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A graph TQFT for hat Heegaard Floer homology

Ian Zemke1

Abstract. We construct maps on hat Heegaard Floer homology for cobordisms decorated

with graphs. The graph TQFT allows for cobordisms with disconnected ends. Our con-

struction uses Juhász’s sutured Floer TQFT. We compute the maps for several elementary

graph cobordisms. As an application, we compute the action of the fundamental group on

hat Heegaard Floer homology.
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1. Introduction

Ozsváth and Szabó constructed a powerful set of invariants for closed 3-manifolds,

and cobordisms between them [12] [13]. To a closed, oriented 3-manifold Y , they

constructed a finitely generated abelian group

bHF.Y /;

as well as ZŒU �-modules HF�.Y /, HFC.Y / and HF1.Y /. We focus mostly on
bHF in our present paper. Also, we work over the field F WD Z=2Z.

To a compact, connected, and oriented cobordism W between two connected

3-manifolds, Y0 and Y1, they constructed a linear map

yFW WbHF.Y1/ �!bHF.Y2/:

If W D W2 [Y W1, where Y is a closed, connected 3-manifold, then

yFW D yFW2
ı yFW1

:

1 This research was supported by NSF grant DMS-1703685.
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An important subtlety is that the construction ofbHF.Y / requires a choice of

basepoint in Y . Similarly, the construction of yFW implicitly relies on choosing an

arc in W , connecting the two basepoints in @W . To make the dependence explicit,

we will writebHF.Y; p/ and yFW; for the groups and maps defined with an auxiliary

choice of basepoint p or arc  .

1.1. Maps for graph cobordisms. The main construction of this paper is an

extension of Ozsváth and Szabó’s cobordism maps to the following category:

Definition 1.1. The graph cobordism category Cob�
3C1 has the following objects

and morphisms:

� the objects are pairs .Y; p/, where Y is a closed and oriented 3-manifold

(possibly disconnected or empty), and p is a finite collection of basepoints

in Y , such that each component of Y has at least one basepoint;

� a morphism from .Y0; p0/ to .Y1; p1/ is a pair .W; �/ such that

(1) W is an oriented, compact cobordism from Y0 to Y1, and

(2) � � W is an embedded graph, such that � \ Yi D pi , � has no valence

0 vertices, and pi � � are all valence 1.

Generalizing their construction of Heegaard Floer homology for singly pointed

3-manifolds [12], Ozsváth and Szabó also defined a group bHF.Y; p/, whenever

.Y; p/ is a closed, oriented 3-manifold with a finite collection of basepoints [15].

The construction extends via a tensor product to disconnected 3-manifolds, as long

as each component of Y contains at least one basepoint.

In this paper, we construct cobordism maps for graph cobordisms, and prove

the following:

Theorem 1.2. If .W; �/ is a graph cobordism from .Y0; p0/ to .Y1; p1/, then the

construction of this paper gives a well-defined map

yFW;� WbHF.Y0; p0/ �!bHF.Y1; p1/;

satisfying the following:

(1) yFŒ0;1��Y;Œ0;1��p D id bHF.Y;p/
;

(2) if .W; �/ D .W2; �2/ [ .W1; �1/, then

yFW;� D yFW2;�2
ı yFW1;�1

I
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(3) if .W; �/W .Y0; p0/ ! .Y1; p1/ is a cobordism such that � is a path connecting

p0 and p1, then yFW;� coincides with the map of Ozsváth and Szabó [13].

Theorem 1.2 implies that Heegaard Floer homology extends to a functor from

Cob
�
3C1 to the category of vector spaces over F. Our construction of yFW;� uses

Juhász’s sutured Floer homology TQFT [7] [8].

1.2. Elementary graph cobordisms. In Sections 4 and 5, we compute the maps

for the following elementary graph cobordisms, whose underlying 4-manifolds are

Œ0; 1� � Y .

(�-1) Free-stabilization cobordisms: the graph � consists of Œ0; 1� � p, for a non-

empty collection of basepoints p � Y , together with one half-arc of the

form
�
0; 1

2

�
� ¹pº or

�
1
2
; 1

�
� ¹pº, for some p 62 p.

(�-2) Merging and splitting cobordisms: � consists of Œ0; 1� � p, for a (possibly

empty) collection of basepoints p � Y , as well as one wye-shaped compo-

nent which merges or splits two basepoints.

(�-3) Spliced loop cobordisms: � consists of Œ0; 1��p, for a non-empty collection

of basepoints p � Y , as well as one loop  in
®

1
2

¯
� Y , which intersects

Œ0; 1� � ¹pº for exactly one p 2 p.

(�-4) Broken path cobordisms: � consists of Œ0; 1� � p, for a (possibly empty)

collection of basepoints p � Y , together with one broken arc
��

0; 1
3

�
[�

2
3
; 1

��
� ¹pº, for some p 62 p.

