. Among these foams
with k dotted blisters, only two are non-zero, and they arise when each blister is
decorated by precisely one dot. In these cases, all blisters carry their dot on the
same side. The term with all dots on the left side evaluates to the identity according
to (26). The term with all dots on the right side carries a sign .�1/k , which is
precisely canceled by the sign resulting from the blister evaluation. In sum, we get
twice the identity, or:

..M ı S/ � S1/ � ^.x/ D 2.id � S1/ � ^.x/

This is the spun and superposed version of the first relation in (24).
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The left-hand side of the second relation in (24) can be written as .M ˝ id1/ ı
.id1˝S/ı .id1˝M/ı .S˝ id1/ and the corresponding rotation foam, superposed
with ^.x/, has the following local description at the intersection points:

n.-l. digon o.

n.-l. digon cl.

zip

unzip

n.-l. digon cl.

n.-l. digon o.

zip

unzip

In fact, the local model at each intersection point is the composition starting at
the left and proceeding all the way to the right and back again to the left. The two
steps in the middle far-commute, thus an equivalent description is the following:

n.-l. digon o.

isotopy

n.-l. digon cl.

unzip

zip

isotopy

isotopy

zip

unzip

n.-l. digon cl.

n.-l. digon o.

isotopy

Note that the composites of the outer maps are just (signed) isotopies. The total
composition from the left to the right and back is thus the identity. So we have
verified:

..M ˝ id1/ ı .id1 ˝ S/ ı .id1 ˝M/ ı .S ˝ id1// � ^.x/ D .id2 ˝ id1/ � ^.x/

This is the spun and superposed version of the second relation in (24). The third
relation is analogous. �

Recall from Lemma 3.5 that the defining web relations and isotopies in SWebq
are lifted to isomorphisms in SFoam. This implies that we have a well-defined
map  WSWebq ! K0.SFoam/. We can further compose this with the natural map
induced by the embedding of the foam category into its idempotent completion to
get a map  0WSWebq ! K0.Kar.SFoam//.

Lemma 3.34. For every basis element LS � ^.x/ 2 S BS , we have the identity
 0.LS � ^.x// D ŒLFS � ^.x/� in K0.Kar.SFoam//.

Proof. Via the proof of Proposition 3.33, the statement can be deduced from
 0.LS / D ŒLFS � 2 K0.Kar.SFoam//, which can be checked one simple closed
curve in L at a time. This corresponds to the case S D A, where the positive trian-
gular basis change from A B to A BS is easily seen to agree with the decomposition
of identity foams in .A B/ into Jones–Wenzl basis foams. �
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In fact, we have just proved more:

Corollary 3.35. Let L � ^.x/ denote the source web of LS � ^.x/, which we
interpret as a standard basis element of SWebq . Then the identity foam on
L � ^.x/ can be written as a sum of orthogonal idempotents in SFoam, which
are isomorphic to Jones–Wenzl basis foams in Kar.SFoam/. Moreover, the
decomposition multiplicities agree with those in the basis change from S B to S BS .

3.3. Decategorification

Theorem 3.36. The map  that sends webs in SWebq to the class of the correspond-
ing object in K0.SFoam/ is an isomorphism of H1.S/-graded ZŒq˙1�-modules.

Proof. We have already seen that  is well defined. Since every object of SFoam
is isomorphic to a direct sum of shifts of standard basis webs, see Lemma 3.8, it is
clear that  is surjective. For injectivity, we shall argue that the image C WD .S B/
of the standard basis of SWebq is a linearly independent set in K0.SFoam/. In
fact, the standard basis webs generate an equivalent full subcategory of SFoam, so
any relation between their classes in K0 stems from an isomorphism of the form:M

i2I
qkiAi Š

M
j2I

qljBj

where theAi andBi are standard basis webs. We claim that if such an isomorphism
exists, then there exists a bijection � W I ! J such that Ai D B�.i/ and ki D l�.i/.
This, in turn, would imply that such an isomorphism does not impose any non-trivial
relation in K0.SFoam/.

In order to prove the claim, we recall that the standard basis webs lie in the
subcategory SFoamred and the morphism spaces between them are non-negatively
graded. This implies that we may assume that all components of the isomorphism
are of degree zero (a priori, it might have higher degree components, but after
truncation to degree zero, one will still have an isomorphism between the same
objects). Without loss of generality, we may now assume that ki D 0 D lj for all
i 2 I and j 2 J , i.e.: M

i2I
Ai Š

M
j2I

Bj (27)

Next, we embed SFoam into its Karoubi envelope Kar.SFoam/, where (27)
still gives an isomorphism. Furthermore, thanks to Corollary 3.35 we can now
decompose the Ai (and Bj ) further into the direct sum of objects of the Karoubi
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envelope, which are isomorphic to Jones–Wenzl basis foams. By Lemma 3.34
their classes are contained in the image of the natural map K0.SFoam/ !
K0.Kar.SFoam// and coincide with the images of the Jones–Wenzl basis elements
S BS of the skein algebra SWebq under  .

Next, we compute the q-degree zero morphism spaces between Jones–Wenzl
basis foams. Note that if S ¤ T, then all turnback annuli that can appear in the
1-labeled part of foams between such elements are supported in neighborhoods of
simple closed curves in the corresponding lamination. As such, they are killed by
Jones–Wenzl foams in the same way as turnbacks are killed by the usual Jones–
Wenzl projectors, see Proposition 3.33. This implies that only those degree zero
foams which consist exclusively of vertical annuli induce non-zero morphisms
between Jones–Wenzl basis foams. In particular, there are no morphisms between
basis foams of different lamination type.

The existence of the isomorphism (27) implies that the same decomposed
objects appear on both sides, with equal multiplicities. Since the decomposition
multiplicities of standard basis elements into Jones–Wenzl basis elements are
triangular, we infer that the two sides of (27) already contained isomorphic objects
with equal multiplicities.

In the case of the torus S D T, the Jones–Wenzl basis foams do not kill all
turnbacks, and we cannot use them in the above argument. However, in Section 6,
we introduce the rotation foams generated by extremal weight projectors, which are
a suitable replacement that allow the completion of the proof in the torus case. �

We record the main step in this proof in a separate corollary.

Corollary 3.37. If S ¤ T, then Kar.SFoam0/ is semisimple, the simple objects
are isomorphic to Jones–Wenzl basis foams, and the split Grothendieck group is
isomorphic to SWebq .

Definition 3.38. Let S ¤ T. We will write S BFS for the set of objects of
Kar.SFoam/ given by Jones–Wenzl projector foams on standard basis webs.

4. The Khovanov functors

Definition 4.1. The category SLinkı is the category with:

� objects, oriented link embeddings in S � Œ0; 1� with generic projection to S
and with link components labeled by colors from the set ¹1; 2º and with an
ordering of the crossings;
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� morphisms, oriented, color-preserving link cobordisms embedded in S �
Œ0; 1� � Œ0; 1�, modulo isotopy relative to the boundary, as well as trivial
cobordisms that only reorder crossings.

More generally, we denote by SLink the category of link embeddings and cobor-
disms without the genericity assumptions.

The projection of a link embedding is generic if it produces a link diagram. Since
every link embedding can be isotoped into generic position (and such isotopies
can be considered as invertible link cobordisms), SLinkı is an equivalent full
subcategory of SLink. Cobordisms in SLinkı can also be isotoped into generic
position and then presented as movies of link diagrams. Indeed, the time slices of
a cobordism in generic position are link diagrams, except in finitely many points
across which the link diagrams differ by handle attachments or Reidemeister moves.
Isotopies of cobordisms in generic position can be assumed to be composed out of
Carter–Rieger–Saito movie moves, see [12, 21].

The Khovanov functor as constructed by Blanchet [5] assigns to a crossing a
chain complex built out of webs and foams between them, whose boundary data
agree with those of the crossing:

Kh
� �

D �! qt�1 ;

(28)
Kh

� �
D q�1t �! I

Kh
� �

D qt�1 ; Kh
� �

D qt�1 ;

(29)
Kh

� �
D q�1t ; Kh

� �
D q�1t I

Kh
� �

D q2t�2 ; Kh
� �

D q�2t2 : (30)

Above and throughout the rest of the paper, the t variable will account for homo-
logical degree. The non-zero differentials in the complexes associated to crossings
of 1-labeled strands are given by a single zip and unzip foam respectively. The
other chain complexes all consist of a single object and only trivial differentials.

In order to define the functor on a link diagram L in S, one first cuts out a little
disk around each crossing to get a crossingless link diagram L0 in the surface with
disks removed. The functor then associates to L a chain complex in SFoam, which
is constructed as a formal tensor product of the chain complexes associated to all
crossings. The tensor product is taken in the order specified by the ordering of
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crossings and it acts on webs by gluing them into L0 and on foams by glueing them
into L0 � Œ0; 1�.

Recall that morphisms in SLinkı, i.e. link cobordisms in S � Œ0; 1�2 between
links embedded in S�Œ0; 1� can generically be described by movies of link diagrams.

Lemma 4.2. The movies associated to isotopic link cobordisms in S � Œ0; 1�2
are related by a finite sequence of the Carter–Rieger–Saito movie moves of [12,
Section 7] supported over disks in S.

Proof. The proof in [12] immediately extends to the case of S � Œ0; 1�. �

All invariants that we consider take values in homotopy categories, i.e. they
associate chain complexes to links and chain maps modulo homotopy to link cobor-
dism. Isotopies between such link cobordisms imply equality of the corresponding
morphisms and so we do not care about the isotopy classes of isotopies. As a con-
sequence, the functoriality of the Blanchet–Khovanov construction for S follows
from the case S D R2, which was proved in [5].

Theorem 4.3. The Blanchet–Khovanov construction produces a well-defined
functor

SKhWSLinkı �! K.SFoam/:

Via the equivalence between SLinkı and SLink, the latter can be taken as
source category for SKh. The properties of SKh listed in Proposition 1.2 follow
directly from the construction and Theorem 4.3. The claim that SKh categorifies the
evaluation of links in the skein module SWebq is a consequence of Theorem 3.36
and the fact that the Grothendieck group of the homotopy category of an additive
category is naturally isomorphic to the split Grothendieck group of the additive
category, see [49]. This completes the proof of Theorem 1.1.

More generally, we have:

Theorem 4.4. The bigraded colored Khovanov–Rozansky link homologies [30]
extend to functorial invariants of links in thickened surfaces S, with target the
homotopy category of the category of glN foams in S� Œ0; 1� as constructed in [16].

The skein modules as well as the foam categories for glN with N � 3 are
significantly more complex than their gl2 counterparts. Open questions include:
� Does the category of glN foams in S � Œ0; 1� admit a non-negative grading as

in Corollary 3.18?
� Does it categorify the glN skein module of S as in Theorem 3.36?
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� Does its homotopy category admit an additional structure that categorifies
the Morton–Samuelson commutator identities in the case of the torus [37]?

Khovanov homology and its higher rank cousins should also give categori-
fications of relative skein modules of 3-manifolds with boundary, in which one
allows properly embedded tangles or webs with boundary. A first interesting case
is the 3-ball B3 with a specified number of boundary points. Such relative skein
modules can be categorified via Khovanov(–Rozansky) functors after fixing a
projection of the ball onto a disk. However, the relevant target foam categories and
the corresponding actions of diffeomorphisms of B3 are only understood in very
special cases, e.g. when there are at most four boundary points [56, 57] in which
case the target categories are related to the motivic Donaldson–Thomas theory of
Kontsevich and Soibelman [31], see Stošić and Wedrich [51].

4.1. Algebraic surface link homologies. In this section, we define an algebraic
version of SKh, which has a direct decategorification relationship with the skein
algebra SWebq . Here we assume that S ¤ T and we postpone the discussion of
the case S D T to Section 6.

Definition 4.5. We define SKh0 to be the composition of

� the Khovanov functor SKhWSLinkı ! K.SFoam/,

� the projection to K.SFoam0/,

� the natural functor K.SFoam0/! K.Kar.SFoam0//,

� the functor induced by the representable functorM
F 2S BFS

M
k2Z

HomKar.SFoam0/.F; q
k�/

� the functor of taking the homology of a S BS �Z-graded chain complex.

