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Abstract. We define a triply-graded invariant of links in a genus g handlebody, generalizing
the colored HOMFLYPT (co)homology of links in the 3-sphere. Our main tools are the
description of these links in terms of a subgroup of the classical braid group, and a family
of categorical actions built from complexes of (singular) Soergel bimodules.
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1. Introduction

The HOMFLYPT polynomial is a classical invariant of links l � �3 in the 3-sphere
�3 with interesting and deep connections to representation theory. As pioneered by
Jones [Jon87], the HOMFLYPT polynomial may be defined using representations
of the classical n strand braid group Br.n/ on the type A Hecke algebra. Indeed,
we may use Alexander’s theorem to present a link as a braid closure, and the
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HOMFLYPT polynomial then results by mapping the braid to the Hecke algebra and
applying the so-called Jones–Ocneanu trace. (For the duration of the introduction,
if not explicitly stated otherwise, “Hecke algebra” and related notions are always
of type A .)

This approach to the HOMFLYPT polynomial was categorified in work of
Khovanov [Kho07]. In this work, Khovanov shows that the triply-graded Khovanov–
Rozansky homology HHH�.l/ of l � �3, originally defined in [KR08b], admits
a construction paralleling Jones’s approach at the categorical level. This approach
proceeds by replacing the Hecke algebra by the corresponding Hecke category,
i.e. the category of Soergel bimodules. The latter admits a categorical action of
Br.n/ via so-called Rouquier complexes [Rou06], and the link homology results
by taking Hochschild (co)homology, which provides a categorical analogue of the
Jones–Ocneanu trace.

In addition to their triply-graded invariant, for each m � 2 Khovanov and
Rozansky define a doubly-graded homology theory for links l � �3 [KR08a]
that categorifies the slm specialization of the HOMFLYPT polynomial. In the
m D 2 case, which coincides with Khovanov’s categorification of the Jones
polynomial [Kho00], Asaeda–Przytycki–Sikora have extended this link homology
to links in 3-manifolds M ¤ �3, see [APS04], namely to links in thickened
surfaces. Of particular interest is the case of the thickened annulus, where the
so-called annular Khovanov homology has deep connections to both Floer theory
and representation theory, see e.g. [Rob13], [GW10], and [GLW18]. In [QR18],
an analogue of doubly-graded Khovanov–Rozansky homology was constructed
for annular links, extending annular Khovanov homology, and its connection to
representation theory, to general m. Unfortunately, the above approaches to link
homology in 3-manifolds M ¤ �3 do not extend to the triply-graded setting.

In this paper, we remedy this by constructing generalizations of the triply-
graded link homology for links in 3-manifolds distinct from the 3-sphere, namely
in genus g handlebodies. Specifically, we fix g � 0 and a corresponding genus g
handlebody, and construct HOMFLYPT homology for links in this fixed handlebody
that is invariant under ambient isotopy (but not under orientation-preserving
diffeomorphisms of the handlebody; these notions disagree for g > 0, contrasting
the g D 0 case). For g D 1, this is the case of links in the thickened annulus.
Our key insights are: (1) to consider various generalizations of the classical braid
group that are related to links in handlebodies, and (2) that certain structures in
categorical representation theory model the topology of the handlebody. We now
detail our approach.
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1A. An overview of our construction. Throughout, we let g; n 2 N0. Recall
that Khovanov’s construction of HHH�.l/ for l � �3 requires the following:

� Alexander’s Theorem, which states that, up to isotopy, any link l � �3 can
be presented as the closure of a braid b in the classical n-strand braid group
Br.n/;

� Markov’s Theorem, which gives necessary and sufficient conditions for two
distinct braids to have isotopic closures;

� a categorical action of Br.n/ on the Hecke category via Rouquier complexes,
which allows for the assignment of a chain complex of Soergel bimodules to
each b 2 Br.n/;

� Hochschild (co)homology, which produces a Markov invariant triply-graded
vector space from this complex of Soergel bimodules.

In [HOL02] (see also [Lam93]), it is shown that analogues of Alexander’s
and Markov’s Theorems hold for links in the genus g handlebody Hg . Playing
the role of the classical braid group is the n-strand braid group Br.g; n/ of the
g-times punctured disk D2

g . The classical story here is the g D 0 case, where
Br.n/ D Br.0; n/.

As we more fully detail in Section 2B, braids in Br.g; n/ can be pictured as
classical braids in the presence of non-intersecting “core strands”. We then obtain
a link in Hg by allowing the tops and bottoms of the core strands to meet at1,
and by taking a closure of the “usual strands”. The latter then form a link in the
complement of the (glued) core strands, which is a handlebody Hg :

b D

core strands

usual strand

� D2
g � Œ0; 1�

closure
����!

�
1

�
1

(1-1)

The analogue of the Alexander Theorem here shows that, up to isotopy, every link
in Hg arises in this way, and the corresponding Markov Theorem characterizes
when distinct braids give rise to isotopic closures.

Issues arise, however, when attempting to carry out the last two steps in the
construction of triply-graded link homology in this setting. Indeed, for general g,
the groups Br.g; n/ are not known to be Artin–Tits groups (see Section 1B for
further discussion), so, to our knowledge, there are no associated Soergel bimodules
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and/or Rouquier complexes. Further, the Markov Theorem has a weaker notion of
conjugation than in the classical case, e.g. we have

�
1

�
1

b
not isotopic
 �����!

�
1

�
1

c (1-2)

even though the indicated (boxed) braids b;c 2 Br.2; 1/ are conjugate. Hence,
even with a categorical representation of Br.g; n/ in hand, one cannot simply
apply Hochschild cohomology to obtain an invariant of links that is sensitive to
the topology of Hg .

We simultaneously resolve both these problems as follows. We expand the
point at infinity to a small segment, which we move close to the top of the core
strands. As a result, we can view the closure of the “usual strands” as a link in the
handlebody given by the complement of the graph determined by the core strands
and the segment at infinity, e.g.

�
1

�
1

� (1-3)

In this modified presentation we are able to assign an invariant to the link l � Hg

using known structures in categorical representation theory. Indeed, for any
labeling of the core strands, the boxed diagram in (1-3) determines a complex of
singular Soergel bimodules. The latter determine a (2-)category that contains the
Hecke category [Wil11], and categorifies the Schur algebroid, a certain idempotent
completion of the Hecke algebra. Further, the closure procedure now does not
involve the point at infinity, and hence can be carried out algebraically as usual,
using Hochschild cohomology. In this way, we obtain a triply-graded homology
for links l � Hg . We show that this indeed produces a well-defined invariant of
handlebody links, and that it is sensitive to the topology of the handlebody, e.g. it
distinguishes the links in (1-2).
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1B. A digression on Artin–Tits groups. Our motivation for this project, from
which we have now somewhat strayed, was to further our understanding of the
connection between low-dimensional topology and Artin–Tits groups. Recall that
a Coxeter diagram � D .V;E/ consists of a simple, complete graph with finitely
many vertices V whose edges e D .i; j / 2 E carry a labelmij D mj i 2 N�2[¹1º.
To any such diagram, we may associate the Artin–Tits group:

AT.�/ WD hˇi ; i 2 V j : : : ˇi ǰˇi„ ƒ‚ …
mij factors

D : : : ǰˇi ǰ„ ƒ‚ …
mij factors

i: (1-4)

This group is an extension of the corresponding Coxeter group:

W.�/ WD h�i ; i 2 V j �2i D 1; : : : �i�j�i„ ƒ‚ …
mij factors

D : : : �j�i�j„ ƒ‚ …
mij factors

i: (1-5)

The jumping-off point is the classical observation that Br.n/ D Br.0; n/ is
isomorphic to the Artin–Tits braid group of type A , while Br.1; n/ is isomorphic
to the Artin–Tits group of type C D B and extended affine type A . More surprising
is the lesser-known fact that Br.2; n/ is isomorphic to the Artin–Tits group of
affine type C [All02]. The following table summarizes these known connections,
details of which can be found in e.g. [All02, Section 4] and [Bri73].

Genus type A type C

g D 0 Br.n/ Š AT.An�1/ ‹

g D 1 Br.1; n/ Š Z ËAT.zAn�1/ Š AT.yAn�1/ Br.1; n/ Š AT.Cn/
g D 2 ‹ Br.2; n/ Š AT.zCn/
g � 3 ‹ ‹

(1-6)

Herein, An�1 denotes the type A Coxeter diagram with n � 1 nodes, while
zAn�1 denotes the affine type A Coxeter diagram with n nodes and yAn�1 is the
corresponding extended affine type. Similarly, Cn and zCn denote the type C D B
and affine type C (but not affine type B ) Coxeter diagrams with n and nC 1 nodes,
respectively.

