
Quantum Topol. 12 (2021), 243–264

DOI 10.4171/QT/149

© 2021 European Mathematical Society

Published by EMS Press

This work is licensed under a CC BY 4.0 license.

Arbitrarily large torsion in Khovanov cohomology

Sujoy Mukherjee and Dirk Schütz

Abstract. For any positive integer k and p 2 ¹3; 5; 7º we construct a link which has a direct

summand Z=pkZ in its Khovanov cohomology.

Mathematics Subject Classification (2010). Primary: 57K18; Secondary: 57K10, 57K16,

57R56.

Keywords. Knots and links, Khovanov cohomology, torsion.

1. Introduction

Khovanov cohomology was introduced in [5] as a categorification of the Jones

polynomial [4] and has since been proven to be an invaluable tool in knot theory.

Extensive calculations, see for example [6, 9], show an abundance of 2-torsion in

it, while other torsion appears much more rarely. Indeed, less than 200 of the prime

knots with at most 16 crossings have 4-torsion in their Khovanov cohomology, and

none have 3-torsion or of order larger than 4, see [9].

In [3] Bar-Natan introduced a more efficient algorithm to calculate Khovanov

cohomology with which he detected torsion of order 3 and 5 for the torus knot

T .5; 6/, and torsion of order 7 for T .7; 8/. Based on this algorithm, in [8] more ex-

amples of knots and links which admit 3, 5, and 7-torsion are given. Furthermore,

they exhibit the flat 2-cabling of T .2; 2k C 1/, a 2-component link of braid index

4, as a potential example of a link admitting 2k-torsion in its Khovanov cohomol-

ogy. Computationally this has been verified up to k D 23. While the computed

cohomology groups follow a certain pattern which makes it easy to believe this to

be true for arbitrary k, obtaining a theoretical argument is not obvious.

More recently, in [7] the first author introduces links which admit torsion

of order 9, 27, 81, and 25 in their Khovanov cohomology. Interestingly, these

examples are based on connected sums. In contrast, Asaeda and Przytycki, in [1],

have shown that taking a connected sum of a link with the Hopf link creates an

https://creativecommons.org/licenses/by/4.0/
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additional copy of the torsion groups present in the Khovanov cohomology of the

link but does not create larger ones.

Consider the link L3 which is the closure of the braid word .�1�2�3/4�1�2.

Notice that this link is one crossing short of the torus knot T .4; 5/. Furthermore,

it has two components, one of which is an unknot and the other the T .3; 4/ torus

knot; see Figure 1 for a diagram.

Figure 1. The link L3.

It was conjectured in [7] that the Khovanov cohomology of the connected sum

Lk
3 D L3] � � � ]L3]T .2; 3/;

where we assume to have k factors of L3 in the connected sum, contains a direct

summand Z=3lZ for all l 2 ¹1; : : : ; kº. Since L3 is a link, we need to be more

precise how the connected sums are formed. We declare that in any consecutive

connected sum L3]L3 we connect the unknot component of the left L3 with the

T .3; 4/ component of the right L3, and the last L3 has its unknot component

connected to T .2; 3/.

Figure 2. The link L2
3
.
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The above mentioned conjecture was based on computer calculations for

k � 4. A striking feature of these calculations is that a Z=3kZ direct summand ap-

pears in the highest non-zero homological degree, and the second highest quantum

degree. This turns out to be advantageous, since the Khovanov cochain complexes

are more accessible towards the ends of the homological degrees.

Furthermore, the cochain complexes for a connected sum are algebraically

related to the individual cochain complexes, suggesting these torsion summands

should be theoretically justifiable. We show that this is indeed the case.

Theorem 1.1. Let k be a positive integer. Then the Khovanov cohomology of the

link Lk
3 contains direct summands Z=3lZ for all l 2 ¹1; : : : ; kº.

One may ask whether this works for numbers different from 3. For any positive

integer n we can define a two component link Ln by taking the closure of the braid

word .�1 � � � �n/nC1�1 � � � �n�1, and from this we define a .k C 1/ component link

Lk
n as above. The analogue of Theorem 1.1 does indeed hold for n D 5 and n D 7,

so it may not be unreasonable to expect this result for any odd prime.

Conjecture 1.2. Let p be an odd prime and k a positive integer. Then the

Khovanov cohomology of the link Lk
p contains direct summands Z=plZ for all

l 2 ¹1; : : : ; kº.

