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1. Introduction

In [11], Deligne introduced a linear monoidal category Rep.St / that interpolates

between the categories of representations of the symmetric groups. In particu-

lar, when t is a nonnegative integer n, the category of representations of Sn is

equivalent to the quotient of Rep.Sn/ by the tensor ideal of negligible morphisms.

https://creativecommons.org/licenses/by/4.0/
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One particularly efficient construction of Rep.St / is as the additive Karoubi enve-

lope of the partition category Par .t /. The endomorphism algebras of the partition

category are the partition algebras first introduced by Martin ([25]) and later, in-

dependently, by Jones ([15]) as a generalization of the Temperley–Lieb algebra

and the Potts model in statistical mechanics. The partition algebras are in duality

with the action of the symmetric group on tensor powers of its permutation repre-

sentation; that is, the partition algebras generate the commutant of this action (see

[13, Theorem 3.6] and [8, Theorem 8.3.13]).

In [16], Khovanov defined another linear monoidal category, the Heisen-

berg category Heis , which is also motivated by the representation theory of

the symmetric groups. In particular, Heis acts on
L

n�0 Sn-mod, where its

two generating objects act by induction Sn-mod ! SnC1-mod and restriction

SnC1-mod ! Sn-mod. Morphisms in Heis act by natural transformations be-

tween compositions of induction and restriction functors.

Deligne’s category Rep.St / can be thought of as describing the representation

theory of Sn for arbitrary n in a uniform way, but with n fixed (and not necessarily

a nonnegative integer). On the other hand, the Heisenberg category goes further,

allowing n to vary and describing the representation theory of all the symmetric

groups at once. Thus, it is natural to expect a precise relationship between the two

categories, with the Heisenberg category being larger. The goal of the current

paper is to describe such a relationship.

For the purposes of this introduction, we describe our results in the case where

t is generic. Our first main result (Theorems 4.1 and 5.2 and Remark 4.2) is the

construction of a faithful strict linear monoidal functor

‰t WPar .t / �! Heis :

This functor sends t to the clockwise bubble in Heis and is compatible with

the actions of Par .t / and Heis on categories of modules for symmetric groups

(Theorem 5.1). Since Deligne’s category Rep.St / is the additive Karoubi envelope

of the partition category, we have an induced faithful linear monoidal functor

‰t WRep.St / �! Kar.Heis/;

where Kar.Heis/ denotes the additive Karoubi envelope of the Heisenberg cate-

gory Heis .

The Grothendieck ring of Rep.St / is isomorphic to the ring Sym of symmetric

functions. On the other hand, the Grothendieck ring of Heis is isomorphic to a

central reduction Heis of the universal enveloping algebra of the Heisenberg Lie

algebra. This was conjectured by Khovanov in [16, Conjecture 1] and recently



Embedding Deligne’s category Rep.St / in the Heisenberg category 213

proved in [5, Theorem 1.1]. We thus have an induced map

Œ‰t �WSym Š K0.Rep.St // �! K0.Heis/ Š Heis:

Our second main result (Theorem 6.5) is that this map is injective and is given by

the Kronecker coproduct on Sym. We also describe the map induced by ‰t on the

traces (or zeroth Hochschild homologies) of Rep.St / and Heis .

The partition algebras contain many so-called diagram algebras that have been

well-studied in the literature. These include the Brauer algebras, Temperley–Lieb

algebras, rook algebras, planar partition algebras, planar rook algebras, rook-

Brauer algebras, and Motzkin algebras. As a result, the functor ‰t also yields

explicit embeddings of these algebras into endomorphism rings in the Heisenberg

category, and of their associated categories into the Heisenberg category.

We expect that the results of this paper are the starting point of a large number

of precise connections between various algebras and categories that are well-

studied in the literature. We list here some such possible extensions of the current

work:

(a) replacing the role of the symmetric group with wreath product algebras,

one should be able to define an embedding, analogous to ‰t , relating the

G-colored partition algebras of [3], the wreath Deligne categories of [27, 17],

and the Frobenius Heisenberg categories of [28, 30];

(b) quantum versions of ‰t should exist relating the q-partition algebras of [14],

a quantum analogue of Deligne’s category, and the quantum Heisenberg

category of [21, 6];

(c) replacing the role of the symmetric group by more general degenerate cyclo-

tomic Hecke algebras should relate the categories of [12, §5.1] to the higher

central charge Heisenberg categories of [24, 4].

The organization of this paper is as follows. In Section 2 we recall the definition

of the partition category and Deligne’s category Rep.St /. We then recall the

Heisenberg category in Section 3. We define the functor ‰t in Section 4. In

Section 5 we show that ‰t intertwines the natural categorical actions on categories

on modules of symmetric groups and that it is faithful when k is an integral

domain of characteristic zero. Finally, in Section 6 we discuss the induced map on

Grothendieck rings and traces. In Appendix A, we show that ‰t is faithful when

k is any commutative ring.

Notation. Throughout, we work over a ground ring k, which is an arbitrary

commutative ring unless otherwise specified. We letN denote the additive monoid

of nonnegative integers.
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2. The partition category and Deligne’s category Rep.St/

In this section we recall the definition and some important facts about one of our

main objects of study. We refer the reader to [19, 29] for a brief treatment of

the language of string diagrams and strict linear monoidal categories suited to

the current work. For a morphism X in a category, we will denote the identity

morphism on X by 1X .

For m; `2N, a partition of type
�

`
m

�

is a partition of the set ¹1; : : : ; m; 10; : : : ; `0º.

The elements of the partition will be called blocks. We depict such a partition as

a graph with ` vertices in the top row, labelled 10; : : : ; `0 from right to left, and m

vertices in the bottom row, labelled 1; : : : ; m from right to left. (We choose the

right-to-left numbering convention to better match with the Heisenberg category

later.) We draw edges so that the blocks are the connected components of the

graph. For example, the partition ¹¹1; 5º; ¹2º; ¹3; 10º; ¹4; 40; 70º; ¹20; 30º; ¹50º; ¹60ºº

of type
�

7
5

�

is depicted as follows:

5 4 3 2 1

70 60 50 40 30 20 10

Note that different graphs can correspond to the same partition since only the

connected components of the graph are relevant.