The elementary graph cobordisms (�-1)–(�-4) are depicted in Figure 1.1.

1.3. The action of the fundamental group. Since a basepoint is implicitly used

in the construction of the Heegaard Floer groups, the naturality theorem of [9]

implies only that elements of the based mapping class group MCG.Y; p/ induce

well defined endomorphisms of Heegaard Floer homology.

There is a fibration

Diff.Y; p/ �! Diff.Y /
evp

��! Y;

where evp denotes evaluation at p. The long exact sequence of homotopy groups

for this fibration gives a homomorphism

�1.Y; p/ �! MCG.Y; p/:

By exactness, the image of �1.Y; p/ in MCG.Y; p/ is the kernel of the forgetful

map MCG.Y; p/ ! MCG.Y /.
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(�-1) (�-2)

(�-3) (�-4)



Figure 1.1. The four elementary graph cobordisms in Œ0; 1� � Y .

Suppose p 2 p and  2 �1.Y; p/. We write

�WbHF.Y; p/ �!bHF.Y; p/

for the induced endomorphism.

Using the graph TQFT, we prove the following:

Theorem 1.3. Suppose that .Y; p/ is a multi-pointed 3-manifold and that p 2 p.

If  2 �1.Y; p/, then the induced endomorphism � ofbHF.Y; p/ satisfies

� D id C p̂ ı AŒ�;

where AŒ� denotes the standard action of Œ� 2 H1.Y IZ/= Tors, and

p̂WbHF.Y; p/ �!bHF.Y; p/

is the broken path graph cobordism labeled (�-4) in Figure 1.1.

In Section 5, we identify the broken path graph cobordism p̂ with the base-

point action for the point p, which counts holomorphic disks on a Heegaard dia-

gram with multiplicity 1 at p. See Proposition 5.1.

Acknowledgments. I would like to thank Jianfeng Lin, Yajing Liu, András

Juhász, Ko Honda, Ciprian Manolescu, Marco Marengon and Matthew Stoffregen

for helpful conversations.
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2. Background

2.1. Heegaard Floer homology. Suppose .Y; p/ is a multi-pointed 3-manifold,

s 2 Spinc.Y /, and H D .†; ˛; ˇ; p/ is a Heegaard diagram for .Y; p/. Ozsváth

and Szabó [15] construct chain complexes cCF.H; s/, CF�.H; s/, CFC.H; s/ and

CF1.H; s/, as follows. We focus on the case that Y is connected. If Y is

disconnected, then cCF.H; s/ is defined by tensoring over F the complexes for

each connected component.

The chain complex cCF.H; s/ is generated by intersection points x of the two

half dimensional tori

T˛ D ˛1 � � � � � ˛g.†/Cn�1 and Tˇ D ˇ1 � � � � � ˇg.†/Cn�1;

in Symg.†/Cn�1.†/ (where n D jpj), which satisfy sp.x/ D s. The differential is

given by the formula

@x D
X

y2T˛\Tˇ

X

�2�2.x;y/
�.�/D1
np.�/D0

#.M.�/=R/ � y;

where M.�/ denotes the moduli space of holomorphic disks in Symg.†/Cn�1.†/,

representing a given homotopy class � 2 �2.x; y/.

We define

cCF.H/ D
M

s2Spinc.Y /

cCF.H; s/: (2.1)

Although we mostly focus on cCF in this paper, in Section 5, we consider CF�,

which we review presently. Write p D ¹p1; : : : ; pnº, and Rn WD FŒU1; : : : ; Un�.

The module CF�.H; s/ is the free Rn-module with generators x 2 T˛ \ Tˇ with

sp.x/ D s. The differential on CF�.H; s/ is

@x D
X

y2T˛\Tˇ

X

�2�2.x;y/

�.�/D1

#.M.�/=R/ � U
np1

.�/

1 � � � U
npn .�/
n � y:

Unlike for cCF, it is usually not possible to define a total complex CF�.H/

as a direct sum over all Spinc structures, analogous to equation (2.1), since CF�

requires a stronger version of admissibility than cCF, which cannot normally be

simultaneously realized for all Spinc structures on a single diagram [12, Sec-

tion 4.2.2]. Hence, on CF�, we usually work with one Spinc structure at a time.
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2.2. Sutured Floer homology. Sutured manifolds were defined by Gabai [3]

to study foliations on 3-manifolds. Juhász [7] defined an extension of Heegaard

Floer homology for sutured manifolds, called sutured Floer homology. Juhász [8]

also described a .3 C 1/-dimensional TQFT for sutured Floer homology. In this

section, we recall some background about sutured manifolds and the sutured Floer

homology TQFT.

The following is a slight restriction of Gabai’s original definition, but is suffi-

cient for our purposes:

Definition 2.1. A sutured manifold .M; / is a compact, oriented 3-manifold

M with boundary, together with a set of pairwise disjoint, simple closed curves

 � @M (the sutures) which are oriented. The surface @M n  is partitioned into

two sets of components, RC./ and R�./, which are oriented so that the normal

of RC./ points out of M , while the normal of R�./ points into M . Finally, we

require  to be consistently oriented with respect to the boundary orientation of

RC./ and R�./.