Computations show that Conjecture 1.2 cannot work for p D 2: the link L2
2

does not have 4-torsion in its Khovanov cohomology. We note however that our

techniques make 2 look special compared to odd primes. We are forced to invert 2

in order to simplify the cochain complexes, which then allows us to isolate a good

subcomplex which is responsible for the odd torsion summands.

The links Lk
4 appear to be a better bet to create torsion of order 2k , as calcula-

tions for low values of k show. However, the direct summands do not appear in the

same pattern as for p D 3; 5; or 7, and our techniques would need to be somewhat

refined in order to justify 2k-torsion. Until then we note that the largest 2-power

torsion we are aware of is the 223-torsion observed in [8].

One may also wonder about the significance of the trefoil factor in Lk
n. As we

shall see it does play an important role, although it appears that it can be replaced

by any knot different from the unknot.

Acknowledgements. The authors are grateful to Mikhail Khovanov and Józef

H. Przytycki for their interesting comments and suggestions.
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2. Khovanov cohomology of a connected sum

In his fundamental paper [5] Khovanov introduced a finitely generated free bi-

graded cochain complex C �

Kh.L/ over Z for any link diagram L such that the re-

sulting cohomology groups are link invariants.

An important observation in [6] is that this cochain complex can be considered

a finitely generated free complex over R D ZŒX�=hX2i by choosing a basepoint

on the link diagram.

If two based links L1 and L2 are given, we can form their connected sum

L1]L2 along the basepoints, and by [6, Proposition 3.3] we can identify

C �

Kh.L1]L2/ Š C �

Kh.L1/ ˝R C �

Kh.L2/: (1)

Notice that since R is commutative, the tensor product also has the structure

of an R-complex. This corresponds to putting the basepoint for L1]L2 on an arc

involved in the connected sum. In view of the connected sum we do for Lk
3 , this

is not what we want.

To resolve this, we put a basepoint on each component of L3, and consider

C �

Kh.L3/ as an R � R bimodule chain complex, with the left action coming from

using the basepoint on the T .3; 4/-component, and the right action coming from

using the basepoint on the unknot component.

Since R is commutative, we can think of an R � R bimodule as an R ˝ R left

module. In particular, we treat R ˝R as a free R �R bimodule. However, R itself

is not free as an R ˝ R module.

Let us turn R into a graded ring by placing 1 2 R in grading 1 and X in

grading �1. Denote

�W R ˝ R �! R¹1º

the usual multiplication map, and let

�W R �! R ˝ R¹1º

be given by

�.1/ D 1 ˝ X C X ˝ 1; �.X/ D X ˝ X:

Here ¹1º denotes a grading shift which makes these maps grading preserving.

Lemma 2.1. With the notations as above,

.R ˝ R/ ˝R .R ˝ R/ Š R ˝ R¹1º ˚ R ˝ R¹�1º;

as R�R bimodules. Furthermore, the basis of .R˝R/˝R .R˝R/ Š R˝R˝R,

when viewed as a left R ˝ R module, is given by 1 ˝ 1 ˝ 1 and 1 ˝ X ˝ 1.
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Proof. Obviously, .R˝R/˝R .R˝R/ Š R˝R˝R. Also, the latter is generated

by 1˝1˝1 and 1˝X ˝1 as a R�R bimodule. Furthermore, the R�R bimodule

map

'W R ˝ R¹1º ˚ R ˝ R¹�1º �! R ˝ R ˝ R

defined by sending 1 ˝ 1 2 R ˝ R¹1º to 1 ˝ 1 ˝ 1, and 1 ˝ 1 2 R ˝ R¹�1º to

1 ˝ X ˝ 1 is grading preserving, and easily seen to be an isomorphism. �

For every n 2 Z define a R�R bimodule cochain complex C �.n/ concentrated

in homological degrees 0 and 1 by C 0.n/ D R ˝ R¹�1º, C 1.n/ D R ˝ R¹1º, and

the coboundary ınW C 0.n/ ! C 1.n/ given by

ın.1 ˝ 1/ D nX ˝ 1 � 1 ˝ X:

We need a notation to indicate a shift in homological degrees, which we express

by

C �Œk� D C ��k

for k 2 Z, and C � a general cochain complex.

Lemma 2.2. Let n; m 2 Z. Then

C �.n/ ˝R C �.m/ ' C �.nm/¹�2º ˚ C �.nm/Œ1�¹2º

as R � R bimodule complexes. Here ' means chain homotopy equivalent.