From now on, we will omit the labels of the vertices when drawing partition

diagrams. We write DWm ! ` to indicate that D is a partition of type
�

`
m

�

. We

denote the unique partition diagrams of types
�

1
0

�

and
�

0
1

�

by

W 0 �! 1 and W 1 �! 0:

Given two partitions D0Wm ! `, DW ` ! k, one can stack D on top of D0

to obtain a diagram D
D0 with three rows of vertices. We let ˛.D; D0/ denote the
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number of components containing only vertices in the middle row of D
D0 . Let

D ? D0 be the partition of type
�

k
m

�

with the following property: vertices are in

the same block of D ? D0 if and only if the corresponding vertices in the top and

bottom rows of D
D0 are in the same block.

Recall thatk is a commutative ring and fix t 2 k. The partition category Par .t /

is the strict k-linear monoidal category whose objects are nonnegative integers

and, given two objects m; ` in Par .t /, the morphisms from m to ` are k-linear

combinations of partitions of type
�

`
m

�

. The vertical composition is given by

D ıD0 D t˛.D;D0/D ? D0

for composable partition diagrams D; D0, and extended by linearity. The bifunctor

˝ is given on objects by

˝WPar .t / � Par .t / �! Par .t /; .m; n/ 7�! mC n:

The tensor product on morphisms is given by horizontal juxtaposition of diagrams,

extended by linearity.

For example, if

D0 D and D D

then

D

D0 D ; D ? D0 D ;

and

D ıD0 D t2 :

The partition category is denoted Rep0.St / in [11] and Rep0.St Ik/ in [10].

For a linear monoidal category C, we let Kar.C/ denote its additive Karoubi

envelope, that is, the idempotent completion of its additive envelope Add.C/. Then

Kar.C/ is again naturally a linear monoidal category. Deligne’s category Rep.St /

is the additive Karoubi envelope of Par .t /. (See [11, §8] and [10, §2.2].)

The following proposition gives a presentation of the partition category.
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Proposition 2.1. As a k-linear monoidal category, the partition category Par .t /

is generated by the object 1 and the morphisms

� D W 2 �! 1; ı D W 1 �! 2; s D W 2 �! 2;

� D W 0 �! 1; " D W 1 �! 0;

subject to the following relations:

D D ; D D ; D D ; (2.1)

D ; D ; (2.2)

D ; D ; D ; D ; (2.3)

D ; D ; D t10: (2.4)

In fact, one only needs one of the equalities in the first string of equalities

in (2.1). The other then follows using the first relation in (2.4) and the first relation

in (2.3). The reader who prefers a more traditional algebraic formulation of the

above presentation of Par .t / can find this in [9, Theorem 2.1].

Proof. This result is proved in [9, Theorem 2.1]. While it is assumed through-

out [9] that k is a field of characteristic not equal to 2, these restrictions are not

needed in the proof of [9, Theorem 2.1]. The essence of the proof is noting that

Par .t / is isomorphic to the category obtained from the k-linearization of a skele-

ton of the category 2Cob of 2-dimensional cobordisms by factoring out by the

second and third relations in (2.4). Then the result is deduced from the presenta-

tion of 2Cob described in [18, §1.4]. �

The relations (2.1) are equivalent to the statement that .1; �; �; ı; "/ is a Frobe-

nius object (see, for example, [18, Proposition 2.3.24]). Relations (2.2) and (2.3)

are precisely the statement that s equips Par .t / with the structure of a symmetric

monoidal category (see, for example, [18, §1.3.27 and §1.4.35]). Then the rela-

tions (2.4) are precisely the statements that the Frobenius object 1 is commutative,

special, and of dimension t , respectively. Thus, Proposition 2.1 states that Par .t /

is the free k-linear symmetric monoidal category generated by a t -dimensional

special commutative Frobenius object.
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The endomorphism algebra Pk.t / WD EndPar .t/.k/ is called the partition alge-

bra. We have a natural algebra homomorphism

kSk �! Pk.t /; (2.5)

mapping � 2 Sk to the partition with blocks ¹i; �.i/0º, 1 � i � k.

Let V D kn be the permutation representation of Sn and let 1n denote the

one-dimensional trivial Sn-module. As explained in [9, §2.4], there is a strong

monoidal functor

ˆnWPar .n/ �! Sn-mod (2.6)

defined on generators by setting ˆn.1/ D V and

ˆn.�/ WV ˝ V �! V; vi ˝ vj 7�! ıi;j vi ;

ˆn.�/ W 1n �! V; 1 7�!
Pn

iD1 vi ;

ˆn.ı/ WV �! V ˝ V; vi 7�! vi ˝ vi ;

ˆn."/ WV �! 1n; vi 7�! 1;

ˆn.s/ WV ˝ V �! V ˝ V; vi ˝ vj 7�! vj ˝ vi :

The proposition below is a generalization of the duality property of the partition

algebra mentioned in the introduction.

Proposition 2.2. (a) The functor ˆn is full.

(b) The induced map

HomPar .n/.k; `/ �! HomSn
.V ˝k; V ˝`/

is an isomorphism if and only if k C ` � n.

Proof. This is proved in [9, Theorem 2.3]. While it is assumed throughout [9]

that k is a field of characteristic not equal to 2, that assumption is not needed in

the proof of [9, Theorem 2.3]. When k D `, the current proposition reduces to a

statement about the partition algebra; see [13, Theorem 3.6]. �

3. The Heisenberg category

In this section we define the Heisenberg category originally introduced by Kho-

vanov in [16]. This is the central charge �1 case of a more general Heisenberg

category described in [24, 4]. We give here the efficient presentation of this cate-

gory described in [4, Remark 1.5(2)].
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The Heisenberg category Heis is the strict k-linear monoidal category gener-

ated by two objects ", #, (we use horizontal juxtaposition to denote the tensor

product) and morphisms

W "" �! "";

W1 �! #"; W "# �! 1; W1 �! "#; W #" �! 1;

where 1 denotes the unit object, subject to the relations

D ; D ; (3.1)

D ; D ; (3.2)

D ; D � ; D 0; D 11: (3.3)

Here the left and right crossings are defined by

WD ; WD :

The category Heis is strictly pivotal, meaning that morphisms are invariant

under isotopy (see [4, Theorem 1.3(ii),(iii)]). The relations (3.3) imply that

#" Š "# ˚1: (3.4)

In addition, we have the following bubble slide relations (see [16, p. 175], [4, (13)

and (19)]):

D C and D � : (3.5)

We can define downward crossings

WD

and then we have

D for all possible orientations of the strands (3.6)

(see [16, p. 175] and [4, (20)]).
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For 1 � i � k � 1, let si 2 Sk denote the simple transposition of i and i C 1.

We have natural algebra homomorphisms

kSk �! EndHeis."
k/ and kSk �! EndHeis .#

k/; (3.7)

where si is mapped to the crossing of strands i and i C 1, numbering strands from

right to left.