As mentioned above, the first row of the type A column in (1-6) underpins
Jones’s construction of the HOMFLYPT polynomial, and the second row has sim-
ilarly been exploited in topological considerations, see e.g. [OR07] and [El18].
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The type C column, however, has received less attention, especially in the affine,
g D 2 case, where not much appears to be known about connections to link
invariants. (However, this case has been explored from a representation-theoretic
point of view, see e.g. [DR18].) A notable example is work of Geck–Lambropoulou
[GL97] in the g D 1 case, where a HOMFLYPT polynomial for links in H1 is
constructed via the analogue of Jones’s construction in type C . The results in
[Rou17] and [WW11] should pair to give a categorification of this invariant. In
a companion paper, we plan to study this invariant, and develop its genus two
analogue, using type C and affine type C Hecke algebras and Soergel bimodules.

By contrast, our construction in the present paper exploits the relation between
Br.g; n/ and Br.gCn/, and the fact that the latter is an Artin–Tits group. Indeed,
our construction can be recast as follows. By viewing the distinguished strands as
usual strands, we obtain an injective group homomorphism Br.g; n/ ,! Br.gCn/.
Since the latter is an Artin–Tits group, we can assign a complex of Soergel
bimodules to any braid b 2 Br.g; n/. Now, before taking Hochschild cohomology
(doing so immediately would give an invariant less-sensitive to the topology of the
handlebody), we glue on an additional Soergel bimodule that allows invariance
under the Markov Theorem for Br.g; n/, but not for Br.g C n/. In fact, our
procedure is slightly more general in that it uses an embedding of Br.g; n/ into
the colored braid group, and singular Soergel bimodules.

1C. Future outlook. In addition to our planned investigation in type C , we believe
there are a number of interesting future directions.

� The relation between Br.g; n/ and Hecke algebras. These exists a Hecke-
like algebra associated to Br.g; n/ for general g, see e.g. [Lam00]. In the
g D 0; 1 cases, this algebra matches the Hecke algebras associated to the
Artin–Tits groups in the type A column of (1-6). These algebras have not
been widely studied, e.g. to our knowledge it is not known whether they admit
Markov traces or categorifications.

In another direction, it is an interesting problem to extend the type C col-
umn of (1-6) to higher genus. The presentation of Br.g; n/ given below in
Definition 2.4 hints to a connection to the Artin–Tits group associated to the
Coxeter diagram that is obtained from the type An diagram by adjoining g
additional vertices. These vertices are attached to each other with1-labeled
edges, and to the first type A vertex with 4-labeled edges. (Something very
similar was also observed in [Lam00, Remark 4].) For example, the g D 3
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case is as follows:

case g D 3W

01

02 1 2 � � � n�1

03

1

1

1

(1-7)

Here, we depict k-labeled edges (for k <1) as k�2 unlabeled edges. In fact,
Br.g; n/ is a quotient of the associated Artin–Tits group, so one could hope to
extract invariants of l � Hg from (a suitable quotient of ) the corresponding
Hecke algebra and/or Soergel bimodules.
� Connections to algebraic geometry. Work of Webster–Williamson [WW11]

relates the Jones–Ocneanu trace on the type A Hecke algebra to the equivariant
cohomology of sheaves on SLn, and extends this to other types. It would be
interesting to identify geometry related to Br.g; n/ and, more generally, links
in Hg . One fertile avenue is the possible connection between the g � 1 case
and versions of Springer fibers as e.g. in [Ka09] or [SW18].

In a different direction, work of Gorsky–Negut–Rasmussen [GNR16]
conjectures a relation between the category of type A Soergel bimodules and
the flag Hilbert scheme of C2. The appearance of the latter can be interpreted
as considering the closure of a braid b 2 Br.n/ in the complement of an
n-component unlink. Since the graph giving the complement of Hg can
be viewed as an unlink fused at the “segment at infinity,” this suggests a
connection between the flag Hilbert scheme and our invariants.

Finally, another avenue of exploration is to extend various (known or
conjectural) physical predications concerning (g D 0) triply-graded homology
to higher genus, see e.g. [GGS18] or [GS12], and [QRS18, Section 6.3] or
[TVW17] for related results.

1D. Conventions. We now summarize various conventions used in this paper.

Convention 1.1. We work over an arbitrary field K of characteristic 0. This
requirement is only needed in Section 4: the reader interested in integral versions
of our results from Section 3 needs to replace the algebraic definition of singular
Soergel bimodules of type A , which we use, by their diagrammatic incarnation
[EL17, Section 2.5]. (The algebraic and the diagrammatic definitions differ when
working integrally or in characteristic p.) All the results from Section 3 then hold
verbatim overZ. However, we do not currently have integral versions of the singular
Soergel diagrammatics in Section 4.
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Convention 1.2. We will find it convenient to depict morphisms in certain cate-
gories (and 1-morphisms in certain 2-categories) diagrammatically. We will read
such diagrams from bottom-to-top (and in the presence of a monoidal or 2-cate-
gorical structure, also right-to-left). These reading conventions are summarized
by

A

B

C

a

b

c

d
! .bd/ ı .ac/W A �! B �! C: (1-8)

Moreover, all such diagrams are invariant under (distant) height exchange isotopy
(up to isomorphism, in the 2-categorical context). Finally, we will occasionally
omit certain data (e.g. labelings) from such diagrams when they may be recovered
from the given data, or are not important for the argument in question.

Convention 1.3. We will work with Zk-graded categories throughout, for k D
1; 2; 3. The three gradings of importance are the internal degree q, the homological
degree t (both appearing from Section 3 onward), and the Hochschild degree a
(making its appearance in Section 4).

There are competing notions of what is meant by a graded category, so we now
detail our conventions, focusing on the q-degree. Let C be a category enriched
in Z-graded abelian groups, i.e. for objects X and Y, HomC.X; Y/ is a Z-graded
abelian group:

HomC.X; Y/ D
M
d2Z

HomC.X; Y/d (1-9)

Given such a category, we can introduce a formal grading-shift functor q and
consider the category fCq in which objects are given by formal shifts qsX of objects
in C, and

HomeCq.qsX;qtY/ D
M
d2Z

HomC.X; Y/dCt�s: (1-10)

i.e. fCq is again enriched in Z-graded abelian groups. Finally, we let Cq be the
category with the same objects as fCq, but where we restrict to q-degree zero
morphisms, i.e.

HomCq.qsX;qtY/ D HomC.X; Y/s�t : (1-11)
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Note that Cq is not enriched in Z-graded abelian groups, but is equipped with an
autoequivalence shift functor q. It is categories of this form that will be of primary
interest in this work.

We note, however, that it is possible to recover the Z-graded abelian group
HomC.X; Y/ from the category Cq. Indeed, we can consider the Z-graded abelian
group

HOMCq.X; Y/ WD
M
d

HomCq.qdX; Y/ (1-12)

and we note that

HOMCq.qsX;qtY/ D qt-sHOMCq.X; Y/; (1-13)

where on the right-hand side the power q denotes a shift of the indicated Z-graded
abelian group.

Our consideration of Z2- and Z3-graded categories is analogous – in these
cases we have additional shift functors t and a, and we restrict to t- and a-degree
zero maps, unless otherwise indicated. However, we will reserve the capitalization
notation HOM when considering “graded Homs” with respect to the q-degree
only.

Lastly, we note that these considerations carry over to 2-categories as well,
where the above applies to the Hom-categories in our 2-category, i.e. to the 1- and
2-morphisms.
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2. Links and braids in handlebodies

In this section we collect result concerning links and braids in handlebodies.

2A. Topological recollections. Recall that a handlebody Hg of genus g is the
compact, orientable 3-manifold with boundary obtained by attaching g 1-handles
to the closed 3-ball H0. An explicit model for Hg , that we call the standard
presentation, is given by the “inside” of a standardly embedded genus g surface
†g � �3 in the 3-sphere �3, i.e. the 3-manifold given by the union of †g with the
component of �3 X†g that does not contain the point at infinity.