It is clear from the definition that SKh0 is an invariant of links in S�I , functorial
under isotopy classes rel boundary of link cobordisms in S�I 2. From Theorem 3.36
it follows that for anyW 2 S BS , the graded Euler characteristic �q.SKh0W;�;�.L//
agrees with the coefficient of W in the evaluation of the link L in SWebq .
Furthermore, recall that the elements of S BS are determined by their underlying
integer lamination and first homology class. We can, thus, interpret the target as the
category of vector spaces graded by ¹integer laminations on Sº �H1.S/ � Z � Z
as stated in Theorem 1.5.
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4.2. Functoriality under foams. A beautiful aspect of the original construc-
tion of Khovanov homology is that it starts with a .1C 1/-dimensional TQFT,
i.e. a functorial invariant for un-embedded or planar links, and then uses homo-
logical algebra to encode the embedding or crossing information described by the
link diagram. The construction via Blanchet foams, that we use in this article, has
the advantage that it produces an invariant that is properly functorial under link
cobordisms, but it has the aesthetic disadvantage that it utilizes an intermediate
category of webs and foams, whose set of objects is strictly larger than the set
of planar links. It is then a natural questions whether Khovanov homology can
be extended from the category of links and link cobordisms to a larger category
of tangled webs and foams between them. An analogous question was raised by
Khovanov and Rozansky at the end of [30]. A first approach to resolve it in the
case of Khovanov homology due to Clark, Morrison, and Walker [15] led to the
introduction of the well-named concept of confusions, but not to a conclusion. In
the construction using Blanchet foams, however, extending the Khovanov functor
appears to be more natural. We will now explain the precise framework for this
extension and conjecture that it is well defined. In Section 5, we will assume that
this conjecture holds and explore its consequences for categorified skein modules.

Definition 4.6. The category STanWebı of tangled webs is the category with:
� objects, embeddings of framed webs in S � Œ0; 1�, with a fixed cyclic order of

the edges around each vertex, with generic projection onto S and an ordering
of crossings,
� morphisms, framed foams embedded in S � Œ0; 1� � Œ0; 1�, with boundary

contained in S � Œ0; 1� � ¹0; 1º, with orientations on seams and a fixed cyclic
order of the facets around each seam, modulo isotopy relative to the boundary.
Additionally, there are identity foams that reorder crossings.

We will also consider the category STanWeb, in which the genericity assumption
is dropped. The framing conditions are explained in the following.

Any web drawn on a surface admits a thickening to a ribbon graph, in which
edges are replaced by bands, which join disks around the vertices. A framing on
a web embedded in S � Œ0; 1� is determined by an embedding of an orientable
thickening of the web, up to isotopy.

Similarly, any foam embedded in a 3-manifold can be thickened and a framing
of a foam embedded in S � Œ0; 1� � Œ0; 1� is determined by an embedding of such a
thickening, up to isotopy. The boundary of a framed foam is a framed web, with
cyclic order of edges around each vertex determined by the corresponding cyclic
order of edges around a seam in the foam.
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When illustrating foams F by projection onto S � ¹1=2º � Œ0; 1�, we use the
convention that the cyclic ordering of facets around each seam is determined by
the right-hand rule from the orientation of the seam. Additionally, we require that
the framing of F induces the blackboard framing (parallel to S) on each of the
illustrated time slices F \ S � ¹1=2º � ¹tº.

The objects in the category STanWebı can be visualized as tangled web di-
agrams by the generic projection onto S � ¹1=2º. The morphisms then admit a
description as movies of such diagrams, whose frames differ only by handle attach-
ments, Reidemeister moves (featuring a framed version of the usual Reidemeister I
move) or the new fork slide moves. As usual, this description is not faithful, and
there exist additional movie moves, which relate movies that describe isotopic
foams, see [13, 11].

The Blanchet–Khovanov construction immediately extends to diagrams of
tangled webs, and the invariants of diagrams that are related by fork slide moves
are homotopy equivalent.

Lemma 4.7. The following fork slide isomorphism holds in SFoam and K.SFoam/
respectively:

Kh

0@ 1A Š Kh

0@ 1A; Kh

0@ 1A Š Kh

0@ 1A
together with their variants obtained from changing positive into negative crossing
or changing merge into split vertices.

The reason for the importance of a framing structure on foams comes from the
functoriality question: whether it is possible to make the Khovanov construction
into a functor from STanWebı to the homotopy category of SFoam. If we
disregard framings, then the following two movies of tangled web diagrams (for
any orientation and labelling data) represent isotopic foams. This is Carter’s twist
zipper move:

 !

However, it seems impossible to define vertex twist maps between the Khovanov
invariants of these tangled webs in a coherent way, such that the construction
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assigns homotopic chain maps to both sides of this move. For a more detailed
discussion about this issue, we refer to [41]. In the framed case, however, this move
is disallowed, as are all other movies that involve the problematic vertex twist.

In order to show that the conjectural Khovanov functor is indeed well defined in
the framed setup, one needs to verify that the functor respects a generating set for the
movie moves that relate movie descriptions of foams that are isotopic in STanWebı.
While good progress has been made in this direction (see in particular [16]), a full
proof would still require a significant amount of additional work. For the following
section we will thus assume that the following conjecture holds.

Conjecture 4.8. The Blanchet–Khovanov construction produces a functor from
STanWebı to the homotopy category of SFoam.

Notation* 4.9. We will mark definitions and results that depend on Conjecture 4.8
by an asterisk as done here.

5. The superposition product

The purpose of this section is to explore potential consequences of Conjecture 4.8.
The main application we have in mind is the construction of a bifunctor SFoam �
SFoam! K.SFoam/, which is a first step towards a categorification of the skein
algebra multiplication on SWebq . Another consequence, which only requires a
weaker version of Conjecture 4.8, concerns auto-equivalences of the foam category
SFoam induced by superposing with 2-labeled multi-curves. This also allows
for another algebraic version of the surface link homology functor SKh, which
is closer in spirit to the Asaeda–Przytycki–Sikora invariants and admits spectral
sequences associated to surface embeddings, see Sections 5.2 and 5.3.

We start by considering the superposition operation on STanWeb (and thus
also its subcategory SLink) that assigns to two tangled webs in S � Œ0; 1� and
S � Œ1; 2� their union through the map induced by division by 2 on Œ0; 2�! Œ0; 1�.
More generally, this produces a bifunctor ?WSTanWeb�STanWeb! STanWeb.

In the following we refer to the interval direction in S � Œ1; 2� as vertical.

Lemma 5.1. The superposition operation ? extends to a monoidal structure on
STanWeb.

Proof. For tangled webs L, M , N , the products L ? .M ? N/ and .L ?M/ ? N

are isomorphic via a vertical isotopy foam, which plays the role of an associator
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aL;M;N . If CLWL! L0, CM WM !M 0, and CN WN ! N 0 are foams, then

CL ? .CM ? CN / D a�1L0;M 0;N 0 ı .CL ? CM / ? CN ı aL;M;N :

This shows that the associators are natural in the three arguments. The monoidal
unit is given by the empty web and the left and right unitors are again given by
suitable vertical isotopy foams, which are also natural. The coherence conditions
between the associators and unitors are easily checked. �

After choosing an essential inverse to the inclusion STanWebı ,! STanWeb,
the tensor product ? restricts to STanWebı. Note that such a choice is necessary
since the superposition of generic web embeddings no longer needs to be generic
(though generically it is and we will sometimes implicitly make this assumption).

When composed with the Khovanov functor, the superposition product gives a
bi-functor STanWebı�STanWebı ! K.SFoam/. Note that when the associators
and unitors are vertical isotopies, e.g. in the generic case, their images under the
Khovanov functor are identity morphisms. In the following we study to which
extent the superposition operation ? can be made to intertwine with the Khovanov
functor. A key ingredient is the following lemma.

For this we need the category SFoamfree, which is defined as a free version
of the foam category in which no local relations are imposed, dots are translated
into small handle attachments multiplied by the scalar 1=2, and the only allowed
isotopies are those given by reparametrisations of the vertical coordinate.

Lemma* 5.2. There exists a functor � that makes the following diagram commuta-
tive:

SFoamfree QSTanWeb

SFoam K.SFoam/

 !�

 !  ! SKh

 !
(31)

The bottom horizontal arrow denotes the natural map from SFoam into its homotopy
category, the left vertical arrow is the corresponding quotient functor, QSTanWeb
is the Q-enrichment of STanWeb and SKh denotes the Q-linearized Khovanov
functor (Conjecture 4.8).

Proof. We define � as the functor from SFoamfree to the Q-enriched tangled
web category QSTanWeb which embeds webs in S � ¹1=2º and toric foams in
S�¹1=2º� Œ0; 1�. Note that � takes the thickening direction of SFoamfree to the time
direction in QSTanWeb. From the construction of SKh, it follows that SKh ı �
sends webs and foams in SFoamfree to themselves in K.SFoam/ when considered
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as complexes concentrated in homological degree zero and chain maps thereof. It
is then clear that SKhı � actually factors through the quotient SFoam of SFoamfree
since all isotopy and local relations of SFoam also hold in the target category. �

Proposition* 5.3. The superposition product ? on STanWeb induces a biadditive,
bilinear bifunctor � from SFoam � SFoam to K.SFoam/.

Proof. In an adaption of the proof of Lemma 5.2, we consider the following
diagram:

SFoam�2free QSTanWeb�2 QSTanWeb

SFoam�2 K.SFoam/

 !��2 

!
� !

 !?

 ! SKh

 !
We consider the composite bifunctor

� � � WD SKh.�.�/ ? �.�//WSFoam�2free �! K.SFoam/:

We would like to show that this functor factors through SFoam�2, i.e. that it
respects isotopy of foams and local foam relations in each argument. By symmetry,
we only consider the first argument and fix a web W and its identity foam idW
in the second argument. Let F and F 0 denote two foams in SFoamfree which are
identified via an isotopy in SFoam, then �.F / ? �.idW / and �.F 0/ ? �.idW / are also
identified in QSTanWeb and thus have equal image under SKh by Conjecture 4.8.
Next, let F and F 0 denote two (linear combinations of ) foams in SFoamfree which
are identified via a local foam relation in SFoam. By invariance under isotopy, we
may assume that the local foam relation is applied in a region whose projection onto
S is disjoint from the webW . Since the same foam relation holds on morphisms in
K.SFoam/, the two foams produce equal images under the composite bifunctor �.
We thus conclude that � factors through SFoam�2. �

Remark 5.4. As discussed in Section 1.2, it is doubtful whether the superposition
bifunctor � directly extends to a tensor product on K.SFoam/ that categorifies
the skein algebra multiplication. A better candidate category for this would
be K.Kar.SFoam0// or the equivalent dg category Kar.SFoam0/dg of minimal
complexes, which actually have zero differentials for S ¤ T. These are known to
be suitable choices for S D R2;A and in Section 6 we give supporting evidence in
the case S D T for the suitability of a slightly modified target category.

We now revisit Example 2.4 in the categorified setup to illustrate the superposi-
tion bifunctor.
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Example 5.5. The superposition of the toric .0; 1/ and .1; 0/ curves evaluates
under the Khovanov functor to the following chain complex in TFoam:

Š
0@ �����������! qt�1

1A:
The second term in this complex is a web whose underlying curve is the .1;�1/
curve. More precisely, note that after an isotopy we see

qt�1 Š qt�1 D � : (32)

So the Khovanov functor sends the product .1; 0/ ? .0; 1/ to a chain complex built
out of .1; 1/ and .1;�1/�^.0;1/. Moreover, in the degree zero truncation TFoam0,
the differential is set to zero and we obtain a decomposition .1; 0/ ? .0; 1/ Š
.1; 1/˚ .1;�1/ � ^.0;1/.

We call The operations of superposing with 2-labelled curves will be called
�^-operations. In the next section, we will see that �^-operations give auto-
equivalences of the foam category SFoam that intertwine with the Khovanov
functor, assuming Conjecture 4.8.