Let Heis"# denote the full k-linear monoidal subcategory of Heis generated

by "#. It follows immediately from (3.5) that

D :

In other words, the clockwise bubble is strictly central in Heis"#. Thus, fixing

t 2 k, we can define Heis"#.t / to be the quotient of Heis"# by the additional

relation

D t11: (3.8)

For additive categories Ci , i 2 I , the direct product category
Q

i2I Ci has

objects .Xi /i2I , where Xi 2 Ci . Morphisms .Xi /i2I ! .Yi/i2I are .fi /i2I ,

where fi 2 HomCi
.Xi ; Yi/, with componentwise composition. The direct sum

category
L

i2I Ci is the full subcategory of
Q

i2I Ci on objects .Xi /i2I where all

but finitely many of the Xi are the zero object.

We now recall the action of Heis on the category of Sn-modules first defined

by Khovanov [16, §3.3]. We begin by defining a strong k-linear monoidal functor

‚WHeis �!
Y

m2N

�M

n2N

.Sn; Sm/-bimod
�

:

The tensor product structure on the codomain is given by the usual tensor product

of bimodules, where we define the tensor product M˝N of M 2 .Sn; Sm/-bimod

and N 2 .Sk; S`/-bimod to be zero when m ¤ k. We adopt the convention that

S0 is the trivial group, so that S0-mod is the category of k-vector spaces. For

0 � m; k � n, let k.n/m denote kSn, considered as an .Sk; Sm/-bimodule. We

will omit the subscript k or m when k D n or m D n, respectively. We denote

tensor product of such bimodules by juxtaposition. For instance .n/n�1.n/ denotes

kSn ˝n�1 kSn, considered as an .Sn; Sn/-bimodule, where we write ˝m for the

tensor product over kSm. We adopt the convention that sisiC1 � � � sj D 1 when

i > j . Then the elements

gi D si siC1 � � � sn�1; i D 1; : : : ; n; (3.9)

form a complete set of left coset representatives of Sn�1 in Sn.
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On objects, we define

‚."/ D ..n/n�1/n�1; ‚.#/ D .n�1.n//n�1:

On the generating morphisms, we define

‚
� �

D ..n/n�2 �! .n/n�2; g 7�! gsn�1/n�2;

‚
� �

D ..n� 1/ �! n�1.n/n�1; g 7�! g/n�1;

‚
� �

D ..n/n�1.n/ �! .n/; g˝ h 7�! gh/n�1;

‚
� �

D
�

.n/ �! .n/n�1.n/;

g 7�!

n
X

iD1

gi ˝ g�1
i g D

n
X

iD1

ggi ˝ g�1
i

�

n�1
;

‚
� �

D

�

n�1.n/n�1 �! .n � 1/;

g 7�!

´

g if g 2 Sn�1;

0 if g 2 Sn n Sn�1

�

n�1

:

One can then compute that

‚
� �

D

�

n�1.n/n�1 �! .n � 1/n�2.n � 1/;

´

gsn�1h 7�! g ˝ h; g; h 2 Sn�1;

g 7�! 0; g 2 Sn�1

�

n�2

;

‚
� �

D ..n � 1/n�2.n � 1/ �! n�1.n/n�1; g ˝ h 7�! gsn�1h/n�2;

‚
� �

D .n�2.n/ �! n�2.n/; g 7�! sn�1g/n�2:

Restricting to Heis"# yields a functor, which we denote by the same symbol,

‚WHeis"# �!
M

m2N

.Sm; Sm/-bimod:

Recall that 1n denotes the one-dimensional trivial Sn-module. Then the functor

�˝n 1n of tensoring on the right with 1n gives a functor

M

m2N

.Sm; Sm/-bimod
�˝n1n
����! Sn-mod:
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Here we define M ˝n 1n D 0 for M 2 .Sm; Sm/-bimod, m ¤ n. Consider the

composition

Heis"#

‚
�!

M

m2N

.Sm; Sm/-bimod
�˝n1n
����! Sn-mod:

It is straightforward to verify that the image of the relation (3.8) under this com-

position holds in Sn-mod with t D n. Therefore, the composition factors through

Heis"#.n/ to give us our action functor:

�nWHeis"#.n/ �! Sn-mod: (3.10)

Note that the functor �n is not monoidal, since the functor �˝n 1n is not.

4. Existence of the embedding functor

In this section we define a functor from the partition category to the Heisen-

berg category. We will later show, in Theorem 5.2 and Appendix A, that this

functor is faithful. As we will see in Section 5, the existence of this functor

arises from the fact that the composition Indn
n�1 ıResn

n�1 of the induction func-

tor Indn
n�1WSn�1-mod ! Sn-mod and the restriction functor Resn

n�1WSn-mod !

Sn�1-mod is naturally isomorphic to the functor of tensoring with the permutation

module of Sn.

Theorem 4.1. There is a strict linear monoidal functor ‰t WPar .t / ! Heis"#.t /

defined on objects by k 7! ."#/k and on generating morphisms by

� D 7�! ; ı D 7�! ;

s D 7�! C ; � D 7�! ; " D 7�! :

Proof. It suffices to prove that the functor ‰t preserves the relations (2.1)–(2.4).

Since the objects " and # are both left and right dual to each other, the fact that

‰t preserves the relations (2.1) corresponds to the well-known fact that when X

and Y are objects in a monoidal category that are both left and right dual to each

other, then XY is a Frobenius object. Alternatively, one easily can verify directly

that ‰t preserves the relations (2.1). This uses only the isotopy invariance in Heis

(i.e. the fact that Heis is strictly pivotal).
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To verify the first relation in (2.2), we compute the image of the left-hand side.

Since left curls in Heis"#.t / are zero by (3.3), this image is

‰t .s/ ı‰t .s/ D C

(3.1)
D
(3.3)

C
(3.3)
D 1."#/2 :

Next we verify the second relation in (2.2). First we compute

‰t .11 ˝ s/ ı‰t .s ˝ 11/ D C

C C :

Thus, using the fact that left curls are zero and counterclockwise bubbles are 11

by (3.3), we have

‰t .s ˝ 11/ ı‰t .11 ˝ s/ ı‰t .s ˝ 11/

D C C

C C

(3.1)
D
(3.3)

C C

C C :
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Similarly,

‰t .11 ˝ s/ ı‰t .s ˝ 11/ ı‰t .11 ˝ s/

D C C

C C :

Hence it follows from (3.6) that ‰t preserves the second relation in (2.2).