We will typically work with another presentation for Hg , given by the closure in
�3 of the complement of an auxiliary handlebody H c

g . We view H c
g as consisting

of g parallel 1-handles that are attached to the closure of a small neighborhood
of1 2 �3. See the gray portion of the first figure in Example 2.2 for the g D 3
case. In order to connect with the categorical representation theory used to produce
our link invariant, we note that H c

g is isotopic to a closed neighborhood of the
embedded graph obtained by taking g parallel edges, called the “core strands”,
each meeting a .gC 1/-valent vertex, together with an additional “edge at infinity”
joining the two vertices. We will typically view the edge at infinity as being near
the top of the core strands, hereby viewing H c

g as being obtained from the core
strands by first gluing on a graph with g 1-valent vertices at its top and bottom (and
two .g C 1/-valent vertices) and then taking their closure. See the gray portion of
the second figure in Example 2.2.

We will refer to this presentation of Hg D �3 XH c
g as the costandard presen-

tation, and note that it contains a copy of the standard presentation, to which it is
isotopic, given by intersecting with a closed 3-ball that meets each core strand in a
segment.

We consider oriented links l � Hg , which, in the costandard presentation, are
given by links in �3 X H c

g . Equivalently, using the isotopy with the standard
presentation, such links are given by links in the closed 3-ball that avoid its
intersection with the core strands. Finally, two links in l; l0 � Hg are isotopic,
denoted by l � l0, if and only if the corresponding links in �3 (in the costandard
presentation) are isotopic through an isotopy that keeps H c

g fixed pointwise.

2B. Alexander’s theorem. There is a corresponding notion of n strand braids in
a genus g handlebody. Strictly speaking, we define Br.g; n/ to be the braid group
of the surface D2

g given as the complement of g disjoint open disks in the closed
disk D2. The standard presentation of Hg may be identified with the product
D2
g � Œ0; 1� � �3, so braids in Br.g; n/ “live in” Hg . The group Br.g; n/, which
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we call the handlebody braid group, can be equivalently described as follows. There
is a subgroup of the classical braid group Br.gCn/ on gCn strands consisting of
braids that are pure on the first g strands, and a homomorphism from this subgroup
to the classical braid group Br.g/ given by forgetting the final n strands. The kernel
of this homomorphism is precisely Br.g; n/. (Informally, Br.g; n/ consists of
braids on gCn strands in which the first g strands do not braid among themselves.)
Slightly abusing notation, we will again refer to the first g strands of a braid in
Br.g; n/ as core strands; they correspond to the core strands above as we now
describe.

The handlebody braid group Br.g; n/ is related to links in Hg in a manner
paralleling the relation between the classical braid group Br.n/ and links in �3.
That is, given a braid b 2 Br.g; n/, one obtains a link Nb � Hg via a closure
procedure as follows: the first g strands in b are joined at each of their ends to
the point at infinity, and the remainder of the braid is closed as in the classical
case. In this way, we obtain a link Nb � Hg where the closure of the last n strands
constitutes Nb, and the first g strands in b become the core strands in H c

g . As in
our discussion of H c

g above, we will typically work with an equivalent closure
procedure, which again corresponds to expanding the point at infinity to an edge,
and moving it near the top of the core strands. Specifically, the closure procedure
consists of merging the g core strands to meet the strand at infinity, then splitting
the strand at infinity into g strands, and finally taking the standard closure of all
strands.

Example 2.1. We have Br.0; n/ Š Br.n/, which corresponds to links in the
closed 3-ball H0; we call this the classical case. In genus one, Br.1; n/ consists of
all braids in Br.1C n/ that are pure on the first strand, and H1 is a solid torus.

Example 2.2. Here we illustrate the closure procedure for b 2 Br.3; 4/:

�
1

�
1

b

Nb

H c
3�3

�
b

Nb

H c
3�3

b 2 Br.3; 4/; Nb � H3

(2-1)



384 D. E. V. Rose and D. Tubbenhauer

The braid itself is depicted as the solid strands in the indicated rectangle, while
the dashed edges correspond to the closure procedure described above. The thin,
black components (both solid and dashed) give the link Nb, while the thick, gray
graph (again, both solid and dashed) depicts H c

g .

The next result shows that, up to isotopy, all links in Hg arise from the closure
procedure for handlebody braids described above. The proof is analogous to the
classical case.

Theorem 2.3. (Alexander’s Theorem in a handlebody; [HOL02, Theorem 2].)
Given a link l � Hg there exists a braid b 2 Br.g; n/ such that Nb � l � Hg .

2C. Generators and relations for braids in handlebodies. We now recall the
algebraic presentation of Br.g; n/.

Definition 2.4. The group Br.g; n/ is the group generated by b1; : : : ;bn�1 and
t1; : : : ; tg , called braid and twist generators, respectively, subject to the relations

bjbibj D bibjbi if ji � j � D 1; bjbi D bibj if ji � j � > 2; (2-2)
b1tib1ti D tib1tib1; bitj D tjbi if i > 2; (2-3)

.b1tib
�1
1 /tj Dtj .b1tib

�1
1 / for i < j: (2-4)

By convention, Br.g; 0/ D ¹1º, and we omit the twist generators when g D 0 and
the braid generators when n D 1.

The following theorem identifies Br.g; n/ and Br.g; n/, and we likewise do for
the duration. In particular, we identify Br.n/ D Br.0; n/ and Br.n/.

Proposition 2.5. ([Ver98, Theorem 1] & [Lam00, Section 5].) There is an
isomorphism of groups

Br.g; n/ Š Br.g; n/: (2-5)
�

An explicit isomorphism realizing Proposition 2.5 is given on the braid and the
twist generators as follows:

bi 7�!

i+1

i

i

i+1

::: ::: ::: & ti 7�!

1i

i 1

:::

:::

:::

:::
::: (2-6)

The inverse of bi is given, as usual, by the corresponding opposite crossing, and
the inverse of ti is given as above, but with the braid strand wrapping the i th core
strand oppositely (however, it still crosses over the other core strands).
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Example 2.6. Under this map, the first relation in (2-2) corresponds to the braid-
like Reidemeister III relation, and the second relations in (2-2) and (2-3) correspond
to planar isotopy. The four term relation in (2-3) and the relation in (2-4) become
e.g. the relations (2-7) and (2-8), respectively:

b1tib1ti D tib1tib1!

1i

i 1

:::

:::

D

i 1

i 1

:::

:::

(2-7)

.b1tib
�1
1 /tj D tj .b1tib

�1
1 /!

i 1j

i j 1

:::

:::

:::

:::

D

i j 1

i

j

j 1

:::

:::

:::

:::

(2-8)

The non-trivial statement in Proposition 2.5 is that these relations are sufficient.

2D. Markov’s theorem. Let Br.g;1/ WD
F
n2N Br.g; n/, the set of all braids

in Hg .

Definition 2.7. Let Br.g;1/Ma WD Br.g;1/= � be the quotient given by con-
jugation (2-9) in (each) Br.g; n/ by elements s 2 hb1; : : : ;bn�1i and stabiliza-
tion (2-10), i.e.

b � sbs�1

for b 2 Br.g; n/; s 2 hb1; : : : ;bn�1i
!

::: :::

n

::: :::

n

b �
:::

:::

n

:::
:::

n

b

s

s-1

(2-9)
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.c"/bn.b"/ � cb � .c"/b�1n .b"/

for b;c 2 Br.g; n/;

!

n

n

b

c

:::

:::

:::

:::

�

n

n

b

c

:::

:::

:::

:::

�

n

n

b

c

:::

:::

:::

::: (2-10)

where b" 2 Br.g; nC 1/ is the braid obtained from b 2 Br.g; n/ by adding a
strand to the right.

Remark 2.8. The conjugation (2-9) is weaker than in the classical case – there one
can conjugate by any element, instead of just by certain elements. This will play an
important role in our construction of the HOMFLYPT invariant, see Proposition 4.8.
On the other hand, the stabilization (2-10) is stronger than the classical case
when considered on its own, but together with the classical conjugation relation is
equivalent to the classical stabilization.

Theorem 2.9. (Markov’s Theorem in a handlebody; [HOL02, Theorem 5].) Let
b;c 2 Br.g;1/, then Nb � Nc � Hg if and only if b D c 2 Br.g;1/Ma.

Remark 2.10. Although it may appear that Definition 2.7 omits conjugation by
certain elements that clearly give isotopic closures e.g. by the “maximal loop”
! D tg : : : t1 or its inverse, [HOL02, Section 5] shows how conjugation by such
elements can be described in terms of the above Markov moves.