5.1. Superposition with 2-labeled webs. Recall that we denote by ^.x/ for
x 2 H1.S/ a choice of 2-labeled multicurve with Œ^.x/� D 2x 2 H1.S/. For the
following, we consider a homologically graded version of the foam category, which
we formally define as the dg category SFoamdg WD

L
k2Z t

kSFoam with trivial
differential. Our goal is to prove the following result, assuming Conjecture 4.8.

Theorem* 5.6. The �^-operation ��^.x/ is an auto-equivalence on SFoamdg of
H1.S/-degree 2x, which is of q-degree c � x and homological degree �c � x on the
block of SFoamdg indexed by c 2 H1.S/.

Here � denotes the bifunctor from SFoam�2 to K.SFoam/ from Proposition 5.3.
When contracted with the 2-labeled multicurve^.x/ this at first sight gives a functor
from SFoam to K.SFoam/. However, if W is a web with ŒW � D c 2 H1.S/, then
W � ^.x/ is a chain complex concentrated in homological degree �c � x, which we
may again consider as web, although homologically shifted. This means � � ^.x/
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naturally maps to the target SFoamdg and it then trivially extends to an endofunctor
of SFoamdg.

Before giving a proof of Theorem 5.6 modulo Conjecture 4.8, we illustrate
how �^-operations behave on morphisms by computing another example of
superposition on the torus.

Example 5.7. The superposition .2; 1/ � .0; 1/ has the following expansion as a
chain complex in TFoam:

Š q2t 2

qt 1

qt 1

˚ .

Here the differentials are given by the usual signed zip foams. After collapsing
the digons in the two objects in homological degree �1, we get the following
isomorphic complex.

.

t 1 ˚ q2t 1

t 1 ˚ q2t 1

˚ ˚
q2t 2

The differentials on the left-hand side merge the parallel 1-labeled strands,
either directly (blue), or going around the torus (red). The degree shift by 2 is
accomplished by placing dots in the indicated locations. The differentials on the
right-hand side are given by analogous (dotted) splitter foams, acted upon by
^.0;1/. In the degree zero truncation, the entire chain complex splits into the visible
q-degree 0 and 2 parts and we will see in Section 6.4 that these parts are resolutions
of the categorifications of the basis elements .2; 2/T and .2; 0/T �^.0;1/ of TWebq .

Theorem 5.6 is implied by the following lemma. For this we let ^.�x/ denote a
parallel copy of ^.x/ with the opposite orientation.

Lemma* 5.8. The endofunctors � � ^.x/ and � � ^.�x/ are inverse auto-
equivalences of SFoamdg.
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More precisely, the identity functor on SFoam is isomorphic to the composition
of the endofunctors ��^.x/ and ��^.�x/ via the natural transformation � which
associates to a web W an invertible foam �W from W to W � ^.x/ � ^.�x/, which
is modeled in a neighborhood of the intersection of idW with id^.x/ by

and

as well as their reflections if the sign of intersection is opposite. Away from id^.x/ ,
the foam �W is simply given by the disjoint union of idW and the continuation of
the yellow halfcircle � Œ0; 1� facets. Motivated by their appearance we call the �W
roof gutter foams. They are invertible with inverses given by (signed) reflection in
a horizontal plane.

Proof. To see that � is a natural transformation, we need to check that for any foam
F WW1 ! W2 we have

�W2 ı F D .F � ^.x/ � ^.�x// ı �W1 ; (33)

in other words, that roof gutters can be pushed through any foam. This again follows
from Conjecture 4.8 since both sides of (33) can be written as SKh.�.F / ? �;/
and related by isotoping �;. �

As a consequence we get that � induces isomorphisms

SFoam.W1; W2/ Š SFoam.W1 � ^.x/; W2 � ^.x//:

Remark 5.9. Note that ^.x/ �^.y/ Š q2x�y t�2x�y^.xCy/. Similarly, if F is a foam
in SFoam, then we have that .F � ^.x// � ^.y/ is equivalent to F � ^.xCy/ in the
sense that they coincide up to grading shifts on their source and target objects and
conjugation by a natural isomorphism.

5.2. Recovering the Asaeda–Prztycki–Sikora link homologies. In this section
we sketch the construction of another type of algebraic categorical link invariant
from the invariants obtained in Theorem 4.3. These invariants are analogous to
the Asaeda–Przytycki–Sikora link homologies and agree with them when defined
over Z=2Z. Their construction uses Blanchet’s trivalent TQFT and Conjecture 4.8.
Recall that Blanchet’s TQFT is a functor that associates a Z-graded Z-module to
any abstract Blanchet web and a homogeneous homomorphism to any abstract
Blanchet foam between webs. We will extend this to field coefficients (Q or Z=2Z)
and again write HomFoam.;;�/ for the resulting functor.
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The basic idea is to first apply Blanchet’s TQFT to the Khovanov chain
complexes on S, but regarded as chain complexes of abstract webs and foams
between them, and then to refine the resulting invariant by a surface-specific
grading.

There are two main problems with this basic idea. First, not all foams in SFoam
qualify as Blanchet foams, and second, there can be webs in SFoam that bound no
abstract Blanchet foams at all.

In order to remedy the first problem, we can project to the orientable part
SFoamor, whose morphisms qualify as Blanchet foams by Proposition 3.15.

As regards the second problem, note that for any web W on S, we can find
a 2-labeled web ^W such that the superposed web W � ^W admits an invertible
foam �W from a purely 1-labeled web. �W can be chosen such that its underlying
1-labeled surface is an identity cobordism, so it is a Blanchet foam. The source
web of �W is abstractly just a union of circles, thus it abstractly bounds, and by
composition so does the web W � ^W . In other words, any web can be made into
a Blanchet web up to �^-operations.

Now, let us decompose the category SFoamor into blocks. The homology class
ŒW � induced by a web W as in Definition 2.5 is invariant in each block, however,
in general the decomposition into blocks will be finer than the decomposition
along H1.S/. For example, the two webs in Example 2.4 have the same first
homology class, but lie in different blocks: indeed, only unorientable foams could
map between them. We now choose one web Wb per block, and make a choice of
a 2-labeled web ^Wb , such that W � ^Wb is a Blanchet web.

Then it follows that the �^-operation � � ^Wb turns all webs in the block b
into Blanchet webs. Indeed, for V 2 b there exists an orientable foam F from Wb
to V (given as the composition of non-zero morphisms in SFoamor) and F � ^Wb
pre-composed with �Wb produces a Blanchet foam that maps between a disjoint
union of 1-labeled circles and V � ^Wb . This implies that V � ^Wb bounds a
Blanchet foam and thus is a Blanchet web.

Let LS denote the free Z-module generated by unoriented, essential simple
closed curves on S up to isotopy.

Definition* 5.10. The twisted Blanchet TQFT for S is the functor SBlWSFoamor !
VectZ from the foam category SFoamor to the category of Z-graded vector spaces
and grading preserving linear maps, which is defined as follows. For the block b of
SFoamor, the functor is defined as SBl.�/ WD HomFoam.;;� � ^Wb /. Evaluated
on a web V 2 b, this produces a vector space SBl.V / that is spanned by abstract
foams G with boundary V �^Wb , whose 1-labeled parts can be assumed to consist
of dotted and undotted disks, as a result of neck-cutting relations. The Z-grading



182 H. Queffelec and P. Wedrich

of such a basis element is given by twice the number of dots, minus the number of
connected components of c.V / D c.V � ^Wb /.

The vector spaces SBl.V / furthermore admit an additional LS-grading, which
is defined on a spanning foam G as follows. If a disk in c.G/ bounds a curve that
is inessential in S, then it does not contribute. Otherwise, let c denote the essential
boundary component. Then the disk contributes c to the LS-grading if the disk is
undotted and �c if the disk is dotted.

Proposition* 5.11. The images of morphisms in SFoam0 under the functor SBl
preserve the LS-grading and the complementary q-grading. Thus, we get an
induced functor SBlWSFoam0 ! VectLS�Z to the category of LS � Z-graded
vector spaces and grading-preserving linear maps between them.

Proof. Let F be a foam in SFoam0. Since the refinement of the gradings depends
only on the topology of the underlying surface and the presence of dots, we focus
on c.F /. We have seen in the proof of Proposition 3.22 that we may assume that this
dotted surface consists of undotted incompressible annuli and tori as well as other
components involving only null-homologous circles. Under the twisted Blanchet
TQFT, these other components make no contributions to the LS-grading and they
preserve the complementary q-grading because they do so in SFoam0. Similarly,
undotted tori and undotted vertical annuli, i.e. those with one boundary component
at the top and one at the bottom of S� Œ0; 1�, trivially preserve both gradings. Thus,
it remains to deal with annuli that either have both boundary components on the
bottom or on the top of S � Œ0; 1�. In the first case, the twisted Blanchet TQFT
produces a map which can be non-zero only on basis elements that consist of two
disks, exactly one of which carries a dot (since only spheres with precisely one
dot have a non-zero evaluation). Such basis elements are of degree zero, as is the
empty basis element. In other words, the morphism assigned to the annulus with
bottom boundary preserves all gradings. The morphism assigned to the annulus
with top boundary is computed by abstract neck-cutting: it sends zero disks to the
sum of two configurations of two disks, which differ in the location of a single dot.
Again, both the domain and the target object carry the same degrees. �

Definition* 5.12. We define the link homology functor

SAPSWSLinkı �! VectLS�Z�Z

as the composition of the Khovanov functor SLinkı ! K.SFoam/, the projection
to K.SFoam0/, the twisted Blanchet TQFT SBl and the functor of taking the
homology of an LS � Z-graded chain complex.
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The functor SAPS is closely related to the one originally defined by Asaeda,
Przytycki, and Sikora [2]. Because of the lack of functoriality that the APS
construction inherits from Khovanov’s construction, we can only compare our
process with theirs over Z=2Z. The main ingredient for constructing their link
homologies is a functor from Bar-Natan’s cobordism category SCob to the category
of LS � Z-graded vector spaces. Over Z=2Z this can be pre-composed with the
forgetful functor SFoam ! SCob defined on webs and foams by erasing all
2-labeled edges and facets and by forgetting orientations. The following lemma
follows by directly comparing this composition with the twisted Blanchet TQFT
on elementary cobordisms.

Lemma 5.13. The composition of degree zero projection and the twisted Blanchet
TQFT SBl, as used in Definition 5.12, agrees over Z=2Z with the APS TQFT after
forgetting all 2-labeled information and orientations in webs and foams.

Since both approaches follow essentially the same the cube-of-resolutions
strategy to resolve link diagrams, we conclude with the following comparison
result.

Corollary 5.14. For each link L in S � Œ0; 1�, the invariant SAPS.L/ agrees with
the APS invariant of L when defined over Z=2Z, up to overall grading shifts.

5.3. Spectral sequences from surface embeddings. In this section we prove that
each embedding of surfaces �WS! S0 induces spectral sequences SAPS.L/ 
S0APS.�.L// for links L in S � Œ0; 1�, i.e. Theorem 1.6. This generalizes the
well-known spectral sequences between annular Khovanov homology and the usual
Khovanov homology. In this section we work with Z=2Z-coefficients, but all results
hold over Q and indeed Z modulo appropriate versions of Conjecture 4.8.

Definition 5.15. LetW be a web in SFoam andG anLS�Z-homogeneous element
of SBl.W / with LS-degree

P
i mici for mi 2 Z and distinct isotopy classes of

essential simple closed curves ci . Then we define the S-weight of G as
P
i mi 2 Z.

If S is an annulus, the S-weight agrees with the sl2-weight in annular Khovanov
homology.

Lemma 5.16. Let F be a foam between webs W1 and W2 in SFoamor. Then F
induces a linear map between SBl.W1/ and SBl.W2/ that does not increase the
S-weight. Moreover, if F is homogeneous of essential q-degree d , then the linear
map lowers the S-weight by d .
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Proof. The LS-grading and weight depend only on the 1-labeled surface S D c.F /
and we may assume that S is a disjoint union of incompressible connected
components Si and, without loss of generality, none of the Si is a (dotted) disk or
a (dotted) closed surface. (Neither contribute to the weight, and the latter are sent
to zero by the representable functor if they have positive essential q-degree.)