To verify the first relation in (2.3), we compute

‰t .s/ ı .11 ˝ �/ D C

(3.1)
D
(3.3)

D ‰t .�˝ 11/:

To verify the second relation in (2.3), we first compute

‰t .s ˝ 11/ ı‰t .11 ˝ s/ D C

C C :

Then, using (3.3), we have

‰t .11 ˝ �/ ı‰t .s ˝ 11/ ı‰t .11 ˝ s/

D C

D ‰t .s/ ı‰t .�˝ 11/:

The proofs of the second and third relations in (2.3) are analogous.
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Finally, to verify the relations (2.3), we compute

‰t .�/ ı‰t .s/ D C
(3.3)
D D ‰t .�/;

‰t .�/ ı‰t .ı/ D
(3.3)
D D ‰t .11/;

‰t ."/ ı‰t .�/ D
(3.8)
D t11 D ‰t .t10/: �

As an example that will be used later, we compute

‰t

� �

D ‰t

 !

D : (4.1)

Note that this is the second term in ‰t .s/ from Theorem 4.1.

Remark 4.2. There are two natural ways to enlarge the codomain of the functor

‰t to the entire Heisenberg category Heis (or a suitable quotient), rather than the

category Heis"#.t /. The obstacle to this is that the clockwise bubble is not central

in Heis and so the relation (3.8) is not well behaved there. We continue to suppose

that k is a commutative ring.

(a) We can define Par to be the k-linear partition category with bubbles, which

has the same presentation as in Proposition 2.1, but without the last relation

in (2.4). Free floating blocks (i.e. blocks not containing any vertices at the

top or bottom of a diagram) are strictly central “bubbles”. The category

Par .t / is obtained from Par by specializing the bubble at t . Then we have a

k-linear monoidal functor Par ! Heis (factoring through Heis"#) mapping

the bubble of Par to the clockwise bubble

:

This is equivalent to considering Par .t / over the ring kŒt � and Heis over k

and viewing ‰t as a k-linear monoidal functor Par .t /! Heis with

t 7�! :

(Then t is the “bubble” in the partition category.) We refer to this setting by

saying that t is generic.
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(b) If t 2 k, let I denote the left tensor ideal of Heis generated by

� t11:

Then ‰t induces a k-linear functor

Par .t / �! Heis=I:

Note, however, that this induced functor is no longer monoidal. Rather, it

should be thought of as an action of Par .t / on the quotient Heis=I.

As noted in Section 2, the partition category is the free k-linear symmetric

monoidal category generated by an t -dimensional special commutative Frobenius

object. Thus, Theorem 4.1 implies that "#, together with certain morphisms, is a

special commutative Frobenius object in the Heisenberg category. Note, however,

that neither the Heisenberg category nor Heis"#.t / is symmetric monoidal.

5. Actions and faithfullness

Consider the standard embedding of Sn�1 in Sn, and hence of kSn�1 in kSn.

Recall that we adopt the convention that kSn D k when n D 0. We have the

natural induction and restriction functors

Indn
n�1WSn�1-mod �! Sn-mod; Resn

n�1WSn-mod �! Sn�1-mod:

If we let B denote kSn, considered as an .Sn; Sn�1/-bimodule, then we have

Indn
n�1 Resn

n�1.M/ D B ˝n�1 M; M 2 Sn-mod;

where we recall that˝n�1 denotes the tensor product over kSn�1. We will use the

unadorned symbol ˝ to denote tensor product over k. As before, we denote the

trivial one-dimensional Sn-module by 1n.

Recall the coset representatives gi 2 Sn defined in (3.9). In particular, we have

g�1
i gj 2 Sn�1 () i D j: (5.1)

Let V D kn be the permutation Sn-module with basis v1; : : : ; vn. Then we

have

B ˝n�1 1n�1 D Indn
n�1.1n�1/ Š V as Sn-modules: (5.2)

Furthermore, the elements gi ˝n�1 1, 1 � i � n, form a basis of B˝n�1 1n�1 and

the isomorphism (5.2) is given explicitly by

B ˝n�1 1n�1
Š
�! V; gi ˝n�1 1 7�! vi D givn:
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More generally, define

Bk WD B ˝n�1 B ˝n�1 � � � ˝n�1 B
„ ƒ‚ …

k factors

:

Then we have an isomorphism of Sn-modules

ˇkWV
˝k Š
�! Bk ˝n�1 1n�1;

vik ˝ � � � ˝ vi1 7�! gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

i2
gi1 ˝ 1; 1 � i1; : : : ; ik � n;

extended by linearity, with inverse map

ˇ�1
k WB

k ˝n�1 1n�1

Š
�! V ˝k ;

�k ˝ � � � ˝ �1 ˝ 1 7�! .�kvn/˝ .�k�k�1vn/˝ � � � ˝ .�k � � ��1vn/;

for �1; : : : ; �k 2 Sn, extended by linearity.

Theorem 5.1. Fix n 2 N, and recall the following functors from (2.6), (3.10), and

Theorem 4.1:

Par .n/ Heis"#.n/

Sn-mod

 

!
‰n

 

!ˆn

 ! �n
(5.3)

The morphisms ˇk, k 2 N, give a natural isomorphism of functors �nı‰n Š ˆn.

Proof. Since the ˇk are isomorphisms, it suffices to verify that they define a

natural transformation. For this, we check the images of a set of generators of

Par .n/. Since the functor �n is not monoidal, we need to consider generators of

Par .n/ as a k-linear category. Such a set of generators is given by

1k ˝ x ˝ 1j ; k; j 2 N; x 2 ¹�; ı; s; �; �º:

See, for example, [23, Theorem 5.2].

Let j 2 ¹1; 2; : : : ; n � 1º. We compute that

ˇ�1
k�1 ı .�n ı‰n.1k�j �1 ˝ �˝ 1j �1// ı ˇkWV

˝k �! V ˝k�1

is the Sn-module map given by

vik ˝ � � � ˝ vi1 7�! gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

i2
gi1 ˝ 1

(5.1)

7�! ıij ;ij C1
gik ˝ g�1

ik
gik�1

˝ � � � ˝ g�1
ij C3

gij C2
˝ g�1

ij C2
gij

˝ g�1
ij

gij �1
˝ � � � ˝ g�1

i2
gi1 ˝ 1

7�! ıij ;ij C1
vik ˝ � � � ˝ vij C2

˝ vij ˝ � � � ˝ vi1 :
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This is precisely the map ˆn.1k�j �1 ˝ �˝ 1j �1/.