Proof. We write C �.n/ ˝R C �.m/ as

R ˝ R ˝ R¹�2º R ˝ R ˝ R

R ˝ R ˝ R R ˝ R ˝ R¹2º:

ın ˝ 1

1 ˝
ı
m

�1 ˝
ı
m

ın ˝ 1

Using Lemma 2.1 we can write this as

R ˝ R¹�1º

R ˝ R¹�3º

R ˝ R¹1º

R ˝ R¹�1º

R ˝ R¹1º

R ˝ R¹�1º

R ˝ R¹3º

R ˝ R¹1º

nX ˝ 1

�1 ˝ 1

�1 ˝
X

m
˝

1

nX ˝ 1

�1 ˝
X

1 ˝
X

�
m

˝
1

1 ˝
X

nX ˝ 1

�1 ˝ 1

nX ˝ 1
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Between the various direct summands we detect two isomorphisms, namely �1˝1

between the R ˝ R¹�1º summands in homological degrees 0 and 1 (the higher

one in homological degree 1), and �1 ˝ 1 between the R ˝ R¹1º summands in

homological degrees 1 and 2 (the lower one in homological degree 1).

We can now perform Gaussian elimination [3, Lemma 3.2] on these direct

summands to get

R ˝ R¹�3º R ˝ R¹1º

R ˝ R¹�1º R ˝ R¹3º

�1 ˝
X

C
nmX

˝
1

1 ˝ X � nmX ˝ 1

Notice that Gaussian elimination leads to a ‘zig-zag’ for the surviving direct

summands. In particular, the first coboundary has the �1 ˝ X summand from

the previous complex, while the nmX ˝ 1 summand is the ‘zig-zag’ coming from

the composition �.m ˝ 1/ ı .�1 ˝ 1/�1 ı .nX ˝ 1/.

Also, the horizontal arrows are 0 because nX � nX D 0 in R.

Since Gaussian elimination preserves the chain homotopy type over an additive

category [3], we get the result. �

Remark 2.3. As an abelian group, R ˝ R is a free abelian group of rank 4,

generated by 1 ˝ 1, X ˝ 1, 1 ˝ X and X ˝ X . The matrix of ın in terms of

this basis is given by

�n D

0

B

B

B

@

0 0 0 0

n 0 0 0

�1 0 0 0

0 �1 n 0

1

C

C

C

A

:

It follows that the cohomology of this cochain complex is free abelian of rank 2

in both homological degrees.

For m 2 Z define a left R-module cochain complex D�.m/ concentrated

in homological degrees 0 and 1 by D0.m/ D R¹�1º, D1.m/ D R¹1º, with

coboundary �m given by

�m.1/ D mX:

Clearly the cohomology of this complex, treated as abelian groups, has torsion of

order m, but more importantly we have the following.

Lemma 2.4. Let n; m 2 Z. Then

C �.n/ ˝R D�.m/ ' D�.nm/¹�2º ˚ D�.nm/Œ1�¹2º

as left R-module complexes.
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Proof. This is very similar to the proof of Lemma 2.2. We have C �.n/˝R D�.m/

is given by

R ˝ R¹�2º R ˝ R

R ˝ R R ˝ R¹2º:

ın ˝ 1

1 ˝
mX

�1 ˝
mX

ın ˝ 1

Since we treat this as a left R-module complex, we can use R˝R Š R¹1º˚R¹�1º

as left R-modules by the same argument as in Lemma 2.1. The basis of R ˝ R is

given by 1 ˝ 1 and 1 ˝ X . In this basis the cochain complex is

R¹�1º

R¹�3º

R¹1º

R¹�1º

R¹1º

R¹�1º

R¹3º

R¹1º

nX

�1
m

nX
�
m

nX

�1

nX

Again we can perform two Gaussian eliminations, after which the surviving

R¹�3º summand in homological degree 0 together with the surviving R¹�1º sum-

mand in homological degree 1 form the complex D�.nm/¹�2º. The remaining

two summands form a direct summand D�.�nm/Œ1�¹2º, but we can remove the

�1 factor with a change of basis. �

The complexes D�.m/ can also be viewed as right R-module complexes or

R �R bimodule complexes. The reader may want to convince themselves that the

analogous statement of Lemma 2.4 for the right R-module complex D�.m/ ˝R

C �.n/ cannot be derived in this way. In fact, this is not possible, as the Khovanov

cohomology of T .2; 3/]L3 does not contain 3-torsion when we connect T .2; 3/ to

the T .3; 4/-component of L3.

Let us introduce another R � R bimodule cochain complex E�, concentrated

in homological degrees 0 and 1, as follows. We set E0 D R ˝ R, E1 D R¹1º and

the coboundary is given by the multiplication map �, which is a bimodule map.