Suppose that F , and more concretely the component S1, is of positive essential
q-degree. This means S1 D S 01 ıX where X is either
(1) an identity cobordism with a dot on the cylinder over an essential simple

closed curve c,
(2) a saddle cobordism merging two distinct essential simple closed curves c1; c2

into another essential simple closed curve c, or
(3) a saddle splitting an essential simple closed curve c into two essential simple

closed curves c1; c2.
In these cases, X acts as the identity on everything except on cup generators of the
following degrees:
(1) c 7! �c;
(2) c1 C c2 7! c, c1 � c2 7! �c, and c2 � c1 7! �c;
(3) �c 7! �c1 � c2 and c 7! c1 � c2; c2 � c1.

In each case, the S-weight decreases by the essential q-degree ofX . We have already
seen in Proposition 5.11 that morphisms of essential q-degree zero preserve the
LS-grading and thus the S-weight. Together, these statements imply the lemma. �

Lemma 5.17. For a suitable choice of correcting multi-curves  , we have a
commutative diagram

SFoamor SFoam0

FSVectZ VectLS�Z

 �

 !SBl  ! SBl

 �ass. gr.

where FSVectZ is the category of Z-graded vector spaces and grading-preserving
linear maps, whose objects are additionally LS-graded, and the linear maps are
filtered with respect to the S-weight as in Lemma 5.16. The bottom horizontal
arrow is the functor of taking the associated graded with respect to the filtration.

Proof. The existence of the representable functor on the left vertical arrow follows
from Lemma 5.16. Moreover, we have also seen that taking the associated graded
with respect to the filtration kills the images of all morphisms of positive essential
q-degree and acts as the identity on all morphisms of essential q-degree zero. �
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For the following, let �WS! S0 denote an embedding of surfaces.

Lemma 5.18. If a foam F in SFoam is homogeneous of essential q-degree zero,
the same is true for �.F / in S0Foam.

Proof. By the essential q-degree zero assumption, we may assume that the
underlying surface of F consists of undotted incompressible annuli and tori as
well as potentially dotted disks. The embedding � will generate no new non-disk
incompressible surfaces with dots or negative Euler characteristic, so �.F / is of
essential q-degree zero in S0Foam. �

Theorem 5.19. Given an embedding �WS! S0 and a link L in SLinkı, we have
that S0APS.�.L// is the homology of a filtered chain complex, whose associated
graded has homology SAPS.L/, with the LS-grading collapsed to a LS0-grading
via the embedding �. This implies the existence of a spectral sequence with E2
page SAPS.L/ that converges to S0APS.�.L//.

Proof. Recall that the definitions of SBl and thus APS depend on the choice of
2-labeled multi-curves, which are used to turn all webs on the relevant surface into
Blanchet webs. Here, we first choose a collection of multi-curves  on S and then
complete it to a collection  0 for S0. Now we consider the diagram in Figure 2.

The outside pentagons commute by definition. The upper two central squares
commute by the naturality of SKh in S and the fact that orientable foams stay
orientable under surface embeddings. The two triangles in the second row commute
since they express an iterated quotient. The first and the third square in the third row
commute by Lemma 5.17. Commutativity of the middle square follows from our
choice of correcting curves  and  0 and the fact that the LS-degree of a morphism
determines the LS0-degree of its image under the surface embedding. In the last row
we first see a square of homology and forgetful functors which trivially commutes.
The next triangle is more interesting. To make sense of it, we use the following
observation.

Claim. Any morphism in Im.SBl/ � FSVectZ that preserves the S-weight also
preserves the S0-weight.

We fix such a morphism and by linearity we may and do assume that it appears
in the image of single foam F in SFoam which is homogeneous with respect to
essential q-degree. By Lemma 5.16, the essential q-degree of F is zero. Then
�.F / is also of essential q-degree zero in S0Foam by Lemma 5.18, and its image
under S0Bl preserves the S0-weight by Lemma 5.16.
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Now returning to the interpretation of the triangle, the horizontal arrow kills
all maps which do not preserve the S-weight, which in particular includes all
maps that lower the S0-weight. Alternatively, the vertical arrow first kills only the
maps that lower the S0-weight. The surviving maps in the target K.FSVectLS0�Z/

preserve the S0-grading on objects—thus the superscript LS0 � Z—but there can
be maps left which decrease the S-weight grading—indicated by the filtration
symbol FS. The diagonal arrow then takes the associated graded with respect to
this filtration, which makes the triangle commutative. Alternatively, the S-weight
filtration on K.FSVectLS0�Z/ can be entirely forgotten, which is what the right-and-
upward arrow does. The triangle-shaped square above it trivially commutes. This
establishes the commutativity of the entire diagram.

Now, given a link L in SLinkı, following the vertical functors downward
produces a filtered chain complex in K.FSVectLS0�Z/, whose total homology is
isomorphic to S0APS.L/ and whose associated graded has homology SAPS.L/,
with the LS-grading collapsed to a LS0-grading via the embedding �. �

6. Toric link homology

In this section, we finish the discussion of the foam categories SFoam by dealing
with the remaining case of the torus S D T. In particular, we introduce replacements
for the Jones–Wenzl basis foams, which allow the completion of the proof of the
isomorphism TWebq Š K0.TFoam/ and the definition of an algebraic toric
Khovanov homology TKh0 as in Section 4.1.

6.1. Affine web categories and extremal weight projectors. The purpose of
this section is to recall definitions and results from [45, 46] on affine web categories
and extremal weight projectors for gl2. In the following, we will use these concepts
to study a quotient of the toric foam category TFoam.

Definition 6.1. The affine gl2 web category AWebq is the category with

� objects, finite sequences of elements of the set ¹1; 2; 1�; 2�º, including the
empty sequence,

� morphisms, ZŒq˙1�-linear combinations of gl2 webs properly embedded in the
annulus A, viewed as mapping from the sequence on the inner boundary circle
to the sequence of the outer boundary circle. These webs are considered up
to isotopy relative to the boundary and modulo the gl2 web relations (2)–(5).
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Here 1 and 2 encode radially outward pointing boundary points of associated label,
and 1� and 2� encode inward pointing boundary points. Composition is given by
stacking annuli with matching boundary data.

The category AWebq is monoidal with the tensor product acting by concatena-
tion on objects and by the skein algebra product on morphisms, see the following
figure. The morphisms furthermore admit a Z-grading by winding number, which
is computed by the algebraic intersection number of web edges, weighted by label,
with the dashed segment shown in the following figure. In the following we will
mostly consider the q D 1 specialization AWeb, which is actually symmetric
monoidal:

1 2�

2

2� 1�

; W1 ˝W2 WD �

�

W2

W1

:

Particularly useful are the auto-equivalence �.�/ WD � ˝ id2 given by super-
posing with a 2-labeled strand and its quasi-inverse ��.�/ WD � ˝ id2� .

Definition 6.2. The category AWebess is defined as the quotient of AWeb by the
tensor ideal generated by the endomorphisms of ; given by essential 1-labeled
circles.

Definition 6.3. The extremal weight projectors Tm are idempotent endomorphisms
of the object 1˝m in AWebess, which are defined recursively starting with T1 D id1
and

T2 D �
�

� 1
2 �

�
� 1
2 �

�
;

and TmC1 WD .id1˝m�1 ˝ T2/.Tm ˝ id1/ for m � 2.
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Remark 6.4. Additionally setting the 2-labeled essential circles in AWebess equal
to �id; produces the affine web category AWebess, which gives a diagrammatic
presentation of the representation category of the Cartan subalgebra of gl2, see [46,
Theorem 1]. Under this presentation, the idempotentTm encodes the endomorphism
of V ˝m given by projection onto the extremal weight spaces in Symm.V /.

When considering the Karoubi envelope of AWebess, whose morphism spaces
have an addition Z-grading by winding number, we introduce additional winding
grading shifts of objects and then consider only morphisms whose winding number
is given by the difference of the winding grading of the target and the source object.
For more details, see the discussion after [46, Definition 42]. It turns out that for
most objectsW in Kar.AWebess

/, all winding grading shifts wkW are isomorphic
to each other, but this is not the case for �k.;/.

Proposition 6.5. The category Kar.AWebess
/ is semisimple with a skeleton

generated by the objects �k.Tm/ for m > 1, �k.;/ and w�k.;/, where k 2 Z.
In particular, these objects have 1-dimensional endomorphism algebras and there
are no other non-trivial morphisms between distinct objects from this collection.

Proof. See [46, Section 4.2]. �

Proposition 6.6. Tensor products of extremal weight projectors with m; n � 1

decompose as follows in Kar.AWebess
/:

�a.Tm/˝ �b.Tn/ Š �aCb.TmCn/˚ �aCbCmin.m;n/.Tjm�nj/

where T0 WD ; ˚ w; by definition.

Proof. See [46, Section 4.1]. �

Finally, we will need the following relation from [46, Lemma 23]:

�
�

D � �
�

: (34)

6.2. Slope subcategories. In this section, we will study the category TFoam,
one slope m=n at a time. The main result is that the degree zero morphism spaces
in these pieces are controlled by the affine web category AWeb. For this, we
will assume a weak form of Conjecture 4.8, namely that the �^-operations from
Section 5.1 give auto-equivalences of the toric foam category. We start with the
following basic observation which is analogous to Lemma 3.26.
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Lemma 6.7. For any oriented simple closed curve c on the torus, there exists a
functor AWeb! TFoam which sends affine websW to the rotation foamsW �S1,
where rotation is performed along c.

Definition 6.8. Let m=n be a slope. We define:
� the slope subcategory TFoamm=n, the full subcategory of TFoam with objects

given by (direct sums of q-shifts of ) the webs of slope m=n (including all
inessential webs);
� the parallel slope category TFoamp

m=n
, the full subcategory of TFoamm=n

with objects given by (direct sums of q-shifts of ) collections of 1- and 2-labeled
parallel copies of the slope m=n with arbitrary orientations.

The next result follows directly from Lemma 3.8.

Corollary 6.9. Every web in TFoamm=n is isomorphic to an object of TFoamp

m=n

acted upon by the auto-equivalence of superposing a suitable 2-labeled multi-curve
and a compensating shift in homological degree.

Suppose that superposition with 2-labeled multi-curves gives auto-equivalences
of TFoamdg as in Section 5.1. Then the Hom-spaces of TFoamm=n are controlled
by the Hom-spaces of TFoamp

m=n
.

Corollary* 6.10. Let W1 and W2 be webs in TFoamm=n with ŒW1� D ŒW2�. Then
there exists a 2-labeled multi-curve Z and k 2 Z, such that tkW1 �Z Š W p

1 and
tkW2 � Z Š W

p
2 , where W p

1 and W p
2 are objects in TFoamp

m=n
. This implies

TFoam.W1; W2/ Š TFoam.W p
1 ; W

p
2 /.

It thus remains to understand the morphism spaces in the parallel slope
subcategories. By definition, their objects are S1-equivariant along the slope
direction. Our next goal is to show that we may also assume that this is the case
for the morphisms.

To this end, we want to write arbitrary foams in a parallel slope subcategory
as compositions of “wrap-around foams” and foams that are supported in an
annular neighborhood A of the slope, i.e. foams that live in the subcategory
AFoam ,! TFoamm=n.

Lemma 6.11. Let W1 and W2 be webs in TFoam supported in an annular neigh-
borhood of the slope m=n. Then every morphism F 2 TFoam.W1; W2/ factors
into a composition of morphisms in AFoam � TFoamm=n and S1-equivariant
wrap-around foams in the image of AWeb! TFoamm=n.
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An paradigmatic example of such a factorization in the case of the slope 1=0 is
shown in Figure 3.

D .x � y/

y

x

D .q C q�1/

Figure 3. A foam between toric webs supported in the neighborhood of the slope 1=0 is
expanded as a composition of annular and wrap-around foams.