Similarly, we compute that

ˇ�1
kC1 ı .�n ı‰n.1k�j ˝ ı ˝ 1j �1// ı ˇk WV

˝k �! V ˝kC1

is the Sn-module map given by

vik ˝ � � � ˝ vi1 7�! gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

i2
gi1 ˝ 1

7�! gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

ij C1
gij ˝ 1˝ g�1

ij
gij �1

˝ � � � ˝ g�1
i2

gi1 ˝ 1

D gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

ij C1
gij ˝ g�1

ij
gij ˝ g�1

ij
gij �1

˝ � � � ˝ g�1
i2

gi1 ˝ 1

7�! vik ˝ � � � ˝ vij C1
˝ vij ˝ vij ˝ vij �1

˝ � � � ˝ vi1 :

This is precisely the map ˆn.1k�j ˝ ı ˝ 1j �1/.

Now let j 2 ¹1; : : : ; nº. We compute that

ˇ�1
kC1 ı .�n ı‰n.1k�j ˝ �˝ 1j // ı ˇk WV

˝k �! V ˝kC1

is the map

vik ˝ � � � ˝ vi1 7�! gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

i2
gi1 ˝ 1

7�!

n
X

mD1

gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

ij C2
gij C1

˝ g�1
j C1gm ˝ g�1

m gj

˝ g�1
ij

gij �1
˝ � � � ˝ g�1

i2
gi1 ˝ 1

7�!

n
X

mD1

vik ˝ � � � ˝ vij C1
˝ vm ˝ vij ˝ � � � ˝ vi1 :

This is precisely the map ˆn.1k�j ˝ �˝ 1j /.

We also compute that

ˇ�1
k�1 ı .�n ı‰n.1k�j ˝ "˝ 1j �1// ı ˇkWV

˝k �! V ˝k�1

is the map

vik ˝ � � � ˝ vi1 7�! gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

i2
gi1 ˝ 1

7�! gik ˝ g�1
ik

gik�1
˝ � � � ˝ g�1

ij C2
gij C1

˝ g�1
ij C1

gij �1

˝ g�1
ij �1

gij �2
˝ � � � ˝ g�1

i2
gi1 ˝ 1

7�! vik ˝ � � � ˝ vij C1
˝ vij �1

˝ � � � ˝ vi1 :

This is precisely the map ˆn.1k�j ˝ "˝ 1j �1/.
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It remains to consider the generator s. Let j 2 ¹1; 2; : : : ; n � 1º. Define the

elements x; y 2 EndHeis."#"#/ by

x D ; y D : (5.4)

Note that

x D x3 ı x2 ı x1;

where

x1 D ; x2 D ; x3 D :

Suppose i; j 2 ¹1; : : : ; nº and h; h0 2 kSn. We first compute the action of ‚.x/

and ‚.y/ on the element

˛ D hgi ˝ g�1
i gj ˝ g�1

j h0 2 .n/n�1.n/n�1.n/:

If i D j , then g�1
i gj D 1, and so ˆn.x1/.˛/ D 0. Now suppose i < j . Then we

have

g�1
i gj D sn�1 � � � si sj � � � sn�1 D sj �1 � � � sn�2sn�1sn�2 � � � si :

Hence

‚.x1/.˛/ D hgi sj �1 � � � sn�2 ˝ sn�2 � � � si g
�1
j h0 2 .n/n�2.n/:

Thus

‚.x2 ı x1/.˛/ D hgi sj �1 � � � sn�1 ˝ g�1
i g�1

j h0 2 .n/n�2.n/;

and so

‚.x/.˛/ D hgisj �1 � � � sn�1 ˝ sn�1 ˝ g�1
i g�1

j h0

D hgj gisn�1 ˝ sn�1 ˝ sn�2 � � � sj �1g�1
i h0

D hgj ˝ gi sn�2 � � � sj �1 ˝ g�1
i h0

D hgj ˝ g�1
j gi ˝ g�1

i h0:

The case i > j is similar, giving

‚.x/.hgi ˝ g�1
i gj ˝ g�1

j h0/ D

´

0 if i D j;

hgj ˝ g�1
j gi ˝ g�1

i h0 if i ¤ j:

We also easily compute that

‚.y/.hgi ˝ g�1
i gj ˝ g�1

j h0/ D

´

hgi ˝ 1˝ g�1
i h0 if i D j;

0 if i ¤ j:
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Thus, for all i; j 2 ¹1; : : : ; nº, we have

‚.x C y/.hgi ˝ g�1
i gj ˝ g�1

j h0/ D hgj ˝ g�1
j gi ˝ g�1

i h0: (5.5)

It now follows easily that

ˇ�1
k ı .�n ı‰n.1k�j �1 ˝ s ˝ 1j �1// ı ˇk

D ˇ�1
k ı�n.1

˝.k�j �1/

"#
˝ .x C y/˝ 1

˝.j �1/

"#
/ ı ˇk

is the map given by

vik ˝ � � � ˝ vi1 7�! vik ˝ � � � ˝ vij C2
˝ vij ˝ vij C1

˝ vij �1
˝ � � � ˝ vi1 ;

which is precisely the map ˆn.1k�j �1 ˝ s ˝ 1j �1/. �

Theorem 5.2. The functor ‰t is faithful.

We give here a proof under the assumption that k is a commutative ring of

characteristic zero. The general case will be treated in Appendix A.

Proof. It suffices to show that given k; ` � 0 the linear map

‰t .k; `/WHomPar .t/.k; `/ �! HomHeis"#
.."#/k; ."#/`/

is injective. Consider Par .t / over kŒt � and suppose

f D

m
X

iD1

ai .t /fi 2 ker.‰t .k; `//

for some ai 2 kŒt � and partition diagrams fi . Choose n � k C ` and evaluate at

t D n to get

fn D

m
X

iD1

ai .n/fi 2 HomPar .n/.k; `/:

(Here Par .n/ is a k-linear category.) Theorem 5.1 implies that ˆn.fn/ D 0. Then

Proposition 2.2 implies fn D 0. Since the partition diagrams form a basis for the

morphisms spaces in Par .n/, we have ai .n/ D 0 for all i . Since this holds for all

n � k C `, we have ai D 0 for all i . (Here we use that the characteristic of k is

zero.) Hence f D 0 and so ‰t is faithful. �

Since any faithful linear monoidal functor induces a faithful linear monoidal

functor on additive Karoubi envelopes, we obtain the following corollary.
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Corollary 5.3. The functor ‰t induces a faithful linear monoidal functor from

Deligne’s category Rep.St / to the additive Karoubi envelope Kar.Heis"#.t // of

Heis"#.t /.