The main difference between Definition 2.1 and Gabai’s original definition is

that we exclude toroidal sutures. We say that a sutured manifold .M; / is balanced

if �.RC.// D �.R�.//. To a balanced sutured manifold .M; / with no closed

components, Juhász constructs an F-vector space

SFH.M; /:

If Y is a closed, oriented 3-manifold, and p is a collection of basepoints, then

we write Y.p/ for the sutured manifold .M; / where

M WD Y n int N.p/

and  consists of one simple closed curve per component of @M . We note that

SFH.Y.p// DbHF.Y; p/;

since a Heegaard diagram for .Y; p/ may be obtained from a diagram for Y.p/ by

collapsing each suture to a basepoint.

Juhász also defines cobordism maps for sutured Floer homology [8]. He uses

the following notion of cobordism between sutured manifolds:

Definition 2.2. A cobordism of sutured manifolds

W D .W; Z; Œ��/W .M0; 0/ �! .M1; 1/

is a triple such that
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(1) W is a compact, oriented 4-manifold with boundary,

(2) Z is a compact, codimension-0 submanifold of @W , and @W n int.Z/ D

�M0 t M1,

(3) Œ�� is an equivalence class of positive contact structures on Z, such that @Z

is a convex surface with dividing set i on @Mi , for i 2 ¹0; 1º.

The notion of equivalence between contact structures used in Definition 2.2

can be found in [8, Definition 2.3].

If WW .M0; 0/ ! .M1; 1/ is a cobordism between balanced sutured mani-

folds, Juhász [8] constructs a well-defined map

FWW SFH.M0; 0/ �! SFH.M1; 1/;

which is functorial in the following sense. If � is a Œ0; 1�-invariant contact structure

on Œ0; 1� � @M , such that ¹0; 1º � @M is convex, with dividing set  , then W D

.Œ0; 1� � M; Œ0; 1� � @M; Œ��/ is a sutured manifold cobordism from .M; / to itself.

The induced cobordism map

FWW SFH.M; / �! SFH.M; /

is the identity. Furthermore, if W decomposes as the composition of two sutured

manifold cobordisms W2 ı W1, then

FW D FW2
ı FW1

:

See [8, Theorem 11.3].

We outline the construction of the sutured cobordism maps in Section 2.4, after

we outline one of its constituents, the contact gluing map.

2.3. The contact gluing map. We now recall Honda, Kazez, and Matić’s con-

tact gluing map for sutured Floer homology [6], as well as the contact-handle

formulation given by Juhász and the author [10].

Definition 2.3. Suppose that .M; / and .M 0;  0/ are sutured manifolds. We say

that .M; / is a sutured submanifold of .M 0;  0/ if M � int.M 0/.

If .M; / is a sutured submanifold of .M 0;  0/, and � is a positive contact

structure on Z WD M 0 n int.M/ which induces the dividing set  [ 0, then Honda,

Kazez and Matić [6] define a contact gluing map

ˆZ;� W SFH.�M; / �! SFH.�M 0;  0/:
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In [10], Juhász and the author gave a reformulation of the contact gluing map

in terms of contact handles, which facilitates computations. Contact handles were

defined by Giroux [4]. See Ozbagci [11] for an exposition. We take the following

as the definition of a contact handle:

Definition 2.4. Suppose .M; / is a sutured submanifold of .M 0;  0/, and � is a

positive contact structure on Z WD M 0 n int.M/, with dividing set  [  0. We

say that .Z; �/ is a contact handle of index k if there is a contact vector field �

on Z that points into Z on @M , and out of Z on @M 0, as well as a decomposition

Z D Z0 [ h such that

(1) Z0 is diffeomorphic to Œ0; 1� � @M ,

(2) � is non-vanishing on Z0, points into Z0 on ¹0º � @M and out of Z0 on

¹1º � @M , and each flowline of � is an arc from ¹0º � @M to ¹1º � @M ,

(3) h is smooth 3-ball with corners, and � is tight on h.

We have the following additional requirements, depending on k.

� k D 0: h D D3 (with no corners) and h \ Z0 D ;. The dividing set on @h is

a single circle.

� k D 1: h D Œ0; 1� � D2 and h \ Z0 D ¹0; 1º � D2. The dividing set on @h

is a single closed curve, consisting of an arc on ¹0º � D2 and ¹1º � D2, and

two longitudinal arcs on Œ0; 1� � @D2.

� k D 2: h D Œ0; 1� � D2 and h \ Z0 D Œ0; 1� � @D2. The dividing set is as in

k D 1 case.

� k D 3: h D D3 (with no corners), and h \ Z0 D @h. The dividing set on @h

is a single circle.