2E. From handlebody braids to classical braids. Recall from Section 1B that
one of our main ingredients in constructing homological invariants of links in Hg

for all g � 0 is the relation between Br.g; n/ and (a colored variant of ) the type A
braid group Br.gCn/: We have a group homomorphism Br.g; n/! Br.0; gCn/

given by viewing the core strands as “usual” strands, e.g.

g

g

1i

i 1

:::

:::

7�!

g

g

g+1i

i g+1

:::

:::

(2-11)

As discussed above, this map is clearly injective, hence we have:

Proposition 2.11. The map induced by (2-11) gives rise to an embedding of groups

Br.g; n/ ,�! Br.g C n/: (2-12)
�
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However, Proposition 2.11 is only one ingredient in our construction, since
invariance under the procedure

::: :::

n

::: :::

n

b 7�!
::: :::

g+n

::: :::

g+n

b �

::: :::

g+n

::: :::
g+n

b

s

s-1

 � [
::: :::

n

::: :::
n

b

s

s-1

(2-13)

(i.e. under “conjugation in Br.g C n/”) is not desirable for an invariant of

l � Nb � Hg ;

cf. Remark 2.8. As such, we will use the theory of singular Soergel bimodules to
mimic the merging and splitting of the core strands in the closure procedure for
Br.g; n/, which will lead to invariants of Nb that are not invariant under (2-13).

3. Braids in handlebodies and singular type A Soergel bimodules

In the present section, we construct a map from Br.g; n/ to the 2-category of
singular Soergel bimodules.

3A. Parabolic subgroups and Frobenius extensions. Fix N 2 N�1 and let
R WD RN WD KŒx1; : : : ; xN � be the q-graded polynomial ring with qdeg.xi / D 2
for all i (by convention, R0 WD K). The symmetric group S.N / DW.AN�1/ acts
on R via

�i � xj D

8̂̂<̂
:̂
xiC1 if i D j;
xi if i D j C 1;
xj else:

(3-1)

Remark 3.1. Recall that Tits defined a faithful representation of any Coxeter
group W.�/ on a real vector space of dimension jVj, commonly called the
reflection representation of W.�/. (Recall our notation from Section 1B.) This
representation is a crucial ingredient in the original definition of the associated
category of Soergel bimodules, see [Soe92, Section 1.4]. In our case, this is the
standard (irreducible) representation of S.N / of dimension N � 1. By contrast,
the representation given by (3-1) is built from the N -dimensional permutation
representation, which decomposes as a direct sum of the standard representation
and the trivial representation. By e.g. [EK10, Section 4.6] and [EL17, Theorem 2.7
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and Proposition 2.10], the difference (akin to the difference between considering
glN rather than slN ) will not play a role in the present work, in the sense that all
results from the cited literature hold in this case as well.

Fix any tuple I D .k1; : : : ; kr/ 2 Nr�1 with k1 C � � � C kr D N . (Note further
that choosing I also determines N since N D k1 C � � � C kr . We will tacitly use
this throughout.) By definition, the corresponding parabolic subgroup is

SI.N / WD S.k1/ � � � � � S.kr/ � S.N /: (3-2)

Since there is a bijection between tuples and parabolic subgroups, we will implicitly
identify them, e.g. I � J denotes an inclusion of parabolic subgroups.

Given a parabolic subgroup I, we let RI WD RSI.N/ be the ring of invariants.
This ring is q-graded, since the action in (3-1) is q-homogeneous.

Example 3.2. The parabolic subgroups in (3-2) can alternatively be defined by
choosing corresponding subsets of the vertices V D ¹1; : : : ; N�1º of the type AN�1
Coxeter diagram (with the left-right order of the vertices). For type A3 one gets

.1; 1; 1; 1/! ;; .1; 2; 1/! ¹2º;

.2; 1; 1/! ¹1º; .1; 1; 2/! ¹3º;

.3; 1/! ¹1; 2º; .1; 3/! ¹2; 3º;

.2; 2/! ¹1; 3º; .4/! ¹1; 2; 3º:

(3-3)

Above we have listed all choices of tuples and the associated parabolic subgroups.
Thus, R.1;1;1;1/ D R; is R itself, while R.4/ D R¹1;2;3º is the K-algebra of
symmetric polynomials in four variables.

For the duration, we will use the following ordering convention for parabolic
subgroups I; J; K; L and their rings of invariants:

J

I L

K

�

�

�

�

!

RJ

RI RL

RK

�
�

�
�

. (3-4)

The q-degree 0 inclusion

�JIWRJ ,�! RI (3-5)
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ofK-algebras is a q-graded Frobenius extension (see [ESW17]), meaning that RI is
a q-graded, free RJ-module of finite rank, possessing a non-degenerate, RJ-linear
trace map RI ! RJ. In the present case, the latter is built using the Demazure
operators @�i

WR ! R¹iº � R, given by @�i
.f / WD .f � �i � f /=˛i for the roots

˛i D xi � xiC1. The collection ¹@�i
º satisfies the classical braid relations, and

thus gives a well-defined map @w associated to any w 2 S.N / using a reduced
expression for w. Using these, the aforementioned trace map is given by

@JIWRI �! RJ; f 7�! @wIw�1
J
.f / (3-6)

and is of q-degree 2`.I/ � 2`.J/. Here wI is the longest element in SI.N /, and
`.I/ denotes its length.

The Frobenius extension data allows for the definition of maps between certain
RI-bimodules, that will serve as important morphisms between singular Soergel
bimodules (we recall the definition of the latter below). To wit, given a basis ¹aiº
for RI over RJ, we can find a dual basis ¹a?i º satisfying @JI.aia?j / D ıij . Given
this, we obtain the Frobenius element a WD

P
i ai ˝ a

?
i , which is of q-degree

2`.J/� 2`.I/ and independent of the choice of ¹aiº. This gives multiplication and
comultiplication maps

�JIWRI ˝RJ RI �! RI; f ˝ g 7�! fg; q-degree 0;

�JIWRI �! RI ˝RJ RI; f 7�! f a; q-degree 2.`.J/ � `.I//:
(3-7)

These morphisms of bimodules are unital and counital with respect to �JI and @JI,
respectively.

Example 3.3. For I D ; and J D ¹iº, we have wI D 1 and wJ D �i . It follows
that

®
1; 1
2
˛i
¯

and
®
1? D 1

2
˛i ;
�
1
2
˛i
�?
D 1

¯
are dual bases for R as an R¹iº-module,

and a D 1
2
.1˝ ˛i C ˛i ˝ 1/.

Finally, let us explicitly identify the rings RI for all I D .k1; : : : ; kr/. To this
end, we consider r alphabetsXi (we tend to omit the alphabets if no confusion can
arise) with ki variables, and write ˝K D ˝. A classical result about symmetric
functions gives that

RI Š KŒe1.X1/; : : : ; ek1
.X1/�˝ � � � ˝KŒe1.Xr/; : : : ; ekr

.Xr/�; (3-8)

where ej .Xi / denotes the j th elementary symmetric function in the variables Xi .
Note that qdeg.ej / D 2j . In particular,

qdimK.RI/ D
rY

jD1

kjY
iD1

1

1�q2i : (3-9)
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3B. A reminder on type A singular Soergel bimodules. We now briefly recall
the category of singular Soergel bimodules SSq.N / D SSq.AN�1/ of type AN�1,
which categorifies the Hecke/Schur algebroid of type A [Wil11, Theorem 1.2]
in characteristic 0. Details (in more generality) can be found e.g. in [Wil11], or
[EL17] and [ESW17] for the underlying diagrammatic calculus.

Define the merge (“restriction”) and split (“induction”) bimodules as follows:

JMI WD q`.I/�`.J/RJ ˝RJ RI; ISJ WD RI ˝RJ RJ; (3-10)

where we follow the conventions from (3-4). Here, we have indicated the left/right
actions using left/right subscripts, a convention that we will use throughout. There is
a (horizontal) composition of such bimodules given by tensoring over the common
(“middle”) ring, which we denote e.g. by LMJMI D LMJ ˝RJ JMI. In particular,
we have the following q-degree 0 bimodule isomorphisms that we implicitly use
below:

LMJMI Š LMI Š LMKMI; ISJSL Š ISL Š ISKSL: (3-11)

All of the isomorphism in (3-11) are essentially identities, as the careful reader is
invited to check. (Note e.g. that f ˝ g ˝ h D 1˝ 1˝ fgh 2 LMJMI.)