Note that ‰t is not full. This follows immediately from the fact that the mor-

phism spaces in Par .t / are finite-dimensional, while those in Heis"# are infinite-

dimensional, as follows from the explicit basis described in [16, Proposition 5]

(see also [5, Theorem 6.4]).

6. Grothendieck rings

In this section, we assume that k is a field of characteristic zero. We consider

Par .t / over the ground ring kŒt � and Heis over k. We can then view ‰t as a k-

linear functor Par .t /! Heis as noted in Remark 4.2(a).

For an additive linear monoidal category C, we let K0.C/ denote its split

Grothendieck ring. The multiplication in K0.C/ is given by ŒX�ŒY � D ŒX ˝ Y �,

where ŒX� denotes the class in K0.C/ of an object X in C.

Recall that Deligne’s category Rep.St / is the additive Karoubi envelope

Kar.Par .t // of the partition category. The additive monoidal functor ‰t of Theo-

rem 4.1 induces a ring homomorphism

Œ‰t �WK0.Rep.St // �! K0.Kar.Heis//; Œ‰t �.ŒX�/ D Œ‰t .X/�: (6.1)

The main result of this section (Theorem 6.5) is a precise description of this

homomorphism.

Let Y denote the set of Young diagrams � D .�1; �2; : : : ; �`/, �1 � �2 � � � � �

�` > 0. (We avoid the terminology partition here to avoid confusion with the

partition category.) For a Young diagram � 2 Y, we let j�j denote its size (i.e. the

sum of its parts). Let Sym denote the ring of symmetric functions with integer

coefficients. Then Sym has a Z-basis given by the Schur functions s�, � 2 Y. We

have

SymQ WD Q˝Z Sym Š QŒp1; p2; : : : � D
M

�2Y

Qp�; (6.2)

where pn denotes the n-th power sum and p� D p�1
� � �p�k

for a Young diagram

� D .�1; : : : ; �k/.

The infinite-dimensional Heisenberg Lie algebra h is the Lie algebra over Q

generated by ¹p˙
n ; c W n � 1º subject to the relations

Œp�
m; p�

n � D ŒpC
m ; pC

n � D Œc; p˙
n � D 0; ŒpC

m ; p�
n � D ım;nnc:
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The central reduction U.h/=.c C 1/ of its universal enveloping algebra can also

be realized as the Heisenberg double SymQ #Q SymQ with respect to the bilinear

Hopf pairing

h�;�iWSymQ � SymQ; hpm; pni D ım;nn:

By definition, SymQ #Q SymQ is the vector space SymQ˝Q SymQ with associative

multiplication given by

.e ˝ f /.g ˝ h/ D
X

.f /;.g/

hf.1/; g.2/ieg.1/ ˝ f.2/h;

where we use Sweedler notation for the usual coproduct on SymQ determined by

pn 7�! pn ˝ 1C 1˝ pn: (6.3)

Comparing the coefficients appearing in [2, Theorem 5.3] to [2, (2.2)], we see that

the pairing of two complete symmetric functions is an integer. (Note that our p˙
n

are denoted p�
n in [2].) We can therefore restrict h�;�i to obtain a biadditive form

h�;�iWSym˝Z Sym! Z. The corresponding Heisenberg double

Heis WD Sym #Z Sym

is a natural Z-form for U.h/=.c C 1/ Š SymQ #Q SymQ. For f 2 Sym we let f �

and f C denote the elements f ˝ 1 and 1˝ f of Heis, respectively.

Recall the algebra homomorphisms (2.5) and (3.7), which we use to view

elements of kSk as endomorphisms in the partition and Heisenberg categories.

In particular, the homomorphisms (3.7) induce a natural algebra homomorphism

kSk ˝k kSk �! EndHeis ."
k#k/: (6.4)

We will use this homomorphism to view elements of kSk ˝ kSk as elements of

EndHeis ."
k#k/.

One can deduce explicit presentations of Heis (see [2, §5] and [20, Appen-

dix A]), but we will not need such presentations here. Important for our purposes

is that

sC
�

s�
� ; �; � 2 Y;

is a Z-basis for Heis, and that there is an isomorphism of rings

Heis
Š
�! K0.Kar.Heis//; sC

�
s�

� 7�! Œ."j�j#j�j; e� ˝ e�/�; �; � 2 Y; (6.5)

where e� is the Young symmetrizer corresponding to the Young diagram �. We

adopt the convention that e¿ D 1 and s¿ D 1, where ¿ denotes the empty Young
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diagram of size 0. The isomorphism (6.5) was conjectured in [16, Conjecture 1]

and proved in [5, Theorem 1.1]. Via the isomorphism (6.5), we will identify

K0.Kar.Heis// and Heis in what follows.

Recall that there is an isomorphism of Hopf algebras

1
M

nD0

K0.Sn-mod/ Š Sym; ŒkSne�� 7�! s�: (6.6)

The product on
L1

nD0 K0.Sn-mod/ is given by

ŒM� � ŒN � D ŒInd
SmCn

Sm�Sn
.M � N /�; M 2 Sm-mod; N 2 Sn-mod;

while the coproduct (6.3) is given by

ŒK� 7�!
M

nCmDk

ŒRes
Sk

Sm�Sn
K�; K 2 Sk-mod:

In addition to the coproduct (6.3), there is another well-studied coproduct on

SymQ, the Kronecker coproduct, which is given by

�KrWSymQ �! SymQ˝Q SymQ; �Kr.p�/ D p� ˝ p�:

It is dual to the Kronecker (or internal) product on SymQ. Restriction to Sym gives

a coproduct

�KrWSym �! Sym˝Z Sym : (6.7)

The fact that the restriction of �Kr to Sym lands in Sym˝Z Sym is implied

by the following categorical interpretation of the Kronecker coproduct. The

diagonal embedding Sn ! Sn � Sn extends by linearity to an injective algebra

homomorphism

d WkSn �! kSn ˝k kSn: (6.8)

Under the isomorphism (6.6), the functor

Sn-mod �! .Sn � Sn/-mod; M 7�! IndSn�Sn

Sn
.M/;

corresponds precisely to �Kr after passing to Grothendieck groups. (See [22].)

Now view the Kronecker coproduct as a linear map

�KrWSym �! Sym #Z Sym D Heis: (6.9)

It is clear that the map (6.7) is a ring homomorphism with the product ring

structure on Sym˝Z Sym. In fact, it turns out that we also have the following.
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Lemma 6.1. The map (6.9) is an injective ring homomorphism.