Lemma 2.5. Let n 2 Z. The R � R bimodule complex C �.n/ ˝R E� is chain

homotopy equivalent to C �.�n/¹�1º as an R � R bimodule complex.
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Proof. Using Lemma 2.1 we can write C �.n/ ˝R E� as

R ˝ R

R ˝ R¹�2º

R ˝ R¹2º

R ˝ R

R ˝ R R ˝ R¹2º

nX ˝ 1

�1 ˝ 1

1 ˝
1

nX ˝ 1

1 ˝
X

�
1
˝

1

�1 ˝
X

ın

We can use Gaussian elimination on the morphism �1˝ 1 between the R ˝ R¹2º,

and after that, we use Gaussian elimination on the 1 ˝ 1 morphism between the

R ˝ R direct summands in homological degrees 0 and 1.

This leads to

R ˝ R¹�2º R ˝ R
nX ˝ 1 C 1 ˝ X

which implies the statement. �

In view of Lemma 2.2 and Lemma 2.4 we would like to find a knot K with

D�.m/ as a direct summand in the chain homotopy type of its Khovanov com-

plex, and a two component link L with C �.n/ as a direct summand in the chain

homotopy type of its Khovanov complex. As we shall see, the trefoil knot works

with m D 2, but to get an appropriate L we need to simplify the algebra.

3. A recap of Bar-Natan’s algorithm

In [2] Bar-Natan gave a new introduction to Khovanov cohomology based on

tangles and cobordisms. Furthermore, in [3] he used this to obtain a fast algorithm

to calculate it. We quickly recall his construction, and show how it can be used to

keep the information coming from the action of R.

Given a finite subset B � S1, let Cob3
�
.B/ be the category whose objects are

smooth compact submanifolds S � D2 with @S D B , and whose morphisms are

“dotted” cobordisms embedded in a cylinder D2�Œ0; 1�, up to boundary preserving

isotopy. Here “dotted” means that we allow finitely many points in the interior of

a cobordism, which are allowed to move freely.

Now define Cob3
�=l

.B/ to be the pre-additive category with the same objects as

Cob3
� .B/, and where the morphism groups are obtained by taking the free abelian
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group of the morphisms from Cob3
�
.B/, and adding the local relations

D 0,
�

D 1,
�

�
D 0,

and

D

�

C

�

.

We can turn this category into an additive category by formally adding direct sums

as in [2]. We then let K.Cob3
�=l

.B// be the category of cochain complexes over

the additive category.

Given a tangle T , [2] then assigns a cochain complex C �

Kh.T / as an object

in K.Cob3
�=l

.@T //. The algorithm to calculate Khovanov cohomology described

in [3] can now be summarized as follows. We refer to the original publication for

more details.

(1) Consider the tangle T as a sequence of tangles T1; : : : ; Tk, with each subtan-

gle Ti consisting of one crossing. Form C �

Kh.T1/.

(2) (Tensor product) Assuming we have a chain complex C � representing the

chain homotopy type of the tangle T1 � � � Ti�1 for some i � 2, form the tensor

product C � ˝C �

Kh.Ti/. To get the new objects in this tensor product, we need

to combine the boundaries of the 1-dimensional manifolds according to the

gluings from the tangles.

(3) (Delooping [3, Lemma 3.1]) In this new cochain complex some of the gen-

erators will have circle components in the representing 1-manifold. Such a

generator can be replaced by two generators without the circle. Repeat until

all circles are gone.

(4) (Gaussian elimination [3, Lemma 3.2]) The delooped complex may have

several direct summands, on which Gaussian elimination can be performed.

This is repeated until no further eliminations are possible. The resulting

cochain complex C � has the chain homotopy type of C �

Kh.T1 � � � Ti /.

(5) Continue steps (2)-(4) until the last tangle, after which we have a cochain

complex C � chain homotopy equivalent to C �

Kh.T /.
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If we start with a link diagram L, the final result is a cochain complex over

Cob3
�=l

.;/, and all generators have the empty set as their object. The cobordisms

can be reduced to the empty set using the relations, and the information boils down

to a cochain complex over Z.

In view of Section 2 we would like to get a cochain complex over R or

R ˝ R. Now if we choose a basepoint on a tangle T , we can get a cochain

map X�W C �

Kh.T / ! C �

Kh.T / by putting a dot on the component of the cylinder

corresponding to the basepoint.

For the algorithm, we only need one of the tangles to have the basepoint, and

this will give a cochain map X� on the final cochain complex C �. In the case of

a link diagram, this turns C � into a left R-module complex. Similarly, with two

basepoints we can get C � to be a R � R bimodule complex.