Definition 3.4. Let SSq.N / be the K-linear, q-graded 2-category given as the
additive Karoubi 2-closure (meaning taking direct sums and summands) of the
2-category where objects are parabolic subgroups I � S.N /, 1-morphisms are
generated by q-shifts of

RIW I �! I; JMIW I �! J; ISJW J �! I (3-12)

for I � J, and 2-morphisms are (all) bimodule maps of q-degree 0.

Example 3.5. We have q-1R ˝R¹iº R Š 1;1S2M1;1, which the reader familiar
with (usual) Soergel bimodules of type A (see e.g. [EW14]) might recognize as
being so-called Bott–Samelson bimodules. In particular, Soergel bimodules of
type AN�1 can be identified with the 2-category EndSSq.N/.;/, which has just one
object (hence is a monoidal category).

3C. Web diagrammatics. Following e.g. ideas in [MSV11, Section 3], the
generating 1-morphisms from (3-12), and compositions thereof, admit a description
in terms of an MOY-type calculus, which we now sketch.

The basic building blocks are the identity, merge, and split bimodules, which
are depicted using the following (local) graphical notation:

ki

ki

! Rki ;
k l

k+l

! kClMk;l ;

k l

k+l
! k;lSkCl : (3-13)
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Here, and for the duration, we use the abbreviation Rk for the ring associated to
I D .k/.

Recall that, by Convention 1.2, vertical concatenation of such pictures corre-
sponds to composition of 1-morphisms, and e.g. composing on the left corresponds
to stacking on the top. Moreover, we can place such diagrams side-by-side, which
corresponds to taking the tensor product overK. Hence, we can associate a singular
Soergel bimodule to each trivalent graph that we can build from these diagrams
via these operations. (Note that webs corresponding to singular Soergel bimodules
never have edges of negative label, but we will allow them in formulas for conve-
nience of notation, with the understanding that the corresponding bimodules are
zero.)

Example 3.6. For N D 2, the standard way to depict the Soergel bimodule from
Example 3.5 (see e.g. [Kho07, Figure 2]) is built into our conventions:

1 1

1 1

WD

1 1

2

˝R2

1 1

2

! q-1R ˝R¹iº R Š 1;1S2M1;1: (3-14)

Also of importance will be the ladder-rung bimodules:

k l

a
WD

lk

a &
k l

a
WD

k l

a (3-15)

that will be used to build the square bimodules appearing in the complexes in
(3-18) below.

Example 3.7. There exist q-degree 0 bimodule isomorphisms

k+l+m

k l m

Š

k+l+m

mlk

&

k+l+m

k l m

Š

k+l+m

mlk

(3-16)

that follow from the isomorphisms in (3-11). Hence, we can unambiguously write

k1 kr

k1+ : : :+kr

... &
k1 kr

k1+ : : :+kr

...
(3-17)



392 D. E. V. Rose and D. Tubbenhauer

3D. Rickard–Rouquier complexes

Definition 3.8. Given an additive category C, we denote its bounded homotopy
category by Kb.C/. This is the category whose objects are bounded chain
complexes, and whose morphisms are homotopy classes of chain maps. We will
use ' to denote isomorphisms in Kb.C/, i.e. homotopy equivalence.

Recalling Section 1D, we can view the objects in Kb.C/ as finite direct sumsL
i tkiXi , equipped with a differential d with tdeg.d/ D �1. There is a t-degree

zero inclusion of categories C ,! Kb.C/ given by considering objects of C as
one-term complexes concentrated in t-degree 0. We also remark that we can
consider Kb.C / for a 2-category C , by passing to the homotopy category in each
Hom-category. In particular, if C is monoidal, then so is Kb.C/.

We now recall Rickard–Rouquier complexes, i.e. complexes of singular Soergel
bimodules that determine maps from the (colored) braid group(oid) into certain
Hom-categories in Kb.SSq.N //. Our terminology here arises as these complexes
correspond to the Rickard complexes (originally defined for symmetric groups) in
categorified quantum groups, but also agree with the type A Rouquier complexes
in the “uncolored” k D l D 1 case.

They are given as follows:

l

l

k

k

WD

k

l

l

k

d
C

0
��! tq-1

k

l

l

1

k

d
C

1
��! : : :

d
C

m�1
���! tmq-m

k

l

l

m

k

k

k

l

l

WD t-mqm

k

l

l

m

k

d�
m�1
���! : : :

d�
1
��! t-1q

k

l

l

1

k

d�
0
��!

k

l

l

k
(3-18)

where m D min.k; l/. Our notation denotes e.g. that, as a tq-graded bimodule,
JˇiKk;l is the direct sum of the indicated terms, and the arrows depict the non-zero
components of the differentials. Recalling the bimodule maps from (3-11), (3-5),
(3-6), (3-7), and omitting the tq-shifts, these are given by

dCi W

k

l

l

k

i

k

l

l

k

1
1 i

k

l

l

k

1
1 i

k

l

l

k

1 i

k

l

l

k

i+1
@

�

(3-11)

(3-11)

�

�

�

@
W d�i

(3-19)
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Here the corresponding parabolic subsets, which determine the bimodule maps,
can be read from the indicated sequence of webs, and we use e.g. �JI as

�JIWRJ Š RJ ˝RJ RJ ˝RJ RJ ,�! RJ ˝RJ RI ˝RJ RJ D JMISJ: (3-20)

Remark 3.9. We note that the differential in the Rickard–Rouquier complexes
can be described diagrammatically using type A singular Soergel calculus, see
e.g. [EL17, Section 2]. Alternatively, we could work with the n!1 limit of the
2-category of gln foams to describe these 2-morphisms in SSq.N / (here, n is a
parameter independent of N ). In fact, these two descriptions are equivalent, as
the type A singular Soergel calculus corresponds to the “calculus of seams” in the
foam framework. (See e.g. [QRS18, Section 5.2] for a precise statement.)

Finally, the fact that these indeed are complexes follows e.g. by comparing (3-18)
to the Rickard complex in the categorified quantum group, as in Remark 3.9.

Example 3.10. In the uncolored case k D l D 1 the complexes are

1

1

1

1

D

1

1

1

1

�2
1;1

���! tq-1

1

1

1

1

&
1

1

1

1

D t-1q
1

1

1

1

�2
1;1

���!

1

1

1

1

(3-21)

Remark 3.11. The conventions in Example 3.10 are the same as in [Rou06], except
that in that work, there is no shift on the bimodule 1;1S2M1;1.

Example 3.12. There exist q-degree 0 isomorphisms in Kb.SSq.N //

l m

l+m

k

k

'

l m

l+m

k

k

&

k+l

lk

' qkl

k l

k+l

&

k+l

k l

' q-kl

k l

k+l

(3-22)

as well as variants with analogous q-shifts involving split bimodules.

Let I be a parabolic subgroup, and let #I denote the number of entries in
the corresponding tuple (i.e. for an r-tuple I, #I D r). Given a braid generator
bi 2 Br.#I/, we let Jb˙1i KI denote the complex given by placing appropriately
labeled vertical strands next to the corresponding complex in (3-18), i.e. by taking
tensor product over K with the rings R.k1;:::;ki�1/ and R.kiC2;:::;k#I/.
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Definition 3.13. For I and b 2 Br.#I/, fix an expression b D b˙1i1 : : :b˙1ir .
Define

JbKI WD Jb˙1i1 KI0 : : : Jb˙1ir KI (3-23)

where, on the right-hand side, we use composition in Kb.SSq.N //, i.e. tensor
product of the complexes of singular Soergel bimodules.

By e.g. the results in [QRS18, Section 5.2], the complex JbKI does not depend,
up to isomorphism, on the choice of expression for b. Thus, the assignment
b 7! JbKI gives an action of Br.#I/ on Kb.SSq.N //. We get:

Proposition 3.14. There is an action of Br.g; n/ on Kb.SSq.N // determined by
the assignment b 7! JbKI.

Proof. By the discussion above, we have an action of the classical braid group.
Composing this action with the map from Proposition 2.11 gives the desired action
of the handlebody braid group. �

4. Colored HOMFLYPT homology for links in handlebodies

In this section, we proceed to construct our triply-graded invariant of links in Hg ,
with Theorem 4.7 and Corollary 4.13 being the main statements. We keep the
notation from the previous sections and begin with some preliminaries.