Proof. We prove the result over Q; then the statement follows by restriction to

Sym. By (6.2), it suffices to prove that �Kr.pn/ and �Kr.pm/ commute for

n; m 2 N. Since, for n ¤ m,

�Kr.pn/�Kr.pm/ D pC
n p�

n pC
mp�

m D pC
mp�

mpC
n p�

n D �Kr.pm/�Kr.pn/;

we see that �Kr is a ring homomorphism. It is clear that it is injective. �

Our first step in describing the map (6.1) is to decompose the objects ."#/k

appearing in the image of ‰t . Recall that the Stirling number of the second

kind
®

k
`

¯

, k; ` 2 N, counts the number of ways to partition a set of k labelled

objects into ` nonempty unlabelled subsets. These numbers are given by

´

k

`

µ

D
1

`Š

X̀

iD0

.�1/i

 

`

i

!

.` � i/k

and are determined by the recursion relation

´

k C 1

`

µ

D `

´

k

`

µ

C

´

k

` � 1

µ

with
´

0

0

µ

D 1 and

´

k

0

µ

D

´

0

k

µ

D 0; k > 0:

Lemma 6.2. In Heis , we have

."#/k Š

k
M

`D1

."`#`/˚¹k`º: (6.10)

In particular, since
®

k
k

¯

D 1, the summand "k#k appears with multiplicity one.

Proof. First note that repeated use of the isomorphism (3.4) gives

"#"k#k Š "kC1#kC1 ˚."k#k/˚k : (6.11)
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We now prove the lemma by induction on k. The case k D 1 is immediate.

Suppose the result holds for some k � 1. Then we have

."#/kC1 Š ."#/
� k
M

`D1

."`#`/˚¹k`º
�

(6.11)

Š

k
M

`D1

.."`C1#`C1/˚¹k`º C ."`#`/˚`¹k`º/

Š

kC1
M

`D1

."`#`/˚.`¹k`ºC¹
k

`�1º/

Š

kC1
M

`D1

."`#`/˚¹kC1
` º: �

Recall that, under (6.4), for each Young diagram � of size k, we have the

idempotent

d.e�/ 2 EndHeis ."
k#k/;

where d is the map (6.8). Recall also the definition Pk.t / D EndPar .t/.k/ of the

partition algebra. Let

� D 2 P2.t / and �i D 1k�i�1 ˝ � ˝ 1i�1 2 Pk.t / for 1 � i � k � 1:

It is straightforward to verify that the intersection of Pk.t / with the tensor ideal of

Par .t / generated by � is equal to the ideal .�1/ of Pk.t / generated by �1. Denote

this ideal by P
�

k
.t /.

As noted in [10, Lemma 3.1(2)], we have an isomorphism

Pk.t /=P
�

k
.t / Š kSk ; aC P

�

k
.t / 7�! a; a 2 kSk; (6.12)

where we view elements ofkSk as elements of Pk.t / via the homomorphism (2.5).

This observation allows one to classify the primitive idempotents in Pk.t / by

induction on k. This classification was first given by Martin in [26].

Proposition 6.3. For k > 0, the primitive idempotents in Pk.t /, up to conjugation,

are in bijection with the set of Young diagrams � 2 Y with 0 < j�j � k.

Furthermore,

(a) under this bijection, idempotents lying in P
�

k
.t / correspond to Young dia-

grams � with 0 < j�j < k;

(b) for each Young diagram � of size k, we can choose a primitive idempotent

f� 2 Pk.t / corresponding to � so that f� C P
�

k
.t / maps to the Young

symmetrizer e� under the isomorphism (6.12).
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Proof. This follows as in the proof of [10, Theorem 3.4]. Note that since t is

generic,

� ı " D

is not an idempotent in P1.t /. Thus, the argument proceeds as in the t D 0 case

in [10, Theorem 3.4]. �

For � 2 Y, define the indecomposable object of Rep.St /

L.�/ WD .j�j; f�/:

Proposition 6.4. Fix an integer k � 0. The map

� 7�! L.�/; � 2 Y;

gives a bijection from the set of � 2 Y with 0 � j�j � k to the set of nonzero inde-

composable objects in Rep.St/ of the form .m; e/ with m � k, up to isomorphism.

Furthermore

(a) if � 2 Y with 0 < j�j � k, then there exists an idempotent e 2 Pk.t / with

.k; e/ Š L.�/;

(b) we have that .0; 10/ is the unique object of the form .m; e/ that is isomorphic

to L.¿/.

Proof. This follows as in the proof of [10, Lemma 3.6]. Again, our assumption

that t is generic implies that we proceed as in the t D 0 case of [10, Lemma 3.6].

�

We are now ready to prove the main result of this section.

Theorem 6.5. The homomorphism Œ‰t � of (6.1) is injective and its image is

Œ‰t �.K0.Rep.St /// D �Kr.Sym/ � Heis; (6.13)

where Heis is identified with K0.Heis/ as in (6.5).

Proof. For k 2 N, let Repk.St / denote the full subcategory of Rep.St / containing

the objects of the form .k; e/. By Proposition 6.4, Repk.St / is also the full

subcategory of Rep.St / containing the objects of the form .m; e/, m � k.

We prove by induction on k that the restriction of Œ‰t � to K0.Repk.St // is

injective, and that

Œ‰t �.K0.Repk.St/// D �Kr.Sym�k/;
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where Sym�k denotes the subspace of Sym spanned by symmetric functions of

degree � k. The case k D 0 is immediate.

Suppose k � 1. The components "k#k! ."#/k and ."#/k ! "k#k of the

isomorphism (6.10) are

� � � � � �

� � �

and

� � � � � �

� � �

respectively. For i D 1; : : : ; k � 1, consider the morphism (we use (4.1) here)

‰t .si � �i / D � � � � � �

2 EndHeis .."#/k/:

(6.14)

Under the isomorphism (6.10), this corresponds to

� � � � � � � � � � � �

� � � � � �

� � � � � � � � � � � �

(3.3)
D si ˝ si

D d.si / 2 EndHeis ."
k#k/:

It follows that, for any Young diagram � of size k, we have ‰t .e�/ � d.e�/ 2

‰t .P
�

k
.t //. Since f� � e� 2 P

�

k
.t / by Proposition 6.3, this implies that

‰t .f�/ � d.e�/ D .‰t .f�/ �‰t .e�//C .‰t .e�/ � d.e�// 2 ‰t .P
�

k
.t //:

Thus, by Proposition 6.3 and the induction hypothesis, we have

Œ‰t .L.�//���Kr.s�/ D Œ‰t .L.�//�� Œ"k#k ; d.e�/� 2 �Kr.Sym�.k�1//:

Since the s� with j�j D k span the space of degree k symmetric functions, we are

done. �

As an immediate corollary of Theorem 6.5, we recover the following result

of [11, Corollary 5.12]. (The Tn of [11] correspond to the complete symmetric

functions.)
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Corollary 6.6. We have an isomorphism of rings K0.Rep.St // Š Sym.