Example 3.1 (compare [5, §6.2]). Consider the trefoil knot T .2; 3/ obtained from

the braid word �3
1 . The cochain complex C �

Kh.�1�1/ D C �

Kh.�1/˝C �

Kh.�1/ is given

by

S

S

S

�S

¹1º

¹1º

¹2º

where S denotes the obvious surgery cobordism. After delooping this turns into

S

S 1

�1

¹1º

¹1º

¹3º

¹1º

�

��

We can perform one Gaussian elimination to get

S �� �

¹1º ¹3º
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Applying the algorithm to the next crossing, without closing the braid yet, is easily

seen to lead to

S � C� � � �

¹1º ¹3º ¹5º

If we now close the strands of the braid, and consider each circle to give rise to a

factor R, the resulting cochain complex is

R ˝ R R¹1º R¹3º R¹5º
� 0 2X

If we treat the left strand as the based strand, the 0-th cochain group R ˝ R has

the left R-module structure involving the first factor of R, which is isomorphic

to R¹�1º ˚ R¹1º as a left R-module. In particular, we can perform one more

Gaussian elimination to get

C �

Kh.T .2; 3// ' R�¹3º ˚ D�.2/Œ2�¹7º (2)

as left R-complexes. Here R� is the trivial left R-complex concentrated in homo-

logical degree 0 given by R0 D R¹�1º. The shift by C3 in the quantum grading

is coming from the three positive crossings in T .2; 3/.

We notice that we can wait until the end before we commit to the basepoint.

This also works if we have two basepoints that we can put on the last tangle.

Another advantage of this is that at the last step, B only has four points. After

delooping, there are only two objects, and as morphisms (up to the local relations)

we only have a surgery S , a surgery together with a dotting, which we denote by
PS , and the various dottings on a cylinder (including no dottings at all).

4. The Khovanov cochain complex for Ln

We would like to get that C �

Kh.L3/ contains, up to chain homotopy, a direct

summand complex C �.3/, suitably shifted. This does not seem to be quite the

case. However, it turns out that after inverting 2 the Khovanov cochain complex

becomes more amenable and we do get our direct summand.

Let S be a subring of Q containing 1. For any link diagram L we write

C �

Kh.LI S/ D C �

Kh.L/ ˝ S . We can then consider C �

Kh.L3I S/ as an RS � RS

bimodule complex, where RS DSŒX�=hX2i. We are mainly interested in S DZ.p/,

the integers localized at a prime p, in which case we simply write Rp D RZ.p/
.
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We also use the notations C �.nI RS/ D C �.n/ ˝ S and D�.mI RS/ D

D�.m/ ˝ S .

Lemma 4.1. There exists a finitely generated R3 � R3 bimodule complex F �

3

concentrated in homological degrees 0 to 7 such that

C �

Kh.L3IZ.3// ' F �

3 ˚ C �.3I R3/Œ8�¹25º

as R3 � R3 bimodule complexes.

Proof. We apply Bar-Natan’s algorithm on T .4; 5/ by scanning the crossings ac-

cording to the braid word .�1�2�3/5. After 14 crossings we get a cochain complex

C � in K.Cob3
�=l

.B//, where B consists of four points, which is concentrated in

homological degrees 0 to 9 and which ends in

¹8º

¹9º

¹10º

¹11º

¹9º

¹12º

¹11º

�
S

2

�2S

�
PS

C

C� �

�
�

�2

PS

S

2

S
(3)

We note that this was obtained with the assistance of a computer, and in Appen-

dix A we show several stages in the algorithm.

We can treat this as the Khovanov complex for L3 by connecting the two

endpoints on the left, and connecting the two endpoints on the right. The resulting

R � R bimodule complex chain homotopy equivalent to C �

Kh.L3/ ends then in

R ˝ R¹22º

R¹23º

R ˝ R¹24º

R¹25º

R¹23º

R ˝ R¹26º

R¹25º

��2

�2�

�X�
2X

� ı �

�
X

�

�

2

2X ˝ 1

The shift in the quantum grading comes from the 14 positive crossings in L3.
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So far we have worked over the integers, but it is not clear whether we can

improve this cochain complex significantly as an R � R bimodule complex. But

if we allow ourselves to invert 2, there are two Gaussian eliminations that we can

perform.