Proof. Consider the affine web given by generically intersecting F with the identity
foam on the antipodal curve of the slope. This is drawn in green in Figure 3. By
Lemma 3.8 in the special case of the annulus, we can apply foam relations to F
to make this intersection S1-equivariant. Every circle in this web corresponds to
a wrap-around foam and the rest of F can be isotoped into the cylinder over the
neighborhood of the slope. This decomposes F as desired. �

Lemma 6.12. Every morphism in TFoamp

m=n
can be expressed as a linear

combination of foams that are S1-equivariant along the slope direction, possibly
with dots.

Proof. By Lemma 6.11, foams in the parallel slope categories can be factored
into wrap-arounds (clearly S1-equivariant) and foams supported in an annular
neighborhood A of the slope between S1-equivariant webs. We shall now show
that these annular foams can be made S1-equivariant as well.

ConsiderF 2 AFoam.W1; W2/withW1 andW2 S1-equivariant, that is, parallel
copies of essential 1- and 2-labeled circles in the annulus. Note that proving that
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F can be written as a linear combination of S1-equivariant foams is equivalent to
proving that any pre- or post-composition of F with the S1-equivariant foam over
an invertible linear combination of webs can be written as a linear combination of
S1-equivariant foams. In particular, this allows to braid boundary circles.

Furthermore, the problem of decomposing F is also preserved by the use of
duality maps given by bending a boundary circle lying on one side to the other side
(which reverses its orientation). Using braiding and duality, we may thus assume
that all circles come with the same orientation in W1 and W2, that 2-labeled circles
appear only in W1 or in W2, and they do so on the left, relative to the orientation of
the other circles. Note that the sums of the labels of the circles in W1 and W2 are
equal. The proof proceeds by induction on this sum n.

If n D 0, then F is closed and can be evaluated as follows: A generic slice is
a closed web, along which F can be neck-cut by first using Lemma 3.6 and then
2-labeled neck-cutting. The result is a closed foam in a ball, which evaluates by
Lemma 3.9.

If n D 1, thenW1 andW2 are both given by a single circle, and a generic section
of F is a web with one boundary point at the bottom and one at the top. Such
webs are isomorphic to multiples of the identity web, and thus the foam can be cut
accordingly by use of Lemma 3.5. Then one can apply a neck-cutting relation on
a push-out of the square formed by the top and bottom segments circles and two
copies of the vertical segment given by the section. The result is a sum of unions of
a possibly dotted identity foam and closed foams that can be evaluated to scalars.

Next, we consider the case of n � 2, and we may assume that it is W1 that
contains no 2-labeled circles. If the connected component F1 of F that contains the
leftmost circle inW1 does not contain any other circles inW1, then F1 contains only
the leftmost circle in W2 (which is thus 1-labeled), and we can apply the argument
for the previous case to make this component of F S1-equivariant. Moreover,
F n F1 can be made S1-equivariant by the induction hypothesis.

Now, consider the case where the two leftmost circles inW1 belong to the same
connected component of F . This implies that there exist two paths starting at points
in the circles, which meet on a 2-labeled facet in F . This means we can create an
S1-equivariant and possibly dotted standard turnback at the bottom of F1 as in the
proof of Lemma 3.32. Next we distinguish two cases.

If W2 contains a 2-labeled circle at the left, then two applications of the
2-labeled neck-cutting relation will connect the merging turnback directly with the
2-labeled circle in W2, and this S1-equivariant merge foam can be stripped off F ,
thereby reducing the sum of boundary labels. The remaining foam can be made
S1-equivariant by the induction hypothesis.
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If W2 does not have a 2-labeled circle, then a similar argument will find a split
foam terminating in the two leftmost 1-labeled circles in W2. In this case, two
2-labeled neck-cutting relations will connect the merge and the split foam directly,
thereby creating a component that can be stripped off F . The remaining foam can
again be made S1-equivariant by the induction hypothesis. �

In other words, the morphisms in the parallel slope subcategories are given by
rotation foams generated by affine webs, possibly decorated with dots. Indeed, the
(essential) q-degree of such a morphism is twice its number of dots.

Corollary 6.13. For every slope m=n, the rotation functor AWeb! TFoamp

m=n

from Lemma 6.7 is surjective on objects and full onto the essential q-degree zero
part of TFoamp

m=n
.

Proof. Surjectivity on objects is clear from the definition and the claimed fullness
was proved in Lemma 6.12. �

Proposition 6.14. The rotation functor AWeb! TFoamp

m=n
is faithful, making

the category AWeb isomorphic to the essential q-degree zero part of TFoamp

m=n
.

Proof. We prove that the functor takes certain spanning sets for the morphism
spaces of AWeb to linearly independent sets of morphisms in TFoamp

m=n
.

Consider a particular morphism space in AWeb and its spanning set which is
given by affine webs W with underlying 1-labeled curve c.W / without inessential
closed components. It is not hard to see that if two such webs have isotopic
underlying curves c.W / and equal winding degree, then they are equal up to a sign.
So we keep only one web W per pair of isotopy class of c.W / and winding degree
of W in the spanning set. We already know that the foams given as the images
of these webs under the functor � � S1 span the relevant degree zero morphism
space in TFoamp

m=n
.

From Proposition 3.22 we see that these foams are non-zero and that there can
be no non-trivial Q-linear relation between such foams if they have non-isotopic
underlying surfaces. Additionally, there can be no non-trivial Q-linear relation
between foams that come from webs of distinct winding degree, since they will
represent distinct relative second homology classes (but all foam relations are
homogeneous in relative second homology). �

Remark 6.15. Under the isomorphism of the essential q-degree zero subcategory
of TFoamp

m=n
with AWeb, the superposition operations with 2-labeled copies of

the slope m=n correspond to the auto-equivalences � and �� from Section 6.1.



194 H. Queffelec and P. Wedrich

The interplay between different slopes is fairly restricted, as shown by the
following lemma.

Lemma 6.16. LetW1 andW2 be essential webs in TFoam of different slopes, and
F be an orientable foam between W1 and W2. Then F factors through a web
without 1-labeled edges.

Proof. Consider an orientable foam F 2 TFoam.W1; W2/ and denote by c.F / its
underlying orientable surface, which bounds the multi-curves c.W1/ and c.W2/
obtained from the webs W1 and W2. By assumption c.W1/ and c.W2/ represent
multiples of different primitive homology classes, however, they are homologous
via S and thus individually null-homologous. By Corollary 3.7 we may assume
that they consist of even numbers of parallels of the slope. Our goal is to find a
sequence of neck-cutting relations that we can apply to c.F / in order to disconnect
the multi-curves c.W1/ and c.W2/. A corresponding sequence of foam relations
will then show that F can be written as a linear combination of foams that factor
through a web without 1-labeled edges.

At the expense of performing a small isotopy, suppose that the standard height
function on c.F / � T � I is a separated Morse function. Then we consider the
sequence of index 1 critical points in order of height and their unstable manifolds,
i.e. the gradient flow lines flowing downward out of such a critical point. For each
such critical point, starting with the lowest, there are three possibilities:

(1) One flow line hits an index 0 critical point, in which case we can cancel the
two critical points by an isotopy (this works in c.F / as well as in F ).

(2) Both flow lines hit the same component of c.W1/. Since c.F / is orientable, this
corresponds to splitting off a non-essential circle. Indeed, a compression disk
can be constructed as shown in Figure 4. Neck-cutting along this eliminates
the critical point.

(3) The two flow lines hit different components of c.W1/, which are necessarily
adjacent in the sense that they bound an annulus in T n c.W1/. From this, we
obtain a compression disk (as shown on the right in Figure 4), neck-cutting
along which results in an annulus capping off the two components of c.W1/.

In either case, we denote the result again c.F /. This procedure can be iterated
until c.W1/ and c.W2/ are disconnected along c.F / because sufficiently many
index 1 critical points exist by the homological assumptions. Note that we have
used that for any compression diskD for c.W1/, it is possible to apply a neck-cutting
relation to the foam F with the same result after forgetting 2-labeled facets. This
was shown in Lemma 3.6. �
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Figure 4. Types of index 1 critical points, the last two with the desired compression disks.

Unorientable foams can map between essential webs of different slopes via
unorientable saddles, but by Lemma 3.17 such a saddle has a positive essential
q-degree. Thus, Lemma 6.16 implies that all slope-changing foams in TFoam0

factor through a web without 1-labeled edges.

6.3. A quotient of the toric foam category. In this section, we will study a
particular quotient of the toric foam category. To streamline the exposition, we will
assume that Conjecture 4.8 holds. However, most results here can be described
and proven as in Section 3.2 without relying on �^-operations or Conjecture 4.8.

Recall from Proposition 5.3 that superposition induces a bifunctor � from
TFoam � TFoam to K.TFoam/. For the following, we denote by T˙1 the
endomorphism of the empty web in TFoam given by the boundary parallel essential
torus, with the standard or the opposite orientation. Note that the contraction T˙1��
of the superposition bifunctor with these essential tori gives degree-preserving
endofunctors of TFoam, which thus restrict to endofunctors of TFoam0.

Definition 6.17. The foam category TFoamess is the quotient TFoam0=Q, where
Q is defined to be the ideal of TFoam0 generated by the morphisms of the form
T˙1 � F for foams F in TFoam0.

Above we have seen that TFoam0 can be decomposed into full subcategories
TFoamm=n;0 corresponding to slopes on T. After applying auto-equivalences given
by �^-operations and decomposing webs with inessential 1-labeled components,
we arrive at the subcategories TFoamp

m=n;0
, which can be described by the affine

web category AWeb. In these subcategories, Q precisely corresponds to the ideal
generated by 1-labeled essential circles in AWeb.

Proposition 6.18. The graded additive Q-linear category TFoamess satisfies the
following properties:
(1) TFoamess decomposes into blocks indexed by H1.T/,
(2) �^-operations provide equivalences between these blocks,
(3) the parallel slope subcategories of TFoamess are isomorphic to AWebess,
(4) all unorientable foams are zero in TFoamess,
(5) slope changing foams factor through purely 2-labeled webs.
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Proof. The first two properties are immediate since the direct sum decompositions
and auto-equivalences are inherited by the quotient. The third property was
discussed above and the fourth is inherited from TFoam0, see Corollary 3.21.
Finally, in the proof of Lemma 6.16 we have observed that slope-changing foams
factor through a purely 2-labeled web if they do not contain an unorientable saddle.
The claim (5) then follows from (4). �

Lemma* 6.19. Superposition induces a bifunctor

�WTFoamess � TFoamess �! K.TFoamess/:

Proof. It suffices to prove that ifW1 andW2 are toric webs andF D T˙�idW1 , then
F � idW2 WTKh.W1 ? W2/! TKh.W1 ? W2/ is a chain map whose components
are of the form T˙ � idX , where X denotes a web appearing in the complex
TKh.W1 ? W2/.

To this end, we claim that the two chain maps given by F � idW2 D
TKh.�.TKh.T˙? idW1//? idW2/ and TKh.T˙? idW1 ? idW2/ are homotopic. In the
latter, we can omit parentheses because the superposition product on QTTanWeb
has associators given by isotopies that are generically vertical and are thus sent to
identities by the Khovanov functor.

For the proof of the claim, recall that the computation of the map induced by a
foam in TTanWeb relies on a presentation of the foam as a movie of tangled webs
in T� Œ0; 1�. Each basic movie, which is supported in a small disk, induces a chain
map between the corresponding Khovanov complexes, whose components are
given by foams which differ from identity foams only over the same small disk. By
virtue of this locality, we may compute the chain map TKh.T˙?idW1?idW2/ in two
steps. In the first step we only resolve crossings that involveW1 and the webs given
by slices through the foam T , but none of the crossings with the webW2. The result
of this partial computation is a movie of tangled webs, which represents the foam
�.TKh.T˙ ? idW1// superposed over the identity foam on W2. This intermediate
result of the first computation step agrees precisely with the movie of tangled webs
from which TKh.�.TKh.T˙ ? idW1// ? idW2/ is computed. This implies that the
two chain maps are homotopic.