We now state the description from [10] of the contact gluing maps of Honda,

Kazez and Matić when M 0 n M is a contact handle.

If Z is a contact 0-handle, we extend the Heegaard surface into Z0 using the

flow of �, and then add a disk to the Heegaard surface which lies in h and intersects

@D3 along the sutures. We add no new alpha or beta curves. The map on sutured

Floer homology is the tautological one.

If Z is a contact 1-handle, we extend † into Z0 using the flow of �, and then

attach a band to the boundary of the Heegaard surface, which is contained in h and

intersects the boundary along the dividing set. We add no alpha or beta curves.

Similar to the contact 0-handle map, the map on sutured Floer homology is the

tautological one.

If Z is a contact 2-handle, we extend the Heegaard surface into Z0 using the

flow of �, as before. Now @h intersects @Z in an annulus. Let c denote the core of
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the attaching annulus. The curve c may be taken to intersect the dividing set in two

points. Let �C denote the subarc of c which intersects RC, and let �� denote the

subarc which intersects R�. If .†; ˛; ˇ/ is a diagram for .M; /, we may obtain

a diagram for .M 0;  0/ by adjoining a band to @†, and adding a new alpha curve

˛, and a new beta curve ˇ. The curves ˛ and ˇ have a single intersection point in

the band region, as in Figure 2.1. Outside of the band region, ˇ consists of �C,

projected onto † n ˇ, and ˛ consists of ��, projected on † n ˛. The map

ˆZ;� W CF.†; ˇ; ˛/ �! CF.† [ B; ˇ [ ¹ˇº; ˛ [ ¹˛º/

is given by x 7! x � c. According to [10, Lemma 3.13], the map ˆZ;� is a chain

map, and hence induces a homomorphism on homology groups.

†

contact

2-handle
@†

†

ˇ

˛
c

Figure 2.1. A contact 2-handle on Heegaard diagrams.

Finally, suppose Z is a contact 3-handle, and let S � @M denote the 2-sphere

which is filled in by Z. Let S 0 denote a 2-sphere in int.M/ obtained by pushing

S into int.M/. The contact 3-handle map is defined as the composition of the

4-dimensional 3-handle map for the 2-sphere S 0 (which leaves the disjoint union

of .M 0;  0/ and B3), followed by the canonical isomorphism

SFH.M 0;  0/ ˝ SFH.B3/ Š SFH.M 0;  0/:

2.4. Sutured cobordism maps. We now outline the construction of the sutured

cobordism maps. Suppose

W D .W; Z; Œ��/W .M0; 0/ �! .M1; 1/;

is a cobordism of sutured manifolds, as in Definition 2.2. First, we remove some

number of tight, contact 3-balls from Z, and add them to .M0; 0/ or .M1; 1/,

so that each component of W intersects a component of M0 and M1 non-trivially.

This does not affect the sutured Floer homology of .M0; 0/ or .M1; 1/, as there

is a canonical isomorphism

SFH.M0 t B3; 0 [ / Š SFH.M0; 0/;

where  � B3 denotes a single closed curve.
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Juhász calls a sutured cobordism W special if Z D Œ0; 1� � @M0 and � is

Œ0; 1�-invariant. The cobordism map for a special cobordism is defined to be

a composition of 1-handle, 2-handle and 3-handle maps, similar to the ones

described by Ozsváth and Szabó [13].

If

W D .W; Z; Œ��/W .M0; 0/ �! .M1; 1/

is a general sutured manifold cobordism, one may obtain a special cobordism

W
s D .W; Œ0; 1� � @M1; �1/W .M0 [ Z; 1/ �! .M1; 1/;

where �1 is a Œ0; 1�-invariant contact structure on @M1 � Œ0; 1�. The cobordism map

FW is defined as the composition

FW WD FWs ı ˆZ;� : (2.2)

3. Construction of the graph TQFT

Suppose .W; �/ is a graph cobordism from .Y0; p0/ to .Y1; p1/. We define a

sutured manifold cobordism

W.W; �/ D .W.�/; Z.�/; Œ�.�/�/W Y0.p0/ �! Y1.p1/;

as follows. We define the 4-manifold W.�/ to be W nint N.�/, and the 3-manifold

Z.�/ to be @W.�/\@N.�/. We give @Z.�/ the same sutures as Y.p0/ and Y.p1/,

for which we write Z . We take �.�/ to be the unique tight contact structure

with dividing set Z , whose well definedness we sketch presently. The 3-manifold

Z.�/ is homeomorphic to a disjoint union of connected sums of S1 � S2, with

some number of 3-balls removed. The sutures consist of a single closed curve on

each copy of S2 in @Z.�/. It is well known that up to isotopy, relative to @Z.�/,

there is a unique tight contact structure on Z.�/ which has dividing set Z . The

case when Z.�/ D B3 follows from a result of Eliashberg [2]. The general case

follows by decomposing Z.�/ along a collection of convex 2-spheres, until one

obtains a disjoint union of tight, punctured 3-spheres, using convex surface theory,

see [1] and [5].