So we now switch to R3 and cancel the R3¹23º direct summands in homolog-

ical degrees 7 and 8. The resulting morphism starting in R3 ˝ R3¹22º and ending

in R3 ˝ R3¹24º is given by

� ı � � .�2�/ ı
1

2
ı .��/ D 0;

and the morphism starting in R3 ˝ R3¹22º and ending in R3¹25º is given by

�X� � .2X/ ı
1

2
ı .��/ D 0:

In particular, homological degrees 8 and 9 now form a direct summand cochain

subcomplex. We can perform one more Gaussian elimination, after which the

morphism between the remaining summands is given by

2X ˝ 1 � � ı
1

2
ı � D 2X ˝ 1 �

1

2
.X ˝ 1 C 1 ˝ X/

D
1

2
.3X ˝ 1 � 1 ˝ X/

D
1

2
ı3:

As 1
2

is a unit in R3 the result follows by a change of basis. �

For the next result we can work over R again. Recall the R � R bimodule

complex E� from Section 2.

Lemma 4.2. Let n � 2. There exists a finitely generated R�R bimodule complex

G� concentrated in homological degrees 2 to n.n C 2/ � 1 such that

C �

Kh.Ln/ ' E�¹n.n C 1/º ˚ G�

as R � R bimodule complexes.

Proof. We will only give the proof for n D 3, the general case is similar. We apply

Bar-Natan’s scanning algorithm on the generating braid word, but only keep track

of homological degrees 0 and 1 after each step.
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For the first three steps, there are no possibilities to deloop or to use Gaussian

elimination. The resulting cochain complex C �

Kh.�1�2�3/ therefore begins with

S

S

S

� � �
¹1º

¹1º

¹1º

(4)

We claim that homological degrees 0 and 1 remain in that form until we get to

the cochain complex for the braid word .�1�2�3/4. This is done by induction.

Assume that the cochain complex for a subword of .�1�2�3/4 begins as in (4), and

we tensor it with C �

Kh.�i / for i 2 ¹1; 2; 3º. We will assume i D 2, but the other

cases are similar.

We then get

S

S

S

S S

S

S

�S

�S

�S

� � �

¹1º

¹1º

¹1º

¹1º

¹2º

¹2º

¹2º

One of the new homological degree 2 generators, in fact, the one corresponding to

i D 2, can be delooped, and the one with the �1-shifted quantum degree can then

be cancelled with the new homological degree 1 generator. After this Gaussian

elimination, the complex starts again as in (4).

This works all the way until we reach C �

Kh..�1�2�3/4/. When we tensor this

with C �

Kh.�1/, we also close the two leftmost endpoints of the braid. This means,
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it actually starts with

S

S

S

S S

S

S

�S

�S

�S

� � �

¹1º

¹1º

¹1º

¹1º

¹2º

¹2º

¹2º

We can still cancel the fourth homological degree 1 generator with the delooped

homological degree 2 generator. This creates some zigzags starting from the first

homological degree 1 generator. However, we can deloop the homological degree

0 generator, and one of the new generators cancels the first homological degree 1

generator. The remaining two homological degree 1 generators can be delooped,

and the C1-shifted version cancelled with a homological degree 2 generator.

The result is

S

S
� � �

¹�1º

Tensoring with C �

Kh.�2/, and closing the two leftmost endpoints of the braid allows

us to deloop and cancel as in the previous step, until we get

S � � �
¹�2º ¹�1º

Closing the remaining braid gives an R � R bimodule complex starting with

R ˝ R¹�2º R¹�1º � � �
� "

Since � is surjective and this is a cochain complex, we get " D 0. After a quantum

shift involving n.n C 2/ � 1 positive crossings, the result follows for n D 3.

For arbitrary n we observe that we get n generators in homological degree 1

in (4), which remains true up to the braid word .�1 � � � �n/nC1. With every letter in

the remaining word �1 � � � �n�1 we get one less generator in homological degree 1

just as above. �
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Remark 4.3. For n � 7 computer calculations show that

C �

Kh.Ln/ ' E�¹n.n C 1/º ˚ D�.2/Œ2�¹n.n C 1/ C 3º ˚ H �

with H � an R � R bimodule complex concentrated in homological degrees big-

ger than 3. We believe this to be true for general n, and consider the stability

results of [10] as supporting evidence. Attempting to prove this along the current

arguments seems to be somewhat tedious though.

But the existence of a D�.2/ direct summand in the chain homotopy type of

C �

Kh.L3/ shows that we can replace the trefoil by L3 in Theorem 1.1. Indeed, we

can replace the trefoil by any link which has a D�.2/ direct summand in the chain

homotopy type of its Khovanov complex.