Finally, we re-associate once more and compute the chain map TKh.T˙?idW1?
idW2/ by first resolving all crossings between W1 and W2 before computing the
action of the torus T˙ on all webs X that appear in TKh.W1 ? W2/. By definition,
this action is given by foams T˙ � idX , which concludes the proof. �

Since the parallel slope subcategories of TFoamess are isomorphic to AWebess,
they contain idempotent endomorphisms corresponding to the extremal weight pro-
jectors from Section 6.1. These idempotents represent objects in Kar.TFoamess/
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which categorify the basis elements .m; n/T 2 T BT of the gl2 skein algebra of the
torus, as described in Section 2.2.

For the following, considerm; n 2 Z, not both equal to zero, and d D gcd.m; n/.
We choose (once and for all) a 1-labeled, oriented multi-curve .m; n/ of homology
class mŒ�� C nŒ�� on T, which consists of d parallel copies of a simple closed
curve. Note that this is consistent with Section 2.2, but now we consider .m; n/ as
an object of TFoamess and hence do not allow isotopies.

Definition 6.20. We denote by .m; n/FT the object in the Karoubi envelope of
TFoamess, given by the web .m; n/ together with the idempotent rotation foam
Td � S1 generated by the extremal weight projector Td .

Lemma 6.21. The morphism spaces in the Karoubi envelope of TFoamess between
objects of the form .m; n/FT � ^.r;s/ and ^.r;s/ for .m; n/; .r; s/ 2 Z2 with .m; n/ ¤
.0; 0/ satisfy the following properties:

� the endomorphism ring of .m; n/FT �^.r;s/ is isomorphic to CŒ.D �^.r;s//˙1�,
with the generator induced by the 1-labeled wrap endomorphismD of .m; n/;

� the endomorphism ring of ^.r;s/ for .r; s/ ¤ .0; 0/ is isomorphic to CŒD˙12 �,
with the generator D2 given by the 2-labeled wrap;

� the endomorphism ring of the empty web ^.0;0/ D ; is isomorphic to CŒc˙12 �,
with the generator c2 given by the boundary-parallel 2-labeled torus with the
standard orientation;

� there are no non-trivial morphisms between distinct objects of the form
.m; n/FT � ^.r;s/ or ^.r;s/ with m > 0 or n > m D 0;
� otherwise, the only non-trivial morphisms between such objects are real-

ized by .m; n/FT � ^.�m;�n/ Š .�m;�n/FT and, more generally, .m; n/FT �
^.r�m;s�n/ Š .�m;�n/T � ^.r;s/.

Proof. First of all, there is a homological obstruction for having a morphism
between such objects since any foam involving .m; n/FT � ^.r;s/ needs to preserve
the class Œ.m; n/T � ^.r;s/� 2 H1.T/. Two objects in the same slope and the
same homology class can be simultaneously transported into a parallel slope
subcategory, where the claims follow from the corresponding results in AWebess,
see Proposition 6.5. Finally, a morphism between two such objects in different
slopes factors through a purely 2-labeled web, and thus into two slope-preserving
morphisms. Since the objects are in different slopes, both of them are not 2-labeled,
and so the two slope-preserving morphisms are again zero by Proposition 6.5. �



198 H. Queffelec and P. Wedrich

Next, we choose a basepoint p 2 T disjoint from all multi-curves .m; n/. Then
the spaces of morphisms between toric websW1 andW2, which are disjoint from p,
admit an additional Z-grading, which can be computed as the algebraic intersection
number of foams in T�Œ0; 1�with the oriented arc p�Œ0; 1�. This corresponds to the
winding grading on affine webs in any slope. We can now add formal winding shifts
of objects and restrict to morphisms that respect such shifts, c.f. the discussion
after Proposition 6.5. In the following, we use the notation Kar.TFoamess/ for this
winding-graded version.

In Lemma 6.21 we have disregarded the winding grading, and have thus
obtained non-trivial endomorphism rings. If we instead work in Kar.TFoamess/,
we get shifted objects wa.m; n/FT � ^.r;s/ and wb^.r;s/, which have 1-dimensional
endomorphism rings. As a 2 Z varies, all objectswa.m; n/FT �^.r;s/ are isomorphic
to each other, via isomorphisms that are unique up to scalars. Similarly, objects of
the form wa^.r;s/ are equivalent if and only if their shifts have the same parity.

Proposition 6.22. Kar.TFoamess/ is semisimple, with non-isomorphic simple
objects tms�nr.m; n/FT � ^.r;s/ and ^.r;s/ as well as w^.r;s/ for m; n; r; s 2 Z,
m > 0 or n > m D 0, and their q-grading shifts.

Proof. We have seen that every web in TFoamess is isomorphic to a direct sum
of parallels of a slope, acted upon by �^-operations. Via Proposition 6.14,
Proposition 6.5 implies that every such object can be further decomposed into a
direct sum of simple objects as listed above. Any idempotent in TFoamess thus
gives rise to an idempotent matrix of morphisms between simples. Such matrices
can be diagonalized, so all idempotents split into simples. �

Now we can complete the proof of Theorem 3.36 in the case of the torus. For
this, we wanted to see that the map  WTWebq ! K0.TFoam/ sends the standard
basis T B to a linearly independent set. This follows by considering the composite
of  with the natural maps

K0.TFoam/ �! K0.TFoamess/ �! K0.Kar.TFoamess//;

which sends the basis T BT to the set of classes of the non-isomorphic simple
objects from Proposition 6.22, which is thus linearly independent.

6.4. The superposition products of simples. In this section, we sketch how the
superposition bifunctors from Proposition 5.3 and Lemma 6.19 extend to bifunctors
on the semisimple categories Kar.SFoam0/dg and Kar.TFoamess/dg respectively.
We then compute the examples of the superposition of simples in the case of
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the torus, which suggest that the superposition bifunctor satisfies a categorified
analogue of the Frohman–Gelca formula for the multiplication in the toric skein
algebra. Throughout we will assume that Conjecture 4.8 holds.

In order to define the bifunctor � on Kar.SFoam0/dg or Kar.TFoamess/dg it
suffices to define it on simple objects, since all non-trivial morphisms are scalar
multiples of identity morphisms. Let F1 and F2 be idempotent endomorphisms of
webs W1 and W2 respectively, which represent such simple objects. Then W1 �W2
is a chain complex which deformation retracts via Gaussian elimination onto an
essentially unique minimal complex, which is again given by a direct sum of simple
objects. Next, by the monoidality assumption on �, the chain endomorphism
.F1 � idW2/ ı .idW1 � F2/ of W1 �W2 (defined via Proposition 5.3) is idempotent
up to homotopy. The induced endomorphism on the minimal complex is honestly
idempotent, and we define .W1; F1/ � .W2; F2/ to be its image.

Example 6.23. In Kar.TFoamess/dg,

.1; 0/FT � .0; 1/FT D .1; 1/FT ˚ .1;�1/FT � ^.0;1/:

This is because .a; b/T D .a; b/ for gcd.a; b/ D 1, and the chain complex
for .1; 0/ � .0; 1/ in Example 2.4 splits thanks to the degree zero truncation in
TFoamess.

Example 6.24. In Kar.TFoamess/dg,

.2; 1/FT � .0; 1/FT Š .2; 2/FT ˚ .2; 0/FT � ^.0;1/:

Indeed, because of the degree zero truncation, the chain complex for .2; 1/ �
.0; 1/ splits into two halves, as already suggested in the illustration in Example 5.7.
Consider the first half, which is a complex over the parallel slope category for 1=1.
After transporting to AWebess via Proposition 6.18 (3), we see the following
complex:

t 1

˚

t 1
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The identity web in homological degree zero splits into orthogonal idempotents as
follows:

�
�

D T2 C 1

2 �
�

C 1

2 �
�

:

The two differentials restrict to zero on T2 and to isomorphisms on the other
two objects respectively. After Gaussian elimination, only T2 remains, which
corresponds to .2; 2/FT in Kar.TFoamess/. The second half of the chain complex
analogously retracts onto .2; 0/FT � ^.0;1/.

Example 6.25. In Kar.TFoamess/dg,

.m; n/FT � .r; s/FT Š .mC r; nC s/FT ˚ .m � r; n � s/FT � ^.r;s/ (35)

whenever these simples lie in the same slope, i.e. if m
n
D r

s
. This follows from the

isomorphisms between AWebess and the degree zero parallel slope subcategories
of TFoamess, see Proposition 6.14.

Remark 6.26. If � extends to a monoidal structure on Kar.TFoamess/dg, then
the preceding examples are sufficient to prove the categorified Frohman–Gelca
formula (35) in full generality. The basic ingredients for such a proof, which follows
the induction scheme of [18, Proof of Theorem 4.1], are

(1) the induction base cases of intersection number 0 and 1, which were checked
in Examples 6.23, 6.24 and 6.25;

(2) associativity isomorphisms for triple tensor products and distributivity iso-
morphisms for tensor products of direct sums;

(3) the Krull–Schmidt property that allows us to conclude the existence of an
isomorphism A Š B whenever A˚ C Š B ˚ C .

The following computation verifies a non-trivial case of the categorified
Frohman–Gelca formula (35), and thus provides additional evidence for Con-
jecture 1.15.

Example 6.27. In Kar.TFoamess/dg,

.2; 0/FT � .0; 1/FT Š .2; 1/FT ˚ .2;�1/FT � ^.0;1/:
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We will prove this by computing the image of the idempotent T2 � id on the
cube of resolutions of .2; 0/ � .0; 1/:6

Š

.A/

.B/

.C /

.D/

q2t 2

qt 1

qt 1

This chain complex already contains the desired summands .2; 1/FT Š .A/ and
.2;�1/FT � ^.0;1/ Š .D/. We thus need to prove that T2 � id acts as the identity on
these chain groups, and by zero on .B/˚ .C /.

Recall from Definition 6.3 that the idempotent decomposes as

T2 � id D id � idC �u1
2
� idC �u2

2
� id

and we will compute the individual actions of these summands on the chain groups.
The summand id � id acts as the identity on all chain groups, and we claim that the
other two summands act as follows:

�u1=2 � id .A/ .B/ .C / .D/

.A/ 0

.B/ �id=2 �

.C /  �id=2

.D/ 0

�u2=2 � id .A/ .B/ .C / .D/

.A/ 0

.B/ �id=2 ��

.C / � �id=2

.D/ 0

Here � and  are certain foams that are described in the proof of the claim.
Note that the claim implies that the categorified Frohman–Gelca formula holds for
.2; 0/FT � .0; 1/FT .

6 Here we suppress the choice of an ordering for the crossings, as it is not relevant in the
computation.
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In order to prove the claim, we first explain why �u1=2 � id and �u2=2 � id
act by zero on the chain groups .A/ and .D/. For this, note that these morphisms
factor through the following superposition:

.E/ WD D qt�1

which is supported in homological degree �1, but the chain groups .A/ and .D/
are of homological degree 0 and �2.

Next we compute the maps between the chain groups .B/ and .C / induced by
�u1=2 � id and �u2=2 � id. First we consider the chain maps represented by the
following movie, which can be read right or left:

 !  !  ! : (36)

Reading from left to right we first see a zip foam, then a fork slide, see Section 7,
and finally a digon collapse.

In terms of annular webs, we see

�
�

� id and �
�

� id

in the rightward and leftward compositions respectively. Going all the way to the
right and then back to the left, we obtain the chain map induced by u1 � id.

We can now compute the action of the chain maps from (36) on the object .B/:

.B/ D  !  !  !

D .E/:
(37)

Reading left-to-right, we first see a zip foam, then the morphism induced by the
fork slide, which is just a local isotopy, and finally a digon closure. It is easy to see
that the composite is an isotopy that slides the split-vertex rightward through the
red gluing edge of the torus. In the opposite direction, we see the inverse isotopy.
This implies that the map �1

2
u1 � id acts by the scalar �1=2 on the resolution .B/.