4A. A reminder on Hochschild cohomology. Let A be a q-graded K-algebra,
and recall that we may regard any q-graded A-bimodule B as a q-graded left
module over the enveloping algebra A˝Aop. The Hochschild cohomology of A
with coefficients in B is the aq-graded K-vector space

HH�.A;B/ WD
M
a2Z

HHa.A;B/ (4-1)

with a-degree component defined by

HHa.A;B/ WD EXTaA˝Aop.A;B/ D
M
s2Z

ExtaA˝Aop.qsA;B/: (4-2)

(Compare our notation here to Convenction 1.3.)
The relevant case for our considerations is when A D RI D .RI/op. Here, for

I D ;, Khovanov showed that the triply-graded link homology from [KR08b] can
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be constructed using the Hochschild homology (defined using Tor instead of Ext)
of Soergel bimodules; see [Kho07, Section 1.1]. Recall from (3-8) that RI is a
polynomial ring, so Hochschild homology and cohomology are isomorphic (up to
a shift). We work with the latter since e.g. in this framework the invariant of the
(colored) unknot inherits a natural algebra structure [Hog18], which is important
for various considerations.

Example 4.1. Let I D .k1; : : : ; kr/. Recall that RI is a polynomial ring (and, in
particular, is Koszul). Hence, we can compute Hochschild cohomology using the
Koszul resolution of RI, which is the free resolution of RI as an RI-bimodule
given by

rO
jD1

� kjO
iD1

.hq2iRI ˝ RI
ei˝1�1˝ei
��������! RI ˝ RI/

�
: (4-3)

Here h denotes a shift up in an auxiliary homological degree, and the outer tensor
products are taken over RI ˝ RI. Given a RI-bimodule B, taking the “internal”
q-graded Hom of complexes HOM�RI˝RI.�;B/ (i.e. applying HOMRI˝RI.�;B/
to the terms and differentials of a chain complex to obtain a cochain complex)
gives a complex concentrated in non-negative cohomological degree a, which is
the negative of the h-degree. The ath cohomology of this complex is HHa.RI;B/.

Computing for B D RI gives the following. For each j , fix a set of variables
¹�i j 1 � i � kj º with aqdeg.�i / D .1;�2i/, and recall that aqdeg.ei / D .0; 2i/.
We then have an isomorphism of aq-graded K-vector spaces

HH�.RI;RI/ Š
rO

jD1

�
KŒe1; : : : ; ekj

�˝
V�
¹�i j 1 � i � kj º

�
; (4-4)

where
V�
¹�i j 1 � i � kj º denotes the exterior algebra.

Since Hochschild cohomology is functorial with respect to bimodule morphisms,
we can apply HH� to a complex of RI-bimodules term-wise to obtain a complex of
aq-gradedK-vector spaces. (In fact, since our ring is commutative, theseK-vectors
spaces inherit an action of RI, so can be thought of as trivial RI-bimodules.)

In particular, let RIBimq denote the category of q-graded, finitely-generated
RI-bimodules, and let Kb.RIBimq/ be its homotopy category. We get a functor

HH�I.�/ WD
M
a2Z

HHa
I.�/WK

b.RIBimq/ �! Kb.KVecaq/ (4-5)

whose a-degree component is the functor

HHa
I.�/ WD HHa.RI;�/WKb.RIBimq/ �! Kb.KVecq/: (4-6)
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4B. Towards handlebody HOMFLYPT homology. Fix integersM 2 N�1 and
l1; : : : ; ln 2 N�1, called the core and link colors, respectively. For any g � 0, these
choices determine a parabolic subset M WD .M; : : : ;M; l1; : : : ; ln/ with #M D gCn.
We view M as providing a coloring for braids b 2 Br.g; n/ as in Section 3D, where
strands are colored at the bottom by the entries of M. We will call a colored braid
.b; M/ balanced if the colors at the top and bottom of the i th position agree for all i .
For the duration, we only consider balanced colorings and any braid or link will be
colored by default.

Example 4.2. The prototypical example of a balanced coloring is the case where
the link is uncolored, i.e. where l1 D � � � D ln D 1 and M is arbitrary. In general,
M should be viewed as being “very large,” i.e. M � li for all i ; compare e.g. to
[ILZ18], where the core of the solid torus is colored by a Verma module.

Remark 4.3. It is possible to work with any balanced coloring of b 2 Br.g; n/,
using e.g. colorsM1 toMg for the core strands (recall, we have fixed a handlebody,
so these core strands are distinguishable). However, if one wishes e.g. to further
incorporate the action of the mapping class group of Hg into our picture, then the
core strands should be indistinguishable, hence uniformly colored. Given this, and
to avoid overly cumbersome exposition in the following, we have chosen to not
work in full generality.

Consider SSq.I/ WD EndSSq.N/.I/ which is a q-graded, full, monoidal sub-
category of RIBimq. The monoidal structure is inherited from the horizontal
composition in SSq.N /, i.e. it is given by tensor product over RI. We will occa-
sionally denote this by ˝RI , in addition to our previous notation for this operation,
which was simply concatenation.

Recalling Example 3.7 and Proposition 3.14, and motivated by Remark 2.8, we
define:

Definition 4.4. For b 2 Br.g; n/ and .b; M/ a balanced coloring, we let

JbKHg
WD

0B@ M M

M M l1

l1

ln

ln

...

...
...

1CA˝RM JbKM 2 Kb.SSq.M//: (4-7)
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Example 4.5. In the cases g D 0; 1 we have JbKHg
D JbKM. For g D 2, we have

b D & JbKM D

M

M

lM

M l

& JbKH2
D

M lM

M M l

(4-8)

For g � 2, we generally have JbKHg
6' JbKM, cf. Proposition 4.8 below.

Definition 4.6. For b 2 Br.g; n/ and .b; M/ a balanced coloring we let

HH�Hg
.b/ WD

M
a2Z

HHa.JbKHg
/: (4-9)

By Proposition 3.14, HH�Hg
.b/ is an invariant of the colored braid b 2

Br.g; n/ taking values in Kb.KVecaq/.

4C. Colored handlebody HOMFLYPT homology. In (4-46) below we use
HH�Hg

.b/ to define HHH�Hg
.b/, an invariant of the colored link Nb � Hg , valued

in KVecatq. To do so, we establish the following.

Theorem 4.7. The assignment

Br.g; n/ �! Kb.KVecaq/; b 7�! HH�Hg
.b/ (4-10)

is invariant under the conjugation (2-9) and stabilization (2-10) relations for
Br.g; n/, up to homotopy equivalence and grading normalization. Moreover,
it is not generally invariant under the classical conjugation relation (2-13) for
Br.g C n/.

The remainder of this section constitutes a proof of this theorem. Namely,
invariance under conjugation holds as a special case of the corresponding result for
colored, triply-graded link homology in �3, and Lemma 4.12 establishes invariance
(up to a grading shift) under stabilization. Proposition 4.8 shows the failure of
invariance under the classical conjugation relation. We stress the importance of this
latter fact: any invariant of the classical braid group Br.g C n/, that additionally
is invariant under classical conjugation and stabilization, gives rise to invariants of
links in Hg using the inclusion Br.g; n/ ,! Br.gC n/. However, such invariants
are less-sensitive to the topology of Hg , as our results show.

Proposition 4.8. For g > 1 and n > 0, there exists handlebody braids b;b0 2

Br.g; n/ that are conjugate in Br.g C n/, but satisfy HH�Hg
.b/ 6' HH�Hg

.b0/.
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This shows that our handlebody homology, which is defined below to be the
cohomology of a renormalization of HH�Hg

.�/, distinguishes these handlebody
links, while the invariant obtained by including into Br.g C n/ and using the
classical (colored) triply-graded homology does not.

Proof. It suffices to give an example, and we provide one in the g D 2 and
n D 1 case that immediately generalizes to any g � 2 and n � 1. Let b D t2t1

and b0 D t1t2, which are conjugate braids in Br.g C n/. We claim that
HH�Hg

.b/ 6' HH�Hg
.b0/, and exhibit this explicitly in the case that M D 1.

Indeed, if they were homotopy equivalent, then the Euler characteristics (i.e.
alternating sums of aq-graded dimensions) of these complexes would agree.
However, since the category of (usual) type A Soergel bimodules categorifies
the type A Hecke algebra, and Hochschild cohomology categorifies the Jones–
Ocneanu trace, this would imply that the Jones–Ocneanu traces of the following
braided, trivalent graphs agree:

b

&
b0

(4-11)

Using the decategorification of the first equation in Example 3.10, this in turn
would imply that the HOMFLYPT polynomials of the links given as the closures
of

b

&
b0

(4-12)

agree. However, a computation shows that the difference between their (reduced)
HOMFLYPT polynomials is .a � a-1/2 � .q � q-1/2, where a, q are variables (at
the decategorified level) corresponding to a, q. �

We now turn out attention to the behavior of HH�Hg
.b/ under stabiliza-

tion (2-10). Our main technical tool will be the partial Hochschild trace from
[Hog18, Section 3], which we now adapt to the colored setting. The construction
of this functor is motivated as follows. Since Hochschild cohomology satisfies the
classical conjugation relation (i.e. the relation (2-13)), we informally view this
operation as a mean to take the closure of (the singular Soergel bimodule associated
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to) a web diagram. In order to study the stabilization relation, we would like to be
able to take this closure “one strand at a time” in a manner that is compatible with
taking Hochschild cohomology.