Proof of Theorem 1.1. Up to chain homotopy, C �

Kh.Lk
3 IZ.3// contains a direct

summand

.C �.3I R3/Œ8�¹25º/˝l ˝R3
.E�

3 ¹12º/˝k�l ˝R3
D�.2I R3/Œ2�¹7º

for every l 2 ¹1; : : : ; kº by Lemma 4.1, Lemma 4.2, (1) and (2). Here we use the

notation E�

3 D E� ˝ Z.3/.

By Lemma 2.5 such a direct summand is chain homotopy equivalent to

C �.3I R3/˝l�1 ˝R3
C �.˙3I R3/ ˝R3

D�.2I R3/Œ8l C 2�¹11k C 14l C 7º: (5)

By Lemma 2.2 and Lemma 2.4 we get plenty of direct summands

D�.2 � 3l I R3/

suitably shifted. Each of these direct summands creates a Z.3/=2 �3lZ.3/ Š Z=3lZ

direct summand in H �

Kh.L3IZ.3//. Since Z.3/ is a localization of Z,

H �

Kh.L3IZ.3// Š H �

Kh.L3IZ/ ˝ Z.3/;

and these direct summands have to be already present in H �

Kh.L3IZ/. �

Remark 4.4. From (5) we can work out some of the bidegrees where 3l -torsion

occurs. To get a direct summand D�.2 � 3l I R3/, we need to apply Lemma 2.2

.l � 1/-times, and Lemma 2.4 once. If we only focus on minimal homological

degree in these lemmas, we get a direct summand

D�.2 � 3l I R3/Œ8l C 2�¹11k C 12l C 7º;

and by focussing on maximal homological degree we get a direct summand

D�.2 � 3l I R3/Œ9l C 2�¹11k C 16l C 7º:
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Given that D�.n/ has n-torsion in bidegree .1; 0/, we get a summand Z=3lZ in

the Khovanov cohomology of Lk
3 in bidegrees

.8l C 3; 11k C 12l C 7/ and .9l C 3; 11k C 16l C 7/:

Analyzing Lemma 2.2 and Lemma 2.4 a bit more carefully, we see that in bidegree

.8l C 3 C m; 11k C 12l C 7 C 4m/

there are at least
�

l
m

�

copies of Z=3lZ for m D 0; : : : ; l .

For l < k there exist more direct summands of Z=3lZ in the Khovanov

cohomology of Lk
3 . In view of Remark 4.3 this is not surprising. But for l D k

calculations up to k D 6 have found these to be all the direct summands of Z=3kZ.

Computer calculations show that

C �

Kh.L5IZ.5// ' F �

5 ˚ C �.5I R5/Œ18�¹55º (6)

where F �

5 is a finitely generated R5 � R5 bimodule complex concentrated in

homological degrees 0 to 17, and

C �

Kh.L7IZ.7// ' F �

7 ˚ C �.7I R7/Œ32�¹97º (7)

where F �

7 is a finitely generated R7�R7 bimodule complex concentrated in homo-

logical degrees 0 to 32. With the same arguments as in the proof of Theorem 1.1

this confirms Conjecture 1.2 for p D 5 and p D 7.

Remark 4.5. From the proof of Lemma 4.1 it seems unlikely that the analogous

statement works for Z coefficients. However, we really only needed to invert 2.

Similarly, for (6) and (7) we only need to invert the primes 2 and 3.

In particular, we can form a ‘mixed’ link

L D L#r
5 ]L#s

7 ]T .2; 3/

which has direct summands Z=5r7sZ in several single bidegrees of its Khovanov

cohomology.

Obtaining (6) and (7) by hand seems daunting, but may not be impossible.

A general technique may also work for other odd primes. It is encouraging that

the direct summand is at the top in terms of supported homological degrees. We

note however that L5 has 3-torsion in homological degree 20, and L7 has 2- and

3-torsion in homological degree 34, that is, above the homological support of the

localized versions.
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Nevertheless we refine Conjecture 1.2 to:

Conjecture 4.6. Let p be an odd prime. Then C �

Kh.LpIZ.p//, viewed as a Rp �Rp

bimodule complex contains C �.pI Rp/ suitably shifted as a direct summand up to

chain homotopy.

Remark 4.7. One can ask whether connected sums of knots can increase the order

of torsion in Khovanov cohomology. Indeed, in [7] the first author observed that

the connected sum of T .5; 6/ with itself gives rise to torsion of order 9. However,

a connected sum of three or four T .5; 6/ does not give rise to torsion of order

greater than 9.