Moreover, since, u2 is obtained by conjugating u1 by a half-rotation of the torus,
�u2=2 � id also acts by the scalar �1=2 on .B/.
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Next, we look at the action of the chain maps from (36) on the object .C /.

.C / D  !  !  !

D .E/:
(38)

Reading left-to-right, we first see a zip, then an interesting negated foam appearing
in the fork slide (39), followed by the digon collapse. However, the fork slide foam
is itself built from a digon opening and a zip morphisms, which cancel with the
other two present foams. The total map is the negative of an isotopy, which slides
the merge vertex left through the red gluing edge of the torus. Reading right-to-left,
we obtain the inverse map. As before, this shows that �u1=2 � id and �u2=2 � id
each act by the scalar �1=2 on the resolution .C /.

Next, we have to compute the components of u1 mapping .B/ ! .C / and
.C /! .B/. For the first one, we compose the left-to-right map from (37) with the
right-to-left map from (38). The result is the negative of the isotopy that moves
the entire double edge in .B/ rightwards through the red gluing edge of the torus.
Similarly, the component .C / ! .B/ is given by the negative of the leftward
isotopy.

Finally, the components of u2 � id are obtained by conjugating the action of
u1 � id by a half-rotation of the torus. Note however, that this interchanges .B/
and .C /. The u2 � id component .B/! .C / is the negative of the isotopy which
moves the double edge in .B/ first down and through the green gluing edge of the
torus into position .C /, then leftward to position .B/ and then again upward (but
not passing the gluing edge) to position .C /. Similarly, the u2 � id component
.C / ! .B/ is given by the negative of the isotopy sliding the double edge first
down (not passing gluing edges), then rightward, and finally up through the green
gluing edge.

.B/! .C / .C /! .B/

u1 right left
u2 down and left up and right

In order to see that the off-diagonal contributions of u1 � id and u2 � id cancel, we
argue that the isotopy from .B/ to itself, which moves the double edge down once
and left twice, is the negative of the identity; and similarly for the isotopy from
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.C / to itself, which moves the double edge up once and right twice:

�! �! �!

�! �! �! �! :

Here we have color-coded the 1-labeled edges for increased clarity. Additionally,
we can interpret this foam as a superposition as follows:

int�! @�! int�!

int�! @�! int�! int�! :

Here we see the superposition of a rightward wrap on ^.1;0/ and two leftward
wraps of .1; 0/. Both of these wrap morphisms can be written as the superposition
of identity morphisms with 2-labeled essential tori, which cancel each other, since
they have opposite orientations. However, in expanding the double wrap on .1; 0/,
we obtain an extra factor of �1, see (34).

This shows that the “down once and left twice” isotopy foam agrees with the
negated identity foam. This implies that �u1=2� id and �u2=2� id give cancelling
contributions to the .B/ ! .C / component of the chain map. The case of the
.C /! .B/ component is completely analogous. This proves the claim.

7. Appendix: fork slide chain maps

Here we explicitly describe the chain maps associated certain fork slide moves.
In doing so, we encode signs appearing in cube of resolutions chain complexes
via the following formalism without choosing a particular order of crossings. Let
cr D ¹c; c0; : : : º be the set of crossings in the tangle diagram that involve a 1-labeled
edge and Cl.cr/ the Clifford ring with generators c 2 cr and relations c2 D 1 and
cc0 C c0c D 0 if c ¤ c0.

To a web, which has been resolved with a double edge at the 1 � 1-crossings
c1; : : : ; cv, and with the unique web at each 1 � 2- or 2 � 1-labeled crossing
C1; : : : ; Cw , we associate the direct summand Zhc1 � � � cv � C1 � � �Cwi of Cl.cr/,
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which is (non-canonically) isomorphic to Z. A component of the differential
coming from the 1 � 1-crossing c is now additionally assigned the action of right-
multiplication rc by c in Cl.cr/. In composing such differentials one now also
multiplies the corresponding generators in the Clifford ring. Its defining relations
now guarantee that squares of differentials in the tensor product multi-complex
anti-commute.

We now describe the chain homotopy equivalences corresponding to the
following fork slide move:

Kh
� �

Š Kh
 !

:

The cube of resolutions chain complexes for both sides are the following:

D
c0

c
Kh ˝ Zhc c0i

˝ Zhc0i

˝ Zhci

˝ Zh1i

unzip˝ rc

unzip˝ rc0

unzip˝ rc0

unzip˝ rc

Kh
c00

D 0 ˝ Zhc00i 0

f g

Restricted to the web on the top of the cube of resolutions, the chain homotopy
equivalence f acts as id˝rc0c00 and the corresponding component of g is id˝rc00�c0 .
The remaining non-trivial components of f and g are formed by the signed non-
trivial foams obtained as the following composition of elementary foams, read
rightward (as illustrated) or leftward respectively (reflection of the illustrated foam):

� W

 !  !  ! :

(39)

The action on the Clifford generators is given by rc�c00 and rc00�c respectively.



206 H. Queffelec and P. Wedrich

References

[1] M. Asaeda and C. Frohman, A note on the Bar-Natan skein module. Internat.
J. Math. 18 (2007), no. 10, 1225–1243. MR 2370224 Zbl 1148.57014

[2] M. M Asaeda, J. H Przytycki, and A. S Sikora, Categorification of the Kauffman
bracket skein module of I -bundles over surfaces. Algebr. Geom. Topol. 4 (2004),
1177–1210. MR 2113902 Zbl 1070.57008

[3] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9
(2005), 1443–1499. MR 2174270 Zbl 1084.57011

[4] A. Beliakova, K. Putyra, and S. M. Wehrli, Quantum link homology via trace functor I.
Invent. Math. 215 (2019), no. 2, 383–492. MR 3910068 Zbl 1411.57021

[5] C. Blanchet, An oriented model for Khovanov homology. J. Knot Theory Ramifica-
tions 19 (2010), no. 2, 291–312. MR 2647055 Zbl 1195.57024

[6] J. Boerner, A homology theory for framed links in I-bundles using embedded surfaces.
Topology Appl. 156 (2008), no. 2, 375–391. MR 2475122 Zbl 1169.57008

[7] F. Bonahon and H. Wong, Quantum traces for representations of surface groups in
SL2.C/. Geom. Topol. 15 (2011), no. 3, 1569–1615. MR 2851072 Zbl 1227.57003

[8] F. Bonahon and H. Wong, Representations of the Kauffman skein algebra I: invariants
and miraculous cancellations. Invent. Math. 204 (2016), no. 1, 195–243. MR 3480556
Zbl 1383.57015

[9] D. Bullock, Rings of SL2.C/-characters and the Kauffman bracket skein module.
Comment. Math. Helv. 72 (1997), no. 4, 521–542. MR 1600138 Zbl 0907.57010

[10] C. L. Caprau, sl.2/ tangle homology with a parameter and singular cobordisms. Algebr.
Geom. Topol. 8 (2008), no. 2, 729–756. MR 2443094 Zbl 1148.57016

[11] J. S. Carter, Reidemeister/Roseman-type moves to embedded foams in 4-dimensional
space. In L. H. Kauffman and V. O. Manturov (eds.), New ideas in low dimensional
topology. Series on Knots and Everything, 56. World Scientific, Hackensack, N.J.,
2015, 1–30. MR 3381321 Zbl 1317.57015

[12] J. S. Carter and M. Saito, Reidemeister moves for surface isotopies and their interpre-
tation as moves to movies. J. Knot Theory Ramifications 2 (1993), no. 3, 251–284.
MR 1238875 Zbl 0808.57020

[13] J. S. Carter and M. Saito, Knotted surfaces and their diagrams. Mathematical Surveys
and Monographs, 55. American Mathematical Society, Providence, R.I., 1998.
MR 1487374 Zbl 0904.57010

[14] S. Cautis, J. Kamnitzer, and S. Morrison, Webs and quantum skew Howe duality.
Math. Ann. 360 (2014), no. 1–2, 351–390. MR 3263166 Zbl 1387.17027

[15] D. Clark, S. Morrison, and K. Walker, Fixing the functoriality of Khovanov homology.
Geom. Topol. 13 (2009), no. 3, 1499–1582. MR 2496052 Zbl 1169.57012

http://www.ams.org/mathscinet-getitem?mr=2370224
http://zbmath.org/?q=an:1148.57014
http://www.ams.org/mathscinet-getitem?mr=2113902
http://zbmath.org/?q=an:1070.57008
http://www.ams.org/mathscinet-getitem?mr=2174270
http://zbmath.org/?q=an:1084.57011
http://www.ams.org/mathscinet-getitem?mr=3910068
http://zbmath.org/?q=an:1411.57021
http://www.ams.org/mathscinet-getitem?mr=2647055
http://zbmath.org/?q=an:1195.57024
http://www.ams.org/mathscinet-getitem?mr=2475122
http://zbmath.org/?q=an:1169.57008
http://www.ams.org/mathscinet-getitem?mr=2851072
http://zbmath.org/?q=an:1227.57003
http://www.ams.org/mathscinet-getitem?mr=3480556
http://zbmath.org/?q=an:1383.57015
http://www.ams.org/mathscinet-getitem?mr=1600138
http://zbmath.org/?q=an:0907.57010
http://www.ams.org/mathscinet-getitem?mr=2443094
http://zbmath.org/?q=an:1148.57016
http://www.ams.org/mathscinet-getitem?mr=3381321
http://zbmath.org/?q=an:1317.57015
http://www.ams.org/mathscinet-getitem?mr=1238875
http://zbmath.org/?q=an:0808.57020
http://www.ams.org/mathscinet-getitem?mr=1487374
http://zbmath.org/?q=an:0904.57010
http://www.ams.org/mathscinet-getitem?mr=3263166
http://zbmath.org/?q=an:1387.17027
http://www.ams.org/mathscinet-getitem?mr=2496052
http://zbmath.org/?q=an:1169.57012


Khovanov homology and categorification of skein modules 207

[16] M. Ehrig, D. Tubbenhauer, and P. Wedrich, Functoriality of colored link homologies.
Proc. Lond. Math. Soc. (3) 117 (2018), no. 5, 996–1040. MR 3877770 Zbl 1414.57010

[17] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller
theory. Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852
Zbl 1099.14025

[18] C. Frohman and R. Gelca, Skein modules and the noncommutative torus. Trans. Amer.
Math. Soc. 352 (2000), no. 10, 4877–4888. MR 1675190 Zbl 0951.57007

[19] J. E. Grigsby, A. Licata, and S. M. Wehrli, Annular Khovanov homology and knotted
Schur–Weyl representations. Compos. Math. 154 (2018), no. 3, 459–502.
MR 3731256 Zbl 1422.57036

[20] D. Hubbard and A. Saltz, An annular refinement of the transverse element in khovanov
homology. Algebr. Geom. Topol. 16 (2016), no. 4, 2305–2324. MR 3546466
Zbl 1366.57004

[21] J. H. Rieger J. S. Carter and M. Saito, A combinatorial description of knotted surfaces
and their isotopies. Adv. Math. 127 (1997), no. 1, 1–51. MR 1445361 Zbl 0870.57032

[22] U. Kaiser, Frobenius algebras and skein modules of surfaces in 3-manifolds. In
M. Golasiński, Y. Rudyak, P. Salvatore, N. Saveliev, and N. Wahl (eds.), Algebraic
topology—old and new. Banach Center Publications, 85. Polish Academy of Sciences,
Institute of Mathematics, Warsaw, 2009, 59–81. MR 2503518 Zbl 1181.57008

[23] M. Khovanov, A categorification of the Jones polynomial. Duke Math. J. 101 (2000),
no. 3, 359–426. MR 1740682 Zbl 0960.57005

[24] M. Khovanov, A functor-valued invariant of tangles. Algebr. Geom. Topol. 2 (2002),
665–741. MR 1928174 Zbl 1002.57006

[25] M. Khovanov, sl.3/ link homology. Algebr. Geom. Topol. 4 (2004), 1045–1081.
MR 2100691 Zbl 1159.57300