Without further ado, we define

yFW;� WD FW.W;�/:
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4. Elementary graph cobordisms in Œ0; 1� � Y

In this section, we compute the maps induced by the elementary graph cobordisms

shown in Figure 1.1, with the exception of the broken path cobordism, which is

considered in Section 5.

4.1. Free-stabilization cobordisms. In this section we compute the maps for

the free-stabilization cobordisms, which are labeled (�-1) in Figure 1.1. Let

W
C
p WD .Œ0; 1� � Y; �C

p /W .Y; p/ �! .Y; p [ ¹pº/

denote the free-stabilization graph cobordism which adds the basepoint p, and let

W
�
p denote the free-stabilization graph cobordism which removes p.

We define

SC
p WD yF

W
C
p

and S�
p WD yFW

�
p

: (4.1)

If H is a Heegaard diagram for .Y; p/, we may form a Heegaard diagram H.p/

for .Y; p [ ¹pº/ by adding the basepoint p, encircled by a new pair of alpha and

beta curves, ˛ and ˇ, as in Figure 4.1. After a sequence of handleslides, we may

assume that ˛ and ˇ are immediately adjacent to another basepoint p0 2 p. The

placement of basepoints makes it easy to verify that

bHF.H.p// ŠbHF.H/ ˝ V; (4.2)

where V is the 2-dimensional vector space F1=2 ˚F�1=2. We write �C for the top

degree generator of V , and �� for the bottom degree generator.

˛ˇ

�C

��

pp0

Figure 4.1. The diagram H.p/, obtained by adding a basepoint p to a diagram H.

Lemma 4.1. With respect to the isomorphism from equation (4.2), the maps SC
p

and S�
p satisfy

SC
p .x/ D x � �C and S�

p .x � �/ D

´
x if � D ��;

0 if � D �C:
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Proof. We first consider SC
p . We may perform an index 0/1 handle cancellation

to decompose the graph cobordism W
C
p as follows:

(1) a 0-handle B4, containing an arc a, which intersects @B4 in a single point;

(2) a 1-handle cobordism which merges .S3; p/ with .Y; p/, away from p.

We may similarly decomposeW�
p into a 3-handle cobordism followed by a 4-han-

dle cobordism.

The graph cobordism map for .B4; a/W ; ! .S3; p/ is easily seen to send the

generator of bHF.;/ Š F to the generator of bHF.S3/ Š F, and similarly for

the 4-handle cobordism in the opposite direction. The main claim now follows

for SC
p , since the stated formula coincides with the definition of the 1-handle map

[8, Section 7]. The proof of S�
p is similar. �

4.2. Merge and split cobordisms. We now compute the merge and split cobor-

dism maps, which are labeled (�-2) in Figure 1.1. Suppose that p1 and p2 are two

points in Y , � is a path connecting p1 to p2, and p0 is a point along �. Suppose

that p is a (possibly empty) collection of basepoints in Y n ¹p0; p1; p2º. Write

W
merge

�
W .Y; p [ ¹p1; p2º/ �! .Y; p [ ¹p0º/

for the graph cobordism which merges p1 and p2 into p0, along the path �.

Similarly write

W
split

�
W .Y; p [ ¹p0º/ �! .Y; p [ ¹p1; p2º/

for the graph cobordism which splits p0 into the pair p1 and p2. Write

Sp� WD yF
W

split
�

and M� WD yF
W

merge
�

:

Lemma 4.2. Let H be a Heegaard diagram for .Y; p [ ¹p0º/, and let Hp1;.p2/ be

the Heegaard diagram for .Y; p [ ¹p1; p2º/ obtained by relabeling p0 as p1, and

adding new alpha and beta curves which bound small disks containing p2, as in

Figure 4.2. Furthermore, assume that � is embedded in the Heegaard surface, as

shown in Figure 4.2. With respect to the isomorphism in equation (4.2), we have

Sp�.x/ D x � �� and M�.x � �/ D

´
x if � D �C;

0 if � D ��:

Proof. We begin with the split cobordism W
split

�
. Write .Z; �/ for the contact

portion of the boundary of the sutured manifold associated to W
split

�
. The contact
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˛ˇ

�C

��

p2p1

�

Figure 4.2. The diagram Hp1;.p2/, considered in Lemma 4.2.

manifold .Z; �/ is a thrice punctured, tight 3-ball. We glue Z to the boundary

S2 of Y.p [ ¹p0º/ associated to p0. The special cobordism .W
split

�
/s is a product

cobordism. Hence, by equation (2.2), yF
W

split
�

coincides with the contact gluing

map ˆZ;� . The contact manifold .Z; �/ is a contact 2-handle, so the gluing

map takes the form described in Section 2.3 (see specifically Figure 2.1). The

description of the contact gluing map immediately gives the stated formula for

Sp�. See Figure 4.3.

p0

†

p1 ��
p2

contact

2-handle
˛

ˇ

Figure 4.3. The map for a split cobordism coincides with a contact 2-handle map. The

boundary circles represent the sutures of the manifolds Y.p [ ¹p0º/ and Y.p [ ¹p1; p2º/.