The Grothendieck ring is one method of decategorification. Another is the

trace, or zeroth Hochschild homology. We refer the reader to [1] for details.

The functor ‰t induces a ring homomorphism on traces. We conclude with a

brief discussion of this induced map. First, note that the trace of a category is

isomorphic to the trace of its additive Karoubi envelope. (See [1, Proposition 3.2].)

Thus, Tr.Par .t // Š Tr.Rep.St //. In addition, our assumption that t is generic (in

particular, t … N) implies that Rep.St / is semisimple. (See [11, Theorem 2.18].)

It follows that the Chern character map

hWK0.Rep.St // �! Tr.Rep.St //

is an isomorphism. (See [29, Proposition 5.4].) Hence Tr.Par .t // Š Tr.Rep.St // Š

Sym by Corollary 6.6. On the other hand, the trace of the Heisenberg category

was computed in [7, Theorem 1] and shown to be equal to a quotient of the W-

algebra W1C1 by a certain ideal I . This quotient contains the Heisenberg algebra

Heis and the Chern character map induces an injective ring homomorphism

Heis Š K0.Heis/ �! Tr.Heis/ Š W1C1=I:

It follows that the functor ‰t induces an injective ring homomorphism

Sym Š Tr.Rep.St // �! Tr.Heis/ Š W1C1=I;

and the image of this map is �Kr.Sym/ � Heis � W1C1=I .

Appendix A. Faithfulness over any commutative ring

(with Christopher Ryba)

In this appendix we prove Theorem 5.2 over an arbitrary commutative ring k.

We say a partition diagram is a permutation if it is the image of an element

of Sk, k 2 N, under the map (2.5). We say a partition diagram is tensor-planar

if it is a tensor product (horizontal juxtaposition) of partition diagrams consisting

of a single block. Note that every tensor-planar diagram is planar (i.e. can be

represented as a graph without edge crossings inside of the rectangle formed by

its vertices) but the converse is false.

Every partition diagram D can be factored as a product D D D1 ıD2 ıD3,

where D1 and D3 are permutations and D2 is tensor-planar. Furthermore, we

may assume that D1 and D3 are compositions of simple transpositions that only
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transpose vertices in different blocks (since transposing vertices in the same block

has no effect). The number of blocks in D is clearly equal to the number of blocks

in D2. For example, the partition diagram

D D

has four blocks and decomposition D D D1 ıD2 ıD3, where

D1 D ; D2 D D ˝ ˝ ˝ ;

D3 D :

For n; k; ` 2 N, let Hom�n
Par

.k; `/ denote the subspace of HomPar .k; `/ spanned

by partition diagrams with at most n blocks. Composition respects the correspond-

ing filtration on morphism spaces.

Recall the bases of the morphism spaces of Heis given in [16, Proposition 5].

For any such basis element X in HomHeis"#
.."#/k ; ."#/`/, define the block num-

ber of X to be number of distinct closed (possibly intersecting) loops in the dia-

gram
˝` ıX ı ˝k:

Let

Hom�n
Heis"#

.."#/k ; ."#/`/; n 2 N;

denote the subspace of HomHeis"#
.."#/k; ."#/`/ spanned by basis elements with

block number at most n. Composition respects the resulting filtration on morphism

spaces.

The image under ‰t of tensor-planar partition diagrams (writing the image in

terms of the aforementioned bases of the morphism spaces of Heis) is particularly

simple to describe. Since each tensor-planar partition diagram is a tensor product

of single blocks, consider the case of a single block. Then, for example, we have

‰t . / D and ‰t

� �

D :

The general case is analogous. (In fact, the images of all planar diagrams are

similarly easy to describe.) In particular, if D is a tensor-planar partition diagram

with n blocks, then ‰t .D/ is a planar diagram with block number n.

For a permutation partition diagram DW k ! k, let T .D/ be the planar diagram

(a morphism in Heis"#) defined as follows: Write D D si1ısi2ı� � �ısir as a reduced

word in simple transpositions and let

T .D/ D ‰t .si1 � �i1/ ı‰t .si2 � �i2/ ı � � � ı‰t .sir � �ir /:
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(See (6.14).) It follows from the braid relations (3.6) that T .D/ is independent of

the choice of reduced word for D.

Proposition A.1. Suppose DW k ! ` is a partition diagram with n blocks. Write

D D D1ıD2ıD3, where D2 is a tensor-planar partition diagram and D1 and D3

are compositions of simple transpositions that only transpose vertices in different

blocks. Then

‰t .D/ � T .D1/ ı‰t .D2/ ı T .D3/ 2 Hom�n�1
Heis"#

.."#/k ; ."#/`/:

Proof. We have ‰t .D/ D ‰t .D1/ ı ‰t .D2/ ı ‰t .D3/. As noted above, D2 has

n blocks and ‰t .D2/ has block number n. Suppose 1 � j < `. If D0W k ! ` is a

partition diagram with n blocks such that j 0 and .j C 1/0 lie in different blocks,

then �j ıD0 has n � 1 blocks. It follows that

‰t .sj / ı‰t .D
0/ �‰t .sj � �j / ı‰t .D

0/ 2 Hom�n�1
Heis"#

.."#/k ; ."#/`/:

Similarly,

‰t .D
0/ ı‰t .sj / �‰t .D

0/ ı‰t .sj � �j / 2 Hom�n�1
Heis"#

.."#/k ; ."#/`/

for any 1 � j < k such that j and j C 1 lie in different blocks of D0. The result

then follows by writing D1 and D3 as reduced words in simple transpositions. �

Corollary A.2. The functor ‰t is faithful over an arbitrary commutative ring k.

Proof. It is clear that, in the setting of Proposition A.1, T .D1/ ı‰t .D2/ ı T .D3/

is uniquely determined by D. Indeed, D is the partition diagram obtained from

T .D1/ ı ‰t .D2/ ı T .D3/ by replacing each pair "# by a vertex and each strand

by an edge. Furthermore, the diagrams of the form T .D1/ ı‰t .D2/ ı T .D3/ are

linearly independent by [16, Proposition 5]. The result then follows by a standard

triangularity argument. �
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