[26] M. Khovanov, Categorifications of the colored Jones polynomial. J. Knot Theory
Ramifications 14 (2005), no. 1, 111–130. MR 2124557 Zbl 1083.57019

[27] M. Khovanov, Link homology and Frobenius extensions. Fund. Math. 190 (2006),
179–190. MR 2232858 Zbl 1101.57004

[28] M. Khovanov, Hopfological algebra and categorification at a root of unity: the first
steps. J. Knot Theory Ramifications 25 (2016), no. 3, article no. 1640006, 26 pp.
MR 3475073 Zbl 1370.18017

[29] M. Khovanov and L. Rozansky, Topological Landau–Ginzburg models on the world-
sheet foam. Adv. Theor. Math. Phys. 11 (2007), no. 2, 233–259 MR 2322554
Zbl 1137.81041

[30] M. Khovanov and L. Rozansky, Matrix factorizations and link homology. Fund.
Math. 199 (2008), no. 1, 1–91. MR 2391017 Zbl 1145.57009

[31] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge
structures and motivic Donaldson–Thomas invariants. Commun. Number Theory
Phys. 5 (2011), no. 2, 231–352. MR 2851153 Zbl 1248.14060

http://www.ams.org/mathscinet-getitem?mr=3877770
http://zbmath.org/?q=an:1414.57010
http://www.ams.org/mathscinet-getitem?mr=2233852
http://zbmath.org/?q=an:1099.14025
http://www.ams.org/mathscinet-getitem?mr=1675190
http://zbmath.org/?q=an:0951.57007
http://www.ams.org/mathscinet-getitem?mr=3731256
http://zbmath.org/?q=an:1422.57036
http://www.ams.org/mathscinet-getitem?mr=3546466
http://zbmath.org/?q=an:1366.57004
http://www.ams.org/mathscinet-getitem?mr=1445361
http://zbmath.org/?q=an:0870.57032
http://www.ams.org/mathscinet-getitem?mr=2503518
http://zbmath.org/?q=an:1181.57008
http://www.ams.org/mathscinet-getitem?mr=1740682
http://zbmath.org/?q=an:0960.57005
http://www.ams.org/mathscinet-getitem?mr=1928174
http://zbmath.org/?q=an:1002.57006
http://www.ams.org/mathscinet-getitem?mr=2100691
http://zbmath.org/?q=an:1159.57300
http://www.ams.org/mathscinet-getitem?mr=2124557
http://zbmath.org/?q=an:1083.57019
http://www.ams.org/mathscinet-getitem?mr=2232858
http://zbmath.org/?q=an:1101.57004
http://www.ams.org/mathscinet-getitem?mr=3475073
http://zbmath.org/?q=an:1370.18017
http://www.ams.org/mathscinet-getitem?mr=2322554
http://zbmath.org/?q=an:1137.81041
http://www.ams.org/mathscinet-getitem?mr=2391017
http://zbmath.org/?q=an:1145.57009
http://www.ams.org/mathscinet-getitem?mr=2851153
http://zbmath.org/?q=an:1248.14060


208 H. Queffelec and P. Wedrich

[32] A. D. Lauda, H. Queffelec, and D. E. V. Rose, Khovanov homology is a skew Howe
2-representation of categorified quantum sl.m/. Algebr. Geom. Topol. 15 (2015),
no. 5, 2517–2608. MR 3426687 Zbl 1330.81128

[33] T. T. Q. Lê, On positivity of Kauffman bracket skein algebras of surfaces. Int. Math.
Res. Not. IMRN 2018, no. 5, 1314–1328. MR 3801463 Zbl 1411.57036

[34] E. S. Lee, An endomorphism of the Khovanov invariant. Adv. Math. 197 (2005), no. 2,
554–586. MR 2173845 Zbl 1080.57015

[35] M. Mackaay, M. Stošić, and P. Vaz, sl.N /-link homology (N � 4) using foams and
the Kapustin–Li formula. Geom. Topol. 13 (2009), no. 2, 1075–1128. MR 2491657
Zbl 1202.57017

[36] S. Morrison and K. Walker, Blob homology. Geom. Topol. 16 (2012), no. 3,
1481–1607. MR 2978449 Zbl 1280.57026

[37] H. Morton and P. Samuelson, The HOMFLYPT skein algebra of the torus and the
elliptic Hall algebra. Duke Math. J. 166 (2017), no. 5, 801–854. MR 3626565
Zbl 1369.16034

[38] J. H. Przytycki, Skein modules of 3-manifolds. Bull. Polish Acad. Sci. Math. 39
(1991), no. 1–2, 91–100. MR 1194712 Zbl 0762.57013

[39] J. H. Przytycki, Fundamentals of Kauffman bracket skein modules. Kobe J. Math. 16
(1999), no. 1, 45–66. MR 1723531 Zbl 0947.57017

[40] J. H. Przytycki and A. S. Sikora, Skein algebras of surfaces. Trans. Amer. Math.
Soc. 371 (2019), no. 2, 1309–1332. MR 3885180 Zbl 06993269

[41] H. Queffelec, Sur la catégorification des invariants quantiques sln : étude algébrique
et diagrammatique. Ph.D. thesis. Université Paris Diderot (Paris VII), Paris, 2013.

[42] H. Queffelec and D. E. V. Rose, Sutured annular Khovanov–Rozansky homology.
Trans. Amer. Math. Soc. 370 (2018), no. 2, 1285–1319. MR 3729501 Zbl 1435.57010

[43] H. Queffelec, D. E. V. Rose, and A. Sartori, Annular evaluation and link homology.
Preprint, 2018. arXiv:1802.04131 [math.GT]

[44] H. Queffelec and A. Sartori, Mixed quantum skew Howe duality and link invariants
of type A. J. Pure Appl. Algebra 223 (2019), no. 7, 2733–2779. MR 3912946
Zbl 07032784

[45] H. Queffelec and P. Wedrich, Extremal weight projectors. Math. Res. Lett. 25 (2018),
no. 6, 1911–1936. MR 3934851 Zbl 07072584

[46] H. Queffelec and P. Wedrich, Extremal weight projectors II. Preprint, 2018.
arXiv:1803.09883 [math.RT]

[47] L.-H. Robert and E. Wagner, A closed formula for the evaluation of foams. Quantum
Topol. 11 (2020), no. 3, 411–487. MR 4164001 Zbl 07305663

[48] L. P. Roberts, On knot Floer homology in double branched covers. Geom. Topol. 17
(2013), no. 1, 413–467. MR 3035332 Zbl 1415.57009

http://www.ams.org/mathscinet-getitem?mr=3426687
http://zbmath.org/?q=an:1330.81128
http://www.ams.org/mathscinet-getitem?mr=3801463
http://zbmath.org/?q=an:1411.57036
http://www.ams.org/mathscinet-getitem?mr=2173845
http://zbmath.org/?q=an:1080.57015
http://www.ams.org/mathscinet-getitem?mr=2491657
http://zbmath.org/?q=an:1202.57017
http://www.ams.org/mathscinet-getitem?mr=2978449
http://zbmath.org/?q=an:1280.57026
http://www.ams.org/mathscinet-getitem?mr=3626565
http://zbmath.org/?q=an:1369.16034
http://www.ams.org/mathscinet-getitem?mr=1194712
http://zbmath.org/?q=an:0762.57013
http://www.ams.org/mathscinet-getitem?mr=1723531
http://zbmath.org/?q=an:0947.57017
http://www.ams.org/mathscinet-getitem?mr=3885180
http://zbmath.org/?q=an:06993269
http://www.ams.org/mathscinet-getitem?mr=3729501
http://zbmath.org/?q=an:1435.57010
http://arxiv.org/abs/1802.04131
http://www.ams.org/mathscinet-getitem?mr=3912946
http://zbmath.org/?q=an:07032784
http://www.ams.org/mathscinet-getitem?mr=3934851
http://zbmath.org/?q=an:07072584
http://arxiv.org/abs/1803.09883
http://www.ams.org/mathscinet-getitem?mr=4164001
http://zbmath.org/?q=an:07305663
http://www.ams.org/mathscinet-getitem?mr=3035332
http://zbmath.org/?q=an:1415.57009


Khovanov homology and categorification of skein modules 209

[49] D. E. V. Rose, A note on the Grothendieck group of an additive category. Vestn.
Chelyab. Gos. Univ. Mat. Mekh. Inform. 2015, no. 3(17), 135–139. MR 3586623

[50] D. E. V. Rose and P. Wedrich, Deformations of colored slN link homologies via foams.
Geom. Topol. 20 (2016), no. 6, 3431–3517. MR 3590355 Zbl 1420.57044

[51] M. Stošić and P. Wedrich, Rational Links and DT Invariants of Quivers. Int. Math.
Res. Not. IMRN, rny289 (2019), 42 pp.

[52] D. P. Thurston, Positive basis for surface skein algebras. Proc. Natl. Acad. Sci.
USA 111 (2014), no. 27, 9725–9732. MR 3263305 Zbl 1355.57015

[53] D. Tubbenhauer, P. Vaz, and P. Wedrich, Super q-Howe duality and web categories.
Algebr. Geom. Topol. 17 (2017), no. 6, 3703–3749. MR 3709658 Zbl 1422.57030

[54] V. Turaev, Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci.
École Norm. Sup. (4) 24 (1991), no. 6, 635–704. MR 1142906 Zbl 0758.57011

[55] V. Turaev and P. Turner, Unoriented topological quantum field theory and link
homology. Algebr. Geom. Topol. 6 (2006), 1069–1093. MR 2253441 Zbl 1134.57004

[56] P. Wedrich, Categorified slN invariants of colored rational tangles. Algebr. Geom.
Topol. 16 (2016), no. 1, 427–482. MR 3470705 Zbl 1419.57029

[57] P. Wedrich, q-holonomic formulas for colored HOMFLY polynomials of 2-bridge links.
J. Pure Appl. Algebra 223 (2019), no. 4, 1434–1439. MR 3906511 Zbl 1447.57012

[58] H. Wenzl, On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada 9 (1987),
no. 1, 5–9. MR 0873400 Zbl 0622.47019

[59] E. Witten, Fivebranes and knots. Quantum Topol. 3 (2012), no. 1, 1–137. MR 2852941
Zbl 1241.57041

Received November 28, 2018

Hoel Queffelec, IMAG – UMR 5149, Université de Montpellier, Case courrier 051,
Place Eugène Bataillon, 34090 Montpellier, France
e-mail: hoel.queffelec@umontpellier.fr

Paul Wedrich, Mathematical Sciences Institute, The Australian National University,
Canberra ACT 0200, Australia
Current address: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn,
Germany
Mathematical Institute, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
e-mail: p.wedrich@gmail.com

http://www.ams.org/mathscinet-getitem?mr=3586623
http://www.ams.org/mathscinet-getitem?mr=3590355
http://zbmath.org/?q=an:1420.57044
http://www.ams.org/mathscinet-getitem?mr=3263305
http://zbmath.org/?q=an:1355.57015
http://www.ams.org/mathscinet-getitem?mr=3709658
http://zbmath.org/?q=an:1422.57030
http://www.ams.org/mathscinet-getitem?mr=1142906
http://zbmath.org/?q=an:0758.57011
http://www.ams.org/mathscinet-getitem?mr=2253441
http://zbmath.org/?q=an:1134.57004
http://www.ams.org/mathscinet-getitem?mr=3470705
http://zbmath.org/?q=an:1419.57029
http://www.ams.org/mathscinet-getitem?mr=3906511
http://zbmath.org/?q=an:1447.57012
http://www.ams.org/mathscinet-getitem?mr=0873400
http://zbmath.org/?q=an:0622.47019
http://www.ams.org/mathscinet-getitem?mr=2852941
http://zbmath.org/?q=an:1241.57041
mailto:hoel.queffelec@umontpellier.fr
mailto:p.wedrich@gmail.com

	Introduction
	Acknowledgements
	The gl(2) skein algebras
	Foam categories on surfaces
	The Khovanov functors
	The superposition product
	Toric link homology
	Appendix: fork slide chain maps
	References