We now compute the merge map. Note that the merge cobordism is ob-

tained by turning around the split cobordism. A Morse theory argument (see [10,

Lemma 6.7]) shows that sutured cobordism associated to W
merge

�
has the following

description:

(1) a contact 1-handle which merges the two boundary components associated to

p1 and p2. This turns the pair of boundary components into a single boundary

component, and adds an S1 � S2 summand;

(2) a 4-dimensional 2-handle which cancels the S1 � S2 summand.

The stated formula for the merge map follows from an easy holomorphic triangle

computation in the S1 � S2 summand. See Figure 4.4. �

4.3. Spliced loop cobordisms. We now investigate the spliced loop cobordism,

labeled (�-3) in Figure 1.1.
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contact

1-handle

p1 �� p2

p1 ��
p2

p0

†

4-dimensional

2-handle

isotopy

�C

�C

�C

Figure 4.4. Computing the merge map. On the left side, an index 0 holomorphic triangle is

shown.

Lemma 4.3. If W D .Œ0; 1��Y; �/W .Y; p/ ! .Y; p/ is a spliced loop cobordism,

then
yFW

D AŒ�;

where AŒ� denotes the standard action of H1.Y IZ/= Tors onbHF.Y; p/.
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Proof. Let p 2 p denote the basepoint connected to the strand with the spliced

loop. Write .Z; �/ for the contact portion of the boundary of the sutured cobordism

associated to W . The contact manifold .Z; �/ has a component which consists

of a twice punctured copy of S1 � S2, one of whose boundary components is

glued to the boundary S2 in Y.p/ for p. The manifold .Z; �/ may be decomposed

into a contact 1-handle, which splits the suture for p into two circles (and adds

no alpha or beta curves), as well as a contact 2-handle, which merges the two

sutures together, and adds an alpha and beta curve. The resulting 3-manifold is

.Y #S1 � S2; p/. Similar to Figure 4.3, the induced map is given by

ˆZ;�.x/ D x � ��: (4.3)

Let 0 � Y #S1�S2 denote a curve which is supported in the S1�S2 summand,

and represents a generator of H1.S1 � S2/. According to [14, Proposition 6.4],

the map AŒ0� is given by

AŒ0�.x � �C/ D x � �� and AŒ0�.x � ��/ D 0: (4.4)

There is also a 1-handle cobordism from .Y; p/ to .Y #.S1 � S2/; p/, whose

associated cobordism map is given by

F1.x/ D x � �C: (4.5)

Combining equations (4.3), (4.4) and (4.5), we obtain

ˆZ;�.x/ D AŒ0�.F1.x//:

The special cobordism associated to W consists of a 2-handle, which cancels

the new S1�S2 summand. The 2-handle is attached along a framed knot Kwhose

underlying unframed knot is the splice  � 0. The framing is irrelevant, since for

any choice of integral framing on  � 0, there is a canonical diffeomorphism

between .Y #S1 � S2/.K/ and Y . Hence

yFW
D FK ı AŒ0� ı F1: (4.6)

By definition, the right hand side of equation (4.6) represents Ozsváth and Szabó’s

map for the identity cobordism, twisted by the induced element Œ0� of H1.Œ0; 1��

Y IZ/= Tors. The class in H1.Y IZ/ induced by the loop 0 coincides with Œ�, so

the map induced by yFW
is exactly AŒ�. �

5. The broken path cobordism

We now investigate the broken path cobordism, labeled (�-4) in Figure 1.1. Let

us write Bp for the induced cobordism map.
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We first describe our candidate map. If p 2 p and H is a Heegaard diagram

for .Y; p/, then there is a map

p̂W cCF.H/ ! cCF.H/;

given by the formula

p̂.x/ D
X

y2T˛\Tˇ

X

�2�2.x;y/
�.�/D1
np.�/D1

np0 .�/D0; p02pn¹pº

#.M.�/=R/ � y:

By counting the ends of moduli spaces of index 2 holomorphic disks which cover

p exactly once, we see that p̂ is a chain map. By counting the ends of moduli

spaces of index 2 holomorphic disks which cover p exactly twice, we obtain

ˆ2
p D @ ı H C H ı @;

where H is the map which counts index 1 holomorphic disks representing classes

� with np.�/ D 2 and np0.�/ D 0 for all p0 2 p n ¹pº.

In this section, we prove the following:

Proposition 5.1. If .Y; p/ is a multi-pointed 3-manifold and p 2 p, then

Bp D p̂;

as endomorphisms ofbHF.Y; p/.