Recall that the Hochschild cohomology of an RI-bimodule M is defined as

HHa.RI;M/ D EXTaRI˝RI.R
I;M/ Š HOMDb.RIBimq/.RI;haM/; (4-13)

where here we follow Convention 1.3 for the q-graded Hom. Here Db.RIBimq/

is the bounded derived category, and we emphasize that the homological degree
therein is not the t-degree from Section 3D, but rather the h-degree from Exam-
ple 4.1 (which should be viewed as “perpendicular” to the homological degree of
the Rickard–Rouquier complexes). Our discussion above suggests that we should
consider functors between the categories Db.RIBimq/ for various I that are com-
patible with the functors HOMDb.RIBimq/.RI;�/.

To this end, given I D .k1; : : : ; kr/ we let I� WD .k1; : : : ; kr�1/, i.e. I� is
obtained from I by removing the last entry. Let

Qkr

I WD RI ˝ RI=.ei .Xr/˝ 1 � 1˝ ei .Xr//kr

iD1:

Using the notation in (3-8), we have

RI Š Qkr

I ˝RI�˝RI� RI� ; (4-14)

which suggests that we consider IIWD
b.RI�Bimq/ ! Db.RIBimq/ given by

derived tensor product ˝L with Qkr

I over RI� ˝ RI� . We then obtain

TIWD
b.RIBimq/ �! Db.RI�Bimq/;

which we define to be the right adjoint to II, using derived tensor-hom adjunction.
The functors TI and II admit the following explicit descriptions. We have an

isomorphism

Qkr

I Š

krO
iD1

.hq2iRI ˝ RI
ei˝1�1˝ei
��������! RI ˝ RI/ DW Kkr

I (4-15)

in Db.RIBimq/, where the (outer) tensor product is taken over RI ˝ RI. Since
Kkr

I is a complex of free RI ˝ RI-modules, given any complex M 2 Db.RIBimq/,
TI.M/ is the complex

HOM�RI˝RI.K
kr

I ;M/ Š
krO
iD1

.M
ei˝1�1˝ei
��������! aq-2iM/: (4-16)
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(In the case that M is a complex, we interpret the latter as a shift of the cone of the
indicated chain map.) Similarly, for N 2 Db.RI�Bimq/, we have that

II.N/ D Kkr

I ˝RI�˝RI� N; (4-17)

where we again interpret the latter as the total complex of this double complex.
Here, since Kkr

I Š Qkr

I and the latter is a free RI�-bimodule, we also have

II.N/ D Qkr

I ˝RI�˝RI� N: (4-18)

Our next result collects the salient features of II and TI needed for our consid-
erations, both of which follow immediately from the definition of II and TI.

Lemma 4.9. For all M 2 Db.RIBimq/ and all a 2 Z, there is a functorial
isomorphism

HHa.RI;M/ Š HHa.RI� ;TI.M//: (4-19)

Additionally, given N;P 2 Db.RI�Bimq/, we have

TI.II.N /˝
L
RI M˝LRI II.P// Š N˝LRI TI.M/˝

L
RI P (4-20)

Finally, setting I1 WD ¹k1; : : : ; ksº and I2 WD ¹ksC1; : : : ; krº, we have

TI.M1 ˝K M2/ Š M1 ˝K TI.M2/: (4-21)

for M1 2 Db.RI1
Bimq/ and M2 2 Db.RI2

Bimq/.

We will use the functors II and TI to give a “local” proof of invariance under
stabilization. Note that there is a q-degree 0, fully faithful inclusion functor
SSq.I/ ,! Db.RIBimq/ given by viewing a singular Soergel bimodule as a complex
concentrated in h-degree zero. Further, this functor is monoidal (with respect to
˝RI on the former and˝LRI on the latter) since singular Soergel bimodules are free
as either left or right RI-modules. (The latter can be deduced from the fact that RI
is free over RJ for I � J, cf. Section 3A.)

Given this, we now develop a graphical interpretation for the action of the
functors II and TI on singular Bott–Samelson bimodules, again adapting [Hog18,
Section 3.3] to the singular setting. Since our eventual aim is to apply these results
to HH�Hg

.�/, we will focus on the (bimodules appearing in the) complex JbKHg
.

Let M WD .M; : : : ;M; l1; : : : ; ln/, then, for B 2 SSq.M�/ and C 2 SSq.M/, we depict
IM and TM as follows:

IM

0@
B

...

...

...

...

1A D B
...

...

...

...

ln

ln

& TM

0@
C

...

...

...

...

1A D
C

...

...

...

...
ln

(4-22)



HOMFLYPT homology for links in handlebodies 401

Similarly, taking Hochschild cohomology will be depicted by closing all (non-core
and core) strands. In this language, the first statement in Lemma 4.9 says that we
obtain the same result whether we close all strands at once or one at a time, while
the second and third are

ln

N

M

P
...

...
...

...

Š
ln

N

M

P...

...
...

...

M1 M2... ...

...
...

...

...
ln
Š

M1... ...

...
...

˝K

0B@ M2

...

...
ln

1CA
(4-23)

Next, we compute the value of the colored partial trace on the “merge-split”
bimodule. (Strictly speaking, we will only use the k D l D 1 case of Lemma 4.10,
which is given e.g. in [Hog18, equation (3.1b)]. However, as we are developing
the skein calculus for the colored partial trace, and since we anticipate applications
of this formula to explicit computations of our invariant, we take the opportunity
to extend loc. cit. to the colored setting.)

Lemma 4.10. For k; l � 0, there is an atq-degree 0 isomorphism

k

k

l Š

lY
iD1

qkCaq-k-2i

1�q2i

k

k

(4-24)

Proof. In the k D 0 case, the result simply claims that the l-colored circle is a
K-vector space of aq-graded dimension

Ql
iD1

1Caq-2i

1�q2i . This follows directly from
Example 4.1.

We thus assume that k � 1, and proceed as in the proof of [Hog18, Proposi-
tion 3.10]. Namely, we explicitly write down the value of TI on the bimodule in
the left-hand side of (4-24), apply a change of variables, and use this to explicitly
identify the result in the derived category.

To this end, we assign alphabets of q-degree 2 variables to the boundary points
of the corresponding web as follows:

X01 X02

X1 X2

(4-25)
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where #X1 D k D #X01 and #X2 D l D #X02. Precisely, by this assignment we
identify the (singular) Bott–Samelson bimodule k;lSkClMk;l with the following
quotient of the (shifted) polynomial ring generated by the elementary symmetric
functions in these alphabets:

q-klKŒer.X1/; er.X
0
1/; es.X2/; es.X

0
2/�=.et .X1 [X2/ � et .X

0
1 [X

0
2//: (4-26)

Here r; s; t are indices ranging 1 � r � k, 1 � s � l and 1 � t � k C l (i.e. we
slightly abuse notation and let er.X1/ denote e1.X1/; : : : ; ek.X1/, etc.). The latter
is quasi-isomorphic to the object in Db.Rk;lBimq/ given by the dg algebra

K WD q-klKŒer.X1/; er.X
0
1/; es.X2/; es.X

0
2/�˝K

V�
¹�tº; (4-27)

where aqdeg.�t / D .�1; 2t/ and d.�t / D et .X1[X2/�et .X01[X02/. Computing
partial trace then gives that

Tk;l.K/ Š alq-klq-l.l+1/KŒer.X1/; er.X
0
1/; es.X2/; es.X

0
2/�˝K

V�
¹�t ; �sº

(4-28)

where aqdeg.�s/ D .�1; 2s/ and d.�s/ D es.X2/ � es.X02/.
Since the right-hand side of (4-24) is quasi-isomorphic to a direct sum of copies

of the Koszul complex associated to the elements er.X1/ � et .X1/0, we now aim
to change variables in Tk;l.K/, with the hope of identifying it as such. Note that

d.�t / D et .X1 [X2/ � et .X
0
1 [X

0
2/

D

tX
jD0

et�j .X1/ej .X2/ �
tX

jD0

et�j .X
0
1/ej .X

0
2/

D et .X1/ � et .X
0
1/C

tX
jD1

et�j .X1/.ej .X2/ � ej .X
0
2//

C

tX
jD1

.et�j .X1/ � et�j .X
0
1//ej .X

0
2/

D et .X1/ � et .X
0
1/C

tX
jD1

et�j .X1/d.�j /

C

tX
jD1

.et�j .X1/ � et�j .X
0
1//ej .X

0
2/:

(4-29)

This suggests that we recursively define

‚t WD �t �

tX
jD0

et�j .X1/�j �
tX

jD0

‚t�jej .X
0
2/: (4-30)
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By (4-29), this gives

d.‚t / D et .X1/ � et .X
0
1/: (4-31)

and, in particular, d.‚t / D 0 for t > k.
It then follows that we have quasi-isomorphisms

Tk;l.K/ Š alq-l.k+l+1/KŒer.X1/; er.X
0
1/; es.X2/; es.X

0
2/�˝K

V�
¹‚t ; �sº

Š alq-l.k+l+1/KŒer.X1/; er.X
0
1/; es.X2/�˝K

V�
¹‚tº

Š alq-l.k+l+1/Rk ˝K KŒes.X2/�˝K
V�
¹‚bº;

(4-32)

where, in this last equation, the index b ranges from k C 1; : : : ; k C l .
This implies that Tk;l.K/ is quasi-isomorphic to a direct sum of

alq-l.k+l+1/
lY
iD1

1Ca-1q2.k+i/

1�q2i D

lY
iD1

qkCaq-k-2i

1�q2i (4-33)

copies of Rk , as desired. �

Lemma 4.11. Let I D .k1; : : : ; kr/ and J D .k1; : : : ; kr�1 C kr/. We also let
B 2 Db.RJ-RIBimq/ and C 2 Db.RI-RJBimq/, then we have

B
...

...

kr kr�1 Š q2kr�1kr B

...

...

kr�1Ckr

C
...

...

kr kr�1 Š q2kr�1kr C

...

...

kr�1Ckr

(4-34)

Proof. We show the first quasi-isomorphism in (4-34), as the proof of the second
is similar. The idea for the proof is easy: simply pass to Koszul resolutions at the
places where the tensor products take place. Formally, let us consider the case
when r D 2 now, as the general proof differs only in requiring more cumbersome
notation. The left-hand side of the first isomorphism in (4-34) is

TI�.TI.ISJ ˝RJ B// Š ak1Ck2q-k2
1

-k1-k2
2

-k2.ISJ ˝RJ JBI0/˝K
V�
¹�r ; �sº;

(4-35)
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where 1 � r � k1, 1 � s � k2 and with differential given by d.�r/ D
er.X1/�er.X

0
1/, d.�s/ D es.X2/�es.X02/ for alphabets of size jX1j D k1 D jX01j

and jX2j D k2 D jX02j, respectively. Here, polynomials in the relevant alphabets
act as indicated by the subscripts on the bimodules. Passing to a Koszul resolution
of the diagonal RJ-bimodule, we see this is quasi-isomorphic to

ak1Ck2q-k2
1

-k1-k2
2

-k2.ISJ ˝K J0BI0/˝K
V�
¹�r ; �s; �tº; (4-36)

where here (additionally) 1 � t � k1 C k2, d.�t / D et .X/ � et .X0/, and
jXj D k1 C k2 D jX

0j.
Similarly, the right-hand side is

q2k1k2TJ.B˝RI ISJ/
Š ak1Ck2q2k1k2q-.k1Ck2/.k1Ck2C1/.J0BI ˝RI ISJ/˝K

V�
¹‚tº;

(4-37)

where 1 � t � k1 C k2, d.‚t / D et .Y0/ � et .Y/, and jYj D k1 C k2 D jY
0j.

Passing to a Koszul resolution of RI gives that this is quasi-isomorphic to

ak1Ck2q-.k1Ck2/.k1Ck2C1/C2k1k2.J0BI0 ˝K ISJ/˝K
V�
¹‚t ; „r ; Zsº; (4-38)

with 1 � r � k1, 1 � s � k2 and differential given by d.„r/ D er.Y01/ � er.Y1/,
d.Zs/ D es.Y

0
2/ � es.Y2/ for alphabets of size jY1j D k1 D jY

0
1j and jY2j D

k2 D jY
0
2j. The result now follows by comparing (4-36) with (4-38). �

Lemma 4.12. For k � 0, there are atq-degree 0 isomorphisms

k

k

' tkq-k

k

k

&
k

k

' akq-2k2-k

k

k

(4-39)

This result, which implies the invariance of the usual colored triply-graded link
homology under stabilization, is well-known, and follows from the equivalence
of the definition in terms of singular Soergel bimodules with the constructions
in [WW17] and [Cau17]. We give the (well-known) argument for the sake of
completion, and to determine the exact degree shifts (given our grading conventions
for the Rickard–Rouquier complexes) so that we may be precise in (4-46) below.

Proof. We induct on k, starting with k D 1. By Example 3.10 and (4-24), we have

1

1

'
qCaq-3

1�q2

1

1

�!
tq-1Catq-3

1�q2

1

1

&
1

1

'
t-1qCat-1q-1

1�q2

1

1

�!
qCaq-3

1�q2

1

1

(4-40)
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The proof of [Hog18, Proposition 3.10] identifies the differentials in these com-
plexes, giving homotopy equivalences

1

1

' tq-1

1

1

&
1

1

' aq-3

1

1

(4-41)

that follow from “Gaussian elimination” of all terms for which the aq-degrees
coincide. For the inductive step, we compute, using Lemma 4.11 and (3-22), that

qk�q-k

q�q-1

k

k

'

k

k

1

' q-2.k-1/

k

k

1k�1 ' ak-1q-2k2+k+1

k

k

1

' ak-1q-2k2+k+1

k

k

1 ' akq-2k2+k-2

k

k

1

'
qk�q-k

q�q-1 akq-2k2-k

k

k

(4-42)

and the result follows for the negative crossing using the Krull–Schmidt property
of the derived category, see e.g. [Wu14, Lemma 4.20]. The case of the positive
crossing follows from an analogous computation. �
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Together with (4-23), Lemma 4.12 proves stabilization invariance of HH�Hg
.b/

(up to grading shift), and consequently completes the proof of Theorem 4.7.
Hence, given a balanced coloring .b; M/ of a handlebody braid, we define

w.b;M/ WD

1X
kD1

k �
�
#
�

kk

�
� #

�
k k

��
; (4-43)

i.e. it is a weighted sum of the difference between the number of purely k-colored
positive and negative crossings. Similarly, define

W.b;M/ WD

1X
kD1

k2 �
�
#
�

kk

�
� #

�
k k

��
: (4-44)

Passing to half-integral values of the at-gradings, we set

x.b; M/ WD a 1
2 .w.b;M/�

Pn
iD1 li /t 1

2 .�w.b;M/�
Pn

iD1 li /q�W.b;M/C
Pn

iD1 l
2
i
Cli (4-45)

and define

HHH�Hg
.b; M/ WD H �.x.b; M/HH�Hg

.b//; (4-46)

where H �.�/ denotes taking homology.

Corollary 4.13. For balanced, colored .b; M/ 2 Br.g; n/, the triply-graded vector
space HHH�Hg

.b; M/ 2 KVecatq is an invariant of the handlebody link Nb � Hg . In
general, HHH�Hg

.b; M/ is not an invariant of the link corresponding to the closure
in �3 of the non-core strands in b.

Proof. First observe that our normalization factor (4-45) is invariant under the
relations in the handlebody braid group, i.e. if b;b0 2 Br.g; n/ are colored
handlebody braids related by (2-2)–(2-4), then x.b; M/ D x.b0; M/. Thus, since
HH�Hg

.�/ is an invariant of handlebody braids, the same is true for HHH��.b; M/.
Conjugation invariance follows from the conjugation invariance of HH�Hg

.b/, up
to homotopy, given in Theorem4.7, together with the observation that x.b; M/ D
x.sbs�1;s � M/ (here s � M is obtained from M by applying the permutation
corresponding to s).

Invariance under stabilization follows from (4-23) and (4-39), together with a
careful inspection of (4-45).

Finally, the second statement follows from (the proof of ) Proposition 4.8, since
this shows that the homology of HH�Hg

for the braids therein are not isomorphic
up to a degree shift. �
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