We can consider C �

Kh.K/ as an R�R bimodule by placing two basepoints on K,

but since the connected sum of knots does not depend on where the basepoint

sits, this bimodule structure cannot be as asymmetric as in the case of L3. While

a summand C �.pIZ.p// could be balanced by another summand which flips the

R � R bimodule structure, it seems unlikely to get examples with that.

Appendix A. A hands-on proof of Lemma 4.1

The purpose of this appendix is to give stages in the Bar-Natan algorithm which

lead to (3). Instead of scanning each crossing one can use the original divide-

and-conquer approach of [3]. Furthermore, we are only interested in the higher

homological degrees of the final complex, so in the later steps we can ignore lower

homological degrees. There are still a lot of cancellations required and we do not

give every detail. In the cases of L5 and L7 it seems hopeless trying to write down

the steps.

For the first three crossings we can never deloop or cancel, and C �

Kh.�1�2�3/

is as in Figure 3.

S

S

S

�S

�S

S

S

S

�S

S

�S

S
¹1º

¹1º

¹1º

¹2º

¹2º

¹2º

¹3º

Figure 3. The cochain complex C �

Kh
.�1�2�3/.
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We now form C �

Kh.�1�2�3/ ˝ C �

Kh.�1�2�3/, and begin with the delooping

and cancelling. It turns out that the generator in homological degree 6 can be

cancelled, and all other generators in homological degree 5 can also be cancelled.

Indeed, only two generators in homological degree 4 survive. As in Lemma 4.2 we

can reduce the number of homological degree 1 generators to three. The resulting

cochain complex C � is depicted in Figure 4.

We now need to form C � ˝C �. Obviously, this has a lot of generators. For the

next steps we only need the top half of the cochain complex after cancellations.

In Figure 5 we show the generators in homological degrees 6 to 8. A few more

of the homological degree 5 generators are needed for later cancellations, but not

all. We omit the details.

We now form D� ˝ C �

Kh.�1/. After delooping and cancellations, we get a

cochain complex E� ending in homological degree 9 as in Figure 6.

We note that it is possible to get the number of homological degree 6 objects

down to 3, but we only need the one depicted in the next step.

The last step is to form E� ˝C �

Kh.�2/, deloop and cancel. Notice that the single

generator depicted in homological degree 6 leads to two generators in homological

degree 7 after delooping, and the one with the larger quantum grading is needed

to cancel a generator in homological degree 8.

¹1º

¹1º

¹1º

¹2º

¹2º

¹2º

¹2º

¹2º

¹3º

¹3º

¹3º

¹3º

¹5º

¹4º

S

S

S
S

S

�S

S

S

�S

�
S

�
S

S

�
S

�
S

�
S

S

�S

�SS

S

S

S

S

�S

S

S

ST

�S
�
T

�
S

�T

�
�

�

Figure 4. The cochain complex C � chain homotopy equivalent to C �

Kh..�1�2�3/2/. The

morphism T stands for two surgeries.
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S S

J T

IS

�
S H

�T

�S

�S

T

T

S

S

G S

�S

S

�SS

S

�S

L

K

¹7º

¹7º

¹7º

¹7º

¹7º

¹7º

¹7º

¹8º

¹8º

¹9º

¹9º

¹10º

¹10º

G

H

I

J

K

L

D

D

D

D

D

D

�

� �

�

C

�

�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 5. The cochain complex D�, chain homotopy equivalent to C �

Kh
..�1�2�3/4/, in

homological degrees 6 to 8. The morphism T stands for two surgeries.

� � �

� � �

C

�S

S

�
S

S

�S

�S

S

T

2

�

¹7º

¹9º

¹9º

¹9º

¹10º

¹10º

¹10º

¹12º

� � �

�

�

Figure 6. The cochain complex E�.

This leads to (3). Notice that we have a few more generators coming from

E6˝C 1
Kh.�2/ in homological degree 7, but these do not map to any of the surviving

generators in homological degree 8. It is possible to cancel them with generators

in homological degree 6, but this would require us to keep track of a larger part of

the cochain complex E�.



Arbitrarily large torsion in Khovanov cohomology 263

Remark A.1. It is possible to do the cancellations in a different order, which

can result in different cochain complexes. The above listed complexes were in

fact also obtained by a computer programme, ‘SKnotJob’, written by the second

author. The available version of SKnotJob does not have this feature, one has to

change a few lines in the source code to get the necessary output. But in order

to interpret this output correctly, a deeper understanding of the programme is

necessary. We can provide the interested reader with the various outputs, together

with information on how to interpret it.
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