To prove Proposition 5.1, it is helpful to consider the minus version of the

Heegaard Floer chain complexes. Write p D ¹p1; : : : ; pnº. We now describe an

algebraic interpretation of p̂i
in terms of the chain complex CF�.Y; p; s/, which

we recall is finitely generated and free over the ring

Rn WD FŒU1; : : : ; Un�:

Given a Heegaard diagram H of .Y; p/, the intersection points x 2 T˛ \ Tˇ with

sp.x/ D s give a free basis of CF�.H; s/ over Rn. The complex cCF.H; s/ is

obtained by setting U1 D U2 D � � � D Un D 0, or equivalently by taking a tensor

product with the ring F, with the trivial action of Ui .

We may write the differential of CF�.H; s/ as a square matrix, using the basis

of intersection points. The map p̂i
is given by taking this matrix, differentiating

each entry with respect to Ui , and setting U1 D � � � D Un D 0.



A graph TQFT for hat Heegaard Floer homology 17

More generally, suppose .C �; @�/ is a free, finitely generated chain complex

over the ring Rn, with some chosen basis. Write . yC; O@/ for the chain complex

obtained by setting U1 D � � � D Un D 0. We may define a map

ˆUi
W yC �! yC;

by taking the matrix for @�, and differentiating each entry with respect to Ui , and

then setting all variables to be zero.

Lemma 5.2. (1) Suppose .C �
1 ; @�

1 / and .C �
2 ; @�

2 / are free, finitely generated chain

complexes over Rn, with fixed bases, and F W C �
1 ! C �

2 is an Rn-equivariant chain

map. Write yF W yC1 ! yC2 for the induced map. Then

ˆUi
ı yF C yF ı ˆUi

' 0:

(2) Suppose that p D ¹p1; : : : ; pnº is a collection of basepoints on Y . The map

p̂ W cCF.H/ ! cCF.H/ is natural, in the sense that if H and H
0 are two diagrams

for .Y; p/ then

‰H!H0 ı p̂ ' p̂ ı ‰H!H0 ;

where ‰H!H0 denotes the naturality map from cCF.H/ to cCF.H0/.

Proof. The second statement follows from the first, since the naturality maps on
cCF are restrictions of the naturality maps on CF�.

To prove the first claim, we take the equation

0 D @� ı F C F ı @�;

and differentiate it with respect to Ui . Using the Leibniz rule for products of

matrices, and then setting U1 D � � � D Un D 0, we obtain

F ı ˆUi
C ˆUi

ı F D O@ ı cF 0 C cF 0 ı O@;

as maps from yC1 to yC2. Here, F 0 denotes the map obtained by taking the matrix

for F , and differentiating each entry with respect to Ui , and cF 0 denotes the map

resulting from setting U1 D � � � D Un D 0. �

We prove an additional lemma, which concerns modifying the graph by adding

an extra strand:

Lemma 5.3. Suppose that .W; �/ and .W; � 0/ are two graph cobordisms, such

that � 0 is obtained by adding an interior leaf to �, i.e. a new edge e, contained

in int.W /, such that e \ � consists of a single point. See Figure 5.1. Then

FW;� D FW;�0 :
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Proof. The complements of � and � 0 are diffeomorphic, so the claim is immediate

from the construction of the cobordism maps in Section 3. �

e

.W; �/ .W; � 0/

Figure 5.1. Adding an interior leaf to a graph cobordism.

Remark 5.4. The relation in Lemma 5.3 is called the trivial strand relation in [16].

Proof of Proposition 5.1. To disambiguate terms, let us write ˆ
.Y;p/
p and B

.Y;p/
p

for the endomorphisms p̂ and Bp ofbHF.Y; p/.

As a first step, we show the claim when the component of Y which contains p

also contains another basepoint p0. In this case, the B
.Y;p/
p is equal to SC

p ı S�
p ,

where SC
p and S�

p denote the free-stabilization and destabilization maps consid-

ered in Section 4.1. We may use the diagram H.p/ shown in Figure 4.1. Using

Lemma 4.1, we obtain

B
.Y;p/
p .x � �C/ D 0 and B

.Y;p/
p .x � ��/ D x � �C: (5.1)

On the other hand, using the diagram in Figure 4.1, the only holomorphic curves

of index 1 which have multiplicity 1 on p and multiplicity 0 on p0 have domain

consisting of the bigon going over p. Using this diagram, we see that ˆ
.Y;p/
p co-

incides with equation (5.1). Hence, the claim follows if there is another basepoint

in the component of Y which contains p.

We now consider the case when p is the only basepoint in its component

of Y . In this case, we argue by adding an interior leaf to the graph, as shown

in Figure 5.2. According to Lemma 5.3, this does not change the cobordism map.

We decompose the broken path cobordism as follows:

(1) a free-stabilization cobordism, adding a new basepoint p0;

(2) a broken path cobordism from .Y; ¹p; p0º/ to .Y; ¹p; p0º/ (which is broken

over p);

(3) a basepoint merging cobordism, which merges p and p0 along a path �.
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Figure 5.2. Computing the broken path cobordism map by adding an interior leaf.

Hence

B
.Y;p/
p D M� ı B

.Y;¹p;p0º/
p ı SC

p0
: (5.2)

By the proof when there are at least 2 basepoints, equation (5.2) gives

ˆ.Y;p/
p D M� ı ˆ.Y;¹p;p0º/

p ı SC
p0

: (5.3)

If we can show

ˆ.Y;¹p;p0º/
p ı SC

p0
D SC

p0
ı ˆ.Y;p/

p ; (5.4)

then we can manipulate equation (5.3) to obtain

B
.Y;p/
p D M� ı ˆ.Y;¹p;p0º/

p ı SC
p0

D M� ı SC
p0

ı ˆ.Y;p/
p

D ˆ.Y;p/
p ;

(5.5)

since M� ı SC
p0

D id, as the corresponding cobordism is the identity graph

cobordism, with an extra interior leaf. Hence, it suffices to prove equation (5.4).

Consider the 2-variable polynomial ring FŒU; U0�, where U is associated

to p, and U0 is associated to p0. Note that cCF.Y; ¹p; p0º; s/ is obtained from

CF�.Y; ¹p; p0º; s/ by setting U D U0 D 0. Similarly, cCF.Y; p; s/ is also obtained

from CF�.Y; p/ ˝F FŒU0� by setting U D U0 D 0. Hence, by Lemma 5.2(1), to

show equation (5.4), it suffices to show that the map SC
p0

can be extended to an

FŒU; U0�-equivariant map from CF�.Y; p; s/ ˝F FŒU0� to CF�.Y; ¹p; p0º; s/.

Let H be a diagram for .Y; p/, and consider a diagram H.p0/ like the one

shown in Figure 4.1, but with the basepoint p0 encircled by the new alpha and

beta circles. There is an obvious isomorphism of modules

CF�.H.p0/; s/ Š CF�.H; s/ ˝F h�C; ��i ˝F FŒU0�:

Furthermore, Ozsváth and Szabó [15, Equation 20] prove that there is an almost

complex structure so that the differential on CF�.H.p0/; s/ takes the form

@H.p0/
.x � �C/ D @H.x/ ˝ �C; (5.6a)

@H.p0/
.x � ��/ D @H.x/ ˝ �� C .Up C Up0

/ � x � �C: (5.6b)
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Equation (5.6) implies that the map x 7! x ˝ �C, extended equivariantly over

FŒU; U0�, gives an FŒU; U0�-equivariant chain map from CF�.H; s/ ˝ FŒU0� to

CF�.H.p0/; s/, which restricts to SC
p0

when we set U D U0 D 0. Lemma 5.2(1)

implies equation (5.4), which allows us to perform the manipulation from equa-

tion (5.5), completing the proof. �

6. The action of the fundamental group

We are now ready to compute the action of the fundamental group onbHF.Y; p/.

Theorem 6.1. The action of  2 �1.Y; p/ onbHF.Y; p/ is given by the formula

� D id CAŒ� ı p̂;

where AŒ� denotes the action of H1.Y IZ/= Tors.

As a helpful first step, we prove the relation shown in Figure 6.1.

C D

Figure 6.1. A local relation satisfied by the graph cobordisms.

Lemma 6.2. The graph cobordism maps satisfy the local relation shown in Fig-

ure 6.1.

Proof. We view the local relation as taking place in a cylinder Œ0; 1� � Y . Let p1

and p2 be two basepoints of Y , corresponding to the two bottom points in the local

relation, and let � � Y be the corresponding path connecting them. We may view

the left cobordism of Figure 6.1 as a free-destabilization, followed by a basepoint

splitting cobordism. The middle cobordism is a basepoint merge, followed by a

free-stabilization. The right hand side is the identity. Hence, it is sufficient to

check

Sp� ı S�
p2

C SC
p2

ı M� D id : (6.1)

Equation (6.1) is easily verified from Lemmas 4.1 and 4.2. �
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We now prove the formula for the �1-action:

Proof of Theorem 6.1. We focus on the case when Y has a single basepoint, to

simplify the notation. The diffeomorphism map � coincides with the graph

cobordism map for .Œ0; 1� � Y; O/, where

O WD ¹.t; .t//W t 2 Œ0; 1�º � Œ0; 1� � Y:

We apply the local relation from Figure 6.1 to the graph O , as shown in Figure 6.2.

We obtain the sum of the two graph cobordisms shown on the right side of

Figure 6.2. We may identify the right most term with the map p̂ ı AŒ� using

Lemma 4.3 and Proposition 5.1. The proof is complete. �

O
D C

� id ˆp ı AŒ�

Figure 6.2. Obtaining the formula for the �1-action by applying the local relation from

Figure 6.1 to the graph O .
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